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Introduction 

Biomarkers play a prominent role in cancer research and 
development. Gene expression microarrays and single 
nucleotide polymorphism arrays were commonly used 
technologies in earlier research. Today, a platform such as 
next generation sequencing is often used. This tool can be 
used to measure gene expression, RNA-Seq, methylation, 
TF binding Chip-Seq, and genetic variant discovery and 
quantification. Most of these data are generated from 
Illumina (Solexa), 454 Roche, and SOLiD sequencing 
machines. In patients care, biomarkers can potentially be 

used for risk stratification in terms of clinical outcome and 
may assist physicians in making treatment decisions. Apart 
from genetic biomarkers, imaging biomarkers can also 
serve as a potential surrogate for clinical trial endpoints, or 
guide the treatment routine. These biomarkers are being 
integrated into many modern clinical trials (1).

In the discovery and identification of biomarkers 
from big ‘-omics’ data for clinical outcomes, application 
of sound statistical approaches is essential. We will 
discuss several statistical issues and introduce statistical 
methods and strategies for consideration. Without proper 
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implementation of these steps, the resources spent on 
designing and running an independent clinical validation 
may turn out to be unfruitful. In this article, we will define 
some of the terminologies commonly used, discuss how 
to build and evaluate classifiers, and describe strategies to 
validate them retrospectively and prospectively.

Definitions 

Biomarkers can mainly be classified into three different 
groups, depending on their intended use in treatment.  
The evaluation requirements and validation criteria vary 
according to the purpose of the usage of the biomarkers.

(I) Prognostic biomarkers, which are associated with 
patients’ overall outcome. A validated prognostic 
biomarker provides the opportunity to identify 
patients at high risk and thus a population that may 
benefit from early or aggressive intervention. For 
example, KRAS mutation is associated with poor 
prognosis in non-small cell lung cancer (NSCLC) 
patients (2).

(II) Predictive biomarkers, which predict the effect of a 
specific treatment on a clinical endpoint for patients. 
As an example, advanced pancreatic cancer patients 
with lower levels of vascular endothelial growth 
factor-D (VEGF-D) benefited from the addition of 
bevacizumab to standard gemcitabine, while patients 
with high VEGF-D levels did not (3). Another 
example is that patients with overexpressed Cyclo-
oxygenase-2 (COX-2) who appeared to benefit from 
the addition of celecoxib (a COX-2 inhibitor) to 
standard chemotherapy relative to those receiving 
chemotherapy only (4).

(III) Biomarkers which can potentially serve as a surrogate 
for the primary endpoint in clinical trials. Analogous 
to surrogate clinical endpoints (5), surrogate 
biomarkers can be used as intermediate indicators 
of treatment efficacy in cancer treatment studies. 
For example, maximal pain intensity, an individual 
measure, on the Brief Pain Inventory quality-of-life 
instruments in the previous 24 hours, has been used 
as a surrogate endpoint for clinical benefit (6).

Development of cancer biomarkers: planning 
and design 

Clustering or cluster analysis is an algorithm that can be 
applied to identify groupings of genes or patients. While 

it is an excellent discovery tool for unsupervised learning, 
heatmap and clustering methods applied to a genomic 
feature set do not rigorously define a classifier, defined 
as a tool that utilizes a patient’s genetic characteristics to 
determine which class or group he/she belongs to. Many 
traditional statistical methods are not capable of handling 
the large number of genes and small sample size problems 
that biomarker discovery often encounters. Therefore, 
modified and new methods are needed for tackling big 
‘-omics’ data problems. 

Building a classifier

To build a classifier of a clinical outcome based on the 
pattern of thousands of biomarkers, such as genes or genetic 
variants, one often uses supervised learning methods to train 
the classifier with a data set in which true phenotypes of the 
outcome is known. Classifiers using different supervised 
learning algorithms have been proposed, including 
discriminant analysis, decision trees, random forests, nearest 
neighbor classifiers, neural networks, and support vector 
machine classifiers. However, there is no consensus in the 
statistical and machine learning communities about which 
particular classifier is superior to others across different data 
sets. Key considerations for deciding which approach might 
be more appropriate include the ability to handle missing 
and/or noisy data, interpretability, and predictive power.

Feature selection
Feature selection is a critical component of building a 
classifier. In our context, genes are the features that require 
selection. A good classifier depends on the selection of 
important features, i.e., features that can help distinguish 
between the categorical outcomes of interest. As in model 
building, good classifiers that are parsimonious are easier 
to interpret. Complicated classifiers with too many features 
can degrade the performance of the classifier and make 
external validation more difficult. One can utilize univariate 
test statistics like the two-sample t-test or Wilcoxon rank 
sum test for all features based on the training set, and then 
identify the top features by ranking the P values. A classifier 
is then built on these top features based on the training set. 
In the survival setting, one may use Cox regression or non-
parametric methods to identify top features. Considering 
the complex relationship of biomarkers with the associated 
phenotype, one often believes a decision based on multiple 
biomarkers may potentially be more useful than individual 
biomarkers. There have also been methods developed to 
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identify multiple genes such as the approach developed by 
Pang et al. [2012] for survival outcomes (7). 

Strategies for internal validation
Overfitting happens when the model corresponds too 
closely to a particular data set. As a result, the model may 
not predict future observations well. To prevent overfitting 
the data, validation methods such as cross-validation can 
be employed. Internal validation uses the data set from the 
same set of patients as was used to develop the classifier 
to assess the performance of the classifier. To ensure an 
unbiased evaluation, one must ensure that the data used 
for evaluating the predictive accuracy of the classifier be 
distinct from the data used for selecting the biomarkers and 
building the supervised classifier. This can be achieved by 
resampling techniques including hold-out or split sample, 
k-fold cross validation and leave-one-out cross validation. 
The hold-out method is usually applied to larger data sets, 
while the leave-one-out cross validation may provide the 
best option for smaller data sets. K-fold cross validation 
with k=5 or 10 are commonly used for various sizes of 
data. Some investigators will also incorporate permutation 
and nested cross validation strategies. Other strategies 
to help reduce overfitting include dimension reduction, 
penalization, and the use of Bayesian methodology.

Retrospective validation

After the classifier is built, the next step is to perform 
retrospective validation, i.e., validation based on existing 
clinical data and samples. These samples are independent 
from the original training data in the previous step. A locked 
down model should be pre-specified. This model is then 
used to predict the outcome of interest in the independent 
validation data. The predicted outcome is then compared 
against true clinical outcomes for concordance and/
or accuracy. However, this may not always be possible. 
Large databases of ‘-omics’ data may turn out to be too 
heterogeneous for validation, or the patient population 
may turn out to be different from that used in model-
building. Moreover, investigators may face issues such as 
assay platform changes or differences in sample collection 
protocol. Despite these potential drawbacks, some 
researchers turn to biospecimen banks,  where samples 
have been collected from large clinical trials (8), such as 
the NCI National Clinical Trials Network. One such 
example is the CALGB 140202 lung cancer tissue bank (9) 
that has contributed samples to multiple studies, including 

microRNA signature validation, gene-expression signature 
validation, The Cancer Genome Atlas (http://cancergenome.
nih.gov/), exome-sequencing, blood biomarkers, and protein 
assay validation.

Sample size calculation

Researchers have taken different strategies in sample 
size calculations for designing studies assessing ‘-omics’ 
data. Jung [2005] described an approach for sample 
size calculation based on false discovery rate control in 
microarray data analysis (10). Dobbin and Simon [2007] 
provided a sample size calculation algorithm based on 
the specification of some level of tolerance within its true 
accuracy (11). Pang and Jung [2013] developed a sample size 
calculation method that may be used to design a validation 
study from pilot data (12). These sample size calculation 
methods require the knowledge of the expected effect sizes, 
number of genes on the platform, sample proportions, the 
desired level of statistical power, and the acceptable type I 
error or false discovery rate.

Pathway analysis

Biology is generally not dictated by a single gene, but rather 
a set of genes. Pathways are set of genes that serve different 
cellular or physiologic functions. Pathways are becoming 
more important in identifying biomarkers and molecular 
targets for diagnosis and treatment. These pathways can 
come from pathway databases such as KEGG or Gene 
Ontology. In recent years, researchers have developed 
methods to associate gene expression or single nucleotide 
polymorphisms with prognosis and identify gene signatures 
(13,14). Statistical methods for pathway analysis based on 
machine learning, Bayesian approaches and enrichment tests 
have been developed in the past few years. These pathway-
based approaches allow scientists to focus on limited sets 
of genes, select targets from multiple biomarkers, and gain 
insights into the biological mechanisms of the tumor. Using 
random forests importance measure, one can select features 
in a pathway-based setting (13,15). Compared to single 
-gene based analysis, pathway-based methods can identify 
more subtle changes in expression (16). 

Evaluation strategies

To evaluate the accuracy of predicting a binary outcome 
based on a classifier with two statuses, we often consider 
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the use of a 2 by 2 table. This table is often called the 
confusion table. The sum of the diagonal values divided by 
the total number of participants indicates the prediction or 
classification accuracy. Several other measures based on true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN), are also important for consideration. 
Using the values in cells labelled as A, B, C, D in Table 1, 
these measures can be defined as: (I) positive predictive 
value (PPV) = A/(A + C); (II) negative predictive value (NPV) 
= D/(B + D); (III) sensitivity = A/(A + B); and (IV) specificity 
= D/(C + D). The Area Under the receiver operating 
characteristics (ROC) Curve (AUC) is also commonly 
used. A value of 0.5 represents a random guess while a 1 
represents a perfect prediction.

One approach to assess survival prediction performance 
is to compare the predicted survival of various risk groups 
using a log-rank test. This can be coupled with permutation 
testing when appropriate. To evaluate the accuracy of 
survival prediction without dichotomizing, we can employ 
the area under the ROC curve (AUC) approach for 
survival data of Heagerty et al. [2000] (17). In this instance, 
sensitivity and specificity are defined as a function of time, 
and the time-dependent ROC curve is a plot of sensitivity 
(t) versus 1—specificity (t). Higher prediction accuracy is 
supported by a larger AUC value. An alternative would be 
to use the concordance index (C-index) (18), a measure of 
how well the prediction algorithm ranks the survival of any 
pair of individuals. C-index takes values between 0 and 1. A 
C-index of 0.5 corresponds to a random guess and 1 means 
perfect concordance.

Prospective trial designs

We briefly discuss three main types of designs for 
prospective validation: targeted design, biomarker-stratified 
randomized (BSR) design, and hybrid design. Additional 
details can be found in Simon 2014 (CCO) (19).

Targeted design

For a targeted design, a biomarker is used to restrict 

eligibility for a randomized clinical trial comparing an 
experimental regimen to standard of care or control. Often, 
the experimental regimen is a targeted agent developed 
for those patients with a particular mutational status of a 
biomarker. When evaluating the treatment efficacy of a 
target agent using a randomized phase III trial, the targeted 
design can be much more efficient than untargeted design. 
However, a targeted design prevents the chance to test for 
interaction between treatment and the biomarker. It also 
prevents the researcher from validating the performance 
of the predictive biomarker by restricting enrollment to 
marker-positive only patients. CALGB 30801 is a good 
example of such design to validate the findings from 
CALGB 30203 in which patients whose tumors over-
expressed COX-2 were randomized to either celecoxib or 
placebo (20). 

BSR design

In BSR designs, biomarker status is a stratification factor. 
For example, both marker positive and negative patients 
are randomized to a targeted agent versus standard of care 
or placebo, with randomization stratified by biomarker 
status. The BSR design allows testing of whether the 
marker positive patients benefit from an agent compared to 
standard of care or placebo, with randomization stratified 
by biomarker status. testing of an overall treatment benefit, 
and an evaluation of the predictive classifier’s performance 
in identifying the targeted subgroup of patients. However, 
the drawback of BSR design is the resources and time 
needed for the conduct of the trial. The ability to answer 
several questions comes at a cost of the need of more 
treated patients, and potentially longer follow-up. If the 
overall treatment benefit is small and the patient population 
is predominately marker negative, such a design can be 
ineffective and unethical for the marker negative patients. 
However, the BSD does avoid a limitation of the following 
design (hybrid design) that one must be highly confident 
that the biomarker can identify the subgroup of patients 
who may benefit.

Hybrid design

A hybrid design lies between targeted and BSR designs. 
Like the BSR design, the hybrid design randomizes both 
marker-positive and marker-negative patients. But to reduce 
cost and improve study efficiency, for example, only a subset 
of all marker-negative patients is randomized. The process 

Table 1 Confusion matrix

True class
Predicted class

Positive Negative

Positive A B

Negative C D
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of selecting which patients to randomize may depend on 
biomarker prediction, clinical outcome, or other baseline 
patients’ characteristics. The efficiency gain due to a hybrid 
design could be significant when marker negative patients  
are predominant in the unselected patient population 
and auxiliary variables exist to identify those informative 
patients. If the targeted therapy benefits a subgroup of the 
patient population, but the biomarker used does poorly in 
the identification of the group, then a useful therapy could 
be halted for further investigation. An example of the hybrid 
design is EORTC 10041 (21), which restricted eligibility 
to only node-negative breast cancer patients to assess a 
70-gene expression profile developed by the Netherlands 
Cancer Institute. 

Reporting guidelines

The Strategy Group of the Program for the Assessment of 
Clinical Cancer Tests and a working group of a National 
Cancer Institute-European Organization Research 
Treatment Collaboration developed the Reporting 
recommendations for tumor Marker prognostic studies 
(REMARK) (22,23). Many high profile journals require 
that submissions be vetted through this guideline. This 
guideline provides a thorough 20-item checklist on essential 
pieces in the publication of marker-based studies, such as 
assay methods, study design, and statistical methods. It also 
focuses on presentation of the study results, with guidelines 
for data, analysis and presentation.

Discussion 

The availability of big ‘-omics’ data presents an exciting 
opportunity for researchers to translate their findings 
and discovery into clinical trials and ultimately clinical 
practice. Presently, biomarker discovery is an integral part 
of the main clinical study. Special attention in planning the 
study at the protocol development stage can help facilitate 
testing of secondary hypotheses, collection of specimens, 
and statistical analysis. While we have covered multiple 
aspects of statistical considerations for correlative studies 
in clinical trials, some important topics not covered include 
differentially expressed genes (DEGs), prospectively 
validation study designs for prognostic markers, and 
multiple hypothesis testing issues. Additionally, specific 
cancers may have their unique topics (24). As sequencing 
becomes more affordable, we expect that biomarkers will 
become a routine component of clinical trials. The big 

‘-omics’ data generated from these technologies will prove 
invaluable in this personalized medicine era. 
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