
University of Huddersfield Repository

Muhamedsalih, Hussam, Jiang, Xiang and Gao, F.

Acceleration computing process in wavelength scanning interferometry

Original Citation

Muhamedsalih, Hussam, Jiang, Xiang and Gao, F. (2011) Acceleration computing process in
wavelength scanning interferometry. In: 10th International Symposium on Measurement
Technology and Intelligent Instruments (ISMTII-2011) , 29th June - 2nd July 2011, Daejeon, S.
Korea. (Unpublished)

This version is available at http://eprints.hud.ac.uk/15369/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

THE 10th INTERNATIONAL SYMPOSIUM OF MEASUREMENT TECHNOLOGY AND INTELLIGENT INSTRUMENTS JUNE 29 – JULY 2 2011 / 1

NOMENCLATURE

FN = Total Captured Frame Number, FW = Frame Width

OPD=optical path difference, FH=Frame Height

WSI=Wavelength Scanning Interferometry

AOTF = acousto-optic tunable filter

1. Introduction

Optical interferometry devices are widely used in metrology for

surface inspection because of the non-contact measurement

methodology, high measurement resolution and high throughput

inspection. Various interferometry methods of surface inspection have

been developed for different applications such as Phase shift

interferomtery, white light interferomtry and wavelength scanning

interferometry (WSI) (Jiang X. et al., 2010). The phase shift

interferometry is typically used for two dimensional profiles, areal

topographies, and for measurements that requires high resolution and

throughput. The main limitation of this type of interferometry is the

phase ambiguity that occurs when measuring discontinuous surfaces

with heights exceed a half of the illumination wavelength. Therefore,

the application of this kind of interferomtry is limited to non rough

and highly polished surfaces inspections (Caber, 1993). This

limitation was overcome by developing a white light interferometry.

Measuring the coherence of white light is used to indicate the zero

optical path difference position (i.e OPD=0) for each measurement

point (Schwider, 1994). Typically, the coherence measurement is

measured by performing mechanical scanning using a piezo-electric

transducer. Nevertheless, the mechanical scanning might cause

measurement error due to some of piezo-mechanical performance

such as hysteresis and creep. An alternative method of measuring

large discontinuous surfaces, using wavelength scanning technique,

was reported by many researchers worldwide in the field of areal

surface measurement such as (Kuwamura S. et al., 1997). This

technique can measure areal topography for large step discontinuous

surfaces with a nano-meter resolution without any mechanical

scanning. Nevertheless, the WSI system needs to capture a large

amount of data during wavelength scanning process. This mechanism

can reduce the inspection throughput which is an important demand

in the industry. This paper describe WSI method for measuring large

step height discontinuous surfaces and focus on a solution to

accelerate the computing process in order to increase the inspection

throughput. A CUDA C program is proposed to achieve data

parallelism for accelerating a computing analysis of the captured data.

ACCELERATION COMPUTING PROCESS IN
WAVELENGTH SCANNING
INTERFEROMETRY

H. Muhamedsalih*, X. Jiang and F.Gao

Centre for precision Technologies, University of Huddersfield, Huddersfield, HD1 3DH, The U.K
Corresponding author: Email: h.muhamedsalih@hud.ac.uk (Hussam Muhamedsalih)

Tel.: +44 1484 472769; fax: +44 1484 472161.

KEYWORDS : Wavelength Scanning Interferometry, Optical Metrology, AOTF, CUDA programming

The optical interferometry has been widely explored for surface measurement due to the advantages of non-contact

and high accuracy interrogation. Eventually, some interferometers are used to measure both rough and smooth

surfaces such as white light interferometry and wavelength scanning interferometry (WSI). The WSI can be used to

measure large discontinuous surface profiles without the phase ambiguity problems. However, the WSI usually

needs to capture hundreds of interferograms at different wavelength in order to evaluate the surface finish for a

sample. The evaluating process for this large amount of data needs long processing time if CPUs traditional

programming is used. This paper presents a parallel programming model to achieve the data parallelism for

accelerating the computing analysis of the captured data. This parallel programming is based on CUDATM C

program structure that developed by NVIDIA. Additionally, this paper explains the mathematical algorithm that

has been used for evaluating the surface profiles. The computing time and accuracy obtained from CUDA

program, using GeForce GTX 280 graphics processing unit (GPU), were compared to those obtained from

sequential execution Matlab program, using Intel® Core™2 Duo CPU. The results of measuring a step height

sample shows that the parallel programming capability of the GPU can highly accelerate the floating point

calculation throughput compared to multicore CPU.

Manuscript received: January XX, 2011 / Accepted: January XX, 2011

2 / XXXX 200X INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. X, No.X

This computing architecture manipulates the data in a parallel manner

opposed to traditional programs which manipulate data sequentially.

2. The WSI System

The interferometry system, shown in figure 1, is composed of a

Linnik interferometer, a halogen white light source and acousto-optic

tunable filter (AOTF). The interface cards (i.e. DAQ and frame

grabber) are used to communicate the PC with the optical

environment. The AOTF is key feature of this experimental setup. It

is placed after a halogen white light to diffract a specific wavelength

and pass to a Linnik interferometer. The wavelength diffraction

depends on the AOTF driving frequency. Thus by changing the

driving frequency, wavelength scanning process is achieved. In this

experiment, the wavelength is scanned from 682.8nm to 552.8nm

with less than 1.5nm bandwidth resolution for each wavelength.

\

Figure 1 WSI configuration

Different wavelengths of light are diffracted from the AOTF in

sequence so that a series of interferograms are detected via a two

dimensional CCD. The absolute optical path difference can be

determined by analyzing these interferograms. During wavelength

scanning process, 128 frames are captured by the CCD hence each

frame is captured at a specific wavelength. Every pixel in a captured

frame represents a specific point upon the surface of a measured

sample. Therefore, the intensity values captured by each CCD pixel

are gathered and analyzed individually. Since the optical path

difference is fixed at each pixel, a sinusoidal intensity distribution is

obtained from the wavelength scanning process as shown in figure 2.a.

Each point in this distribution has it own scanned wavelength.

Equation 1 describes the mathematical expression of the intensity

distribution (Hariharan, 2003).

(i))
xy

cos(
xy

b
xy

a(i)
xy

I ϕ+= (1)

I is an intensity value captured by a CCD pixel. i is the iteration of

the captured frame number (1,2,..,FN). x and y are the pixel numbers

in horizontal and vertical directions of the CCD respectively. a and b

are constant values. These constant values are function of the light

intensities that reflect from interferometer arms. φ is the phase shift

caused by altering wavelength of the broadband light. The phase of

the intensity distribution depends on the scanned wavelength and the

optical path difference (i.e. height of the measured sample), as

described in equation 2.

h2*
2

 (i)
iλ

π
ϕ = (2)

λi is the scanning wavelength and h is the sample step height. A

standard 4.707µm step height sample is measured by the proposed

system to verify the analysis methods. Fourier transform algorithm

(FFT) is used to manipulate the captured intensity pattern and

determine the surface structure.

3. Mathematical Description

The captured frames obtained from WSI, are analyzed using FFT

algorithm. The intensity values of each pixel need to be gathered and

analyzed individually from other pixels. This section describes a

mathematical approach to evaluate the data captured by one of the

CCD pixels. The mathematical expression of equation 1 can be

rewritten in form of equation 3 for the convenience of explanation.

(i)
xy

j
exyb

2

1(i)
xy

j
exyb

2

1
(i)xyaxy (i)I

ϕϕ −
−+= (3)

Equation 3 can be simplified by considering the following notations.

ϕj
eb

2

1
c = and j*

eb
2

1
c

ϕ=

Then, *
xy cca(i)I ++= (4)

FFT is applied to equation 4 to find the spectrum of the intensity

distribution. The spectrum contains three main terms as stated in

equation 5. The first term is constant amplitude that related to the

light intensity in each interferometer arm, the second and third terms

are related to the fringe frequency recorded by the pixel.

The purpose of FFT is to distinguish between the useful

information which is induced by the phase change (i.e. c or c* term)

and the unwanted information of constant amplitude (i.e. A). The

spectrum of equation 5 can be rewritten in a matrices form as shown

in equation 6. The fo is a spatial frequency corresponded to the

wavelength scanning and it is function of the optical path difference.

)f(fC)fC(fA(f)FFT[I(i)] o
*

o ++−+= (5)

xy

o
*

o

xy .

)f(fC

.

.

)fC(f

.

A(f)

I(n)

.

.

.

.

I(2)

I(1)

 FFT

+

−

=

 (6)

The unwanted spectrum A and C* are filtered out by replace their

values to zeros as shown matrix 7.

xy

o

0

0

0

.

)fC(f

.

0

result n Filteratio

−

=

 (7)

THE 10th INTERNATIONAL SYMPOSIUM OF MEASUREMENT TECHNOLOGY AND INTELLIGENT INSTRUMENTS JUNE 29 – JULY 2 2011 / 3

The inverse FFT is applied to matrix 7 to reconstruct the c value

in equation 4. Then, natural logarithm is applied to separate the phase

φ from the unwanted amplitude variation b, as illustrated in equation

8 and 9.

ϕϕ jb]
2

1
In[]eb

2

1
In[I j' +== (8)

xyxy

o

xy

'

'

'

j(n)ln(0.5b(n)

.

.

.

.

j(2)ln(0.5b(2)

j(1)ln(0.5b(1)

)

0

0

0

.

)fC(f

.

0

ln(ifft

(n)I

.

.

.

.

(2)I

(1)I

=

=

∓

∓

∓

 (9)

Each determined values in equation 9 consists of real and

imaginary parts. The phase shifts are extracted from the imaginary

parts as shown in Figure 2.b. This figure suffers from discontinuities

because the computed phase is limited with range of –π to π. These

discontinuities are corrected by adding 2π to the discontinuous parts

in order to obtain a continuous phase distribution as shown figure 2.c.

Finally, the optical path difference (OPD) is determined from the

slop of the phase as stated in equation 10.

−

∆
=

nm λλ
π

ϕ

11
2

 OPD (10)

∆φ is the change in phase between any two points in figure 4. λm

and λn are the correspondence wavelengths of phase difference (∆φ).

In order to obtain areal topography for the captured sample, the

described analysis steps should be applied to the entire pixels. As

example, to find the areal topography of a sample viewed by 640x480

CCD pixels, the data analysis needs to be executed 307200 times in a

sequential manner if a tradition C program is used with multicore

CPUs. This evaluation strategy can significantly reduce the

measurement throughput. Therefore, a parallel programming model is

proposed to accelerate the computing process using GTX280 GPUs

as explained in the following sections.

a

b

0 20 40 60 80 100 120
-10

0

10

20

Frame number

P
h

a
s
e

 (
ra

d
)

c

Figure 2 Measured Interference fringe and retrived phase distribution:

(a) intensity distribution of 128 frames for one pixel (b) retrived phase

discontinuity distribution (c) phase continuity distribution.

4 Acceleration of Computing Process

The evaluating process for areal topograpgy needs long

processing time if CPUs traditional sequential execution programs are

used. The CUDA C program is used to achieve the data parallelism,

hence increasing the measurement throughput. Typically, in a

sequential programming model, the program generates a main thread

that executes functions in a sequential manner. In contrast, the CUDA

parallel programming model generates thousands to millions number

of thread to execute data-parallel functions, know as kernels, in a

parallel manner. The CUDA program structure consists of a host

(CPU) code and a device (GPU) code (Kirk D. et al., 2010). The host

code launches the kernels, declares the threads organization and

manipulates the data that needs no data parallelism. The device

executes the kernels by using the generated threads. In this paper, the

device code is written in form of kernels, in addition to FFT parallel

functions provided by NVIDIA® CUDA™ Fast Fourier Transform

library.

4.1 The Proposed CUDA structure

The proposed program consists of host code that executes on

CPU and device code that executes on GPU as shown in figure 5. The

host code is written to arrange the captured data in a form suitable for

WSI analysis procedure that described in section 3. After that, the

host code launches API CUDA memory arrangement functions to

copy the organized data into the GPU memory spaces. Then, the host

declares the configuration of thread organization. Finally, the host

invokes NVIDIA FFT library functions as well as written kernels in

sequence to evaluate the data according to the WSI analysis steps.

The invoked device code (e.g. kernel) is executed on the GPU by

the generated threads. The results of the device code are stored in the

GPU memory.

4.1.1 Data arrangement

The demonstrated WSI measurement is based on capturing 128

frames during the wavelength scanning process. The captured frames

are stored in the CPU main memory in a successive manner. Thus, the

first frame is placed in a linear memory followed by the second frame

and so on till the last frame. Since gathering of intensity values for

each pixel is essential in the described analysis procedure, the host

code is used to achieve the gathering and place all the pixels values

into a linear array. This array is presented as (aHost). The aHost

consists of data segments. The number of segments is equal to the

0 20 40 60 80 100 120
20

30

40

50

60

70

Frame number

In
te

n
s
ity

 (
a
rb

-u
n
it)

0 20 40 60 80 100 120
-4

-2

0

2

4

Frame Number

R
e

tr
iv

e
d

 p
h

a
s
e

 (
ra

d
)

4 / XXXX 200X INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. X, No.X

number of CCD pixels (i.e. 640x480). Each segment contains the

intensity values of a correspondence pixel, so each segment has

length equal to the number of captured frames (i.e. FN=28). The

data segments are placed in a successive manner. That is, the segment

of the first pixel is placed first followed by segment of the second

pixel and so on till segment of the last pixel. The organized form is

shown in figure 3.

Figure 3 Data structure of aHost.

4.1.2 Data Transfer

The Data transaction is essential in CUDA programming because

the GPU has separate memory spaces from the CPU. The aHost is

transferred from the CPU main memory to GPU global memory. This

kind of memory can be viewed by the entire grid. As a result, all the

grid threads can access the global memory to read or write data. The

transferring process consists of two parts. The first part is to allocate

fraction of the global memory to receive the transferred data. This

allocated fraction of memory is presented as (aDevice). The size

of aDevice is equal to the size of aHost in the main memory. The

allocation is achieved by using CUDA API function cudaMalloc().

The second part is to copy aHost from the CPU to aDevice in the

GPU. This is achieved by CUDA API function cudaMemcpy()

(NVIDIA, 2008).

4.2.2 Thread Organisation

The proposed kernels generate threads equal to the number of

CCD pixels. Thus, each thread manipulates its correspondence data

segment. These threads are organised in a grid. The grid consists of

(40x30) array of blocks. Each block consists of (16x16) threads as

shown in figure 4.

Figure 4 Thread Organisation. Developed from (Kirk D et al., 2010)

The gird organisation parameters are stored as struct variables.

The dimension of a grid in terms of blocks is given as dimGrid and

the dimension of a block in terms of threads is given as dimBlock.

This thread hierarchy provides the capability to designate each thread

to its own data segment. The designation is achieved by using indices

of both blocks and threads. Each block in a grid has its unique index

that is introduced as a two dimensional variable (NVIDIA, 2008). The

block index is generated by CUDA runtime system and introduced as

blockIdx.x and blockIdx.y. The same is applied for each thread

in a block. As a result, each thread can be identified also by two

variables threadIdx.x and threadIdx.y. As example, the index of

the last block in figure 4 is (blockIdx.x=29, blockIdx.y=39) and

the index of the first thread in this block is (threadIdx.x=0, threa

dIdx.x=0).

4.2.3 Kernel Invocation and Execution

After the data transaction and thread generation, the NVIDIA®

CUDA™ Fast Fourier Transform (FFT) library functions and four

written kernels are invoked in a sequence that explained in section 3.

The kernels invocation are synchronised with GPU execution. Thus,

each kernel is invoked from the host after getting a response from the

device acknowledges that the execution process of a previous

operation is finished as shown in figure 5.

Figure 5 The proposed CUDA program structure.

The data evaluation is started by creating a plan in order to store

the configuration mechanism that calculated by CUFFT library. The

plan is created by a cufftPlan1d() CUFFT library function

(NVIDIA, 2007). The second parameter of this function presents the

data segment length. The fourth parameter of this function presents

the number of time needs to perform the FFT in parallel. In this

system, the fourth parameter is equal to the number of pixels in the

THE 10th INTERNATIONAL SYMPOSIUM OF MEASUREMENT TECHNOLOGY AND INTELLIGENT INSTRUMENTS JUNE 29 – JULY 2 2011 / 5

captured frame (i.e FW*FH). Then the configured plan is handled to

cufftExecC2C() function to execute the FFT according to the

configuration. The last parameter of cufftExecC2C() function

decides whether the function should perform forward or inverse FFT.

The result of this operation is stored as float2 type on the same data

array aDevice. Thus aDevice.x and aDevice.y are used to store

the real and imaginary parts respectively.

The unwanted information is filtered out from all data segments of

the pixels in a parallel manner by a written kernel called Filtering

Data<<< dimGrid,dimBlock >>>(). The FilteringData

kernel is invoked from the host code and executed on the device. This

kernel is mainly consists of two parts. The first part is written to

determine the offset addresses of data segments for their generated

threads. Although the form of data that illustrated in figure 3 is placed

in linear memory, this form can be considered as a two dimensional

array in order to fit with the thread organisation that shown in figure 4.

So, each data segment is manipulated by a correspondence thread in

the generated grid. For example, the data segment of the first pixel in

the CCD is manipulated by thread(0,0) in block(0,0), and the data

segments of the last pixel in the CCD is manipulated by thread(15,15)

in block (39,29). Since each data segment contains FN number of

elements, each thread determines the offset address of its data

segment by using equation 11.

DataSegmentOffSet=(row*FW*FN)+(col*FN) (11)

The row and col represent the row and column addresses of the

correspondence thread respectively. These addresses are calculated by

using equation 12 and 13 respectively.

row = dimBlock*blockIdx.y + threadIdx.y (12)

col = dimBlock*blockIdx.x + threadIdx.x (13)

Equation 12 and 13 show that the block and thread indices are used to

guide each thread to its own data segment. Each thread has a

dedicated memory space called register. These registers can be

viewed and accessed by its thread only. So, the determined offset

address values of data segments are stored in these threads’ registers.

The second part of FilteringData kernel is written to perform

the filtering process by using equation 14 and 15. The generated

threads execute these equations in a parallel manner. Each thread calls

its offset data segment from the register. The i value in these

equations refers to the data segment element. For example, to set the

first element of all data segments in aDevice to zero, the i value in

these equations should be set to zero.

aDevice[DataSegmentOffSet+i].x=0 (14)

aDevice[DataSegmentOffSet+i].y=0 (15)

Equations 14 and 15 are placed in for–loop statement to perform

the filtering process for the unwanted elements as described in

equation 7.

Then the filtered aDevice array is processed by the inverse of

FFT, as discussed in equation 9, in a parallel manner using CUFFT

library. The same cufftExecC2C function is used with same plan

configuration but the last parameter is replaced by CUFFT_INVERSE

instead of CUFFT_FORWAR.

The inversed FFT aDevice array is processed with the remained

three kernels. New two arrays are allocated in the device global

memory to store and load the results obtained from the kernels. These

arrays are PhaseDevice and OPDdevice. The DeterminePhase

<<<>>>() kernel is written to apply the natural logarithm to

aDevice and store the result in PhaseDevice. The CorrectPhase

<<<>>>() kernel is written to correct the discontinuity in the phase

by adding 2π. The last kerrnel DetermineOPD<<<>>>() is written

to determine the optical path differences for the entire surface. This

kernel load data from PhaseDevice array and store the result in

OPDdevice array. These three kernels are written in the same manner

of the FilteringData kernel.

5. Result and Discussion

The effectiveness of the parallel programming performance for

the proposed system has been investigated by measuring the

processing time of evaluation for different amounts of captured data.

A measurement of 4.707µm sample was repeated four times with

frames sets (64, 128, 256 and 512) respectively. The captured frames

size is (640x480) pixels. The computing time and accuracy obtained

from CUDA program, using GeForce GTX 280, were compared to

those obtained from sequential execution Matlab simulation, using

Intel® Core™2 Duo CPU.

Table 1 shows that the proposed program has accelerated the

computing process compared to a sequential execution programming.

Nevertheless, the acceleration factor is reduced when the captured

frame number is increased. This is typically because of the memory

limitation of the GTX 285 according to the proposed measurement

method. The reduction in the acceleration factor can be enhanced by

using up-to-date GPUs which are continuously improved in terms of

the number of processing cores and the size of memory spaces.

Table 1 Parallel programming performance versus sequential

programming.

The accuracy of the results was examined by calculating the

absolute maximum difference of several points obtained from CUDA

program and Matlab simulation. Table 2 shows that the absolute

differences are in sub of a nano-meter and this satisfies the

requirements of the WSI system.

Table 2 Accuracy of CUDA program with respect to Matlab

Frame Number 64 128 256 512

Absolute maximum

difference (nm)

0.00312 0.00626 0.00295 0.00435

Figure 6 demonstrates the measurement of 4.707µm standard

sample using WSI system. Figure 6.a is the result obtained from

CUDA C program and Figure 6.b is the result obtained from Matlab

simulation.

Frame Number 64 128 256 512

Matlab

Processing Time

(msec)

12036.9 20711.6 31990.3 61222.5

CUDA C

Processing time

(msec)

182 422 1159 2845

Accelerating

Factor

66.1 49.1 27.6 21.5

6 / XXXX 200X INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. X, No.X

(a)

(b)

Figure 6 The measurement of 4.707µm sample (a) using CUDA C (b)

using Matlab.

6. Conclusions

Large steps height samples can be measured using wavelength

scanning technique with a nano-meter accuracy. A 4.707µm step

standard sample was measured with 1nm resolution. The

measurement throughput for the proposed WSI system can be

improved by using parallel programming on GPUs. The proposed

CUDA C parallel programming is used with GPU type GTX285 to

accelerate the computing process up to 49 times approximately for

128 captured frames. The floating point calculation accuracy of

CUDA program satisfies the WSI precision requirement.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Engineering and Physical

Sciences Research Council (EPSRC) UK for supporting this research

work under its IKC programme. The author X. Jiang gratefully

acknowledges the Royal Society under a Wolfson-Royal Society

Research Merit Award and the European Research Council under its

programme ERC-2008-AdG 228117-Surfund.

REFERENCES

1. Jiang X. et al., “Fast Surface Measurement Using Wavelength

Scanning Interferometry with Compensation of Environmental

Noise”, Applied Optics, Vol. 49, No. 15, 2010.

2. Caber P., “Interferometric profiler for rough surfaces”, Applied

Optics, Vol. 32, No. 19, 1993.

3. Schwider J., Zhou L, “Dispersive Interferometric Profilometer“,

Optics Letters, Vol.19, No.13, 1994.

4. Kuwamura S., Yamaguchi I., “Wavelength scanning profilometry

for real-time surface shape measurement microscope,” Applied

Optics 36, 4473–4482 (1997).

5. Kirk D., Hwu W., “Programming Massively Parallel Processors“,

Elsevier, 2010.

6. NVIDIA,” NVIDIA CUDA Compute Unified Device

Architecture: programming guide 2.0”, 2008, available on:

[http://developer.download.nvidia.com/compute/cuda/2_0/docs/N

VIDIA_CUDA_Programming_Guide_2.0.pdf].

7. NVIDIA,”CUDA CUFFT Library”, 2007, available on:

[http://moss.csc.ncsu.edu/~mueller/cluster/nvidia/0.8/NVIDIA_C

UFFT_Library_0.8.pdf].

