
University of Huddersfield Repository

Vallati, Mauro

Configuration and Learning Techniques for Efficient Automated Planning System

Original Citation

Vallati, Mauro (2011) Configuration and Learning Techniques for Efficient Automated Planning
System. In: Doctoral Consortium of 21st International Conference on Automated Planning &
Scheduling, 11th - 16th June 2011, Freiburg, Germany. (Unpublished)

This version is available at http://eprints.hud.ac.uk/15375/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/9555265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Configuration and Learning Techniques for Efficient Automated Planning Systems
– Abstract–

Mauro Vallati

Università degli Studi di Brescia, Dipartimento dell’Ingegneria dell’Informazione, Via Branze 38, 25123 Brescia, Italy
mauro.vallati@ing.unibs.it

Introduction
In this abstract we briefly present our thesis work, which is
focused on three main directions: (i) speeding-up optimal
SAT-based planners by exploiting learned domain knowl-
edge, (ii) configuring a portfolio of planners for an input do-
main, and (iii) the automated configuration of planning algo-
rithms. The main results of such a work are three planning
systems: MacroSatPlan (Gerevini, Saetti & Vallati 2010),
PbP (Gerevini, Saetti & Vallati 2009) and ParLPG (Vallati,
Fawcett, Gerevini, Hoos & Saetti 2011).

The paper is organized as follows. The second sec-
tion briefly describes MacroSatPlan and the third section
briefly describes PbP. Finally, in fourth section, we present
ParLPG: the system that we are currently focusing on.

MacroSatPlan
Planning as propositional satisfiability (SAT) is a powerful
approach for computing optimal plans in terms of Graph-
plan plan length. SatPlan (Kautz and Selman 1992) is one
of the most popular and efficient planning system adopting
this approach. First, it computes a lower bound k of the
optimal plan length. Then, using k as the planning horizon,
i.e., a fixed time step after which actions cannot be executed,
it translates the planning problem into a SAT problem Π,
which is then solved by an existing SAT solver. If Π is satis-
fiable, then the assignment to propositional fluents satisfying
the SAT problem is translated into a plan of actions that is
a solution of the original planning problem. Otherwise (Π
is unsatisfiable), the process is repeated using an increased
value of k.

A critical weakness of the approach is that often the initial
value of k is much less than the optimal plan length, and
hence many unsolvable SAT problems can be generated and
processed.

Moreover, in many domains the planning performance
can be improved by deriving and exploiting knowledge.
Well known examples of such knowledge are macro actions.
A macro-action is a sequence of domain actions that can
be planned at one time like a single action. Using macro-
actions the planning process is often faster, but the length of
the computed solution plan can be worse than optimal.

MacroSatPlan is a SAT-based optimal planner which ex-
ploits two types of knowledge learned for a given domain to

speedup the SAT solving: (i) a predictive model based on
some problem features estimating the optimal plan length,
and (ii) useful sets of learned macro-actions.

The predictive model is learned using WEKA (Witten and
Frank 2005), a well-known machine learning tool. Given a
set of training problems for domain D, WEKA is used to
identify a predictive model of the optimal plan length for a
given problem in domain D from (i) the length of the opti-
mal plan computed by SatPlan, (ii) some pre-identified fea-
tures of the planning problem, and (iii) the length of the re-
laxed plan computed by FF (Hoffmann and Nebel 2001).

Macro-FF (Botea et al. 2005) is the system selected
for computing macro-actions. The computed macros are
subsequently used by a modified version of the SAT-solver
MiniSAT (Eèn and Sörensson 2003), during planning phase.

A preliminary experimental analysis shows that the
learned knowledge is useful for speeding up the computa-
tion of the optimal solution of the planning problem.

For further details, please see (Gerevini, Saetti & Vallati
2010).

Portfolio-Based Planner
PbP (Portfolio-based Planner) is a planner which automati-
cally configures a portfolio of domain-independent planners.
The configuration relies on some knowledge about the per-
formance of the planners in the portfolio and the observed
usefulness of automatically generated sets of macro-actions.
This configuration knowledge is “learned” by a statistical
analysis and consists of: an ordered selected subset of the
planners in the initial portfolio, which are combined through
a round-robin strategy; a set of useful macro-actions for each
selected planner; and some sets of planning time slots. A
planning time slot is an amount of CPU-time to be allocated
to a selected planner (possibly with a set of macro-actions)
during planning.

When PbP is used without this additional knowledge,
all planners in the portfolio are scheduled by a round-robin
strategy where predefined and equal CPU-time slots are as-
signed to the (randomly ordered) planners. When PbP uses
the knowledge computed for the domain under considera-
tion, only the selected cluster of planners (and relative sets of
macro actions) is scheduled, their ordering favors the fastest
planners for the domain under consideration, and the plan-
ning time slots are defined by the learned knowledge.

PbP has two variants: PbP.s focusing on speed, and
PbP.q focusing on plan quality. PbP.s entered the learning
track of the sixth international planning competition (IPC6),
and was the overall winner of this competition track.

An experimental analysis about an improved implemen-
tation of the competition version of PbP.s and about PbP.q
confirms the effectiveness of PbP.s, indicate that PbP.q per-
forms better than the IPC6 planners, and show that, contrary
to the preliminary version of PbP.s, the learned configura-
tion knowledge is useful.

For a more detailed description about PbP, the interested
reader can see (Gerevini, Saetti & Vallati 2009).

ParLPG
When designing state-of-the-art, domain-independent plan-
ning systems, many decisions have to be made with respect
to the domain analysis or compilation performed during pre-
processing, the heuristic functions used during search, and
other features of the search algorithm (e.g., the search neigh-
borhood definition). These design decisions can have a large
impact on the performance of the resulting planner.

By providing many alternatives for these choices and
exposing them as parameters, highly flexible domain-
independent planning systems are obtained, which then, in
principle, can be configured to work well on different do-
mains, by using parameter settings specifically chosen for
solving planning problems from each given domain. How-
ever, usually such planners are used with default configura-
tions that have been chosen because of their good average
performance, based on limited exploration within a poten-
tially vast space of possible configurations. The hope is that
these default configurations will also perform well on do-
mains and problems beyond those for which they were tested
at design time.

ParLPG uses a different approach, based on the idea of
automatically configuring a generic, parametrized planner
using a set of training problems for domain D in order to
obtain planners that perform especially well in this domain.

Automated configuration of heuristic algorithms has been
an area of intense research focus in recent years, produc-
ing tools that have improved algorithm performance sub-
stantially in many problem domains. These techniques have
not yet been applied to the problem of planning. While the
proposed framework could utilize any of these automatic
configuration procedures, the FocusedILS variant of the off-
the-shelf, state-of-the-art automatic algorithm configuration
procedure ParamILS (Hutter et al. 2009) has been chosen
for this work.

At the core of the ParamILS framework lies Iterated Lo-
cal Search (ILS), a well-known and versatile stochastic lo-
cal search method that iteratively performs phases of a sim-
ple local search, such as iterative improvement, interspersed
with so-called perturbation phases that are used to escape
from local optima. The FocusedILS variant of ParamILS
uses this ILS procedure to search for high-performance con-
figurations of a given algorithm by evaluating promising
configurations, using an increasing number of runs in order
to avoid wasting CPU-time on poorly-performing configu-
rations. ParamILS is able to adaptively limit the amount of

1. Set A to the action graph containing only astart and aend;
2. While the current action graph A contains a flaw or

a certain number of search steps is not exceeded do
3. Select a flaw σ in A;
4. Determine the search neighborhood N(A, σ);
5. Weight the elements of N(A, σ) using a heuristic functionE;
6. Choose a graph A′ ∈ N(A, σ) according to E and noise n;
7. Set A to A′;
8. Return A.

Figure 1: High-level description of LPG’s search procedure.

runtime allocated to each algorithm run using knowledge of
the best-performing configuration found so far, which helps
to further limit the CPU-time wasted on low-performance
configurations.

Recently, ParamILS was used to configure several solvers
for mixed integer programming (MIP) problems (Hutter,
Hoos, & Leyton-Brown 2010) and for propositional satis-
fiability (SAT) problems (Hutter et al. 2007).

These previous applications of ParamILS, while yield-
ing impressive results, were limited to optimizing the per-
formance of algorithms designed to solve a single problem
(SAT and MIP, respectively). The application of algorithm
configuration techniques to planning differs in this respect,
as each planning domain can be thought of as an indepen-
dent problem. Given that end-users of planning tools tend to
focus their attention on a single domain or group of related
domains; being able to automatically configure a domain-
independent planner to optimize performance on a given do-
main of interest should have great utility to the planning
community.

In ParLPG, ParamILS is used to configure the well-
known, domain-independent, satisficing planner LPG
(Gerevini, Saetti, and Serina 2005).

LPG is a versatile system that can be used for plan gen-
eration, plan repair and incremental planning. The planner
is based on a stochastic local search procedure that explores
a space of partial plans represented through linear action
graphs, which are variants of the very well-known planning
graph (Blum & Furst 1997).

Starting from the initial action graph containing only
two special actions representing the problem initial state
and goals, respectively, LPG iteratively modifies the current
graph until there is no flaw in it or a certain bound on the
number of search steps is exceeded. Intuitively, a flaw is an
action in the graph with a precondition that is not supported
by an effect of another action in the graph. LPG attempts to
resolve flaws by inserting into or removing from the graph a
new or existing action, respectively.

Figure 1 gives a high-level description of the general
search process performed by LPG. Each search step selects
a flaw σ in the current action graph A, defines the elements
(modified action graphs) of the search neighborhood of A
for repairing σ, weights the neighborhood elements using a
heuristic function E, and chooses the best one of them ac-
cording to E with some probability n, called the noise pa-
rameter, and randomly with probability 1 − n. Because of
this noise parameter, which helps the planner to escape from

Domain Configuration P1 P2 P3 P4 P5 P6 P7 Total
Blocksworld 1 1 2 1 5 1 2 13
Depots 2 2 1 1 2 2 2 12
Gold-miner 2 3 0 1 4 2 1 13
Matching-BW 1 2 2 1 3 0 2 11
N-Puzzle 4 5 3 2 14 5 2 35
Rovers 0 1 0 0 0 2 1 4
Satellite 2 7 3 1 11 5 3 32
Sokoban 0 1 1 1 1 1 2 7
Zenotravel 3 5 2 3 11 5 3 32
Number of parameters 6 15 8 6 17 7 3 62

Table 1: Number of parameters of LPG that are changed by
ParamILS in the configurations computed for nine domains inde-
pendently considered. Each P1–P7 column corresponds to a differ-
ent parameter category (or planner component). The last line of the
table indicates the number of parameters in each category.

possible local minima, LPG is a randomized procedure.
Many components of LPG can be configured very flexibly

via 62 exposed configurable parameters, which jointly give
rise to over 6.5 × 1017 possible configurations. These pa-
rameters can be grouped into seven distinct categories, each
of which corresponds to a different component of LPG:
P1 Preprocessing information (e.g., mutually exclusive re-

lations between actions).
P2 Search strategy (e.g., the use and length of a “tabu list”

for the local search, the number of search steps before
restarting a new search, and the activation of an alternative
systematic best-first search procedure).

P3 Flaw selection strategy (i.e., different heuristics for de-
ciding which flaw should be repaired first).

P4 Search neighborhood definition (i.e., different ways of
defining/restricting the basic search neighborhood).

P5 Heuristic function E (i.e., a class of possible heuristics
for weighting the neighborhood elements, with some vari-
ants for each of them).

P6 Reachability information used in the heuristic functions
and in neighborhood definitions (e.g., the minimum num-
ber of actions required to achieve an unsupported precon-
dition from a given state).

P7 Search randomization (i.e., different ways of statically
and dynamically setting the noise value).

Table 1 shows, for each parameter category of LPG,
the number of parameters that are changed from their de-
faults by ParamILS in the derived domain-specific configu-
rations. Domain-specific configurations of LPG differ sub-
stantially from the default configuration. Moreover, usually
the changed configurations are considerably different from
each other.

ParLPG was tested on problem instances from eight
known benchmark domains used in the last four inter-
national planning competitions (IPC-3–6), Depots, Gold-
miner, Matching-BW, N-Puzzle, Rovers, Satellite, Sokoban,
and Zenotravel, plus the well known domain Blocksworld.

For each domain, we used the respective random instance
generator to derive three disjoint sets of instances: a train-
ing set with 2000 relatively small instances (benchmark T), a

testing set with 400 middle-size instances (benchmark MS),
and a testing set with 50 large instances (benchmark LS).
The size of the instances in training set T was decided such
that the instances may be solved by the default configuration
of LPG in 20 to 40 CPU seconds on average. For testing sets
MS and LS, the size of the instances was defined such the in-
stances may on average be solved by the default configura-
tion of LPG in 50 seconds to 2 minutes and in 3 minutes to
7 minutes, respectively. This does not mean that all prob-
lem instances can be solved by LPG; since the size of the
instances was decided according to the performance of the
default configuration, and then random generators were used
for deriving the actual instances.

For all configuration experiments we used the FocusedILS
variant of ParamILS version 2.3.5 with default parameter
settings. Using the default configuration of LPG as the start-
ing point for the automated configuration process, 10 inde-
pendent runs of FocusedILS were performed concurrently
per domain, using random orderings of the training set in-
stances.1 Each run of FocusedILS had a total CPU-time cut-
off of 48 hours, and a cutoff time of 60 CPU seconds was
used for each run of LPG performed during the configuration
process. The objective function used by ParamILS for eval-
uating the quality of configurations was mean runtime, with
timeouts and crashes assigned a penalized runtime of ten
times the per-run cutoff. Out of the 10 configurations pro-
duced by these runs, we selected the configuration with the
best training set performance (as measured by FocusedILS)
as the final configuration of LPG for the respective domain.

Figure 2 provides results in the form of a scatter-
plot, showing the performance of automatically determined,
domain-specific configurations (LPG.sd) and default config-
uration (LPG.d) of LPG on the individual benchmark in-
stances. We consider all instances solved by at least one of
these planners. Each cross symbol indicates the CPU time
used by LPG.d and LPG.sd to solve a particular problem
instance of benchmarks MS and LS. When a cross appears
under (above) the main diagonal, LPG.sd is faster (slower)
than LPG.d; the distance of the cross from the main diago-
nal indicates the performance gap (the greater the distance,
the greater the gap). The results in Figure 2 indicate that
LPG.sd performs almost always better than LPG.d, often by
1–2 orders of magnitude.

Future Work
There are several avenues for future work in this thesis.

Concerning ParLPG, we intend to experimentally analyze
the usefulness of the proposed framework for identifying
configurations improving the planner performance in terms
of plan quality. Moreover, we plan to apply the framework
to metric-temporal planning domains, which LPG supports.
Finally, it is important to investigate the use of other exist-
ing or forthcoming highly parameterized planners. In par-
ticular, preliminary results from ongoing work indicate that
substantial performance gains can be obtained when apply-

1Multiple independent runs of FocusedILS were used, because
this approach can help ameliorate stagnation of the configuration
process occasionally encountered otherwise.

 0.1

 1

 10

 100

 U

 0.1 1 10 100 U

 0.1

 1

 10

 100

 U

 0.1 1 10 100 U

Figure 2: CPU time (log. scale) of LPG.sd with respect to LPG.d
for problems of benchmarks MS (upper plot) and LS (bottom plot).
The x-axis refers to CPU seconds of LPG.d; the y-axis to CPU
seconds of the specific LPG.sd solvers; U corresponds to runs that
timed out with the given runtime cutoff.

ing ParLPG approach to a very recent, highly parameterized
version of the IPC-4 winner Fast Downward (Helmert 2006).

Concerning MacroSatPlan, future work includes further
experiments, the evaluation of different ways for exploit-
ing the extracted knowledge, and the integration of Wizard
(Newton et al. 2007) as an alternative system for learning
macros.

ParLPG and a new version of PbP entered the learn-
ing track of the seventh international planning competition
(IPC7). The results will be announced in June 2011.

Acknowledgements
All the works described in this abstract are joint works with
Alfonso E. Gerevini and Alessandro Saetti. ParLPG is the
result of a joint work also involving Chris Fawcett and Hol-
ger H. Hoos.

References
A. Botea, M. Enzenberger, M. Müller and J. Schaeffer.
2005. Macro-FF: Improving AI Planning with Automat-
ically Learned Macro-Operators. JAIR, 24:581–621.
Eèn, N.; Sörensson, N. 2003. An Extensible SAT-solver In
Proc. of SAT-03.
Richter, S. Helmert, M., and Westphal, M. 2007. Land-
marks revisited. In Proc. of 23rd Conf. on Artificial Intelli-
gence (AAAI-07).

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. JAIR,
14:253–302.
Kautz, H.; Selman, B. 1992. Planning as satisfiability. In
Proc. of ECAI-92.
Helmert, M. 2006 The Fast Downward Planning System
JAIR, 26:191–246.
Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stutzle, T.
2009 ParamILS: An Automatic Algorithm Configuration
Framework JAIR, 36:267–306.
Blum, A., and Furst, M., L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90:pp. 281–
300.
Gerevini, A.; Saetti, A.; and Serina, I. 2005. Integrating
Planning and Temporal Reasoning for Domains with Du-
rations and Time Windows. In Proceedings of IJCAI-05.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D.
2007. Learning macro-actions for arbitrary planners and
domains. In Proc. of ICAPS-07.
Vallati, M.; Fawcett, C.; Gerevini, A.; Hoos, H.; and Saetti,
A.. 2011. 7th IPC – Learning Track – Technical Report
http://www.plg.inf.uc3m.es/ipc2011-learning/
Gerevini, A. E.; Saetti, A.; and Vallati, M. 2009. An
Automatically Configurable Portfolio-based Planner with
Macro-actions: PbP. In Proc. of ICAPS09.
Gerevini, A. E.; Saetti, A.; and Vallati, M. 2010. Opti-
mal SAT-based Planning with Macro-actions and Learned
Horizons. In Proc. of PlanSIG10.
Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision pro-
cedures. In Formal Methods in Computer-Aided Design,
27–34. IEEE CS Press.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010.
Automated configuration of mixed integer programming
solvers. In Proc. of CPAIOR-10.
Richter, S. Helmert, M., and Westphal, M. 2007. Land-
marks revisited. In Proc. of 23rd Conf. on Artificial Intelli-
gence (AAAI-07).
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques (Second Edition).

