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COMMON FIXED POINT OF JUNGCK-KIRK-TYPE

ITERATIONS FOR NON-SELF OPERATORS IN

NORMED LINEAR SPACES

Abstract. In this paper, we introduce Jungck-Kirk-multistep
and Jungck-Kirk-multistep-SP iterative schemes and use their
strong convergences to approximate the common fixed point of
nonself operators in a normed linear Space. The Jungck-Kirk-
Noor, Jungck-Kirk-SP, Jungck-Kirk-Ishikawa, Jungck-Kirk-Mann
and Jungck-Kirk iterative schemes follow our results as corollar-
ies. We also study and prove stability results of these schemes
in a normed linear space. Our results generalize and unify most
approximation and stability results in the literature.
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1. Introduction and preliminary definitions

In [2], Akewe, Okeke and Olayiwola introduced the Kirk-multistep and
Kirk-multistep-SP iterative schemes and prove their strong convergences and
stabilities for contractive-type operators in a normed linear space. In this
work, we extend the map T used in [2] to a pair of maps S, T by introducing
Jungck-Kirk-multistep and Jungck-Kirk-multistep-SP iterative schemes and
use their convergences to approximate the common fixed points of a pair of
nonself maps using contractive-type operators. However, there are several
iterative schemes in the literature for which the common fixed points of
operators have been approximated over the years by various authors.The
following schemes are some of them.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/95550696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


30 Hudson Akewe and Adesanmi Mogbademu

Definition 1 ([8]). Let X be a Banach space and Y an arbitrary set.
Let S, T : Y → X be two non self mappings such that T (Y ) ⊆ S(Y ). For
x0 ∈ Y , the Jungck iterative scheme is a sequence {Sxn}∞n defined by

(1) Sxn+1 = Txn, n = 0, 1, 2, . . .

Olaleru and Akewe [10] introduced the Jungck-multistep iterative scheme
and use the convergence to approximate the common fixed points of those
pairs of generalized contractive-like operators without assuming the injec-
tivity of any of the operators but rather they proved their results for a pair
of weakly compatible maps S, T. They used the following definition:

Definition 2 ([10]). Let X be a Banach space and Y an arbitrary set.
Let S, T : Y → X be two non self mappings such that T (Y ) ⊆ S(Y ). Let
x0 ∈ Y , the Jungck-multistep iterative scheme is the sequence {Sxn}∞n=0

defined by

Sxn+1 = (1− αn)Sxn + αnTy
1
n(2)

Syin = (1− βin)Sxn + βinTy
i+1
n , i = 1, 2, . . . , k − 2,

Syk−1n = (1− βk−1n )Sxn + βk−1n Txn, k ≥ 2,

where {αn}∞n=0, {βin}∞n=0, i = 1, 2, . . . , k− 1 are real sequences in [0, 1) such
that

∑∞
n=0 αn =∞.

Remark 1. The Jungck-multistep iterative scheme (2) generalizes the
Jungck-Noor [13], Jungck-Ishikawa [12], Jungck-Mann [18] iterative schemes.

Definition 3 ([10]). Let X be a Banach space and Y an arbitrary set.
Let S, T : Y → X be two non self mappings such that T (Y ) ⊆ S(Y ). A
point p ∈ X is called a coincident point of a pair of self maps S, T if there
exist a point q (called a point of coincidence) in X such that q = Sp = Tp.
Self maps S and T are said to be weakly compatible if they commute at their
coincidence points, that is if Sp = Tp for some p ∈ X, then STp = TSp.

Definition 4 ([10]). Let X be a Banach space and Y an arbitrary set.
Let S, T : Y → X be two non self mappings such that T (Y ) ⊆ S(Y ) and
S(Y ) is a complete subspace of X. For x, y ∈ Y and h ∈ (0, 1) we have:

‖Tx− Ty‖ ≤ hmax

{
‖Sx− Sy‖, ‖Sx− Tx‖+ ‖Sy − Ty‖

2
,(3)

‖Sx− Ty‖+ ‖Sy − Tx‖
2

}
.

‖Tx− Ty‖ ≤ hmax

{
‖Sx− Sy‖, ‖Sx− Tx‖+ ‖Sy − Ty‖

2
,(4)

‖Sx− Ty‖, ‖Sy − Tx‖} .
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There exists a real number δ ∈ [0, 1) and L > 0 such that for every x, y ∈ Y ,
we have

(5) ‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ L‖Sx− Tx‖.

There exists a real number δ ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+ such that ϕ(0) = 0 and for every x, y ∈ Y , we have

(6) ‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖)
1 +M ||Sx− Tx||

, M ≥ 0.

(7) ‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖).

Comparing (3) - (7), we have the following: (3)⇒ (4)⇒ (5)⇒ (6)⇒ (7)
but the converses are not true. For details of proof, see (Proposition 1 [10]).

The Kirk and Kirk-type iterative schemes which are of interest in this
work exist in literature, for example see ([4], [6] and [9]) for further study.
Chugh and Kumar [4], introduced the Kirk-Noor and Jungck-Kirk-Noor
iterative processes to obtain stability results in a Banach space.

Definition 5. Let (X, ‖.‖) be a normed linear space and S, T : Y → X be
nonself mappings and z a coincidence point of S and T , that is Sz = Tz = p
(say). For any x0 ∈ Y , let the sequence {Sxn}∞n=0, generated by the iteration
procedure (2) converge to p. Let sequence {Sun}∞n=0 be an arbitrary sequence
and set εn = ‖Sun+1−f(T, un)‖, for n ≥ 0. Then, the iteration procedure (2)
is (S, T )−stable if and only if limn→∞ εn = 0 implies that limn→∞ Sun = p.

The first stability result for T−stable mapping was proved by Ostrowski
[15]. Several other stability results exist in literature (for details see refer-
ences [1] to [5], [7], [11], [12], [14] to [18]).

We shall need the following Lemma which appear in [2], [6] and [11], to
prove our results.

Lemma 1 ([2]). Let δ be a real number satisfying 0 ≤ δ < 1 and
{εn}∞n=0 a sequence of positive numbers such that limn→∞ εn = 0, then
for any sequence of positive numbers {un}∞n=0 satisfying un+1 ≤ δun + εn,
n = 0, 1, 2, . . ., we have limn→∞ un = 0.

Lemma 2 ([6]). Let (X, ‖.‖) be a normed linear space and T : X → X be
a selfmap of X satisfying (3). Let ϕ : R+ → R+ be a subadditive, monotone
increasing function such that ϕ(0) = 0, ϕ(Lu) = Lϕ(u), L ≥ 0, u ∈ R+.
Then, for all i ∈ N , L ≥ 0, and for all x, y ∈ X,

(8) ‖T ix− T iy‖ ≤ ai‖x− y‖+

i∑
j=0

(ij)a
i−jϕ(‖x− Tx‖).
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Lemma 3 ([11]). Let (X, ‖.‖) be a normed linear space and S, T : Y → X
be nonself commuting maps of X satisfying (3) such that T (Y ) ⊆ S(Y ),
‖S2x−T (Sx)‖ ≤ ‖Sx−Tx‖ for all x ∈ Y and for all x, y ∈ Y, ‖S2x−Sy‖ ≤
‖Sx− Sy‖. Let ϕ : R+ → R+ be a sublinear, monotone increasing function
such that ϕ(0) = 0. Let w be the coincident point of S, T , Si, T i (i.e
Sw = Tw = p and Siw = T iw = p). Then, for all i ∈ N , L ≥ 0, and for all
x, y ∈ Y ,

(9) ‖T ix− T iy‖ ≤ ai‖Sx− Sy‖+

i∑
j=0

(ij)a
i−jϕ(‖Sx− Tx‖).

We now define Jungck-Kirk-multistep and Jungck-Kirk-multistep-SP it-
erative schemes and use their convergences to approximate the common fixed
points of a pair of nonself maps using contractive-type operators. We shall
also prove stability results of these schemes in a normed linear space.

Let X be a Banach space, S, T : Y → X nonself commuting maps of Y
with T (Y ) ⊆ S(Y ) and x0 ∈ Y . Then, the sequence {Sxn}∞n=0 defined by

Sxn+1 = αn,0Sxn +

k1∑
i=1

αn,iT
iy1n,

k1∑
i=0

αn,i = 1(10)

Syjn = βjn,0Sxn +

kj+1∑
i=1

βjn,iT
iyj+1

n ,

kj+1∑
i=0

βjn,i = 1, j = 1, 2, . . . , q − 2,

Syq−1n =

kq∑
i=0

βq−1n,i T
ixn,

kq∑
i=0

βq−1n,i = 1, q ≥ 2, n ≥ 0

where k1 ≥ k2 ≥ k3 ≥ . . . ≥ kq, for each j, αn,i ≥ 0, αn,0 6= 0, βjn,j ≥ 0,

βjn,0 6= 0, for each j, αn,i, β
j
n,i ∈ [0, 1] for each j and k1, kj are fixed integers

(for each j). (10) is called Jungck-Kirk- multistep iterative scheme.
Finally, the sequence {Sxn}∞n=0 defined by

Sxn+1 = αn,0Sy
1
n +

k1∑
i=1

αn,iT
iy1n,

k1∑
i=0

αn,i = 1(11)

Syjn = βjn,0Sy
j+1
n +

kj+1∑
i=1

βjn,iT
iyj+1

n ,

kj+1∑
i=0

βjn,i = 1, j = 1, 2, . . . , q − 2,
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Syq−1n =

kq∑
i=0

βq−1n,i T
ixn,

kq∑
i=0

βq−1n,i = 1, q ≥ 2, n ≥ 0

where k1 ≥ k2 ≥ k3 ≥ . . . ≥ kq, for each j, αn,i ≥ 0, αn,0 6= 0, βjn,j ≥ 0,

βjn,0 6= 0, for each j, αn,i, β
j
n,i ∈ [0, 1] for each j and k1, kj are fixed integers

(for each j). (11) is called Jungck-Kirk- multistep-SP iterative scheme.

Remark 2. Jungck-Kirk-multistep (10) is a generalization of Jungck-Kirk-
Noor, Jungck-Kirk-Ishikawa, Jungck-Kirk-Mann and Jungck-Kirk iterative
schemes, infact if q = 3 in (10), we have Jungck-Kirk-Noor iterative scheme
[10]. If q = 2 in (10), we obtain Jungck-Kirk- Ishikawa iterative scheme and
if q = 2 and k2 = 0 in (10), we obtain Jungck-Kirk-Mann iterative scheme.

2. Main results I

Theorem 1. Let (X, ||.||) be a normed linear space and S, T : Y → X be
nonself commuting mappings for an arbitrary set Y such that (7) holds with
T (Y ) ⊆ S(Y ). Let w be the coincidence point of S, T , Si, T i (i.e Sw =
Tw = p and Siw = T iw = p) for each x0 ∈ Y , the Jungck-Kirk-multistep
iterative scheme (10) converges strongly to p.

Further, if Y = X and S, T commute at p (that is S and T are weakly
compatible), then p is the unique common fixed point of S, T .

Proof. In view of (10) and Lemma 3, we have

(12) ‖Sxn+1 − p‖ ≤ αn,0‖Sxn − p‖+

k1∑
i=1

αn,i‖T iy1n − Tw‖.

Using (7), with y = y1n, gives

(13) ‖Tw − T iy1n‖ ≤ ai‖Sy1n − Sw‖+

i∑
j=0

(ij)a
i−jϕ(‖Sw − Tw‖).

Substituting (13) in (12), we have

(14) ‖Sxn+1 − p‖ ≤ αn,0‖Sxn − p‖+ (

k1∑
i=1

αn,ia
i)‖Sy1n − p‖.
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We note that βjn,i ∈ [0, 1] for each j and k1, kj are fixed integers (for each
j), for n = 1, 2, . . . and 1 ≤ j ≤ q − 1.

‖Sy1n − p‖ ≤ β1n,0‖Sxn − p‖+

k2∑
i=1

β1n,i‖T iy2n − Tw‖(15)

≤ β1n,0‖Sxn − p‖+

k2∑
i=1

β1n,ia
i‖Sy2n − Sw‖

+
i∑

j=0

(ij)a
i−jϕ(‖Sw − Tw‖)

≤ β1n,0‖Sxn − p‖+ (

k2∑
i=1

β1n,ia
i)[β2n,0‖Sxn − p‖

+(

k3∑
i=1

β2n,ia
i)‖Sy3n − p‖]

≤ β1n,0‖Sxn − p‖+ (

k2∑
i=1

β1n,ia
i)β2n,0‖Sxn − p‖

+(

k2∑
i=1

β1n,ia
i)(

k3∑
i=1

β2n,ia
i)β3n,0‖Sxn − p‖

+ . . .+ (

k2∑
i=1

β1n,ia
i)(

k3∑
i=1

β2n,ia
i)(

k4∑
i=1

β3n,ia
i)

. . . (

kq−1∑
i=1

βq−2n,i a
i)(

kq∑
i=1

βq−1n,i a
i)βqn,0‖Sxn − p‖.

(15) holds, since Sw = Tw = p and ϕ(0) = 0. Substituting (15) in (4),

‖Sxn+1 − p‖ ≤ αn,0‖Sxn − p‖(16)

+(

k1∑
i=1

αn,ia
i)
[
β1n,0‖Sxn − p‖

+ (

k2∑
i=1

β1n,ia
i)β2n,0‖Sxn − p‖

+ (

k2∑
i=1

β1n,ia
i)(

k3∑
i=1

β2n,ia
i)β3n,0‖Sxn − p‖

+ . . .+ (

k2∑
i=1

β1n,ia
i)(

k3∑
i=1

β2n,ia
i)(

k4∑
i=1

β3n,ia
i)β4n,0
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. . . (

kq−1∑
i=1

βq−2n,i a
i)(

kq−1∑
i=1

βqn,ia
i)βqn,0‖Sxn − p‖

]
<
[
αn,0 + (1− αn,0)β

1
n,0 + (1− αn,0)(1− β1n,0)

+ (1− αn,0)(1− β1n,0)(1− β2n,0)
+ (1− αn,0)(1− β1n,0)(1− β2n,0)(1− β3n,0)
+ . . .+ (1− αn,0)(1− β1n,0)(1− β2n,0)(1− β3n,0)

. . . (1− βq−1n,0 )(1− βqn,0)
]
‖Sxn − p‖.

Since ai ∈ [0, 1) and
∑k1

i=1 αn,i =
∑kj+1

i=1 βjn,i = 1 for j = 1, 2, 3, . . . , q − 1.
Hence, limn→∞ ‖Sxn+1 − p‖ = 0. That is {Sxn}∞n=0 converges strongly
to p. Next we show that p is unique. Suppose there exists another point
of coincidence p∗, then there is an w∗ ∈ X such that Tw∗ = Sw∗ = p∗.
Hence, using (7) we have ‖w − w∗‖ = ‖T iw − T iw∗‖ ≤ ai‖Sxn − Sw‖ +∑i

j=0(
i
j)a

i−jϕ(‖Sw − Tw‖) hence w = w∗ and so p is unique. Since S, T
are weakly compatible, then TSw = STw and so Tp = Sp. Hence p is a
coincidence point of S, T and since the coincidence point is unique, then
p = w and hence Sp = Tp = p and therefore p is the unique common fixed
point of S, T . This ends the proof. �

Theorem 1 leads to the following corollaries:

Corollary 1. Let (X, ||.||) be a normed linear space and S, T : Y → X
be nonself commuting mappings for an arbitrary set Y such that (7) holds
with T (Y ) ⊆ S(Y ). Let w be the coincidence point of S, T, Si, T i (i.e Sw =
Tw = p and Siw = T iw = p) for each x0 ∈ Y ,

(i) the Jungck-Kirk-Noor iterative scheme converges strongly to p;
(ii) the Jungck-Kirk-Ishikawa iterative scheme converges strongly to p;
(iii) the Jungck-Kirk-Mann iterative scheme converges strongly to p;
(iv) the Jungck-Kirk iterative scheme converges strongly to p.
Further, if Y = X and S, T commute at p (that is S and T are weakly

compatible), then p is the unique common fixed point of S, T .

Theorem 2. Let (X, ||.||) be a normed linear space and S, T : Y → X be
nonself commuting mappings for an arbitrary set Y such that (7) holds with
T (Y ) ⊆ S(Y ). Let w be the coincidence point of S, T , Si, T i (i.e Sw =
Tw = p and Siw = T iw = p) for each x0 ∈ Y , the Jungck-Kirk-multistep-SP
iterative scheme (7) converges strongly to p.

Further, if Y = X and S, T commute at p (that is S and T are weakly
compatible), then p is the unique common fixed point of S, T .
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Proof. By similar approach in the proof of Theorem 1, the result of
Theorem 2 follows. �

Theorem 2 yields the following corollaries:

Corollary 2. Let (X, ||.||) be a normed linear space and S, T : Y → X
be nonself commuting mappings for an arbitrary set Y such that (3) holds
with T (Y ) ⊆ S(Y ). Let w be the coincidence point of S, T , Si, T i (i.e
Sw = Tw = p and Siw = T iw = p) for each x0 ∈ Y , the

(i) Jungck-Kirk-Noor-SP iterative scheme converges strongly to p.
(ii) Jungck-Kirk-Mann iterative scheme converges strongly to p.
(iii) Jungck-Kirk iterative scheme converges strongly to p.
Further, if Y = X and S, T commute at p (that is S and T are weakly

compatible), then p is the unique common fixed point of S, T .

2. Main results II

Theorem 3. Let (X, ||.||) be a normed linear space and S, T : Y → X be
nonself commuting mappings for an arbitrary set Y such that (7) holds with
T (Y ) ⊆ S(Y ). For each x0 ∈ Y , let {Sxn}∞n=0 be the Jungck-Kirk-multi-
step-SP iterative scheme (11) converging strongly to p (i.e Sp = Tp = p and
Sip = T ip = p) with 0 < α < αn,i, 0 < β < βjn,i for each j = 1, 2, ..., q − 1,
and all n. Then, the Jungck-Kirk-multistep-SP iterative scheme (11) is
S, T− stable.

Proof. Let {Szn}∞n=0, {Suin}∞n=0, for i = 1, 2, . . . , k−1 be real sequences
in E. Let εn = ‖Szn+1 − αn,0Su

1
n −

∑k1
i=1 αn,iT

iu1n‖, n = 0, 1, 2, ..., where

Sujn = βjn,0Su
j+1
n +

∑kj+1

i=1 βjn,iT
iuj+1

n ,
∑kj+1

i=0 βjn,i = 1, j = 1, 2, ..., q − 2,

Suq−1n =
∑kq

i=0 β
q−1
n,i T

izn,
∑kq

i=0 β
q−1
n,i = 1, q ≥ 2 and let limn→∞ εn = 0.

Then we shall prove that limn→∞ Szn = p using the contractive mappings
satisfying condition (7). That is,

‖Szn+1 − p‖ ≤ ‖Szn+1 − αn,0Su
1
n(17)

−
k1∑
i=1

αn,iT
iu1n‖+ ‖αn,0Su

1
n +

k1∑
i=1

αn,iT
iu1n − p‖

≤ εn + αn,0‖Su1n − p‖+
( k1∑
i=1

αn,i

)
ai‖Su1n − Sp‖

+
i∑

j=0

(ij)a
i−jϕ(‖Sp− Tp‖)‖
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=
( k1∑
i=0

αn,ia
i
)
‖Su1n − p‖+ εn.

‖Su1n − p‖ = ‖βn,0Su2n +

k2∑
i=1

βn,iT
iu2n −

k2∑
i=0

βn,iT
ip‖(18)

= ‖βn,0(Su2n − p) +

k2∑
i=1

βn,i(T
iu2n − T ip)‖

≤ βn,0‖Su2n − p‖+
( k2∑
i=1

βn,i
)[
ai‖Su2n − Sp‖

+
i∑

j=0

(ij)a
i−jϕ(‖Sp− Tp‖)

]

≤
( k2∑
i=0

βn,ia
i
)[
βn,0‖Su3n − p‖+

( k3∑
i=1

βn,i
)
[ai‖Su3n − Sp‖

+

i∑
j=0

(ij)a
i−jϕ(‖Sp− Tp‖)]

]

≤ (

k2∑
i=0

β1n,ia
i)(

k3∑
i=0

β2n,ia
i)(

k4∑
i=0

β3n,ia
i)

... (

kq−1∑
i=0

βq−2n,i a
i)(

kq∑
i=0

βq−1n,i a
i)‖Szn − p‖.

(18) holds, since Sp = Tp = p and ϕ(0) = 0. Substituting (18) in (17), we
have

‖Szn+1 − p‖ ≤
( k1∑
i=0

αn,ia
i
)
(

k2∑
i=0

β1n,ia
i)(

k3∑
i=0

β2n,ia
i)(

k4∑
i=0

β3n,ia
i)(19)

. . . (

kq−1∑
i=0

βq−2n,i a
i)(

kq∑
i=0

βq−1n,i a
i)‖Szn − p‖+ εn.

Since ai ∈ [0, 1) and
∑k1

i=1 αn,i =
∑kj+1

i=1 βjn,i = 1 for j = 1, 2, 3...q − 1 and

(

k1∑
i=0

αn,ia
i)(

k2∑
i=0

β1n,ia
i)(

k3∑
i=0

β2n,ia
i)(

k4∑
i=0

β3n,ia
i)(20)

. . . (

kq−1∑
i=0

βq−2n,i a
i)(

kq∑
i=0

βq−1n,i a
i)
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< (

k1∑
i=0

αn,i)(

k2∑
i=0

β1n,i)(

k3∑
i=0

β2n,i)(

k4∑
i=0

β3n,i)...(

kq−1∑
i=0

βq−2n,i )(

kq∑
i=0

βq−1n,i ) = 1.

Let

δ = (

k1∑
i=0

αn,ia
i)(

k2∑
i=0

β1n,ia
i)(

k3∑
i=0

β2n,ia
i)(

k4∑
i=0

β3n,ia
i)

. . . (

kq−1∑
i=0

βq−2n,i a
i)(

kq∑
i=0

βq−1n,i a
i)

then, δ < 1. Hence

(21) ‖Szn+1 − p‖ ≤ δ‖Szn − p‖+ εn.

Using Lemma 3 in (21), we have limn→∞ Szn = p. Conversely, let limn→∞ zn
= p, we show that limn→∞ εn = 0 as follows:

εn = ‖Szn+1 − αn,0Su
1
n −

k1∑
i=0

αn,iT
iu1n‖(22)

≤ ‖Szn+1 − p‖+ ‖p− αn,0Su
1
n −

k1∑
i=0

αn,iT
iu1n‖

≤ ‖Szn+1 − p‖+ αn,0‖Su1n − p‖+

k1∑
i=1

αn,i‖T ip− T iu1n‖

≤ ‖Szn+1 − p‖+ αn,0‖Su1n − p‖+ (

k1∑
i=1

αn,i)[a
i‖Su1n − Sp‖

+
i∑

j=0

(ij)a
i−jϕ(‖Sp− Tp‖)‖] = ‖Szn+1 − p‖

+ (

k1∑
i=0

αn,ia
i)‖Su1n − p‖.

Substituting ‖Su1n − p‖ that is (18) in (22), we have

εn ≤ ‖Szn+1 − p‖(23)

+ (

k1∑
i=0

αn,ia
i)

k1∑
i=0

αn,ia
i)(

k2∑
i=0

β1n,ia
i)(

k3∑
i=0

β2n,ia
i)(

k4∑
i=0

β3n,ia
i)

. . . (

kq−1∑
i=0

βq−2n,i a
i)(

kq∑
i=0

βq−1n,i a
i)‖Szn − p‖.
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Using (20), (23) becomes εn ≤ ‖Szn+1 − p‖ + δ‖Szn − p‖. Hence, using
limn→∞ ‖Szn−p‖ = 0 (by our assumption), we have limn→∞εn = 0. There-
fore the Jungck-Kirk- multistep-SP iterative scheme (11) is S, T -stable. This
ends the proof. �

Theorem 3 yields the following corollary:

Corollary 3. Let (X, ||.||) be a normed linear space and S, T : Y → X
be nonself commuting mappings for an arbitrary set Y such that (7) holds
with T (Y ) ⊆ S(Y ). For each x0 ∈ Y , let {Sxn}∞n=0 be the Jungck-Kirk-SP,
Jungck-Kirk-Mann and Jungck-Kirk iterative schemes respectively converg-
ing strongly to p (i.e. Sp = Tp = p and Sip = T ip = p) with 0 < α < αn,i,

0 < βj < βjn,i for each j = 1, 2, ..., q − 1, and all n. Then,
(i) the Jungck-Kirk-SP iterative scheme is S, T− stable;

(ii) the Jungck-Kirk-Mann iterative scheme is S, T− stable;
(iii) the Jungck-Kirk iterative scheme is S, T− stable.

Theorem 4. Let (X, ||.||) be a normed linear space and S, T : Y → X be
nonself commuting mappings for an arbitrary set Y such that (7) holds with
T (Y ) ⊆ S(Y ). For each x0 ∈ Y , let {Sxn}∞n=0 be the Jungck-Kirk-multistep
iterative scheme (10) converging strongly to p (i.e. Sp = Tp = p and Sip =
T ip = p) with 0 < α < αn,i, 0 < β < βjn,i for each j = 1, 2, ..., q − 1, and all
n. Then, the Jungck-Kirk-multistep iterative scheme (10) is S, T− stable.

Proof. By similar approach in the proof of Theorem 3, the result of
Theorem 4 follows. �

Theorem 4 yields the following corollaries:

Corollary 4. Let (X, ||.||) be a normed linear space and S, T : Y → X
be nonself commuting mappings for an arbitrary set Y such that (7) holds
with T (Y ) ⊆ S(Y ). For each x0 ∈ Y , let {Sxn}∞n=0 be the Jungck-Kirk-Noor
iterative scheme converging strongly to p (i.e Sp = Tp = p and Sip = T ip =
p) with 0 < α < αn,i, 0 < β < βjn,i for each j = 1, 2, and all n. Then,

(i) the Jungck-Kirk-Noor iterative scheme is S, T− stable;
(ii) the Jungck-Kirk-Ishikawa iterative scheme is S, T− stable;
(iii) the Jungck-Kirk-Mann iterative scheme is S, T− stable;
(iv) the Jungck-Kirk iterative scheme is S, T− stable.

Acknowledgments. The authors wish to thank Prof. J.O. Olaleru
for giving useful comments/suggestions leading to the improvement of this
paper and for supervising their Ph.D. Thesis.



40 Hudson Akewe and Adesanmi Mogbademu

References

[1] Akewe H., Approximation of Fixed and Common Fixed Points of General-
ized Contractive-Like Operators, University of Lagos, Lagos, Nigeria, Ph.D.
Thesis, 2010, 112 pages.

[2] Akewe, H., Okeke G.A., Olayiwola A.F., Strong convergence and sta-
bility of Kirk-multistep-type iterative schemes fot contractive-type operators,
Fixed Point Theory and Applications, 2014, 2014: 45, 24 pages.

[3] Berinde V., On the stability of some fixed point procedures, Buletinul Sti-
intific al Universitatii din Baia Mare. Seria B. Fascicola Mathematica-Infor-
matica, XVIII(1)(2002), 7-14.

[4] Chugh R, Kumar V., Stability of hybrid fixed point iterative algorithms
of Kirk-Noor type in normed linear space for self and nonself operators,
International Journal of Contemporary Mathematical Sciences, 7(24)(2012),
1165-1184.

[5] Harder A.M., Hicks T.L., Stability results for fixed point iteration proce-
dures, Math. Japonica, 33(5)(1988), 693-706.

[6] Hussain N., Chugh R., Kumar V., Rafiq A., On the rate of convergence
of Kirk-type iterative schemes, Journal of Applied Mathematics, Vol. 2012,
Article ID 526503, 22 pages.

[7] Imoru C.O., Olatinwo M.O., On the stability of Picard and Mann itera-
tion, Carpathian Journal of Mathematics, 19(2003), 155-160.

[8] Jungck G., Commuting mappings and fixed points, Amer. Math. Monthly,
83(4)(1976), 261-263.

[9] Kirk W.A., On successive approximations for nonexpansive mappings in
Banach spaces, Glasgow Mathematical Journal, 12(1971), 6-9.

[10] Olaleru J.O., Akewe H., On the convergence of Jungck-type iterative
schemes for generalized contractive-like operators, Fasciculi Mathemathici, 45
(2010), 87-98.

[11] Olatinwo M.O., Stability of some fixed point iteration processes and con-
tinuous dependence of fixed points in Banach spaces, Thesis, 2007.

[12] Olatinwo M.O., Some stability and strong convergence results for the
Jungck-Ishikawa iteration process, Creative Math. and Inf., 17(2008), 33-42.

[13] Olatinwo M.O., A generalization of some convergence results using a
Jungck-Noor three-step iteration process in arbitrary Banach space, Fasciculi
Mathemathici, 40(2008), 37-43.

[14] Osilike M.O., Udomene A., Short proofs of stability results for fixed point
iteration procedures for a class of contractive-type mappings, Indian Journal
of Pure and Applied Mathematics, 30(1999), 1229-1234.

[15] Ostrowski A.M., The round-off stability of iterations, Zeilschrift fur Ange-
wandte Mathemalik und Mechanik, 47(1967), 77-81.

[16] Rhoades B.E., Fixed point theorems and stability results for fixed point iter-
ation procedures, Indian Journal of Pure and Applied Mathematics, 21(1990),
1-9.

[17] Rhoades B.E., Fixed point theorems and stability results for fixed point
iteration procedures II, Indian Journal of Pure and Applied Mathematics,
24(11)(1993), 691-703.



Common fixed point of Jungck-Kirk-type . . . 41

[18] Singh S.L., Bhatnagar C., Mishra S.N., Stability of Jungck-type itera-
tion procedures, Int. J. Math. Math. Sci., 19(2005), 3035-3043.

Hudson Akewe
Department of Mathematics

University of Lagos
Akoka, Yaba, Lagos, Nigeria

e-mail: hakewe@unilag.edu.ng

Adesanmi Mogbademu
Department of Mathematics

University of Lagos
Akoka, Yaba, Lagos, Nigeria

e-mail: amogbademu@unilag.edu.ng

Received on 23.05.2014 and, in revised form, on 02.02.2016.


