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We introduce the Jungck-multistep iteration and show that it converges strongly to the unique
common fixed point of a pair of weakly compatible generalized contractive-like operators defined
on a Banach space. As corollaries, the results show that the Jungck-Mann, Jungck-Ishikawa, and
Jungck-Noor iterations can also be used to approximate the common fixed points of such maps.
The results are improvements, generalizations, and extensions of the work of Olatinwo and Imoru
(2008), Olatinwo (2008). Consequently, several results in literature are generalized.

1. Introduction

The convergence of Picard, Mann, Ishikawa, Noor and multistep iterations have been
commonly used to approximate the fixed points of several classes of single quasicontractive
operators, for example, see [1–6].

LetX be a Banach space,K, a nonempty convex subset ofX and T : K → K a self-map
of K.

Definition 1.1. Let z0 ∈ K. The Picard iteration scheme {zn}∞n=0 is defined by

zn+1 = Tzn, n ≥ 0. (1.1)

Definition 1.2. For any given u0 ∈ K, the Mann iteration scheme [7] {un}∞n=0 is defined by

un+1 = (1 − αn)un + αnTun, (1.2)

where {αn}∞n=0 are real sequences in [0,1) such that
∑∞

n=0 αn = ∞.
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Definition 1.3. Let x0 ∈ K. The Ishikawa iteration scheme [8] {xn}∞n=0 is defined by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTxn,

(1.3)

where {αn}∞n=0, {βn}∞n=0 are real sequences in [0,1) such that
∑∞

n=0 αn = ∞.

Observe that if βn = 0 for each n, then the Ishikawa iteration process (1.3) reduces to
the Mann iteration scheme (1.2).

Definition 1.4. Let x0 ∈ K. The Noor iteration (or three-step) scheme [9] {xn}∞n=0 is defined by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(
1 − βn

)
xn + βnTzn,

zn =
(
1 − γn

)
xn + γnTxn,

(1.4)

where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 are real sequences in [0, 1) such that
∑∞

n=0 αn = ∞.

For motivation and the advantage of using Noor’s iteration, see [5, 9, 10].
Observe that if γn = 0 for each n, then the Noor iteration process (1.4) reduces to the

Ishikawa iteration scheme (1.3).

Definition 1.5. Let x0 ∈ K. The multistep iteration scheme [11] {xn}∞n=0 is defined by

xn+1 = (1 − αn)xn + αnTy
1
n,

yi
n =

(
1 − βin

)
xn + βinTy

i+1
n , i = 1, 2, . . . , k − 2,

yk−1
n =

(
1 − βk−1n

)
xn + βk−1n Txn, k ≥ 2,

(1.5)

where {αn}∞n=0, {βin}, i = 1, 2, . . . , k − 1, are real sequences in [0, 1) such that
∑∞

n=0 αn = ∞.

Observe that the multistep iteration is a generalization of the Noor, Ishikawa, and the
Mann iterations. In fact, if k = 1 in (1.5), we have the Mann iteration (1.2), if k = 2 in (1.5), we
have the Ishikawa iteration (1.3), and if k = 3, we have the Noor iterations (1.4).

We note that while many authors have worked on the existence of fixed points
for a pair of quasicontractive maps, for example, see [1, 12–15], little is known about the
approximations of those common fixed points using the convergence of iteration techniques.
Jungck was the first to introduce an iteration scheme, which is now called Jungck iteration
scheme [13] to approximate the common fixed points of what is now called Jungck
contraction maps. Singh et al. [15] of recent introduced the Jungck-Mann iteration procedure
and discussed its stability for a pair of contractive maps. Olatinwo and Imoru [16], Olatinwo
[17, 18] built on that work to introduce the Jungck-Ishikawa and Jungck-Noor iteration
schemes and used their convergences to approximate the coincidence points (not common
fixed points) of some pairs of generalized contractive-like operators with the assumption
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that one of each of the pairs of maps is injective. However, a coincidence point for a pair
of quasicontractive maps needs not to be a common fixed point. We introduce the Jungck-
multistep iteration and show that its convergence can be used to approximate the common
fixed points of those pairs of quasicontractive maps without assuming the injectivity of any
of the operators. Hence the iterative sequence used is a generalization of that used in [16–18].
The fact that the injectivity of any of the maps is not assumed in our results and the common
fixed points of those maps are approximated and not just the coincidence points make the
corollary of our results an improvement of the results of Olaleru [19], Olatinwo and Imoru
[16]. Consequently, a lot of results dealing with convergence of Picard, Mann, Ishikawa, and
multistep iterations for single quasicontractive operators on Banach spaces are generalized.

2. Preliminaries

Let X be a Banach space, Y an arbitrary set, and S, T : Y → X such that T(Y ) ⊆ S(Y ).
Then we have the following definitions.

Definition 2.1 (see [13]). For any xo ∈ Y , there exists a sequence {xn}∞n=0 ∈ Y such that Sxn+1 =
Txn. The Jungck iteration is defined as the sequence {Sxn}∞n=1 such that

Sxn+1 = Txn, n ≥ 0. (2.1)

This procedure becomes Picard iteration when Y = X and S = Id, where Id is the identity map
on X.

Similarly, the Jungck contraction maps are the maps S, T satisfying

d
(
Tx, Ty

) ≤ kd
(
Sx, Sy

)
, 0 ≤ k < 1 ∀x, y ∈ Y. (2.2)

If Y = X and S = Id, then maps satisfying (2.2) become the well-known contraction maps.

Definition 2.2 (see [15]). For any given uo ∈ Y , the Jungck-Mann iteration scheme {Sun}∞n=1 is
defined by

Sun+1 = (1 − αn)Sun + αnTun, (2.3)

where {αn}∞n=0 are real sequences in [0,1) such that
∑∞

n=0 αn = ∞.

Definition 2.3 (see [18]). Let xo ∈ Y . The Jungck-Ishikawa iteration scheme {Sxn}∞n=1 is defined
by

Sxn+1 = (1 − αn)Sxn + αnTyn,

Syn =
(
1 − βn

)
Sxn + βnTxn,

(2.4)

where {αn}∞n=0, {βn}∞n=0 are real sequences in [0, 1) such that
∑∞

n=0 αn = ∞.
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Definition 2.4 (see [18]). Let xo ∈ Y . The Jungck-Noor iteration (or three-step) scheme
{Sxn}∞n=1 is defined by

Sxn+1 = (1 − αn)Sxn + αnTyn,

Syn =
(
1 − βn

)
Sxn + βnTzn,

Szn =
(
1 − γn

)
Sxn + γnTxn,

(2.5)

where {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 are real sequences in [0, 1) such that
∑∞

n=0 αn = ∞.

Definition 2.5. Let xo ∈ Y . The Jungck-multistep iteration scheme {Sxn}∞n=1 is defined by

Sxn+1 = (1 − αn)Sxn + αnTy
1
n,

Syi
n =

(
1 − βin

)
Sxn + βinTy

i+1
n , i = 1, 2, . . . k − 2,

Syk−1
n =

(
1 − βk−1n

)
Sxn + βk−1n Txn, k ≥ 2,

(2.6)

where {αn}∞n=0, {βin}, i = 1, 2, . . . , k − 1, are real sequences in [0,1) such that
∑∞

n=0 αn = ∞.

Observe that the Jungck-multistep iteration is a generalization of the Jungck-Noor,
Jungck-Ishikawa and the Jungck-Mann iterations. In fact, if k = 1 in (2.6), we have the Jungck-
Mann iteration (2.3), if k = 2 in (2.6), we have the Jungck-Ishikawa iteration (2.4) and if k = 3,
we have the Jungck-Noor iterations (2.5).

Observe that if X = Y and S = Id, then the Jungck-multistep (2.6), Jungck-Noor
(2.5), Jungck-Ishikawa (2.4), and the Jungck-Mann (2.3) iterations, respectively, become the
multistep (1.5), Noor (1.4), Ishikawa (1.3), and the Mann (1.2) iterative procedures.

One of the most general contractive-like operators which has been studied by several
authors is the Zamfirescu operators.

Suppose thatX is a Banach space. The map T : X → X is called a Zamfirescu operator
if

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥x − y

∥
∥,

‖x − Tx‖ + ∥
∥y − Ty

∥
∥

2
,

∥
∥x − Ty

∥
∥ + d

∥
∥y − Tx

∥
∥

2

}

, (2.7)

where 0 ≤ h < 1 see [6].
It is known that the operators satisfying (2.7) are generalizations of Kannan maps [4]

and Chatterjea maps [3]. Zamfirescu [6] proved that the Zamfirescu operator has a unique
fixed point which can be approximated by Picard iteration (1.1). Berinde [2] showed that
Ishikawa iteration can be used to approximate the fixed point of a Zamfirescu operator when
X is a Banach space while it was shown by the first author [20] that if X is generalised to a
complete metrizable locally convex space (which includes Banach spaces), theMann iteration
can be used to approximate the fixed point of a Zamfirescu operator. Several researchers have
studied the convergence rate of these iterations with respect to the Zamfirescu operators. For
example, it has been shown that the Picard iteration (1.1) converges faster than the Mann
iteration (1.2) when dealing with the Zamfirescu operators. For example, see [21]. It is still a
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subject of research as to conditions under which the Mann iteration will converge faster than
the Ishikawa or vice-versa when dealing with the Zamfirescu operators.

We now consider the following conditions. X is a Banach space and Y a nonempty set
such that T(Y ) ⊆ S(Y ) and S, T : Y → X. For x, y ∈ Y and h ∈ (0, 1):

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

, (2.8)

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,
∥
∥Sx − Ty

∥
∥,

∥
∥Sy − Tx

∥
∥

}

, (2.9)

∥
∥Tx − Ty

∥
∥ ≤ δ

∥
∥Sx − Sy

∥
∥ + L‖Sx − Tx‖, L > 0, 0 < δ < 1, (2.10)

∥
∥Tx − Ty

∥
∥ ≤ δ

∥
∥Sx − Sy

∥
∥ + ϕ(‖Sx − Tx‖)

1 +M‖Sx − Tx‖ , 0 ≤ δ < 1, M ≥ 0, (2.11)

∥
∥Tx − Ty

∥
∥ ≤ δ

∥
∥Sx − Sy

∥
∥ + ϕ(‖Sx − Tx‖), 0 ≤ δ < 1. (2.12)

where ϕ : R+ → R+ is a monotone increasing sequence with ϕ(0) = 0.

Remark 2.6. Observe that if X = Y and S = Id, (2.8) is the same as the Zamfirescu operator
(2.7) already studied by several authors; (2.9) becomes the operator studied by Rhoades [22];
while (2.10) becomes the operator introduced by Osilike [23]. Operators satisfying (2.11) and
(2.12)were introduced by Olatinwo [16].

A comparison of the four maps show the following.

Proposition 2.7. (2.8)⇒(2.9)⇒(2.10)⇒(2.11)⇒(2.12) but the converses are not true.

Proof. (2.8)⇒(2.9): This follows immediately since

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2
≤ max

{∥
∥Sx − Ty

∥
∥,

∥
∥Sy − Tx

∥
∥
}
. (2.13)

(2.9)⇒(2.10): We consider each of the possibilities.

Case 1. Suppose ‖Tx − Ty‖ ≤ h‖Sx − Ty‖ ≤ h‖Sx − Tx‖ + h‖Tx − Ty‖ and consequently,
‖Tx − Ty‖ ≤ h/(1 − h)(Sx − Tx). Setting L = h/(1 − h) completes the proof.

Case 2. Suppose

∥
∥Tx − Ty

∥
∥ ≤ h

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2

≤ h
‖Sx − Tx‖ + ∥

∥Sy − Sx + Sx − Tx + Tx − Ty
∥
∥

2

≤ h‖Sx − Tx‖ + h

2
∥
∥Sy − Sx

∥
∥ +

h

2
∥
∥Tx − Ty

∥
∥.

(2.14)
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After computing we have ‖Tx − Ty‖ ≤ h/(2 − h)‖Sy − Sx‖ + 2h/(2 − h)‖Sx − Tx‖. Setting
δ = h/(2 − h) and L = 2h/(2 − h) completes the proof.

Case 3. ‖Tx − Ty‖ ≤ h‖Sy − Tx‖ ≤ h‖Sy − Sx‖ + h‖Sx − Tx‖.
(2.10)⇒(2.11): Suppose M = 0 and ϕ(t) = Lt in (2.11), we have (2.10).
(2.11)⇒(2.12): This follows from the fact that

∥
∥Tx − Ty

∥
∥ ≤ δ

∥
∥Sx − Sy

∥
∥ + ϕ

(∥
∥Sy − Tx

∥
∥
)

1 +M
∥
∥Sy − Tx

∥
∥

≤ δ
∥
∥Sx − Sy

∥
∥ + ϕ

(∥
∥Sy − Tx

∥
∥
)
. (2.15)

We need the following definition.

Definition 2.8 (see [1]). A point x ∈ X is called a coincident point of a pair of self-maps S, T if
there exists a point w (called a point of coincidence) in X such that w = Sx = Tx. Self-maps
S and T are said to be weakly compatible if they commute at their coincidence points, that is,
if Sx = Tx for some x ∈ X, then STx = TSx.

Olatinwo and Imoru [16] proved that the Jungck-Mann and Jungck-Ishikawa converge
to the coincident point of S, T defined by (2.8) when S is an injective operator. It was shown
in [19] that the Jungck-Ishikawa iteration converges to the coincidence point of S, T defined
by (2.12) when S is an injective operator while the same convergence result was proved for
Jungck-Noor when S, T are defined by (2.11) [18]. (We note that the maps satisfying (2.9)
and of course (2.10)–(2.12) need not have a coincidence point [15].) We rather prove the
convergence of multistep iteration to the unique common fixed point of S, T defined by
(2.12), without assuming that S is injective, provided the coincident point exist for S, T .

3. Main Results

The following lemma is well known.

Lemma 3.1. Let {an} be a sequence of nonnegative numbers such that an+1 ≤ (1 − λn)an for any n,
where λn ∈ [0, 1) and

∑∞
n=0 λn = ∞. Then {an} converges to zero.

Theorem 3.2. Let X be a Banach space and S, T : Y → X for an arbitrary set Y such that (2.12)
holds and T(Y ) ⊆ S(Y ). Assume that S and T have a coincidence point z such that Tz = Sz = p. For
any xo ∈ Y , the Jungck-multistep iteration (2.6) {Sxn}∞n=1 converges to p.

Further, if Y = X and S, T commute at p (i.e., S and T are weakly compatible), then p
is the unique common fixed point of S, T .

Proof. In view of (2.6) and (2.12) coupled with the fact that Tz = Sz = p, we have

∥
∥Sxn+1 − p

∥
∥ ≤ (1 − αn)

∥
∥Sxn − p

∥
∥ + αn

∥
∥
∥Tz − Ty1

n

∥
∥
∥

≤ (1 − αn)
∥
∥Sxn − p

∥
∥ + αn

[
δ
∥
∥
∥Sz − Sy1

n

∥
∥
∥ + ϕ(‖Sz − Tz‖)

]

= (1 − αn)
∥
∥Sxn − p

∥
∥ + δαn

∥
∥
∥p − Sy1

n

∥
∥
∥.

(3.1)
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An application of (2.6) and (2.12) gives

∥
∥
∥Sy1

n − p
∥
∥
∥ ≤

(
1 − β1n

)∥
∥Sxn − p

∥
∥ + β1n

∥
∥
∥Tz − Ty2

n

∥
∥
∥

≤
(
1 − β1n

)∥
∥Sxn − p

∥
∥ + β1n

[
δ
∥
∥
∥Sz − Sy2

n

∥
∥
∥ + ϕ(‖Sz − Tz‖)

]
.

(3.2)

Substituting (3.2) in (3.1), we have

∥
∥Sxn+1 − p

∥
∥ ≤ (1 − αn)

∥
∥Sxn − p

∥
∥ + δαn

(
1 − β1n

)∥
∥Sxn − p

∥
∥ + δ2αnβ

1
n

∥
∥
∥Sy2

n − p
∥
∥
∥

=
(
1 − (1 − δ)αn − δαnβ

1
n

)∥
∥Sxn − p

∥
∥ + δ2αnβ

1
n

∥
∥
∥Sy2

n − p
∥
∥
∥.

(3.3)

Similarly, an application of (2.6) and (2.12) give

‖Sy2
n − p‖ ≤

(
1 − β2n

)
‖Sxn − p‖ + δβ2n‖Sy3

n − p‖. (3.4)

Substituting (3.4) in (3.3) we have

∥
∥Sxn+1 − p

∥
∥ ≤

(
1 − (1 − δ)αn − δαnβ

1
n

)∥
∥Sxn − p

∥
∥

+ δ2αnβ
1
n

(
1 − β2n

)∥
∥Sxn − p

∥
∥ + δ3αnβ

1
nβ

2
n

∥
∥
∥Sy3

n − p
∥
∥
∥

=
(
1 − (1 − δ)αn − (1 − δ)δαnβ

1
n − δ2αnβ

1
nβ

2
n

)∥
∥Sxn − p

∥
∥

+ δ3αnβ
1
nβ

2
n

∥
∥
∥Sy3

n − p
∥
∥
∥.

(3.5)

Similarly, an application of (2.6) and (2.12) gives

‖Sy3
n − p‖ ≤

(
1 − β3n

)
‖Sxn − p‖ + δβ3n‖Sy4

n − p‖. (3.6)

Substituting (3.6) in (3.5) we have

∥
∥Sxn+1 − p

∥
∥ ≤

(
1 − (1 − δ)αn − (1 − δ)δαnβ

1
n − δ2αnβ

1
nβ

2
n

)∥
∥Sxn − p

∥
∥

+ δ3αnβ
1
nβ

2
n

(
1 − β3n

)∥
∥Sxn − p

∥
∥ + δ4αnβ

1
nβ

2
nβ

3
n

∥
∥
∥Sy4

n − p
∥
∥
∥

=
(
1 − (1 − δ)αn − (1 − δ)δαnβ

1
n − (1 − δ)δ2αnβ

1
nβ

2
n − δ3αnβ

1
nβ

2
nβ

3
n

)

× ∥
∥Sxn − p

∥
∥ + δ4αnβ

1
nβ

2
nβ

3
n

∥
∥
∥Sy4

n − p
∥
∥
∥

≤
(
1 − (1 − δ)αn − δ3αnβ

1
nβ

2
nβ

3
n

)∥
∥Sxn − p

∥
∥ + δ4αnβ

1
nβ

2
nβ

3
n

∥
∥
∥Sy4

n − p
∥
∥
∥.

(3.7)
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Continuing the above process we have

∥
∥Sxn+1 − p

∥
∥ ≤

(
1 − (1 − δ)αn − δk−2αnβ

1
nβ

2
nβ

3
n . . . β

k−2
n

)∥
∥Sxn − p

∥
∥

+ δk−1αnβ
1
nβ

2
nβ

3
n . . . β

k−2
n

∥
∥
∥Syk−1

n − p
∥
∥
∥

≤
(
1 − (1 − δ)αn − δk−2αnβ

1
nβ

2
nβ

3
n . . . β

k−2
n

)∥
∥Sxn − p

∥
∥

+ δk−1αnβ
1
nβ

2
nβ

3
n . . . β

k−2
n

[(
1 − βk−1n

)∥
∥Sxn − p

∥
∥ + βk−1n ‖Tz − Txn‖

]

≤
(
1 − (1 − δ)αn − δk−2αnβ

1
nβ

2
nβ

3
n . . . β

k−2
n

)∥
∥Sxn − p

∥
∥

+ δk−1αnβ
1
nβ

2
nβ

3
n . . . β

k−2
n

[(
1 − βk−1n

)∥
∥Sxn − p

∥
∥ + δβk−1n

∥
∥Sxn − p

∥
∥
]

≤
(
1 − (1 − δ)αn − δk−2αnβ

1
nβ

2
nβ

3
n . . . β

k−2
n

)

+ δk−1αnβ
1
nβ

2
nβ

3
n . . . β

k−2
n

∥
∥Sxn − p

∥
∥

≤ (1 − (1 − δ)αn)
∥
∥Sxn − p

∥
∥.

(3.8)

Hence by Lemma 3.1Sxn → p.
Next we show that p is unique. Suppose there exists another point of coincidence p∗.

Then there is an z∗ ∈ X such that Tz∗ = Sz∗ = p∗. Hence, from (2.12) we have

∥
∥p − p∗

∥
∥ = ‖Tz − Tz∗‖ ≤ δ‖Sz − Sz∗‖ + ϕ(‖Sz − Tz‖) = δ

∥
∥p − p∗

∥
∥. (3.9)

Since δ < 1, then p = p∗ and so p is unique.
Since S, T are weakly compatible, then TSz = STz and so Tp = Sp. Hence p is a

coincidence point of S, T and since the coincidence point is unique, then p = p∗ and hence
Sp = Tp = p and therefore p is the unique common fixed point of S, T and the proof is
complete.

Remark 3.3. Weaker versions of Theorem 3.2 are the results in [16, 18] where S is assumed
injective and the convergence is not to the common fixed point but to the coincidence point
of S, T . Furthermore, the Jungck-multistep iteration used in Theorem 3.2 is more general than
the Jungck-Ishikawa and the Jungck-Noor iteration used in [17, 18].

It is already shown in [1, 20] that if S(Y ) or T(Y ) is a complete subspace of X, then
maps satisfying the generalized Zamfirescu operators (2.8) have a unique coincidence point.
Hence we have the following results.

Theorem 3.4. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

, (3.10)
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and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-multistep
iteration (2.6) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Since the Jungck-Noor, Jungck-Ishikawa and Jungck-Mann iterations are special cases
of Jungck-multistep iteration, then we have the following consequences.

Corollary 3.5. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

(3.11)

and T(X) ⊆ S(X). Assume S and T are weakly compatible. For any xo ∈ X, the Jungck-Noor iteration
(2.5) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Corollary 3.6. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

(3.12)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-Ishikawa
iteration (2.4) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Remark 3.7. (i) A weaker version of Corollary 3.6 is the main result of [16] where the
convergence is to the coincidence point of S, T and S is assumed injective.

(ii) If S = Id in Corollary 3.5, then we have the main result of [2].

Corollary 3.8. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

, (3.13)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-Mann
iteration (2.3) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Remark 3.9. If S = Id, Corollary 3.8 gives the result of [20].

It is already shown in [1, 2] that if S(Y ) or T(Y ) is a complete subspace ofX, thenmaps
satisfying the operators (2.9) has a unique coincidence point. Hence we have the following
results.

Theorem 3.10. Let X be a Banach space space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,

∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

2

}

(3.14)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-multistep
iteration (2.6) {Sxn}∞n=1 converges to the unique common fixed point of S, T .
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Since the Jungck-Noor, Jungck-Ishikawa, and Jungck-Mann iterations are special cases
of Jungck-multistep iteration, then we have the following consequences.

Corollary 3.11. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,
∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

}

, (3.15)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-Noor
iteration (2.5) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Corollary 3.12. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,
∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

}

, (3.16)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-Ishikawa
iteration (2.4) {Sxn}∞n=1 converges to the unique common fixed point of S, T .

Corollary 3.13. Let X be a Banach space and S, T : X → X such that

∥
∥Tx − Ty

∥
∥ ≤ hmax

{
∥
∥Sx − Sy

∥
∥,

‖Sx − Tx‖ + ∥
∥Sy − Ty

∥
∥

2
,
∥
∥Sx − Ty

∥
∥ +

∥
∥Sy − Tx

∥
∥

}

, (3.17)

and T(X) ⊆ S(X). Assume that S and T are weakly compatible. For any xo ∈ X, the Jungck-Mann
iteration (2.3) {Sxn}∞n=1 converges to the unique common fixed point of S, T .
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