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Abstract: Penicillium marneffei (synonym: Talaromyces marneffei) is the most important 

pathogenic thermally dimorphic fungus in China and Southeastern Asia. The HIV/AIDS 

pandemic, particularly in China and other Southeast Asian countries, has led to the emergence 

of P. marneffei infection as an important AIDS-defining condition. Recently, we published the 

genome sequence of P. marneffei. In the P. marneffei genome, 23 polyketide synthase genes 

and two polyketide synthase-non-ribosomal peptide synthase hybrid genes were identified. 

This number is much higher than those of Coccidioides immitis and Histoplasma 

capsulatum, important pathogenic thermally dimorphic fungi in the Western world. 

Phylogenetically, these polyketide synthase genes were distributed evenly with their 

counterparts found in Aspergillus species and other fungi, suggesting that polyketide 

synthases in P. marneffei did not diverge from lineage-specific gene duplication through a 

recent expansion. Gene knockdown experiments and ultra-high performance liquid 

chromatography-photodiode array detector/electrospray ionization-quadruple time of  

flight-mass spectrometry analysis confirmed that at least four of the polyketide synthase 

genes were involved in the biosynthesis of various pigments in P. marneffei, including 
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melanin, mitorubrinic acid, mitorubrinol, monascorubrin, rubropunctatin, citrinin and 

ankaflavin, some of which were mycotoxins and virulence factors of the fungus. 

Keywords: Penicillium marneffei; polyketide synthase; pigment 

 

1. Introduction 

Penicillium marneffei (synonym: Talaromyces marneffei) is one of several known thermally 

dimorphic fungi and an important pathogen endemic in tropical Southeast Asian countries.  

P. marneffei causes respiratory, cutaneous and subcutaneous, systemic, and even disseminated mycoses 

in humans [1–4]. Since P. marneffei was first discovered in 1956, there have only been 18 reported 

human cases of penicilliosis until 1985 [5]. The emergence of the HIV/AIDS pandemic in the 1980s, 

especially in the tropical Southeast Asian region, including China, has led to a surge of opportunistic 

mycotic infections in HIV-positive, immunocompromised patients, which were often caused by  

P. marneffei. Hong Kong, situated in the tropical Southeast Asian area, is also affected by P. marneffei 

infections and approximately 8% of patients with HIV/AIDS in this city are infected with this pathogenic 

fungus [6]. Moreover, in the northern part of Thailand, P. marneffei infection, following tuberculosis 

and cryptococcosis, is the third commonest indicator disease of HIV/AIDS [2]. Apart from HIV-positive 

patients, other immunocompromised patients are also susceptible to penicilliosis [7–10], and  

P. marneffei infections are found in patients with autoantibody against interferon-γ with an increasing 

trend [11–13]. Recently, we have described the emergence of P. marneffei infections in hematological 

patients receiving targeted therapies [14]. 

Polyketides are a broad class of secondary metabolites synthesized by microbial organisms. Although 

not essential, these secondary metabolites are biologically active and could provide survival advantages 

to the microbial hosts. Some well-known secondary metabolites produced by fungi include antibiotics 

(e.g., cephalosporin, myriocin and penicillin), mycotoxins (e.g., aflatoxin, fumonisin, ochratoxin and 

zearalenone), and pigments (e.g., aurofusarin, bikaverin and melanin). As for P. marneffei, a variety of 

pigments are produced by this fungus, and the pigment composition varies with the fungal cell types and 

morphological forms. For example, young conidia of P. marneffei appear black in color, and they turn 

yellow upon maturation. On the other hand, when cultured as the yeast form, the colonies of P. marneffei 

are creamy in color. In addition, P. marneffei in mycelial form is well known to secrete a diffusible red 

pigment. This is an important diagnostic property of this fungus in clinical microbiology laboratories. 

Polyketides are synthesized via a complex enzymatic system consisting of various kinds of polyketide 

synthases (PKSs). Genes that encode these PKSs (pks genes) are located in close proximity to each other. 

Close to these pks gene loci there are additional genes encoding modifying enzymes, and the pks genes 

form biosynthetic gene clusters together with these modifying enzyme genes. The availability of more 

and more microbial genomes has allowed us to predict various biological properties of microorganisms 

and the corresponding biosynthetic genes, gene clusters and even pathways. For P. marneffei, based on 

its draft genome sequence, the mitochondrial genome and genes related to its predicted sexual cycle have 

been analyzed [15,16]. A highly discriminative multi-locus sequence typing scheme was also developed [17]. 

It was found that the genome of P. marneffei contains a total of 25 putative pks genes [18], which is 
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much higher in number than in other thermally dimorphic fungi, where there are only one pks gene for 

Histoplasma capsulatum and ten for Coccidioides immitis [19]. It is common that the species of the 

phylum Ascomycota have a large number of pks genes. Since P. marneffei is the only thermally 

dimorphic fungus belonging to Ascomycota, it may explain why P. marneffei also possesses a large 

number of PKS genes. In this article, the diversity and phylogeny of these pks genes in P. marneffei, the 

pks genes responsible for the biosynthesis of the various pigments, as well as the biological properties 

and biosynthetic pathways of these pigments are reviewed. 

2. Diversity and Phylogeny of pks Genes in P. marneffei 

A total of 25 pks genes have been identified in the draft genome of P. marneffei [18]. For those fungi 

with available genome sequences, there are only: one pks gene in H. capsulatum, ten in C. immitis,  

14 in Aspergillus fumigatus, 16 in Gibberalla zeae, 20 in P. chrysogenum, 27 in A. nidulans, and 30 in 

A. oryzae [19]. Although the diversity of pks genes in the genome of P. marneffei is similar to 

phylogenetically closely related fungi, such as Aspergillus species, the pks genes of P. marneffei are 

much more diverse than those of other thermally dimorphic fungi. This implies that P. marneffei could 

potentially produce a larger variety of polyketide metabolites than other clinically important thermally 

dimorphic fungi [18]. When the gene sequences of the PKS domains of Aspergillus spp. were used to 

BLAST against the P. marneffei genome in the GenBank database, it was found that 23 putative pks 

genes and two putative PKS-non-ribosomal peptide synthase (NRPS) hybrid genes (pks-nrps2 and  

pks-nrps8) are present in the genome of P. marneffei [18,20,21]. Among the 23 gene candidates,  

21 putative pks genes encode gene products with the ketosynthase (KS), acyltransferase (AT) and acyl 

carrier protein (ACP) domains, which are the constitutional components of PKS. The ACP domain is 

absent in the predicted gene products of the remaining two candidates (pks13 and pks25), implying that 

these two genes might be pseudogenes [18]. The 21 putative pks genes with the KS, AT and ACP 

domains are clustered in 18 groups, where three of these groups contain two pks genes each (pks11 and 

pks12, pks16 and pks17, and pks20 and pks21). These 18 groups of putative pks genes could potentially 

produce 18 different polyketide metabolites. Twelve of these 21 gene candidates belong to the  

non-reducing type, whereas the remaining nine belong to the reducing type, which, on top of the KS, AT and 

ACP domains, also contain the dehydrogenase (DH) and ketoreductase (KR) domains  [18] (Figure 1).  

Eight of the nine pks genes belonging to the reducing type possess the enoylreductase (ER) domain. For 

the three gene clusters in the genome which contain two pks genes each, two clusters (pks16 and pks17, 

and pks20 and pks21) encode one non-reducing and one reducing PKS, and the third cluster (pks11 and 

pks12) encodes two reducing PKSs. As for the two pks-nrps hybrid candidate genes (pks-nrps2 and  

pks-nrps8), the PKS modules belong to the reducing type with DH and KR domains, and the whole 

NRPS modules possess the condensation (C), adenylation (A), thiolation (T) and thiolester reductase (R) 

domains [18]. 
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Figure 1. Phylogenetic tree showing the relationship of the polyketide synthases (PKSs) of 

Penicillium marneffei with other organisms, inferred from the partial ketosynthase domain 

amino acid sequence data by the maximum likelihood method using the substitution model 

WAG (Whelan and Goldman model) + F (estimated of amino acid frequency) + G  

(gamma-distributed rate variation) + I (estimated proportion of invariable sites). The scale 

bar indicates the estimated number of substitutions per amino acid residue. All names and 

accession numbers are given as cited in the DDBJ/ENA/GenBank databases. Numbers at 

nodes indicate levels of bootstrap support calculated from 1 000 trees and are expressed as 
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percentage. Only nodes that were well supported by the maximum likelihood method (≥70% 

bootstrap support) have their bootstrap values shown. Clades and the typical domain 

organization defined by Kroken et al. [22] are indicated. The 21 putative PKSs of  

P. marneffei which contained all the KS, AT, and ACP domains were highlighted in red 

color. A. adenylation; ACP, acyl carrier protein; AT, acyltransferase; C, condensation; DH, 

dehydrogenase; ER, enylreductase; KR, ketoreductase; KS, ketosynthase; MT, 

methyltransferase; T, thiolation; TE, thioesterase; and R, reductase. Adapted with permission 

from “Phylogenetic analysis of PKSs of Penicillium marneffei” in “Characterization of 

polyketide synthases in Penicillium marneffei” by W. T. Tam, 2012, PhD thesis submitted to the 

University of Hong Kong, p.93. Copyright 2012 licensed under Creative Commons: Attribution 

3.0 Hong Kong License (https://creativecommons.org/licenses/by/3.0/hk/). 

Phylogenetic analysis of the KS domains revealed that PKSs in P. marneffei are scattered evenly in 

the phylogenetic tree with other fungal PKSs (Figure 1). This indicates that PKSs in P. marneffei did not 

diverge from lineage-specific gene duplication through a recent expansion. Moreover, the majority of 

the PKSs are grouped into the eight clades of the typical PKS phylogeny described by Kroken et al., 

where fungal PKSs, bacterial PKSs and human fatty acid synthase (FAS) were included in the analysis [22] 

(Figure 1). The PKSs of P. marneffei in each of the clades also possess the same domain structures as 

other members of the corresponding clade. The 12 non-reducing PKSs of P. marneffei are clustered with 

the non-reducing PKSs of other fungi in the phylogenetic tree with high bootstrap support. Similarly, 

the nine reducing PKSs of P. marneffei are also clustered with the reducing PKSs of other fungi in the 

tree with high bootstrap support (Figure 1). This suggests that the non-reducing PKSs and reducing PKSs 

of P. marneffei share sequence and functional homologies with their respective counterparts found in 

other fungi. 

3. Pigments and Toxins in P. marneffei 

P. marneffei produces black and yellow pigments on its conidia. It also produces a diffusible red 

pigment, which readily diffuses to the surrounding medium. Studies over the past few years have 

revealed that some of the compounds which constitute these pigments represent known virulence factors 

for other fungi or novel virulence factors [18,21,23–25], whereas others represent pigments that have 

been used in various industries for over a thousand years [20,26–28]. 

3.1. Melanin 

Melanin, a group of pigments usually in dark brown or black color, consists of negatively charged 

and hydrophobic compounds with high molecular weights. A wide range of organisms, including bacteria, 

fungi, plants and animals, produces melanin. In the 1960s, melanins were proven to exist in fungi. Many 

fungi that are pathogenic to human, such as A. fumigatus [29] and Cladosporium carionii [30], as well as all 

the known pathogenic thermally dimorphic fungi [24,31–34], produce melanin. The correlation of 

melanin to fungal pathogenesis has raised research interest in the scientific community. 

In 2005, Youngchim et al. firstly reported the presence of melanin or melanin-like compounds in  

P. marneffei [35]. Using electron spin resonance (ESR) spectroscopy and detection of antibody response 
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in mice model using melanin-binding antibody labeling, it was shown that P. marneffei produces 

melanin/melanin-like compounds in vitro and during infection in both the conidia and yeast cells [35]. 

In 2010, the dihydroxynaphthalene (DHN)-melanin biosynthetic gene cluster of P. marneffei was 

reported [18]. The cluster contains six genes, which encode two oxidases (ABR1 and ARB2), a pigment 

biosynthesis protein (AYG1), a scytalone dehydratase (ARP1), a 1,3,6,8-tetrahydroxynaphtalene reductase 

and a polyketide synthase (pks4, also named as alb1), and span over a 25.3 kb region of the fungal 

genome. This indicates that the fungus produces melanin via a PKS pathway [33]. The protein ALB1 is 

a non-reducing PKS and is composed of the KS-AT-ACP-ACP-thioesterase (TE) domains [18]. 

Compared with its homologs in other fungi, the domain organization of ALB1 is highly conserved [18]. 

The gene orientation and gene order in the cluster are the same as those found in the genome of T. stipitatus, 

a non-pathogenic saprophytic fungus which can be found in decaying plant materials and soil. 

Furthermore, all the six DHN-melanin-related genes in P. marneffei can also be found in other Penicillium 

species and Aspergillus species that are phylogenetically closely related to P. marneffei [36,37]. This 

indicates that the melanin biosynthesis gene cluster in P. marneffei has evolved in parallel with the 

evolution of the fungus. The melanin biosynthetic gene cluster was probably inherited from the common 

ancestor of this clade of fungi. Subsequent gene rearrangement and gene divergence events have led to 

different gene orientations and orders of the corresponding genes in different fungi. Recognized human 

pathogenic fungi which synthesize DHN-melanins include A. nidulans, A. niger, Alternaria alternata, 

C. carionii, Exophiala jeanselmei, Fonsecaea compacta, F. pedrosoi, Hendersonula toruloidii, 

Phaeoannellomyces wernickii, Phialophora richardsiae, P. verucosa, Sporothrix schenckii, Wangiella 

dermatitidis and Xylohypha bantiana [31,38–40]. 

It has been demonstrated that Colletotrichum lagenarium synthesizes DHN-melanin using malonyl-CoA 

as the starter and extender units using the polyketide synthase PKS1, which catalyzes the first step of 

melanin biosynthesis [41,42]. The first detectable intermediate of the melanin biosynthetic pathway is 

1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN), which is enzymatically reduced to scytalone by a reductase. 

Scytalone is then dehydrated to 1,3,8-trihydroxynaphthalene and, after a second reduction step, is 

converted to vermelone. A further dehydration step leads to the formation of the intermediate 1,8-DHN. 

Melanin is finally synthesized by subsequent dimerization and polymerization of the 1,8-DHN 

molecules, which are catalyzed by a laccase [43]. The DHN-melanin biosynthesis in A. fumigatus is 

similar to that in P. marneffei. ALB1, also known as PKSP, produces heptaketide naphtopyrone, which 

is converted to 1,3,6,8-THN by AYG1. By repetitive steps of reduction (catalyzed by ARP2) and 

dehydration (catalyzed by ARP1, a scytalone dehydratase; and ABR1, a multicopper oxidase), 1,3,6,8-THN 

is converted to 1,8-DHN, and is finally polymerized to DHN-melanin (catalyzed by ABR2, a laccase) [29,37]. 

Since the DHN-melanin biosynthetic cluster in P. marneffei also contains all these six genes (abr1, arb2, 

ayg1, arp1, alb1, and arp2), and all these genes are phylogentically closely related to the A. fumigatus 

counterparts, the biosynthesis of DHN-melanin in P. marneffei is believed to be similar to A. fumigatus. 

When alb1 was knocked down (KD), the isogenic P. marneffei mutant showed a loss of melanin in 

its conidia (Figure 2A), a reduction in the degree of ornamentation on the conidia surface, an attenuation 

of virulence in mouse model and a decrease in resistance to hydrogen peroxide killing [18]. The melanin 

biosynthetic gene cluster may contribute to virulence by reducing the fungal susceptibility to hydrogen 

peroxide killing [18]. In other pathogenic fungi, including A. fumigatus, P. brasiliensis and S. schenckii, 

loss of melanin production would decrease the susceptibility of the fungi to hydrogen peroxide killing, 
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the capability to hide pathogenic substances, as well as the induction of cytokine response [25,31,36,44]. 

Hence, the loss of the pigment melanin may result in a reduction in fungal virulence. Some non-pathogenic 

fungi, such as T. stipitatus, also bear the melanin biosynthetic gene cluster. This likely suggests that 

resistance against hydrogen peroxide killing is only one of the steps that gives rise to its  

pathogenic property [18]. 

 

Figure 2. (A) Conidia suspensions of Penicillium marneffei wild type strain PM1 (left) and 

alb1-knockdown mutant (right). A loss of black pigment was observed in the conidia of the 

alb1-knockdown mutant; (B) Colony morphology of P. marneffei wild type strain PM1;  

(C) pks11-knockdown mutant; and (D) pks12-knockdown mutant on Sabouraud dextrose 

agar after 14 days of incubation at 25 °C. A loss of yellow pigment was observed in the 

conidia of the pks11- and pks12-knowckdown mutants; (E) Culture supernatants of  

P. marneffei wild type strain PM1 (left) and pks3-knockdown mutant (right) after 4 days of 

incubation in Sabouraud dextrose broth at 25 °C. A loss of red pigment production was 

observed for the pks3-knockdown mutant. 

Scanning electron microscopic examination showed that the degree of ornamentation on the conidia 

surface of P. marneffei melanin-KD mutant was lowered [18]. This observation was similar to that 

observed in A. fumigatus, where deletion of the alb1 gene showed a loss of the outermost electron dense 

layer of its conidial surface [29]. In addition to the protective effect of melanin against host defense in 
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A. fumigatus, melanin is also a necessary component for conidia cell wall integrity. Moreover, alb1 

deletion in A. fumigatus revealed a surge in the fibronectin binding capacity and a reduction in laminin 

binding of the conidia [29]. Similar to A. fumigatus, the attenuation in virulence of P. marneffei in 

melanin-KD mutant could be due to a reduction of its adherence ability on the cell membrane of 

pulmonary epithelial cells during infection. The virulent properties of melanin in other pathogenic fungi 

have also been demonstrated using animal models. In C. neoformans, it has been shown that the genes 

involved in melanization also contributed to its dissemination from the lungs to other organs and even 

death of the host [23,45]. In P. brasiliensis, experimental infection with melanized fungal cells has led 

to higher fungal burdens in the animals when compared with non-melanized cells [25]. Furthermore, 

during infection, the expression of melanin synthesis genes was found to be increased in P. brasiliensis [46]. 

Similarly, for S. schenckii infection, melanized fungi showed a higher degree of dissemination in a 

mouse footpad model as compared to non-melanized mutants [47]. Fungal melanins can modulate host 

immune response. Melanized P. brasiliensis yeast cells were found to have increased resistance to 

phagocytosis [24]. This might be due to the fact that melanins are polymers that carry electric charges 

and their presence in the cell wall can alter the surface charge of the fungal cells and hence contribute to 

inhibition of phagocytosis [48]. On top of the reduction of phagocytosis, melanins can protect P. brasiliensis 

from macrophage killing [24]. A similar protective effect was also shown in C. neoformans, Exophiala 

species, F, pedrosoi and S. schenckii [31,49–51]. Improved survival of melanized cells is attributed to 

the protection of fungal cells against damages mediated by oxygen- or nitrogen-derived free radicals 

during phygocytosis [52]. Melanization also increases fungal resistance against killing by hypochlorite and 

hydrogen peroxide [53]. Melanins are effective scavengers of free radicals and they possess electron-transfer 

property [54]. In addition, in A. fumigatus, melanin can suppress apoptosis of macrophages that have 

already phagocytosed fungal conidia [55]. Melanin can change immune function by other means as well. 

In experimental mouse infections, melanin of Cryptococcus could modulate cytokine levels and triggers 

the complement system in response to infection [56,57]. Conversely, melanin of A. fumigatus suppressed 

the production of host cytokines, possibly by the blockage of pathogen-associated molecular pattern 

recognition by the immune system [44]. 

3.2. Yellow Pigment: Mitorubrinol and Mitorubrinic Acid 

Mitorubrin, mitorubrinol and mitorubrinic acid are members of the azaphilone family, a structurally 

diverse group of natural products containing a highly oxygenated, bicyclic core and a chiral quaternary 

center [58]. The structure of mitorubrin and mitorubrinol were first elucidated from P. rubrum in 1965 [59]. 

Because of the capability of P. rubrum to produce high toxicity substances and the conspicuous yellow 

pigmentation, the colorants were suspected to be associated with livestock poisoning through feedstuffs 

that were infected by the fungus. However, bioassays showed that the yellow pigments, mitorubrin and 

mitorubrinol, in P. rubrum did not cause any toxicity in mice [59], implying that they were non-toxic 

compounds. The toxicity agent in P. rubrum was later confirmed to be rubratoxin B in 1968 [60,61]. 

After the discovery of mitorubrin and its derivatives, these pigments were gradually found as the main 

yellow colorants in the ascomata of Talaromyces species, including T. austrocalifornicus, T. convolutes, 

T. emodensis, T. hachijoensis and T. wortmannii var. sublevisporus [62], and Penicillium species, such 

as P. funiculosum [63]. Even though mitorubrin and its derivatives have been recognized as polyketides 
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for decades, no pks genes or their biosynthetic pathways have been elucidated until this recent discovery 

in P. marneffei. 

To search for the yellow pigment biosynthetic pathway in P. marneffei, all 25 pks genes in the P. marneffei 

genome were knocked down systematically [21]. A loss of yellow pigment was observed in the pks11-KD 

and pks12-KD mutants (Figure 2B–D). Ultra-high performance liquid chromatograph (UHPLC)-mass 

spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11-KD 

and pks12-KD mutants confirmed that the yellow pigment is composed of mitorubrinic acid and 

mitorubrinol [21]. Sequencing of the pks11 and pks12 genes revealed that they are in the same pks gene 

cluster involved in the biosynthesis of yellow pigment. pks11, containing an intron of 52 bp in length 

and encoding 2575 amino acid residues with an estimated molecular mass of 282.6 kDa, is 7780 bp in length; 

while pks12, containing an intron of 63 bp in size and encoding 1806 amino acid residues with an 

estimated molecular mass of 197.9 kDa, is 5485 bp in length. Both PKS11 and PKS12 belong to  

non-reducing PKSs [21]. During the production of mitorubrinol and mitorubrinic acid, PKS11 and 

PKS12 may probably function in a sequential manner [21]. PKS12 produces a tetraketide, orsellinic 

acid, which serves as an advanced precursor for PKS11. PKS11 possesses a putative starter unit-ACP 

transacylase (SAT) domain for processing the advanced starter unit to continue the extension process. 

In addition, PKS11 contains a methyltransferase domain which methylates the PKS products, using  

a methyl group donated by S-adenosylmethionine. Some polyketides, such as lovastatin and zearalenone, 

are also produced by two PKSs [64,65]. For instance, in G. zeae, the biosynthesis of zearalenone begins 

with PKS13, where a hexaketide, serving as a precocious starter unit for further processing by the second 

PKS, PKS4, is produced [65]. 

Functional studies of mitorubrinol and mitorubrinic KD mutants in P. marneffei (pks11-KD, pks12-KD 

and pks11, pks12 double-KD mutants) showed a decrease in virulence in vivo (in a murine model) and 

in vitro (in mouse J774 macrophage and phorbol myristate acetate-induced human THP1 macrophage 

models) [21]. Given that mitorubrin is not poisonous in murine model [59], mitorubrinol and mitorubrinic 

acid might contribute to virulence by enhancing fungal survival inside macrophages. Moreover, the 

pks11, pks12 double-KD mutants did not show an improved mouse/intracellular survival rate in both 

murine and macrophage models, indicating that the knockdown of either pks11 or pks12 was adequate 

to stop the biosynthesis of mitorubrinol and mitorubrinic acid [21]. This confirmed that PKS11 and 

PKS12 are sequentially involved in the biosynthesis of mitorubrinol and mitorubrinic acid [21]. 

3.3. Toxin and Red Pigment Biosynthetic Pathway: Monascorubrin, Rubropunctatin, Citrinin  

and Ankaflavin 

P. marneffei produces diffusible red pigment when they grow at temperatures below 30 °C. Such a 

unique characteristic is important for the laboratory identification of this fungus. In 2007, Bhardwaj et al. 

purified the red pigment by reverse phase liquid chromatography and investigated the putative structure, 

which was claimed to have a structural resemblance with herquinone that contains a phenalene carbon 

framework and forms dimer through disulfide bond, using atomic absorption, ultra violet and visible 

fluorescence, infrared radiation, nuclear magnetic resonance and tandem mass spectrometry [66].  

In 2009, in search for the fungal cell factories for the manufacture of natural food colorants, Mapari et al. 

reported that P. marneffei produces monascorubramine, a well-known red pigment polyketide produced 
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by Monascus species [67]. In 2014, we systematically knocked down all 25 pks genes in P. marneffei 

and a complete loss of red pigment production was found in pks3-KD mutant (Figure 2E) [20]. By 

comparing the metabolomic profiles of the wild type and pks3-KD mutant using UHPLC-MS and 

MS/MS, the red pigment was revealed to be a mixture of more than 16 different chemical compounds, 

which are the amino acid conjugates of monascorubrin and rubropunctatin [20]. Furthermore, surprisingly, 

besides pigment production, PKS3 is also responsible for the production of a well-known toxin, citrinin, 

as well as a yellow pigment, ankaflavin [20]. The compound reported by Bhardwaj et al. was not observed 

in both the wild type strain and KD mutants of P. marneffei in their studies [20]. 

Current evidence at hand shows that the red pigment biosynthetic gene cluster in P. marneffei consists 

of five genes, which encode a polyketide synthase (PKS3), a transcription activator (RP1), a β-subunit 

fatty acid synthase (RP2), an α-subunit fatty acid synthase (RP3) and an oxidoreductase (RP4) [20].  

The biosynthesis starts with the formation of a fatty acid chain (3-oxo-octanoic acid or 3-oxo-decanoic 

acid) from acetyl-CoA and malonyl-CoA, which is catalyzed by RP2, RP3 and RP4. RP1 is responsible 

for PKS3 activation. A pentaketide compound, citrinin, is synthesized by PKS3 using one acetyl-CoA 

and four malonyl-CoA [20]. By adding one more malonyl-CoA, a hexaketide compound, which is named 

compound 1 and is a diffusible orange pigment, is formed [20]. The newly synthesized fatty acid,  

3-oxo-octanoic acid or 3-oxo-decanoic acid, is taken up by PKS3. PKS3 esterifies the fatty acid and 

compound 1 to produce two other orange pigments, monascorubrin or rubropunctatin, respectively. 

Monascorubrin or rubropunctatin, which possesses unique structural configurations with high affinity to 

primary amino compounds, is secreted outside the cell and conjugated with different amino acid residues 

in the culture media, forming red-colored compounds. Monascorubrin or rubropunctatin could also be 

reduced to give monacin or ankaflavin, respectively. pks3-KD and rp1-KD mutants showed an accumulation 

of 3-oxo-decanoic acid and a depletion of ankaflavin, citrinin, compound 1, and monascorubrin [20].  

No diffusible pigment was observed in both mutants. rp2-KD, rp3-KD and rp4-KD mutants showed a 

normal production of citrinin, an accumulation of compound 1 and a depletion of ankaflavin, 

monascorubrin and 3-oxo-decanoic acid [20]. The diffusible orange pigment, compound 1, was observed 

in rp2-, rp3- and rp4-KD mutants. Owing to the structural resemblance between ankaflavin and 

monascorubrin, and given that ankaflavin could not be detected in pks3-, rp1-, rp2-, rp3- and rp4-KD 

mutants, ankaflavin is probably the reduced product of monascorubrin in the red pigment  

biosynthetic pathway [20]. 

Monascorubrin, rubropunctatin, and other structurally related compounds are well-known red 

pigments produced by Monascus species [68]. These natural pigments have been exploited as natural 

food colorants in the production of traditional oriental foods such as meats, vinegar, and bean curd [26]. 

Nowadays, these red pigments were also utilized in Western countries for coloring sausages and hams [69]. 

Similar to P. marneffei, Monascus species also excrete citrinin which possesses nephrotoxic and hepatotoxic 

properties [70]. Contamination of these toxic red pigments has raised a great concern in the food industry 

for the use of Monascus pigments as substitutes. Although M. purpureus and P. marneffei both produce 

monascorubrin and citrinin, P. marneffei uses one PKS cluster to synthesize both polyketides, whereas 

in M. purpureus, the biosynthesis are separated into two independent pathways. In 2005, Shimizu et al. 

discovered that a pks gene, pksCT, is necessary for citrinin production in M. purpureus. Gene disruption 

of pksCT leads to a total loss of citrinin biosynthesis but no substantial changes in the pigment  

production [71]. Furthermore, a transcription factor, ctnA, was also found upstream of pksCT and 
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disruption of ctnA led to an extremely low citrinin biosynthesis [72]. Balakrishnan et al. also reported 

that the red pigment production in M. purpureus involves a pks gene and its potential transcriptional 

activators, MpPKS5 and mppR1 [73]. Gene deletion of mppR1 caused a loss of monascorubrin and  

red pigment [73]. 

4. Concluding Remarks 

The availability of genome sequences has revolutionized the research in many pathogenic microbes. 

P. marneffei is no exception. Genome sequencing and post-genomic studies have not only led to a better 

understanding of its phylogeny, fundamental biological properties and virulence determinants, but have 

also provided us with the tools for genotyping this important pathogenic thermally dimorphic fungus in 

Southeast Asia. The discovery of 25 pks genes in the P. marneffei genome has led to even more 

unanswered questions. Although four of the 25 genes have been shown in recent years to be responsible 

for the synthesis of various pigments in P. marneffei, the question remains as to what secondary 

metabolites the other 21 pks genes synthesize. How many of them are related to virulence, thermal 

dimorphism, antimicrobial properties, etc.? Hopefully, the parallel advancement of other disciplines, such 

as transcriptomics and metabolomics, will help provide answers to these important questions in the  

near future. 
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