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Evaluation of the human 
adaptation of influenza A/H7N9 
virus in PB2 protein using human 
and swine respiratory tract explant 
cultures
Louisa L. Y. Chan1, Christine T. H. Bui1, Chris K. P. Mok1,2, Mandy M. T. Ng1, John M. Nicholls3, 
J. S. Malik Peiris1,2, Michael C. W. Chan1 & Renee W. Y. Chan1,4

Novel avian H7N9 virus emerged in China in 2013 resulting in a case fatality rate of around 39% and 
continues to pose zoonotic and pandemic risk. Amino acid substitutions in PB2 protein were shown to 
influence the pathogenicity and transmissibility of H7N9 following experimental infection of ferrets 
and mice. In this study, we evaluated the role of amino acid substitution PB2-627K or compensatory 
changes at PB2-591K and PB2-701N, on the tropism and replication competence of H7N9 viruses 
for human and swine respiratory tracts using ex vivo organ explant cultures. Recombinant viruses 
of A/Shanghai/2/2013 (rgH7N9) and its mutants with PB2-K627E, PB2-K627E + Q591K and PB2-
K627E + D701N were generated by plasmid-based reverse genetics. PB2-E627K was essential for 
efficient replication of rgH7N9 in ex vivo cultures of human and swine respiratory tracts. Mutant rgPB2-
K627E + D701N replicated better than rgPB2-K627E in human lung but not as well as rgH7N9 virus. 
The rgPB2-K627E mutant failed to replicate in human type I-like pneumocytes (ATI) and peripheral 
blood monocyte-derived macrophages (PMφ) at 37 °C while the compensatory mutant rgPB2-
K627E + Q591K and rgPB2-K627E + D701N had partly restored replication competence in PMφ. Our 
results demonstrate that PB2-E627K was important for efficient replication of influenza H7N9 in both 
human and swine respiratory tracts.

In March 2013, a novel avian-origin H7N9 virus emerged in China. As of 20th July 2016, a total of 795 laboratory 
confirmed human infections and 314 deaths were reported from 19 provinces and municipalities in Mainland 
China, Hong Kong, Macau, Taiwan, Malaysia and Canada. H7N9 viruses have spread from Eastern China in 
the first wave of the outbreak in early 2013, to Southern China in the second wave, and has now become enzo-
otic in multiple provinces in China. Since infection in poultry is asymptomatic, H7N9 virus is likely to spill 
over borders and spread across the region in a pattern similar to that observed with H5N1 and H9N2 influenza 
viruses previously1,2. Human H7N9 infections can lead to a rapidly progressing viral pneumonia, acute respira-
tory distress syndrome (ARDS) and multi-organ failure3, especially in older patients and in those with underlying 
co-morbidities.

Most zoonotic H7N9 disease is associated with exposure to poultry within live poultry markets4,5 with no 
evidence of sustained human-to-human transmission. Active surveillance of chickens in live poultry markets in 
five provinces in China showed an average isolation rate of 3.0%1. Phylogenetic analysis indicated that the novel 
H7N9 virus originated through reassortant of avian influenza viruses from wild aquatic birds and poultry; the 
hemagglutinin gene and the neuraminidase gene respectively, being derived from H7N3 and H7N9 viruses in 
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domestic ducks while the six “internal” genes were derived from avian H9N2 viruses found in poultry in Eastern 
Asia4,6,7. These viruses have acquired multiple mammalian adaptations. The HA protein possesses alanine (A) at 
position 160 and leucine (L) at position 226 (H3 numbering) which is expected to enhance the receptor binding 
specificity to mammalian α -2,6 sialic acid receptors, enabling the virus cross species from birds to humans8,9. 
Deletion of amino acids in the stalk region of the NA protein (at position 69 to 73) was previously found in HPAI 
H5N1 virus and is an adaptation of influenza viruses to replication in terrestrial poultry such as chicken and may 
also affect viral replication efficiency and tissue tropism in the respiratory tract4. The polymerase basic protein 2 
(PB2) of avian influenza viruses typically has glutamic acid (E) at position 627 while lysine (K) was usually seen in 
viruses circulating in humans10. While H7N9 viruses isolated from poultry have PB2-627E, some viruses isolated 
from humans have a PB2-E627K amino acid substitution, which is known to enhance the viral replication effi-
ciency and increase virulence in mice10–12. The PB2-627K mutation has been shown to enhance polymerase activ-
ity in human cells and increase pathogenicity in mice13–15. Some of the human H7N9 isolates retained PB2-627E 
and gained other compensatory mammalian markers such as PB2-Q591K and D701N16. Adaptive mutations 
Q591K and D701N in PB2 were associated with increased polymerase activity in mammalian cells17–19. Direct 
evidence of the role of these “mammalian adaptations” in humans is lacking.

We previously demonstrated that the human influenza H7N9 isolates (A/Shanghai/1/2013 and A/
Shanghai/2/2013) replicate more extensively and more efficiently in ex vivo cultures of human bronchus 
and lung than does H5N1 viruses9. However, in comparison to H5N1 viruses which are potent inducers of 
pro-inflammatory cytokine responses in primary human cells, the human H7N9 viruses were moderate inducers 
of such cytokines. Similar studies have been conducted using swine respiratory tissue explant cultures to address 
the susceptibility of the swine respiratory tract to H7N9 viruses20. This is relevant since swine have long been 
recognized as a potential “mixing vessel” of human and avian influenza viruses21,22, together with its critical role 
in the emergence of pandemic H1N1 in 200923. Experimental infection of pigs has led to productive viral repli-
cation but no transmission from pig to pig24. However, given the close contact between pigs, poultry and humans 
in agricultural settings in China, it is important to investigate the impact of genetic adaptations of H7N9 viruses 
in swine.

In this study, we used recombinant A/Shanghai/2/2013 (rgH7N9) to investigate the importance of PB2-E627K 
mutation and related compensatory mutations in PB2, namely Q591K and D701N, on tissue tropism, replication 
competence and cytokine induction in ex vivo explant cultures of human and swine respiratory tract.

Results
Replication kinetics of rgH7N9 virus and rgH7N9-PB2 mutants in DF-1 cells and MDCK cells 
at 33 °C and 37 °C. The replication kinetics of the rgH7N9 and its PB2 mutants in an avian chicken fibro-
blast cell line (DF-1) and a mammalian cell line (MDCK) at 33 °C and 37 °C were compared (Fig. 1). In the 
avian DF-1 cells, rgPB2-K627E demonstrated its temperature sensitive phenotype and replicated poorly at 33 °C 
(Fig. 1A) while the mutant viruses with the human compensatory markers, rgPB2-K627E +  Q591K and rgPB2-
K627E +  D701N were able to replicate to similar titers as rgH7N9 which has PB2-627K (Fig. 1A). At 37 °C, all 
H7N9 viruses achieved similar viral titers by 72 hpi indicating their replication competence in avian cells, though 
rgPB2-K627E virus had a delayed replication kinetics with a lower viral titer at 24 hpi (Fig. 1B).

In the mammalian MDCK cells, the replication kinetics of rgH7N9 (PB2-627K) was similar at both 33 °C 
and 37 °C with greater replication efficiency than all three mutants with PB2-627E (Fig. 1C,D). The mutant virus 
rgPB2-K627E failed to replicate at 33 °C and yielded limited virus progeny at 37 °C at 72 hpi. PB2-K627E mutants 
with compensatory human adaptation markers, PB2-Q591K or D701N, had partially restored the replication 
competence in MDCK cells at both temperatures, but they failed to replicate as efficiently as rgH7N9 which 
possesses PB2-627K.

Replication competence of rgH7N9 and PB2 mutants in ex vivo cultures of human bronchus 
and lung at 37 °C. The rgH7N9 virus replicated to significantly higher titers than each of the PB2 mutants in 
the human bronchus (Fig. 2A). It also had a trend for a more efficient replication than each of the PB2 mutants in 
the lung (Fig. 2B) at all time-points. The rgPB2-K627E mutant virus failed to replicate in either human bronchus 
or lung. The introduction of compensatory human markers, PB2-Q591K and D701N, partly rescued the replica-
tion competence of the rgPB2-K627E virus in lung. The mutant virus with rgPB2-K627E +  D701N showed partly 
restored replication competence in bronchus but its counterpart virus, rgPB2-K627E +  Q591K did not.

Tissue tropism of the rgH7N9 and PB2 mutants in ex vivo cultures of human bronchus and 
lung. Immunohistochemical staining of the infected tissues indicated that rgH7N9 virus possessing PB2-627K 
infected the human bronchial epithelium and the alveoli more extensively than its PB2 mutants (Fig. 2C,D). The 
rgPB2-K627E mutant virus failed to replicate in the ex vivo cultures of human respiratory epithelia (Fig. 2C,D). 
Moreover, the extent of infection correlated well with the viral replication titers. There were very limited influ-
enza antigen positive cells in the rgPB2-K627E +  Q591K and rgPB2-K627E +  D701N inoculated ex vivo culture 
of human bronchus (Fig. 2C) while more infected cells were shown in these mutant viruses infected lung tissues 
(Fig. 2D).

Replication competence and tissue tropism of rgH7N9 and PB2 mutants in ex vivo cultures 
of swine trachea, bronchus and lung. rgH7N9 virus failed to replicate in ex vivo cultures of swine 
trachea but replicated in bronchus and lung (Fig. 3A–C). The mutant viruses rgPB2-K627E +  Q591K and 
rgPB2-K627E +  D701N also replicated in ex vivo lung cultures (Fig. 3C) while minimal or no viral replication 
was observed in swine trachea and bronchus (Fig. 3A,B). rgH7N9 and all PB2 mutants replicated to lower titers 
than H1N1pdm did, especially in the swine lung (Supplementary Fig. 1A).
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In ex vivo culture of the swine respiratory tract, the epithelial cells in the terminal bronchioles were the main 
target cell types. The most extensive influenza nucleoprotein antigen positive cells were seen with the rgH7N9 
virus, followed by rgPB2-K627E +  Q591K mutant virus-infected tissues (Fig. 3F). Limited numbers of infected 
alveolar macrophages and type II pneumocytes were seen in the virus inoculated swine alveolar ex vivo cultures 
(Fig. 3G). None of the viruses were able to infect the ex vivo cultures of swine trachea and bronchus, with the 
exception of some positive cells found in the interstitial tissue within the trachea (Fig. 3D) and bronchus (Fig. 3E). 
H1N1pdm also failed to infect the swine trachea and bronchus, the extent of infection in the terminal bronchioles 
and alveoli in the swine lung was similar to that of rgH7N9 (Supplementary Fig. 1B–E).

Replication kinetics of rgH7N9 and PB2 mutant viruses in human type I-like cells and human 
peripheral blood derived macrophages. With a MOI of 0.01 infection, rgH7N9 replicated to titers sig-
nificantly higher than all its PB2 mutants at all the time points examined in both type I-like pneumocytes (ATI) 
and peripheral blood monocyte-derived macrophages (PMφ ) (Fig. 4A,B). rgPB2-K627E failed to replicate in both 
primary cells, while compensatory human markers PB2-Q591K and D701N partially restored the viral replication 
efficiency.

Therefore, we investigated if the lack of replication was due to the lack of infectivity or the incompetence in 
producing new progeny viruses. We compared the infection rate of these viruses in ATI at 24 hpi (Supplementary 
Fig. 2) and PMφ  at 8 hpi (Supplementary Fig. 3). With a MOI of 2 infection, there were no statistical signif-
icant differences in the infection rate among the rgH7N9 virus to its mutants, ranging from 61–75% in ATI 
(Supplementary Fig. 2E) and 80–91% in PMφ .

Cytokine and chemokine gene expression in the H7N9 virus infected human ATI and PMφ. The 
cytokine and chemokine gene expression was compared among the rgH7N9 and its mutants in ATI and PMΦ  at 
a MOI of 2. In ATI, rgPB2-K627E +  Q591K and rgPB2-K627E +  D701N induced significantly more IL-29 gene 
expression than the rgH7N9 (Fig. 4E) while mutant rgPB2-K627E induced significantly lower IFN-β  and CCL5 
than rgH7N9 (Fig. 4C,I) at 24 hpi. In PMφ , though the cytokine and chemokine expression induced by the PB2 
mutants was comparable with rgH7N9, rgPB2-K627E +  D701N upregulated the expression of IL-29 compared to 
the other H7N9 viruses (Fig. 4F). In accordance with our previous findings9, H7N9 virus represented by rgH7N9 
in this study, were found to be moderate inducers of pro-inflammatory cytokine and chemokine with H5N1 being 

Figure 1. Replication kinetics of PB2 mutant viruses in DF-1 (chicken fibroblast) and MDCK (canine 
kidney epithelial cell). Viral replication kinetics of HA mutants of H7N9 viruses in DF-1 (A,B) and MDCK 
(C,D) cells infected at a MOI of 0.01 at 33 °C (A,C) or 37 °C (B,D). Bar charts show the mean virus titre pooled 
from at least three independent experiments. The horizontal dotted line denotes the limit of detection in the 
TCID50 assay. Error bars show SEM. *p <  0.05, **p <  0.01, ***p <  0.005, rgH7N9 vs all PB2 mutants; #p <  0.05, 
##p <  0.01, rgPB2-K627E +  Q591K vs rgPB2-K627E; ♦p <  0.05, ♦♦♦p <  0.005, rgPB2-K627E +  D701N vs rgPB2-
K627E.
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the high cytokine-inducer and H1N1pdm being a low cytokine-inducer for IFN-β  (Fig. 4C,D), IL-29 (Fig. 4E,F) 
and CXCL10 (Fig. 4G,H) in both ATI and PMφ , CCL5 in ATI (Fig. 4I) and TNF-α  (Fig. 4J) in PMφ .

Discussion
In this study, we evaluated the effects of PB2-E627K mutation as well as two mammalian adaptation markers, 
PB2-Q591K and D701N on H7N9 virus replication competence in ex vivo cultures of human and swine respira-
tory tracts and in vitro cultures of human primary ATI and PMφ . While avian H7N9 viruses invariably have PB2-
627E, A/Shanghai/2/2013 (Sh2) (H7N9) virus which was isolated from a patient with severe disease had acquired 
the mammalian adaptation mutation PB2-E627K, and this is reflected in recombinant rgH7N9 virus used in this 
study. Tissue tropism and virus replication competence of rgH7N9 virus and its PB2 mutants were compared. 
Recombinant H7N9 virus with PB2-627K replicated to similar titers with H1N1pdm in ex vivo cultures of human 
bronchus and lung as we previously described9. We demonstrated that H7N9 possessing PB2-627E failed to infect 
and replicate in the ex vivo cultures of human bronchus, lung, in vitro cultures of human ATI and PMφ  and in 
ex vivo cultures of swine trachea and bronchus suggesting that the avian virus is not adapted for replication in 
the human or swine respiratory tract. The compensatory mammalian adaptation mutations in PB2, Q591K or 
D701N could partially rescued the virus replication in human and swine cells and tissues though it was not reach-
ing the full competence of the rgH7N9 virus with the PB2-627K. This emphasized the key role of PB2-E627K in 
contributing to the efficient viral replication of H7N9 in the human respiratory tract. These findings are in agree-
ment with others who have found that lysine in position 627 in PB2 was found to be essential for mammalian 
adaptation in terms of the enhancement of polymerase activity, viral growth kinetics and virulence in mice when 
compared with the mutants of Sh2 or A/Anhui/1/2013 (H7N9) having PB2-627E13,14.

From our observation, the viral replication efficiency of H7N9 and the PB2 mutants in ex vivo cultures of 
human respiratory tract was greater than in swine respiratory tract for approximately 2-fold difference in viral 
titer. This might contribute to the differential polymerase activities in human cells and porcine cells25, the rela-
tively lower polymerase activity detected in porcine cells may be responsible for the overall low viral titers resulted 
from H7N9 virus infection in the ex vivo cultures of swine respiratory tissues26–28. The profiles of sialic acid dis-
tribution in human and swine respiratory tract might play a crucial role as well though the distribution pattern 

Figure 2. Viral replication kinetics and Tissue tropism of rgH7N9 and its PB2-mutant viruses in ex vivo 
cultures of human respiratory organs . Human bronchus (A) and lung (B) were infected with 106 TCID50/
mL of influenza viruses at 37 °C. Bar charts show the mean virus titre pooled from at least three independent 
experiments. The horizontal dotted line denotes the limit of detection in the TCID50 assay.; error bars 
show SEM. Key: TCID50 =  tissue culture infective dose. *p <  0·05, **p <  0.01, ***p <  0.005. Formalin-fixed 
paraffin-embedded sections of human bronchus (C) and lung (D) after 24 h infection with rgH7N9, rgPB2-
K627E, rgPB2-K627E +  Q591K and rgPB2-K627E +  D701N viruses and mock. Sections were stained with a 
monoclonal antibody against the influenza nucleoprotein with positive cells identified as a red-brown colour 
and arrows indicated the infected cell. Magnification, × 400.
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of sialic acid receptors in swine and human respiratory tracts are similar27,29,30, but higher Galα 1-3Gal expression 
and comparatively rare extended sialylated LacNAc repeats can be observed in swine31.

Several previous studies have investigated the replication and infection potential of H7N9 using swine as 
experimental model, both in vivo and ex vivo. Here, we isolated the ex vivo cultures of swine trachea, bronchus 
and lung from intact respiratory organs of 6-month old pigs (Sus scrofa domestica). These pigs were farm-raised, 
exposed to field conditions and represent the natural population of animals31. Jones et al., in contrast, used the 
explant cultures of tracheal and lung explants of one-week-old laboratory piglets to examine the infectivity of 
H7N9 in swine. They found that three human H7N9 viruses including A/Anhui/1/2013, A/Shanghai/1/2013 and 
A/Shanghai/2/2013 replicated efficiently in trachea and lung20. In our case, although no replication and positive 
staining were found in the swine trachea after virus inoculation, the influenza nucleoprotein antigen positive 
cells were also found in terminal bronchiolar epithelial cells in the lung. The lectin binding and glycan array 
profiles of the respiratory tracts of adult domestic pigs are different from infant pigs, the binding of Sambucus 
nigra agglutinin (SNA, a lectin binds α -2,6 glycans) was strong for the upper respiratory tract of both infant and 
adult pigs but binding to Maackia amurensis agglutinin-I (MAA-I, a lectin binds α -2,3 N-glycans) and MAA-II 
(a lectin binds α -2,3 O-glycans) was only observed infant pigs. There was a strong binding of SNA lectin to the 
alveoli of infant pigs but weak to that of adult pigs27,31. Therefore, it is possible that age of pigs may affect the 

Figure 3. Viral replication kinetics and Tissue tropism of influenza rgH7N9 viruses in ex vivo cultures 
of swine respiratory organs. Swine trachea (A), bronchus (B) and lung (C) were infected with 106 TCID50/
mL of influenza viruses at 37 °C. Bar charts show the mean virus titre pooled from at least three independent 
experiments. The horizontal dotted line denotes the limit of detection in the TCID50 assay.; error bars show 
SEM. Key: *p <  0·05, ** p <  0.01, *** p <  0.005. Formalin-fixed paraffin-embedded sections of swine trachea 
(D), bronchus (E), terminal bronchioles (F) and alveoli (G) in lung after 24 h infection with rgH7N9, rgPB2-
K627E, rgPB2-K627E +  Q591K and rgPB2-K627E +  D701N viruses and mock. Sections were stained with a 
monoclonal antibody against the influenza nucleoprotein with positive cells identified as a red-brown colour 
and arrows indicated the infected cell. Magnification, × 400



www.nature.com/scientificreports/

6Scientific RepoRts | 6:35401 | DOI: 10.1038/srep35401

Figure 4. Replication kinetics, cytokine and chemokine mRNA expression profile in type I-like 
pneumocytes (ATI) and peripheral blood monocyte-derived macrophages (PMφ) . Viral replication kinetics 
of PB2 mutants of H7N9 viruses in ATI (A) and PMφ  (B) cells infected at a MOI of 0.01 at 37 °C. Human 
primary cell infected with mock, rgH7N9 and PB2 mutant viruses, H5N1, and H1N1pdm viruses at a MOI of 
2 at 37 °C. Expression of IFN-β  (C,D), IL29 (E,F), CXCL10 (G,H) and CCL5 (I) and TNFα  (J) at 1, 8, 24 hpi 
in ATI and 1, 3, 8, 24 hpi in PMφ . Graphs show mean mRNA copies expressed per 105 β -actin copies from 
three independent experiments; error bars show SEM. Two-way ANOVA followed by Bonferroni’s multiple 
comparison test were performed to compare rgH7N9 and its mutants. *p <  0.05, **p <  0.01, ***p <  0.005, 
****p <  0.0001.
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permissiveness for H7N9 virus replication. This can lead to variations in the determination of virus tropism, 
infection and transmission.

Our data in swine ex vivo cultures is compatible with previous data from pigs experimentally infected with 
H7N9 where the viral RNA load in the trachea and bronchus was low24. In addition, Zhu et al. demonstrated by 
immunohistochemistry that H7N9 virus also targeted the nasal turbinates, however we have not examined the 
nasal turbinates in the current study. Liu et al. infected young domestic pigs in vivo with A/Anhui/1/2013 recom-
binant viruses32. They found that the wild type and 627E viruses replicated well in the lung and trachea and was 
found transmissible between direct contact animals32. Our observations suggest that H7N9 with either PB2-627K 
or E is able to infect and replicate the ex vivo cultures of swine lung and thus providing a virus reservoir for pos-
sible transmissions, however, the lack of efficient replication of H7N9 in swine conducting airways, the trachea 
and bronchus, would imply that transmission could be inefficient. The tropism observations presented in this 
paper partly addressed the reason why there is not yet a report on the isolation of H7N9 from pigs in the field33–35.

Apart from the study in pig models, the effect of amino acid substitution in PB2 position 627 of H7N9 
were also evaluated in chickens and ferrets. A recent report suggested that an avian H7N9 virus isolated from 
pooled oropharyngeal swabs of Silkie chickens (A/SCk/HK/1772/2014) with PB2-627E transmitted efficiently 
among chickens via direct contact. The transmission efficiency of this isolate was comparable to that found in a 
human H7N9 isolate with PB2-627V/E/K polymorphism (A/HK/3263/2014)36. When a chicken-to-ferret trans-
mission experiment was performed using this Silkie chicken strain, a rapid increase in the proportion of 627K 
over 627E was observed in the nasal washes of transmitted ferrets. The E627K adaption in PB2 gene was there-
fore shown to be associated with mammalian adaptation in ferrets5,37,38. Besides, we showed that in contrast 
to the tropism data found in the tissue and cells of human and swine, rgPB2-K627E could still replicate in the 
chicken fibroblast DF-1 cells at 37 °C, albeit less efficiently than rgH7N9 or the mutants rgPB2-K627E +  Q591K 
or rgPB2-K627E +  D701N. The rgPB2-K627E virus replicated poorly if at all in DF-1 or MDCK cells at 33 °C, 
exhibiting its temperature sensitive phenotype39,40.

Apart from the determination of tissue tropism, the effect of PB2 mutations in H7N9 virus was also evalu-
ated. Our results demonstrated that, with a similar percentage of infection, the proinflammatory cytokines and 
chemokines induced by the rgH7N9 and its mutants in ATI and PMφ  was generally similar, except IL-29 gene 
was upregulated by rgPB2-K627E +  Q591K and rgPB2-K627E +  D701N in ATI and by rgPB2-K627E +  D701N 
in PMΦ  compared to rgH7N9 at 24 hpi. The reduced mRNA expression levels of IFN-β  and CCL5 in ATI infected 
with rgPB2-K627E in comparison to rgH7N9 with PB2-627K followed the similar story in a mouse study that 
H7N9 with PB2-627K would induce a significantly higher level of proinflammatory in the lungs of mice than 
those infected with rgPB2-627E13. In general, the overall profile of cytokine and chemokine induction by H7N9 
virus, follow the previous findings that H7N9 induced a lower cytokine response when compared to HPAI H5N1 
as shown in human primary cultures9 and mice41.

Although rgPB2-K627E viruses failed to replicate in human ATI and PMφ  cells in the low MOI experiment, 
these cells were infected at similar rate and cytokine responses were elicited in the infection with a MOI of 2. 
Influenza viruses are detected through the recognition of toll-like receptor (TLR) 3 expressed in the endosome 
and on the surface of human respiratory epithelial cells42–44 and in the phagosome of macrophages45–47. Thus 
abortive infection may be sufficient to trigger cytokine responses. Infected cells are sensed by TLR3 with the 
presence of double-stranded RNA (dsRNA) and leads to the production of pro-inflammatory cytokines depend-
ent on the expression of nuclear factor-κ B (NF-κ B), type I interferon and IFN-stimulated genes (ISGs)45,48,49. 
Macrophages are active innate immune cells able to patrol around to detect potential pathogens by amoeboid 
movement. One of the characteristic differences between macrophages and lung epithelial cells is the function of 
phagocytosis for the removal of infected or dying cells50,51. Although rgPB2-K627E was not replicating in PMφ , it 
might be possible that PMφ  phagocytoses the influenza virus-infected and apoptotic cells therefore activates the 
induction of pro-inflammatory cytokines since PMφ  is capable of secreting cytokines once they exposed to any 
inflammatory stimuli50,52,53.

To conclude, rgH7N9 possessing PB2-K627E failed to replicate and infect in both ex vivo cultures of human 
bronchus and lung and in in vitro model of human ATI and PMφ . Thus, PB2-E627K, or the compensatory adap-
tations such as PB2-Q591K or D701N would be essential to at least partly rescue the replication competence of 
virus possessing PB2-627E in the mammalian system. The current ex vivo cultures of human and swine lung, and 
in vitro culture of primary human peripheral blood derived macrophages would be a good risk assessing model 
for the virus competence in replication and host innate immune response induction. Our experimental findings 
explain why many H7N9 virus isolates from humans have one or other of these mammalian adaptation mutations 
in PB2.

Methods
Viruses. Table 1 listed the viruses used in this study. All the recombinant H7N9 viruses were generated by 
plasmid based reverse genetics of influenza virus A/Shanghai/2/201313. Virus stocks used for these experiments 
were propagated and titrated in the Madin-Darby canine kidney (MDCK) cells to determine the tissue culture 
infection dose 50% (TCID50). MDCK cells were cultured in Eagle’s minimal essential medium (MEM) containing 
25 mM HEPES, 10% fetal calf serum (FBS) and 100 U/ml penicillin and 100 μ g/ml streptomycin. Chicken fibro-
blast DF-1 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10%FBS and 1%PS.

TCID50 assay. Sub-confluent MDCK 96-well tissue culture plates were prepared one day before the virus titra-
tion assay. Cells were washed once with warm phosphate-buffered saline (PBS) and replenished with serum-free 
MEM with 1%PS and 2 μ g/ml of tosylsulfonyl phenylalanylchloromethyl ketone (TPCK)–treated trypsin. Serial 
dilutions of culture supernatants from experiments, ranging from 0.5log to 7log, were performed before adding 
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the virus dilutions onto the plates in quadruplicate and cytopathic effect (CPE) was monitored daily. The end 
point of viral dilution leading to CPE in 50% of inoculated wells was estimated using the Karber method.

Ex vivo organ cultures of human respiratory tract. Fresh biopsies of human normal bronchus and lung 
tissues were obtained from patients undergoing surgical resection of bronchus and lung tissues at Queen Mary 
Hospital. Informed consent has been obtained from all subjects. This study was approved by the Institutional 
Review Board of the University of Hong Kong and Hospital Authority Hong Kong West Cluster (UW 14-119) 
and all methods involving human tissues were performed in accordance with relevant guidelines and regulations. 
Tissue fragments of bronchial tissue were placed on a sterile surgical sponge for air-liquid interface (ALI), while 
lung tissue were cut into thin slices and cultured with F12K medium in 24-well plate as previously described9,54. 
These ex vivo cultures were maintained at 37 °C for culture and infection.

Ex vivo organ cultures of swine respiratory tract. Intact respiratory organs were obtained from freshly 
slaughtered pigs in Hong Kong Sheung Shui slaughterhouse and delivered within 3 hours in a sterile plastic box 
at 4 °C. A tracheal swab was taken to exclude current influenza infection in the animal. It was tested for influenza 
M gene by real-time qPCR and data generated from any swine tissues positive for influenza A virus in the swab 
sample were excluded. Tracheobronchial epithelium (TBE) was prepared by removing the mucosa and submu-
cosa from the cartilage with a pair of fine forceps and a sharp scalpel. Lung slices were prepared by perfusing the 
lung with cold transport medium and then 1% agarose in PBS using a clear tracheal tube 4.0 mm through the 
bronchiole until the lobe was fully expanded. Lung tissue was cut in cubes and embedded with 4% agarose. The 
agarose-embedded lung tissue was cut in slices, using a cryotome blade with < 1 mm thickness. TBE epithelia 
and lung slices were cut into circular snippets with 5 mm diameter using a disposable biopsy punch (Miltex). 
These thin snippets were placed on surgical sponge in a 12-well culture plate. 1.5 ml corresponding medium was 
added into each well with the epithelial explants and the surgical sponge floating on the medium, as previously 
described31. Tracheal epithelium was cultured in a 1:1 mixture of RPMI 1640 and DMEM high glucose with 
1%PS, 1 μ g/ml gentamicin, 0.3 mg/ml glutamine, bronchial epithelium was cultured in MEM with 1%PS, 1 μ g/
ml kanamycin, 0.3 mg/ml L-glutamine and 20 mM HEPES while the thin lung slices were cultured in DMEM 
high glucose with 2.5 μ g/ml bovine insulin, 0.5 μ g/ml hydrocortisone, 0.5 μ g/ml Vitamin A (Sigma, USA) and 
0.1 mg/ml gentamycin. Culture medium of these explants was changed every hour within the first four hours and 
incubated in a 37 °C water-jacketed incubator with 5% CO2. All experiments involving swine tissues were carried 
out in accordance with relevant guidelines and regulations. All experimental protocols were approved by the 
Institutional Review Board of the University of Hong Kong.

Infection of ex vivo cultures of human and swine respiratory tract. The respiratory explant cultures 
were inoculated with influenza viruses with comparable infecting virus dose of 106 TCID50/ml, by submerging the 
explants tissue in 1 ml of virus dilution for 1 h at 37 °C. Tissues were washed 3 times with 5 ml PBS to remove any 
unbounded virus. The supernatant of the infected culture was collected for virus titration to study the kinetics of 
virus replication at 1, 24, 48 and 72 h post infection (hpi).

Immunohistochemical staining for influenza A virus antigen. To examine the infectivity of the 
viruses, the control and infected respiratory tissues were collected at 24, 48 and 72 hpi and fixed in 10% neutral 
buffered formalin and processed for paraffin embedding. Immunohistochemistry using a mouse anti-influenza 
nucleoprotein antibody (HB65, EVL Laboratories, Netherlands) was performed to examine the IAV antigen as 
previously described54.

Culture of human type I-like pneumocytes (ATI). After the removal of visible bronchi, the lung tissue 
was minced into pieces of thickness < 0.5 mm with scissors. Lung pieces were washed with Hanks’s balanced salt 
solution at pH7.4 for three times to remove macrophages and blood cells. A combination of 0.5% trypsin and 
4 U/ml elastase (Worthington Biochemical Corporation, USA) was added to the lung pieces and incubated for 
40 min in a 37 °C water bath with shaking for digestion and stopped with DMEM/F12 medium with 40%FBS 
and DNase I (350 U/ml) (Sigma, USA). Undigested lung fragments were separated with a 50 μ m pore size dis-
posable cell strainer and cell clumps were dispersed by repeated pipetting for 10 min. Single cell suspension in 
flow-through was centrifuged and resuspended in a 1:1 mixture of DMEM/F12 medium and small airway growth 
medium (SAGM) (Lonza, USA) with 5% FBS and 350 U/ml DNase I. Resuspended cells were plated on a tissue 

Virus Abbreviation Subtype

Amino acid residue

PB2

591 627 701

A/California/07/2009 H1N1pdm H1N1pdm R E D

A/Hong Kong/483/1997 H5N1 H5N1 Q K D

Recombinant A/Shanghai/2/2013 rgH7N9 H7N9 Q K D

rgH7N9 - PB2 mutants

rgPB2-K627E

H7N9

Q E D

rgPB2-K627E +  Q591K K E D

rgPB2-K627E +  D701N Q E N

Table 1. Influenza viruses used in this study.
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culture flask (Corning, USA) for 90 min adhesion at 37 °C. The non-adherent cells were centrifuged, pelleted and 
resuspended with SAGM with supplements and 1%PS and plated on a new culture flask. The growth medium 
was changed daily starting from 60 h after cell plating. At 75% confluence, the ATI cell layer was trypsinised for 
seeding.

Human peripheral blood monocyte-derived macrophages (PMφ). Buffy coats of healthy blood 
donors were obtained from the Hong Kong Red Cross Blood Transfusion Service and peripheral blood leuco-
cytes were separated by centrifugation on a Ficoll-Paque density gradient and purification of monocytes were 
done by adhering on plastic petri dishes as previously described55. Monocytes were seeded onto tissue culture 
plates in RPMI 1640 medium supplemented with 5% heat-inactivated autologous plasma. Immunostaining for 
surface receptor CD14 (BD Biosciences, USA) was done to ensure the purity of monocyte preparations. A 14-day 
differentiation was done and the culture medium was changed to macrophage serum free medium SFM (Gibco, 
USA) a week before infection.

Virus infection of primary cell cultures in vitro. Human ATI and PMφ  were infected with influenza A 
viruses at a multiplicity of infection (MOI) of two for the analysis of cytokine and chemokine expression or at 
MOI of 0.01 for viral replication kinetics. Serum-free MEM with 1%PS was used as inoculum for mock treatment. 
The cell cultures were incubated with the virus inoculum for 1 h in a water-jacketed 37 °C incubator with 5% CO2. 
The cells were rinsed three times with warm PBS and replenished with the appropriate growth medium. 130 μ l 
of culture supernatant was collected from each treatment at 1, 24 and 48 hpi for ATI and 1, 24, 48 and 7 2hpi for 
PMφ  for virus replication kinetics study. The infected cells were harvested for mRNA collection at 1, 8 and 24 hpi 
for ATI and 1, 3, 8 and 24 hpi for PMφ . 4% paraformaldehyde (PFA) fixed cell monolayer seeded on coverslips 
were collected at 24 hpi for ATI and 8 hpi for PMφ .

Quantification of pro-inflammatory cytokine and chemokine mRNAs by quantitative 
RT-PCR. Human ATI and PMφ  were lysed in 350 μ l RLT buffer with beta-mercaptoethanol after the infec-
tion in MOI of 2. RNA extraction was performed using an RNeasy minikit (Qiagen, Germany) following the 
manufacturer’s protocol with DNase treatment followed by reverse transcription using PrimerScript RT reagent 
Kit (Takara, China). The gene expression level was quantified by real-time PCR amplification using ViiA™  7 
Real-Time PCR System (Applied Biosystem, USA). Gene expression profiles of cytokines tumor necrosis factor 
alpha (TNF-α ), interleukin (IL)-29, interferon β  (IFN-β ); chemokines CXCL10, and CCL5 were normalized using 
housekeeping gene β -actin mRNA at the time points stated above. Absolute copy numbers of cytokine, chemok-
ine and β -actin gene were determined from a standard curve generated from a standard plasmid with a known 
copy number which was simultaneously included in qPCR. The primers and methods used for these assays have 
been reported previously9,54,56.

Immunofluorescence assay for influenza viral antigen. The infectivity of the influenza viruses in 
ATI and PMφ  was determined by the percentage of cells that expressed the influenza viral antigens, matrix (M) 
protein and nucleoprotein (NP). Cell monolayer seeded on coverslips were fixed with 4% PFA for at least one 
hour. The cell monolayers were washed once with PBS and permeabilized with 0.2% Triton-X-100 for 30 min 
at RT. Cells were washed with PBS once and stained with a mouse monoclonal antibody conjugated to fluores-
cein isothiocyanate (FITC) specific to M and NP of influenza A virus (Imagen, USA) for 45 min incubation at 
37 °C. The stained cells were washed with PBS once and mounted on glass slides using a mounting medium with 
4’,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) (Vector Laboratories Inc, USA). Fluorescence images 
were viewed and captured using a Nikon Eclispe Ti-S inverted microscope system. The percentage of cells with 
positive influenza viral antigen expression was interpreted as the percentage of infection.

Control and Statistical analysis. Experiments were performed independently using ex vivo cultures from 
at least three human donors and pigs. ATI and PMφ  were isolated from three human donors. Each virus used for 
all these experimental replicates was from same batch. MEM inoculated tissue or cells served as mock infection 
and negative controls.

Results showed in figures were the arithmetic mean and standard error of mean (SEM). The differences 
between log10-transformed viral titers among different viruses at different times post-infection and the gene 
expression profiles of quantitative cytokine and chemokine of influenza virus–infected cells were compared using 
two-way ANOVA with a post-hoc Bonferroni multiple-comparison test. Differences were considered significant 
at a p value of < 0.05. Statistical analysis was performed using Graph-pad Prism 6. As the aim of this part was to 
determine the effect of PB2 mutations in replication kinetics and cytokine and chemokine induction in human 
primary ATI and PMφ , the result generated from the control viruses, H5N1 and H1N1pdm, were only included 
as reference benchmark.

Biosafety. All the recombinant viruses with PB2 mutations were loss-of-function mutations. All experiments 
were carried out in a biosafety level 3 facilities at The University of Hong Kong.

References
1. Lam, T. T. et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature 522, 102–105, doi: 

10.1038/nature14348 (2015).
2. Xu, K. M. et al. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. Journal of 

virology 81, 10389–10401, doi: 10.1128/JVI.00979-07 (2007).



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:35401 | DOI: 10.1038/srep35401

3. Yu, L. et al. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus. 
Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 57, 1449–1457, doi: 10.1093/cid/cit541 
(2013).

4. Gao, H. N. et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. The New England journal of medicine 368, 
2277–2285, doi: 10.1056/NEJMoa1305584 (2013).

5. Chen, Y. et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and 
characterisation of viral genome. Lancet 381, 1916–1925, doi: 10.1016/S0140-6736(13)60903-4 (2013).

6. Kageyama, T. et al. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 
2013. Euro Surveill 18, 20453 (2013).

7. Lam, T. T. et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502, 241–244, doi: 
10.1038/nature12515 (2013).

8. Zhou, J. et al. Biological features of novel avian influenza A (H7N9) virus. Nature 499, 500–503, doi: 10.1038/nature12379 (2013).
9. Chan, M. C. et al. Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro 

cultures of the human respiratory tract. The Lancet. Respiratory medicine 1, 534–542, doi: 10.1016/S2213-2600(13)70138-3 (2013).
10. Shinya, K. et al. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A 

viruses in mice. Virology 320, 258–266, doi: 10.1016/j.virol.2003.11.030 (2004).
11. Jagger, B. W. et al. The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. mBio 1, 

doi: 10.1128/mBio.00067-10 (2010).
12. Long, J. S. et al. The effect of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on the virus 

lineage. Journal of virology 87, 9983–9996, doi: 10.1128/JVI.01399-13 (2013).
13. Mok, C. K. et al. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 

influenza virus in mammalian hosts. Journal of virology 88, 3568–3576, doi: 10.1128/JVI.02740-13 (2014).
14. Yamayoshi, S. et al. Amino acids substitutions in the PB2 protein of H7N9 influenza A viruses are important for virulence in 

mammalian hosts. Scientific reports 5, 8039, doi: 10.1038/srep08039 (2015).
15. Zhang, H. et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza 

virus. The Journal of general virology 95, 779–786, doi: 10.1099/vir.0.061721-0 (2014).
16. Chen, G. W. et al. Genomic Signatures for Avian H7N9 Viruses Adapting to Humans. PLoS One 11, e0148432, doi: 10.1371/journal.

pone.0148432 (2016).
17. Danzy, S. et al. Mutations to PB2 and NP proteins of an avian influenza virus combine to confer efficient growth in primary human 

respiratory cells. J Virol 88, 13436–13446, doi: 10.1128/JVI.01093-14 (2014).
18. Gabriel, G. et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 

102, 18590–18595, doi: 10.1073/pnas.0507415102 (2005).
19. Herfst, S. et al. Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced 

virulence or transmission. J Virol 84, 3752–3758, doi: 10.1128/JVI.02634-09 (2010).
20. Jones, J. C. et al. Human H7N9 influenza A viruses replicate in swine respiratory tissue explants. Journal of virology 87, 12496–12498, 

doi: 10.1128/JVI.02499-13 (2013).
21. Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of virology 72, 

7367–7373 (1998).
22. Hass, J., Matuszewski, S., Cieslik, D. & Haase, M. The role of swine as “mixing vessel” for interspecies transmission of the influenza 

A subtype H1N1: a simultaneous Bayesian inference of phylogeny and ancestral hosts. Infect Genet Evol 11, 437–441, doi: 10.1016/j.
meegid.2010.12.001 (2011).

23. Vijaykrishna, D. et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473, 519–522, doi: 
10.1038/nature10004 (2011).

24. Zhu, H. et al. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341, 
183–186, doi: 10.1126/science.1239844 (2013).

25. Moncorge, O. et al. Investigation of influenza virus polymerase activity in pig cells. J Virol 87, 384–394, doi: 10.1128/JVI.01633-12 
(2013).

26. Kida, H. et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol 75 (Pt 9), 2183–2188, doi: 10.1099/0022-1317-
75-9-2183 (1994).

27. Trebbien, R., Larsen, L. E. & Viuff, B. M. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in 
experimentally infected pigs. Virol J 8, 434, doi: 10.1186/1743-422X-8-434 (2011).

28. De Vleeschauwer, A., Van Poucke, S., Braeckmans, D., Van Doorsselaere, J. & Van Reeth, K. Efficient transmission of swine-adapted 
but not wholly avian influenza viruses among pigs and from pigs to ferrets. J Infect Dis 200, 1884–1892, doi: 10.1086/648475 (2009).

29. Nelli, R. K. et al. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 6, 4, doi: 
10.1186/1746-6148-6-4 (2010).

30. Van Poucke, S. G., Nicholls, J. M., Nauwynck, H. J. & Van Reeth, K. Replication of avian, human and swine influenza viruses in 
porcine respiratory explants and association with sialic acid distribution. Virol J 7, 38, doi: 10.1186/1743-422X-7-38 (2010).

31. Chan, R. W. et al. Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis. 
Influenza and other respiratory viruses 7, 1269–1282, doi: 10.1111/irv.12144 (2013).

32. Liu, Q. et al. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important 
for transmission. Journal of virology 88, 8153–8165, doi: 10.1128/JVI.00894-14 (2014).

33. Xu, L. L. et al. Rapid adaptation of avian H7N9 virus in pigs. Virology 452, 231–236, doi: 10.1016/j.virol.2014.01.016 (2014).
34. Wu, R. et al. A novel neutralizing antibody against diverse clades of H5N1 influenza virus and its mutants capable of airborne 

transmission. Antiviral Res 106, 13–23, doi: 10.1016/j.antiviral.2014.03.005 (2014).
35. Jernigan, D. Emergence of Avian Influenza A(H7N9) Virus Causing Severe Human Illness - China, February-April 2013. Mmwr-

Morbid Mortal W 62, 366–371 (2013).
36. Luk, G. S. et al. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets. J Virol 

89, 9939–9951, doi: 10.1128/JVI.01444-15 (2015).
37. de Wit, E. et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in 

the human host. Journal of virology 84, 1597–1606, doi: 10.1128/JVI.01783-09 (2010).
38. Jonges, M. et al. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian 

influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing. Journal of virology 88, 1694–1702, doi: 
10.1128/JVI.02044-13 (2014).

39. Aggarwal, S., Dewhurst, S., Takimoto, T. & Kim, B. Biochemical impact of the host adaptation-associated PB2 E627K mutation on 
the temperature-dependent RNA synthesis kinetics of influenza A virus polymerase complex. J Biol Chem 286, 34504–34513, doi: 
10.1074/jbc.M111.262048 (2011).

40. Massin, P., van der Werf, S. & Naffakh, N. Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian 
influenza viruses. J Virol 75, 5398–5404, doi: 10.1128/JVI.75.11.5398-5404.2001 (2001).

41. Meliopoulos, V. A. et al. Human H7N9 and H5N1 influenza viruses differ in induction of cytokines and tissue tropism. J Virol 88, 
12982–12991, doi: 10.1128/JVI.01571-14 (2014).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:35401 | DOI: 10.1038/srep35401

42. Le Goffic, R. et al. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral 
responses in human lung epithelial cells. J Immunol 178, 3368–3372 (2007).

43. Guillot, L. et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and 
influenza A virus. The Journal of biological chemistry 280, 5571–5580, doi: 10.1074/jbc.M410592200 (2005).

44. Ioannidis, I., Ye, F., McNally, B., Willette, M. & Flano, E. Toll-like receptor expression and induction of type I and type III interferons 
in primary airway epithelial cells. Journal of virology 87, 3261–3270, doi: 10.1128/JVI.01956-12 (2013).

45. Iwasaki, A. & Pillai, P. S. Innate immunity to influenza virus infection. Nature reviews. Immunology 14, 315–328, doi: 10.1038/
nri3665 (2014).

46. Vercammen, E., Staal, J. & Beyaert, R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clinical 
microbiology reviews 21, 13–25, doi: 10.1128/CMR.00022-07 (2008).

47. Hui, K. P. et al. H5N1 influenza virus-induced mediators upregulate RIG-I in uninfected cells by paracrine effects contributing to 
amplified cytokine cascades. J Infect Dis 204, 1866–1878, doi: 10.1093/infdis/jir665 (2011).

48. Le Goffic, R. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS 
Pathog 2, e53, doi: 10.1371/journal.ppat.0020053 (2006).

49. Pothlichet, J. et al. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. 
PLoS pathogens 9, e1003256, doi: 10.1371/journal.ppat.1003256 (2013).

50. Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A. & Nakanishi, Y. Evidence for phagocytosis of influenza virus-infected, 
apoptotic cells by neutrophils and macrophages in mice. Journal of immunology 178, 2448–2457 (2007).

51. Fujimoto, I., Pan, J., Takizawa, T. & Nakanishi, Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-
infected cells by macrophages. Journal of virology 74, 3399–3403 (2000).

52. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in 
immunology 5, 491, doi: 10.3389/fimmu.2014.00491 (2014).

53. Aderem, A. Phagocytosis and the inflammatory response. The Journal of infectious diseases 187 Suppl 2, S340–S345, doi: 
10.1086/374747 (2003).

54. Chan, M. C. et al. Tropism and innate host responses of the 2009 pandemic H1N1 influenza virus in ex vivo and in vitro cultures of 
human conjunctiva and respiratory tract. The American journal of pathology 176, 1828–1840, doi: 10.2353/ajpath.2010.091087 
(2010).

55. Yu, W. C. et al. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages 
infected with influenza H5N1 and H1N1 viruses. J Virol 85, 6844–6855, doi: 10.1128/JVI.02200-10 (2011).

56. Chan, R. W. et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo 
respiratory organ cultures. Journal of virology 87, 6604–6614, doi: 10.1128/JVI.00009-13 (2013).

Acknowledgements
Dr. Alan DL Sihoe and staff (Division of Cardiothoracic Surgery, Department of Surgery, Li Ka Shing Faculty 
of Medicine, The University of Hong Kong and Queen Mary Hospital) provided human lung tissues. Technical 
support of Immunohistochemical staining was provided by Mr. Kevin Fung from the Department of Pathology, 
LKS Faculty of Medicine, The University of Hong Kong. Research funding was provided by the US National 
Institute of Allergy and Infectious Diseases (NIAID) under CEIRS contract no. HHSN272201400006C; Research 
Grants Council of the Hong Kong Special Administrative Region, China, through the Theme Based Research 
Scheme (Ref: T11-705/14N) and Health and Medical Research Fund Commissioned Research on Control of 
Infectious Diseases (Phase III), CID Phase III - HKU (Portfolio 2) (Reference No: HKS-15-B01). The funders 
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions
M.C.W.C., R.W.Y.C. and J.S.M.P. Study design and overall coordination, analysis and interpretation of results, 
and writing of the manuscript; L.L.Y.C. Experiments, analysis and interpretation of results and writing of the 
manuscript; C.T.H.B., C.K.P.M., M.M.T.N. Experiments and technical supports; J.M.N. Immuno-histochemical 
analysis and critical review of the manuscript;

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chan, L. L. Y. et al. Evaluation of the human adaptation of influenza A/H7N9 virus 
in PB2 protein using human and swine respiratory tract explant cultures. Sci. Rep. 6, 35401; doi: 10.1038/
srep35401 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant ...
	Results
	Replication kinetics of rgH7N9 virus and rgH7N9-PB2 mutants in DF-1 cells and MDCK cells at 33 °C and 37 °C. 
	Replication competence of rgH7N9 and PB2 mutants in ex vivo cultures of human bronchus and lung at 37 °C. 
	Tissue tropism of the rgH7N9 and PB2 mutants in ex vivo cultures of human bronchus and lung. 
	Replication competence and tissue tropism of rgH7N9 and PB2 mutants in ex vivo cultures of swine trachea, bronchus and lung ...
	Replication kinetics of rgH7N9 and PB2 mutant viruses in human type I-like cells and human peripheral blood derived macroph ...
	Cytokine and chemokine gene expression in the H7N9 virus infected human ATI and PMφ. 

	Discussion
	Methods
	Viruses. 
	TCID50 assay. 
	Ex vivo organ cultures of human respiratory tract. 
	Ex vivo organ cultures of swine respiratory tract. 
	Infection of ex vivo cultures of human and swine respiratory tract. 
	Immunohistochemical staining for influenza A virus antigen. 
	Culture of human type I-like pneumocytes (ATI). 
	Human peripheral blood monocyte-derived macrophages (PMφ). 
	Virus infection of primary cell cultures in vitro. 
	Quantification of pro-inflammatory cytokine and chemokine mRNAs by quantitative RT-PCR. 
	Immunofluorescence assay for influenza viral antigen. 
	Control and Statistical analysis. 
	Biosafety. 

	Acknowledgements
	Author Contributions
	Figure 1.  Replication kinetics of PB2 mutant viruses in DF-1 (chicken fibroblast) and MDCK (canine kidney epithelial cell).
	Figure 2.  Viral replication kinetics and Tissue tropism of rgH7N9 and its PB2-mutant viruses in ex vivo cultures of human respiratory organs .
	Figure 3.  Viral replication kinetics and Tissue tropism of influenza rgH7N9 viruses in ex vivo cultures of swine respiratory organs.
	Figure 4.  Replication kinetics, cytokine and chemokine mRNA expression profile in type I-like pneumocytes (ATI) and peripheral blood monocyte-derived macrophages (PMφ) .
	Table 1.  Influenza viruses used in this study.



 
    
       
          application/pdf
          
             
                Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35401
            
         
          
             
                Louisa L. Y. Chan
                Christine T. H. Bui
                Chris K. P. Mok
                Mandy M. T. Ng
                John M. Nicholls
                J. S. Malik Peiris
                Michael C. W. Chan
                Renee W. Y. Chan
            
         
          doi:10.1038/srep35401
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep35401
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep35401
            
         
      
       
          
          
          
             
                doi:10.1038/srep35401
            
         
          
             
                srep ,  (2016). doi:10.1038/srep35401
            
         
          
          
      
       
       
          True
      
   




