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Abstract

We present PbP2, an automated system that generates ef-
ficient domain-specific multi-planners from a portfolio of
domain-independent planning techniques by (i) computing
some sets of macro-actions for every planner in the portfo-
lio, (ii) optimizing the parameter setting of the parameterized
planners in the portfolio, (iii) selecting a promising combi-
nation of planners in the portfolio and relative useful macro-
actions, and (iv) defining some running time slots for their
round-robin scheduling during planning. The configuration
of the portfolio yielding the multi-planner relies on some
knowledge about the performance of the planners and rela-
tive macro-actions, which is automatically generated from a
training problem set. PbP2 is a revision and extension of a
preliminary version of this system (PbP) that was awarded at
the learning track of IPC-2008.

Introduction
The field of automated plan generation has recently signifi-
cantly advanced. However, while several powerful domain-
independent planners have been developed, no one of these
clearly outperforms all the others in every known benchmark
domain. It can then be useful to have a multi-planner system
that automatically selects and combines the most efficient
planners for each given domain.

The performance of the current planning systems is typi-
cally affected by the structure of the search space, which de-
pends on the considered planning domain. In many domains,
the planning performance can be improved by deriving and
exploiting knowledge about the domain structure that is not
explicitly given in the input formalization. In particular, sev-
eral approaches encoding additional knowledge in the form
of macro-actions have been proposed, e.g., (Botea, Müller
& Schaeffer 2005; Newton et al. 2007). A macro-action is
a sequence of actions that can be planned at one time like
a single action. When using macro-actions there is a trade-
off to consider. While their use can reduce the number of
search steps required to reach a solution, it also increases
the search space size. Moreover, the effectiveness of a set of
macro actions can depend on the particular planner using it.

Another aspect that can significantly affect the perfor-
mance of a domain-independent planner is the setting of its
parametric components, which can concern, e.g., the domain
analysis or compilation performed during preprocessing, the

heuristic functions used during search, and several other fea-
tures of the search algorithm. For instance, LPG (Gerevini,
Saetti & Serina 2003; Gerevini, Saetti, & Serina 2008) is
a well-known efficient and versatile planning system with
many components that can be configured very flexibly via
62 exposed configurable parameters, which jointly give rise
to over 6.5 × 1017 possible configurations. ParLPG (Val-
lati et al. 2011) is a very recent system based on the idea
of automatically configuring a generic, parameterized plan-
ner like LPG using a set of training planning problems in
order to learn a configuration of the exposed parameters that
perform especially well in the domains of these problems.

In this paper, we present PbP2, a system that gener-
ates efficient domain-specific multi-planners by automati-
cally configuring a portfolio of domain-independent plan-
ning techniques. The configuration relies on some knowl-
edge about the performance of the planners in the portfolio,
the observed usefulness of automatically generated sets of
macro-actions, and optimized parameter configurations for
the parametric planners in the portfolio.

This configuration knowledge is automatically computed
and consists of: an ordered selected subset of the planners in
the initial portfolio, combined through a round-robin strat-
egy; a set of useful macro-actions for each selected plan-
ner; an optimized parameter configuration for the selected
parametrized planners; and some sets of planning time slots.
A planning time slot is an amount of CPU-time to be allo-
cated to a selected planner (possibly with a set of macro-
actions) during planning.

When PbP2 is used without this additional knowledge,
in the generated multi-planner all planners in the portfolio
are scheduled by a simple round-robin strategy where pre-
defined and equal CPU-time slots are assigned to the (ran-
domly ordered) planners, using their default parameter con-
figurations. When PbP2 uses the knowledge computed for
the domain under consideration, only the selected cluster
of planners (and relative sets of macro actions) is sched-
uled, and their ordering favors the fastest planners for the
domain under consideration, and the planning time slots are
defined by the learned knowledge; moreover, the selected
parametrized planners are run using their optimized param-
eter configurations rather than the default configurations.

PbP2 has two variants: PbP2.s focusing on speed, and
PbP2.q focusing on plan quality. A preliminary version of
PbP2.s was awarded at the sixth international planning com-



Planner Authors, date
FD Helmert, 2006
Lama Richter & Westphal, 2008
LPG-td Gerevini, Saetti & Serina, 2005
Macro-FF Botea, Enzenberger, Müller & Schaeffer, 2005
Marvin Coles & Smith, 2007
Metric-FF Hoffmann & Nebel, 2001
SGPlan5 Chen, Wah & Hsu, 2006
YAHSP Vidal, 2004

Table 1: Domain-independent planners currently integrated
into PbP2.

petition (IPC6) (Fern, Khardon & Tadepalli 2008), while
PbP2.q did not enter IPC6.

The most significant differences between PbP2 and PbP
are: (1) the correction of some bugs and the optimization of
some parts of the code, (2) the PbP2.q variant of the sys-
tem configuration the portfolio for plan quality rather than
planning speed, (3) the extension of the portfolio with the
IPC6-awarded planner Lama (Richter & Westphal 2008), (4)
the integration of a component for automatically configur-
ing the parameters of highly parametrized planners, which
in the current implementation is based on ParLPG (Vallati
et al. 2011).

In recent work (Gerevini, Saetti, & Vallati 2009; 2009),
we have presented an experimental analysis showing that,
overall, the first three mentioned revisions of our system lead
to significant improvements in the performance of the sys-
tem. The evaluation of the impact of the last change, i.e., the
integration of ParLPG, is ongoing.

The Portfolio-based Planner PbP2
In this section, we give an overview of PbP’s architecture
and of the proposed implemented methods for selecting a
cluster of planners and macro-actions for an input domain.

Architecture of PbP2

Table 1 shows the eight planners currently integrated into
PbP2. The architecture of PbP2, sketched in Figure 1, con-
sists of six main components, which are briefly described
below.

Macro-actions computation. For each integrated planner,
PbP2 computes some sets of macro-actions using the fol-
lowing two approaches.

• Wizard (Newton et al. 2007). This system implements
an offline evolutionary method, which computes macros
by genetic operators from plans for a set of training prob-
lem instances of an input domain. The computed macro-
actions are added to the domain formalization as addi-
tional actions, and hence they can be used by all the plan-
ners incorporated in PbP2. With this approach, PbP2
produces at most two alternative sets of macro-actions for
each considered planner.

• Macro-FF (Botea et al. 2005; Botea, Müller & Schaef-
fer 2007). The approach incorporated into the Macro-FF
system (Botea et al. 2005) computes the macros by ana-
lyzing the solutions of a set of training problem instances,
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Figure 1: A sketch of PbP2’s architecture.

so that the macros that appear frequently and that reduce
the required search effort significantly are preferred. This
version of the approach integrated into PbP2 contains the
enhancements described in (Botea, Müller & Schaeffer
2005; 2007). With this approach, PbP2 produces at most
five sets of alternative macro-actions for Macro-FF.

Optimization of the parameter configuration. PbP2 in-
cludes a module for automatically configuring highly param-
eterized planners in the portfolio. In the current implemen-
tation, the only such planner is LPG, which is configured
using ParLPG (Vallati et al. 2011). ParLPG is based on the
FocusedILS variant of the off-the-shelf, state-of-the-art auto-
matic algorithm configuration procedure ParamILS (Hutter
et al. 2009). FocusedILS uses a well-known stochastic local
search procedure (Iterated Local Search) to search for high-
performance configurations of a given parameterized algo-
rithm. Given a planning domain and set of training problem
instances in this domain, ParLPG generates an optimized
configuration for the 62 parameters exposed by this planner,
evaluating LPG’s performance either in terms of planning
speed (ParLPG.s) or of plan quality (ParLPG.q).

Performance measurement. This is the computationally
most expensive task in the configuration of the portfolio.
PbP2 runs each integrated planner with and without the sets
of learned macro-actions and optimized planning parameters
(in the current implementation, only of LPG) for the input
training problems and the planning CPU-time limit T , mea-
suring their performance in terms of: number of problems
solved within T , CPU-time required for the solved training
problem, and quality of the computed solutions. For the in-
cremental planners, i.e., LPG and Lama, PbP2 measures the
quality of all the solutions generated for a problem and the
corresponding CPU-times.1

1An incremental planner produces a sequence of solutions with
increasing plan quality which are generated with increasing CPU
times.



Planning time slots computation. For each integrated plan-
ner, PbP2 defines the planning time slots as the CPU-times
used to solve the following percentages of problems during
the learning phase: {25, 50, 75, 80, 85, 90, 95, 97, 99}.
A similar method is also used in the round-robin schedul-
ing defined in (Roberts & Howe 2007), but with the tech-
nical difference explained in the following example. As-
sume that the computed planning time slots for planner A
are {0.20, 1.40, 4.80, 22.50, . . .} and that those for planner
B are {14.5, 150.8, . . .}. Then, for this pair of planners,
PbP2 extends the first time slot for A (0.20) to 4.80, i.e.,
to the greatest time slot of A which is smaller than the first
time slot of B; similarly for the subsequent time slots. If the
first time slot of A were not extended, the slowest planner
B would initially run for a CPU-time much greater than the
CPU-time initially assigned to the fastest planner A, and,
for many problems that planner A quickly solves (e.g., us-
ing one CPU-seconds), PbP2 would perform significantly
slower.

Planner cluster selection & ordering. PbP2 selects a clus-
ter of planners in the initial portfolio, each one with a (possi-
bly empty) set of useful macro-actions and a (default or op-
timized) parameter configuration, according with the mea-
sured performance and the computed planning time slots.
Moreover, the execution order of the planners in the selected
cluster is defined by the increasing CPU-time slots associ-
ated with the planners. More on this in the next section of
the paper.

Multi-planner by round-robin scheduling. PbP2 runs the
selected ordered planners (each one using the relative se-
lected set of macro-actions and possibly optimized parame-
ter configuration) by a round-robin scheduling algorithm us-
ing the computed planning time slots for an input (test) prob-
lem. Concerning termination of the resulting multi-planner,
PbP2.s is interrupted if either a given CPU-time limit T is
exceeded (returning failure), or one among the selected plan-
ners computes a solution (output of PbP2.s). PbP2.q’s ex-
ecution is interrupted if either time T is exceeded, or all the
selected planners terminate. If PbP2.q generates no solu-
tion within T , it returns failure; otherwise it returns the best
computed solution.

Selecting a Cluster of Planners and Macro-actions
At configuration time, for each given test domain, PbP2
considers the execution of all the integrated planners, and
selects a subset of them on the basis of their observed perfor-
mance for a training problem set in the domain and a given
CPU-time limit t.

After having run each planner with and without the op-
timized parameter configuration and every computed set of
macro-actions (one run for each set) for the training prob-
lem set of domain D and for CPU-time limit T , PbP2 an-
alyzes the results (CPU-times and plan qualities) to iden-
tify the best cluster of planners, parameter configurations
and macro-actions for D and T . This is done by simulat-
ing, for each cluster C of at most k planners, each with a
(possibly empty) set of macro-actions and a (default or op-
timized) parameter configuration, the round-robin execution
of the planners in C for solving the same training problems

within T .2 The simulation is conducted using the data from
the previous runs (the planners are not re-run), possibly ig-
noring the data of the planners that always performs worse
than another incorporated planner, and the simulated perfor-
mances of the clusters are compared by a statistical analy-
sis based on the Wilcoxon sign-rank test (also known as the
“Wilcoxon matched pairs test”) (Wilcoxon & Wilcox 1964).
The Wilcoxon test has also been used in (Long & Fox 2003;
Gerevini et al. 2009; Roberts & Howe 2009), but for dif-
ferent purposes. The first two papers contain details about
the test and a discussion on its adequateness for comparing
planner performances.

In PbP2, the performance measure considers either the
CPU-time (PbP2.s) or the plan quality (PbP2.q). The data
for carrying out the test in PbP2.s are derived as follows.
For each planning problem, the system computes the differ-
ence between the simulated execution times of the compared
clusters. If a planner cluster does not solve a problem, the
corresponding simulated time is twice the CPU-time limit
(15 minutes, as in IPC6); if no cluster solves the problem,
this problem is not considered. The difference between the
simulated times is normalized by the value of the best simu-
lated time under comparison (e.g., if cluster C1 requires 200
seconds and cluster C2 220, then the difference is 10% in
favour of C1). The absolute values of these differences are
then ranked by increasing numbers, starting from the lowest
value. (The lowest value is ranked 1, the next lowest value
is ranked 2, and so on.) The ranks of the positive differences
and the ranks of the negative differences are summed, yield-
ing two values r+ and r−, respectively. If the performance
of the two compared clusters is not significantly different,
then the number of the positive differences r+ is approxi-
mately equal to the number of the negative differences r−,
and the sum of the ranks in the set of the positive differ-
ences is approximately equal to the sum of the ranks in the
other set. Intuitively, the test considers a weighted sum of
the number of times a cluster performs better than the other
compared one. The sum is weighted because the test uses
the performance gap to assign a rank to each performance
difference.

When the number of samples is sufficiently large, the T-
distribution used by the Wilcoxon test is approximately a
normal distribution, which is characterised by two param-
eters called the z-value and the p-value. The higher the z-
value, the more significant the difference of the performance
is. The p-value represents the level of significance in the per-
formance gap. PbP2 uses a default confidence level equal
to 99.9%; hence, if the p-value is greater than 0.001, then
the hypothesis that the performance of the compared sets of
planners is statistically similar is refused, and the alternative
hypothesis that their performance is statistically different is
accepted. Otherwise, there is no statistically significant evi-
dence that they perform differently, and PbP2 considers that
they perform pretty much similarly.

The results of the Wilcoxon test are used to form a di-
rected graph where the nodes are the compared clusters,
and an edge from a cluster C1 to another cluster C2 indi-
cates that C1 performs better than C2. Each strongly con-

2k is a parameter that in our experiments was set to 3.



nected component of this graph is collapsed into a single
node representing the elements in the clusters of the col-
lapsed nodes. From the resulting DAG, PbP2 considers only
the nodes without incoming edges (the graph root nodes). If
there is only one root node, this is the selected cluster, oth-
erwise PbP2 uses some secondary criteria to select the most
promising cluster among the root nodes. These criteria in-
clude the number of solved problems, the sums of the ratios
between the (simulated) CPU-times of the planners in the
compared clusters, and the first planning CPU-time slots of
the involved planners.

The method used by PbP2.q is similar, but it applies to
the plan qualities resulting from the cluster execution simu-
lation. For this simulation, PbP2.q also considers the in-
termediate solutions (i.e., those that are generated before
the last one, which has the best quality) and the relative
CPU times computed by the basic incremental planners in
the considered clusters. If these solutions were ignored, the
simulated plan quality for the clusters including incremen-
tal planners could be much worse than the actual quality.
For example, consider the cluster {FF, Lama}, and assume
that the CPU-time of the last solution computed by Lama
for a problem p is close to the limit T . If the intermediate
solutions of Lama were ignored, the estimated plan quality
for {FF, Lama} would be equal to the quality of the plan
generated by FF,3 although the quality of the intermediate
solutions of Lama could be much better than the quality of
the plan computed by FF.

Finally, note that if the performances of the incorporated
planners are measured with CPU-time limit T , then the port-
folio of PbP2.s/q can be configured for any time limit t ≤ T
by simply ignoring the solutions computed after time t in the
simulation of the planner cluster performance.

Conclusions
PbP2 is a planning system based on an automatically con-
figurable portfolio of domain-independent planners, which
can compute and exploit some additional knowledge about
a given planning domain specified with PDDL. The sys-
tem generates this configuration knowledge through an au-
tomated statistical analysis about the performance of the ba-
sic planners in the portfolio (possibly optimized by an auto-
matic parameter configuration module) and the relative can-
didate sets of computed macro actions, using a set of train-
ing problems in the given domain. This analysis can be seen
as a method by which PbP generalizes the observed per-
formance of the incorporated planners and learned macros
for the training problems to new problems in the same do-
main. The learned knowledge is exploited to select, for the
given domain, a promising combination of planners in the
portfolio, an optimized parameter configuration of the pa-
rameterized planners in the portfolio (in the current imple-
mentation only LPG) each one with a (possibly empty) set
of macro-actions, and to define additional information spe-
cializing their round-robin scheduling at planning time.

3If Lama is run together with FF, the total running time of
Lama can be much less than the CPU-time limit T , and hence it
does not have enough time to compute the last solution generated
when T CPU-time is available.
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