
 

 

AN ANT COLONY OPTIMISATION ALGORITHM FOR TIMETABLING 

PROBLEM 

 

              

 

BY 

 

ADUBI STEPHEN AYODEJI 

08CG07733 

 

COMPUTER SCIENCE 

 

 

AN MSc RESEARCH PROJECT REPORT SUBMITTED TO THE 

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, 

SCHOOL OF POSTGRADUATE STUDIES, COVENANT UNIVERSITY, OTA, 

OGUN STATE. 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD 

OF MASTER OF SCIENCE (MSc) DEGREE IN COMPUTER SCIENCE 

 

JUNE, 2015 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/95550772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 
 

CERTIFICATION 

I hereby certify that this project was written by Adubi Stephen Ayodeji and was 

supervised by me and submitted to the Department of Computer and Information 

Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. 

 

 

 

                                                                            

          ……………..…………………                                  …………………………… 

                   Dr. A.A. Adebiyi                                                               Date 

                      (Supervisor) 

 

 

 

 

                                                                          

                  

        ……………..…………………                                     ………..…………………   

                  Dr. A.A. Adebiyi                                                                  Date  

             (Head of Department) 

 

 

  



iii 
 

DEDICATION 

The project is dedicated to God who is the author of my wisdom, knowledge and 

understanding and also for seeing me through the completion of the project erasing any 

form of apprehension of it not being completed along the way.  



iv 
 

ACKNOWLEDGEMENTS 

My complete adoration and praises go to the Lord Almighty for the successful 

completion of this project and also making me to successfully complete a part of my 

career as a post-graduate (MSc.) student in this great institution.  

It has also been a privilege to be the son of Mr. and Mrs. Adubi who have supported 

me in many areas of my life especially the advice I have received from them and the 

sponsorship throughout my life as a student right from the elementary stage. I also use 

this medium to thank my supervisor Dr. A.A. Adebiyi for his support and the tutorship 

I gained under his supervision as well as Dr. Olawande Daramola for spending time 

with me for meaningful discussions with respect to the work. 

I would also like to thank Dr. Oladipupo and Dr. Oyelade who have taken their time to 

review this work providing insightful comments along the way. 

A word of appreciation is also directed towards my great friends in school for the 

series of academic work we have done together and also for their companionship.  



v 
 

TABLE OF CONTENTS 

Title Page..........................................................................................................................i 

Certification .................................................................................................................... ii 

Dedication ...................................................................................................................... iii 

Acknowledgements ........................................................................................................ iv 

Table of Contents ............................................................................................................ v 

List of Tables ............................................................................................................... viii 

List of Figures ................................................................................................................ ix 

Abstract ........................................................................................................................... x 

CHAPTER ONE: INTRODUCTION 

1.1 Background Information ...................................................................................... 1 

1.2 Statement of The Problem ................................................................................... 2 

1.3 Aim and Objectives of The Study ........................................................................ 3 

1.4 Research Methodology ........................................................................................ 3 

1.5 Significance of The Study .................................................................................... 4 

1.6 Scope and Limitation of The Study ..................................................................... 4 

1.7 Outline of The Thesis ........................................................................................... 5 

CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction .......................................................................................................... 6 

       2.1.1      Constraints .............................................................................................. 6 

       2.1.2      Other Variants of Timetabling Problem ................................................. 7 

2.2 Review of Metaheuristics .................................................................................... 8 

       2.2.1      Evolutionary Algorithms ........................................................................ 8 

                  2.2.1.1      Genetic Algorithm ................................................................ 8 

                  2.2.1.2      Memetic Algorithm ............................................................ 12 

       2.2.2      Iterated Local Search ............................................................................ 12 



vi 
 

       2.2.3      Ant Colony Optimisation Algorithm.................................................... 15 

       2.2.4      Tabu Search .......................................................................................... 20 

       2.2.5      Simulated Annealing ............................................................................ 25 

       2.2.6      Applications of Metaheuristics ............................................................. 27 

2.3 Comparison of UCTP to Graph Colouring ........................................................ 29 

2.4 Review of Methods used to tackle UCTP .......................................................... 30 

       2.4.1      Simulated Annealing ............................................................................ 30 

       2.4.2      Evolutionary Algorithms ...................................................................... 31 

       2.4.3      Tabu Search .......................................................................................... 32 

       2.4.4      Ant Colony Optimisation ..................................................................... 33 

       2.4.5      Comparison of Metaheuristics ............................................................. 34 

       2.4.6      Hybrid Approach .................................................................................. 35 

       2.4.7      Case-Based Reasoning ......................................................................... 38 

2.5 Review of Existing Timetabling Systems .......................................................... 40 

       2.5.1      UniTime ............................................................................................... 40 

       2.5.2      MAS_UP-UCT ..................................................................................... 40 

       2.5.3      Automated System for University Timetabling ................................... 41 

2.6 Summary ............................................................................................................ 42 

CHAPTER THREE: SYSTEM DESIGN, MODEL FORMULATION AND 

METHODOLOGY 

3.1 Introduction ........................................................................................................ 43 

3.2 System Architecture ........................................................................................... 43 

3.3 File Structure ...................................................................................................... 44 

3.4 Classes and their Interactions ............................................................................. 46 

       3.4.1      Class Diagram ...................................................................................... 47 

3.5 Model Formulation ............................................................................................ 48 

3.6 Methodology ...................................................................................................... 53 



vii 
 

       3.6.1      Solution Representation ....................................................................... 53 

       3.6.2      The MAX-MIN Ant System for the UCTP .......................................... 54 

                  3.6.2.1      Actual Coding of events ordering ....................................... 56 

                  3.6.2.2      Choosing a timeslot for an event ........................................ 58 

                  3.6.2.3      Pheromone Update ............................................................. 61 

       3.6.3      Local Search Routines .......................................................................... 62 

       3.6.4      Room Assignment ................................................................................ 63 

CHAPTER FOUR: IMPLEMENTATION RESULTS AND DISCUSSION 

4.1 Problem Instances .............................................................................................. 65 

4.2 Evaluation .......................................................................................................... 66 

CHAPTER FIVE: SUMMARY, FUTURE STUDIES AND CONCLUSION 

5.1 Summary ............................................................................................................ 73 

5.2 Future Studies .................................................................................................... 73 

5.3 Conclusion ......................................................................................................... 74 

           References .......................................................................................................... 76 

           Appendix ............................................................................................................ 86 

 

  



viii 
 

LIST OF TABLES 

Table 2.1: A table illustrating the three crossover operators………………………….10 

Table 2.2: Comparison of the Modi Operandi of the main variants of the 

ACO algorithm………………………………………………………………………..19 

Table 2.3: Iteration 1…………………………………………………………………..23 

Table 2.4: Iteration 2…………………………………………………………………..24 

Table 2.5: Iteration 3…………………………………………………………………..24 

Table 2.6: Iteration 4…………………………………………………………………..24 

Table 2.7: Iteration 5…………………………………………………………………..24 

Table 2.8: Iteration 6…………………………………………………………………..25 

Table 2.9: Iteration 7…………………………………………………………………..25 

Table 2.10: Recent Applications of Metaheuristics…………………………………...27 

Table 3.1: Classes and their details……………………………………………………47 

Table 4.1: Parameter values for generating UCTP instances in  

Socha et al., (2002)……………………………………………………………………65 

Table 4.2: Parameter values for the instances solved…………………………………65 

Table 4.3: Performances of the six implementations on Instance1…………………...67 

Table 4.4: Performances of the six implementations on Instance2…………………...68 

Table 4.5: Parameter Configurations used in the experiment…………………………72 

  



ix 
 

LIST OF FIGURES 

Figure 2.1(a): The scheduling problem converted into its GCP equivalent…………..30 

Figure 2.1(b): The solved GCP………………………………………………………..30 

Figure 2.1(c): The real schedule converted from the solved GCP……………………30 

Figure 2.2: MAS_UP-UCT architecture………………………………………………41 

Figure 3.1: System Architecture of UCTP……………………………………………44 

Figure 3.2: A snapshot of a section of a file with a delimiter…………………………46 

Figure 3.3: System‘s Class Diagram………………………………………………….48 

Figure 3.4: Pictorial representation of matrix M……………………………………...53 

Figure 3.5: Depiction of N1: Event 6 moved from its timeslot to another……………62 

Figure 3.6: Depiction of N2: Events 6 and 8 have their timeslots swapped…………..62 

Figure 4.1: Convergence of the best global-best solutions of      and     ………...69 

Figure 4.2: Convergence of the second-best global-best solutions of      and     ...69 

Figure 4.3: Convergence of the third-best global-best solutions of      and     …...70 

Figure 4.4: Convergence of the best global-best solutions of     
  and     

 ………...70 

Figure 4.5: Convergence of the second-best global-best solutions of     
  and     

 ...71 

Figure 4.6: Convergence of the third-best global-best solutions of     
  and     

 …...71 

Figure I: Snapshot of the main local search run………………………………………86 

Figure II: Snapshot of Monday Schedule……………………………………………..86 

Figure III: Snapshot of Tuesday Schedule…………………………………………….87 

Figure IV: Snapshot of Wednesday Schedule………………………………………...87 

Figure V: Snapshot of Thursday Schedule……………………………………………88 

Figure VI: Snapshot of Friday Schedule……………………………………………...88  



x 
 

ABSTRACT 

The University Course Timetabling Problem (UCTP) is a combinatorial optimization 

problem which involves the placement of events into timeslots and assignment of 

venues to these events. Different institutions have their peculiar problems; therefore 

there is a need to get an adequate knowledge of the problem especially in the area of 

constraints before applying an efficient method that will get a feasible solution in a 

reasonable amount of time. Several methods have been applied to solve this problem; 

they include evolutionary algorithms, tabu search, local search and swarm optimization 

methods like the Ant Colony Optimisation (ACO) algorithm.  

A variant of ACO called the MAX-MIN Ant System (MMAS) is implemented with 

two local search procedures (one main and one auxiliary) to tackle the UCTP using 

Covenant University problem instance. The local search design proposed was tailored 

to suit the problem tackled and was compared with other designs to emphasise the 

effect of neighbourhood combination pattern on the algorithm performance. From the 

experimental procedures, it was observed that the local search design proposed 

significantly bettered the existing one used for the comparison. 

The results obtained by the implemented algorithm proved that metaheuristics are 

highly effective when tackling real-world cases of the UCTP and not just generated 

instances of the problem and can even be better if some tangible modifications are 

made to it to perfectly suit a problem domain. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND INFORMATION 

The University Course Timetabling Problem (UCTP) is a combinatorial optimization 

problem which involves the placement of events into timeslots and assignment of 

venues to these events while considering the participants: Lecturers and Students. It 

can also be classified as a constraint satisfaction problem whereby the primary goal is 

satisfying the amount of constraints as much as possible; researchers have tackled the 

problem from this perspective (Cambazard et al., 2012; Wijaya & Manurung, 2009). 

The UCTP characteristically contains two types of constraints which are the hard and 

the soft constraints. The hard constraints are the conditions that must be satisfied 

before a constructed timetable can be regarded as feasible while all the soft constraints 

do not necessarily need to be satisfied although the satisfaction of these soft constraints 

is often used to measure the quality of a timetable (Lewis, 2008). An example of a hard 

constraint is: ―Two events which are conflicting (both having to be taken by same set 

of students) should not be placed in the same timeslot‖; this constraint is basic for 

almost every institution.  

The soft constraints of a particular problem instance usually embody the timetabling 

policy of an institution and sometimes tailored towards satisfying the demands of some 

concerned parties (certain professors who have some preferences). An example of a 

soft constraint is ―No student should have more than two classes in a row‖. Although 

regarded as a general problem, many universities have their peculiar policies which 

form additional constraints to the common ones mentioned above. For example, 

Covenant University timetabling policy enforces two new hard constraints:  

(1) An event peculiar to students from 300-level to 500-level should not be placed in 

the first two timeslots (8-10 am) on Tuesday. 

(2) An event peculiar to students from 100-level to 200-level should not be placed in 

the first two timeslots on Thursday. 
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Violation of any hard constraint renders a timetable useless; this has influenced the 

latest approaches used in solving timetabling problems. These approaches attempt to 

satisfy all hard constraints first before attempting to satisfy the soft constraints as much 

as possible without violating any hard constraint immediately a feasible solution is 

constructed. Different methods and modifications of these methods have been 

proposed in literature to tackle the UCTP, few are Evolutionary algorithms (Sigl et al., 

2003; Perzina, 2007; Wijaya & Manurung, 2009; Jat & Yang, 2011; Yang & Jat, 

2011), Tabu Search (Lu & Hao, 2010) and Ant Colony Optimization algorithms 

(Socha et al., 2003; Matijas et al., 2010). 

1.2 STATEMENT OF THE PROBLEM 

The construction process of a timetable involves the assignment of timeslots to events 

in such a way that conflicting events do not get the same timeslots and also assigning 

rooms where the events will take place while considering ―room clashes‖. 

Conflicting events: in the context of this work, two events are conflicting if they are 

related by at least one of the two conditions: (1) they have the same set of students 

offering them (CSC 412 and CSC 418 are courses both taken by 400 level Computer 

Science students; therefore, they are conflicting and thereby fulfil this condition) (2) 

they are required to hold in the same room (Two programming courses CSC 211 and 

CSC 313 are conflicting because they both need the Computer Lab to hold). 

The course timetabling problem is NP-Hard and therefore any little addition to the 

problem domain will likely escalate the difficulty of the problem. Due to the difficulty 

of the problem as well as the peculiarity that can be found in various institutions, it has 

become a very much studied problem.  

Drafting a timetable can be a very difficult task especially when done manually; 

therefore efforts are being made by researchers to bridge the gap between theory and 

practice mostly by trying to automate the process in their various institutions. 

Covenant University has not moved to the point of automating their timetabling 

process and thus a successful automation of the process will go a long way in ensuring 

quick and stress-free preparation for the new semester. Previous researches published 

that have been surveyed do not emphasise some important issues of timetabling like 

dealing with the placement of events that require more than one timeslot which is very 
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critical to the successful construction of a feasible timetable of Covenant University. 

Therefore this new research will address this problem by presenting a way of 

overcoming the difficult process of timeslot selection. 

Finally, it has been noted that the final draft released for the school sometimes contain 

clashes which will have to be resolved when the lectures have already started. The 

proposed automated timetabling system will avoid these clashes and save the 

administration the stress of having to move lectures from their timeslots due to clashes. 

1.3 AIM AND OBJECTIVES OF THE STUDY 

The aim of this work is to employ the Ant Colony Optimization (ACO) algorithm to 

solve the University Couse Timetabling Problem and also to determine the best local 

search design that will give the best result. 

This aim would be realised through the following objectives: 

1. To have a full grasp of the CU‘s problem instance and its constraints (both hard 

and soft). 

2. To identify the variables required for solving the problem such as number of 

classrooms, hall capacity for all classrooms, etc. with their respective values. 

3. To implement MAX-MIN Ant System (MMAS); an ACO algorithm variant to 

construct a feasible solution. 

4. To evaluate the solutions generated by different variants of the implemented 

algorithm. 

1.4 RESEARCH METHODOLOGY 

To achieve the first two objectives, the conditions that make the institution‘s timetable 

a ‗good‘ one is captured in form of the constraints to work with when attempting to 

construct an automated one. After the constraints are identified, they are then classified 

into hard and soft constraints based on the compulsion of satisfying some of the 

constraints. 

MMAS is one of the most successful variant of the ACO algorithm (Adubi & Misra, 

2014; Zecchin et al., 2007; Zecchin et al., 2006). It was proposed in (Stuetzle & Hoos, 
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2000) to improve the first version of ACO (an algorithm that mimics the behaviour of 

natural ants in constructing solutions to combinatorial optimisation problems), the Ant 

System (Dorigo et al., 1996) and since then, it has been applied to several optimization 

problems.  

The MMAS will be implemented to achieve the third objective and its implementation 

will be accompanied with an implementation of two local search procedures based on 

the proposed work of Rossi-Doria et al. (2002) to improve the solution of the MMAS 

algorithm. The details of the MMAS and local search implementations will be given in 

Chapter Three. Finally on this section, VB.net programming language will be used for 

the implementation of MMAS algorithm and Local Search. VB.net is the most natural 

language for communicating with the Microsoft Excel Spread Sheet and also more 

friendly when it comes to code debugging to deal with the limited time of project 

completion. 

To evaluate the result of the MMAS implementation to the timetabling problem 

instance chosen, the amount of soft constraints violations (#scv) of the feasible 

solution returned by the MMAS+Local Search implementation will be measured, a 

lower #scv connotes a better timetable. 

1.5 SIGNIFICANCE OF THE STUDY 

Drafting a timetable in an academic institution is not an easy task, the mental and 

physical stress involved is quite significant, the timetable drafted may not be of a high 

quality and clashes can even be present in such timetables. In the light of this, the 

proposed automated timetable system will help reduce time and effort that are used 

when human labour is engaged and obviously clashes on the timetable are avoidable as 

long as the requirements are properly captured. This approach will also enhance 

promptness of timetable release for adequate preparation from both the students and 

lecturers. 

1.6 SCOPE AND LIMITATION OF THE STUDY 

The study is strictly limited to the task of assigning courses to classrooms and placing 

them in appropriate timeslots and rooms which is the main definition of a course 

timetabling problem. Covenant University will be used as a case study. 
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1.7 OUTLINE OF THE THESIS 

The rest of the project follows with an extensive review of literature and comparison of 

the problem to graph colouring in the next chapter. The system methodology and the 

formulation of the model are the highlights of Chapter Three. The experimental results 

and the evaluation of the solution method are the contents of Chapter Four. The project 

is concluded in Chapter Five where the platform for future research work is 

highlighted.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Existing methods like metaheuristics, operational research methods that have been 

used to tackle UCTP problem, existing automated timetabling systems, and 

comparison of the problem to the Graph Colouring Problem (GCP) are extensively 

presented in this chapter. 

In the UCTP problem, we have a set of events/courses to be allocated along with the 

set of students and the set of lecturers that will be participants of these events, a set of 

resources: projectors, rooms, systems and the timeslots where events will be placed. 

The feature of an acceptable schedule is the positioning of events in timeslots where 

the following conditions must be met: 

(1) No event-pair having common students should be placed in the same timeslot.  

(2) No two or more events should be holding in the same room at the same time. 

Optimising a timetable can be grouped into three classes according to Lewis (2008): 

One-stage optimisation, Two-stage optimisation and Optimisation by relaxation. 

One-stage optimisation involves trying to satisfy both hard and soft constraints at the 

same time a solution is constructed. Two-stage optimisation involves satisfying the 

hard constraints from the outset and then soft constraints satisfaction is considered 

after a feasible solution is found. In the last class, some constraints are dropped from 

the beginning of a solution construction to relax the problem before they are 

introduced after an intermediate solution (when these dropped constraints were not 

considered) had been found. 

2.1.1 Constraints 

The two major types of constraints have been mentioned earlier, they are the hard and 

soft constraints; they mainly depict the degree of satisfaction of the conditions that 

must be fulfilled when constructing an ‗acceptable‘ timetable. Apart from this 

classification, constraints can also be classified based on constraint nature taking into 

account the specific variables of UCTP affected by the constraints. Five main classes 
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have been identified in Corne et al., (1995) and also in Lewis (2008), they are: Unary 

constraints, Binary constraints, Capacity constraints, Event Spread constraints and 

Agent constraints. They are briefly described below: 

Unary constraints: These constraints involve only one event, such as ―CSC 815 must 

take place between the hours of 8 and 10 on Monday mornings‖. 

Binary Constraints: Predictably, these constraints involve two events, for example 

―CSC 812 must take place before CSC 815‖. It can also be chained, for example ―CSC 

819 must take place before CSC 812 which itself must take place before CSC 815‖. 

Capacity constraints: These constraints involve room allocation, most times they deal 

with the question: ―Is room A where CSC 813 is allocated large enough to contain the 

students offering the course?‖ 

Event Spread constraints: In some institutions, the timetabling policy involves the 

―spreading out‖ of events in order to reduce the workload of students and lecturers; 

this constitutes what an event spread constraint is, an example is ―No student should 

have more than two classes in a row.‖ 

Agent Constraints: These constraints are normally enforced by lecturers (professors) 

who cannot take classes in some certain timeslots of the day due to some certain 

reasons. 

2.1.2 Other Variants of Timetabling Problem 

Apart from the UCTP which is the main focus of this study, there are other main 

variants of timetabling problem as mentioned in the work of Schaerf (1999) namely: 

School timetabling and Examination timetabling. In school timetabling, the aim is to 

schedule classes of teachers for a week in a way that the subjects taken by a teacher do 

not get scheduled at the same time for two or more different classes; in other words 

there should be avoidance of a teacher meeting more than one class at the same time. 

This variant is peculiar to Secondary schools. In examination timetabling, the aim is to 

schedule exams avoiding courses having common set of students to be fixed at the 

same time and also spreading the exams for the students as much as possible. Unlike 

the UCTP where one event is expected to be held in a room per time, more than one 

event in the examination timetabling problem can be scheduled in the same room at the 

same time as long as the capacity constraint is not compromised. It should be noted 
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that the list of variants mentioned is not exhaustive; just the common variants are 

mentioned and to compare them with the UCTP. 

2.2 REVIEW OF METAHEURISTICS 

In this section, a review of a selected set of five metaheuristics is presented based on 

their popularity as well as their high level of application to the general Combinatorial 

Optimisation Problems (COPs) and UCTP. These five metaheuristics have often been 

compared with one another on different data sets of timetabling instances (small, 

medium and large). The metaheuristics to be reviewed are being studied by the 

metaheuristics network (Blum & Manfrin, 2015) and have also been compared among 

themselves on generated instances of the UCTP (Rossi-Doria, et al., 2003), they are as 

follows: Evolutionary Algorithm (EA), Iterated Local Search (ILS), Ant Colony 

Optimisation (ACO), Tabu Search (TS) and Simulated Annealing (SA). They have 

enjoyed wide application to several combinatorial optimisation problems and have also 

been combined with other approaches (Chaudhuri & De, 2010; Abdullah et al., 2009). 

The algorithms that are presented here with the short examples will be addressing 

minimisation problems. 

2.2.1 Evolutionary Algorithms 

Evolutionary algorithms are computational methods inheriting their behaviour from 

natural system features such as selection, recombination and mutation. The most 

popular among the evolutionary algorithms is the Genetic Algorithm (GA); other 

notable ones are Memetic Algorithms (MA), genetic programming and evolutionary 

programming. In this study, the GA will be discussed since it is the most basic form of 

evolutionary algorithms which encompasses all other evolutionary algorithms as far as 

the discussion of metaheuristics is concerned (Reeves, 2003). In addition to the 

discussion of GA, the MA will also be discussed briefly. 

2.2.1.1  Genetic Algorithm 

The genetic algorithm depicted in ALGORITHM 2.1 starts with the initialisation of a 

population of chromosomes which form the initial population and then their fitness 

values are calculated. The selection process starts by retaining a number of the 

population, members of the population with high fitness values are highly likely to be 

picked in this process making those ones with low fitness values to be likely dropped. 
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Crossover operation is performed on pairs of the selected members of the population to 

form new offspring. Mutation (genetic alteration) may be done on few of the offspring 

generated after the crossover operation, then the offspring replaces the worst members 

of the previous population to form the new population set alongside the best of the 

previous population. This process continues until some stopping criteria are met. 

ALGORITHM 2.1: GENETIC ALGORITHM 

Begin 

initialise a random population of size N 

calculate the fitness of chromosome Ci in the population                

while termination criteria not met 

    select chromosomes among the current population as parents of the next generation       

    based on their fitness values. 

    perform crossover among chosen pairs of parents in the last step using randomly  

    chosen points to form new offspring (if condition is satisfied). 

    perform mutation (if condition is satisfied) with probability Pmut (a very small value) 

    replace existing population with the current one. 

end while 

end 

Chromosomes of genetic algorithms‘ solutions are commonly represented using binary 

strings (the simplest form of representation) but complex representations such as real-

valued numbers also exist when binary representation is not adequate for the nature of 

the problem being solved (Mitchell, 1999). Popular selection methods include the 

roulette wheel selection (RWS), rank selection and tournament selection, although the 

latter is the most recommended among the three (Reeves, 2003). The crossover 

operation is performed based on a probability value called the crossover rate PC; in the 

crossover procedure, pieces of information are exchanged between a pair of parents to 

produce two new offspring. Prominent crossover operators include One-point 

crossover (1X), Two-point crossover (2X) and Uniform crossover (UX). In 1X, an 

integer value t is selected at random as the crossover point, alleles before the crossover 

point in the first parent P1 are copied into the first offspring O1 and then the alleles 

after the crossover point in the second parent P2 are copied into O1 to complete its 

genetic makeup. The second offspring O2 is created by reversing the roles of P1 and 
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P2. The second type of crossover operator 2X is similar to 1X but in this case; two 

points t1 and t2 are selected as crossover points rather than a single crossover point that 

is used in the former approach.  Lastly in the uniform crossover, a value called mixing 

ratio or Bernoulli parameter (Reeves, 2010) is used in controlling the transfer of alleles 

from a parent-pair to an offspring. A mixing ratio of 0.5 means that an equal number of 

alleles from the first parent and the second parent is used to form the genetic makeup 

of the offspring. A typical illustration is shown in Table 2.1. 

Table 2.: A table illustrating the three crossover operators 

Parents One-point crossover 

(1X) 

Two-point crossover 

(2X) 

Uniform crossover 

(UX) 

P1: 1 1 0 0 1 0 1 0 

P2: 1 1 1 0 0 0 1 1 

P1: 1 1 0 0 1 0 1 0 

P2: 1 1 1 0 0 0 1 1 

1 1 0 0 1 0 1 0 

1 1 1 0 0 0 1 1 

Mask1: 1 0 0 1 0 1 1 0 

Mask2: 0 1 1 0 1 0 0 1 

 O1: 1 1 0 0 1 0 1 1 

O2: 1 1 1 0 0 0 1 0 

O1: 1 1 1 0 0 0 1 0 

O2: 1 1 0 0 1 0 1 1 

O1: 1 1 1 0 0 0 1 1 

O2: 1 1 0 0 1 0 1 0  

Mask1 in the third column of Table 2.1 illustrates which allele from the two parents in 

that position is copied into the offspring; a bit of 1 in position 1 in Mask1 means that 

the allele of Parent 1 in that position is copied while a bit of 0 copies from the second 

parent P2. The bits in Mask1 are flipped to generate Mask2 which will be used to 

generate O2 doing the same thing that was done for Mask1. It should be noted that the 

mixing ratio in UX illustrated in the table is 0.5 since we have equal number of ‗1‘ bits 

and ‗0‘ bits. 

Crossover in genetic algorithms is not that straightforward the way it seems to be in 

some circumstances. There is also a non-linear crossover. For example, considering 

two selected parents for crossover in a GA run for the Travelling Salesman Problem 

(TSP): 

P1: 1 6 3 5 4 2 

P2: 2 3 4 1 5 6  

P1 is a solution which reads that the travelling salesman visits cities in the strict order: 

1, 6, 3, 5, 4, and 2 and then back to 1, P2 can be interpreted the same way. In a naive 

GA implementation where for example one-point crossover is used and t is set to 3, we 

would have the following offspring: 



11 
 

O1: 1 6 4 1 5 6 

O2: 2 3 3 5 4 2 

These offspring produced represent infeasible solutions; O1 is a solution representation 

stating that the travelling salesman will have to visit both cities 1 and 6 twice violating 

the principal constraint of the TSP. The partially mapped crossover (PMX) operator 

(Goldberg & Lingle, 1985; Reeves, 2003; Reeves, 2010) deals with this problem. The 

PMX operator can be designed as an extension of 2X since 2X points are initially 

selected at random between 1 and l (the length of the string encoding a solution). In the 

example given above, if the crossover points selected are 2 and 5, then an interchange 

mapping  is defined such that we have the following: 

3  4, 5  1, and 4  5. Therefore these values in each parent are swapped rather 

than the exchange of alleles. The following offspring from the same example using 

PMX are as follows: 

O1: 4 6 5 1 3 2 

O2: 2 5 3 4 1 6 

Another alternative PMX approach is to extend the uniform crossover operator where a 

binary mask like we have in UX is generated. If for example we have the mask: 1 0 1 0 

0 1, this means that the alleles in the positions ‗masked‘ by the bit 1 are copied from 

the first parent while the ones in the positions ‗masked‘ by the bit 0 are taken from the 

other parent in the order in which they appear to fill the empty spaces. Still using the 

same example, we would have the following: 

P1: 1 6 3 5 4 2 => 1 _ 3 _ _ 2 

P2: 2 5 3 4 1 6 => 2 _ 3 _ _ 6 

O1: 1 5 3 4 6 2 

O2: 2 1 3 5 4 6 

In constructing offspring O1 a mask 1 0 1 0 0 1 was used, therefore alleles in the 

positions where we have the bit 1 in P1 are copied while the other positions initially 

left blank are filled with alleles not copied from P1 in the order in which they appear in 

P2 to fill the blank spaces. O2 is constructed the same way using the same mask but P1 
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and P2 switch roles this time around (P2 becomes the first parent supplying the first set 

of alleles using the given mask). 

If the mutation condition (to determine if the operation will be carried out) is true, then 

few alleles in the genes of some of the generated offspring are mutated (changed) to 

form an entirely new offspring. An offspring represented with the string 110010 

becomes 110011 if the allele at the 6
th

 locus of the gene is mutated. The mutation 

process is more complex when dealing with real-value representations rather than 

binary bit strings. 

2.2.1.2  Memetic Algorithm 

Memetic algorithm is a class of evolutionary algorithm which can sometimes be 

regarded as a hybrid approach comprising of GA and another metaheuristics or a local 

search method. It uses problem-specific knowledge in the construction of solutions to a 

particular problem domain and because of their hybrid nature they are sometimes 

called ‗Hybrid Evolutionary Algorithms‘ (Moscato & Cotta, 2003). 

2.2.2 Iterated Local Search 

Iterated Local Search (ILS) (Lourenco et al., 2003) is another powerful metaheuristics 

which is part of the broad family of local search. The algorithm is a very simple but 

effective one which has shown promise in a lot of combinatorial optimisation problems 

that it has been applied to. The algorithm works by using a simple heuristic (greedy 

constructive heuristic or a random procedure) to construct an initial solution Sinit and 

then applying a local search procedure to Sinit to move it to a local optimal solution 

Sbest. Sbest is perturbed (tweaked) to move it away from local optimum using an 

embedded heuristic different from the one employed in the local search procedure 

deriving an intermediate solution S′. S′ is subjected to the same local search routine 

used to derive Sbest to arrive at another local optimum S′best which is accepted if it is 

better than Sbest or rejected otherwise based on an acceptance criterion. This process 

continues until a stopping criterion is met. The ILS algorithm has been very effective 

and faster (when it comes to the amount of local search runs made before arriving at 

local optimum) when compared to a Random Restart Local Search (RRLS) procedure 

(Lourenco et al., 2010). 

For brevity, the RRLS algorithm works by applying a local search procedure to an 

initial solution Sinit until a local optimal solution is reached. The objective cost is then 
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‗improved‘ by restarting the algorithm using another generated initial solution with the 

‗hope‘ of finding a better solution leading to multiple trials of the local search routine. 

The Iterated Local Search algorithm is shown in ALGORITHM 2.2. 

ALGORITHM 2.2: ITERATED LOCAL SEARCH 

procedure ILS( ) 

    Sinit = GeneralInitialSolution( ) 

    Sbest = LocalSearch(Sinit) 

    while termination criterion not met do 

        S′ = Perturbation(Sbest, history) 

        S′best = LocalSearch(S′) 

        Sbest = AcceptanceCriterion(Sbest, S′best, history) 

    end while 

    return Sbest 

end 

There are four main components of the ILS procedure; GeneralInitialSolution, 

LocalSearch, Perturbation and AcceptanceCriterion, discussion of these components 

follow: 

General Initial Solution: The ILS procedure starts by constructing an initial solution 

which can be achieved either by a quick greedy heuristic or generated randomly. For 

example the initial solution of an ILS approach to TSP can be constructed using the 

nearest neighbour heuristic. It is after this stage that the main local search procedure 

begins to move the initial solution to a local optimal point. 

Local Search: This is one of the fundamental elements of the ILS algorithm; a suitable 

local search procedure moves a solution Sbefore to another Safter in its neighbourhood 

N(Sbefore). The neighbourhood N(S) of a solution S is defined as the set of all possible 

solutions that can be derived by applying a certain move (swap, insertion, deletion) to 

S. Notable local search algorithms mostly employed for the TSP include 2-opt, 3-opt 

and the Lin-Kernighan heuristic (Lin & Kernighan, 1973), the latter known to be the 

most effective heuristic for the TSP (Stuetzle, 1998). Local search procedures for the 

UCTP for example can be the Kempe Chain neighbourhood move. 
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Perturbation: This stage of an ILS is what differentiates it from a random restart local 

search algorithm. The perturbation procedure makes a careful but significant change(s) 

to the current local optimal solution with the hope of moving it to a different basin of 

attraction. This perturbed solution (S′ in the algorithm outline) serves as the new 

starting solution for the local search procedure with the hope of generating a new local 

optimal solution that will be measured against the former local optimal solution to 

determine if it will be accepted as the new best solution. Still using the TSP, a 

perturbation procedure for the TSP can be a 4-opt move (especially if 2-opt or 3-opt is 

the primary local search procedure), also known as the double-bridge move (Lourenco 

et al., 2010). In ILS, great care is taken before choosing a perturbation procedure; 

when the strength of perturbation (often measured as the number of changes made to a 

local optimal solution) is too strong, the ILS procedure is reduced to a random restart 

and if it is too weak, the local search procedure may undo the perturbation. Therefore, 

optimising a perturbation procedure to get a right balance in its strength is very crucial 

to the successful implementation of an ILS algorithm to a problem domain. 

Acceptance Criterion: An acceptance criterion for an ILS algorithm may be designed 

to force the objective cost to decrease/increase (the latter for maximisation problems) 

or to disregard the objective cost of the most recently visited local optimum (Lourenco 

et al., 2003). The first type of acceptance criterion accepts the newly found local 

optimal solution S′best if its objective cost is better than that of the currently best 

solution Sbest found. This type of acceptance criterion is defined for minimisation 

problems as: 

                    (           
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   (     
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The second type called Random Walk always accept the newly found local optima 

regardless of the objective cost of the current best solution just to explore the search 

space; it is defined as: 

                                   (           
         )       

                                                      (   ) 

The two very different acceptance criteria just discussed are not the only ones 

available, there is also an acceptance criterion based on Simulated Annealing which 
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will be called SA_Accept(.) for the purpose of distinguishing it from others. An ILS 

procedure with the SA_Accept(           
         ) criterion always accepts S′best if its 

cost is better than that of Sbest, otherwise it is accepted with the probability function 

given in (2.4) identical to the acceptability of a new solution found in an SA run. 
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Better(.), RW(.) and SA_Accept(.) acceptance criteria have all been experimentally 

tested and compared on both small and medium instances of a UCTP; the 

SA_Accept(.) criterion emerging as the most efficient among the three (Rossi-Doria, et 

al., 2003). The last statement indicates that SA_Accept(.) which attempts to strike a 

balance between intensification and diversification is a promising one for an ILS 

implementation for tackling the UCTP. On a final remark, the first two extremely 

different acceptance criteria favour extreme intensification and diversification 

respectively. 

2.2.3 Ant Colony Optimisation Algorithm 

Ant Colony Optimisation (ACO) algorithm is a population-based metaheuristics that 

mimics the behaviour of real ants to solve combinatorial optimisation problems. Ever 

since the emergence of the first variant; the Ant System (Dorigo et al., 1996), 

improvements have been made which have given birth to other notable variants such 

as Ant Colony System (Dorigo & Gambardella, 1997), Rank-based Ant System 

(Bullnheimer et al., 1997), and the MAX-MIN Ant System (Stuetzle & Hoos, 2000). 

Natural ants communicate through a substance called pheromone; this communication 

pattern is the main driving force behind the ACO algorithm; artificial ants also deposit 

‗pheromone‘ on the paths of the construction graph they tour with a proportion relative 

to how well the path is to the goal. The algorithm is presented in ALGORITHM 2.3. 

ALGORITHM 2.3: ACO ALGORITHM 

procedure ACO() 

    initialise Ants 

    initialise pheromone 

    while stopping criteria not met do 
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        each ant k constructs a solution 

        apply a local search procedure (optional) 

        update pheromone 

    end while 

    return best solution 

end procedure 

In constructing a solution to a given combinatorial optimisation problem (COP) using 

the ACO metaheuristics, the following procedures are followed: 

Initialise Parameters: The required number of ants in the colony is initialised and 

also the pheromone values on the edges of the construction graph are initialised to 

typically a very small value in the range (0, 1]. Pheromones on graph edges in the 

MAX-MIN Ant System (MMAS) variant are initialised to the maximum pheromone 

value which must have been predetermined. 

Solution Construction: In an iterative step, an ant k constructs a solution guided by 

the pheromone values and the heuristic information on the construction graph edges. 

Using the TSP as an example, an ant k chooses the next city to visit through a 

stochastic mechanism; the probability of k at location i choosing a location j is given 

as: 
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The parameters α and β control the weight of pheromone and heuristic information 

respectively; if α is set to zero then only the heuristic information will be used to guide 

the ant k and setting β to zero means only the pheromone is used to guide the ant. The 

setting α = 1 and β = 5 have been proposed as an optimised combination for the TSP 

after experimental tests (Dorigo et al., 1996). 
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After the probability of choosing a city ci to visit next in the tour construction          

is calculated, the roulette-wheel selection procedure (similar to the one in GA) is used 

to determine the next city that the ant will eventually visit (Dorigo & Stuetzle, 2004). 

Equation (2.5) is used in the most basic form of ACO; the Ant System (AS). Ant 

Colony System (ACS) uses the pseudo-random proportional rule which selects the city 

with the highest desirability value calculated based on (2.5) if a condition is satisfied 

or uses the roulette-wheel selection procedure of the AS if otherwise. More on this rule 

can be gotten from Dorigo et al., (2006) and Dorigo and Gambardella (1997). 

Pheromone Update: In the early ACO algorithm, pheromone update is done after all 

ants have constructed a tour (given TSP as the COP). Pheromone update involves two 

processes; pheromone evaporation to prevent accumulation and pheromone deposition. 

The pheromone trail for the next iteration in Ant System is updated according to the 

formula: 

                                (   )  (   )     ( )  ∑    
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The expression at the LHS of the addition sign on the RHS of (2.6) is the evaporation 

procedure and the expression on the RHS of the operator is the pheromone deposition 

which might evaluate to zero if no ant traversed the given edge (i, j) at the last 

iteration. At the end of all ants‘ construction processes, the best tour found during the 

run is returned as the solution. Pheromone update in ACS is a little bit different from 

that of AS; each ant performs local pheromone update after constructing a solution on 

the last edge traversed (Dorigo et al., 2006). Then the global pheromone update on all 

edges of the construction graph immediately follows the end of solution constructions 

by all ants in an iterative procedure; performed by the ‗iteration-best‘ ant (kib) or the 

‗global-best‘ ant (kgb). The ant that constructed the best solution (a solution with the 

shortest distance) in the last iteration is called iteration-best ant called while the ant 
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that constructed the best solution since the run of the algorithm started is called the 

global-best ant. 

Local pheromone update in ACS is achieved through the following: 

                              (   )  (   )     ( )                                                        (   ) 

       

                        

                 

Global pheromone update is done according to the following equation using Lbest 

which is the length of the tour constructed by kib or the length of the tour constructed 

by kgb depending on the algorithm implementer‘s choice: 
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MMAS has a pheromone update uniquely different from AS update rule, only the 

‗best‘ ant updates pheromone and the update is only done once at the end of iteration 

unlike the update rule in ACS. In MMAS, the resultant pheromone    (   ) is bound 

by the maximum pheromone      and the minimum pheromone     . The pheromone 

update rule in MMAS is done by the following equation using Lbest which is the tour 

length of kib or the tour length of kgb: 
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Pheromone update is completed via 2.11 to force the pheromone to be in the range 

[         ] as shown below: 
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                                           (    ) 
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Equation (2.11) controls the pheromone trail; stopping it from exceeding the bounds 

             . Ultimately this procedure was designed to avoid early stagnation of 

the search (Stuetzle & Hoos, 2000). The comparison of the mode of operations of the 

main variants of the ACO algorithm is presented in Table 2.2. 

Table 2.: Comparison of the Modi Operandi of the main variants of the ACO 

algorithm 

Algorithm Solution 

Construction 

Update Rule Method of Update 

Ant System Select next solution 

component via 

(2.5) 

Ant system 

update rule 

All ants in the problem 

space update pheromone 

trails after every 

iteration. 

Ant Colony 

System 

Uses the pseudo-

random 

proportional rule 

Iteration-best or 

best-so-far 

Each ant applies the 

local pheromone update 

rule on the last edge 

traversed and then the 

global pheromone 

update is done by the 

iteration-best or the best-

so-far ant. 

MAX-MIN Ant 

System 

Select next solution 

component via 

(2.5) 

Iteration-best or 

best-so-far or 

both 

Only at the end of 

iteration are pheromone 

trails updated by the 

iteration-best or best-so-

far ant. 

Rank-based Ant 

System 

Select next solution 

component via 

(2.5) 

Elitism Ants are sorted by the 

quality of solutions they 

generated in the last 

iteration; therefore the 

―best‖ ant with a rank of 

1 takes its place on top 

of the list. The first ω 

ants in the rank are used 
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to make weighted update 

of pheromone trails. The 

weight controls the level 

of update that can be 

done on the pheromone 

trails and it is inversely 

proportional to the rank 

of the ant. 

 

2.2.4 Tabu Search 

Tabu Search is a powerful method applied to combinatorial optimisation problems to 

help guide a local search method from being trapped in local optima (Glover, 1990). 

The method was first introduced in a paper by Glover (Glover, 1986; Glover & 

Laguna, 1997) where the term metaheuristics was also coined. The tabu search 

algorithm had been employed to many COPs due to its wide range of success and 

acceptance (Gendreau & Potvin, 2010). An interesting aspect in Tabu search that 

makes it so successful is its ability to drive a local search procedure from getting stuck 

in local optima by allowing non-improving moves. It is also capable of preventing a 

local search from cycling back to previously visited solutions through the use of 

memories called tabu lists. The algorithm is presented in ALGORITHM 2.4. 

ALGORITHM 2.4: TABU SEARCH 

procedure TS( ) 

    s ← initial solution 

    sbest ← s 

    while termination criterion not met do 

        identify the neighbourhood set N(s) 

        identify the tabu set T(s)   N(s) 

        identify the aspiration set A(s)   N(s) 

        determine the candidate set C(s) = N(s)   A(s)   T(s) 

        s ← best candidate in C(s) 

        if f(s) < f(sbest) then 

            sbest ← s 
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        end if 

    end while 

    return sbest 

end 

An initial solution is generated which is used to initialise the best solution found so far. 

Then the tabu search algorithm properly starts at the execution of the while loop; the 

neighbourhood N(s) of the current solution s is determined, the set of solutions in N(s) 

which are forbidden are marked into a set called the tabu set T(s) and then the set of 

solutions in the tabu set which can be allowed due to the aspiration criterion; A(s) is 

also determined. Then the candidate list C(s) containing solutions that are eligible for 

consideration is scanned for the best candidate (solution with the best objective cost). 

It should be noted that the best picked may not be the best in the original 

neighbourhood set N(s) due to the removal of some solutions which are marked tabu; 

this is one of the clever ideas in tabu search; selecting non-improving solutions. The 

best candidate in C(s) called s is evaluated against the current best solution and 

replaces the current best if it is better than it. The process continues until a certain 

stopping criterion is met. 

Important concepts in Tabu search include Search space, Neighbourhood Structure, 

Tabu Lists and Aspiration Criteria (Gendreau, 2003). The search space is a common 

concept in local search and metaheuristics; it includes all possible solutions (feasible 

and infeasible) that may be visited during a search procedure. The next three concepts 

will be discussed one after the other as they relate to Tabu Search. 

Neighbourhood Structure: A neighbourhood structure defines the type of 

moves/adjustments made to a particular solution to generate different solutions. These 

new solutions generated from the current solution s are said to be in the neighbourhood 

of s (denoted by N(s)) or simply the neighbours of s. Still sticking with TSP, if for 

example in a 4-city problem, we have a current solution in a run to be ADCB; meaning 

the journey starts from city A, visiting other cities in the order specified before going 

back to A. The neighbourhood of ADCB are as follows: DACB, CDAB, BDCA, 

ACDB, ABCD and ADBC. The neighbourhood structure employed here is by a simple 

swapping of two city positions, for example the neighbour CDAB was simply 

achieved by swapping positions 1 and 3 of the current solution. An alternative 
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neighbourhood structure for the TSP might be the insertion of a city in a tour to a 

different position. For example moving city C from its position to position 2, we have 

the neighbour ACDB. In practical situations, if the number of candidate solutions is 

large, only a subset of N(s), called candidate list is considered (Gendreau, 2003; Dreo 

et al., 2006; Gendreau & Potvin, 2010). This can be achieved by using a probabilistic 

approach to select possible solutions that will be in the candidate list thereby reducing 

the length of the tabu list (Gendreau & Potvin, 2010). The probabilistic approach can 

be detrimental to finding excellent solutions if not properly done, in fact selection of 

an effective procedure for generating the candidate list is what makes a sound 

implementation of a Tabu search (TS) procedure different from a naive one (Gendreau, 

2003). 

Tabu List: This is the hallmark of any TS algorithm. The tabu list contains solutions 

or moves that led to these solutions that have been marked ‗forbidden‘ unless they 

fulfil the aspiration criterion. The length of a tabu list in most cases affects the tenure 

of an item in the tabu list. The criteria that make an item ‗worthy‘ of being put into a 

tabu list must be very sound unless the search may be forced to stagnate without 

getting near an optimal solution. In practice, the tenure of each item in the tabu list is 

updated from time to time, typically whenever a new solution is found. An item in a 

tabu list gets its tenure decremented if a new item is pushed into the tabu list; this 

particular item may finally be free being ―taboo‖ if its tenure finishes (finally reduced 

to zero). 

Aspiration Criteria: Tabu lists are essential to tabu search but may be too strong; 

blocking the search from exploring promising regions of the search space. Aspiration 

criteria are used to overcome the problem associated with tabu lists; annulling the 

effect of a tabu status on a possible solution. The most common aspiration criterion 

used is the acceptance of a solution that its objective cost is better than that of the best 

solution found so far even if it is in the tabu list. 

Example 2.1: The TS algorithm will be demonstrated in this example to solve an 

Asymmetric TSP of 7 cities, by permutation, we have 5040 possible solutions in the 

search space and only 7 are optimal. Given the distance matrix between each city in 

the set {1, 2, 3, 4, 5, 6, 7}: 
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0  8 17 6 1 14 3 

5 0 3 19 11 12 1 

6 1 0 7 3 6 2 

4 18 4 0 11 5 8 

1 15 8 12 0 9 3 

14 11 6 8 4 0 2 

14 10 20 13 8 17 0 

 

The following tabu search settings are used: 

Tabu tenure: 3 

Neighbourhood structure: swapping of two city positions 

∆cost = f(new) – f(current) 

Iteration 0: Initial solution s = best solution so far sbest = (1 4 5 2 3 6 7) of cost 57, at 

this point the Tabu List T = Ø and the search starts since s is not the optimal solution. 

Iteration 1: The value of ∆cost for each swap (i, j) is calculated, the first ten best 

moves (in no particular order) are displayed in Table 2.3. 

Table 2.: Iteration 1 

Move (1,4) (1,5) (4,7) (3,5) (5,6) (5,7) (2,6) (2,3) (4,5) (2,4) 

∆cost -13 -14 -10 -10 -12 -19 -9 -3 -1 0 

The best move (5,7) is made and then a new best solution is found since the move 

leads to a new objective cost (38) better than the one previously known (57). Finally 

the move (5,7) is marked tabu making the positions of cities 5 and 7 not permitted to 

be swapped with each other in three iterations. Current solution s = (1 4 7 2 3 6 5). 

Iteration 2: In this iteration, 4 moves will improve the objective cost. The best of 

them; move (3,7) is made since it made a gain of 4 leading to a new best (1 4 3 2 7 6 5) 

with a cost of 34 and then move (3,7) with a tenure of 3 (a new entry) is placed into the 

tabu list, the move (5,7) in the tabu list gets its tenure decremented to 2. Possible 

moves are displayed in Table 2.4. 
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Table 2.: Iteration 2 

Move (1,4) (1,7) (1,6) (4,7) (2,4) (4,6) (4,5) (3,7) (6,7) (3,6) 

∆cost 4 3 7 10 -1 10 -3 -4 -2 8 

Iteration 3: No move leads to a solution better than the current best, so the sideways 

move (6,7) is made which is put into the tabu list with tenure of 3. The possible moves 

are displayed in Table 2.5. 

Table 2.: Iteration 3 

Move (1,7) (1,6) (4,6) (4,5) (3,7) (3,6) (2,7) (2,6) (6,7) (5,6) 

∆cost 10 4 13 6 4 13 5 6 0 9 

Tabu?     Yes(3)      

At this point, s = (1 4 3 2 6 7 5), but sbest remains (1 4 3 2 7 6 5). 

Iteration 4: This stage also does not feature any move that will improve the objective 

cost. Possible moves are displayed in Table 2.6. 

Table 2.: Iteration 4 

Move (1,6) (1,5) (2,4) (4,5) (2,3) (3,6) (2,6) (2,5) (6,7) (5,7) 

∆cost 4 12 0 7 10 2 3 5 0 10 

Tabu?         Yes(3) Yes(1) 

Two sideways move (2,4) and (6,7) present themselves, but the move (2,4) is selected 

since it is not tabu and s becomes (1 2 3 4 6 7 5), sbest remains the same. At this point 

the tenure of move (5,7) becomes 0 and by virtue of that, it is removed from the tabu 

list meaning the positions of cities 5 and 7 can now be swapped again! 

Iteration 5: The two best options are move (2,4) and move (1,3), the former which is 

the better option is in the tabu list with a tenure of 3 (the latest move made). The 

possible moves are displayed in Table 2.7. 

Table 2.: Iteration 5 

Move (1,3) (1,6) (1,7) (2,4) (2,5) (3,6) (3,7) (4,6) (4,5) (5,7) 

∆cost 1 11 9 0 4 9 3 8 8 10 

Tabu?    Yes(3)   Yes(1)    
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Move (1,3) is made leading to s = (3 2 1 4 6 7 5) with an objective cost of 35, there 

was no choice since it is the best non-tabu move available. 

Iteration 6: Accepting the non-improving move in the last iteration appears to be a 

master stroke, now we move from a dead-end to a promising path, the move (2,5) will 

improve the current solution‘s objective cost by 5 and the current best solution‘s 

objective cost by 4. Possible moves are displayed in Table 2.8. 

Table 2.: Iteration 6 

Move (2,3) (1,3) (3,6) (3,7) (2,4) (2,5) (1,6) (1,7) (4,5) (5,7) 

∆cost 10 -1 10 3 14 -5 9 8 0 9 

Tabu?  Yes(3)   Yes(2)      

The new solution after making the move = (3 5 1 4 6 7 2) with an objective cost of 30, 

this solution also overrides the current best known so far since it has a better objective 

cost. 

Iteration 7: A new best (7 5 1 4 6 3 2) gotten by making the move (3,7) is found at 

this iteration. The new best is the global optimal solution since no improvement is 

made in subsequent iterations and the Tabu search ends. Possible moves are displayed 

in Table 2.9. 

Table 2.: Iteration 7 

Move (1,3) (3,6) (3,7) (2,3) (1,5) (4,5) (2,5) (1,6) (4,6) (2,4) 

∆cost 8 9 -2 16 9 6 5 10 12 8 

Tabu? Yes(2)      Yes(3)   Yes(1) 

The new best (7 5 1 4 6 3 2) with an objective cost of 28 is returned. In just 7 

iterations, the tabu search procedure found an optimal solution to the TSP by making 

effective use of memory to prevent cyclic moves. 

2.2.5 Simulated Annealing 

Simulated Annealing (SA) is analogous to physical annealing in Physics; in fact that is 

where the inspiration of the algorithm lies (Aarts et al., 2014). Like TS, it was 

designed to make a local search procedure escape local optima. The key difference 

between TS and SA is that while TS considers multiple candidates in a solution‘s 

neighbourhood, the SA algorithm considers only one. The candidate solution in SA is 
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outrightly accepted if its objective cost is better than that of the best solution found so 

far otherwise it is accepted based on a probability function given in (2.12).  

                                                          
  

 (       )
                                                                         (    ) 

The Simulated Annealing algorithm is described in ALGORITHM 2.5. 

ALGORITHM 2.5: SIMULATED ANNEALING 

procedure SA( ) 

    initialise initial solution S   Ω 

    set initial temperature T 

    tk = T 

    k = 0 

    do 

        set repetition counter c = 0 

        do 

            S′ ← a generated solution in N(S) 

            ∆(S′, S) ← f(S′) – f(S) 

            if ∆(S′, S) ≤ 0, then S ← S′ 

            if ∆(S′, S) > 0, then S ← S′ with (2.12) 

            c ← c + 1 

        until c = ck 

        k ← k + 1 

        tk ← α * tk (cooling schedule) 

    until a stopping criterion is met 

end 

Ω is the search space, k is the temperature-change counter, and α is the cooling rate of 

the annealing procedure. The algorithm presented above is patterned after the one in 

Nikolaev and Jacobson (2010). 

An initial solution is generated (either randomly or through a greedy heuristic) and the 

initial temperature T is set. Before entering the outer loop, tk (temperature at iteration 

k) is set to T and the algorithm run begins. The repetition counter c is set to zero before 

the execution of the inner loop. Inside the inner loop, the following processes take 
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place: (1) A solution S′ in N(S) is generated (2) the delta-value of S′ is evaluated (3) S′ 

is accepted as the new solution if its delta-value is less than or equal to zero (better or 

equivalent to the previously known best solution) (4) S′ is accepted based on (2.12) if 

its delta-value is greater than zero (worse than the currently best known solution) (5) 

the repetition counter is incremented. 

If the predefined total number of iterations for the inner loop is met then the loop 

execution stops or continues otherwise. The stopping criterion for the inner loop can 

also be when a certain quality in a solution has been found (Nikolaev & Jacobson, 

2010). The temperature change counter is incremented prompting an update of the 

temperature (cooling schedule tk). At the end, we have c0 + c1 + c2 + … + ck total 

iterations executed. If ck = 1 for all k, then the temperature changes at each iteration. 

The temperature is updated using a cooling rate α where 0 < α < 1. The cooling rate 

must be somehow close to 1 to make sure the temperature decreases at a very low rate 

to avoid early convergence of the search. 

2.2.6 Applications of Metaheuristics 

In this section a list of some recent applications of these metaheuristics discussed 

earlier are presented with their references given in Table 2.10. 

Table 2.: Recent Applications of Metaheuristics 

PROBLEM ALGORITHM(S) REFERENCE 

Open Shop Scheduling ACO: Beam-ACO (Blum, 2005) 

Knapsack Problem ACO: Binary Ant System (BAS) (Kong et al., 2008) 

Decision Tree Induction ACO: Ant-Tree-Miner (ATM) (Otero et al., 2012) 

TSP ACO: Individual Variation & 

Routing Strategies (IVRS), ACS-

TSPTW 

(Jun-Man & Yi, 2012), 

(Cheng & Mao, 2007) 

EA: Generalised Chromosome 

Genetic Algorithm (GCGA) 

(Yang et al., 2008) 

Vehicle Routing Problem (VRP) ACO: ACS, Multi-ant Colony 

System (MACS) 

(Montemanni et al., 

2005), (Gajpal & 
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Abad, 2009) 

ILS (Cuervo et al., 2014), 

(Silva et al., 2015), 

(Morais et al., 2014) 

TS (Jia et al., 2013) 

Integer Programming & SA (Wang et al., 2015) 

Protein Folding ACO: ACO-HPPFP-3 (Shmygelska & Hoos, 

2005) 

Graph Colouring ACO: Ant System, ANTCOL(LS) (Bui et al., 2008), 

(Dowsland & 

Thompson, 2008) 

ILS (Caramia & Paolo, 

2008) 

TS: Multistart Iterated Tabu 

Search (MITS) 

(Lai & Lu, 2013) 

Quadratic Assignment Problem 

(QAP) 

EA: GA (Tsutsui & Fujimoto, 

2009) 

TS vs. SA (Hussin & Stuetzle, 

2014) 

ILS (Stuetzle, 2006) 

Permutation Flowshop Problem 

(PFSP) 

ILS (Dong et al., 2009) 

Job Shop Scheduling Problem 

(JSP) 

TS & Path Relinking (Peng et al., 2015) 

Cyclic Bandwidth Problem 

(CBP) 

TS (Rodriguez-Tello et al., 

2015) 

Hybrid Flowshop Scheduling TS (Bozejko et al., 2013) 

Clustering EA: Grouping Genetic Algorithm 

(GGA) 

(Hong et al., 2015) 
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2.3 COMPARISON OF UCTP TO GRAPH COLOURING 

Graph Colouring Problem (GCP) is defined as the following: 

Given a simple and undirected graph G (V, E) containing a set V of vertices and a set 

E of edges between the vertices. Then an optimal solution to the problem is to colour 

the vertices with k colours such that adjacent vertices do not get coloured by the same 

colour and the value of k is minimum. A graph is said to be k-chromatic if the least 

number of colours that can be used to colour it is k. A simple timetabling problem 

(with only event-clash constraints put into consideration) can be easily converted to a 

GCP. To make a successful conversion, the events are seen as vertices and edges are 

created between a pair of conflicting events. Each colour used in the resulting GCP 

solution represents each timeslot; therefore a vertex v coloured with a colour b is 

equivalent to an event v placed in a timeslot b. 

Example 2.2: There are six committees in Computer Science Department who are to 

meet during the first week of classes in a new semester and a schedule must be made 

for their meetings. The members of each committee are listed below: 

Undergraduate Education (U): Dr. Oluwagbemi, Dr. Olajide, Dr. Oyelade, Dr. Azeta 

Graduate Education (G): Dr. Daramola, Dr. Adebiyi, Dr. Azeta, Prof. Misra 

Colloquium (C): Dr. Oladipupo, Dr. Marion, Dr. Okuboyejo 

Library (L): Dr. Omogbadegun, Dr. Oluwagbemi, Dr. Oladipupo 

Staffing (S): Dr. Daramola, Dr. Marion, Dr. Adebiyi, Dr. Olajide 

Promotion (P): Dr. Adebiyi, Dr. Omogbadegun, Prof. Adebiyi 

It should be noted by the reader that the generated committee is simply for the purpose 

of this work and not seen as the probable one if such committees exist. 

Back to Example 2.2, if there are only three timeslots available for these committees to 

meet, then a schedule is to be made using these available timeslots such that no two 

committees with at least a common member share the same timeslot. 

The scheduling process starts by identifying conflicting events (committees with at 

least one member in common) and the committees Colloquium and Library are such 

events. A graph is drawn to represent the problem fixing the right edges between the 

conflicting event-pairs and then a solution is provided (appropriate colouring of the 



30 
 

graph such that no two conflicting vertices share the same colour). The solution 

process of this problem example is illustrated in Figure 2.1(a-c). 

 

 

 

 

  

 

2.4 REVIEW OF METHODS USED TO TACKLE UCTP 

In this section a list of research methods like the use of metaheuristics especially the 

ones discussed in Section 2.2 and other methods that have also been used like Case-

Based Reasoning (CBR), Integer Linear Programming (ILP) and Constraint 

Programming (CP) are discussed on how they have been used to solve different 

instances of the UCTP. 

2.4.1 Simulated Annealing 

Basir et al., (2013) used a simulated annealing algorithm to tackle the UCTP instance 

of a Malaysian university, considering parameters such as number of subjects, number 

of timeslots, number of class rooms, number of teachers, number of students and 

number of workloads. Unlike some other approaches where lecturers‘ course-clash is 

not given a consideration, they considered this scenario in their hard constraints 

formulation. Their approach spans through five stages: 

(1) Data Collection: They achieved this by conducting interviews with 

administration staffs, teachers and students and analysed data from previous 

semesters over a two-year period. 

(2) Formulation: They used the existing fitness function to make updates on the 

hard and soft constraints of their problem instance. 

(3) Model: Modelling of the fitness function with the SA method 

(4) Testing: the algorithm was tested with their proposed fitness function. 

   

Figure 2.1(a): The 

scheduling problem 

converted into its GCP 

equivalent 

Figure 2.1(b): The solved 

GCP 
Figure 2.1(c): The real 

schedule converted from the 

solved GCP 
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(5) Implementation: The SA method guided by their fitness function was 

implemented to solve their problem instance.  

2.4.2 Evolutionary Algorithms 

Sigl et al., (2003) implemented a genetic algorithm procedure for the UCTP, the 

algorithm starts from an infeasible solution to a feasible one. In their approach, the 

fitness of an i
th

 individual in the population denoted as popi is calculated as the 

following: 

                                (    )                                                                   (    ) 

Where ncf represents the number of conflicts in the individual timetable and K 

represents the weight of penalising this constraint. The variable Quality which simply 

means the quality of the timetable is determined by ‗early schedule‘ of classes; a 

timetable with a lot of classes scheduled in the early hours of the day like in the 

morning will have a very high quality rating. The main drawback of the quality 

measure in this method is that the amount of free periods for the students will likely be 

reduced rendering it not applicable for a problem domain where free periods are 

favoured. 

Rossi-Doria and Paechter (2004) implemented a memetic algorithm on benchmark 

instances of the International Timetabling Competition comparing their results with the 

first four best results recorded at the competition. 

The Grouping Genetic Algorithm (GGA) which is a specialised form of GA for 

grouping problems has been applied to the UCTP (Lewis & Paechter, 2005). The 

timetable solution representation is done through a two-dimensional matrix Tb(N(r) x 

N(t)) of N(r) rows and N(t) columns where N(r) is the number of rooms and N(t) is the 

number of timeslot. Therefore with this representation, an entry Tb(r, t) represents an 

event to be scheduled in room r and timeslot t; a blank entry means no event is placed 

in r and t. Their method restricts the search procedure to 45 timeslots, although they 

initially attempted scheduling events in t timeslots where t < 45 and then increment the 

timeslot as the solution process proceeds. Their method includes the regular features of 

a conventional genetic algorithm: recombination and mutation. 

Quarooni and Akbarzadeh-T (2013) also proposed a memetic algorithm to achieve the 

following: To test it with other existing algorithms and to study the significance of 
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evolutionary operators on some benchmark instances of the course timetabling 

problem. Their solution to UCTP is represented by a two-dimensional matrix of r x t 

dimension where r is the number of rooms and t is the number of timeslots. 

Their memetic algorithm combines the GA and the local search procedure using a 

population of size p, an initial population is created, the algorithm shuffles the events 

and timeslots of each timetable in the population to achieve diversity. These timetables 

in the initial population may contain a set of unscheduled events that are to be 

scheduled later in the course of the algorithm run. Three stages follow the initialisation 

of the population, they are: recombination, mutation and local search. The 

recombination operation has four steps: selection, injection, duplicate removal and 

reinsertion. The selection sub-stage randomly picked entries in the two timetables 

selected for ‗mating‘. At the injection sub-stage, the entries selected in parent are 

replaced by the corresponding entries in the second parent. The third sub-stage as the 

name implies involves removing duplicate events that might have been copied from 

the second combining parent. Reinsertion which is the final sub-stage of the 

recombination operator attempts to fix in unscheduled events into the timetable by 

selecting a feasible slot that each unscheduled event can be placed; and in case of 

multiple slots available, a slot is chosen at random. The recombination operator gets 

completed by applying the same four stages all over again; but this time reversing the 

roles of the combining parents to produce the second offspring. The last two stages; 

mutation and local search (which has three stages of its own: slot selection, shoving 

and reinsertion) immediately follow after recombination. These three stages are 

repeated until a feasible timetable is constructed. 

2.4.3 Tabu Search 

The Tabu Search metaheuristics has been employed to solve UCTP (Aladag et al., 

2009), although the major feature of the research presented in the paper was to explore 

and compare the effectiveness of four neighbourhood moves. The neighbourhood 

moves compared are simple (  ), swap (  ), mixed1 (  
 ) and mixed2 (  

 ).    
is 

characterised by moving an event to a different timeslot, the    swaps the timeslots 

of two randomly chosen events,   
  and   

  are combinations of the first two albeit in 

different ways. From their study,    and   
  which gave similar results were 

concluded to be the best neighbourhood moves for the Tabu Search approach for 

course timetabling. 
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Lü and Hao (2010) implemented an Adaptive Tabu Search (ATS) for curriculum-

based course timetabling (CB-CTT); a variant of UCTP. Their proposed algorithm 

spans through three phases; initialisation, intensification and diversification. In 

initialisation, a fast greedy heuristic is used to construct an initial feasible solution. 

Intensification is achieved by Tabu Search and then the perturbation feature of ILS is 

used to diversify the search when the TS algorithm cannot find a better solution 

anymore. From their report, ATS achieved better results than when only ILS or TS was 

used. 

The TS metaheuristics was also successfully applied to the UCTP instance of 

University of Dar es Salaam, Tanzania (Mushi, 2006). 

2.4.4 Ant Colony Optimisation 

Socha et al., (2002) became the first set of researchers to implement MMAS for 

UCTP. Following strictly the features of the MMAS algorithm, all pheromone values 

associated with an edge connecting each event to a timeslot on the construction graph 

are initially set to the maximum pheromone value. Some computations were carried 

out to determine how ‗hard‘ each event is
1
 and then the evaluations are used to sort the 

events in descending order of ‗hardness‘. In the construction phase, each ant completes 

an assignment of timeslots to events and an algorithm is used to make room 

assignments for these event-timeslot pairs. The best assignment Cb (the best solution 

constructed after comparing all solutions of the ants used) is selected for further 

improvement by a local search algorithm (Rossi-Doria et al., 2002). If Cb is better than 

the best solution found so far, then it replaces it and then the pheromone update takes 

place using the best assignment found so far. The algorithm run continues until a time 

limit is reached. In conclusion, it was reported from experimental tests that the use of 

heuristic information did not improve the quality of timetables constructed by the 

MMAS+LocalSearch procedure but it did improve the quality of the solution when no 

local search is used. The MMAS algorithm was tested against a random restart local 

search (RRLS) procedure to prove that the ants were actually involved in generating 

quality solutions (Socha et al., 2002; Socha, 2003) and the report showed that the 

MMAS approach outperformed the RRLS method. 

                                                           
1
 An event’s hardness is defined by the difficulty of finding a feasible timeslot for it 
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Socha et al., (2003) compared the performances of two of the most successful variants 

of ACO; ACS and MMAS on some instances of the UCTP. The MMAS was 

specifically designed to replace ACS as the ACO procedure used in the Metaheuristics 

Network (Blum & Manfrin, 2015) comparison of metaheuristics on UCTP instances 

(Rossi-Doria, et al., 2003). MMAS was more successful than ACS when their results 

were compared. 

ACO algorithm was used as the solution method for a Laboratory Exercises 

Timetabling Problem (LETP) by Matijas et al., (2010), implementing the MMAS 

variant. The MMAS method implemented outperformed the Greedy Randomised 

Adaptive Search Procedure (GRASP) procedure which was compared with it in terms 

of performance. 

Thepphakorn et al., (2014) implemented two of the newest variants of ACO; Best-

Worst Ant System (BWAS); based on AS and Best-Worst Ant Colony System 

(BWACS); based on ACS for the UCTP. They compared the performances of the two 

algorithms with other established ACO variants which included AS, ACS, MMAS, 

Elitist ant System (EAS) and ASRANK. From their results, BWACS recorded the overall 

best result among the seven compared variants although ASRANK, MMAS and ACS 

recorded the best results for the small instances used for comparison. 

2.4.5 Comparison of Metaheuristics 

EA, TS, ACO, ILS and SA were all compared in Rossi-Doria et al., (2003) as part of 

the research effort of the Metaheuristics Network. To make a fair comparison among 

all the algorithms implemented, the same solution representation and local search 

procedure proposed in (Rossi-Doria et al., 2002) were used for all metaheuristics 

approaches compared. They used a neighbourhood move (N1   N2) which is a 

combination of two neighbourhood moves N1 and N2. N1 moves a single event to a 

different timeslot while N2 swaps the timeslots of two events. The variant of EA 

implemented was the Memetic Algorithm while the variant of ACO algorithm 

implemented was the Ant Colony System (ACS). For the ILS implementation, three 

perturbation operators were considered: 

P1: place an event in a randomly chosen timeslot different from its present timeslot 

P2: swaps the timeslots of two events chosen randomly 
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P3: randomly choose between P1 and P2 for a 3-cycle of timeslots for three different 

events. 

Additionally, the three acceptance criteria discussed in section 2.2.2 were tested in the 

ILS procedure and the best configuration found from the experiment (by its level of 

performance) was the SA_Accept(.) acceptance criterion for each of the instance 

tested. 

In conclusion, ILS recorded the best performance while SA did not manage to 

construct any feasible solution in all the trials done on the two large instances of the 

problem considered. 

2.4.6 Hybrid Approach 

Hybrid approaches in UCTP involves the combination of two or more methods by 

selecting the features that make each individual method stand out for the hybridised 

approach. A combination of the Great Deluge Algorithm (GDA) and Tabu Search was 

proposed and implemented for the UCTP in Abdullah et al., (2009). The GDA for a 

brief introduction was introduced alongside the Record-Record Travel (RRT) 

algorithm in the same paper based on the success of a similar approach called 

Threshold Accepting (TA) (similar to simulated annealing) proposed earlier (Dueck, 

1993). The construction of an initial feasible solution was made by the least saturation 

degree (LSG) heuristic algorithm and two neighbourhood moves (applied if the former 

do not construct an initial feasible solution). The optimisation stage of their method 

encapsulates the two algorithms (GDA and TS), during this stage, hard constraints are 

not violated in order to maintain feasibility. The algorithm is described in 

ALGORITHM 2.6. 

ALGORITHM 2.6: HYBRID ALGORITHM (GDA & TS) 

Sinit ← initial solution by the constructive heuristic 

calculate f(Sinit) % fitness of Sinit 

Sbest ← Sinit 

while not termination condition do 

    GDbest ← GreatDeluge(Sbest) 

    TSbest ← TabuSearch(Sbest) 

    S* ← better(GDbest, TSbest) 
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    if f(S*) < f(Sbest) 

        Sbest ← S* 

    end if 

end while 

The first two lines of the algorithm set up the initial solution and also calculate its 

fitness making up the first stage of the algorithm. The best solution so far is initialised 

by the initial solution at this stage before the improvement stage (while loop) kicks off. 

The improvement stage is iterated until certain termination criteria are met. The 

hybrid-pair of algorithms; GDA and TS are run independently on the best solution 

found so far and their best results are compared, the better of the two is used to set the 

intermediate best solution (S*). If the fitness of S* is better than that of Sbest then it is 

accepted as the new best solution otherwise it is rejected. 

Yassin et al., (2013) hybridised the Tabu Search and Non-Linear GDA (an extension 

of GDA) to tackle UCTP and compared the result of their approach with that of 28 

other state-of-the-art methods. Their method incorporates one of the key features of 

Tabu Search; the tabu list with a tabu tenure of 6 which was the best after considering 

other tabu tenures in the set {2, 4, 5, 7, 8} according to the researchers. Three tabu lists 

were used from their report, each one specified for each neighbourhood move used in 

the research; therefore if an event e is involved in a neighbourhood move Nk that 

reduces the objective cost, it is placed in the tabu list Tk associated with Nk. The tabu 

list only guides the Non-Linear GDA from being trapped in local optima and at the 

same time influencing it in choosing diverse components apart from the ones in the 

tabu list to improve solution quality. From their result presentation, their approach 

ranked second using five small instances, five medium instances and a large instance 

of the UCTP to make the judgement. 

Three different methods; Tabu Search, Variable Neighbourhood Descent (VND); 

similar to ILS and Simulated Annealing were combined in Chiarandini et al., (2006) to 

form a hybridised method for the UCTP. They made use of four neighbourhood moves 

N1, …, N4 for their approach. Their method implemented 60 construction heuristics for 

building 60 different initial assignments and then each assignment is improved by a 

local search procedure specifically designed to find a feasible solution (satisfy all hard 

constraints). The best derived feasible solution from the 60 construction heuristics is 
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then selected to be improved further by minimising its soft constraints violations. This 

method was reported to comfortably outperform the best method submitted to an 

International Timetabling Competition (ITC); which 24 algorithms made entries. 

ALGORITHM 2.7 describes their method: 

ALGORITHM 2.7: HYBRID METHOD IN CHIARANDINI et al., (2006) 

Input: Ik   I % an instance of the problem 

Pre_processing(Ik) 

begin 

    T → Ø 

    t ← Build_Initial_Solution(h) 

    t ← Find_Feasible_Solution(t) 

    Q(t) ← Assess(t) 

    T → T   {t} 

repeat   h   H 

t* ← Select_Best(T) 

t* ← Optimise(t*) 

Output: t* % best timetable constructed 

T: set of assignments (timetables) initially constructed from the construction heuristics 

Q(t): returns the quality of a given timetable t 

H: a set of construction heuristics 

t*: the best in T 

Each construction heuristic hi (i = 1, 2, …, 60) is used to generate an initial timetable ti 

which will be made feasible by Find_Feasible_Solution(t); a local search procedure 

that initially uses the first two neighbourhood moves (N1 and N2) to improve the 

quality of a timetable. The Tabu Search procedure is triggered if the combination of N1 

and N2 fails to produce a feasible solution after five iterations. The tabu search 

procedure uses a local search that only makes moves based on N1. When all t in T are 

made feasible, their qualities are evaluated and then the best one (t*) is selected for 

optimisation by the procedure Optimise(t*). In optimising t*, the VND algorithm 

which combines all the neighbourhood moves is used to ease the soft constraints 

violations without violating any hard constraints. The VND runs until no improvement 
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in the solution is found and then the control is passed to the SA procedure. The 

possibly further improved t* by Optimise(t*) is returned as the solution of the 

hybridised method. 

Tuga et al., (2007) applied a hybrid simulated annealing with kempe chain local search 

move for the UCTP. Their hybrid approach called Hybrid Simulated Annealing (HSA) 

uses a combination of LSD and Least Degree (LD) heuristics to generate an initial 

feasible solution. The HSA method is activated after the completion of the heuristics 

used to generate the initial solution. In HSA, SA is the first procedure which attempts 

to reduce the number of soft constraint violations (#scv). The kempe chain move is 

then triggered if the SA procedure does not find an improving solution after a pre-

defined number of steps. Finally, the initial temperature which is an integral part of 

any SA algorithm was set to a value such that the probability of accepting a worse 

solution is adequately high. The temperature is updated as follows: 

                                        (   )  
 

(  ( )⁄ )   
                                                           (    ) 

                     

The number of trials for each temperature is set to a * |V| where V is the set of vertices 

in the construction graph of the problem. The value of a is initially set to 10 and then 

linearly increased after every maximum number of iterations for each temperature. 

A hybrid method can also be composed of Constraint Programming (an operational 

research method) and Simulated Annealing, this pair has been used to tackle 

examination timetabling (Duong & Lam, 2004). Since the focus of this work is on the 

UCTP, details about this will not be captured here. 

2.4.7 Case-Based Reasoning 

In case-based reasoning (CBR), old experiences are often employed to analyse and 

solve new problems or used to evaluate the solutions proffered to new problems. A 

strong example how case-based reasoning is done is illustrated in (Kolodner, 1992). It 

can also mean reworking of old solutions to meet new situations and using the old 

cases to explain or analyse new solutions (Kolodner, 1992). 
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Edmund Burke is one of the leading names when it comes to CBR and course 

timetabling, in his work along with three other researchers (Burke et al., 2001), he 

experimented on the CBR approach and claimed that high quality timetables can be 

retrieved from similarly existing timetables with little effort (Burke et al., 2001). The 

fitness function for a timetable generated for the new case is given as: 

                                   (          )                                              (    ) 

       

                                           

                                   

                                           

To generate a timetable for the new case, the following processes are made: 

(a) Similarity Measure: They evaluated the similarity between a new case Cnew and 

a case Cold in the case base. This similarity measure takes into account the cost 

of substitutions, insertions and deletions of vertices and edges to and from the 

new case. 

(b) Branch and Bound technique: The retrieval process implemented in this work 

need to search through the decision tree to find all cases in the case base which 

are similar to the new case. To reduce computation time, the branch and bound 

procedure is used to trim the size of the tree during retrieval. 

(c) Reuse and Adaptation: Matched courses are substituted while the unmatched 

courses in the retrieved case are deleted. Courses that violate the constraints in 

the newly constructed timetable are placed in an unscheduled list; sorted in 

descending order of placement difficulty. The same is done for courses in the 

new case that are not yet scheduled.  

Finally, the unscheduled courses are tried to be placed using a graph heuristic method; 

then the timetable with the least constraints violations is picked as the solution for the 

new case. 

Another CBR method mainly governed by heuristics has been used to tackle the UCTP 

in Burke et al., (2006). Other papers published where CBR method has been used for 

the UCTP and Examination Timetabling include (Burke et al., 2006) and (Petrovic et 

al., 2007) respectively. 
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2.5 REVIEW OF EXISTING TIMETABLING SYSTEMS 

This section is similar to the last but differs from it since some of the research papers 

mentioned in the last section applied their algorithms to generated instances rather than 

real-world instances of the UCTP. The papers reviewed here used their methods to 

tackle the UCTP instance of their institutions and reported that the working system is 

being used in their institutions for timetable construction on a regular basis. 

2.5.1 UniTime 

UniTime reported in Mueller et al., (2010) is an interactive timetabling system 

developed and applied successfully at Purdue University. It is a web-based system 

using the Enterprise Edition of Java (J2EE) and an XML interface for communicating 

with other systems used by a University. The system does not only provide schedules 

for UCTP but also for examination timetabling problem and student sectioning 

problems. These three problems are modelled as Constraint Satisfaction Problems 

(CSPs) and the major goal of the system is to make changes to a timetable when 

inevitable requests are made. 

The system uses colours to mark timeslots and rooms for the following classes: 

Prohibited, Preferred, Strongly Preferred, Discouraged and Strongly Discouraged. The 

following are the possibilities during a user‘s interaction with UniTime: 

(1) Commit a change made to the timetable 

(2) Abandon a change made to the timetable 

(3) Approve a suggestion made by the system 

(4) Select a placement for an event after ignoring possible suggestions made by the 

system 

(5) Remove a selected assignment 

(6) Select another event to replace one of a conflicting pair of events 

The system documentation and great details of UniTime can be found on the website: 

http://www.unitime.org/. 

2.5.2 MAS_UP-UCT 

MAS_UP-UCT stands for ―Multi-Agent System for University Course Timetable 

Scheduling‖. This is a multi-agent based system for solving the UCTP (Oprea, 2007). 
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The architecture of the system developed which is depicted in Figure 2.2 assumes there 

are five faculties (F1, …, F5) in the University with each one having its own scheduler 

multi-agent system (MAS-Fi) for scheduling courses in the faculty. The main scheduler 

agent (MScheduler Agent) is used to allocate rooms. Each faculty scheduler agent is 

designed to communicate with others to avoid critical situations that may arise when 

scheduling courses that Professors teach because Professors most times teach in more 

than one faculty. 

 

Figure 2.2: MAS_UP-UCT architecture (Source: Oprea, 2007) 

2.5.3 Automated System for University Timetabling 

The system (Murray & Mueller, 2006) developed here is very similar to UniTime in 

interface and architecture. The constraints-based solver utilizes an iteration-forward 

search algorithm. The authors of this paper attempted to address critical aspects of 

UCTP which are not often found in literature; these include the issue of satisfying all 

departments to avoid partiality towards one of them, ability to check and resolve 

inconsistencies in input data and the ease at which an existing feasible timetable can be 

modified, the creation and management of constraints, and the ability to deal with 

vagueness in the problem formulation. 

Older existing systems developed for the UCTP include one developed for the 

University of Waterloo (Carter, 2001) and another based on Constraint Logic 

Programming developed for a University in Berlin (Goltz & Matzke, 1999). 
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2.6 SUMMARY 

A survey of five metaheuristics has been presented in terms of their underlying 

principles, a non-exhaustive list of applications of these metaheuristics to COPs and 

their applications to the UCTP. A similarity between the Graph Colouring Problem 

and the University Course Timetabling Problem has also been presented with a 

practical example given. In terms of methods that have been applied to UCTP, an 

effort has been made to review these methods (especially the metaheuristics). The 

review of the methods does not end there, methods like Integer Programming (Boland 

et al., 2008), Constraint Logic Programming (Rudova & Murray, 2003) are other 

approaches based on Operational Research that have been used to tackle the problem. 

Finally, a population-based metaheuristic algorithm called Harmony Search algorithm 

has also been employed for UCTP with fairly good comparative results when 

compared with other existing metaheuritics (Al-Betar et al., 2012). The MMAS 

algorithm of Socha et al., (2002) will be adopted for CU‘s instance to bridge the gap 

between generated instances of the problem and real-world instances of the problem by 

dealing with events requiring more than one timeslot and also investigating the 

influence a local search design has on the quality of the solution generated by the 

MMAS algorithm. 
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CHAPTER THREE 

SYSTEM DESIGN, MODEL FORMULATION AND 

METHODOLOGY 

3.1 INTRODUCTION 

The System (UCTP) developed starts its timetable construction by asking a simple 

question from the user about which semester the timetable is to be constructed for; an 

invalid response will make the system load instances for the first semester (which was 

set as the default setting). The result is displayed on an excel spread sheet, the choice 

of the excel spread sheet was made because it is the most natural platform to display a 

timetable. The system implements eight (8) modules (classes and structures) which 

were carefully integrated for easy communication and debugging. The classes 

implemented in the system include MMAS_UCTP, Problem, Solution, ANT and 

util. The structures include struct_room, struct_program, and struct_event. The 

details and functions of these modules are discussed later during the presentation of the 

way these modules interact with one another. The module util carries out helping 

functions to reduce code duplication in several modules that make use of the class. 

3.2 SYSTEM ARCHITECTURE 

This section presents the system architecture (Figure 3.1) showing the interactions 

between the main components of the system.  

UCTP constructs a feasible timetable using five ants (from the architecture depicted 

above) over several iterations until a stopping criterion is met. The local search module 

runs the local search procedure on all the intermediate solutions constructed by the 

ants. The text file contains data that will be processed by the Problem module. The 

best solution constructed is encoded into an excel spread sheet as the final solution of 

the system. 
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Figure 3.1: System Architecture of UCTP 

3.3 FILE STRUCTURE 

Text files are the main resource point for this system, they are crucial to the successful 

loading of the problem data (events, programmes, rooms, and the likes) into the system 

via the Problem module. The files used for this system are divided into five 

categories: Rooms, programInfo, programFiles and 17 program-events files and 17 

program-rooms files.  

In the first category, there is only one file which contains the classrooms information; 

name and capacity. A line of text in Rooms file is in this format: Room-

Name:[Capacity], the Capacity value of a room is an optional value; it is not required 

for labs (Physics Lab, Chemistry Lab, Computer Lab, etc.) because the required 
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number of students needed in a program are admitted and the labs are generally 

suitable to contain the number of students that will have their lectures there. If the lab 

is not going to contain the required number of students for an event like we have in 

some cases, then it is not considered or the students are divided into sections. These 

student sections are then scheduled into different sections of the event like we have in 

CHM119 and PHY119; in this case, the capacity constraint will be respected through 

sectioning. 

The file programInfo contains the programme names and the number of students in 

each programme, Computer Science 100 level students (coded as CSC100) is a 

different programme to Computer Science 200 level students (CSC200). The format of 

the lines of text in the file is: ProgramName:NumberOfStudents. 

The file programFiles contains the files to be checked for each programme when the 

events offered by students in those programmes are to be captured by the system. For 

example, the programme ARC300; representing 300 level students of Architecture has 

the file name ARC.txt stored in programFiles.  

The files in the fourth category stores the events of students in 3 – 5 programmes are 

involved in, the file names are stored in the last file discussed (programFiles). Students 

in CSC100, CSC200, CSC300 and CSC400 all have their events-list stored in the same 

file (CSC.txt) but separated by a delimiter (*); for example, the last event for the 

programme CSC100 and the first event for the programme CSC200 are separated by a 

string of the character ‗*‘. In a nutshell, students in similar programmes (studying the 

same course but in different levels) get their events stored in the same file but their 

lists are separated by a delimiter. Programmes that have options like Chemistry and 

Physics are treated slightly differently to cater for their peculiarities. The delimiter is 

used by the system to determine which specific programme events are being read for; 

during the reading of events into the system, the number of delimiter (del-counter) is 

updated as soon as a delimiter is read therefore, if the counter is 2, the system ‗knows‘ 

that it is reading events for 300 level students of that programme. 
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Figure 3.2: A snapshot of a section of a file with a delimiter 

Figure 3.2 depicts the use of delimiter in the file category program-event; specifically 

showing the separation between the event lists of CSC100 and CSC200 programmes. 

The format for storing texts in this file category is: 

EventName:Duration:[Semester]:[SuitableRoom]. A line of text in this category 

represents the details of a particular event, for example, 

―CSC211:3:COMPUTERLAB‖ is interpreted as ―CSC211‖ as the event, ―3‖ as the 

duration (number of hours the event needs in a week) and ―COMPUTERLAB‖ as the 

room where this event must hold. The ―Semester‖ part of a line may be missing, if 

missing it means the event is for the first semester or for the second semester if 

otherwise. The term ―Duration‖ might be seen as a misnomer but it was used rather 

than ―Unit‖ because it actually gives the exact depiction of things; for example the 

event PHY119 of 1 unit has a duration of 6 (3 hours each on two different days of a 

week). 

The files in the last category are similar to those ones in the fourth category but store 

the probable rooms where events concerning these programmes can be scheduled 

rather than events details. The names of these files are derived from the names of the 

files in the last category; a program-events file called ―CSC.txt‖ has its corresponding 

program-rooms file named as ―CSC-ROOM.txt‖. 

3.4 CLASSES AND THEIR INTERACTIONS 

In this section, the details of the modules introduced in Section 3.1 are given along 

with the interactions between them. The structures in the system are also grouped as 

classes in this section since they are a kind of simplified classes (Savitch & Mock, 

2009), a class without method can be directly converted into a structure. 

MMAS_UCTP, Problem, Solution, ANT, util, struct_room, struct_program, and 

struct_event are the classes implemented and they can be regarded as the different 

components of the system. Table 3.1 gives the details of these classes. 
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Table 3.: Classes and their details 

Class Function 

ANT Encodes the virtual ants used in 

constructing the timetable 

Problem Responsible for loading events, rooms, 

programmes and every other variables 

representing the problem to be tackled 

from various text files  

Solution Encodes a solution to the UCTP; can only 

be accessed via objects of ANT 

MMAS_UCTP Implements the MAX-MIN Ant System 

for the problem using instances of ANT 

struct_event Implements the structure for encoding the 

events 

struct_program Implements the structure for encoding the 

programmes 

struct_room Implements the structure for encoding the 

rooms 

Util Implements helper functions for the main 

classes  

 

3.4.1 Class Diagram 

The Class diagram shows the main components of any object-oriented system. Class 

diagrams depict a static view of the model, or part of the model, describing the 

model‘s attributes and behaviour rather than the details of how operations are carried 

out. Important concepts such as generalisation, aggregation and association describe 

the inheritance, composition and interactions between classes respectively (Sparx 

Systems). 

 

Figure 3.3 is a class diagram describing the components of the system and the 

interactions between them. 
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Figure 3.3: System's Class Diagram 

3.5 MODEL FORMULATION 

The problem can be formulated as a four-tuple (P, R, E, T) with the following 

definitions: 

• A set P of n programmes (a programme represents a group of students) = {p1, 

p2, …, pn} 

• A set R of c classrooms (laboratories included)  = {r1, r2, …, rc} 

• A set E of d events (classes to be scheduled)  = {e1, e2, …, ed} 
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• A set T of m timeslots = {t1, t2, ..., tm} representing the periods available for 

these events to take place; m = 47. For example, t1 is the period ―8:00 – 9:00 

am on Monday‖ 

Two subsets of P; Pjun and Psen exist, the first consists of 100-200 level students and the 

second consists of 300-500 level students. 

For the purpose of simplicity, T = Tmon   Ttues   Twed   Tthur   Tfri 

     *           + 

      *             + 

     *             + 

      *             + 

     *             + 

The first and last elements in the first four sets represent the periods ―8:00 – 9:00 am‖ 

and ―5:00 – 6:00 pm‖ respectively while the last element in the last set (timeslots for 

Friday) represent the period ―2:00 – 3:00 pm‖. 

Three sets of ‗forbidden‘ timeslots exist, Fjun, Fsen1 and Fsen2, they are defined below: 

     *       + 

      *       + 

      *       + 

The Fjun concerns students in Pjun while the other two concern the students in Psen. The 

three sets enforce the timeslots chosen during solution construction to be subjected 

under the following three constraints: 

• No event concerning students in 100-200 level should be placed between 8:00 

am and 10:00 am on Thursday because of Thursday‘s Chapel Service. 

• No event concerning students in 300-500 level should be placed between 8:00 

am and 10:00 am on Tuesday because of Tuesday‘s Chapel Service. 

• No event concerning students in 300-500 level should be placed between 3:00 

pm and 5:00 pm on Wednesday because of EDS Practical. 
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Therefore, students in Pjun are entitled to 45 timeslots (standard maximum number 

from literature) since |      |     and students in Psen are entitled to 43 timeslots 

since |  (           )|     making events for such students harder to place. 

In the CU‘s version of the problem, four additional constraints exist in addition to the 

three most common hard constraints of the UCTP (HC1-HC3). The hard constraints 

(seven of them) are presented below: 

HC1: No conflicting events should be placed in the same timeslot 

HC2: No room should be assigned to more than one event at the same time 

HC3: The room assigned to an event should be large enough to handle it 

HC4: Events concerning students in 100-200 level should not be placed in the first two 

timeslots of Thursday 

HC5: Events concerning students in 300-500 level should not be placed in the first two 

timeslots of Tuesday 

HC6: Events concerning students in 300-500 level should not be placed between 3:00-

5:00 pm on Wednesday 

HC7: An event requiring more than two timeslots divided into two sections should not 

have both sections scheduled on the same day. 

The formal definitions of HC1 to HC7 are as follows: 

Firstly, the following variable definitions are established: 

                       (     )  {
                                
           

                        (   ) 

                (     )  {
                                         
           

                 (   ) 

     (        )  {
                                                  
           

      (   ) 

The following hard constraints definitions follow: 
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                                            ∑∑ (    )   (       )   
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| |
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| |
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                                      ∑ ∑ (       )   (    )   
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                                (   ) 

                                                 ∑∑ (    )   (       )   
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| |

   

         (   ) 

                                                 ∑ ∑ (    )   (       )   

| |

   

| |

   

        (   ) 

                                                 ∑ ∑ (    )   (       )   

| |

   

| |

   

        (   ) 

                                  ∑∑ (   )   (       )      

| |

   

 

   

          (    ) 

                           {
            

  (    )             
                                                 (    ) 

  *         +  *                                        + 

Two variables dur1 and dur2 represent the number of timeslots needed for the first and 

second sections of an event; they are computed via 3.12 and 3.13: 

                                           {

   ( )       ( )   

   ( )

 
       ( )   

                                      (    ) 

                                             ( )                                                                        (    ) 

         ( )                                                          

The following soft constraints in the problem: 

SC1: A student has a class in the last timeslot of the day (except Friday) 
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SC2: A student has more than two classes in a row 

SC3: A student has exactly one class in a day 

Formally, we have the following definitions for SC1 to SC3: 

                             ∑∑∑ ∑  (          )   (     )

| |

   

| |

   

| |

   

                                (    )

 

   

 

                             ∑ ∑ ∑    ()

 

    

| |

   

 

   

                                                                        (    ) 

                              (   )                                                                                     (    ) 

                          {
  (   )          

  (   )             
                                                     (    ) 

         ()  {     ∑∑∑  (          )   (     )   

| |

   

| |

   

 

   

           

                          (    ) 

                            ∑ ∑        ()

| |

   

 

   

                                                                        (    ) 

              ()  {     ∑ ∑∑ (        )   (     )   

| |

   

| |

   

 

    

           

                 (    ) 

The goal is to minimise the amount of soft constraints violations (#scv). 

Where #scv = SC1 + SC2 + SC3. 

The total number of soft constraints violation (#scv) is determined as the sum of the 

following components: 

 Count the number of programmes participating in an event placed in the last 

timeslot of the day (except Friday) to compute SC1. 

 Count the number of occurrence each programme has more than two 

consecutive classes (3 consecutive classes score 1, 4 consecutive classes score 

2, 5 consecutive classes score 3, etc.) in a day to compute SC2. 
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 Count the total number of occurrence each programme has only one class in a 

day to compute SC3. 

3.6 METHODOLOGY 

In this section, the solution representation, the two main algorithms used in 

constructing a feasible solution to the problem (MMAS and Local Search) and briefly 

how rooms are assigned to events are presented. The data (courses and their details) 

used for the work and the experiments were gotten from the CST Undergraduate 

Academic Handbook of 2014-2017 which can be gotten from the link: 

(http://eprints.covenantuniversity.edu.ng/id/eprint/3269). 

3.6.1 Solution Representation 

The representation of a given solution is handled by the component ―Solution‖ 

introduced in Section 3.4; during the process of constructing a solution by a given ant 

k, a vector V
T
 of timeslots (which are variable-length vectors themselves) is used to 

store the events scheduled by an ant k. V
T
 is a vector of size |T| x |E| where T and E are 

the sets of timeslots and events respectively, therefore an entry V
T
(i, j) represents an 

event j placed in a timeslot i. During the assignment of rooms to the iteration-best 

solution, the solution representation switches to a 2-dimensional matrix M of size |R| x 

|T| where R represents the set of rooms, an entry M(i, j) represents an event placed in 

room i and timeslot j. 

 

Figure 3.4: Pictorial representation of matrix M 
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Figure 3.4 presents the matrix M, assuming that there are three rooms and four 

timeslots in the problem. For example, Event 17 which occupies two timeslots 

(probably a 2-unit course) is assigned Room 1 while Event 6 placed in Timeslot 2 is 

assigned Room 3. Each of the blank spaces contains a -1 or appositive integer. 

3.6.2 The MAX-MIN Ant System for the UCTP 

A slight modification to the MAX-MIN Ant System implementation for the UCTP 

which can be found in (Socha et al., 2002) is presented in ALGORITHM 3.1. A 

colony of m ants is used in the timetable construction with the local search procedure 

LS1() run on each solution constructed by the ants. 

ALGORITHM 3.1: MAX-MIN Ant System for the UCTP 

load problem instance 

τmax ← 
 

 
 

τ(e, t) ← τmax  (   )      

compute c(e, e′)  (    )      

compute d(e)      

Esorted ← sort(E) 

while stopping criterion not met do 

    for k = 1 to m do 

        % ant k constructs a timetable 

        A ← Ø 

        for i = 1 to |E| do 

            choose a timeslot  t using the influence of pheromone and heuristic information  

            for event ei in Esorted 

            A   {(ei, t)} 

        end for 

        A ← improved solution using LS1() % apply main local search procedure 

        Aib ← better(A, Aib) 

    end for 

    Aib ← assign rooms to events in Aib while applying LS2() 

    Agb ← better(Aib, Agb) 

    perform global pheromone update using Agb, τmin and τmax 

end while 
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Firstly, the problem instance is loaded and then parameter settings are done. 

Parameters set are evaporation rate (ρ), maximum pheromone (τmax) and minimum 

pheromone (τmin). The pheromone matrix τ(E X T) is initialised and all the values are 

set to the maximum pheromone τmax. The pheromone trail between event e and a 

timeslot t represented as τ(e, t) is the relative likeness/possibility of timeslot t being 

chosen for the event e. Then some computations (pre-processing) are done before the 

events are sorted which will lead to putting to the top of the list the most difficult event 

to schedule based on the results of the computation. At the end of the solution 

construction by all ants, the best assignment made among the ants is improved further 

by a specialised local search procedure LS2() which is embedded in the procedure that 

assigns rooms to events placed in the best assignment. The better solution between the 

best assignment done in the last iteration and the best assignment found so far (Agb) 

(also called global-best) is used to update Agb
 
which is used to perform the global 

pheromone update. When the termination criterion is met, the feasible timetable 

constructed is published to an excel spread sheet. 

During pre-processing, (1) the number of students offering both an event e and another 

e′ given as c(e, e′) and (2) also the number of events conflicting with an event e given 

as d(e) are calculated. 

Formally, 

 ( )  |     * + |  (    )   | 

A total order   of events is defined by the following ordering rules: 

       ( )   (  )   

                     ( )   (  )    ( )    ( 
 )   

                    ( )   (  )    ( )    ( 
 )     ( )     (  )   

                   ( )   (  )    ( )    ( 
 )     ( )     (  )            (    ) 

The definition above places an event e over another event e′ if it has more conflicting 

events than the other event. If d(e) = d(e′); it uses the number of programmes offering 

the events, Np(e) and Np(e′) to order them. If both d(.) and Np(.) cannot separate the 

two events, then their durations are used (an event requiring four hours per week will 

be more difficult to place than an event requiring only one hour in a week). The tie-
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breaking rule alphaOrder(e, e′) which determines the event to come first in alphabetical 

order is applied if they are still tied after applying the first three ordering rules. 

The following are the differences between the MMAS algorithm of Socha et al., 

(2002) (referred to Socha in the comparison) and the one of this study: 

1. Only the variable d(e) was used to sort events in Socha while Np(e) and dur(e) 

are the two new variables introduced in this study because only the former is 

not sufficient to properly sort the events that constitute the problem domain 

tackled. 

2. A more robust approach was used in selecting timeslots for events; to cater for 

events sectioning and also events that need more than one timeslot (these two 

situations were absent in Socha). 

3. The local search procedure in this study was different from that of Socha in 

terms of the neighbourhood moves combination; comparison between them is 

done in Chapter Four. 

4. The room assignment procedures in the two implementations are different. 

5. In Socha, only the best-ant‘s initial solution is improved by the local search 

procedure. In this study, the MMAS implementation where all ants‘ solutions 

are improved by the local search procedure is experimented with. 

3.6.2.1 Actual Coding of events ordering 

To make a complete ordering of events in E, a vector named sup_value of length |E| is 

used to store the ‗superiority value‘ given to each event e in E. Therefore we have the 

set SUP = {sup_value1, supvalue2, …, sup_value|E|} where sup_valuei is the superiority 

value for an event ei. The partial event ordering algorithm is presented in 

ALGORITHM 3.2. 

ALGORITHM 3.2: PARTIAL EVENT ORDERING 

for i = 1 to |E| - 1 do 

    for j = 1 to |E| do 

        % apply the first ordering rule 

        if d(ei) > d(ej) then 

            sup_valuei ← sup_valuei + 1 

            continue 
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        else if d(ei) < d(ej) then 

            sup_valuej ← sup_valuej + 1 

            continue 

        end if 

        % apply the second ordering rule 

        if Np(ei) > Np(ej) then 

            sup_valuei ← sup_valuei + 1 

            continue 

        else if Np(ei) < Np(ej) then 

            sup_valuej ← sup_valuej + 1 

            continue 

        end if 

        % apply the third ordering rule 

        if dur(ei) > dur(ej) then 

            sup_valuei ← sup_valuei + 1 

            continue 

        else if dur(ei) < dur(ej) then 

            sup_valuej ← sup_valuej + 1 

            continue 

        end if 

        % apply the tie-breaking rule 

        if alphaOrder(e, e′) = 1 then % returns 1 if e is before e′ in alphabetical order 

            sup_valuei ← sup_valuei + 1 

            continue 

        else 

            sup_valuej ← sup_valuej + 1 

            continue 

        end if 

    end for 

end for 

The events in E are now sorted based on the values we have in the set SUP. For 

example, if sup_valuei for an event ei is N and N is the highest value in SUP then the 

event ei becomes the first element in the sorted set of events since it will be the most 
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difficult event to be placed. Therefore, we will have a complete ordering of events: 

         | |. 

3.6.2.2 Choosing a timeslot for an event 

This process depicted in ALGORITHM 3.3 is one of the most critical stages of 

solution construction; it has to be done right otherwise solutions of poor quality or 

even infeasible solutions will be constructed most of the time. No literature currently 

surveyed addressed the complexity involved in choosing a timeslot in a UCTP that 

comprises of events that require more than a timeslot in a week; this (situation) is 

addressed in this section of the study. 

In typical Covenant University timetabling, a three unit course is sectioned into two; 

the first section is placed into two timeslots and the second placed into a timeslot of 

another day. Courses like PHY129 and CHM129 which both require 6 timeslots in a 

week (the highest), are also divided into two sections: The first and second both 

requiring three timeslots each which are going to be scheduled on different days. The 

highest number of placements (sections) required by any event is 2, therefore an event 

requiring two placements ‗calls‘ the function chooseTimeslot() twice. The function 

chooseTimeslot() as described in Table 3.1 returns a feasible timeslot t where an event 

e can be placed in. The value t returned by the first call to the function is passed when 

making a second call to it to avoid the second section to be scheduled on the same day 

as the first. The number of placements pl needed for an event is computed via (3.21): 

                                    {
        ( )   

        ( )   
                                                             (    ) 

The timeslot selection process for an event with duration more than 2 is done via the 

following pseudocode which features only the key parameters passed into the function: 

for i = 1 to pl 

    chooseTimeslot(e, duri, [t_Chosen]) 

end for 

The parameter t_Chosen is an optional parameter which takes the default value -1 if 

the caller of the function does not pass it. 

The function chooseTimeslot() takes the following parameters: 
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e := the event under consideration 

index_of_ant := the index of the virtual ant currently building a solution 

duration := the number of timeslots needed for e at the current time tm (it may be the 

total number of timeslots needed for e in the week if the number of placements for the 

event is 1). 

t_Chosen := this is an optional parameter, a value of x means that a timeslot x had been 

chosen for that same event in time tm – 1 and a value of -1 means no timeslot have 

been chosen for the event before. 

ALGORITHM 3.3: CHOOSING TIMESLOT 

sum_desirability ← 0.00 

cList ← Ø  % candidate list, empty from the outset 

cList ← cList   T  % fill candidate list with timeslots 

cList ← cList   F  % remove all forbidden timeslots 

if t_Chosen > -1  % if t_Chosen was passed by the caller 

     cList ← cList   B 

end if 

for i = 1 to |cList| do 

     η_et(i) ← 
   

        ( )
 

end for 

for i = 1 to |cList| do 

    desirabilityi ←  (    )
      ( )  

    sum_desirability ← sum_desirability + desirabilityi 

end for 

tslot ← RWS(cList) 

while not isOk(tslot, duration) 

    tslot ← RWS(cList) 

end while 

return tslot 

 

The definitions of the variables in ALGORITHM 3.3: 
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T := all timeslots 

cList := candidate list; all timeslots initially make entry 

F := a list of ‗forbidden‘ timeslots for event e; it is defined as: 

  {

                                                                     

                                                            
                                                                                        

 

clause := ―if the event concerns students both in sets Pjun and Psen‖ 

B := a list of timeslots that event e cannot be placed because it had already been placed 

in a timeslot which belongs to a day where B belongs. 

     (   )    

   {
           
              

 

  *                 + 

Where d = {1, 2, 3, 4, 5} representing the days of the week {Monday, Tuesday, 

Wednesday, Thursday, Friday}. 

η_et(i) := heuristic information between the event e under consideration and a timeslot 

ti 

V_et(i) counts the number of additional violations that will be made if timeslot ti is 

chosen for event e. 

desirabilityi := a value representing how good a timeslot ti is for the event e under 

consideration 

τ(e, ti) := the pheromone trail between event e and timeslot ti 

sum_desirability := a parameter used in the roulette-wheel selection procedure 

α := controls the influence of τ(e, ti) 

β := controls the influence of η_et(i) 

tslot := the eventual timeslot chosen via RWS(cList) 

RWS(cList) := returns a timeslot via a roulette-wheel procedure (RWS) 
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isOk(tslot, duration) := returns a Boolean value indicating if tslot is feasible for the 

event 

    (              )  {
                 
              

 

NotFeasible := ―if tslot will make the event e spill over to the next day or to a 

forbidden timeslot or if by virtue of the duration of the event e, tslot is infeasible for 

e.‖ 

The NotFeasible clause states that the timeslot chosen by the RWS is infeasible (1) if it 

will make the event e spill over to another day or to a forbidden timeslot (bad 

placement)
1
 or (2) if the timeslot tslot′ that follows it in cList is distant from it by a 

factor of more than 1
2
 by virtue of the duration of e. 

1
If for example tslot = 10 (the timeslot t10) is returned as the chosen timeslot for an 

event with a duration of 2 (needing two timeslots), isOK() is evaluated to false because 

the event will be made to occupy timeslots t10 and t11 which is not practical since both 

timeslots are on different days. [An event e with duration of 2 cannot occupy the 

timeslots 5:00-6:00pm on Monday (t10) and 8:00-9:00 am on Tuesday (t11)]. 

2
Another example is when for example we have cList = {…, 10, 12, …} and tslot = 10 

via the RWS procedure for an event with duration of 2. The value of tslot will be an 

infeasible value [event sections fill consecutive timeslots and not timeslots with gaps 

in-between]. 

3.6.2.3 Pheromone Update 

The best solution since the beginning of the solution construction process Agb is used 

to update the pheromone trails. The update rule is as follows: 

       (   )  {
(   )   (   )                                       

(   )   (   )             
   (    ) 

        (   )                        

The pheromone trails update is completed via 3.23 to force them to be in the range 

[τmin, τmax] 
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                    (   )  {

                          (   )

                          (   )

 (   )                                
                                                   (    ) 

3.6.3 Local Search Routines 

Two local search routines were implemented in ALGORITHM 3.1, the first one tagged 

LS1() is the main local search routine; it was proposed by Rossi-Doria et al; (2002). 

The original implementation of LS1() comprises of three neighbourhood moves: 

N1: move an event from a timeslot to another timeslot 

N2: swap the timeslots of two events 

N3: tries to perform a permutation of the timeslots of three events using N1 or N2 (the 

choice is made in a random manner) 

 

Figure 3.5: Depiction of N1: Event 6 moved from its timeslot to another 

 

Figure 3.6: Depiction of N2: Events 6 and 8 have their timeslots swapped 

The implementation of LS1() in the project work only comprises of the first two 

neighbourhood moves because of the longer time the local search procedure will take 

to completely run when the three moves are considered. N2 (see Figure 3.6) is only 

triggered whenever N1 (see Figure 3.5) fails to achieve feasibility after attempting to 
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move all events causing hard constraints violations from their respective timeslots (a 

major difference between past implementations which apply the two moves 

concurrently for each conflicting event and the one of this project). 

If feasibility is achieved by the above local search procedure after considering all 

conflicting events in each timeslot, the local search starts again from the first timeslot 

again to ease the amount of soft constraints violations (#scv) without introducing any 

hard constraints violation (#hcv) using the same first two neighbourhood moves used 

initially, otherwise it is forced to terminate. 

The second local search routine LS2(); which is derived from LS1() is applied only 

after a feasible solution has been found, in fact it is applied to the iteration-best 

solution Aib to remove events from tightly packed timeslots and place them in ‗idle‘ 

ones so as to make it easy to assign rooms to events in Aib. If any event exists that 

cannot be assigned a room due to the fact that all suitable rooms of that event have 

been assigned to other events in the same timeslot then it is moved to another timeslot 

by LS2() and the room assignment is restarted. LS2() implements only the 

neighbourhood move N1 in LS1() and its failure to find a new feasible timeslot for an 

event which cannot be assigned a room in its current timeslot triggers the end of room 

assignment and the solution is considered infeasible. 

3.6.4 Room Assignment 

The procedure assignRooms() of the solution component handles the assignment of 

rooms to various events in each timeslot. The room assignment is done on a daily 

basis; firstly, all the timeslots for Monday are considered then the ones for Tuesday 

until assignments are made for all timeslots of each day. To avoid too much 

technicality, the steps involved in this process is briefly highlighted; the following are 

carried out for the assignment of rooms to events in timeslots of each day: 

1. All rooms are declared idle by setting ‗usage status‘ for each one to zero 

2. For each timeslot on the day, do the following: 

a) Select the next event yet to be assigned a room based on two criteria 

b) (i) if suitable rooms (rooms with capacities that can hold the number of 

students to participate in the event) exist for the event, assign the event 

the room with the least capacity among the suitable rooms (ii) otherwise 

try to move the event to another timeslot and restart the process, if no 
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feasible timeslot can be found for the event then stop the search and 

declare the solution to be infeasible. (iii) Proceed to 2(c) if condition 

b(i) is true. 

c) Update the usage status of the room assigned to the event in b(i) by the 

number of timeslots the event placed in it will occupy preventing it 

from being assigned to another event while being busy. 

d) If events remain in the timeslot not yet assigned a room then go back to 

2(a). 

3. Move to another day 

The ―usage status‖ variable introduced is just an integer value representing the number 

of periods a room will be unavailable for another event while it is serving an event. 

Selection of events for room assignment is initially done based on the first criterion: 

―all events having a pre-determined room assigned to them are selected first for room 

assignment‖ before the consideration of events based on the second criterion: 

―selection of events by the highest number of participants‖. 
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CHAPTER FOUR 

IMPLEMENTATION RESULTS AND DISCUSSION 

4.1 PROBLEM INSTANCES 

Before result presentation, a comparison is made between the problem tackled (Table 

4.2) and another found in literature (Table 4.1). 

Table 4.: Parameter values for generating UCTP instances in Socha et al., (2002) 

Parameter Small Medium Large 

Number of Events 100 400 400 

Number of Rooms 5 10 10 

Number of Students 80 200 400 

Maximum Events Per Student 20 20 20 

Maximum Students Per Event 20 50 100 

Table 4.: Parameter values for the instances solved 

Parameter Instance1 Instance2 

Number of Courses 327 229 

Number of Events 719 505 

Number of Rooms 23 23 

Number of Programmes 57 45 

Number of Students 2194 1771 

Maximum Possible Rooms Per Event 12 12 

Maximum Events Per Student 13 13 

Maximum Students Per Event 642 642 

Table 4.2 displays two classes of the problem solved, Instance1 is for the first semester 

and Instance2 is for the second semester of the College of Science and Technology 

(CST) programmes respectively. Instance1 is larger than Instance2 and therefore more 

difficult, this is due to the presence of more events for courses that undergo the SIWES 

programme in the second semester. The number of courses is actually the tally of 

events irrespective of the number of periods they need for a week while in the 

computation of the number of events, courses that need more than one period in a 
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week are counted based on the number of periods needed for them. For example, if 

CSC321 is a 3-unit course, then it will be counted as a course and as three events 

rather than one because it will occupy three timeslots. 

4.2 EVALUATION 

In this section, an investigation is made into three local search designs
2
 on their 

performance in optimising a timetable. The implementation of the local search 

procedure (Rossi-Doria et al., 2002) in Socha et al., (2002) applies all neighbourhood 

moves for a conflicting event before moving to the next one. For example, the local 

search procedure tries to move an event into another timeslot using N1 before 

considering neighbourhood move N2 if N1 fails to find a feasible timeslot for the 

event. The local search design adopted in this research does not consider N2 until all 

conflicting events have been attempted to be moved to other timeslots via N1. The first 

two designs discussed will be called the first design and second design respectively. 

Another local search design was considered to emphasise the effect of a local search 

design in optimising a timetable. This third design attempts to move an event to a 

prospective timeslot tp via N1. If N1 fails, it immediately moves through the 

neighbourhood N2 to see if it can swap the timeslot of an event in tp with that of the 

current event to be moved. The MMAS implementation of this research applies local 

search procedure on all the solutions generated by the colony, therefore we consider 

another case whereby only the best solution constructed by ants (with the least amount 

of #hcv) in the colony is improved by the local search procedure like we have in the 

MMAS implementation in Socha et al; (2002). There are six different variants of the 

MMAS implementation, they have the following details: 

    : All ants‘ solutions are improved by the local search procedure that uses the 

second design. 

    
 : Only the iteration-best solution is improved by the local search procedure that 

uses the second design. 

    : All ants‘ solutions are improved by the local search procedure that uses the first 

design. 

                                                           
2
 a local search design is defined as the way the neighbourhood moves are combined 
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 : Only the iteration-best solution is improved by the local search procedure that 

uses the first design. 

    : All ants‘ solutions are improved by the local search procedure that uses the 

third design. 

    
 : Only the iteration-best solution is improved by the local search procedure that 

uses the third design. 

The second local search design is proposed in this research. 

The MMAS algorithm was implemented in VB.net on a machine with a 2.2 GHz clock 

speed and a 3 GB RAM. Ten independent runs were made for each of the six variants 

setting a time limit of 60 minutes for each run. The experimental results showing the 

amount of soft constraints violations (#scv) made by each variant are presented in 

Table 4.3 and Table 4.4. 

Table 4.3: Performances of the six implementations on Instance1 

S/N     
           

           
       

1 158 206 119 113 84 123 

2 176 166 140 123 108 124 

3 184 153 111 126 66 103 

4 188 167 142 152 102 136 

5 166 165 123 129 134 89 

6 194 182 126 118 117 120 

7 216 148 139 125 89 69 

8 206 130 98 140 90 131 

9 160 155 109 131 78 123 

10 146 170 144 143 87 91 

Min. 146 130 98 113 66* 69 

Max. 216 206 144 143 134* 136 

Avg. 179.4 164.2 125.1 130 95.5* 110.9 

Avg. Iter.** 709.5 133 643.7 95.6 519.2 63.2 

*the best result among the six variants 

**average number of iterations made by the algorithm over ten trials 
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Table 4.4: Performances of the six implementations on Instance2 

S/N     
           

           
       

1 119 95 72 41 60 49 

2 118 89 79 70 49 58 

3 111 102 65 56 61 57 

4 97 96 78 46 38 52 

5 98 85 63 43 76 49 

6 82 116 52 30 47 63 

7 117 102 66 69 48 40 

8 114 101 65 67 45 48 

9 122 114 75 67 54 48 

10 124 95 59 54 41 42 

Min. 82 85 52 30* 38 40 

Max. 124 114 79 70 76 63* 

Avg. 110.2 99.5 67.4 54.3 51.9 50.6* 

Avg. Iter.** 1046.4 141.3 1044.7 186 920.4 93.1 

*the best result among the six variants 

**average number of iterations made by the algorithm over ten trials 

From the results displayed in Table 4.3 and Table 4.4, it can be seen that using the 

second local search design proposed in this research gives better results than the other 

two considered; that can be confirmed from the results obtained by      and     
  on 

both instances. In terms of the number of iterations achieved by the algorithms, the 

variants that run the local search procedure on only the iteration-best result (    
      

   

and     
 ) as expected run faster than their counterparts (          and     ) and 

the impact on the algorithm performance is not conclusive since it only had positive 

effects on Instance1 (harder instance). 

Direct comparisons are made between four of the implementation variants (     vs. 

    ) in Figure 4.1 to Figure 4.3 and (    
  vs.     

 ) in Figure 4.4 to Figure 4.6 using 

the convergence of global-best solutions for each one of them recording the total 

violations recorded per iteration using the same time limit. A value of 100 units was 

used to penalise each hard constraint violation. The best three results of each variant 

were selected from Table 4.3 and Table 4.4. 
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For Figure 4.1 to Figure 4.3: A =      on Instance1, B =      on Instance2, C =      

on Instance1 and D =      on Instance2. 

 

Figure 4.: Convergence of the best global-best solutions of      and      

 

Figure 4.: Convergence of the second-best global-best solutions of      and      
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Figure 4.: Convergence of the third-best global-best solutions of      and      

For Figure 4.4 to Figure 4.6: A =     
  on Instance1, B =     

  on Instance2, C =     
  

on Instance1 and D =     
  on Instance2. 

 

Figure 4.: Convergence of the best global-best solutions of     
  and     
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Figure 4.: Convergence of the second-best global-best solutions of     
  and     

  

 

Figure 4.: Convergence of the third-best global-best solutions of     
  and     

  

From Figure 4.1 to Figure 4.6, it can be concluded that the algorithms generally run 

faster on the smaller instance (Instance2) but for few exceptions. On Instance1,      

clearly outperformed      and     
  also clearly outperformed     

 . There is a close 

competition between      and      on Instance2 (can be confirmed from the average 

#scv in Table 4.4) due to more number of solutions optimised by the former 
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(optimising a feasible timetable takes a long time).     
  outperformed     

  on 

Instance2 defying the status quo between      and      since the local search 

procedure is run only the best-ant‘s solution. In conclusion, though      and     
  

generally complete less iterations than their counterparts, they do optimise timetables 

better. 

The same parameter configurations were used for the experimental procedure in this 

section to avoid bias; they are presented in Table 4.5. 

Table 4.5: Parameter Configurations used in the experiment 

Parameter Value 

Number of ants (m) 6 

Evaporation rate ( ) 0.2 

Maximum Pheromone (     
 

 
) 5.0 

Minimum Pheromone (    ) 0.0019 

Influence of Pheromone ( ) 1.0 

Influence of heuristic information ( ) 2.0 
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CHAPTER FIVE 

SUMMARY, FUTURE STUDIES AND CONCLUSION 

5.1 SUMMARY 

The UCTP is a hard combinatorial optimisation problem which takes different form 

from one institution to another. Although the problem of one institution peculiar to 

itself may not be present in other institutions, these problems are unified by containing 

conditions that must be fulfilled when planning/constructing/drafting a timetable (hard 

constraints) and the conditions that might not be fulfilled (soft constraints). 

This study had addressed two instances of Covenant University‘s case which are 

centred on College of Science and Technology (CST). The underlying variables that 

make up the problem; soft and hard constraints were extensively dealt with in the 

course of the research work. A decentralised system can be established since events 

that are peculiar to each college need rooms different from the ones needed by another 

and therefore there will be a very little concern about the room-clash constraint. 

Courses that are taken by students between colleges; for example BFN311 (a course 

peculiar to students in College of Development Studies) taken by 300 level MIS 

students will be scheduled first alongside University Wide Courses and NUC courses 

like the TMCs, EDSs and CSTs if a combined schedule is to be made. 

The developed system though being run via a command line interface (CLI) has been 

painstakingly built in order to make it effective in solving course timetabling 

problems. To subsequent research students, this work will be useful in understanding 

some underlying principles concerning UCTP in relation to general instances and that 

of the university. With some modifications this system can be used as the official 

timetable solver or as a decision-making tool in timetable construction since real data 

were used (http://eprints.covenantuniversity.edu.ng/id/eprint/3269). 

5.2 FUTURE STUDIES 

Since only instances from CST were tackled in this research work, there is still room 

for further work in the area of extending the work to other colleges and making 

adequate integration to build a complete system.  
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It was reported in an earlier application of ACO (Socha et al., 2003), that the influence 

of heuristic information does not improve solution quality when local search is 

implemented to improve ants‘ solutions. The influence of heuristic information was 

used in the solution construction of this work; therefore further work may experiment 

without the use of heuristic information to confirm if the claim is valid in this 

particular class of problem solved. 

In the course of the work, the parameter setting used was: α = 1 and β = 2; which are 

the influences of pheromone and heuristic information respectively. Further work may 

involve setting different combinations of α and β to investigate the results that will be 

achieved by these combinations. Ultimately, another method entirely can be applied to 

these problem instances to compare its performance against that of MMAS applied in 

this study. 

Kempe Chain Neighbourhood Move: The kempe chain neighbourhood move is a 

flexible neighbourhood move which is not limited unlike the two neighbourhood 

moves used in the implementation but more complex; as many as five or more events 

can have their timeslots swapped at a go in a kempe chain depending on how long the 

chain is. 

The idea of kempe chain neighbourhood move can also be applied in a future research 

work since it is a very effective way of satisfying soft constraints and its effectiveness 

can also be compared against the two neighbourhood moves (N1 and N2) used in the 

project. Finally, the kempe chain neighbourhood can even be combined with N1 and 

N2 to make further improvements on a solution‘s quality. 

5.3 CONCLUSION 

University Course Timetabling Problem (UCTP) which is a combinatorial optimisation 

problem has been tackled using a population-based metaheuristics in the mode of Ant 

Colony Optimisation (ACO) algorithm alongside two local search procedures. Two 

instances of the CU problem class were considered with good results achieved by the 

algorithm on both of them. An investigation was also carried out on how a local search 

set-up affect the performance of the algorithm and from the results obtained the local 

search design proposed in this research outperformed its competitors. Possibilities for 

future work have been highlighted; a platform for better results on the UCTP instance 
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addressed. Finally, this study has proven that metaheuristics if properly tuned to a 

particular problem domain can achieve high-quality results on real-world instances of 

the UCTP.  
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APPENDIX 

 

Figure I: Snapshot of the main local search run 

 

Figure II: Snapshot of Monday Schedule 
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Figure III: Snapshot of Tuesday Schedule 

 

Figure IV: Snapshot of Wednesday Schedule 
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Figure V: Snapshot of Thursday Schedule 

 

Figure VI: Snapshot of Friday Schedule 


