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ABSTRACT 
 
With the enormous losses to society that result from highway crashes, gaining a better 
understanding of the risk factors that affect traffic crash occurrence has long been a 
prominent focus of safety research. In this study, we develop an optimized radial basis 
function neural network (RBFNN) model to approximate the nonlinear relationships 
between crash frequency and the relevant risk factors. Our case study compares the 
performance of the RBFNN model with that of the traditional negative binomial (NB) 
and back-propagation neural network (BPNN) models for crash frequency prediction 
on road segments in Hong Kong. The results indicate that the RBFNN has better 
fitting and prediction performance than the NB and BPNN models. After the RBFNN 
is optimized, its approximation performance improves, although several factors are 
found to hardly influence the frequency of crash occurrence for the crash data that we 
use. Furthermore, we conduct a sensitivity analysis to determine the effects of the 
remaining input variables of the optimized RBFNN on the outcome. The results 
reveal that there are nonlinear relationships between most of the risk factors and crash 
frequency, and they provide a deeper insight into the risk factors’ effects than the NB 
model, supporting the use of the modified RBFNN models for road safety analysis. 
 
Keywords: crash frequency prediction; radial basis function neural network; 
nonlinear relationship; sensitivity analysis. 



 
1. Introduction 
Highway crashes are estimated to result in about 1.24 million fatalities and as many as 
50 million injuries annually around the world. They are predicted to be the fifth 
leading cause of death by 2030 (World Health Organization 2013). Given the 
enormous importance of highway safety in human societies, researchers have 
continually sought ways to better understand how the probability of crashes is 
affected by the relevant risk factors in the expectation of providing suggestions for 
laws, regulations and countermeasures aimed at reducing crash occurrence. In the 
absence of detailed driving data such as acceleration, braking and steering information, 
the associations between the risk factors and the number of crashes occurring at 
certain road entities, such as road segments or intersections, over a certain period (e.g. 
weeks, months or years; that is, crash frequencies) are investigated in most highway 
safety analyses. Moreover, predicting the crash frequencies at identified road 
segments, intersections or other facilities has become the technical core of roadway 
safety management in the Highway Safety Manual (AASHTO 2010). 

Over the past decades, a large number of crash prediction models (CPMs) have 
been proposed. Statistical count models are the most popular CPMs, as they are able 
to explicitly illustrate the effects of observed explanatory variables on the frequency 
of crash occurrence and account for some characteristics in crash data, such as 
over-dispersion (Miaou, 1994), spatiotemporal correlations (Shin and Washington 
2012, Wang et al. 2013, Zeng and Huang 2014a), and multilevel heterogeneities 
(Anastasopoulos and Mannering 2009, Huang and Abdel-Aty 2010, Xu and Huang 
2015). However, in these statistical CPMs, the assumed generalized linear function 
and certain distributions of error terms may deteriorate their fitting/predicting 
performance and even cause over-fitting phenomena (Xie et al. 2007). Lord and 
Mannering (2010) and Mannering and Bhat (2014) have provided more detailed 
descriptions and assessments of these models. 

Apart from statistical models, some artificial intelligence (AI) models have also 
been proposed for crash frequency prediction (Chang 2005, Li et al. 2008). As a 
common class of AI models, neural network (NN) models have been successfully 
used in many fields of transportation research, including highway safety analysis 
(Karlaftis and Vlahogianni 2011). According to the results of previous studies, NNs 
exhibit better prediction performance than some traditional statistical models, such as 
the negative binomial (NB) model (Chang 2005, Xie et al. 2007), suggesting it would 
be advantageous to use NNs to predict crash frequency. 

NN models are information processing mechanisms inspired by biological 
nervous systems (Haykin 2009). Depending on their architecture, NN models can be 
divided into two categories, namely, feed forward and recurrent. In the former, 
processing units (also known as ‘neurons’ or ‘nodes’) are often grouped into layers 
(input, hidden, and output layers) and are connected from one layer to the next in one 
direction, from the input layer to the output layer (Andina and Pham 2007). 
Multilayer perceptron (MLP) and radial basis function neural network (RBFNN) are 
two classic types of feed forward NNs. Although both are universal approximators, 



the numerical experiments demonstrate that RBFNN may outperform MLP with 
respect to function approximation and learning speed (Haykin 2009), suggesting that a 
RBFNN model describes more accurate relationships between crash frequency and 
risk factors. However, only BPNNs, a typical kind of MLPs trained by the 
back-propagation (BP) algorithm, were used to predict crash frequency in previous 
studies (Chang 2005, Xie et al. 2007). 

In addition to the NN category, network structure, which mainly refers to the 
number of nodes in the hidden and input layers, is an important issue to be considered 
in NN model development, as it has a profound effect on the generalization 
performance (Haykin 2009). With the development of NN techniques, many advanced 
methods for optimizing model structure have been proposed (Ma and Khorasani 2003, 
Nielsen and Hansen 2008). The optimized NN models could not only effectively 
avoid over-fitting/under-fitting phenomena, but also identify the factors that scarcely 
contribute to outcome prediction. The NN pruning for function approximation 
(N2PFA) algorithm proposed by Setiono and Leow (2000) is used in this study to 
optimize the structure of the trained RBFNN, because it can quickly remove the 
redundant nodes and has few limitations on network architecture or training 
algorithms. 

In this study, we aim to (1) develop an optimized RBFNN model to predict crash 
frequency, (2) identify the risk factors that appear from the evidence in the empirical 
study to be of little relevance to crash frequency and (3) compare the trained and 
optimized RBFNNs with the NB and BPNN models in terms of model fitting and 
predictive performance. Accordingly, the remainder of this paper is organized as 
follows. The next section briefly describes the general frameworks of statistical and 
AI modeling for crash frequency prediction. Section 3 specifies the NB, BPNN and 
RBFNN models and methods for RBFNN training and structure optimization. Section 
4 introduces a case study for model demonstration and comparison. Finally, Section 5 
presents our conclusions and recommendations for future research. 

 
2. Crash Frequency Modeling 
CPMs are the analytical methods used to learn the relationships between the crash 
frequency and the risk factors from the collected data sets. After the development of 
the methods, the expected crash frequency of a site, facility or roadway can be 
estimated for the given values of the factors. Methodologically, the relationships have 
been approximated from two different perspectives, i.e. statistical and AI modeling, as 
mentioned above. 

To specify the general frameworks of these two modeling approaches, consider a 

set of crash data { , 1,2, , }n nY n Nx  , where x is a vector consisting of I  risk 

factors, i.e.  1 2, , , Ix x xx  , and Y  represents the observed crash count, while N  

is the number of observations in the collected data. 



Statistically, the dependent variable, Y , is deemed to be a random variable and is 
often assumed to follow a Poisson or NB distribution for its non-integer characteristic. 
That is,  

( )Y Poisson  , or ( )negative binomial  . 

A generalized linear relationship is assumed between the expected value of Y ,  , 
and the independent variables x , i.e. 

ln  xβ , 

where β is a vector consisting of estimable coefficients and   is a disturbing term 

that accounts for certain features of the crash data such as over-dispersion, 
spatiotemporal correlations and cross-level heterogeneities.  

Although statistical regression models are able to clearly present the effect that 
each observed factor has on the crash frequency, their performance greatly relies on 
the collected data. For example, the CPMs dealing with over-dispersion or their 
variations might result in biased inferences when encountering under-dispersed crash 
data1.In addition, the generalized linear function is susceptible, because the perfect 
functional form is unknown. 

In the framework of AI techniques, a specific function form is not required. They 
(including NNs and support vector machines, etc.) essentially work as black boxes as 
shown in Fig. 1. Based on universal approximation theories, NN models are able to 
approximate the potential relationships between the crash frequency and the risk 
factors underlying the collected crash data with any desired accuracy providing 
enough hidden nodes, though they may sometimes bring about over-fitting. 
 
[Insert Fig. 1 here] 
 
3. Methodology 
As in previous research, the most popular statistical and NN models in crash 
frequency analysis, NB and BPNN, are used as two benchmarks to compare the fitting 
and predictive performance with those of the RBFNN models. In this section, we first 
describe the characteristics of the NB, BPNN, and RBFNN models. We then introduce 
the training and structure optimization algorithms for the RBFNN model. 
 
3.1. Model specification 
 
3.1.1. NB model 
Modified from the basic Poisson model, the NB model (also known as the 
Poisson-gamma model) was developed to deal with the over-dispersion commonly 

found in crash data. The crash count, nY , is assumed to follow an NB distribution 

                                                 
1Despite the rareness, crash data can sometimes be characterized by under-dispersion, such as those used in the 
research of Lord et al. (2010) and Oh et al. (2006). 



(Washington 2012), that is, 
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where ( )   is the Gamma function and   is the over-dispersion parameter. 

Regarding the mean of nY , n , its natural logarithm is assumed to be linearly 

associated with the corresponding risk factors, nx , such that 

ln n n  x β ,                              (2) 

in which β is a vector of coefficients to be estimated. 

 
3.1.2. BPNN model 
The structure of a common BPNN model for crash frequency prediction is shown in 
Fig. 2, where the nodes are fully connected. In the input layer, each risk factor is 
represented by a node. In addition, a node equaling one is constantly added and the 
weights of its connection with those hidden nodes are the biases. The only output 

node represents the expected crash frequency. (1)
,j iw

 
is the connection weight between 

the hidden node, 1, ,( )j Jj   , and the input node, 0,1, ,( )ii I  , while (2)
jw  is 

the weight connection between the output node and the hidden node 1, ,( )j Jj   . 

A hyperbolic function, tanh( ) , is used as the transfer function for all hidden and 

output nodes. Then, the predicted crash frequency,  , is given by: 

(2) (1)
,

1 0

tanh tanh
J I

j j i i
j i

w w x
 

     
  

  .                      (3) 

 
[Insert Fig. 2 here] 
 
3.1.3. RBFNN model 
The RBFNN model is based on interpolation theory, which argues that patterns 
(referred to as “observations” in statistical models) nonlinearly projected into a higher 
dimensional space are more linearly separable (Cover 1965). Specifically, an RBFNN 
model often consists of an input layer, a hidden layer, and an output layer, which 
correspond to the input space, hidden/feature space and output space, respectively. 
Patterns are first mapped from the input space into the hidden space by nonlinear 
functions, i.e. radial basis functions (RBFs) and then mapped from the hidden space to 



the output space by a linear function. Generally, the more nodes there are in the 
hidden layer, meaning a higher dimensional hidden space, the better the 
approximation performance achieved. Please refer to Haykin (2009) and Lowe (1988) 
for more description of the inherent mechanism of RBFNN. Fig. 3 shows the structure 
of an RBFNN model developed to predict crash frequency. 
 
[Insert Fig. 3 here] 
 

In the hidden layer, the popular Gaussian function is used for all RBFs: 
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where kμ is the center of RBF   ( 1,2, , )k k K  
 
and kx μ  denotes the 

Euclidian norm between the input, x , and the center, kμ .  The spread of the 

function which controls the smoothness of the function approximation, is 1 .  The 

basis is denoted by 0w  and ( 1,2, , )kw k K   is the connection weight between 

the output node and   ( 1,2, , )k k K   . Therefore, the predicted crash frequency, 

 , is given by: 
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3.2. RBFNN training 
For a given number of hidden nodes, a hybrid learning/training method is used to 
approximate the real relationships between input attributes and crash frequency 
(Haykin 2009). First, the centers of RBFs are determined by a K-means cluster 
algorithm. Then, the basis and weights between the output node and RBFs are 
estimated using a recurrent least squares (RLS) algorithm. 
 
3.2.1. K-means cluster algorithm 
Methodologically, clustering is an unsupervised approach, which tries to group a set 
of observations into a given number, K , of clusters and minimize the difference in 
observations within the same cluster: 

2

1 (n) ( )

1
min (C)

2

K

n n
k C k C n k

J 
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    x x ,                  (6) 

where ( ) ( 1,2, , ; 1,2, , )k C n n N k K     is a many-to-one mapper/encoder. It 



assigns observation, nx , into cluster k . 

To search for the optimal encoder, the K-means cluster algorithm iteratively 
processes the following two steps, until the cluster assignment is not changed. 
1. For a given encoder, C , the total variance of all clusters is minimized by the 

means ˆ{ 1,2, , }k k Kμ  : 

1

2

ˆ{ } 1 ( )

ˆmin
K

k k

K

n k
k C n k  

 
μ

x μ .                        (7) 

2. For the optimized cluster means ˆ{ 1,2, , }k k Kμ  , the encoder is optimized: 

2

1

ˆ( ) arg min n k
k K

C n
 

 x μ .                        (8) 

After the algorithm is converged, the means ˆ{ 1,2, , }k k Kμ   are set as the 

centers of the RBFs in the NN model. 
 
3.2.2. RLS algorithm 

After the determination of RBFs’ centers, patterns { , 1, 2, , }n nY n Nx   can be 

mapped into { , 1, 2, , }n nY n NΦ  , where 1 2[1, ( ), ( ), , ( )]n n n K n   Φ x x x . The 

RLS algorithm updates the connection weights, 0 1 2[ , , , , ]Kw w w w w  , by the 

following equations (please see Haykin (2009) for more details), 

1 1
1

11
n n n n

n n
n n n

 





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P Φ Φ P

P P
Φ P Φ

,                        (9) 

n n ng P Φ ,                           (10) 

1n n n nY  w Φ ,                        (11) 

1n n n n w w g .                        (12) 

To initialize the algorithm, set 0 w 0  and 1
0 P I , where   is a very small 

positive number. 
In the absence of useful prior knowledge we usually select the number of hidden 

nodes empirically or randomly. However, as a result the network may not be 
sufficiently trained. To achieve the aimed training performance we can add a certain 
number of hidden nodes and iteratively retrain the NN by the hybrid algorithm, 
because the training performance is positively correlated with the number of hidden 
nodes as mentioned above. In summary, the whole process of RBFNN training is 



shown in Fig. 4. 
 
[Insert Fig. 4 here] 
 
3.3. Structure optimization 
To improve the generalization capacity of the RBFNN model and to identify the 
almost irrelevant explanatory variables, the N2PFA algorithm, which has been 
successfully used to develop an optimized NN for crash injury severity prediction 
(Zeng and Huang 2014b), is proposed to prune the nodes that do not cause significant 
deterioration of the network’s accuracy (Setiono and Leow 2000). The mean absolute 

deviations (MADs) of the training set, Τ , and testing set, Χ , that is p  and q , are 

used to evaluate the network’s fitting and predictive performance, 

( , )1

1
( )

m m

m
Y

p Y m
M



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x Τ

,                    (13) 

( , )2

1
( )

m m

m
Y

q Y m
M



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x Χ

,                    (14) 

where 1M  and 2M  are the number of patterns in the training and testing sets, 

respectively. The N2PFA algorithm has been modified to fit its combination with the 
proposed RBFNN training method. The following steps describe the detailed pruning 
process. 
1. Train the RBF network using the hybrid algorithm described above until the 

predetermined training performance is obtained. 

2. Calculate p  and q  of the trained RBFNN and set _p b p , _q b q , 

 max _ , _ermax p b q b . 

3. For each ( 1, , )i i I  , set the i th element 0ix   for each attribute vector x  in 

the training set Τ  and calculate the fitting errors ip . 

4. Retrain the network with data set lT , which is Τ after eliminating the l th 

elements of all input vectors where minl i ip p , and compute p  and q  of the 

retrained network. 

5. If 2(1 )p ermax  and 2(1 )q ermax  , then remove the input node l , set 

 _ min , _p b p p b ,  _ min , _q b q q b ,  max _ , _ermax p b q b , lT T , 

1I I   and go back to step 3. Otherwise, keep the previous network. 



6. Retrain the network with 1K K   and compute p  and q  of the retrained 

network. 

7. If 2(1 )p ermax  and 2(1 )q ermax  , then set  _ min , _p b p p b , 

 _ min , _q b q q b ,  max _ , _ermax p b q b , 1K K  , and go back to step 

6. Otherwise, keep the previous network.  

In the process above, _p b  and _q b  separately represent the minimum MADs 

of training and testing sets achieved so far. We use ermax as the parameter to 

determine whether a node can be removed or not and assign it the larger of _p b  

and _q b  so as to remove as many redundant nodes as possible without sacrificing 

generalization accuracy. In addition, 2  is a factor to control the chance that a node 

will be removed. 
 
4. Case study 
 
4.1. Data 
A crash dataset obtained from the Traffic Information System (TIS) maintained by the 
Transport Department of Hong Kong is used to demonstrate the proposed RBFNN 
models and to compare them with the NB and BPNN models. This dataset contains 
211 road segments evenly and widely distributed across Hong Kong. Geographical 
information system (GIS) techniques are used to map crashes to these segments, and 
the crash counts of the sites are aggregated by year for the 2002-2006 period. The 
road geometric and traffic information is also included in the dataset. Table 1 
illustrates the definitions and descriptive statistics of the variables used in the 
development of the model. 
 
[Insert Table 1 here] 
 

The lane changing opportunity (LCO) variable refers to the length-weighted 
average number of possible lane-cuttings in a sub-segment with identical lane 
markings. For double continuous lines, no lane changing is allowed, thus, 0LCO  . 
For double lines with one continuous line and one broken line, lane changing is only 
allowed from the side of the broken line to the side of the continuous line, thus,

1LCO  . For a single broken line, lane changing between both adjacent lanes is 
allowed, thus, 2LCO  . Pei et al. (2012) provided a more detailed description of 
LCO. 

According to Table 1, the mean and variance (square of S.D.) of the crash 
frequencies are 7.64 and 40.32, respectively, which indicates over-dispersion in the 



crash data. Therefore, a NB model is more suitable than a Poisson model. In the NB 
model, to account for the potential nonlinear relationship between the crash frequency 
and traffic volume, the natural logarithm of AADT and Length, ln(AADT) and 
ln(Length), are modeled as other factors (Zeng and Huang 2014a). 

Correlation tests and collinearity diagnoses for the risk factors are conducted. 
ln(AADT) and Lane, ln(AADT) and Park, Lane and LCO, SL (speed limit) and 
Shoulder, SL and Park are found to be significantly correlated, as the absolute values 
of their correlation coefficients are all over 0.6 (0.707, 0.651, 0.653, 0.692, 0.672, 
respectively). To reduce the model complexity and retain some important variables 
(such as ln(AADT), etc.), Lane, Park, and Shoulder are excluded from the models. 
The results of the diagnoses indicate that there is no significant collinearity in the 
remaining factors. 

 
4.2. Results and discussions 
The NB model is estimated with Stata, a software program used to implement the 
statistical models. The training and structure optimization algorithms of the BPNN 
and RBFNN models are programmed in MATLAB. All of the variables are 
normalized for the convenience of network training. To implement the structure 
optimization algorithm and to compare the performance of these models, the prepared 
dataset is randomly divided into two parts, a training subset, Τ , and a testing subset, 
Χ , which account for approximately 80% and 20% of the dataset, respectively 
(Haykin 2009). During the RBFNN training, the network starts with a small number 
of hidden layer neurons and hidden units are then incrementally added until the mean 
square error (MSE) is not over 0.005. Accordingly, the BPNN contains the same 
number of hidden nodes as the trained RBFNN and the convergence criterion of its 
training is that the MSE is less than 0.005. In the N2PFA algorithm, we assume that

0.025  . 
The results of the model comparison are shown in Table 2, while the mean and 95% 

confidence interval of the over-dispersion parameter in the NB model are 0.219 and 
[0.188,0.255] respectively, suggesting the crash data used is over-dispersed. However, 
in terms of MAD criterion, obviously, all NN models, including the BPNN 
(3.01/3.38), the trained (2.79/3.28), and optimized (3.05/3.19) RBFNNs, have smaller 
fitting/prediction errors for training and testing datasets in contrast to the NB model 
(3.51 and 3.64), which again demonstrates that NN models can give better fitting and 
predictive performance than traditional statistical models in crash frequency 
prediction. Moreover, the trained RBFNN’s training/testing MADs and training time 
are less than those of the BPNN, demonstrating RBFNN’s better performance for 
approximating the relationships between crash frequency and the risk factors. This is 
probably attributable to the RBFNN’s greater capacity for approximating arbitrary 
non-linear functions without any prior knowledge, which has been found in many 
previous studies (Abdelwahab and Abdel-Aty 2002, Haykin 2009). 
 
[Insert Table 2 here] 
 



For the trained RBFNN, the testing MAD is 0.49 (about 17.6%) above the training 
MAD, suggesting that the model is over-fitted. After the network structure is 
optimized, the training MAD increases while the testing MAD decreases, and their 
difference is only 0.14 (about 4.6%). That is, the over-fitting has been significantly 
eliminated. In addition, seven input nodes, corresponding to Merge, Diverge, Inter, 
Median, Gradient, Curvature, and Width, and fifteen hidden nodes are removed from 
the trained RBFNN, which indicates that the original model has many redundant 
nodes and that the deleted factors have no significant effects on the crash frequency. 
The remaining factors are found to be significant in the NB model, with the 
estimation results shown in Table 3. 

 
[Insert Table 3 here] 

 
4.3. Sensitivity analysis 
Although the present study is focused on model development and comparison, a good 
understanding of the explanatory variables is also important to partially justify the 
model’s validity. As in previous research (Delen et al. 2006, Xie et al. 2007), a 
sensitivity analysis (SA) based on the optimized RBFNN is conducted to explore each 
remaining explanatory variable’s effect on the crash frequency. When analyzing 
explanatory variables, a continuous variable varies between its mean plus and minus 
its certain number (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5) of standard deviations (S.D.s) 
within a reasonable interval. A categorical variable varies among all of its categories 
except the reference one, while the other variables are fixed on their means 
(continuous variables) or reference cases (categorical variables) (Fishand Blodgett 
2003, Xie et al. 2007). Fig. 5 shows the results of SA for the remaining continuous 
variables. 
 
[Insert Fig. 5 here] 
 

According to the results in Fig. 5, the effects of three variables, AADT, SL, and 
LCO, are fluctuant, indicating that they are obviously nonlinearly related to crash 
frequency. Specifically, AADT increases or decreases crash frequency when it is 
smaller or bigger than its mean plus two S.D.s (61967 vehicles), which may be a 
result of the significant decrease in travel speed when the daily traffic volume reaches 
a certain level (such as 61967 vehicles). It should be pointed out that the nonlinear 
relationship between traffic volume and crash frequency has been confirmed by many 
traffic safety statistical analyses (Labi 2011, Qin et al. 2004). Crash frequency 
decreases with higher speed limits when they are smaller than the mean plus 2.5 S.D.s 
(97 km/h), covering 95% of roads in Hong Kong. This result may be attributed to the 
well planned, constructed, and managed features that promote safety of roadways 
designed for higher speeds (Milton and Mannering 1998). The crash count will 
significantly increase if the speed limit is too high, conforming to traffic engineering 
intuition and many existing findings (Aguero-Valverde and Jovanis 2008). LCO is 
found to decrease the crash frequency between the mean (2.43) and the mean plus 



four S.D.s (8.87) and to increase it at other values. This result may be generated by a 
combination of the permissible lane-cuttings’ two functions. On the one hand, 
lane-cuttings increase vehicle interaction, such as overtaking, thereby raising the 
incidence of traffic conflict (Pei et al. 2012). On the other hand, they offer an 
opportunity for errant vehicles to recover or for vehicles to seek temporary refuge to 
avoid an errant oncoming vehicle, therefore reducing the risk of collisions. 

Length and Rainfall have consistently positive effects on crash frequency. That is, 
more crashes tend to occur on longer road segments with more annual precipitation. 
These results are consistent with those in the NB model and many previous studies 
(AASHTO 2010, Zeng and Huang 2014a). From Fig. 5(b), we can see that there is an 
approximate linear relationship between crash frequency and segment length. It is 
consistent with the result of SA on the Bayesian NN developed by Xie et al. (2007). 
Despite the unidirectional effect, the different change rates of crash frequency under 
different variations of Rainfall indicate that it is still nonlinearly related to crash 
frequency.  

With regard to the only remaining categorical variable, BS (bus stop) is found to 
have a positive (0.154) effect on the crash frequency in the optimized RBFNN, 
consistent with that in the NB model. This may be attributed to frequent pedestrian 
activity around bus stops and increased interaction between buses and other vehicles 
when entering or leaving bus bays (Pei et al. 2012). In fact, 93% of the 
pedestrian-involved crashes in the observed road segments occurred on roadways with 
bus stops. 
 
5. Conclusions 
In this study, we develop an optimized RBFNN model for crash frequency prediction. 
To learn the underlying relationships between crash frequency and risk factors, we use 
a hybrid method combining a K-means cluster algorithm and a RLS algorithm, and 
we propose a structure optimization algorithm for improving the generalization 
performance and recognizing the explanatory variables that may be redundant for the 
collected crash data. A crash data set obtained from the TIS maintained by the 
Transport Department of Hong Kong is used to demonstrate the proposed methods 
and to compare them with the NB and BPNN models. 

Despite the crash data being over-dispersed, the results show that both the trained 
and the optimized RBFNN models outperform the NB and BPNN models in 
fitting/predictive performance, suggesting the advantages of the RBFNN over the NB 
model and the commonly used BPNN in the case study. Seven input nodes and fifteen 
hidden nodes are deleted in the optimized RBFNN, and its over-fitting is significantly 
relieved, demonstrating the ability of the structure optimization algorithm to 
empirically identify nearly irrelevant factors and to improve the generalization 
capacity. 

Moreover, an SA is conducted on the optimized RBFNN model to determine the 
relationships between the explanatory variables and crash frequency. All continuous 
variables except for SL are found to be nonlinearly associated with the outcome. 
Although some of the results are consistent with those in the NB model, they illustrate 



the effects of the risk factors more explicitly, further suggesting that the optimized 
RBFNN model is a good alternative for crash frequency prediction. 

Compared to NB model and BPNN used in previous studies, the proposed 
RBFNN techniques achieve better fitting and predicting performance when modeling 
crash frequency without any prior knowledge. However, it is worth noting that the 
evidence for the superiority of the RBFNN is restricted to this case study. More field 
data sets are needed to confirm its universality. Moreover, comparisons between the 
RBFNN and the recently proposed statistical models such as the random parameter 
model may further justify its advantage. Nonetheless, as a universal approximation, 
the proposed RBFNN model may be useful in other aspects of highway safety 
analysis, such as predicting crash injury severity and crash frequencies by injury 
severity. 
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