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MT1-MMP sheds LYVE-1 on lymphatic endothelial
cells and suppresses VEGF-C production to inhibit
lymphangiogenesis
Hoi Leong Xavier Wong1,2, Guoxiang Jin2, Renhai Cao3, Shuo Zhang1,2, Yihai Cao3 & Zhongjun Zhou1,2

Lymphangiogensis is involved in various pathological conditions, such as arthritis and cancer

metastasis. Although many factors have been identified to stimulate lymphatic vessel growth,

little is known about lymphangiogenesis inhibitors. Here we report that membrane

type 1-matrix metalloproteinase (MT1-MMP) is an endogenous suppressor of lymphatic

vessel growth. MT1-MMP-deficient mice exhibit spontaneous corneal lymphangiogenesis

without concomitant changes in angiogenesis. Mice lacking MT1-MMP in either lymphatic

endothelial cells or macrophages recapitulate corneal lymphangiogenic phenotypes observed

in Mmp14�/� mice, suggesting that the spontaneous lymphangiogenesis is both lymphatic

endothelial cells autonomous and macrophage associated. Mechanistically, MT1-MMP

directly cleaves LYVE-1 on lymphatic endothelial cells to inhibit LYVE-1-mediated

lymphangiogenic responses. In addition, MT1-MMP-mediated PI3Kd signalling restrains the

production of VEGF-C from prolymphangiogenic macrophages through repressing the

activation of NF-kB signalling. Thus, we identify MT1-MMP as an endogenous inhibitor of

physiological lymphangiogenesis.
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T
he lymphatic vasculature is required for fluid homeostasis,
absorption of dietary lipids from the small intestine and
trafficking of immune cells. Congenital defects in lympha-

tic vessel development usually result in embryonic lethality and
individuals with dysfunctional lymphatic vessels often suffer from
systematic oedema and impaired immune responses1.
Lymphangiogenesis has been recently identified as a primary
cause of metastasis for many cancers1–3. Despite its importance in
physiology and pathological conditions, the inhibitory factors for
lymphatic vessel growth remain largely unknown.

Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1),
a CD44 homologue and the predominant receptor for hyaluronan
(HA) on lymphatic endothelial cell (LEC) surface, is one
of the key specific markers for LECs4. HA is the major
glyscosaminoglycan in extracellular matrix, highly enriched in
connective and epithelial tissues. The binding of HA to LYVE-1
activates intracellular signalling, to promote lymphangiogenesis
in vitro5.

Lymphangiogenesis during postnatal development is mainly
modulated by the vascular endothelial growth factor-C
(VEGF-C). Vegf-c�/� endothelial cells can commit to the
lymphatic endothelial lineages but fail to form lymphatic vessels6.
VEGF-C and its related VEGF family member, VEGF-D, both
induce lymphangiogenesis in transgenic mouse models7,8 and in
tissues with exogenous recombinant VEGF-C/D9,10. VEGF-C and
VEGF-D both are primary ligands for VEGF receptor
3 (VEGFR3) that is mostly expressed in the LECsduring
postnatal development11–13.

Membrane type-1-matrix metalloproteinase (MT1-MMP), a
membrane-boundMMP, is essential for diverse physiological and
pathological processes through extracellular matrix remodelling
and pericellular proteolysis14. Deficiency in MT1-MMP leads to
many developmental defects and premature death15–20. Mutation
in MMP14 causes the multicentric osteolysis and arthritis known
as Winchester syndrome21. As MT1-MMP-deficient mice
exhibit defective fibroblast growth factor-2 (FGF2)-induced
corneal angiogenesis17,22 and impaired blood vessel invasion in
endochondrial ossification17, MT1-MMP is identified as a crucial
regulator of blood vessel growth. Although the role of MT1-MMP
in angiogenesis is well established, its function in lymphan-
giogenesis remains unexplored.

Here we show that MT1-MMP represents an endogenous
negative regulator of lymphangiogenesis that acts through two
pathways. It sheds cell surface LYVE-1 on LECs to restrict the
lymphangiogenic potential and it is also required for maintaining
PI3Kd signalling in macrophages to inhibit their nuclear factor
(NF)-kB-mediated VEGF-C production.

Results
Spontaneous lymphangiogenesis in Mmp14�/� mice. To
investigate the potential roles of MT1-MMP in lymphatic vessel
growth, lymphangiogenesis was examined in Mmp14�/�

corneas. Flat-mounted corneas from Mmp14�/� mice and their
littermate wild-type (WT) mice were immunofluorescently
stained with antibodies against LYVE-1 and CD31, two specific
pan markers for LECs and vascular endothelial cells, respectively.
The corneas from postnatal day 18 (P18) Mmp14�/� mice
exhibited robust spontaneous growth of lymphatic vessels without
any obvious abnormality in blood vasculature (Fig. 1a). Mor-
phometric analyses revealed significant increases in branching
and area of lymphatic vessels in Mmp14�/� corneas compared
with those in WT littermates (Fig. 1a). The spontaneous
corneal lymphangiogeneis could be observed as early as
in P8 Mmp14�/� mice (Fig. 1b). Although at this stage the
Mmp14�/� corneas did not exhibit significant outgrowth of

lymphatic vessels from the limbus area, there were considerably
more branching and sprouting of lymphatic vessels in
Mmp14�/� corneas compared with that in age-matched WT
controls (Fig. 1b,c). The identity of lymphatic vessels was verified
by an overlapping staining pattern between LYVE-1 and VEGFR3
(another pan marker for LECs) in corneas (Supplementary
Fig. 1). These observations suggested that MT1-MMP negatively
regulates lymphangiogenesis during corneal development.

To determine whether the overgrowth of lymphatic vessels in
Mmp14�/� mice is corneal specific, the lymphatic vasculature in
diaphragm, another highly lymphvascularized tissue, was
examined. A significant increase in lymphatic vessel density
was observed in P13 Mmp14�/� diaphragms (Fig. 1d,e),
suggesting that MT1-MMP suppresses lymphatic vessel growth
in non-immune privileged sites. BrdU (5-bromodeoxyuridine)
pulse labelling revealed that the number of BrdUþ cells
incorporated into the lymphatic vessels in corneas and
diaphragms was approximately threefold of that in the
Mmp14�/� mice compared with that in WT mice
(Supplementary Fig. 2), indicating that the spontaneous over-
growth of lymphatic vessels in Mmp14�/� mice is probably a
consequence of increased LEC proliferation.

Elevated level of VEGF-C in Mmp14�/� corneas. As VEGFs are
potent lymphangiogenic factors, we then determined and com-
pared the transcription of different VEGFs in corneas of
Mmp14�/� mice and age-matched WT controls at different ages.
The expression of Vegf-c was significantly upregulated in the
Mmp14�/� corneas as early as P8 (Fig. 2a). In contrast, Vegf-a
did not change much and the upregulation of Vegf-d was
observed in Mmp14�/� corneas only at later stage (P15)
(Fig. 2b,c). These data suggested that VEGF-C is likely to be the
major factor initiating spontaneous lymphangiogenesis in
Mmp14�/� corneas. Expression of several pro-inflammatory
factors including Tnf-a, Il-b, Mcp-1 and Mip-2 were also found
elevated during corneal maturation (Fig. 2d–g). Interestingly, loss
of MT1-MMP resulted in further increase in their expression, in
particular at later developmental stages, indicating that
MT1-MMP deficiency may have augmented the immune
responses in corneas. To test whether spontaneous corneal
lymphangiogenesis in Mmp14�/� mice is a consequence of
enhanced expression of VEGF-C, saturating dosage of
neutralizing antibodies against extracellular domain of VEGFR3
(VEGFR3-IgG) that specifically blocks the binding of ligands to
VEGFR3 was administrated intraperitoneally into Mmp14�/�

mice. The lymphatic vascularization was significantly reduced in
VEGFR3-IgG-treated Mmp14�/� corneas (Fig. 2h,i). Thus,
blocking VEGFR3 largely suppresses the spontaneous
lymphangiogenesis in Mmp14�/� corneas. However, the incom-
plete rescue suggests that the mechanism other than VEGF-C-
mediated VEGFR-3 signalling may also contribute to the
increased lymphatic growth of Mmp14�/� mice.

LYVE-1 is a direct substrate of MT1-MMP. To explore the
function of endothelial MT1-MMP in lymphangiogenesis,
Mmp14flox/flox mice were crossed with Tie1-Creþ mice to
generate Mmp14f/f Tie1-Creþ (DEC) mice, in which MT1-MMP
was specifically depleted in endothelial cells. The expression of
MT1-MMP was completely abrogated in DEC LECs (Fig. 3a). The
lymphatic vascularization in DEC corneas was significantly higher
than that of Mmp14f/f Tie1-Cre� (WT) corneas at P15 (Fig. 3b),
revealing that deletion of endothelial MT1-MMP results in
spontaneous corneal lymphangiogenesis. In contrast to total
MT1-MMP-deficient mice, the expression of Vegf-c was not
altered in DEC corneas (Supplementary Fig. 3a), suggesting that
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Figure 1 | Spontaneous lymphangiogenesis in Mmp14�/� mice. (a) Double immunostaining of corneal lymphatic and blood vessels using LYVE-1 (green)-

and CD31(red)-specific antibodies in P18 WT (A) and Mmp14�/� mice (B). Quantification of corneal area covered by LYVE-1þ lymphatic vessels and

CD31þ blood vessels was shown in the right panel (**Po0.01, n¼ 5, two-tailed t-test). Scale bars, 200 mm. (b) Corneas from P8 WT (A,C,E) and

Mmp14�/� mice (B,D,F) were immunostained with LYVE-1 (green) and CD31 (red). Images with a higher magnification in the white-boxed areas

and in the yellow-boxed areas were shown in C,D and E,f, respectively. Scale bars, 200mm (A, B), 100mm (C,D) and 25mm (E,F). (c) Quantifications

of vascularization area (left panel) and branching points of each ingrowth lymphatic vessel (right panel) of b (**Po0.01, n¼ 5, two-tailed t-test).

(d) Lymphatic vessels of diaphragms from P13 WT (A,B) and Mmp14�/� (C,D) mice were stained with LYVE-1 (green). Scale bars, 400mm (A,C)

and 200mm(B,D). (e) Relative lymphatic vessel density shown in d (**Po0.01, n¼ 5, two-tailed t-test). Data represent the mean±s.e.m.
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the spontaneous lymphangiogenesis resulting from the loss of
endothelial MT1-MMP is independent of altered VEGF-C
activities. As MT1-MMP is also expressed in the blood endo-
thelial cells and has been found to be involved in angiogenic
events23, we examined whether blood vessels were affected by the
endothelial deletion of MT1-MMP. The morphology and the
coverage of smooth muscle cells in DEC blood vessels in corneas
were not affected (Fig. 1a,b and Supplementary Fig. 3b),
suggesting the specific function of MT1-MMP in lymphatic

vessels. As LYVE-1 is a specific marker for LECs and a
homologue of CD44, a well-documented substrate of
MT1-MMP, we examined whether the changes in lymphan-
giogenic responses of LECs resulting from the loss of MT1-MMP
might be related to altered LYVE-1 functions. Indeed, the
expression of LYVE-1 significantly increased in primary
Mmp14�/� LECs (Fig. 3c), whereas the transcription of Lyve-1
was not altered (Supplementary Fig. 4a). Consistently, increased
staining for LYVE-1 was detected in the lymphatic vessels of
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Figure 2 | Blocking VEGFR3 activities inhibits corneal lymphangiogenesis in Mmp14�/� mice. Real-time qPCR analyses of mRNA for Vegf-c (a), Vegf-a

(b), Vegf-d (c), Tnf-a (d), Il-1b (e), Mcp-1 (f) and Mip-2 (g) in WT and Mmp14�/� corneas at different ages (P3, P8 and P15) (*Po0.05,**Po0.01, n¼ 5,

two-tailed t-test). (h) Corneas from P15 WT and Mmp14�/� mice with or without treatment of neutralizing antibodies against VEGFR-3 (a-VEGFR-3) were

immunostained with LYVE-1 (green). Scale bars, 200mm. (i) Quantification of vascularization area shown in h (*Po0.05; **Po0.01, n¼ 5, two-tailed t-

test). Data represent the mean±s.e.m.
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Figure 3 | LYVE-1 is a substrate of MT1-MMP. (a) Western blotting analyses of MT1-MMP expression in LECs and BMMs from Mmp14 f/f Tie1-Cre� and

Mmp14 f/f Tie1-Creþ mice. (b) Morphometric comparison of corneal lymphatic vascularization in Mmp14 f/f Tie1-Cre� and Mmp14 f/f Tie1-Creþ mice (left

panel). Quantification of vascularized area was shown in the right panel (**Po0.01, n¼ 5, two-tailed t-test). Data represent the mean±s.e.m. (c) MT1-

MMP sheds LYVE-1 in primary LECs. The conditioned media and total cell lysates from WT and Mmp14�/� LECs were examined by western blotting

analyses using antibodies indicated. Data are representative of three independent experiments. (d) HEK293T cells expressing C-terminally Flag-tagged

LYVE-1 were transfected with either WT or E/A catalytic mutant MT1-MMP (MT1 EA). The conditioned media and total cell lysates were subjected to

western blotting analyses using antibodies indicated. Data are representative of three independent experiments. (e) rLYVE-1 was incubated with

recombinant catalytic domain of MT1-MMP at two enzyme/substrate ratios (1:50 [þ ], 1:10 [þ þ ] and buffer only [�]). The protein mixture was

subjected to western blotting analyses using specific antibody indicated. The cleaved fragments of LYVE-1 are indicated by black arrows. Data are

representative of three independent experiments. (f) A diagram illustrating the predicted cleavage sites of LYVE-1 by MT1-MMP. (g) Endogenous

interaction between LYVE-1 and MT1-MMP. LYVE-1 and MT1-MMP immunoprecipitations (IP) were generated from WT LECs using specific antibodies

against LYVE-1 and MT1-MMP, and examined by western blotting analyses using indicated antibodies. IgG immunoprecipitation was used as controls. The

experiments were repeated at least three times.
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multiple organs in DEC mice (Supplementary Fig. 4b). To test
whether MT1-MMP cleaves LYVE-1, either WT or activity-dead
mutant MT1-MMP were transfected into HE293 cells stably
expressing carboxy-terminal Flag-tagged LYVE-1. A small
fragment of LYVE-1 (around 20 kDa) was detected in the
conditioned media from cells transfected with WT MT1-MMP,
but not in those from cells transfected with catalytic-dead
MT1-MMP (Fig. 3d). Meanwhile, the full-length LYVE-1 in the
total cell lysate was remarkably reduced in the total cell lysates of
WT MT1-MMP-transfected cells (Fig. 3d). However, there was
no additional fragment generated from the proteolytic processing
of LYVE-1 by MT1-MMP (Fig. 3d longer exposure), suggesting
that the cleaved fragments may subject to the rapid degradation.
Consistently, the 20-kDa ectodomain fragment of LYVE-1 was
also observed in the conditioned media from WT LECs but not in
that from Mmp14�/� LECs (Fig. 3c). In addition, the amount of
soluble LYVE-1 was remarkably reduced in Mmp14�/� serum,
reinforcing the physiological relevance of the cleavage of LYVE-1
by MT1-MMP (Supplementary Fig. 4c). As LYVE-1 is also
expressed in inflammatory macrophages24, we examined the
MT1-MMP-mediated cleavage of LYVE-1 in peritoneal
macrophages. Indeed, LYVE-1 was significantly upregulated in
total cell lysates of both resting and lipopolysaccharide (LPS)-
activated peritoneal macrophages isolated from irradiated WT
mice transplanted with Mmp14�/� bone marrow (Supplementary
Fig. 4d). Moreover, the 20-kDa ectodomain fragment of LYVE-1
was only observed in the conditioned media of WT macrophages.
These data suggest that the shedding of LYVE-1 by MT1-MMP is
not LEC specific (Supplementary Fig. 4d). To further confirm the
direct cleavage of LYVE1 by MT1-MMP, recombinant LYVE-1
(rLYVE-1) was incubated with the catalytic domain of MT1-
MMP (cMT1) in vitro (Fig. 3e). Full-length rLYVE-1 was reduced
and three additional fragments of LYVE-1 with molecular sizes of
about 20, 30 and 50 kDa were detected in the presence of cMT1,
which was inhibited by two potent MT1-MMP inhibitors,
GM6001 and EDTA (Fig. 3e). The putative MT1-MMP
cleavage sites of LYVE-1 were predicted to be G64-L and A235-
L by Cleavpredict software25. To validate whether LYVE-1 is
indeed cleaved by MT1-MMP at these predicted sites, two
synthetic LYVE-1 polypeptides (55L–75S and 225E–249R) covering
two predicted sites were digested with the recombinant catalytic
domain of MT1-MMP. Mass spectrometry (MS) analyses
followed by tandem MS/MS revealed that two peptides were
cleaved at G64-L and A235-L, respectively (Supplementary Fig. 5).
To further confirm the identified cleavage sites, the cleavage sites
of LYVE-1 were mutated by site-directed mutagenesis. Glycine64

and alanine235 of LYVE-1 were mutated to alanine and valine,
respectively. Mutation at G64A did not only reduce the amount
of LYVE-1 fragment released into the conditioned media by
MT1-MMP, but it also led to the increase in the molecular weight
of the released LYVE-1 fragment by B10 kDa. Meanwhile,
mutation at A235V and double mutations at both sites completely
eliminated the released fragment of LYVE-1 in the conditioned
media (Supplementary Fig. 4e). These results revealed two
cleavage sites of LYVE-1 by MT1-MMP at G64-L within the
HA-binding domain and at A235-L in the membrane proximal
domain of LYVE-1 (Fig. 3f).

The ectodomain shedding of LYVE-1 by MT1-MMP was
further substantiated by the endogenous interaction between
LYVE-1 and MT1-MMP in primary WT LECs (Fig. 3g). The
mature form of MT1-MMP was pulled down in the LYVE-1
immunoprecipitation. Reciprocally, LYVE-1 was detected in the
MT1-MMP immunoprecipitation. The physical interaction
between MT1-MMP and LYVE-1 was further confirmed
in HEK293 cells ectopically expressing both LYVE-1 and
MT1-MMP (Supplementary Fig. 4f).

MT1-MMP suppresses LYVE-1-mediated lymphangiogenesis.
As LYVE-1 is a predominant receptor for HA on the cell surface
of LECs and LYVE-1 is upregulated in Mmp14�/� LECs, we
examined whether the accumulation of LYVE-1 resulting from
the loss of MT1-MMP may lead to the altered lymphangiogenic
responses of LECs to HA stimulation. HA and different growth
factors (for example, tumour necrosis factor (TNF)-a, platelet-
derived growth factor-BB, VEGF-A/C, epidermal growth factor
and FGF2) induced potent mitogenic responses in both WT and
Mmp14�/� LECs (Fig. 4a). However, Mmp14�/� LECs pro-
liferated faster than WT LECs in response to the stimulation of
HA and FGF2 (Fig. 4a). Similarly, the migration of LECs towards
HA and FGF2 was also significantly greater in Mmp14�/� LECs
than in WT cells (Fig. 4b). The increased mitogenic response to
FGF2 in Mmp14�/� LECs is consistent to a recent finding
showing that LYVE-1 is essential for FGF2-induced signalling
and functions in LECs26. Moreover, the cell adhesion onto HA,
but not gelatin, was remarkably enhanced in Mmp14�/� LECs
(Fig. 5c). The HA-initiated proliferation and migration responses
have been reported to be mediated by PI3k/Akt signalling in
cancer cells27. Similarly, HA stimulated the phosphorylation of
Akt in both WT and Mmp14�/� LECs (Fig. 4c). The
phosphorylation of Akt in response to HA initiated earlier and
was considerably higher in Mmp14�/� LECs (Fig. 4c). These data
revealed increased abundance of functional LYVE-1 on the cell
surface of LECs in the loss of MT1-MMP.

To further address whether MT1-MMP inactivates LYVE-1,
HEK293 cells stably expressing LYVE-1 were transfected with
either empty vector or WT or catalytic inactive MT1-MMP. Cells
transfected with WT MT1-MMP exhibited decreased phosphor-
ylation of Akt in response to the stimulation of HA (Fig. 4d),
suggesting that MT1-MMP is a negative regulator for LYVE-1-
mediated signalling.

To examine whether the upregulation of LYVE-1 is responsible
for the augmented lymphangiogenic responses of Mmp14�/�

LECs, a neutralizing antibody against LYVE-1 was applied to
specifically block the ligand binding to the cell surface LYVE-1.
Indeed, the application of neutralizing antibody against LYVE-1
to the culture of Mmp14�/� LECs effectively attenuated the
increased cell proliferation and cell migration in response
to the stimulation of HA and FGF2, and the enhanced cell
adhesion to HA, to the levels similar to those observed in WT
LECs (Fig. 5a–c). To further verify that MT1-MMP/LYVE-1
signalling axis regulates corneal lymphangiogenesis, the neutra-
lizing antibody against LYVE-1 was administrated into the
Mmp14�/� mice. Blocking either LYVE-1 or VEGFR3 moder-
ately but significantly suppressed the lymphatic sprouting in
Mmp14�/� corneas (Fig. 5d,e). However, blockade of VEGFR-3 is
more effective than inhibiting LYVE-1 to attenuate the lymphatic
growth of Mmp14�/� corneas (Fig. 5d,e), suggesting that the
inhibitory effect of MT1-MMP on lymphangiogenesis is primarily
mediated through VEGFR3/VEGF-C axis. Interestingly, blocking
both VEGFR3 and LYVE-1 almost completely attenuated the
excessive corneal lymphangiogenesis in Mmp14�/� mice
(Fig. 5d,e). Furthermore, blocking LYVE-1, but not VEGFR3,
completely inhibited the spontaneous lymphatic vessel growth in
DEC mice (Supplementary Fig. 6),suggesting that spontaneous
corneal lymphangiogenesis resulting from the deletion of
endothelial MT1-MMP is primarily mediated by LYVE-1-
induced angiogenic responses. To explore any functional inter-
play between LYVE-1-mediated lymphangiogenesis and the
VEGF-C/VEGFR3 signalling pathway, we examined whether
blockade of LYVE-1 affects VEGF-C-mediated functions in LECs.
Blocking LYVE-1 had negligible effects on the activation of
extracellular signaling regulated kinases 1/2, a well-known
downstream target of VEGF-C/VEGFR3-mediated signalling
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(Supplementary Fig. 7a). In line with this, inhibiting LYVE-1 did
not alter the VEGF-C-induced mitogenic response, whereas
blocking VEGFR3 failed to change HA/LYVE-1-mediated
proliferation in either WT or Mmp14�/� LECs (Supple-
mentary Fig. 7b), suggesting that LYVE-1 and VEGFR3 work
independently in lymphangiogenesis. These results clearly
demonstrated the dual roles for MT1-MMP in regulating
VEGF-C/VEGFR3 signalling and LYVE-1-mediated signalling
during lymphangiogenesis.

MT1-MMP inhibits the VEGF-C production in macrophages.
As the deletion of endothelial MT1-MMP did not affect the
expression of VEGF-C in the cornea, the upregulation of VEGF-C

on MT1-MMP loss may be attributed to other cell linages.
MT1-MMP is expressed in both LECs and macrophages. Previous
studies revealed that inflammatory lymphangiogenesis is depen-
dent on CD11bþ macrophages recruitment and activation28–30.
Macrophages are also known to be the primary source of the
lymphangiogenic factors in which VEGF-C is the predominant
one29–32. We therefore examined whether increased macrophage
numbers in Mmp14�/� corneas is responsible for the enhanced
spontaneous lymphangiogenesis. Indeed, more CD11bþ macro-
phages were found in the central area of Mmp14�/� corneas
(Supplementary Fig. 8a,b). Prolymphangiogenic CD11bþ macro-
phages secreting VEGF-C usually express augmented level of
LYVE-1 and VEGFR-3 (refs 24,28,33). Co-staining of CD11b
together with either VEGFR3 or LYVE-1 in flat-mounted corneas
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revealed a remarkable increase in the number of CD11bþ /
LYVE-1þ and CD11bþ /VEGFR-3þ macrophages in the central
area of Mmp14�/� cornea compared with that of WT littermates
(Supplementary Fig. 8c,d), indicating increased numbers of
prolymphangiogenic macrophages in corneas as a result of
MT1-MMP deficiency. The elevated transcription of
lymphangiogenic factors together with the infiltration of
prolymphangiogenic macrophages provides a plausible expla-
nation for the spontaneous lymphangiogenesis in Mmp14�/�

corneas, for example, increased VEGF-C produced from
macrophages.

As a recent study reported that Mmp14�/� macrophages
exhibit augmented cytokine production in response to inflam-
matory stimuli34, we examined whether the loss of MT1-MMP
affects VEGF-C production in response to inflammatory stimuli
using bone marrow-derived macrophages (BMMs). Resting

macrophages were activated with LPS, to induce VEGFR3 and
LYVE-1 expressions35,36. Consistent with the previous report34,
F4/80þ BMMs from Mmp14�/� mice are morphologically indi-
stinguishable from WT macrophages (Supplementary Fig. 9a).
However, they exhibited elevated transcription of
pro-inflammatory cytokines (Il-1b and Il-6) in response to LPS
challenge (Supplementary Fig. 9b). In addition, BMMs from
Mmp14�/� mice showed a significant increase in the
transcription of Vegf-c but not in Vegf-a or Vegf-d in response
to LPS stimulation (Fig. 6a and Supplementary Fig. 10a).
Consistently, VEGF-C protein level was also signifi-
cantly elevated in Mmp14�/� BMMs after LPS challenge
(Supplementary Fig. 10b). To test whether MT1-MMP is
required in vivo for the suppression of VEGF-C, macro-
phages recruited to the peritoneal cavity in response to an
inflammatory stimulus were examined for VEGF-C production.
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Thioglycollate-elicited peritoneal macrophages were harvested
from WT mice that have been irradiated and reconstituted with
either Mmp14�/� or WT bone marrow. Thioglycollate-elicited
macrophages from mice reconstituted with Mmp14�/� bone
marrow expressed significantly higher levels of VEGF-C protein
and messenger RNA transcript, compared with those
reconstituted with WT bone marrow (Fig. 6b,c). Besides,
spontaneous corneal lymphangiogenesis along with increased
corneal Vegf-c transcription were observed in mice transplanted
with Mmp14�/� bone marrow (Fig. 6d,e). Taken together,
these in vivo and in vitro results suggested that MT1-MMP
suppresses VEGF-C expression in the mouse inflammatory
macrophages.

Spontaneous lymphangiogenesis is associated with macrophages.
To test whether increased infiltration of macrophages contributes
to the spontaneous lymphangiogenesis in Mmp14�/� mice, we
first examined the effects of LPS-activated macrophages on LECs.
LPS-activated BMMs derived from either Mmp14�/� or WT mice
were co-cultured with primary LECs isolated from WT lungs.
After co-culture for 24 h, LECs exhibited almost twofold increase
in number when co-cultured with Mmp14�/� BMMs in com-
parison with B60% increase when co-cultured with WT BMMs
(Supplementary Fig. 11a). To test whether the prolymphangio-
genic activity of LPS-activated BMMs is mainly mediated by the
soluble VEGF-C, the recombinant VEGFR3/Fc protein was
applied in the co-culture system to specifically trap and neutralize
VEGF-C. The induction of LEC proliferation by either WT or
Mmp14�/� BMMs was largely attenuated by VEGFR3/Fc
(Supplementary Fig. 11a). Similar results were observed using
conditioned media derived from WT or Mmp14�/� macrophages
activated by LPS (Supplementary Fig. 11b), suggesting that the
stimulating effect of macrophages on LECs is mediated largely by
VEGF-C in the conditioned media. In addition,
conditioned media from LPS-activated Mmp14�/� BMMs was
more potent than that of WT BMMs in promoting cell migration
and tube formation of LECs. Such promoting effects were also
attenuated in the presence of VEGFR3/Fc (Supplementary
Fig. 11c–e). These data demonstrated that Mmp14�/� inflam-
matory macrophages secrete more prolymphangiogenic VEGF-C
than WT macrophages do.

To directly test the contribution of macrophages to the
spontaneous lymphangiogenic phenotypes in Mmp14�/� mice,
Mmp14flox/flox mice were crossed with LysM-Creþ mice to

generate Mmp14f/f LysM-Creþ (DM) mice in which MT1-MMP
was specifically depleted in macrophages. DM mice grew
normally as Mmp14 f/f LysM-Cre� (WT) mice. The expression
of MT1-MMP was almost completely abrogated in DM peritoneal
macrophages (Fig. 6f). The area of lymphatic vascularization in
DM corneas was significantly larger than that in WT mice
(Fig. 6g,h). The corneal Vegf-c transcription was also remarkably
elevated in DM mice (Fig. 6i). The corneal CD11bþ macrophages
in DM mice expressed increased level of VEGFR-3 (Fig. 6j),
indicating prolymphangiogenic activation of macrophages
resulted from the loss of macrophage MT1-MMP. Furthermore,
transplanting WT bone marrow largely attenuated the corneal
lymphangiogenesis in bone marrow-depleted DM mice but not in
DEC mice (Supplementary Fig. 12), indicating that the lymphatic
phenotype in DEC mice is likely to be macrophage independent.
These data demonstrated that the MT1-MMP deficiency in
macrophages contributes to lymphangiogenic phenotypes in
Mmp14�/� corneas.

MT1-MMP/PI3Kd signalling restrains VEGF-C expression. To
delineate the mechanism by which MT1-MMP suppresses the
expression of VEGF-C in macrophages, Mmp14�/� BMMs were
introduced with either WT MT1-MMP or catalytically inactive
MT1-MMP (MT1 E/A), or cytosolic tail-deleted MT1-MMP
(MT1-MMP dC). Surprisingly, both WT and inactive mutant
MT1-MMP repressed the LPS-induced expression of VEGF-C in
Mmp14�/� BMMs, to the level similar to that found in WT
BMMs (Fig. 7a). Similarly, reduction in Vegf-c transcription was
also observed (Fig. 7b). As MT1-MMP modulates inflammatory
responses in macrophages independent of its catalytic activity
via direct induction of PI3Kd (p110d) expression34, we
speculated that MT1-MMP may regulate the expression of
VEGF-C through modulation of PI3Kd signalling. Indeed, re-
introducing either WT or catalytic-inactive MT1-MMP into
Mmp14�/� BMMs restored the transcription and protein
expression of PI3Kd, to the level similar to that in WT BMMs
(Supplementary Fig. 13a,b). Similar to the previous report34,
chromatin immunoprecipitation (ChIP) with antibodies against
flag in Mmp14�/� BMMs expressing either flag-tagged WT
MT1-MMP or flag-tagged mutant MT1-MMP showed that
MT1-MMP could directly interact with p110d promoter
independent of its catalytic activity (Supplementary Fig. 13c).
In macrophages, the LPS-induced PI3Kd signalling is mainly

Figure 7 | MT1-MMP suppresses VEGF-C expression via regulation of PI3Kd signalling. (a) Western blot analyses of VEGF-C in WT and Mmp14�/�

BMMs with ectopic expression of control vector, full-length MT1-MMP, the cytosolic domain-deleted MT1-MMP or the E/A240 mutant MT1-MMP after

stimulation with 1mg ml�1 LPS for 24 h. (b) qPCR analyses of Vegf-c mRNA expression in WT and Mmp14�/� BMMs with ectopic expression of a control

vector, full-length MT1-MMP, the cytosolic domain-deleted or the E/A240 mutant MT1-MMP. Cells were stimulated with 1 mg ml�1 LPS for 6 h before the

analyses (**Po0.01, n¼ 3, two-tailed t-test). (c) qPCR analyses of Vegf-c mRNA in WT and Mmp14�/� BMMs with ectopic expression of a control vector,

full-length MT1-MMP or the E/A240 mutant MT1-MMP that have been incubated with or without 20mM IC87114 for 6 h before LPS stimulation

(**Po0.01, n¼ 3, two-tailed t-test). (d) Western blot analyses of VEGF-C in WT and Mmp14�/� BMMs with ectopic expression of a control vector, WT

p110d or p110d (D910A) mutant cDNA. Cells were stimulated with LPS (1mg ml�1 for 24 h) before protein analyses. (e) The proliferative rate of pulmonary

LECs co-cultured with LPS-activated WT or Mmp14�/� BMMs expressing a control vector, WT p110d or p110d (D910A) mutant cDNA measured by MTT

assay (**Po0.01, n¼ 3, two-tailed t-test). (f) Transcription of Vegf-c in WT and Mmp14�/� BMMs by qPCR analyses. Cells were treated with or without

IC87114 and JSH-23 for 4 h before LPS challenging. (g) Western blot analyses of IkBa and IkBb in WT and Mmp14�/� BMMs in response to LPS

stimulation. Quantification of IkBa and IkBb expression was shown in Supplementary Fig. 14b (*Po0.05, **Po0.01, ***Po0.001; n¼ 3, two-tailed t-test).

(h) Western blot analyses of IkBa and IkBb in WT BMMs, WT BMMs treated with IC87114, Mmp14�/� BMMs expressing a control vector or full-length

MT1-MMP or E/A240 MT1-MMP, or WT p110d cDNA or p110d (D910A) mutant cDNA, in response to LPS stimulation for 15 min. Quantification of IkBa
and IkBb expression was shown in Supplementary Fig. 14c. (i) Western blotting analyses of p65 in the nuclear fractions of WT, Mmp14�/� BMMs

expressing either a control vector or full-length MT1-MMP, or E/A240 MT1-MMP, or WT p110d or p110d (D910A) mutant. Cells were stimulated with or

without 1mg ml�1 LPS for 1 h before protein extraction. Quantification of nuclear p65 was shown in Supplementary Fig. 14d (*Po0.05, n¼ 3, two-tailed

t-test). (j) Binding of p65 at the Vegf-c promoter in WT BMMs, Mmp14�/� BMMs and Mmp14�/� BMMs treated with a combination of LPS, IC87114 and

JSH-23 were examined by qPCR of ChIP assays using a specific antibody against p65 (*Po0.05, n¼ 3, two-tailed t-test). Data represent the

average±s.e.m. The experiments were repeated at least three times.
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mediated via Akt pathway37. LPS-induced phosphorylation of
Akt was significantly compromised in Mmp14�/� BMMs
(Supplementary Fig. 13d). These results indicated that loss of
MT1-MMP significantly impairs PI3Kd/Akt signalling in
BMMs. To examine the importance of PI3Kd signalling in the
regulation of VEGF-C production in BMMs, Mmp14�/� BMMs
expressing ectopic WT and enzymatic activity mutant MT1-
MMP were treated with PI3Kd-specific inhibitor, IC87114,
before the LPS stimulation. IC87114 treatment enhanced LPS-
induced transcription of Vegf-c in WT BMMs (Fig. 7c).
Ectopically expressing either WT or mutant MT1-MMP in
Mmp14�/� BMMs significantly reduced the transcription
of Vegf-c, to a level similar to that of WT BMMs. This
reduction was attenuated by IC87114 (Fig. 7c), suggesting that

MT1-MMP-mediated upregulation of Vegf-c transcription is
PI3Kd dependent. To further confirm the inhibitory function of
MT1-MMP/PI3Kd signalling on the expression of VEGF-C in
inflammatory macrophages, either WT p110d or catalytic
inactive p110d (p110d/D910A) was ectopically expressed in
Mmp14�/� BMMs. Introduction of WT p110d but not catalytic-
inactive p110d (p110d/D910A) could effectively reduce the
elevation of VEGF-C in Mmp14�/� BMMs, to the level similar
to that observed in WT BMMs in response to LPS stimulation
(Fig. 7d). In addition, ectopic expression of WT p110d
attenuated the stimulating effect of LPS-activated Mmp14�/�

BMMs on LECs proliferation (Fig. 7e). Taken together, these
results suggested that PI3Kd signalling is involved in the
regulation of VEGF-C expression in inflammatory macrophages.
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Inflammatory responses elicited by extracellular stimuli such as
activation of Toll-like receptor (TLR) in macrophages are usually
mediated by the activation of the transcription factor NF-kB38. It
was reported that PI3Kd reduces inflammatory responses via
suppression of nuclear translocation of NF-kB protein complex in
dendritic cells39. Interestingly, inhibition of PI3Kd by IC87114
promoted the nuclear translocation of NF-kB protein complex
elicited by LPS in macrophages (Supplementary Fig. 14a),
suggesting that the reduced PI3Kd/AKT signalling in
Mmp14�/� macrophages may have resulted in the increased
NF-kB signalling. As inflammatory induction of VEGF-C
depends on NF-kB signalling36,40 and LPS-induced VEGF-C
was significantly attenuated in macrophages by NF-kB-specific
inhibitor, JSH-23 (Fig. 7f), it is plausible that enhanced VEGF-C
production in Mmp14�/� macrophages is a consequence of
enhanced NF-kB signalling resulting from defective PI3Kd/AKT
signalling.

To test whether NF-kB signalling is involved in the regulation
of VEGF-C, LPS-stimulated degradation of IkBa and IkBb was
examined, as activation of the NF-kB signalling is initiated by the
degradation of IkB inhibitory proteins41. On LPS stimulation,
Mmp14�/� BMMs exhibited accelerated degradation of IkBa and
IkBb on LPS treatment (Fig. 7g and Supplementary Fig. 14b). In
addition, nuclear translocation of the NF-kB family member p65/
RelA was greatly enhanced in Mmp14�/� BMM on LPS
stimulation (Fig. 7I and Supplementary Fig. 14d). Moreover,
LPS-induced binding of the Vegf-c promoter by RelA
was significantly enriched in both Mmp14�/� BMMs and
IC87114-treated WT BMMs, examined by ChIP assay using
specific RelA antibody followed by quantitative PCR (qPCR)
analyses of the conserved Vegf-c promoter region containing a
consensus Rel-A-binding motif (Fig. 7j). Ectopically expressing
either WT p110d, WT MT1-MMP or catalytic inactive
MT1-MMP in Mmp14�/� BMM completely restored the accele-
rated degradation of IkBa/b, the enhanced nuclear translocation
of NF-kB complex and the increased binding of RelA to Vegf-c
promoter, to the levels similar to those observed in WT BMMs
(Fig. 7h–j and Supplementary Fig. 14c,d). These results suggested
that loss of MT1-MMP compromises PI3kd signalling, which in
turn promotes the NF-kB nuclear translocation, leading to
transcriptional activation of Vegf-c in inflammatory macrophages.

Blocking p110d activities causes corneal lymphangiogenesis. To
further verify that MT1-MMP/PI3Kd/NF-kB/VEGF-C axis
regulates corneal lymphangiogenesis, we inhibited p110d in vivo
by daily intraperitoneal administration of IC87114 (30 mg kg�1)
into WT mice. The development of lymphatic vessels in the
corneas was examined 12 days later. As expected, IC87114
treatment led to increased sprouting of lymphatic vessels in
corneas (Fig. 8a,b). Inhibition of NF-kB signalling in vivo by
intraperitoneal administration of JSH-23 (10 mg kg�1) effectively
reduced spontaneous corneal lymphangiogenesis in Mmp14�/�

mice. Importantly, JSH-23 treatment attenuated the sprouting of
lymphatic vessels in WT mice treated with IC87114 (Fig. 8a,b).
The spontaneous lymphangiogenesis in corneas was also
associated with increased expression of Vegf-c (Fig. 8c) and
enhanced prolymphangiogenic activation of corneal macrophages
as evidenced by elevated expression of VEGFR3 in corneal
CD11bþ macrophages in both the IC87114-treated WT mice
and Mmp14�/� mice (Fig. 8d), which could be largely inhibited
by JSH-23. Furthermore, inhibition of NF-kB signalling by
JSH-23 treatment, but not blockade of LYVE-1 by the treatment
of LYVE-1-neutralizing antibody, completely abrogated the
increased lymphatic vessel growth in DM corneas (Supple-
mentary Fig. 15), suggesting that increased NF-kB signalling, but

not LYVE-1-mediated signalling, is the major contributor to the
lymphatic phenotype in DM corneas.

Discussion
We herein showed that loss of MT1-MMP leads to spontaneous
corneal lymphangiogenesis without affecting blood vasculature.
These findings highlighted the importance of MT1-MMP in the
control of lymphangiogenesis and the maintenance of immuno-
logical privilege in the cornea. MT1-MMP plays a dual role in the
regulation of lymphangiogenesis. Although it restrains the
VEGF-C production from macrophages, it also suppresses the
lymphangiogenic potential of LECs. We for the first time
demonstrate that LYVE-1 is a direct substrate of MT1-MMP
and the MT1-MMP-mediated cleavage of LYVE-1 regulates
physiological lymphangiogenesis in a VEGFR-3-independent
manner. Interestingly, although LYVE-1 has long been identified
as a key surface marker for lymphatic vessels, loss of LYVE-1 does
not cause any obvious defects in lymphatic development42.
Nonetheless, elevated expression of LYVE-1 may impose a
profound effect on lymphangiogenesis. In fact, recent
studies demonstrated similar regulatory mechanisms in other
developmental processes. For instances, overexpression of CD44,
the closest homologue for LYVE-1 and a well-documented
substrate for MT1-MMP, has been reported to promote
pathological angiogenesis and to initiate cancer progression and
metastasis in various cancers, although loss of CD44 does not lead
to any obvious developmental defects43–45.

This study found that MT1-MMP cleaves LYVE-1 to reduce
the abundance of LYVE-1 on the cell surface of LECs. In the
absence of MT1-MMP, the accumulation of LYVE-1 and higher
magnitude of LYVE-1-mediated signalling promote LEC
proliferation and migration, as well as LEC adhesion to the
extracellular matrix, which subsequently facilitates lymphangio-
genesis. However, the major factors triggering LYVE-1 activation
in physiological conditions remain unclear. Degraded products of
HA may be one of the major ligands initiating LYVE-1 activation,
because LYVE-1 is the primary receptor for lymphatic
degradation of HA46. FGF2 may be another possible ligand for
LYVE-1 activation, as LYVE-1 is essential for FGF2-induced
lymphangiogenic functions26. Indeed, blocking FGF2 activities
with neutralizing antibody against FGF2 partially rescued the
corneal lymphatic overgrowth in DEC mice (Supplementary
Fig. 6).

MT1-MMP has a broad spectrum of substrates. In addition to
LYVE-1, it may release both prolymphangiogenic and antilym-
phangiogenic factors from the extracellular matrix. Indeed,
MT1-MMP-mediated activation of pro-MMP2 has been found
to promote lymphatic outgrowth in the collagen matrix in vitro47.
In contrast to these in vitro observations, Mmp2 deficiency leads
to the increased complexity of lymphatic network in vivo48,
suggesting that the in vitro observation may not reflect the
physiological role for MMP2. Furthermore, spontaneous
lymphangiogenesis resulting from MT1-MMP loss indicates
that the antilymphangiogenic function of MT1-MMP probably
overrides its prolymphangiogenic properties in the physiological
development. Besides, among reported endogenous inhibitors of
lymphangiogenesis, only mice deficient in either soluble VEGFR2
(sVEGFR2) protein or soluble sVEGFR3 generated by splicing
variants of their membrane-bound forms exhibit spontaneous
corneal lymphangiogenic phenotypes similar to that observed
in Mmp14�/� mice49,50. However, we failed to detect any
observable alteration in their transcriptional expression in
Mmp14�/� corneas (Supplementary Fig. 16). Therefore,
MT1-MMP is likely to be a sVEGFR2/sVEGFR3-independent
lymphangiogenic suppressor that maintains corneal avascularity.
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In addition to LECs, MT1-MMP is also expressed by
macrophages that are critical in lymphangiogenesis28,33,51,52.
Corneal stroma and limbus are rich in resident macrophages53. In
the absence of MT1-MMP, these macrophages produce VEGF-C
to induce spontaneous corneal lymphangiogenesis during corneal
development and eyelid opening. Our study, along with previous
findings34, demonstrated that MT1-MMP-dependent PI3Kd
signalling suppresses TLR-ligand induced NF-kB-mediated
VEGF-C production in macrophages. Various endogenous TLR
ligands can be found in corneas, for example, the matrix

proteoglycan decorin, which is an endogenous TLR2/4 ligand
enriched in the cornea and connective tissues54–56. In addition to
LPS, we found that decorin also induces Vegf-c expression in
BMMs in an NF-kB-dependent manner, which is suppressed by
MT1-MMP/PI3kd signalling (Supplementary Fig. 17). Therefore,
MT1-MMP/PI3Kd signalling may suppress inflammatory
responses in macrophages induced by both endogenous and
pathological TLR ligands. Although it was previously reported
that MT1-MMP regulates p110d-mediated inflammatory
responses in macrophages, to the best of our knowledge it

WT

WT

WT+DMSO WT+IC87114 WT+IC87114+JSH-23 Mmp14 –/–+DMSO Mmp14 –/–+JSH-23

WT+IC87114 WT+IC87114+JSH-23

Mmp14 –/–

Mmp14 –/–
WT
Mmp14 –/–

Mmp14 –/–+JSH-23

60

50

40

30

20

10

0

*

*

**
*** ***

Ly
m

ph
at

ic
va

sc
ul

ar
iz

at
io

n 
ar

ea
 (

%
)

IC87114 IC87114
JSH-23 JSH-23

–
–

– –
– –+ +

+ + –
–

– –
– –+ +

+ +R
el

at
iv

e 
V

eg
f-

c 
ex

pr
es

si
on 4.5

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0

*
*

*

**
**

CD11b

VEGFR3

a

b

d

c

Figure 8 | Pharmacological inhibition of P110d leads to spontaneous corneal lymphangiogenesis. (a) Morphometric comparison of corneal lymph

vascularized areas in WT mice treated with or without intraperitoneal injection of IC87118 (30 mg kg�1) and JSH23 (10 mg kg�1). Scale bars, 200mm.

(b) Quantification of percentage in vascularized areas over the whole corneas shown in a (***Po0.001, **Po0.01, *Po0.05, n¼4, two-tailed t-test).

(c) qPCR analyses of Vegf-c transcripts in corneas from WT and Mmp14�/� mice treated with or without IC87118 (30 mg kg�1) and JSH23 (10 mg kg�1)

(**Po0.01, *Po0.05, n¼4, two-tailed t-test). The experiments were repeated at least three times. (d) Whole-mounted corneal immunostaining using

VEGFR-3 (red) and CD11b (green) antibodies in P10 WT and Mmp14�/� mice with or without the treatment of IC87118 and JSH23 (n¼4). Scale bars,

25mm Data represent the mean±s.e.m.
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has never been shown how MT1-MMP regulates VEGF-C
production. Our data, for the first time, revealed the link
connecting MT1-MMP with the regulation of NF-kB-dependent
VEGF-C production.

VEGF-C is not the only downstream target of NF-kB pathway.
Indeed, activation of NF-kB signalling pathway induces various
prolymphangiogenic inflammatory cytokines that may work
synergistically in the spontaneous lymphangiogensis in Mmp14�/
� corneas. The prolymphangiogenic effect of several major NF-
kB-induced factors, such as TNFa and FGF2, has been reported
to be exclusively dependent of VEGFR3 signalling9,57, explaining
why the VEGFR3 blockade is as effective as inhibiting NF-kB to
suppress the spontaneous lymphangiogensis in Mmp14�/�

corneas.
This study revealed that MT1-MMP regulates lymphangiogen-

esis via two independent mechanisms. Macrophage-dependent
mechanism seems to be the major contributor to the lymphatic
phenotype in Mmp14�/� corneas, as corneal lymphangiogenesis
resulting from the conditional deletion of MT1-MMP in
macrophages is more intensive than that in mice with
MT1-MMP depletion, specifically in endothelial cells.

Increased activities of MT1-MMP have long been regarded to
promote tumour metastasis58. However, the inhibitory
effects of MT1-MMP on lymphangiogenesis suggest that
targeting MT1-MMP in cancer therapy may not necessarily be
beneficial, as it may promote lymphatic metastasis. Thus,
it will be interesting to investigate how MT1-MMP may
influence the prolymphangiogenic properties of tumour-
associated macrophages, and hence tumour lymphangiogenesis
and metastasis.

Methods
Mice. Mmp14�/� and Mmp14flox/flox mice on C57BL6 background have been
previouslydescribed17,19. LyzM-cre mice were obtained from The Jackson
Laboratory. Mice of both sexes were used in experiments. The age at which mice
were used for experiments is shown in the figure legend. All animal experiments
were performed in accordance to the guideline of the Committee on the Use of Live
Animals for Teaching and Research of the University of Hong Kong.

Antibodies. The antibodies used in this study include the following: anti-CD31
antibody (MEC13.3, 553070, BD Pharmingen; 1:150); anti-LYVE-1 antibody
(11-034, AngioBio; 1:250); anti-VEGFR3 antibody (AF743, R&D System; 1:200);
anti-MT1-MMP antibody (ab51074, Abcam; 1:2,000); anti-CD11b antibody
(5573-94, BD Pharmingen; 1:200); an Alexa Fluor 488-conjugated anti-F4/80
antibody (MCA497A488, AbD Secrotec; 1:150); anti-BrdU antibody (Bu20a,
M0744, Dako; 1:250); anti-VEGF-C (H-190, Santa Cruz, 1:1,000); anti-p65
(H-286, Santa Cruz; 1:2,000); anti-IkBa (C-21, sc-371, Santa Cruz, 1:2,000);
anti-IkBb (S-20, sc-946, Santa Cruz, 1:2,000); anti-Akt (9272, Cell Signaling,
1:2,000); anti-p-Akt (Ser473) (9271, Cell Signaling, 1:2,000); b-actin (A1978,
Sigma, 1:8,000); fluorescein isothiocyanate-conjugated goat anti-rabbit antibody
(4050-02, Southern Biotech; 1:500); fluorescein isothiocyanate-conjugated donkey
anti-rat antibody (6430-02, Southern Biotech; 1:500); Alexa Fluor 594-conjugated
goat anti-rabbit antibody (A-11012, Invitrogen, 1:600); and Alexa Fluor
594-conjugated donkey anti-goat antibody (A11058, Invitrogen; 1:500).

Cell isolation and culture. Primary LECs were isolated from mouse lungs. The
lungs were minced and digested with 0.25% collagenase D (Roche) for 1 h at 37oC.
Cell suspension filtered by a 70-mm cell strainer (BD Biosciences) was incubated
with an anti-podoplanin (Sigma) antibody. LECs were isolated by sorting with goat
anti-rabbit coated immunobeads (Miltenyi) and were cultured in PRMI-1640
supplemented with 20% fetal bovine serum (FBS), 100 mg ml�1 heparin (Sigma),
3 mg ml�1 ECGS (Sigma) and 100 ng ml�1 Penicillin/Streptomycin. BMMs were
generated by culturing the bone marrow cells in DMEM supplemented with 10%
FBS, 100 ng ml�1 Penicillin/Streptomycin and 10 ng ml�1 M-CSF (R&D) for 7
days. Peritoneal macrophages were harvested from mice that had been peritoneally
injected with 2 ml of 3% Brewer thioglycollate medium for 3 days. Both types of
macrophages as well as HEK 293T cells were cultured in DMEM supplemented
with 10% FBS and 100 ng ml�1 Penicillin/Streptomycin.

Bone marrow transplantation. Recipient WT mice at 8–10 weeks old were
irradiated at 1,000 rads. Meanwhile, bone marrow cells were isolated from the
femurs of WT or Mmp14�/� mice and injected into the recipient mice via tail vein
injection 4 h after irradiation. Four months after bone marrow transplantation,

irradiated recipient mice reconstituted with WT or Mmp14�/� bone marrows were
killed for morphological analyses of corneal lymphatic vessel development and
isolation of peritoneal macrophages. To reconstitute DM mice and DEC mice with
WT bone marrow, bone marrows from male donor mice were transplanted into
female recipient mice. Eight weeks after transplantation, the corneas of
recipient mice were collected for morphological analyses. The transplantation
efficiency was examined in accordance to ref. 59. Briefly, the bone marrow was
obtained from the recipient mice at the end of transplantation experiment and the
genomic DNA was isolated from the bone marrow samples (QIAamp DNA Mini
kit, Qiagen). The engraftment of male donor cells in the female recipient mice was
examined by measuring the expression of Y chromosome-specific gene, Zfy1, with
real-time PCR analyses.

Antibody and drug administration. P5 neonate mice were administered with
anti-VEGFR3 antibody (mF4-31C1, ImClone) (1–20 mg kg�1) and anti-LYVE-1
antibody (R&D) (5 mg kg�1), IC87114 (30 mg kg�1) or JSH-23 (10 mg kg�1) by
daily intraperitoneal injection. Injection of control IgG or dimethyl sulfoxide served
as a control. On eyelid opening, drugs were applied on the corneas in eye drops.
Mice were killed at P15 for phenotypic analyses. The animal care and sample
analysis was not blinded to the group allocation in the animal experiments.

DNA constructs and lentiviral transduction. Plenti6/V5-DEST plasmids
expressing various mouse MT1-MMP mutants tagged with Flag at the C terminus
were kindly provided by Dr Takeharu Sakamoto. The full-length mouse p110d
complementary DNA was obtained by PCR from cDNA of mouse macrophages
and cloned into the plenti6/V5-DEST vector. The construct expressing full-length
LYVE-1 fused with a flag tag at the C terminus was purchased from Sino Biological
Inc. The construct expressing catalytic inactive p110d were generated by mutating
D910 to A. For generation of lentiviral supernatants, 293T cells cultured in DMEM
supplemented with 10% FBS and 100 ng ml�1 Penicillin/Streptomycin were
transfected with plenti6 plasmids listed above and packaging vectors (Addgene)
using Lipofectamine 2000 (Invitrogen) or FuGENE HD (Roche). BMMs were
infected with lentiviral supernatants in the presence of 6 mg ml�1 polybrene
(Millipore) for 18 h, followed by drug selection with Blasticidin (3 mg ml�1) for 2
days. Survived cells were used for the studies.

Cell treatment. Macrophages were pre-incubated with the PI3Kd-specific
inhibitor IC87114 (20 mM; Millipore) or the NF-kB inhibitor JSH-23 (25 mM;
Sigma) for 1 h before stimulation with LPS (1 mg ml�1; Calbiochem) or
recombinant mouse decorin (10 ng ml�1; R&D). Similarly, LECs were
pre-incubated with the anti-LYVE-1 antibodies (R&D) (5 mM) or anti-VEGFR3
antibodies (mF4-31C1, ImClone) (10 mM) for 1 h before the stimulation with
low-molecular-weighted HA (3 mg ml�1; Sigma). After stimulation for indicated
time, cells were harvested for isolation of proteins and RNA for further analyses.

Enzyme-linked immunosorbent assay. Mouse sera were isolated from the whole
blood by allowing the blood to clot at room temperature for 30 min. The clot was
removed by centrifuging the clotted blood at 2,000 g for 10 min at 4 �C. The
concentration of LYVE-1 in serum samples was measured by enzyme-linked
immunosorbent assay kit using specific antibody against mouse LYVE-1
(CSB-EL013282MO, Cusabio). Enzyme-linked immunosorbent assay was
performed in accordance to the manufacturer’s protocol.

Immunohistochemistry. Whole-mount immunofluorescent staining was
performed10. Isolated eyes and diaphragms were fixed in 4% paraformaldehyde in
PBS overnight. After tissue fixation, the tissues were briefly digested with
proteinase K (20 mg ml�1; Takara) for 5 min and blocked in 3% milk in PBST (0.3%
Triton X-100 in PBS) for 16 h at 4 �C. The fixed tissues were incubated with
primary antibodies overnight at 4 �C, followed by incubation with secondary
antibodies for 2 h at room temperature. Immunostained positive signals of
whole mounted tissues were detected by a Zeiss Confocal LSM710 microscope
(Carl Zeiss). For better visualization and comparison of lymphatic vascularization
among different samples, the brightness and contrast of different confocal images
were adjusted to a comparable level. Meanwhile, the confocal images for comparing
the expression level of target proteins were unmodified. The images were analysed
by Adobe Photoshop CS5.

Image acquisition and quantification. Image acquisition and quantification were
done in accordance to the protocol10. Stained whole-mounted tissues were imaged
by a Zeiss Confocal LSM710 microscope (Carl Zeiss) that was operated with ZEISS
ZEN 2012. Low magnification (� 5 objective) was used to obtain images for the
phenotypic analyses of vascularization. For detailed analyses, images were taken
with higher magnifications (� 10, � 20 or � 40 objectives). A series of z-stacks
images (1 mm) were captured within the z-dimensions (around 15–20 layers)
containing the blood/lymphatic vessels. The microscopic images were displayed as
maximum projection images. Overlapping images with low magnification were
merged to obtain the image of the entire corneas by the software Adobe Photoshop
CS5 (Supplementary Fig. 18a). The vascularization area refers to the percentage of
corneal area covered with either lymphatic vessels or blood vessels over the total
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corneal area. The total corneal area was defined by outlining the innermost
lymphatic vessels of the limbus (Supplementary Fig. 18b). The vascular area was
outlined by the magnetic lasso tool of Adobe Photoshop (Supplementary Fig. 18c).
The number of pixels in the selected vascular area was recorded and analysed by
Microsoft Excel.

In vivo BrdU labelling. Staining procedures were performed in accordance to the
protocol60. Mice were intraperitoneally injected with 0.1 mg g�1 of BrdU solution
and killed for tissue collection 3 h later. Isolated eyes and diaphragms were fixed in
4% paraformaldehyde in PBS overnight. BrdU-labelled DNA was exposed by
denaturation in the formamide-SSC solution, followed by acid treatment with 2 N
HCl. The remained staining procedures were performed as described above.

Real-time PCR analyses. Total RNA was extracted from cells or tissues by TRIzol
extraction (Invitrogen) and reverse transcribed into cDNA using M-MLV reverse
transcriptase (Promega). qPCR was performed in StepOnePlus Real Time PCR
System (Applied Biosystems) using SYBR Green PCR master mix (Takara). Gene
expression was normalized with Gapdh mRNA levels. The sequences of
gene-specific primers are shown in the Supplementary Table 1.

ChIP assay. ChIP assay was performed using Millipore EZ-ChIP kit in accordance
to the manufacturer’s instructions. BMMs were fixed with 1% formaldehyde for
10 min at room temperature. The cross-linked cells were lysed in SDS lysis buffer
(provided) and were sonicated in ice-cold water (six 10-s pulses; Sonics Vibra-Cell).
After preclearing with Protein G-Agarose (provided) for 1 h at 4 �C, the sheared
DNA was immunoprecipitated with 1 mg of anti-p65 antibody (Santa Cruz)/
anti-flag antibody (Sigma) for 16 h at 4 �C and control IgG (Santa Cruz) served as a
negative control. The antibody–chromatin complex was collected by Protein
G-Agarose at 4 �C for 3 h. After washing the beads with washing buffers (provided)
for five times, the immune complexes were eluted in elution buffer (provided).
DNA was dissociated from the protein complex by incubating at 65 �C overnight.
Following the digestions of RNase A and proteinase K, DNA was purified using
spin columns (provided) and subjected to qPCR analyses. The specific primers for
p110d promoters and Vegf-c promoters shown in (Supplementary Table 1) were
designed as previously described34,40.

Protein extraction and western blotting. Cells were lysed in RIPA buffer (25 mM
Tris-HCl, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, complete
protease cocktail (Roche)). About 20 mg of protein lysate boiled with loading buffer
was separated with SDS–PAGE electrophoresis under reducing conditions and
electrotransferred onto a polyvinylidene difluoride membrane (Millipore).
Following blocking with 5% (w/v) low-fat milk in PBST (0.1% Tween-20 in PBS)
for 1 h at room temperature, the membrane was probed with primary antibodies
diluted in blocking buffer overnight at 4 �C, followed by incubation with horse-
radish peroxidase-conjugated secondary antibodies for 1 h at room temperature.
Western blottings were developed using enhanced chemiluminescence (ECL Plus;
Pierce). The relative intensities of bands were quantified by Image J software. The
original uncropped blots are shown in Supplementary Fig. 19.

Co-immunoprecipitation. Cells were lysed in pre-chilled RIPA buffer with
300 mM NaCl. Protein mixture at the concentration of 1 mgml�1 was used for the
immunoprecipitation experiment. The protein lysate was immunoprecipitated with
1 mg of primary antibody at 4 �C for 16 h. The protein–antibody complex was
pulled down by 50ml Protein G-Agarose at 4 �C for 2 h. The beads were washed
twice with RIPA buffer. The protein suspension was collected by boiling the beads
and then subjected to western blotting analyses.

Subcellular fractionation. Fractionation was performed as described61 with a few
modifications. In brief, cells were lysed in pre-chilled buffer A (10 mM HEPES
pH 7.9, 0.1% Triton X-100, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10%
glycerol, complete protease cocktail (Roche)) and incubated on ice for 5 min.
Nuclei were isolated by centrifugation at 1,300 g for 5 min at 4 �C, followed by
incubation in buffer A supplemented with 500 mM NaCl and 25% glycerol for
5 min on ice. After centrifugation at 12,000 g for 5 min, the supernatant was
collected as the nuclear fraction that was subjected to western blotting analyses.

Cell proliferation assay. The co-culture system consists of a transwell system with
a porous membrane filter (0.4 mm pore size; Millipore) and 24-well plastic tissue
culture plates. BMMs cultured in the transwell inserts were stimulated with LPS
(1mg ml�1) for 12 h, followed by serum starvation. Meanwhile, LECs were
cultured in 24-well plates coated with 0.1% gelatin and were serum starved for 16 h
on 70–80% confluence. The transwell inserts containing LPS-stimulated macro-
phages were placed on the LECs in 24-well plates and they were co-cultured with or
without the recombinant mouse VEGFR3/Fc protein (5 mg ml�1; R&D) for 24 h.
The culture media was removed and replaced with RPMI-1640, with 5 mg ml�1

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) for 3.5 h.
The labelled LECs were solubilized in MTT solvent and the absorbance was
measured at 570 nm with a reference filter of 620 nm.

Cell migration assay. Cell migration was examined using QCM 24-Well
Colorimetric Cell Migration Kit (8 mm pore size; Millipore). Briefly, conditioned
media from LPS-activated BMMs was added to the lower chamber. LECs (1� 105)
were seeded into the upper chamber with quenching medium (provided) in the
presence or absence of VEGFR3/Fc (5 mg ml�1; R&D). Cells were incubated
overnight and the transmigrated cells underneath the filter was stained with
staining solution (provided) and solubilized with extraction buffer (provided). The
absorbance was measured at 560 nm.

Cell-matrix adhesion assay. Forty-eight-well plates were coated with various
matrix substrates, such as gelatin and HA (0.2 mg ml�1). Serum-starved LECs were
seeded into the wells at a density of 1� 104 cells per well. After the incubation for
60 min, non-adherent cells were removed by three washes of PBS. The adhered cells
were counted.

Tube formation assay. Ice-cold growth factor-reduced Matrigel (BD Biosciences)
was solidified at 37 �C in 96-well plates. LECs were mixed with the conditioned
media from LPS-activated BMMs with or without the addition of VEGFR3/Fc
(5 mg ml�1; R&D) and seeded on the Matrigel. After 24 h of incubation, tube for-
mation was visualized under bright-field inverted microscope.

In vitro MT1-MMP cleavage assay. Recombinant catalytic domain of MT1-MMP
(ALX-201-098-C010) and recombinant full-length LYVE-1 (H00010894-P01) were
purchased from Enzo and Abnova, respectively. The rLYVE-1 consists of
full-length human LYVE-1 protein (1–322 amino acids) fused with GST-tag at
amino terminus. They were incubated in the assay buffer (50 mM Tris-HCl pH 7.5,
150 mM NaCl, 5 mM CaCl2 and 0.025% Brij35) at 37 �C for 16 h. The protein
mixture was subjected to western blotting analyses.

Mass spectrometry. The polypeptides of mouse LYVE-1 (55L–75S; 225E–249R)
were synthesized at GL Biochem and incubated with recombinant catalytic domain
of MT1-MMP in the assay buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl and
5 mM CaCl2) at 37 �C for 16 h. The reaction mixture was analysed by MS (ABI4800
MALDI TOF/TOF Analyzer). The selected peaks were further sequenced by
tandem MS/MS.

Statistical analyses. Each experiment was independently repeated at least three
times. Tissues from at least three independent and randomly chosen mice at
comparable developmental stages were collected for analyses and none of the
samples was excluded from analyses. The sample size was increased in accordance
to the statistical variation. Data are represented as mean±s.e.m. The variances
from multiple groups of independent samples were analysed by F-test. The
statistical analysis was performed by two-tailed, unpaired Student’s t-test. All data
meet the normal distribution. P-value o0.05 was considered statistically
significant.
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