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Abstract

In this paper, we prove some stability results for sequences of nonself
mappings using a modi�ed Jungck-Mann hybrid iterative procedure in a
Banach space by employing a class of generalized contractive-like de�ni-
tion. As corollaries, some stability results of Jungck (pair of maps) and
Picard (single map) iterative procedures are also established. Our stabil-
ity results generalize and extend several related results involving pair and
single maps in the literature.
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1 Introduction and Preliminary De�nitions

Let (X, d) be a complete metric space and T : X → X be a self map of X.
Suppose that FT = {p ∈ X : Tp = p} is the set of all �xed point of T. There are
several iterative procedures in the literature for which �xed point of mappings
have been approximated over the years. In a complete metric space, for x0 ∈ X
the Picard iterative sequence {xn}∞n=1 de�ned by

xn+1 = Txn, n ≥ 0, (1.1)

has been employed to approximate the �xed points of the mapping satisfying
the inequality d(Tx, Ty) ≤ ad(x, y), for all x, y ∈ X and 0 ≤ a < 1 [see 15, 16
for details].

In a Banach space setting, we shall need the following iterative procedures
which appear in [13] and [10] to explain our stability results.

Let E be a Banach space and T : E → E a selfmap of E. For x0 ∈ E, the
sequence {xn}∞n=1

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (1.2)
where {αn}∞n=0 is a real sequence in [0,1] such that

∑∞
n=0 αn =∞ is called the
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Mann iterative scheme [13].

If αn = 1 in (1.2), we have the Picard iterative scheme (1.1).

For x0 ∈ E, the sequence {xn}∞n=0 de�ned by

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn, n ≥ 0, (1.3)

where {αn}∞n=0, {βn}∞n=0 are real sequences in [0,1] such that
∑∞
n=0 αn = ∞ is

called Ishikawa iterative scheme [10].

Observe that if βn = 0 for each n, then the Ishikawa iterative scheme (1.3)
reduces to the Mann iterative scheme (1.2).

In [7], Berinde showed that Picard iteration de�ned in (1.1) is faster than Mann
iteration in (1.2) for quasicontractive operators. In [23], Qing and Rhoades by
taking example, showed that Ishikawa iteration (1.3) is faster than Mann itera-
tion (1.2) for a certain quasi-contractive operator.

Several generalizations of the Banach �xed point theorem have been proved
to date, one of the most commonly studied generalization hitherto is the one
proved by Zam�rescu [26] in 1972, which is stated as thus:
Theorem 1.1. Let X be a complete metric space and T : X → X a Zam�rescu
operator satisfying

d(Tx, Ty) ≤ hmax{d(x, y), 1
2
[d(x, Tx) + d(y, Ty)],

1

2
[d(x, Ty) + d(y, Tx)]},

(1.4)
where 0 ≤ h < 1. Then, T has a unique �xed point and the Picard iteration
(1.1) converges to p for any x0 ∈ X.
Observe that in a Banach space setting, condition (1.4) implies

‖Tx− Ty‖ ≤ δ‖x− y‖+ 2δ‖x− Tx‖, (1.5)

where 0 ≤ δ < 1 and δ = max{h, h
2−h}.

Several papers have been written on the Zam�rescu operators (1.5), for example
(see [5], [6], [7] and [26]). The most commonly used methods of approximating
the �xed points of the Zam�rescu operators are Picard, Mann [13] and Ishikawa
[10].

The �rst important result on T -stable mappings was established by Ostrowski
[22] for Picard iteration. Berinde [5], also gave the following remarkable ex-
plaination on the stability of iteration procedures.
Throughout this study, X shall denote metric space and E a Banach space.
Let {xn}∞n=0 be the sequence generated by an iteration procedure involving the
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operator T

xn+1 = f(T, xn), (1.6)

n = 0, 1, 2, ..., where x0 ∈ X is the initial approximation and f is some function.
For example, the Picard iteration (1.1) is obtained from (1.6) for f(T, xn) =
Txn, while the Mann iteration (1.2) is obtained for f(T, xn) = (1 − αn)xn +
αnTxn, with {αn}∞n=0 is a sequence in [0,1]. Suppose {xn}∞n=0 converges to a
�xed point p of T. When calculating {xn}∞n=0, then we cover the following steps:
1. We chose the initial approximation x0 ∈ X;
2. Then we compute x1 = f(T, x0), but due to various errors (rounding errors,
numerical approximations of functions, derivatives or integrals), we do not get
the exact value of x1, but a di�erent one z1, which is very close to x1;
3. Consequently, when computing x2 = f(T, x1) we shall have actually x2 =
f(T, z1) and instead of the theoretical value x2, we shall obtain a closed value
and so on. In this way, instead of the theoretical sequence {xn}∞n=0 generated
by the iterative method, we get an approximant sequence {zn}∞n=0. We say the
iteration method is stable if and only if for zn closed enough to xn, {zn}∞n=0

still converges to the �xed point p of T. Following this idea, Harder and Hicks
[8] introduced the following concept of stability.

De�nition 1.2. Let (X, d) be a complete metric space and T : X → X a
self map, x0 ∈ X and the iteration procedure de�ned by (1.1) such that the
generated sequence {xn}∞n=0 converges to a �xed point p of T. Let {zn}∞n=0 be
arbitrary sequence in X, and set εn = d(zn+1, f(T, zn)), for n ≥ 0. We say the
iteration procedure (1.1) is T−stable if and only if limn→∞ εn = 0 implies that
limn→∞zn = p.

Remark 1.3. Since the metric is induced by a norm, we have
εn = ‖zn+1 − f(T, zn)‖, for n ≥ 0 in place of εn = d(zn+1, f(T, zn)), for n ≥ 0
in the de�nition of stability whenever we are working in a Banach space.

In 2003, Imoru and Olatinwo [9] proved some stability results by employing
the following general contractive de�nition:
for each x, y ∈ E, there exists δ ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+ with ϕ(0) = 0 such that

‖Tx− Ty‖ ≤ δ‖x− y‖+ ϕ(‖x− Tx‖). (1.7)

Several other stability results exist in the literature (for details see [1], [4], [5],
[8], [9], [19], [20], [21], [22] and [25]).

In 2013, Khan [12], gave a di�erent perspective to iteration procedure, he intro-
duced the following Picard-Mann hybrid iterative scheme for a single nonexpan-
sive mapping T. For any initial point x0 ∈ E the sequence {xn}∞n=0 is de�ned
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by

xn+1 = Tyn

yn = (1− αn)xn + αnTxn, n ≥ 0, (1.8)

where {αn}∞n=0 is a real sequence in [0,1] such that
∑∞
n=0 αn =∞.

He showed that the hybrid scheme (Picard-Mann scheme (1.8)) converges faster
than all of Picard (1.1), Mann (1.2) and Ishikawa (1.3) iterative procedures in
the sense of Berinde [7] for contractions. He also proved strong convergence
and weak convergence theorems with the help of his iterative process (1.8) for
the class of nonexpansive mappings in general Banach spaces and applied it to
obtain results in uniformly convex Banach spaces.
Motivated by the work of Khan [12], we introduce the following modi�ed Jungck-
Mann hybrid iterative procedure and prove common �xed point theorem in [2]
for a pair of weakly compatible generalized contractive-like mappings in a Ba-
nach space. The author [2] also gave some useful examples to demonstrate that
weakly compatibility is the most general of all the compatibility type condtions
under consideration.

De�nition 1.4 [2]. Let E be a Banach space, Y be an arbitrary set and
S, T : Y → E such that T (Y ) ⊆ S(Y ). Let x0 ∈ Y, the Jungck-Mann hybrid
iteration scheme {Sxn}∞n=1 is de�ned by

Sxn+1 = Tyn

Syn = (1− αn)Sxn + αnTxn (1.9)

where {αn}∞n=0 is a real sequence in [0,1] such that
∑∞
n=0 αn =∞.

De�nition 1.5 [17]. Let E be a Banach space, Y be an arbitrary set. For
S, T : Y → E with T (Y ) ⊆ S(Y ), where S(Y ) is a complete subspace of
E. There exists a real number δ ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+ such that ϕ(0) = 0 and for every x, y ∈ Y , we have

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖). (1.10)

De�nition 1.6 [17]. Let E be a Banach space and S, T : E → E. A point
p ∈ E is called a coincident point of a pair of self maps S, T if there exists
a point q (called a point of coincidence) in E such that q = Sp = Tp. Two
self maps S and T are weakly compatible if they commute at their coincidence
points, that is if Sp = Tp for some p ∈ E, then STp = TSp.

The author [2], proved convergence theorem of Jungck-Mann hybrid iterative
procedure to the common �xed point of a pair of weakly compatible mappings
S, T for generalized contractive-like operators, using the following theorem:
Theorem 1.7 [Theorem 3.1 [2]]. Let (E, ‖.‖) be a Banach space and S, T :
Y → E be nonself commuting mappings for an arbitrary set Y satisfying the
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qeneralized contractive-like inequality (1.10) with T (Y ) ⊆ S(Y ). Let w be the
coincidence point of S, T, (i.e Sw = Tw = p) for each x0 ∈ Y, the Jungck-
(Jungck-Mann) hybrid iterative scheme (1.9) converges strongly to p.
Further, if Y = E and S, T commute at p (that is S and T are weakly compat-
ible), then p is the unique common �xed point of S, T.

Example 1.8.[2] Let E =
(
[0, 2], ‖.‖

)
. De�ne T and S by

Tx =


1
2 , if x ∈ (0, 1]

0, if x ∈ {0} ∪ (1, 2]
and Sx =


0, if x=0

x+ 1, if x ∈ (0, 1]

x− 1, if x ∈ (1, 2]

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖), where δ = 1
2 and ϕ(t) = 2δt.

T (E) = {0} ∪ { 12} and S(E) = [0, 2]. Then T (E) ⊆ S(E). It is easy to see that
S(0) = T (0) = 0 and ST (0) = S(0) = 0, TS(0) = T (0) = 0.
Hence the common �xed point of S and T is 0.

Several other relevant papers of Jungck-type schemes worth studying exist in
literature, for detailed survey of some of them see ([15], [16], [17] and [18]).

We only need to prove the stability results for this iteration procedure de�ned
in (1.9) for a pair of weakly compatible maps.

We shall need the following de�nition and Lemma, to prove our results.
De�nition 1.9. Let (E, ‖.‖) be a Banach space and S, T : Y → E nonself
commuting mappings for an arbitrary set Y with T (Y ) ⊆ S(Y ). Suppose S and
T have a common �xed point p, that is (Sp = Tp = p) and for each x0 ∈ Y let
{Sxn}∞n=0 generated by the modi�ed Jungck-Mann hybrid iterative procedure
de�ned by (1.9) converge to p . Let {Szn}∞n=0 be arbitrary sequence in E, and
set εn = ‖Szn+1 − f(T, zn)‖, for n ≥ 0. We say the iteration procedure (1.9) is
(S, T )-stable if and only if limn→∞ εn = 0 implies that limn→∞Szn = p.

Lemma 1.10 [5]. Let δ be a real number satisfying 0 ≤ δ < 1 and {εn}∞n=0 a
sequence of positive numbers such that limn→∞εn = 0, then for any sequence
of positive numbers {un}∞n=0 satisfying un+1 ≤ δun + εn, n=0,1,2,..., we have
limn→∞un = 0.

2 Main Result

Theorem 2.1. Let (E, ‖.‖) be a Banach space and S, T : E → E be nonself
weakly compatible mappings satisfying the generalized contrative-like condition

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖). (2.1)
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where δ ∈ [0, 1) and ϕ : R+ → R+ a monotone increasing function such that
ϕ(0) = 0 and for every x, y ∈ E. Suppose S and T have a unique common
�xed point p (that is Sp = Tp = p). Let x0 ∈ E and {Sxn}∞n=0 be the modi�ed
Jungck-Mann hybird iterative procedure de�ned by (1.9) converging to p. Then,
the modi�ed Jungck-Mann hybird iterative procedure (1.9) is (S, T )-stable.
Proof:
Let {Sxn}∞n=0 be the theoretical seqeuence and {Szn}∞n=0 be the approximant
sequence.
Let {Szn}∞n=0 be real a sequence in E.
Let εn = ‖Szn+1 − Tun‖, n = 0, 1, 2, ...,
where Sun = (1− αn)Szn + αnTzn and let limn→∞εn = 0.
Then we shall prove that limn→∞Szn = p using the contractive mappings
satisfying condition (2.1).
That is,

‖Szn+1 − p‖ ≤ ‖Szn+1 − Tun‖+ ‖Tun − Tp‖
≤ εn + ‖Tun − Tp‖. (2.2)

Applying condition (2.1) on (2.2), we have

‖Szn+1 − p‖ ≤ εn + δ‖Sp− Sun‖+ ϕ(‖Sp− Tp‖) (2.3)

Since Sp = Tp = p and ϕ(0) = 0, then (2.3) becomes

‖Szn+1 − p‖ ≤ εn + δ‖p− Sun‖. (2.4)

From (2.4),

‖p− Sun‖ = ‖(1− αn + αn)p− (1− αn)Szn − αnTzn‖
= ‖(1− αn)(p− Szn) + αn(p− Tzn)‖
≤ (1− αn)‖p− Szn‖+ αn‖Tp− Tzn‖
≤ (1− αn)‖p− Szn‖+ αn[δ‖Sp− Szn‖+ ϕ(‖Sp− Tp‖)]
= (1− αn)‖p− Szn‖+ αn[δ‖p− Szn‖
= (1− αn + αnδ)‖p− Szn‖ (2.5)

Substituting (2.5) in (2.4), we have

‖Szn+1 − p‖ ≤ δ[1− (1− δ)αn]‖p− Szn‖+ εn. (2.6)

Since 0 ≤ δ < 1, using Lemma [1.10] in (2.6) yields limn→∞Szn = p.

Conversely, let limn→∞Szn = p, we show that limn→∞εn = 0 as follows:

εn = ‖Szn+1 − Tun‖
≤ ‖Szn+1 − Sp‖+ ‖Tp− Tun‖
≤ ‖Szn+1 − Sp‖+ δ‖Sp− Sun‖+ ϕ(‖Sp− Tp‖)
= ‖Szn+1 − Sp‖+ δ‖p− Sun‖ (2.7)
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From (2.7),

‖p− Sun‖ ≤ (1− αn)‖p− Szn‖+ αn‖Tp− Tzn‖
≤ (1− αn)‖p− Szn‖+ αn[δ‖Sp− Szn‖+ ϕ(‖Sp− Tp‖)]
= (1− αn)‖p− Szn‖+ αnδ‖p− Szn‖
= (1− αn + αnδ)‖p− Szn‖ = [1− (1− δ)αn]‖p− Szn‖ (2.8)

Substituting (2.8) in (2.7), we have

εn ≤ ‖Szn+1 − p‖+ δ[1− (1− δ)αn]‖Szn − p‖

Since limn→∞Szn = p by our assumption, then we have limn→∞εn = 0.
Therefore, the modi�ed Jungck-Mann hybrid iterative procedure (1.9) is
(S, T )-stable.This ends the proof.

Theorem 2.1 yields the following corollary:
Corollary 2.2. Let (E, ‖.‖) be a Banach space and T : E → E be a self
mapping satisfying the contrative-like condition

‖Tx− Ty‖ ≤ δ‖x− y‖+ ϕ(‖x− Tx‖), (2.9)

where δ ∈ [0, 1) and ϕ : R+ → R+ a monotone increasing function such that
ϕ(0) = 0 and for every x, y ∈ E. Suppose T has a �xed point p (that is Tp = p).
Let x0 ∈ E and {xn}∞n=0 be the Picard-Mann hybird iterative procedure de�ned
by (1.8) converging to p. Then, the Picard-Mann hybird iterative procedure (1.8)
is T -stable.

Theorem 2.3. Let (E, ‖.‖) be a Banach space and S, T : E → E be nonself
weakly compatible mappings satisfying the generalized contrative-like condition

‖Tx− Ty‖ ≤ δ‖Sx− Sy‖+ ϕ(‖Sx− Tx‖), (2.10)

where δ ∈ [0, 1) and ϕ : R+ → R+ a monotone increasing function such that
ϕ(0) = 0 and for every x, y ∈ E. Suppose S and T have a unique common
�xed point p (that is Sp = Tp = p). Let x0 ∈ E and {Sxn}∞n=0 be the Jungck
iterative procedure de�ned by Sxn+1 = Txn, n ≥ 0 converging to p. Then, the
Jungck iterative procedure is (S, T )-stable.
Proof:
The Proof of theorem 2.3 is similar to that of theorem 2.1.

Theorem 2.3 yields the following collolary:
Corollary 2.4. Let (E, ‖.‖) be a Banach space and S, T : E → E be self
mapping satisfying the contrative-like condition

‖Tx− Ty‖ ≤ δ‖x− y‖+ ϕ(‖x− Tx‖), (2.11)

where δ ∈ [0, 1) and ϕ : R+ → R+ a monotone increasing function such that
ϕ(0) = 0 and for every x, y ∈ E. Suppose T has a �xed point p (that is Tp = p).
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Let x0 ∈ E and {xn}∞n=0 be the Picard iterative procedure de�ned by (1.1)
converging to p. Then, the Picard iterative procedure is T -stable.

Example 2.5: Consider the equation f(x) = 0, where f is the real function

de�ned on interval [0, π2 ] by f(x) = x2 −
(
π
2

)2
cos(x).

f can be decomposed as f = π
2 (S − T ), where the maps S and T are the self

mappings in [0, π2 ] de�ned by S(x) := 2
πx

2 and T (x) := π
2 cos(x). They satisfy

inequality (1.10). They coincide at ω ≈ 1.0792 and we have p = Sω = Tω ≈
0.7415. Thus, ω is solution to the equation f(x) = 0.
From Theorem 3.1 [2], the modi�ed Jungck-Mann hybrid iteration scheme
{Sxn} given in (1.9) converges to p = Sw. Using MATLAB, we have the fol-
lowing table:

n xn Sxn
0 0.1000 0.1000
1 1.0472 0.6982
2 1.0896 0.7558
3 1.0739 0.7343
...

...
...

21 1.0791 0.7412
...

...
...

45 1.0792 0.7415

Since S is continuous, the fact that {Sxn} converges to Sw implies that the
sequence {xn} converges to w, the zero of f .
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