
University of Huddersfield Repository

Wilson, Scott and d'Escrivan, Julio

Composing with SuperCollider

Original Citation

Wilson, Scott and d'Escrivan, Julio (2011) Composing with SuperCollider. In: The SuperCollider
Book. The MIT Press, USA, pp. 81-104. ISBN 978-0-262-23269-2

This version is available at http://eprints.hud.ac.uk/15569/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/9555423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 3 Composition with SuperCollider

Scott Wilson and Julio d’Escriván

3.1 Introduction

The actual process of composing, and deciding how to go about it, can be one of
the most difficult things about using SuperCollider. People often find it hard to
make the jump from modifying simple examples to producing a full-scale piece. In
contrast to Digital Audio Workstation (DAW) software such as Pro Tools, for ex-
ample, SC doesn’t present the user with a single “preferred” way of working. This
can be confusing, but it’s an inevitable side effect of the flexibility of SC, which al-
lows for many different approaches to generating and assembling material. A brief
and incomplete list of ways people might use SC for composition could include the
following:

• Real-time interactive works with musicians
• Sound installations
• Generating material for tape music composition (to be assembled later on a DAW),
perhaps performed in real time
• As a processing and synthesis tool kit for experimenting with sound
• To get away from always using the same plug-ins
• To create generative music programs
• To create a composition or performance tool kit tailored to one’s own musical
ideas.

All of these activities have different requirements and suggest different approaches.
This chapter attempts to give the composer or sound artist some starting points for
creative exploration. Naturally, we can’t hope to be anywhere near exhaustive, as
the topic of the chapter is huge and in some senses encompasses all aspects of SC.
Thus we’ll take a pragmatic approach, exploring both some abstract ideas and con-
crete applications, and referring you to other chapters in this book where they are
relevant.

82 Scott Wilson and Julio d’Escriván

3.1.1 Coding for Flexibility

The notion of making things that are flexible and reusable is something that we’ll
keep in mind as we examine different ideas in this chapter. As an example, you might
have some code that generates a finished sound file, possibly your entire piece. With
a little planning and foresight, you might be able to change that code so that it can
easily be customized on the fly in live performance, or be adapted to generate a new
version to different specifications (quad instead of stereo, for instance).

With this in mind, it may be useful to utilize environment variables which allow
for global storage and are easily recalled. You’ll recall from chapter 1 that environ-
ment variables are preceded by a tilde (~).

==����������������"����	�	��������	�����
Q����	����� �
2�������#6�-?0��B�����#0�������*�����D�	���+�)-��
==������	���	���������*�A��	�������	�!"��	��������������"��	F
Q����	��������"

Since environment variables do not have the limited scope of normal variables,
we’ll use them in this chapter for creating simple examples. Keep in mind, however,
that in the final version of a piece there may be good reasons for structuring your
code differently.

3.2 Control and Structure

When deciding how to control and structure a piece, you need to consider both prac-
tical and aesthetic issues: Who is your piece for? Who is performing it? (Maybe you,
maybe an SC Luddite . . .) What kind of flexibility (or expressiveness!) is musically
meaningful in your context? Does pragmatism (i.e., maximum reliability) override
aesthetic or other concerns (i.e., you’re a hard-core experimentalist, or you are on
tenure track and need to do something technically impressive)?

A fundamental part of designing a piece in SC is deciding how to control what
happens when. How you do this depends upon your individual needs. You may
have a simple list of events that need to happen at specific times, or a collection of
things that can be triggered flexibly (for instance, from a GUI) in response to input
from a performer, or algorithmically. Or you may need to combine multiple
 approaches.

We use the term structure here when discussing this issue of how to control when
and how things happen, but keep in mind that this could mean anything from the
macro scale to the micro scale. In many cases in SC the mechanisms you use might
be the same.

83 3 Composition with SuperCollider

3.2.1 Clocks, Routines, and Tasks

Here’s a very simple example that shows you how to schedule something to happen
at a given time. It makes use of the �"�	��8���(class.

�"�	��8���(������#)*�
���������	����-�

The first argument to the ����� message is a delay in seconds, and the second is a
&���	��� that will be evaluated after that delay. In this case the Function simply
posts the word “foo,” but it could contain any valid SC code. If the last thing to be
evaluated in the Function returns a number, SystemClock will reschedule the Func-
tion, using that value as the new delay time.

==������������	������"�������
�"�	��8���(������#�*�
���������	����
���-�
==��!���������	���	��������������"
�"�	��8���(������#�*�
�!�������	����
��������-�
==�������������������������	�
�"�	��8���(�������

SystemClock has one important limitation: it cannot be used to schedule events
which affect native GUI widgets on OSX. For this purpose another clock exists,
called D��8���(. Generally you can use it in the same way as SystemClock, but be
aware that its timing is slightly less accurate. There is a shortcut for scheduling
something on the AppClock immediately, which is to wrap it in a Function and call
����� on it.

==�����������������	���������	�!��������������	����2�������������
�"�	��8���(������#
*�
�8W��������������	�-�
==�������������������BVI���������	���D��8���(*����	�������(�
�"�	��8���(������#
*�

��8W��������������	��������-�

GUI, by the way, is short for Graphical User Interface and refers to things such as
windows, buttons, and sliders. This topic is covered in detail in chapters 9 and 10,
so although we’ll see some GUI code in a few of the examples in this chapter, we
won’t worry too much about the nitty-gritty details of it. Most of it should be pretty
straightforward and intuitive, anyway, so for now, just move past any bits that aren’t
clear and try to focus on the topics at hand.

Another Clock subclass, E����8���(, provides the ability to schedule events ac-
cording to beats rather than in seconds. Unlike the clocks we’ve looked at so far, you
need to create an instance of TempoClock and send sched messages to it, rather than
to the class. This is because you can have many instances of TempoClock, each with
its own tempo, but there’s only one each of SystemClock and AppClock. By varying

84 Scott Wilson and Julio d’Escriván

a TempoClock’s tempo (in beats per second), you can change the speed. Here’s a
simple example.

#
	� �E����8���(������==���(��������E����8���(
	������#�*�
������F�����	����
�-�
-
	�	����� �)��==�	�����������	
	�������

TempoClock also allows beat-based and bar-based scheduling, so it can be par-
ticularly useful when composing metric music. (See the TempoClock Help file for
more details.)

Now let’s take a look at Routines. A 1��	��� is like a Function that you can
evaluate a bit at a time, and in fact you can use one almost anywhere you’d use a
Function. Within a Routine, you use the yield method to return a value and pause
execution. The next time you evaluate the Routine, it picks up where it left off.

#
�� �1��	���#

������"�����
�!����"�����
�-�
-
���������==����
���������==�!��
���������==���3�����������	������*�����	���	��������

Routine has a commonly used synonym for �����, which is ��4	. Although “next”
might make more sense semantically with a Routine, “value” is sometimes prefera-
ble, for reasons we’ll explore below.

Now here’s the really interesting thing: since a Routine can take the place of a
Function, if you evaluate a Routine in a Clock, and yield a number, the Routine will
be rescheduled, just as in the SystemClock example above.

#
�� �1��	���#

�������������	���
����
�"������==��������������	���
�������
�����!�������	���
����
�"�����
��������!�������	���
�-�
�"�	��8���(������#�*��-�
-

85 3 Composition with SuperCollider

Figure 3.1 is a (slightly) more musical example that demonstrates a fermata of
arbitrary length. This makes use of ���	, a synonym for "����, and of Routine’s ���"
method, which is a shortcut for scheduling it in a clock. By yielding nil at a certain
point, the clock doesn’t reschedule, so you’ll need to call play again when you want
to continue, thus “releasing” the fermata. Functions understand a message called
���(, which is a commonly used shortcut for creating a Routine and playing it in a
Clock.

#

���������	���������	���
����
����	�
���������	��������������	���
�����(�
-

Figure 3.2 is a similar example with a simple GUI control. This time we’ll use a
E��(, which you may remember from chapter 1. A Task works almost the same way

==�&����	�
��!��	�
#
�� �1��	���#
�
� 4� ��"�	�#J������	*�:���K+�H,��������<-�
�
����	�
�
� 4��������#��
-�
� "� ��"�	�#J������	*�:���K+�H.��������<-�
� �W��	�����������	���
� ����"�����==������	�
�
� "��������#��
-�
� �� ��"�	�#J������	*�:���K+�,G��������<-�
�)����	�
� ����������
�-�
-
==����	����	�������	�����	��������	�
�����"�
==������	�������	�	��������
�����"�

Figure 3.1
A simple Routine illustrating a musical use of yield.

86 Scott Wilson and Julio d’Escriván

#
	� �E��(#
�
� ����#
� �==������	���������	����
� � .���#
� �==����	����.�	����
� � � 4��������#��
-�
� � � 4� ��"�	�#J������	*�:���K+�H,��������<-�
� � � ��;����	�
� � � 4��������#��
-�
� � � 4� ��"�	�#J������	*�:���K+�H.��������<-�
� � � ��;����	�
� � �-�
� � �I3�����	��������"���	�������������������	���
� � ����"�����==������	�
� � 4��������#��
-�
� � 4� ��"�	�#J������	*�:���K+�,G��������<-�
� �
����	�
� � 4���������
� �-�
�-�

�� �W���������#�E��(�04������*�1��	#5��*�5��*�)��*�.�--�����	�
�������������	��� �&���%�"��	#�������!�����-�
M�		������#�*�1��	#�*��*�
��*�)�--��	�	��P#::�2��"=1������*�8�����!���(*��
8����������<<-
� ���	���P#
�	�������#�-��-�
M�		������#�*�1��	#�*��*�5�*�)�--��	�	��P#::�2�����*�8�����!���(*�8����������<<-
� ���	���P#
�	��������-�
M�		������#�*�1��	#�*��*�5�*�)�--��	�	��P#::�&������*�8�����!���(*�8����������<<-
� ���	���P#
�
� � 	��	����
� � 4��������#��
-�
� � ��������
� �-�
-

Figure 3.2
Using Task so you can pause the sequence.

87 3 Composition with SuperCollider

that a Routine does, but is meant to be played only with a Clock. A Task provides
some handy advantages, such as the ability to pause. As well, it prevents you from
accidentally calling play twice. Try playing with the various buttons and see what
happens.

Note that the example above demonstrates both fixed scheduling and waiting for
a trigger to continue. The trigger needn’t be from a GUI button; it can be almost
anything, for instance, audio input. (See chapter 15.)

By combining all of these resources, you can control events in time in pretty com-
plicated ways. You can nest Tasks and Routines or combine fixed scheduling with
triggers; in short, anything you like. Figure 3.3 is an example that adds varying
tempo to the mix, as well as adding some random events.

You can reset a Task or Routine by sending it the ����	 message.

������	�

3.2.2 Other Ways of Controlling Time in SC

There are 2 other notable methods of controlling sequences of events in SC: Patterns
and the Score object. Patterns provide a high-level abstraction based on Streams of
events and values. Since Patterns and Streams are discussed in chapter 6, we will not
explore their workings in great detail at this point, but it is worth saying that Pat-
terns often provide a convenient way to produce a Stream of values (or other ob-
jects), and that they can be usefully combined with the methods shown above.

Figure 3.4 demonstrates two simple Patterns: 2��K and 24����. Pseq specifies an
ordered sequence of objects (here numbers used as durations of time between succes-
sive events) and a number of repetitions (in this case an infinite number, indicated by
the special value ���). Pxrand also has a list (used here as a collection of pitches), but
instead of proceeding through it in order, a random element is selected each time.
The “x” indicates that no individual value will be selected twice in a row.

Patterns are like templates for producing Streams of values. In order to use a Pat-
tern, it must be converted into a �	����, in this case using the ���	���� message.
Once you have a Stream, you can get values from it by using the ��4	 or ����� mes-
sages, just as with a Routine. (In fact, as you may have guessed, a Routine is a type
of Stream as well.) Patterns are powerful because they are “reusable,” and many
Streams can be created from 1 Pattern template. (Chapter 6 will go into more detail
regarding this.)

As an aside, and returning to the idea of flexibility, the ����� message above dem-
onstrates an opportunity for polymorphism, which is a fancy way of saying that
different objects understand the same message.1 Since all objects understand “value”
(most simply return themselves), you can substitute any object (a &���	���, a

88 Scott Wilson and Julio d’Escriván

#
�� �1��	���#

� �� �E����8���(������==���(����E����8���(
� ==��	��	���3��!!�"3�����
� 	� �E��(#
�
� � ����#
�
� � � 4��������#��
-�
� � � 4� ��"�	�#J������	*�:���K+�,
��������*����+���)<-�
� � � ��)����	�
� � � 4��������#��
-�
� � � 4� ��"�	�#J������	*�:���K+�,H��������*����+���)<-�
� � � �����#���H;*���);-����	��==�����������	��������
�	����);��������
� � �-�
� �*��-��==�����	���E����8���(�	�����"�	����E��(
� 	��	��	�
� ����"�����
�
� ==����������������	��
� "� ��"�	�#J������	*�:���K+�H.��������*����+���.<-�
� ����"�����
� "��������#��
-�
� "� ��"�	�#J������	*�:���K+�HG��������*����+���.<-�
� ��	����� �)��==����!���	���
� ����"�����
� 	��	����"��������#
-��4��������#��
-��==��	���	���E��(������"�	��
�-�
-

����4	��==��	��	�����
����4	��==�����	���	�
����4	��==����������	�������������3���!���	���3
����4	��==��	����������������

Figure 3.3
Nesting Tasks inside Routines.

89 3 Composition with SuperCollider

 1��	���, a number, etc.) that will return an appropriate value for � or K in the ex-
ample above. Since � and K are evaluated each time through the loop, it’s even pos-
sible to do this while the E��(is playing. (See figure 3.5.) Taking advantage of
polymorphism in ways like this can provide great flexibility, and can be useful for
anything from generic compositions to algorithmically variable compositions.

The second method of controlling event sequences is the ����� object. Score is es-
sentially an ordered list of times and $�8 commands. This takes the form of nested
Arrays. That is,

:
:	���
*�:���
<<*
:	���)*�:���)<<*
���
<

As you’ll recall from chapter 2, OSC stands for Open Sound Control, which is the
network protocol SC uses for communicating between language and server. What
you probably didn’t realize is that it is possible to work with OSC messages directly,
rather than through objects such as Synths. This is a rather large topic, so since the
OSC messages which the server understands are outlined in the Server Command
Reference Help file, we’ll just refer you there if you’d like to explore further. In any
case, if you find over time that you prefer to work in “messaging style” rather than
“object style,” you may find ����� useful. Figure 3.6 provides a short example. Score
also provides some handy functionality for non-real-time synthesis (see chapter 18).

#==����������	���������"�����!H������
�� �24����#:,5*�,,*�,6*�H�*�H
�H.�H5*�H,<*����-����	������
==�����������K�������������	����
K� �2��K#:
�)���;<*����-����	������
	� �E��(#
�
� ����#
�
� � 4��������#)-�
� � 4� ��"�	�#J������	*�:���K+����������������<-�
� � K����������	�
� �-�
�-�
	��	��	�
-
	��	����4��������#)-�

Figure 3.4
Using Patterns within a Task.

90 Scott Wilson and Julio d’Escriván

#
�� �,5��==�������	��	���	�
K� �2��K#:
�)���;<*����-����	������==�����������K�������������	����
	� �E��(#

� ����#

� � 4��������#)-�
� � 4� ��"�	�#J������	*�:���K+����������������<-�
� � K����������	�
� �-�
�-�
	��	��	�
-
==�������������
�� �2��K#:,5*�,,*�,6<*����-����	������==�	����2�		���+���������
�� �
������#,5*�H,-����==�	����&���	���+����������	����������
������	�����	���
	��	����4��������#)-�

Figure 3.5
Thanks to polymorphism, we can substitute objects that understand the same message.

#
�"�	�9��#�����������*
��������K� �55��
$�	���#�*
� ���$�����#���K*��*���)-�?�%����(�#
�����;*�����D�	���+�)-
-
�-�����
4� �:
==�����������P���������"�	����*�����I9*����D�	���*�	����	I9*��"�	����������
:���*�:�J�P���*�J���������*�
���*��*��*��J���K*�
5
.�<<*
:��;*�:�J�P���*�J���������*�
��
����*��J���K*�H
)�<<*
:
��*�:�J�P���*�J���������*�
��)*��*��*��J���K*�5
H�<<*
:)��*�:J�P��	*��*��<<�==�����"���������	�����(��������'1E��"�	������	���
<�
�� ������#4-�
-
�����"�

Figure 3.6
Using “messaging style”: Score.

91 3 Composition with SuperCollider

3.2.3 Cue Players

Now let’s turn to a more concrete example. Triggering sound files, a common tech-
nique when combining live performers with a “tape” part, is easily achieved in
 SuperCollider. There are many approaches to the construction of cue players. These
range from a list of individual lines of code that you evaluate one by one during a
performance, to fully fledged GUIs that completely hide the code from the user.

One question you need to ask is whether to play the sounds from RAM or stream
them from hard disk. The former is convenient for short files, and the latter for sub-
stantial cues that you wouldn’t want to keep in RAM. There are several classes (both
in the standard distribution of SuperCollider and within extensions by third-party
developers) that help with these 2 alternatives. Here’s a very simple example which
loads 2 files into RAM and plays them:

Q�"M������ �M����������#�*��������=�

��(�
�����-��==������������
Q�"M���������"��==����"��	�������	�����	��������������	����������	���
���"���

Buffer’s play method is really just a convenience method, though, and we’ll prob-
ably want to do something fancier, such as fade in or out. Figure 3.7 presents an

#
==�����3�����"�	�����	��	�����������	�����"��������!�����*���	����������	
�"�	�9��#����"!���*�
�������	� ��*�!��*���	�� �
�
� $�	���#��	*
� � 2��"M�����#
�!���M��1�	�������(�#!��-*�����+�
��-�
� � � ?�%�����(�#��	�*�����D�	���+�)-��==����������"�	����������������
� -
�-�����
==����������	�����	������	���������=����������	��!������
Q����������� ��������=?����	�@�	���������	
�]��	��]��M����������#�*���	�-���
-
==���������3��	��������*����	������(
==��4���	��	���������������	���	���
Q���2��"���� ��"�	�#����"!���*�:!��+�Q����������:�<<-�
Q���2��"�������������Q���2��"���� ��"�	�#����"!���*�:!��+�Q����������:
<<-�
Q���2��"�������������Q���2��"���� ��"�	�#����"!���*�:!��+�Q����������:)<<-�
Q���2��"������������
==������	���!�����������"
Q����������M����������#P�����-�

Figure 3.7
Executing one line at a time.

92 Scott Wilson and Julio d’Escriván

example which uses multiple cues in a particular order, played by executing the
code one line at a time. It uses the 2��"M�� UGen, which you may remember from
chapter 1.

The middle 2 lines of the latter section of figure 3.7 consist of 2 statements, and
thus do 2 things when you press the enter key to execute. You can of course have
lines of many statements, which can all be executed at once. (Lines are separated by
carriage returns; statements, by semicolons.)

The “1 line at a time” approach is good when developing something for yourself
or an SC-savvy user, but you might instead want something a little more elaborate
or user-friendly. Figure 3.8 is a simple example with a GUI.

SC also allows for streaming files in from disk using the 9��(I� and O9��(I��
UGens (the latter allows for variable-speed streaming). There are also a number of

#
�"�	�9��#����"!���*�
�������	� ��*�!��*���	�� �
�
� $�	���#��	*
� � 2��"M�����#
�!���M��1�	�������(�#!��-*�����+�
��-�
� � ?�%�����(�#��	�*�����D�	���+�)-�?���,��
� � ==���	��3����D�	���+�)3�������������"�	��������������������
-��-�����
Q����������� ��������=?����	�@�	���������	
�]��	��]��M����������#�*���	�-���
�� ����==�������	��
==�����3������BVI�����
�� �W���������#��������8��2��"���*�1��	#5��*�5��*�)��*�.�--�����	�
�������������	��� �&���%�"��	#�������!�����-�
==	������������"�������������	���
M�		������#�*�1��	#�*��*�6�*�)�--��	�	��P#::�2��"�8���*�8�����!���(*��
8����������<<-���	���P#
�
� ��#��T�Q���������������*�

� � ��#��F ��*�
Q���2��"�������������-��
� � Q���2��"���� ��"�	�#����"!���*�:!��+�Q����������:�<<-��� �>
�
� �-�
�-��
==	������	��	�������	���	��	�������	����
M�		������#�*�1��	#�*��*�6�*�)�--��	�	��P#::��	���=�1���	�*�8�����!���(*��
8����������<<-���	���P#
�� ���Q���2��"��������������-��
==������	���!������������	�������������������
����8����� �
�Q�������������#P�����-����
-

Figure 3.8
Playing cues with a simple GUI.

93 3 Composition with SuperCollider

third-party extension classes that do things such as automating the required house-
keeping (e.g., Fredrik Olofsson’s 1��9��(I��������).

The previous examples deal with mono files. For multichannel files (stereo being
the most common case) it is simplest to deal with interleaved files.2 Sometimes, how-
ever, you may need to deal with multiple mono cues. Figure 3.9 shows how to sort
them based on a folder containing subfolders of mono channels.

3.3 Generating Sound Material

The process of composition deals as much with creating sounds as it does with
o rdering them. The ability to control sounds and audio processes at a low level can
be great for finding your own compositional voice. Again, an exhaustive discussion
of all of SuperCollider’s sound-generating capabilities would far exceed the scope of
this chapter, so we’ll look at a few issues related to generating and capturing material
in SC and give a concrete example of an approach you might want to adapt for your
own purposes. As before, we will work here with sound files for the sake of conve-
nience, but you should keep in mind that what we’re discussing could apply to more
or less any synthesis or processing technique.

3.3.1 Recording

At some point you’re probably going to want to record SC’s output for the purpose
of capturing a sound for further audio processing or “assembly” on a DAW, for
documenting a performance, or for converting an entire piece to a distributable
sound file format.

To illustrate this, let’s make a sound by creating an effect that responds in an idio-
syncratic way to the amplitude of an input file and then record the result. You may
not find a commercial plug-in that will do this, but in SC, you should be able to do
what you can imagine (more or less!).

The ������ class provides easy automated recording facilities. Often, this is the
simplest way to capture your sounds. (See figure 3.10.)

After executing this, you should have a sound file in SC’s recordings folder (see the
doc for platform-specific locations) labeled with the date and time SC began record-
ing: SC_YYMMDD_HHMMSS.aif. ������ also provides handy buttons on the
Server window (appearance or availability varies by platform) to prepare, stop, and
start recording. On OSX it may look like this, or similar (see figure 3.11).

The above example uses the default recording options. Using the methods
�������&��1�����#��	�-, ���8�������P, ���������&����	P, and ���������&����	P,
you can customize the recording process. The latter 3 methods must be called before
�������&��1�����. A common case is to change the sample format; the default is to

94 Scott Wilson and Julio d’Escriván

==���	��������"�������������	��
==	�����������	����	������������������	���������	���*���������������������������	����
���������	����������	��

Q�����$������8��&������� ��������=?����	�@�	���������	
�]��	���]���
#�	������"�!��>>�?�-���	�@�	�����

2��	�TT�Q�����$������8��&���������==����	��������F

==����(��������"������"����������������	������
Q�����$������8��&�������������

==��	���	��	���!�����������������������������+
Q!�������8���� �Q�����$������8��&�������������	
]�	��*��]��	���������	
]���	��]��
M����������#�*����	�-����==����������������������������		�������	�����!�������F�

Q!�������8���:�<���==������������

==������	����	������	�������+
2��	�TT�Q!�������8���:�<�

==����"�	�������������B����*���������������������"�	����
==��������!���������	���������	��"��	��	������	�������"
#
��!���#

� Q���2��"���� �B��������#�-��==���������	����	�����	������������"�	�����
� Q!�������8���:�<���#
]���]��"�	�#����"!���*�:!��+����<*�Q���2��"���-�-
�-�
-
==������	������	�	���	����!"���������������������������	��	��������
Q���2��"������������

Figure 3.9
Gathering up files for multichannel cues.

95 3 Composition with SuperCollider

��!��	��==���(�������	��������������������
#���==�����	�������	��	�������	���
!� �M����������#�*��������=�

��(�
�����-��==���������
���������&��1�������==���������	����������	���������#"������	����	��������	-
-
#� ==������	�������"��	��	�	���������������������������
��!���#

� ==�����3���������("������	
� 4� �
����������!��*������
� � �����!��� �2��"M�����#
�!�����+�
-�
� � ���� �D����	������#�����!��*���;*���;*�5���*�);�-��==�3�	��("3�������������
� � $�	���#�*�1��������#�����!��*����*����)*�.--�==����	�������K������������
� � �����"�
���������
�-�
-
�������1����������==������
���������==��	��	������
���	��1����������==��	�����������������������	��������	��������������

Figure 3.10
Recording the results of making sounds with SuperCollider.

Figure 3.11
A screen shot of a Server window.

96 Scott Wilson and Julio d’Escriván

record as 32-bit floating-point values. This has the advantage of tremendous dy-
namic range, which means you don’t have to worry about clipping and can normal-
ize later, but it’s not compatible with all audio software.

�����������&����	P#���	
,�-�

More elaborate recording can be realized, of course, by using the 9��($�	 UGen.
Server’s automatic functionality is in fact based on this. SC also has non-real-time
synthesis capabilities, which may be useful for rendering CPU-intensive code. (See
chapter 18.)

3.3.2 Thinking in the Abstract

Something that learners often find difficult to do is to stop thinking about exactly
what they want to do at the moment, and instead consider whether the problem
they’re dealing with has a general solution. Generalizing your code can be very pow-
erful. Imagine that we want to make a sound that consists of 3 bands of resonated
impulses. We might do something like this:

#

1��������#9��)���#;-*�.��*�����
*�
��-�>
1��������#9��)���#;-*�,��*�����
*�
��-�>
1��������#9��)���#;-*�G��*�����
*�
��-�?�.�������������==�������	���������
�����������
�����"
-

Now, through a bit of careful thinking, we can abstract the problem from this
concrete realization and come up with a more general solution:

#
�� �.���
�� �.�

@�4�����#�*�
]�]�1��������#9��)���#;-*���?�#��>�
-*�����
*�
��-�-
?���������������==�������	��������������������
�����"
-

This version has an equivalent result, but we’ve expressed it in terms of g eneralized
instructions. It shows you how to construct a Synth consisting of resonated impulses
tuned in whole-number ratios rather than as an exact arrangement of objects and
connections, as you might do in a visual patching language such as Max/MSP. We’ve

97 3 Composition with SuperCollider

also used variables (f for frequency and n for number of resonators) to make our
code easy to change. This is the great power of abstraction: by expressing something
as a general solution, you can be much more flexible than if you think in terms of
exact implementations. Now it happens that the example above is hardly shorter
than the first, but look what we can do with it:

#
�� �5��
�� �;��

@�4�����#�*�
]�]�1��������#9��)���#;-*���?�#��>�
-*�����
*�.��-�-
?���������������==�������	��������������������
�����"
-

By changing � and � we’re able to come up with a much more complex variant.
Imagine what the hard-coded version would look like with 50 individual 1�����
VB��� typed out by hand. In this case, not only is the code more flexible, it’s shorter;
and because of that, it’s much easier to understand. It’s like the difference between
saying “Make me 50 resonators” and saying “Make me a resonator. Make me a
resonator. Make me a resonator. . . .”

This way of thinking has potential applications in almost every aspect of SC, even
GUI construction (see figure 3.12).

3.3.3 Gestures

For a long time, electroacoustic and electronic composition has been a rather
“m anual” process. This may account for the computer’s being used today as a vir-
tual analog studio; many sequencer software GUIs attest to this way of thinking.
However, as software has become more accessible, programming may in fact be re-
placing this virtual splicing approach.

One of the main advantages of a computer language is generalization, or abstrac-
tion, as we have seen above. In the traditional “tape” music studio approach, the
composer does not differentiate gesture from musical content. In fact, traditionally
they amount to much the same thing in electronic music. But can a musical gesture
exist independently of sound?

In electronic music, gestures are, if you will, the morphology of the sound, a com-
pendium of its behavior. Can we take sound material and examine it under another
abstracted morphology? In ordinary musical terms this could mean a minor scale
can be played in crescendo or diminuendo and remain a minor scale. In electro-
acoustic music this can happen, for example, when we modulate 1 sound with the

98 Scott Wilson and Julio d’Escriván

spectrum of another. The shape of 1 sound is generalized and applied to another; we
are accustomed to hearing this in signal-processing software. In this section we
would like to show how SuperCollider can be used to create “empty gestures,” ges-
tures that are not linked to any sound in particular. They are, in a sense, gestures
waiting for a sound, abstractions of “how to deliver” the musical idea.

First we will look at some snippets of code that we can reuse in different patches,
and then we will look at some Routines we can call up as part of a “Routine of Rou-
tines” (i.e., a score, so to speak). If you prefer to work in a more traditional way, you
can just run the Routines with different sounds each time, record them to hard disk,
and then assemble or sample as usual in your preferred audio editing/sequencing
software. However, an advantage of doing the larger-scale organization of your
piece within SC is that since you are interpreting your code during the actual perfor-
mance of your piece, you can add elements of variability to what is normally fixed

#
�� �.���
�� �.���==����!������������	���
	� �D���"�����#�*�
�]�]

1��������#9��)���#;-*���?�#��>�
-*�����
*�.��-
?���������������==�������	��������������������
�����"�
�-�

==�������(����BVI
==�����������������������������3	�������	���������
�� �W���������#�M�		����*�1��	#;�*�
��*�)G�*�);�-*�������+	���-�
�������������	��� �&���%�"��	����#�������!�����-��==���	����"��	�	��������	�
����#
]�]
M�		������#�*�1��	#�*��*�
.�*�.�--��	�	��P#:
:�&��K��>�#��?�#��>�
--�>��$��*�8�����!���(*�8��������	�<*
:�&��K��>�#��?�#��>�
--�>��$���*�8��������	�*�8�����!���(<
<-
���	���P#
�����!�		�
	:�<����#!�		������� ��-�
�-�
�-�
������	�
-

Figure 3.12
A variable number of resonators with an automatically created GUI.

99 3 Composition with SuperCollider

at the time of playback. You can also add elements of chance to your piece without
necessarily venturing fully into algorithmic composition. (Naturally, you can always
record the output to a sound file if desired.) This, of course, brings us back to issues
of design, and exactly what you choose to do will depend on your own needs and
inclinations.

3.3.4 Making “Empty” Gestures

Let’s start by making a list where all our Buffers will be stored. This will come in
handy later on, as it will allow us to call up any file we opened with our file browser
during the course of our session. In the following example we open a dialogue box
and can select any sound(s) on our hard disk:

#�=="��������!���!���	���������	������������������A��	�����	�����(������
�����	���F
��������*������2�	��
Q!������� �%��	:<�
9��������	2�	��#
������	���
��	�����#
]�����2�	�]
==���	�	�����	��	�������"�	��	��	����	�������"����4���	F
���������2�	�����	���
==�����	��������	�"������	���M������	��"�������	
����Q!����������#M����������#�*������2�	�-�-���-
�-�
-

You can check to see how many Buffers are in your list so far (watch the post
window!),

Q!������������

and you can see where each sound is inside your list. For example, here is the very
first sound stored in our Buffer list:

Q!������:�<�

Now that we have our sound in a Buffer, let’s try some basic manipulations. First,
let’s just listen to the sound to verify that it is there:

Q!������:�<����"�

Now, let’s make a simple �"�	�9�� so we can create Synths which play our Buffer
(for example, in any 1��	���, E��(, or other �	����) later on. For the purposes of this
demonstration we will use a very simple percussive envelope, making sure we have
����D�	���+�) in order to free the synth after the envelope terminates:

100 Scott Wilson and Julio d’Escriván

#
==�!���������"�����	���������	�����������	���������������������������
�"�	�9��#J������2��"��*�
������	� ��*�!��� ��*
��	�� �
*��	� ����
*����� ���
����� ���������� ��*����� ���;�
����������*����E*����*���4�
������� �2��"M�����#
�!�����	�?M��1�	�������(�#!��-*�
����-�
���E �&���$���(�#������-�
���� �0��B�����#0�������#�	*����*����-*�����D�	���+�)-�
$�	���#��	*�2��)���#������*����E*����--�
�-�����
-

As mentioned in chapter 1, we use the ��� method here rather than one of the
more low-level SynthDef methods such as ����. In addition to sending the def to the
server, ��� also stores it within the global �"�	�9���%�! in the client app, so that its
arguments can be looked up later by the Patterns and Streams system (see chapter 6).
We’ll need this below. Let’s test the SynthDef:

�"�	�#J������2��"��*:J��	*��*�J!�����*�Q!������:�<*�J���*���);<-�

As you can hear, it plays 0.25 second of the selected sound. Of course, if you have
made more than 1 Buffer list, you can play sounds from any list, and also play ran-
domly from that list. For example, from the list we defined earlier we could do this:

�"�	�#J������2��"��*:J��	*��*�J!�����*�Q!�������������*�J���*���);<-�

Let’s define a Routine that allows us to create a stuttering /rushing gesture in a
glitch style. We’ll use a new Pattern here, 2����, which specifies a geometric series.3
Note that Patterns can be nested. Figure 3.13 shows a Pseq whose list consists of two
Pgeoms.

Remember that you can use a E��(or 1��	��� to sequence several such gestures
within your piece. You can, of course, modify the Routine to create other accel/decel
Patterns by substituting different Patterns. You can also add variability by making
some of them perform choices when they generate their values (e.g., using 2���� or
24����). You can use this, for example, to choose which speaker a sound comes from
without repeating speakers:

24����#:�*�
�)�.*�5*�;*�,*�H*�6<*����-

The advantage of having assigned your gestures to environment variables (using
the tilde shortcut) is that now you are able to experiment in real time with the order-
ing, simultaneity, and internal behavior of your gestures.

Let’s take a quick look at 1 more important Pattern: 2!���. It creates a Stream
of Events, which are like a kind of dictionary of named properties and associated
values. If you send the message ���" to a Pbind, it will play the Stream of Events, in

101 3 Composition with SuperCollider

a fashion similar to the Clock examples above. Here’s a simple example which makes
sound using what’s called the “default” SynthDef:

==��������"������	������K����"*�����	������
�������
2!���#J���K*�2����#:.��*�;��*�).
�)*�.GG�)<*�.�-*�J���*���
-����"�

It’s also possible to substitute Event Streams as they play. When you call ���" on
a 2�		���, it returns an 0���	�	����2��"��, which actually creates the individual
Events from the Stream defined by the Pattern. EventStreamPlayer allows its Stream
to be substituted while it is playing.

Q���	
� �2!���#J���	�����	*�J������2��"��*�J���*�)*�J���*�
�G-�
Q���"��� �Q���	
����"��==��(���	����"
Q���"����	����� �2!���#J���	�����	*�J������2��"��*�J���*�
=6*�J��	�*�
24����#:
=)*�
�)=.�5<*����-*�J���*���G-����	������==��!�	�	�	��	���
�	����
Q���"����	���

#=?������	������������	��������	���������	�		�����	���������*�"������	�����
����	���������������.�G����	��	�	�������	������"������������������������"��������
��	��!������*�"��������������	�������4����Q!�������8����	��	��	�	������	�������
��������	��������?=

Q�	�	� �1��	���#�
��������*�����
Q�	�	2�		� �2��K#:2����#���
*�
�
H�H*�
6-*�2�#��
*�
-*2����#��
���G5�)��-�<-�
Q�	� �Q�	�	2�		����	�����

�����

�������� ��Q�	����4	�
�����������	����� ==��������������(�����������	������	�������
����Q������� ��"�	�#�������2��"���*:J��	*��*�J!��*��Q!�������8���:�<*�J�	*���
*�
J����*����;*J������*���;<-�
�����������	�
�
�-�
-

==�������"��	
Q�	�	����"�
==�����	�!������"������"������F
Q�	�	�����	�

Figure 3.13
Making a stuttering gesture using a geometric Pattern.

102 Scott Wilson and Julio d’Escriván

If you have evaluated the expressions above, you will notice that you don’t hear
the simple default SynthDef, but rather the one we made earlier. Since we added it
above, the Pbind is able to look it up in the global library and get the information it
needs about the def. Now, the Pbind plays repeatedly at intervals specified by the
\dur argument, but it will stop playing as soon as it receives nil for this or any other
argument. So we can take advantage of this to make Streams that are not repetitive
and thus make single gestures (of course, we can also choose to work in a looping/
layering fashion, but more of that later). Here is a Pbind making use of our accele-
rando Pattern to create a rushing sound:

Q���	
� �2!���#J���	�����	*�J������2��"��*�J���*�2����#���
*�
�
H�H*�)�-*�
J���*�
�G-�
Q���	
����"�

When the Stream created from the Pgeom ended, it returned nil and the Event-
StreamPlayer stopped playing. If you call play on it again, you will notice that it
makes the same rushing sound without the need to reset it, as we had to do with the
Routine, since it will return a new EventStreamPlayer each time. More complex
gestures can be made, of course, by nesting patterns:

2!���#J���	�����	*�J������2��"��*�J���*�2��K#:2����#���
*�
�
H�H*�)�-*�
2����#���
���G.�)�-<*�
-*�J���*�
�G*�J������*���;-����"�

2!���#J���	�����	*�J������2��"��*�J���*�2��K#:2����#���
*�
�
H�H*�)�-*�
2����#���
���G.�)�-<*�
-*J��	�*�24����#:
=)*�
�)=.�5<*����-*�J���*�

�G*�J������*���;-����"�

Similar things can be done with the 2��� class from the ^IE library (see chapter 7).
Let’s designate another environment variable to hold a sequence of values that we
can plug in at will and change on the fly. This Pattern holds values that would work
well for \dur:

Q��"	��
� �2��K#:
=5*�
=5*�
=6*�
=
)*�
=)5*����<-��==	��������������	������
�	��F

We can then plug it into a 2���, which we’ll call J�:

Q���	
� �2���#J�*�2!���#J���	�����	*�J������2��"��*�J���*�Q��"	��
�J����

�G*�J������*���;-�-�
Q���	
����"

If we define another sequence of values we want to try,

Q��"	��
� �2��K#:
=,5*�
=,5*�
=,5*�
=.)*�
=.)*�
=.)*�
=.)*�
=)5*�
=
,*�

=
)*����<-�

103 3 Composition with SuperCollider

and then reevaluate the 2���,

Q���	
� �2���#J�*�2!���#J���	�����	*�J������2��"��*�J���*�Q��"	��
�J����

�G*�J������*���;-�-�

we can hear that the new Q��"	��
 has taken the place of the previous one. Notice
that it played immediately, without the need for executing Q���	
����". This is one
of the advantages of working with the 2��� class: once the �	���� is running, any-
thing that is “poured” into it will come out. In the following example, we assign a
Pattern to the rate values and obtain an interesting variation:

Q���	
� �2���#�J��*�2!���#J���	�����	*�J������2��"��*�J�		*���;*�J���*�.*�
J���*�
�����#��
���)-��J���*����;*�J��	�*�2��K#:2!����#��6*�
��
*����
*�
)�-<---�

Experiments like these can be conducted by creating Patterns for any of the argu-
ments that our �"�	�9�� will take. If we have “added” more than 1 �"�	�9��, we can
even modulate the J���	�����	 by getting it to choose among several different op-
tions. Once we have a set of gestures we like, we can trigger them in a certain order
using a 1��	���, or we can record them separately and load them as audio files to our
audio editor. The latter approach is useful if we want to use a cue player for the final
structuring of a piece.

3.4 Conclusions

What next? The best way to compose with SuperCollider is to set yourself a project
with a deadline! In this way you will come to grips with specific things you need to
know, and you will learn it much better than just by reviewing everything it can do.
SuperCollider offers a variety of approaches to electronic music composition. It can
be used for sound creation thanks to its rich offering of UGens (see chapter 2), as
well as for assembling your piece in flexible ways. We have shown that the assembly
of sounds itself can become a form of synthesis, illustrated by our use of Patterns
and Streams. Another approach is to review some of the classic techniques used in
electroacoustic composition and try to re-create them yourself using SuperCollider.
Below we refer you to some interesting texts that may enhance your creative
i nvestigations.

Further Reading

Budón, O. 2000. “Composing with Objects, Networks, and Time Scales: An Interview with
Horacio Vaggione.” Computer Music Journal, 24(3): 9–22.

Collins, N. 2010. Introduction to Computer Music. Chichester: Wiley.

104 Scott Wilson and Julio d’Escriván

Dodge, C., and T. A. Jerse. 1997. Computer Music: Synthesis, Composition, and Perfor-
mance, 2nd ed. New York: Schirmer.

Holtzman, S. R. 1981. “Using Generative Grammars for Music Composition.” Computer
Music Journal, 5(1): 51–64.

Loy, G. 1989. “Composing with Computers: A Survey of Some Compositional Formalisms
and Music Programming Languages.” In M. V. Mathews and J. R. Pierce, eds., Current Direc-
tions in Computer Music Research, pp. 291–396. Cambridge, MA: MIT Press.

Loy, G., and Abbott, C. 1985. “Programming Languages for Computer Music Synthesis,
Performance, and Composition.” ACM Computing Surveys (CSUR), 17(2): 235–265.

Mathews, M. V. 1963. “The Digital Computer as a Musical Instrument.” Science, 142(3592):
553–557.

Miranda, E. R. 2001. Composing Music with Computers. London: Focal Press.

Roads, C. 2001. Microsound. Cambridge, MA: MIT Press.

Roads, C. 1996. The Computer Music Tutorial. Cambridge, MA: MIT Press.

Wishart, T. 1994. Audible Design: A Plain and Easy Introduction to Practical Sound Compo-
sition. York, UK: Orpheus the Pantomime.

Notes

1. You may have noticed that the terms “message” and “method” used somewhat inter-
changeably. In polymorphism the distinction becomes clear: different objects may respond to
the same message with different methods. In other words, the message is the command, and
the method is what the object does in response.

2. Scott Wilson’s De-Interleaver application for OSX and Jeremy Friesner’s cross-platform
command line tools audio_combine and audio_split allow for convenient interleaving and
deinterleaving of audio files.

3. A geometric series is a series with a constant ratio between successive terms.

