

British Journal of Mathematics & Computer Science 4(21): 3103-3104, 2014

SCIENCEDOMAIN international

www.sciencedomain.org

Addendum: On Convergence and Stability of the Generalized Noor Iterations for a General Class of Operators

H. Akewe^{1*} and J. O. Olaleru¹

 1 Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria.

Addendum

Received: 25 March 2014 Accepted: 15 April 2014 Published: 26 August 2014

1 Introduction

An error was pointed out by Prof. C. E. Chidume in the statements of our Theorems and Corollaries in [1]. The proof of all the Theorems and Corollaries are correct but the statements have flaws. The correct statements of the results are hereby stated.

We define the multistep iteration as:

Let E be a Banach space and $T: E \to E$ a self map of E. For $x_0 \in E$, the multistep iterative scheme $\{x_n\}_{n=0}^{\infty}$ is defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n^1$$

$$y_n^i = (1 - \beta_n^i)x_n + \beta_n^i T y_n^{i+1}, i = 1, 2, ..., k - 2,$$

$$y_n^{k-1} = (1 - \beta_n^{k-1})x_n + \beta_n^{k-1} T x_n, \quad k \ge 2$$

$$(1.1)$$

where $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n^i\}, i=1,2,...,k-1 (with \ k\geq 2)$ are real sequences in [0,1) such that $\sum_{n=0}^{\infty} \alpha_n = \infty$

2.1. Some Strong Convergence Results in Banach Spaces

Theorem 2.1.1. Let (E, ||.||) be a Banach space, $T: E \to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||, \tag{2.1}$$

for each $y \in E$ and $0 \le a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the multistep iterative scheme defined by (1.1). Then $\{x_n\}_{n=0}^{\infty}$ converges strongly to p.

Corollary 2.1.3. Let (E,||.||) be a Banach space, $T:E\to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||, \tag{2.2}$$

^{*}Corresponding author: E-mail: hakewe@unilag.edu.ng, hudsonmolas@yahoo.com

for each $y \in E$ and $0 \le a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Noor iterative scheme defined by (1.4) in [1]. Then the Noor iterative scheme converges to p.

Corollary 2.1.5. Let (E, ||.||) be a Banach space, $T: E \to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||, \tag{2.3}$$

for each $y \in E$ and $0 \le a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Ishikawa iterative scheme defined by (1.3) in [1]. Then the Ishikawa iterative scheme converges to p.

Corollary 2.1.6. Let (E, ||.||) be a Banach space, $T: E \to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||, \tag{2.4}$$

for each $y \in E$ and $0 \le a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Mann iterative scheme defined by (1.2) in [1]. Then the Mann iterative scheme converges to p.

Acknowledgment

The authors are grateful to Prof. C. E. Chidume for pointing out the error.

References

[1] Akewe H, Olaleru JO. On convergence and stability of the generalized Noor iterations for a general class of operators, British Journal of Mathematics and Computer Science. 2013;3(3):437-447.

© 2014 Akewe & Olaleru; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Approved by editor's

Dr. Paul Bracken, Department of Mathematics, The University of Texas-Pan American, 1201 W University Dr. Edinburg, TX 78539, USA.