

Title	Congenital myopathies: characteristic and subtypes in Hong Kong
Author(s)	Chan, HSS; Ho, RSL; Chan, AOK; Ip, JJK; Wong, S; Ng, GSF; Lee, HCH; Cheng, Y; Liu, KT; Lee, CN; Fung, STH; Cherk, SWW; Chan, TSK; Lam, WMW; Shek, WH; Wong, VCN
Citation	The 20th Congress of the International World Muscle Society (WMS 2015), Brighton, UK., 30 September-4 October 2015. In Neuromuscular Disorders, 2015, v. 25 suppl. 2, p. S278, abstract no. G.P.307
Issued Date	2015
URL	http://hdl.handle.net/10722/235186
Rights	© 2015. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by- nc-nd/4.0/; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Congenital myopathies : characteristics and subtypes in Hong Kong

Chan Sophelia HS¹, Ho Ronnie SL², Chan Angel OK², Ip Janice JK³, Wong Shun⁴, Ng Grace SF⁵, Lee Hencher CH⁶, Cheng Yue⁷, Liu KT⁸, Lee CN⁹, Fung Sharon TH¹⁰, Cherk Sharon WW¹⁰, Chan Timothy SK¹¹, Lam Wendy MW³, Shek WH², Wong Virginia CN¹

¹ Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong; ² Department of Pathology and Clinical Biochemistry & ³ Department of Radiology, Queen Mary Hospital, HKSAR; ⁴ Department of Pathology, ⁵ Department of Rediatrics and Adolescent Medicine & ⁶ Department of Clinical Pathology, Princess Margaret Hospital, HKSAR; ⁷ Department of Pathology, ⁸ Department of Paediatrics and Adolescent Medicine, & ⁹ Department of Medicine and Geriatrics, Pamela Youde Nethersole Eastern Hospital, HKSAR; ¹⁰ Department of Paediatrics & ¹¹Department of Pathology, Kwong Wah Hospital, HKSAR

Background: Congenital myopathies (CMs) are a genetically and clinically heterogeneous group of neuromuscular disorders. Historically, the congenital myopathies are classified according to muscle biopsy findings – Rods (Nemaline myopathy) (NM), cores (central core disease and multiminicore disease) (Core and MMC), central nuclei (centronuclear/ myotubular myopathy)(CNM), and selective hypotrophy of type 1 fibres (congenital fibre type disproportion CFD). Over twenty genes have been implicated in CMs. The overlapping clinical presentations among different histopathological findings and different mutations poses major diagnostic challenge.

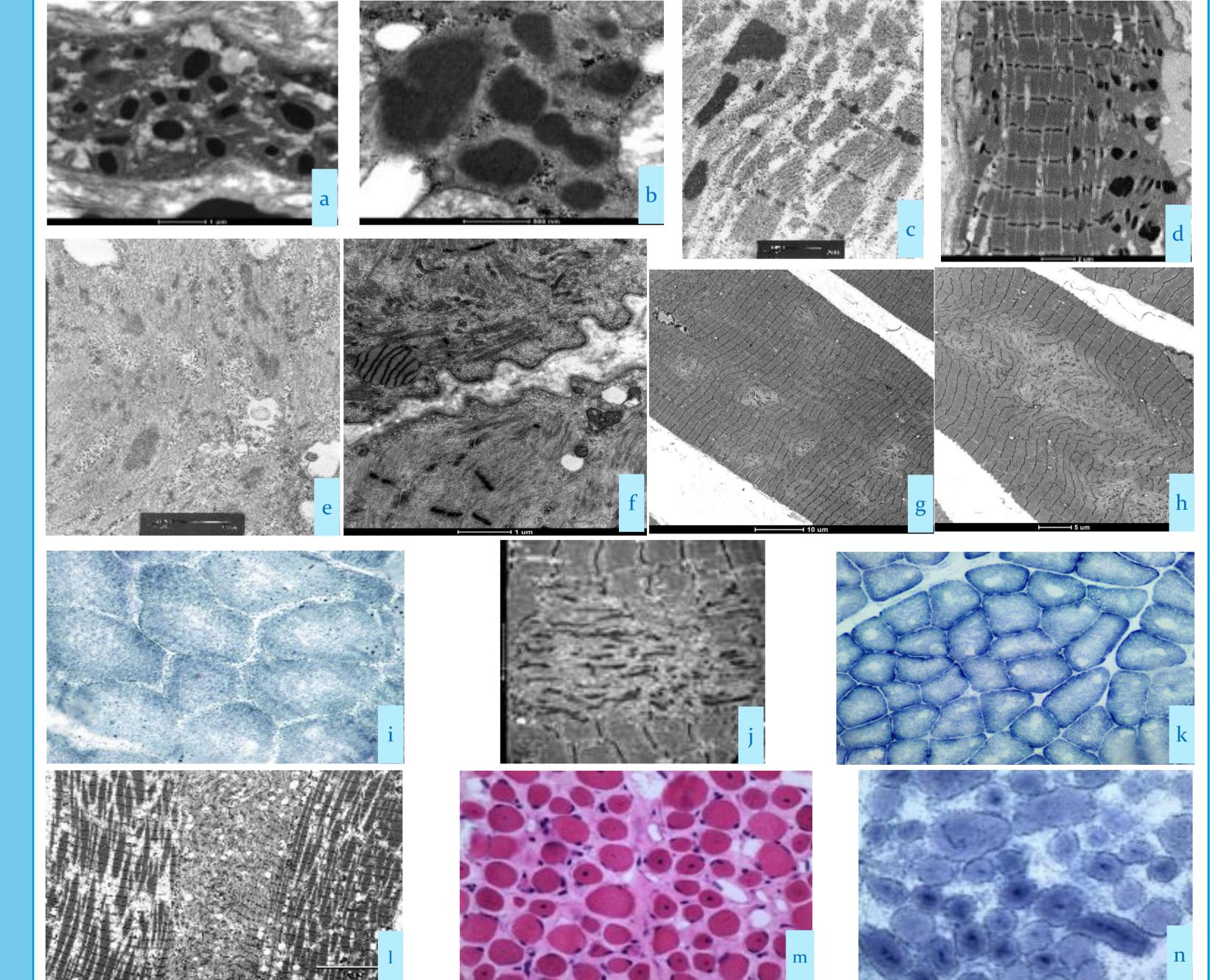
	Gene	M. biopsy	Sex	Onset	Age	Motor Fn	Initial sign or	E O M	Bul -bar	IV/ NIV	Tube/ PEG
				1			symptom	Μ			feeding
1	ACTA1	ZB	Μ	< 1wk	Died 13 m	Lyer	Weakness+++	-	+	NIV	PEG
2	ACTA1	NM	М	ım	7 У	Sitter (S)	Floppy baby	-	+	NIV	PEG
3	ACTA1	NM	F	<1M	11 M	Lyer	Weakness +++	-	+	NIV	PEG
4	KLHL40	NM	F	Birth	Died 7 m	Lyer	Weakness +++	+	+	IV	TF
5	KLHL40	NM	Μ	Birth	9.5 m	Lyer	Weakness	+	+	NIV	PEG
6	RYR1	NM	F	<1	11.8 y	Walker	Unsteady gait	+	-	-	+ → oral
7	RYR1	Core	М	<5	20 y	Walker	Tip toe walking	-	-	-	-
8	RYR1	MMC	М	<1	4·7 Y	Walker	Floppy baby	-	-	-	-
9	RYR1	TIP	F	<1	22.7 Y	Walker	Floppy baby	_	-	-	-
10	MTM1	CNM	М	Birth	17 Y	Sitter (S)	Weakness+++	+	-	+	+ → oral
11	DNM2	CNM	М	<1M	Died 10 m	Lyer	Floppy baby		+	-	$+ \rightarrow \text{oral}$
12	*	C & R	Μ	Birth	22 Y	Sitter	Weakness+++	-	+	NIV	PEG
13	Pending	MMC	М	<5	14.1 Y	Walker	Clumsiness	-	-	-	-
14	**	CFD	F	<3 m	4 Y	Walker (S)	Floppy baby	+	-	-	-
15	Pending	CFD	F	1.5Y	24 Y	Sitter	Delay walking	-	-	+	-

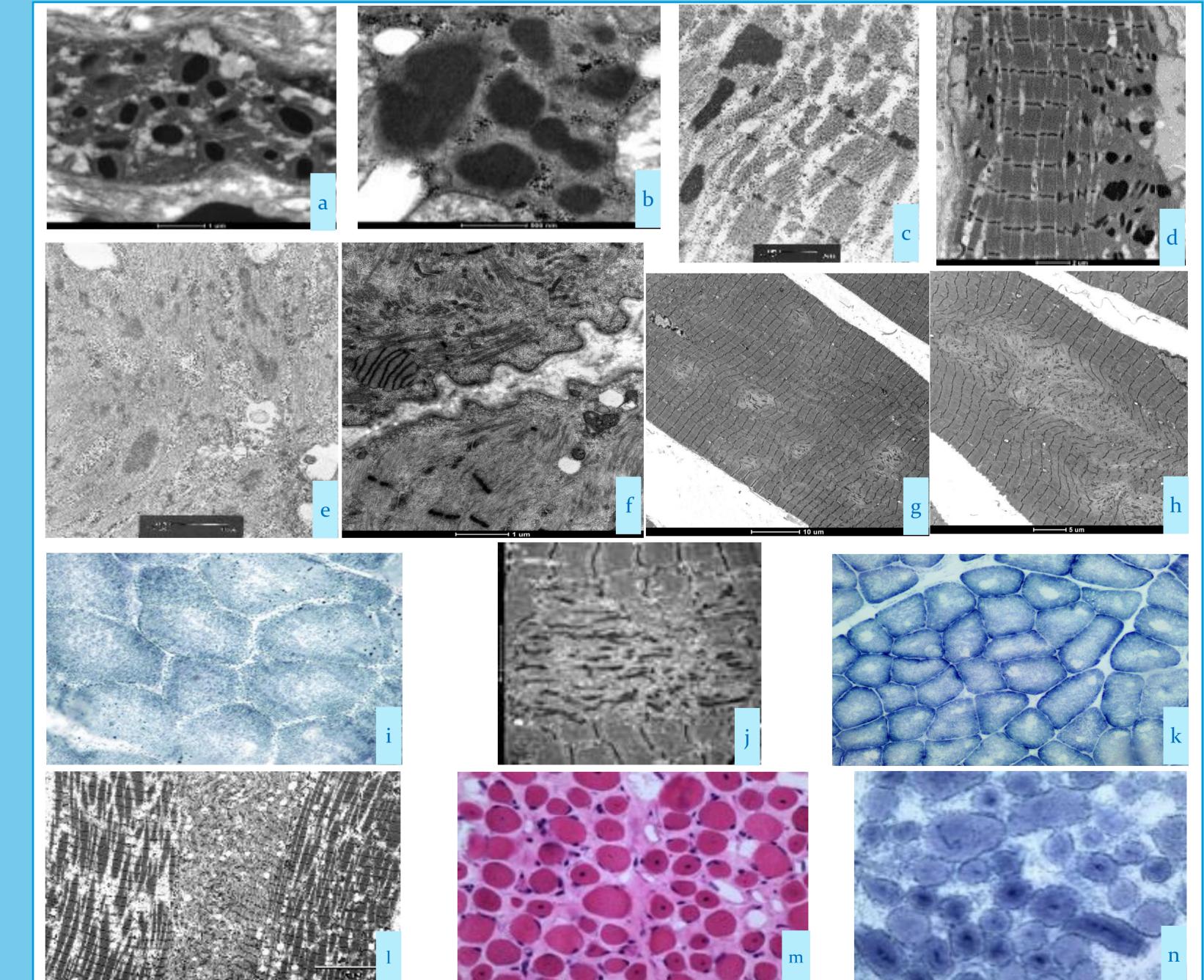
Objective: We investigated the characteristics of children with congenital myopathies in Hong Kong.

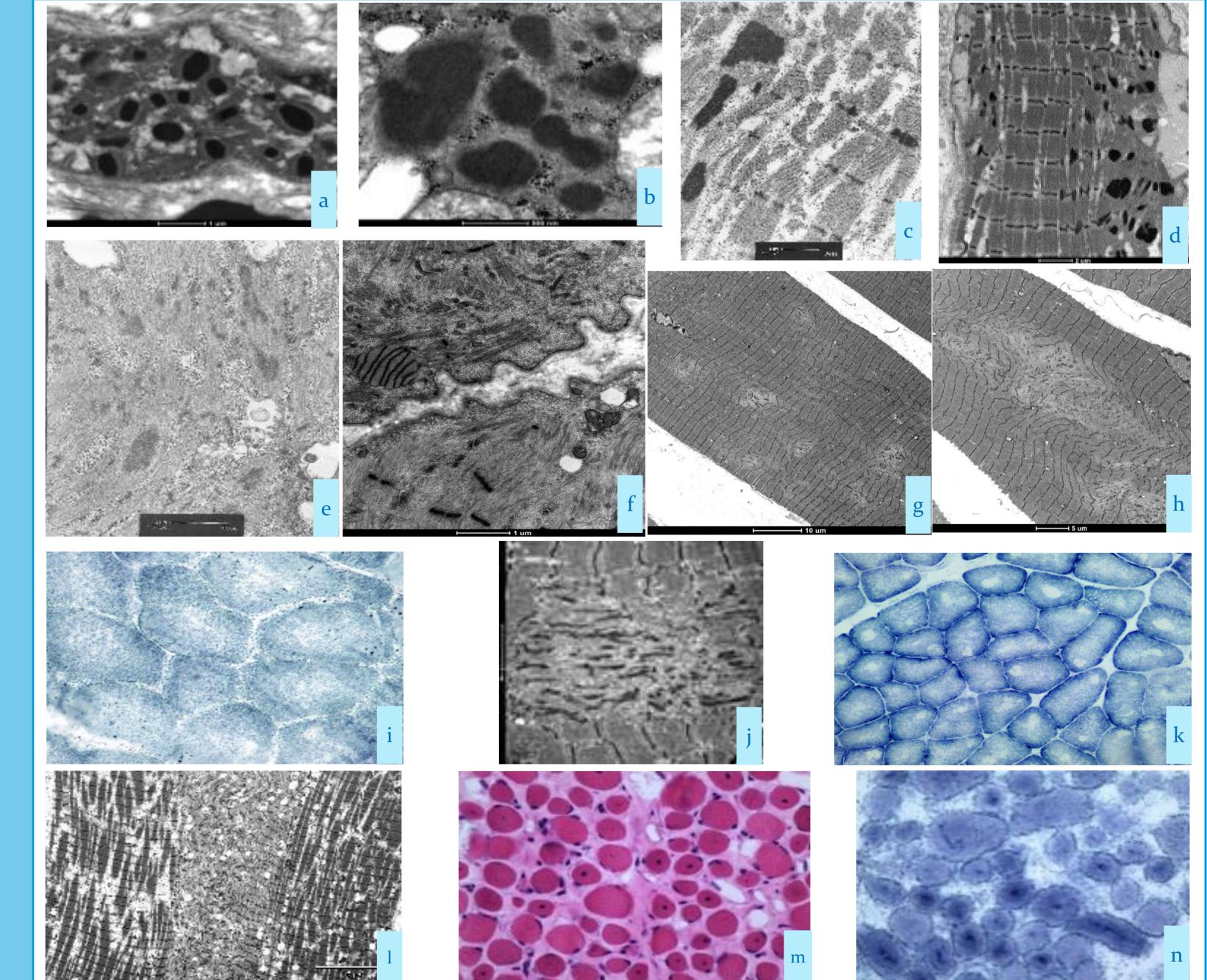
Patients and methods: We identified all patients with a confirmed diagnosis of CM between 2012-March 2015. Their clinical presentation, muscle biopsy, muscle MRI and genetic analysis results were evaluated.

Results:

Patients:


Total 15 patients have been diagnosed to have CM. Nine were males (60%), 6 were female (40%).


Genetic findings:


- A genetic diagnosis could be established in 11(73%) out of 15 patients. (1)Among those 11 patients, 4 (36%) were mutated in *RYR1*, 3 (27%) in *ACTA1*, 2 (18%) in *KLHL*40, 1 (9%) in *MTM1* and 1 (9%) in *DNM2*. A total of 13 mutation were identified.
- The missense *RYR1* mutation (c.3523G>A) was found in 2 patients, and the (2)missense *KLHL*₄o mutation (c.1516A>C) was found in another 2 patients, suggesting that these variants could probably be the hot spots mutation among Chinese patients.
- Pathological heterogeneity caused by *RYR1* mutation is shown in our 4 **(२)** patients showing different findings including nemaline rods, central cores, multiminicores, or type 1 fibre predominance.

* No mutation found in RYR1, ACTA1, SEPN1, KBTBD13; ** No mutation found in RYR1, ACTA1, SEPN1, TPM2, TPM3; (S) – supported; ZB: zebra bodies; NM: Nemaline myopathy; Core and MMC: core and multiminicore myopathy; CNM: centronuclear myopathy; CFD: congenital fibre type disproportion; TIP: type 1 disproportion; C&R; cores and rods; Motor Fn: Motor function; EOM: extraocular muscles involvement; IV/ NIV: invasive ventilation/ non-invasive ventilation; PEG: Gastrostomy

	Gene	Muscle biopsy	Mutation	Inheritance Pattern	Parents' carrier status
1	ACTA1	ZB	c.529A>G (p.Ile177Val)	AD	No
2	ACTA1	NM	c.8o2T>C (p.Phe268Leu)	AD	No
3	ACTA1	NM	c.547G>A (p.Ala183Thr)	AD	No
4	KLHL40	NM	c.1516A>C(p.Thr506Pro)	AR	Yes
5	KLHL40	NM	c.1327G>A(p.Gly443Ser) + c.1516A>C(p.Thr506Pro)	AR	Yes
6	RYR1	NM	c.3800C>G (p.Pr01267Arg) + c.1675dup (p.11e559Asnfs*11)	AD	Yes
7	RYR1	Core	c.7523G>A (p.Arg2508His)	AR	No
8	RYR1	MMC	c.3523G>A (p.Glu1175Lys) + c.11956dupG (p.Asp3986Glyfs*89)	AR	Yes
9	RYR1	TIP	c.3523G>A (p.Glu1175Lys) + c.10615delC (p.Arg3539Valfs*4)	AR	Yes
10	MTM1	CNM	c.1644+2T>C (p?) a splicing mutation	X-linked	No
11	DNM2	CNM	c.1124T>A (p. Val375Glu)	AD	No

Histopathological features:

- Muscle biopsy evaluation were available in all 15 patients. Nemaline myopathy were the most frequent histopathological diagnosis, in 5 patients (33%), followed by core myopathy, in 4 patients (26%), centronuclear myopathy in 2 patients (13%), congenital fibre type disproportion in 2 patients (13%), zebra bodies in 1 (6.7%) patient and type 1 predominance in 1 (6.7 %) patient.
- Genetic heterogeneity is illustrated in our patients with nemaline (2)myopathy. Amongst the 5 patients, 1 had *RYR1*, 2 had *ACTA1* and 2 had *KLHL*₄o mutation.

Clinical features:

- Of the 15 patients, 9 (60%) had age of onset at birth or before one month, (1) 3 (20%) between 1 and 12 months, and 3 (20%) between 1 and 5 years. Out of the 9 patients with early neonatal presentation, 3/9 (33%) patients died before 13 months.
- The functional abilities varied from very severe weakness required tube (2)feeding and ventilation support, to intermediate functional abilities with possible independent sitting, to mild limb girdle weakness only.
- ACTA1, KLHL40, DNM2 and MTM1 mutations are associated with severe (3)presentation with early neonatal onset.
- *RYR1* mutations are associated with a milder phenotype with all the (4)affected patients maintain independent walking

Muscle imaging:

Selective muscle involvement with Rectus Femoris sparing provides helpful clues to a possible underlying RYR1 mutation.

(a &b). Electron microscopy (EM) of muscle biopsies of patients 4 & 5 with nemaline myopathy due to *KLHL40* mutation with roundish rods; (c&d). Electron microscopy of muscle biopsies of patient 2 & 3 with nemaline myopathy due to *ACTA1* mutation; (e) Muscle biopsy of patient 12 with central core disease having rods shown on EM; (f) A zebra body is noted on the EM of patient 1 with ACTA1-related congenital myopathy when the muscle biopsy was performed at 1.5 month old; (g & h) Muscle biopsy of patient 13 with multi-minicores on the EM; (i & j) Muscle biopsy of patient 8 with multi-minicore disease due to *RYR1* mutation showing uneven staining with SDH in some fibres and EM shows a large minicore with excess Z-line material and myofilament disruption; (k & l) Muscle biopsy of patient 7 with central core myopathy due to *RYR1* mutation with NADH shows numerous cores and EM shows a central core in the centre with disrupted Z-line. (m & n) Muscle biopsy of patient 11 with centronuclear myopathy due to DNM2 mutation. Central nuclei are seen in some fibres (H&E) and no radiating strands are noted from the central nuclei (NADH).

References:

- I Colombo, M Scoto, AY Manzur et al. Congenital myopathies Natural 1. history of a large pediatric cohort. Neurology 2015;84:28-35
- KN North, CH Wang, N Clarke, et al. Approach to the diagnosis of 2. congenital myopathies. Neuromuscular Disorders 2014:24: 97-116 L Maggi, M Scoto, S Cirak, et al. Congenital myopathies- clinical features 3. and frequency of individual subtypes diagnosed over a 5 year period in the United Kingdom. Neuromuscular Disorders 2013:23:195-205