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Abstract: To identify potential biomarkers for improving diagnosis of melioidosis, we compared
plasma metabolome profiles of melioidosis patients compared to patients with other bacteremia and
controls without active infection, using ultra-high-performance liquid chromatography-electrospray
ionization-quadruple time-of-flight mass spectrometry. Principal component analysis (PCA) showed
that the metabolomic profiles of melioidosis patients are distinguishable from bacteremia patients
and controls. Using multivariate and univariate analysis, 12 significant metabolites from four
lipid classes, acylcarnitine (n = 6), lysophosphatidylethanolamine (LysoPE) (n = 3), sphingomyelins
(SM) (n = 2) and phosphatidylcholine (PC) (n = 1), with significantly higher levels in melioidosis
patients than bacteremia patients and controls, were identified. Ten of the 12 metabolites showed
area-under-receiver operating characteristic curve (AUC) >0.80 when compared both between
melioidosis and bacteremia patients, and between melioidosis patients and controls. SM(d18:2/16:0)
possessed the largest AUC when compared, both between melioidosis and bacteremia patients
(AUC 0.998, sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls
(AUC 1.000, sensitivity 96.7% and specificity 100%). Our results indicate that metabolome profiling
might serve as a promising approach for diagnosis of melioidosis using patient plasma, with
SM(d18:2/16:0) representing a potential biomarker. Since the 12 metabolites were related to various
pathways for energy and lipid metabolism, further studies may reveal their possible role in the
pathogenesis and host response in melioidosis.
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1. Introduction

Melioidosis is a disease caused by the highly pathogenic gram-negative bacterium, Burkholderia
pseudomallei (B. pseudomallei). The disease is often serious and potentially fatal, most commonly
manifested as severe community-acquired pneumonia and sepsis. Although the disease is mainly
endemic in Southeast Asia and Northern Australia, melioidosis has been increasingly reported
in areas of the Asia-Pacific region, including India [1,2], Mauritius [3], South, Central and North
America [4–6], and West and East Africa [7,8], which may suggest an expanding geographical
distribution. B. pseudomallei is known to be a natural saprophyte, and therefore melioidosis is believed
to be acquired through contact with contaminated soil and water in the environment [9,10]. Illness can
be presented as an acute, subacute, or chronic process, with an incubation period of up to 26 years [11].
The disease manifestations can range from subclinical infection, localized abscesses, and pneumonia to
fulminant sepsis, leading to a mortality rate of up to 19% [12]. Besides human, melioidosis also affects
various animals in endemic areas [10,13]. Treatment of melioidosis is often difficult, as B. pseudomallei is
usually resistant to multiple antibiotics and prolonged antibiotics are required to prevent relapse [14,15].
Moreover, diagnostic and therapeutic resources in endemic areas are often limited, which have
hindered efforts to improve treatment outcomes.

Diagnosis of melioidosis can be difficult because of several reasons. First, B. pseudomallei may
not be readily isolated from clinical specimens. Second, even if it is successfully isolated, commercial
bacterial identification systems often cannot differentiate B. pseudomallei from closely related species
such as Burkholderia thailandensis and members of Burkholderia cepacia complex [16]. Therefore, new
molecular techniques are often required for more accurate species identification [14,17–23].
Despite these new technologies, the diagnostic problems associated with culture-negative cases remain
unresolved. Although different serological tests have been developed to help diagnose culture-negative
melioidosis, their clinical usefulness is limited by the low sensitivities and specificities [24,25].
The availability of alternative techniques for improved diagnosis of melioidosis is thus eagerly awaited,
and such techniques should be able to differentiate between melioidosis and infections caused by
common Gram-negative bacteria including the closely related Burkholderia species.

Metabolomics is a new research platform for systematic studies of small molecules of a specific
system such as a cell, tissue or an organism. The metabolic profiles between such systems can then
be compared, thus allowing the identification of specific metabolite markers. The technique has been
used to characterize various infectious diseases or pathogens [26–38]. By exploring the metabolomes
of culture supernatant, we have identified specific biomarkers that are produced by a unique thiamine
degradation pathway in B. pseudomallei [32]. We have also recently reported the use of metabolomics
to identify novel biomarkers in plasma of tuberculosis patients, which may be useful for diagnosis [37].
Despite being an important pathogen, no studies have reported the use of metabolomics to explore
specific biomarkers in plasma of melioidosis patients.

We hypothesize that there are specific biomarkers that may be detected in plasma of melioidosis
patients. To identify potential biomarkers for the non-invasive diagnosis of melioidosis, we applied the
metabolomics technology for metabolite profiling of plasma samples from melioidosis patients, using
ultra-high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass
spectrometry (UHPLC-ESI-QTOFMS). Multi- and univariate statistical analyses of the metabolome
data were used to identify specific metabolites that are present in significantly higher levels in plasma
of melioidosis patients than in plasma of patients with other bacteremia or controls without infections.
The diagnostic performances of the identified biomarkers were evaluated using receiver operating
characteristic curve (ROC) analysis. In this pilot study, untargeted metabolomics on plasma sample
were conducted with the aim to explore potential diagnostic biomarkers and biological pathways
involved in host–B. pseudomallei interaction.
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2. Results

2.1. Metabolomic Profiling of Plasma Samples from Melioidosis Patients, Patients with Other Bacteremia
and Controls

The metabolomes of 76 plasma samples from the three groups (22 samples from newly-diagnosed
melioidosis patients, 24 samples from patients with other bacteremia and 30 samples from controls
without active infection) were compared using UHPLC-QTOFMS [38]. The metabolites could be
separated well using the UPLC-MS method with sub-micron particle size, 1.7 µm packing. The base
peak chromatographic profiles showed stable retention time for all peaks without observable
drift, supporting the stability and reliability of the accurate-mass QTOF system and metabolomic
profiling data.

2.2. Omics-Based Statistical and Bioinformatic Analysis for Identification of Biomarkers

A total of 2424 molecular features were obtained by XCMS package [39] and subjected to
MetaboAnalyst 3.0 software [40] for statistical analysis. For multivariate analysis, principal component
analysis (PCA) revealed that the three groups were clustered separately, with 50.0% of the total variance
among the three groups represented by the first two principal components (PCs), where principal
component 1 (PC1) and PC2 explained 36.5% and 13.5% of the variance, respectively (Figure 1).
In particular, the melioidosis group could be distinguished from the bacteremia and control groups
based on the first two PCs, with clear separation along PC2 dimension.
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Figure 1. Principal component analysis (PCA) score plot in positive mode based on human plasma of
22 melioidosis, 24 bacteremia and 30 controls without active infection. The PCA score plots showed
that samples from melioidosis patients, bacteremia patients and controls without active infection were
clustered separately.
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Univariate analysis using one-way analysis of variance (ANOVA) identified 764 statistically
significant features with variable importance in the projection (VIP) score >1 and p < 0.05 when
compared both between melioidosis patients and patients with other bacteremia, and between
melioidosis patients and controls. Further volcano plot analysis revealed 131 significant features
with fold-change (FC) >1.5 and p < 0.05 by Student’s t-test when compared both between melioidosis
patients and patients with other bacteremia (Figure 2A), and between melioidosis patients and controls
(Figure 2B), which were subjected to univariate ROC analysis.Int. J. Mol. Sci. 2016, 17,307 4 of 21 
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The statistical analyses were performed for comparison between melioidosis and bacteremia patients
in (A) positive mode as well as melioidosis patients and controls without active infection in (B)
positive mode.

A total of 12 metabolites with area-under-receiver operating characteristic curve (AUC)
>0.80 when compared between melioidosis patients and patients with other bacteremia, or
between melioidosis patients and controls, were identified. They were identified as metabolites
belonging to four lipid classes, acylcarnitine (six metabolites), lysophosphatidylethanolamine
(LysoPE) (three metabolites), sphingomyelins (SM) (two metabolites) and phosphatidylcholine (PC)
(one metabolite), using LC-MS/MS analyses by elution order, MS/MS fragmentation and predicted
molecular formula (Tables 1 and 2 Figure 3). The identification and assignment of lipid classes were
based on the fingerprint fragment and specific neutral losses. Specifically, the presence of m/z 60
(trimethylamine ion, C3H10N+) and m/z 85 (C4H5O2

+) for acylcarnitine, m/z 44 (C2H5N+) and neutral
loss of phosphorylethanolamine for LysoPE, m/z 184 (Phosphocholine ion, C5H15NO4P+) and neutral
loss of water for SM, and m/z 60 (trimethylamine ion, C3H10N+) and m/z 184 (phosphocholine
ion, C5H15NO4P+) for PC, were key features employed for their identification. In addition, the
identities of six biomarkers, including decanoylcarnitine, decanoylcarnitine, and L-octanoylcarnitine
LysoPE(16:0/0:0), LysoPE(18:0/0:0) and PC(16:0/16:0), were confirmed by matching the retention
time (RT) and MS/MS fragmentation patterns of authentic chemical standards, where available.
Chemical standards for the other six metabolites were not available for comparison. The details
of the fragments in each MS/MS spectrum for each identified metabolite are shown in Figure 3.
The 12 metabolites were related to various pathways for energy and lipid metabolism, including
tricarboxylic acid (TCA) cycle, fatty acid β-oxidation, fatty acid de novo synthesis, linoleic acid,
α-linoleic acid, arachidonic acid, phospholipid and sphingolipid metabolism.
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Table 1. Plasma metabolites with higher levels in melioidosis patients compared to bacterimia patients and controls.

Compound Experimental
Mass, m/z Ion Retention

Time (min) MS/MS Fragment Masses Elemental
Composition Metabolite Class

L-Hexanoylcarnitine 260.1842 [M + H]+ 4.47 60.0808, 85.0285, 99.0803, 144.1018, 201.1117 C13H25NO4 acylcarnitine

L-Octanoylcarnitine 288.2157 [M + H]+ 6.78 60.0805, 85.0283, 127.1110, 144.1019, 229.1438 C15H29NO4 acylcarnitine

2-Decenoylcarnitine 314.2326 [M + H]+ 7.84 60.0806, 85.0281, 144.1015, 153.1257, 255.1591 C17H31NO4 acylcarnitine

Decanoylcarnitine 316.2476 [M + H]+ 8.62 60.0806, 85.0284, 144.1017, 155.1424, 257.1748 C17H33NO4 acylcarnitine

Trans-2-dodecenoylcarnitine 342.2636 [M + H]+ 9.38 60.0807, 85.0283, 144.1019, 181.1584, 283.1880 C19H35NO4 acylcarnitine

Dodecanoylcarnitine 344.2775 [M + H]+ 10.20 60.0806, 85.0284, 144.1008, 183.1735, 285.2088 C19H37NO4 acylcarnitine

LysoPE(16:0/0:0) 454.2934 [M + H]+ 14.64 44.0496, 62.0598, 216.0642, 239.2361,
257.2530, 313.2740, 393.2423, 436.2774 C21H44NO7P lysophosphatidylethanolamine

LysoPE(0:0/18:0) 482.3244 [M + H]+ 16.94 44.0494, 216.0628, 267.2644, 285.2747, 341.3060 C23H48NO7P lysophosphatidylethanolamine

LysoPE(18:0/0:0) 482.3251 [M + H]+ 17.61 44.0497, 62.0600, 216.0618, 267.2672,
285.2777, 341.3058, 421.2718, 464.3112 C23H48NO7P lysophosphatidylethanolamine

SM(d16:1/16:0) 675.5444 [M + H]+ 27.88 60.0808, 104.1072, 184.0735, 236.2355 C37H75N2O6P sphingomyelins

SM(d18:2/16:0) 701.5605 [M + H]+ 28.64 60.0802, 104.1068, 184.0736, 262.2575, 683.5484 C39H77N2O6P sphingomyelins

PC(16:0/16:0) 734.5616 [M + H]+ 30.58 60.0801, 104.1060, 184.0727, 478.3251, 496.3353 C40H80NO8P phosphatidylcholine
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Table 2. The area-under-receiver operating characteristic curve (AUC), sensitivity and specificity for receiver operating characteristic (ROC) curves calculated at
optimal cutoff as well as p-value and Fold-change for the twelve significant metabolites.

Significant Metabolites Melioidosis vs. Bacteremia Melioidosis vs. Control without Active Infections

AUC a 95% CI b Sensitivity
(%)

Specificity
(%) p-Value c Fold-Change AUC a 95% CI b Sensitivity

(%)
Specificity
(%) p-Value c Fold-Change

L-Hexanoylcarnitine 0.665 0.497–0.805 81.8 50.0 1.12 ˆ 10´2 2.32 Òd 0.849 0.728–0.959 83.3 81.8 1.10 ˆ 10´3 3.33 Òd

L-Octanoylcarnitine 0.856 0.710–0.964 86.4 79.2 6.34 ˆ 10´4 3.49 Ò 0.827 0.693–0.942 83.3 86.4 2.90 ˆ 10´3 2.76 Ò
2-Decenoylcarnitine 0.839 0.700–0.937 77.3 79.2 4.77 ˆ 10´3 3.63 Ò 0.829 0.682–0.952 90.0 81.8 1.90 ˆ 10´3 3.56 Ò
Decanoylcarnitine 0.850 0.728–0.972 77.3 87.5 1.46 ˆ 10´4 3.53 Ò 0.821 0.680–0.949 83.3 77.3 1.45 ˆ 10´3 2.66 Ò
Trans-2-dodecenoylcarnitine 0.850 0.736–0.965 77.3 79.2 1.20 ˆ 10´5 2.40 Ò 0.886 0.776–0.965 90.0 72.7 5.43 ˆ 10´8 2.88 Ò
Dodecanoylcarnitine 0.822 0.700–0.935 72.7 91.7 3.10 ˆ 10´5 2.46 Ò 0.741 0.583–0.877 76.7 72.7 9.60 ˆ 10´3 1.66 Ò
LysoPE(16:0/0:0) 0.979 0.947–1.000 90.9 95.8 1.51 ˆ 10´10 5.20 Ò 0.812 0.672–0.933 73.3 81.8 2.56 ˆ 10´6 2.01 Ò
LysoPE(0:0/18:0) 0.994 0.982–1.000 95.5 100.0 6.08 ˆ 10´10 7.51 Ò 0.819 0.658–0.926 90.0 77.3 1.96 ˆ 10´6 2.23 Ò
LysoPE(18:0/0:0) 0.998 0.993–1.000 100.0 95.8 1.77 ˆ 10´11 6.09 Ò 0.856 0.725–0.958 90.0 77.3 1.41 ˆ 10´7 2.16 Ò
SM(d16:1/16:0) 0.968 0.927–1.000 90.9 91.7 7.19 ˆ 10´10 3.41 Ò 0.884 0.783–0.983 83.3 77.3 2.67 ˆ 10´8 2.16 Ò
SM(d18:2/16:0) 0.998 0.993–1.000 100.0 91.7 1.88 ˆ 10´12 3.32 Ò 1.000 1.000–1.000 96.7 100.0 1.28 ˆ 10´13 2.65 Ò
PC(16:0/16:0) 0.835 0.695–0.976 77.3 87.5 7.01 ˆ 10´5 9.64 Ò 0.870 0.724–0.989 93.3 81.8 2.77 ˆ 10´6 21.72 Ò

a AUC = area-under-receiver operating characteristic curve; b CI = confidence interval; c All p-values were calculated using Student’s t-test; dÒ = Higher level comparing melioidosis to
the respective groups.
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Figure 3. MS/MS mass spectra and predicted structures with expected fragmentation profiles of the 12 biomarkers in melioidosis patient plasma:  
(A) L-octanoylcarnitine; (B) decanoylcarnitine; (C) dodecanoylcarnitine; (D) lysophosphatidylethanolamine (LysoPE)(16:0/0:0); (E) LysoPE(18:0/0:0);  
(F) phosphatidylcholine PC(16:0/16:0); (G) LysoPE(0:0/18:0) (H) L-hexanoylcarnitine; (I) sphingomyelins SM(d16:1/16:0); (J) 2-decenoylcarnitine; (K) SM(d18:2/16:0); 
and (L) trans-2-dodecenoylcarnitine with or without comparison to commercially available standards. 

 

Figure 3. MS/MS mass spectra and predicted structures with expected fragmentation profiles of the 12 biomarkers in melioidosis patient plasma: (A) L-octanoyl
carnitine; (B) decanoylcarnitine; (C) dodecanoylcarnitine; (D) lysophosphatidylethanolamine (LysoPE)(16:0/0:0); (E) LysoPE(18:0/0:0); (F) phosphatidylcholine
PC(16:0/16:0); (G) LysoPE(0:0/18:0) (H) L-hexanoylcarnitine; (I) sphingomyelins SM(d16:1/16:0); (J) 2-decenoylcarnitine; (K) SM(d18:2/16:0); and (L) trans-2-
dodecenoylcarnitine with or without comparison to commercially available standards.
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2.3. Diagnostic Performance of Metabolites

The AUC, sensitivity and specificity for ROC curves calculated for the 12 metabolites at optimal
cutoffs are summarized in Table 2. Box-whisker plots revealed that they all exhibited significantly
higher levels in plasma samples of melioidosis patients than in samples of patients with other
bacteremia and controls (p < 0.01 by Student’s t-test) (Figure 4). Among the 12 biomarkers, 10 showed
AUC > 0.80 when compared both between melioidosis and bacteremia patients, and between
melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when compared both
between melioidosis patients and patients with other bacteremia (AUC 0.998, sensitivity 100% and
specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, sensitivity 96.7% and
specificity 100%) (Figure 5).

Int. J. Mol. Sci. 2016, 17, 307 12 of 21 

2.2. Diagnostic Performance of Metabolites 

The AUC, sensitivity and specificity for ROC curves calculated for the 12 metabolites at 
optimal cutoffs are summarized in Table 2. Box-whisker plots revealed that they all exhibited 
significantly higher levels in plasma samples of melioidosis patients than in samples of patients 
with other bacteremia and controls (p < 0.01 by Student’s t-test) (Figure 4). Among the 12 biomarkers, 
10 showed AUC > 0.80 when compared both between melioidosis and bacteremia patients, and 
between melioidosis patients and controls. SM(d18:2/16:0) possessed the largest AUC when 
compared both between melioidosis patients and patients with other bacteremia (AUC 0.998, 
sensitivity 100% and specificity 91.7%), and between melioidosis patients and controls (AUC 1.000, 
sensitivity 96.7% and specificity 100%) (Figure 5). 

 
Figure 4. Box-and-whiskers plots representing relative abundance of: (A) L-hexanoylcarnitine;  
(B) L-octanoylcarnitine; (C) 2-decenoylcarnitine; (D) decanoylcarnitine; (E) trans-2-dodecenoylcarnitine; 
(F) dodecanoylcarnitine; (G) LysoPE(16:0/0:0); (H) LysoPE(0:0/18:0); (I) LysoPE(18:0/0:0); (J) 
SM(d16:1/16:0); (K) SM(d18:2/16:0); and (L) PC(16:0/16:0) in plasma of melioidosis patients, 
bacteremia patients and controls without active infections. The relative abundance of each 
metabolite in plasma of melioidosis patients was significantly higher than the other two groups 
using Student’s t-test (p-value < 0.01). 

Figure 4. Box-and-whiskers plots representing relative abundance of: (A) L-hexanoylcarnitine;
(B) L-octanoylcarnitine; (C) 2-decenoylcarnitine; (D) decanoylcarnitine; (E) trans-2-dodecenoylcarnitine;
(F) dodecanoylcarnitine; (G) LysoPE(16:0/0:0); (H) LysoPE(0:0/18:0); (I) LysoPE(18:0/0:0); (J) SM
(d16:1/16:0); (K) SM(d18:2/16:0); and (L) PC(16:0/16:0) in plasma of melioidosis patients, bacteremia
patients and controls without active infections. The relative abundance of each metabolite in plasma
of melioidosis patients was significantly higher than the other two groups using Student’s t-test
(p-value < 0.01).
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3. Discussion

Using metabolomics approach, we identified 12 novel biomarkers in plasma of melioidosis
patients with significantly higher levels than in plasma of patients with other bacteremia and controls
without active infection. In this study, samples from patients with other bacteremia were included
because these patients may present with sepsis mimicking melioidosis where B. pseudomallei bacteremia
can occur. Therefore, the present biomarkers may help differentiate melioidosis from bacteremia caused
by common bacterial species such as Escherichia coli. In particular, SM(d18:2/16:0) represents the most
promising biomarker for melioidosis, with AUC of 0.998, sensitivity of 100.0% and specificity of 91.7%
when compared to other bacteremia, and AUC of 1.000, sensitivity of 96.7% and specificity of 100.0%
when compared to controls without active infection. However, the present study is limited by the
small number of patients with melioidosis included, which is partly due to clinical difficulties in the
diagnosis of melioidosis and our relatively low disease prevalence when compared to other Southeast
Asian countries such as Thailand. Further studies with inclusion of more cases from endemic regions
are required to validate the diagnostic potential of the present biomarkers.

The high plasma concentrations of six medium- to long-chain (C13 to C19) acylcarnitines in
melioidosis patients may reflect changes in fatty acid (FA) β-oxidation during infection. Acylcarnitines
are synthesized from acyl-CoAs with transfer of hydroxyl group of carnitine, and are transported
from the intermembraneous space into the mitochondrial matrix for FA β-oxidation [41]. In mice
infected with B. pseudomallei, transcriptomics studies have revealed changes in transcript levels of
various enzymes involved in FA β-oxidation [42]. Interestingly, higher levels of medium-chain (C5 to
C10) acylcarnitines have also been found in plasma of patients with systemic inflammatory response
syndrome (SIRS) due to severe sepsis/septic shock than those with SIRS due to non-infective causes [43].
Since accumulation of medium-chain acyl-CoAs in the mitochondria is toxic for the cell, the synthesis
of acylcarnitines may have a protective effect during infection [43]. Further studies may help elucidate
the role of these medium- to long-chain acylcarnitines in the host response to melioidosis.

The high levels of three LysoPE, LysoPE (16:0/0:0), LysoPE (0:0/18:0) and LysoPE (18:0/0:0), in
plasma of melioidosis patients may be the result of changes in phospholipid metabolism or cellular
damage from systemic infection. LysoPE, a constituent of cell membranes, is derived from the
hydrolysis of PE, which is catalyzed by phospholipase A2 (PLA2) [44]. It has been shown that LysoPEs
can stimulate invariant natural killer T cell activation through self-antigenicity, suggesting a possible
role in innate immunity during infection [45]. In addition, LysoPE was shown to enhance the ingestion
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activity of macrophage on IgG-coated target cells via Fc receptors [46]. It remains to be determined
if LysoPE may be involved in the innate immunity against B. pseudomallei. Our findings may also be
in line with previous observations of higher plasma levels of type II PLA2 in sepsis patients, which
significantly correlated with TNF-α, IL-6 and IL-8 levels [47]. On the other hand, elevated plasma
levels of LysoPE (16:0/0:0) have been observed in rats with induced-liver injuries as a result of massive
destruction of cell membranes [48,49]. Therefore, it is also possible that the high LysoPE levels may be
the consequence of severe organ damage during systemic melioidosis.

The high levels of SM(d16:1/16:0) and SM(d18:2/16:0) may reflect changes in sphingolipid
metabolism during melioidosis. SMs, structural components of cell membranes, are synthesized
by the transfer of PC to ceramides by sphingomyelin synthase and degraded back to ceramides by
sphingomyelinase [50]. While these SMs are likely produced by the host, it is interesting to note
that the genome of B. pseudomallei also possessed genes homologous to hemolytic phospholipase C
(PlcH) of Pseudomonas aeruginosa with sphingomyelin synthase and sphingomyelinase activity [50–52].
Further studies are required to better understand the possible role of sphingomyelin metabolism in the
pathogenesis of melioidosis.

The PC(16:0/16:0) detected in plasma of melioidosis patients may be the result of innate immune
response in the lungs. PC(16:0/16:0) or dipalmitoylphosphatidylcholine (DPCC) is a major component
of pulmonary surfactant [53,54]. Melioidosis is believed to be acquired through inhalation of
contaminated aerosals. B. pseudomallei has been found to induce pro-inflammatory cytokines from
macrophages and alveolar type II pneumocytes (ATII) cells [55], the latter being responsible for
secretion of surfactants. We speculate that the production of PC(16:0/16:0) may be upregulated in ATII
cells when in contact with B. pseudomallei, which may be secreted in plasma leading to the elevated
PC(16:0/16:0) levels. However, comparison with plasma of patients with other causes of pneumonia
would be important to determine if PC(16:0/16:0) is specific to melioidosis or may represent a general
biomarker for pneumonia.

4. Materials and Methods

4.1. Patient and Control Samples

Clinical samples were collected from patients hospitalized in Queen Mary Hospital, Hong Kong.
A total of 22 plasma samples from five patients with newly-diagnosed melioidosis, 24 plasma
samples from 24 patients with bacteremia caused by other bacterial species and 30 controls
without active infections were included for UHPLC-QTOFMS analysis. Plasma samples from
melioidosis patients were collected before commencement of antibiotic treatment. The diagnosis
of melioidosis was made according to compatible clinical features, and with either isolation of
B. pseudomallei from clinical samples and/or positive antibodies against B. pseudomallei as determined
by enzyme-linked immunosorbent assay as described previously [14]. All five patients with melioidosis
were immunocompromised with underlying diseases, including HIV, autoimmune vasculitis, diabetes
mellitus, lymphoma and acute myeloid leukemia. B. pseudomallei was isolated from the blood
cultures of three patients, while the other two cases were diagnosed by positive antibodies against
B. pseudomallei. Plasma samples were collected at admission from patients with other bacteremia were
used. Causative agents of other bacteremia included Aeromonas caviae (n = 1), Bacteroides (n = 1), E. coli
(n = 17), Klebisella pnuemoniae (n = 1), Prevotella species (n = 1), Proteus mirabilis (n = 2), Streptococcus mitis
(n = 1), and Streptococcus pneumoniae (n = 2) (two patients had two different bacterial isolates from the
same blood culture). Controls included patients with no clinical evidence of active infection. This study
has been approved by the Institutional Review Board, the University of Hong Kong/Hospital Authority
of Hong Kong West Cluster under reference number UW 13-265.
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4.2. Chemicals and Reagents

LC-MS grade water, methanol and acetonitrile were purchased from J.T. Baker (Center Valley,
PA, USA). High-performance liquid chromatography (HPLC)-grade ethanol and acetone were
purchased from Merck & Co. (Kenilworth, NJ, USA). Formic Acid was of American Chemical
Society (ACS) reagent grade from Sigma-Aldrich (Saint Louis, MO, USA). Decanoylcarnitine,
LysoPE(16:0/0:0), LysoPE(18:0/0:0) and PC(16:0/16:0) was purchased from Avanti Polar Lipid
(Alabaster, AL, USA). Decanoylcarnitine and L-octanoylcarnitine were purchased from Sigma-Aldrich
(Saint Louis, MO, USA).

4.3. Sample Preparation

Blood samples were collected in heparin bottles, transferred immediately to the laboratory,
and centrifuged at 3000 rpm at 4 ˝C for 10 min to obtain the plasma fractions. For metabolomics
analysis, 100 µL of plasma was thawed at 4 ˝C and plasma proteins were precipitated with 400 µL
of methanol/ethanol/acetone mixture at a ratio of 1:1:1 (v/v/v). The sample extract was vigorously
vortexed for 1 min, and centrifuged at 14,000 rpm at 4 ˝C for 10 min. The supernatant was collected
for UHPLC-ESI-QTOFMS analysis. All specimens were immediately kept at ´80 ˝C until analysis and
stored within one week. The thawed specimens were analyzed within 48 h in a random manner to
prevent the batch effect.

4.4. Untargeted Metabolomics Profiling of Patient Plasma Using UHPLC-ESI-QTOFMS

The metabolomic profiling of plasma supernatants was performed as describe previously with
modifications [37], using Agilent 1290 Infinity UHPLC (Agilent Technologies, Waldbronn, Germany)
coupled with Agilent 6540 UHD Accurate-Mass QTOF system (Agilent Technologies, Santa Clara,
CA, USA) accompanied with a MassHunter Workstation software for QTOF (version B.03.01 for
Data Acquisition, Agilent Technologies, Santa Clara, CA, USA). Waters Acquity UPLC BEH C18
column (2.1 ˆ 100 mm, 1.7 µm) (Waters, Milford, MA, USA) was used for the separation with the
injection volume of 5 µL. The column and autosampler temperature were maintained at 45 and
10 ˝C, respectively. The separation was performed at a flow rate of 0.4 mL/min under a gradient
program in which mobile phase A was composed of LC-MS grade water containing 0.1% formic
acid (v/v) and mobile phase B was composed of acetonitrile. The gradient program was applied as
follows: t = 0 min, 5% B; t = 0.5 min, 5% B; t = 7 min, 48% B; t = 20 min, 78% B; t = 27 min, 80% B;
t = 31 min, 99.5% B; t = 36.5 min, 99.5% B; t = 36.51 min, 5% B. The stop time was 40 min. The ESI mass
spectra were acquired in both positive and negative ion modes using Agilent Jet Stream ESI source
(Agilent Technologies, Santa, CA, USA) with capillary voltages at +3800 and ´3500 V, respectively.
Other source conditions were kept constant in all the experiments as follow: gas temperature was kept
constant at 300 ˝C, drying gas (nitrogen) was set at the rate of 7 L/min, and the pressure of nebulizer
gas (nitrogen) was 40 psi. The sheath gas was kept at a flow rate of 10 L/min at a temperature of
350 ˝C. The voltages of the Fragmentor, Skimmer 1, and OctopoleRFPeak were 135, 50 and 500 V,
respectively. The mass data were collected between m/z 80 and 1700 at the acquisition rate of 2 scans per
second. Two reference masses at m/z 121.0509 (protonated molecular ion of C5H4N4) and m/z 922.0098
(protonated molecular ion of C18H18O6N3P3F24) for positive mode, and m/z 119.0363 (deprotonated
molecular ion of C5H4N4) and m/z 966.0007 (formate adduct of C18H18O6N3P3F24) for negative mode
were used as constant mass correction during LC-MS run. Product ion scanning experiments were
conducted using ultra-high purity N2 as collision energy with same parameters set in MS acquisition,
the collision energy (CE) was set at 10, 20 or 40 eV to generate the best quality of MS/MS spectra for
the putative identification and structural elucidation of the significant metabolites.



Int. J. Mol. Sci. 2016, 17, 307 16 of 21

4.5. Data Processing and Statistical Analysis

Multivariate and univariate analysis was performed to identify molecular features that
discriminate melioidosis patients from patients with other bacteremia patients and controls as
described previously [37]. Multivariate analysis was performed on a total of 76 LC-MS data of
plasma samples from three groups (22, 24 and 30 samples from melioidosis patients, bacteremia
with other bacteremia and controls without active infection respectively). The raw LC-MS data
were converted into mzData format using Agilent MassHunter Qualitative Analysis software (version
B.05.00, Agilent Technologies, USA) and subsequently processed using open-source XCMS package [39]
operating in R [56], which adopted different peak detection and alignment as well as data filtering
with centWave algorithms. Data was further processed with normalization, scaling, filtering and
statistical analysis using MetaboAnalyst 3.0 [40]. The data were mean-centered, square root scaled and
normalized such that the sum of squares for each chromatogram equaled on for statistical analysis [57].
Insignificant features between melioidosis patients and patients with bacteremia or controls were
filtered out using both uni- and multivariate analyses. For multivariate analysis, PCA was performed
for unsupervised analysis on all LC-MS features using MetaboAnalyst 3.0.

For univariate analysis, statistical significance of features was determined among melioidosis
patients, patients with other bacteremia and controls using one-way ANOVA with Tukey’s post-hoc
test. p < 0.05 was considered to be statistically significant. Significant features with FC >1.5 by volcano
plots and p < 0.05 by Student’s t-test between melioidosis patients and patients with bacteremia, and
between melioidosis patients and controls were identified. Common significant features were subject
to univariate ROC analysis using web-based ROCCET [58]. The classical ROC curve analysis was
performed and AUC was calculated by Monte Carlo Cross Validation (MCCV) using sub-sampling.
In addition, the optimal cutoffs for the given metabolite were computed to obtain the sensitivity,
specificity, and confidence intervals at different cut-offs for the evaluation of the recognition and
prediction ability with respect to each variable. Significant features with AUC ě0.8 obtained from
either comparison between melioidosis patients and patients with other bacteremia, or between
melioidosis patients and controls were identified. Box-whisker plots were generated and p values
were calculated by the Student’s t-test using Analyse-it software (Analyse-it Software, Leeds, UK).
Multivariate ROC curves were further generated using ROCCET. The procedures were repeated
multiple times to calculate the performance and confidence interval of the model using support vector
machines (SVM). The predicted class probabilities for each sample were evaluated with the best
classifier (based on AUC) with confusion matrix.

4.6. Metabolite Identification

Features with significant differences were selected for product ion scanning (PIS) experiments.
MS/MS spectra for the potential biomarkers and commercially available reference standards, including
decanoylcarnitine, decanoylcarnitine, L-octanoylcarnitine, LysoPE(16:0/0:0), LysoPE(18:0/0:0) and
PC(16:0/16:0), were processed using Agilent MassHunter Qualitative Analysis software (version
B.05.00, Agilent Technologies, USA) to generate potential molecular formula based on the accurate
mass and isotopic pattern recognitions of parent and fragment ions. All putative identities were
confirmed by matching with entries in the METLIN database [59], Human Metabolome Database
(HMDB) [60], MassBank [61], LipidMaps [62], KEGG (Kyoto Encyclopedia of Genes and Genomes)
database [63] using exact molecular weights, nitrogen rule or MS/MS fragmentation pattern data and
literature search. Efforts were made to distinguish metabolites from the other isobaric compounds
whenever possible by its elution order and virtue of difference in fragmentation pattern corresponding
to its structural characteristics. Putative identities of six biomarkers were confirmed by comparing their
chromatographic RT and MS/MS spectra with those obtained from commercially available standards
of decanoylcarnitine, decanoylcarnitine, L-octanoylcarnitine, LysoPE(16:0/0:0), LysoPE(18:0/0:0) and
PC(16:0/16:0). The collision energy was set at 20 eV for generating the MS/MS spectra.
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5. Conclusions

In this study, we compared the metabolome profiles of plasma of patients with melioidosis to those
of patients with other bacteremia and controls without active infections. Twelve significant metabolites
with significantly higher levels were identified in melioidosis patients than bacteremia patients and
controls. These 12 metabolites, including L-octanoylcarnitine, decanoylcarnitine, dodecanoylcarnitine,
LysoPE(16:0/0:0), LysoPE(18:0/0:0), PC(16:0/16:0), LysoPE(0:0/18:0), L-hexanoylcarnitine, SM(d16:1/
16:0), 2-decenoylcarnitine, SM(d18:2/16:0) and trans-2-dodecenoylcarnitine, are involved in various
pathways for energy and lipid metabolism. The present study demonstrates the potential of
metabolomics in identifying novel biomarkers in studying infectious diseases. Further studies may
reveal the potential of these metabolites as diagnostics biomarkers for melioidosis and their possible
role in the pathogenesis and host response in melioidosis.
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Abbreviations

ACS American Chemical Society
ANOVA analysis of variance
ATII alveolar type II pneumocytes
AUC area-under-receiver operating characteristic curve
CE collision energy
DPCC dipalmitoylphosphatidylcholine
FA fatty acid
FC fold-change
IL-6 interleukin-6
IL-8 interleukin-8
LysoPE lysophosphatidylethanolamine
MCCV Monte Carlo Cross Validation
PC phosphatidylcholine
PCA principal component analysis
PIS product ion scanning
PLA2 phospholipase A2
PlcH phospholipase C
ROC receiver operating characteristic curve
RT retention time
SM sphingomyelins
SIRS systemic inflammatory response syndrome
SVM support vector machines
TCA tricarboxylic acid
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TNF-α Tumor necrosis factor-α
UHPLC-ESI-QTOFMS ultra-high-performance liquid chromatography-electrospray ionization-quadruple

time-of-flight-mass spectrometry
VIP variable importance in the projection
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