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Abstract— In this paper, we consider approximate solutions 

of fractional Riccati differential equations via the application of 

local fractional operator in the sense of Caputo derivative. The 

proposed semi-analytical technique is built on the basis of the 

standard Differential Transform Method (DTM). Some 

illustrative examples are given to demonstrate the effectiveness 

and robustness of the proposed technique; the approximate 

solutions are provided in the form of convergent series. This 

shows that the solution technique is very efficient, and reliable; 

as it does not require much computational work, even without 

given up accuracy. 

 

Index Terms— Fractional differential equations; Modified 

DTM; Riccati Differential Equation 

I. INTRODUCTION 

HE idea of Riccati Differential Equation (RDE) was 

introduced by the Italian: Count Jacopo Francesco 

Riccati (1676-1754), the detail of the basic theories 

associated with the RDEs are contained in Reid [1]. The 

applications of this form of differential equations are not 

limited to areas like random processes, diffusion problems, 

optimal control, stochastic realization theory, network 

analysis, financial mathematics, and robust stabilization 

[2,3].  

In general, the RDE of integer order is expressed in the form 

of: 
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 ,    00,  0t y y           (1.1) 

where   ,  0,1,2.ip t i   are coefficient functions which 

may be constants or variables; hence, the notion of Riccati 

differential equation with constant or variable coefficients. 

Equation (1.1) is a nonlinear differential equation whose 

approximate/analytical solutions and the likes can be 
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obtained using some semi-analytical methods, say the 

decomposition method (ADM), Homotopy analysis method 

(HAM), Differential transformation method (DTM),  

Projected/Modified Differential transform method (MDTM), 

Forward-Euler method (FEM), Runge-Kutta method (R-

KM), Perturbation Iteration Transform Method and so on  

[4-11]. 

Recently, Biazar and Eslami [12] proposed DTM for solving 

the quadratic RDE of the form (1.1) but with constant 

coefficients while Mukherjee and Roy [13] implemented the 

DTM for the solution of some RDEs with variable terms as 

coefficients. 

In this work, we shall be considering the extension of (1.1) 

to fractional differential case, therefore, the fractional RDE 

(FRDE) of the form: 
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where   0 0y y  is an initial condition, and 

  ,  0,1,2.ip t i   are constant functions. Thus, a FRDE 

with constant coefficients. 

Differential equations of fractional type (FDEs) act as 

generalizations of the classical differential equations of 

integer order [14]. 

Many researchers have considered obtaining approximate 

solutions of FDEs of the form in (1.2) and the likes via the 

application of semi-analytical methods [15-21]. 

In this present work, we will be considering the application 

of a local fractional differential operator (LFDO) based on 

MDTM for approximate solution of the FRDE in (1.2). This 

method involves less computational work, and requires less 

computational time. 

II. PRELIMINARIES AND NOTATIONS ON FRACTIONAL 

CALCULUS [14, 22, 23]  

Here, a brief introduction of fractional calculus will be given 

as follows. 

In fractional calculus, the power of the differential operator 

is considered a real or complex number. Hence, the 

following definitions: 

Definition 1: Fractional derivative in gamma sense 

Suppose 
 

 and 
d

D J
dx


  are differential and integration 

operators respectively, then: 
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We referred to (2.1) as a fractional derivative of ( )h x , of 

order  , if  .  

Definition 2: Suppose ( )h x  is defined for 0x   , then: 

  
0

( )
x

Jh x h s ds                   (2.2) 

and as such, an arbitrary extension of (2.2) yields: 
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                             (2.3) 

Equation (2.3) is regarded as Riemann-Liouville (R-L) 

fractional integration of order  . 

Definition 3:  R-L fractional derivative of   x  is: 
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Definition 4:  Caputo fractional derivative of  x  is: 
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                              (2.5) 

Note: The link between the R-L operator and the Caputo 

fractional differential operator is: 
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As such,  

 
1

0

( ) ( ) (0)
!

kn
k

t

k

t
t J D t

k

 




  .       (2.7) 

Definition 5: The Mittag-Leffler  (M-L) Function 

The M-L function,  E z  is defined and denoted by the 

series representation as: 
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Remark:  For 1,    E z in (2.8) becomes: 

 1

zE z e  .                    (2.9) 

III. ANALYSIS OF THE DTM  

The semi-analytical method (DTM) as noted by many 

researchers in literature, has proven to be simple and easier 

in the sense of application for both linear and nonlinear 

differential models because the DTM converts the problems 

under consideration to their equivalent forms in algebraic 

recursive relations, but this is not so when other semi-

analytical techniques, say, ADM, VIM, HAM and so on are 

used) [24]. The DTM has been modified to handle models of 

nonlinear types and the likes [25-28].  

A. The overview of the DTM 

Let  v x  be an analytic function at x  in a domain D , thus, 

the differential transform (DF) of  v x  is defined and 

denoted by: 
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And as such: 
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Equation (3.2) is the differential inverse transform (DIT) of 

 V p , where  v x  and  V p  are the original and  the 

transformed functions respectively. 

B. The fundamentals of DTM: theorems and properties 

Theorem 1: If      a bv x v x v x   , then  

     a bV p V p V p   .  
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Theorem 5:  (PDTM of a fractional derivative) 
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Setting 1q   in (3.3) gives: 
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As such, for   0, -analytic at 0w x x    
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C.  Analysis of the Fractional DTM  

Consider the nonlinear fractional differential equation 

(NLFDE): 

            ,x x x
D w x L w x N w x q x

    

   ,0w x g x , 0x                (3.6) 
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
 is the fractional  Caputo derivative of 

 w w x ; whose projected differential transform is 

( )W p  while     and L N  are differential operators (with 

respect to x ) of linear and nonlinear type respectively, and 

 q q x   is the source term. 

We rewrite (3.6) as: 
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Applying the inverse fractional Caputo derivative, 
xD 

 to 

both sides of (3.7) and with regard to (2.6) gives: 
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Thus, when ( )w x  is expanded in terms of fractional power 

series, the inverse projected differential transform of 

( )W p  is given as follows: 
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IV.  ILLUSTRATIVE EXAMPLES AND APPLICATIONS 

In this subsection, the proposed method is applied with some 

illustrative examples for the solutions of  fractional Riccati 

differential equations (FRDEs). 

Problem 4.1: Consider the FRDE in (1.2) with 

     0 1 21,  0,  & 1p t p t p t    , thus, we have: 

   2 1 0tD y t y t     , &   0 0y  .            (4.1) 

Solution to problem 4.1: 

We re-write (4.1) as: 

   21tD y t y t    , &   0 0y  .              (4.2) 

Taking the LFDT of (4.2) gives: 
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Thus, for 0k  , 1k  , 2k  , 3k  , 4k  , 5k   , 

we have respectively 1 2 3 4 5 6, , , , , ,Y Y Y Y Y Y  as follows: 
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Hence, using the initial condition, we obtain: 
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Remark (a): For 1   , we have 

 
3 5 72 17

3 15 315

t t t
y t t      which corresponds to the 

solution as contained in [4, 13] via a decomposed method. 

 

 
Fig.1: solution of  4.1 via decomposed and DT methods 
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V. CONCLUDING REMARKS   

 

We have considered in this work, the approximate 

solutions of fractional Riccati differential equations 

(FRDEs) via the application of the local fractional operator 

in the sense of Caputo derivative as a proposed semi-

analytical method built on the basis of the classical DTM. 

To demonstrate the effectiveness and robustness of the 

present technique, we used some illustrative examples; the 

solutions are provided in the form of convergent series. This 

supports the efficiency, and reliability of the solution 

method; as it does not require much computational work, 

even without given up accuracy. We remarked that the 

solutions of RDEs at different (well-defined) values of 

fractional orders can easily be obtained. Thus, the method is 

recommended for the solutions linear and nonlinear time-

fractional differential equations (TFDEs) with wider 

applications in other areas of applied sciences. 
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