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Abstract. Systems that perform in real environments need to bind the internal state to externally
perceived objects, events, or complete scenes. How to learn this correspondence has been a long
standing problem in computer vision as well as artificial intelligence. Augmented Reality provides
an interesting perspective on this problem because a human user can directly relate displayed
system results to real environments. In the following we present a system that is able to bootstrap
internal models from user-system interactions. Starting from pictorial representations it learns
symbolic object labels that provide the basis for storing observed episodes. In a second step, more
complex relational information is extracted from stored episodes that enables the system to react
on specific scene contexts.

1 Introduction

Mixed reality systems combine real world views with views of a virtual environment
[4]. In the sub-field of augmented reality virtual augmentations are added to the real
world view of the user. This is typically realized by using a setup with a head-mounted
device which is equipped with cameras and a display. Most of the research on com-
puter vision in this field is dedicated to the problem of aligning real and virtual objects
(cf. e.g. [4, 8]). This is mostly based on pre-defined 3-d CAD models. The AR system
is either used to present a virtually changed environment to the user or to support
the user in a pre-defined task, e.g. [8]. In the VAMPIRE1 project we take a different
approach in that we focus on the problem of how a system can bootstrap its knowl-
edge about an unknown real environment. By using Augmented Reality techniques,
the computer vision system is embodied through the tight interaction with the user.
In this kind of scenario, augmentations, like bounding boxes, text labels, or arrows,
are used in order to close the feedback cycle to the user. In turn, the user is able to
react based on the augmentations by changing the view or acting in the scene. Thus,
the coupling between the user and the vision system is highly dynamic and depends
on the interaction history.

The learning of visual models based on human feedback has been explored in
several different scenarios. Roy uses video data from mother child interactions in or-
der to learn the association between acoustic and visual pattern [9]. Steels introduces
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Fig. 1.AR system and memory organization

the term of social learning in a scenario where a human teaches different kinds of
objects to an Aibo robot [10]. In [2], imitation learning is explored as social learn-
ing and teaching process with aims at socially intelligent robots. Finally, Heidemann
et al. [7] present an augmented reality system for interactive object learning which
was developed within the VAMPIRE project. However, most systems limit the learn-
ing capability on a single aspect, like learning a classifier for an individual object. A
more general approach needs to deal with various kinds of data structures and needs
to integrate different learning processes in a single framework.

2 AR interaction and formation of memory content

In Fig. 1(a) the scenario of the system is shown. The user is sitting at a regular office
table and wears a head-mounted device which is equipped with cameras and a display.
Information about recognized objects and results of user queries are visualized using
augmented reality (AR). The head of the user is tracked using a CMOS camera and an
inertial sensor that are mounted on the top of the helmet. The head pose is computed
from an artificial landmark that is placed in the scene and defines a global coordinate
system. The system is able to detect objects, and user activities, like moving an ob-



ject. It copes with varying lighting conditions as well as cluttered video signals. By
selecting from a menu displayed on the right of the field of view by speech or a mouse
wheel the user can trigger learning sessions or retrieve information.

In order to realize a bootstrapping behavior of the system starting from image-
based representations to symbol-based representations, the organization of memory
content plays a key role. The technical basis for storing and retrieving various kinds
of information as well as the coordination of different visual behaviors is provided
by theActive Memory Infrastructurewhich is also described in [11]. The persistence
back-end is the native Berkeley XML DB. Binary data is stored directly in the under-
lying relational database and is referenced from stored XML documents. Thus, XML
provides a unified data model for structured information that is exchanged between
system components and stored in the memory.

On the conceptual level, we distinguish four different kinds of abstraction layers
in the memory representation (see Fig. 1(b)). On the pictorial layer images and im-
age patches are temporarily stored. The feature-based layer includes learned object
models and configuration data of the object recognition components. In the episodic
memory layer recognition results are stored that have been reliably detected during
an interactive session with a user. Finally, the categorical layer consists of a couple
of contextual models that e.g. describe typical configurations of objects. Each higher
layer is grounded in a layer that is nearer to the signal. Object models in the feature-
based memory are learned from image patches that are stored during system usage;
detected objects and events are related to learned prototypes in the feature space; fi-
nally, contextual models are learned from episodic sequences that capture a spatial
context, e.g. the user was looking around on the writing area of his or her desk.

Interpretation as well as learning processes are working asynchronously on mem-
ory representation. They are coordinated through memory event notification [11], e.g.
the object anchoring component is triggered if a new object hypothesis is stored in
the memory.

3 Image-based scene decomposition and acquisition of object
views

In the Augmented Reality scenario, the user and the system share a common view.
The images of the head-mounted cameras are directly shown on the head mounted
stereo display, so that the user sees what the camera records and the system knows
which part of the scene is focused by the user. Two different visual behaviors are used
on this pictorial representation level.

Mosaicing: In indoor environments meaningful sub-scenes are typically defined by
planes, e.g. table top, front side of a shelf, walls. However, if we are keeping a suffi-
cient level of image detail these kind of contextual areas cannot completely be seen
through a single view. In [5] we present an unique approach to create mosaics for



Fig. 2. Constructing and tracking of planar sub-scenes. The mosaicing approach has constructed three different
planar sub-scenes that are stored in the pictorial memory. They were constructed from an image sequence of the
head mounted cameras which is incrementally processed in soft real-time. The user turned his or her head from
the right side of the table to the left side. The system has correctly identified the two different desk levels.

arbitrarily moving head-mounted cameras. It uses a three stage architecture. First, we
decompose the scene into approximated planes using stereo information, which after-
wards can be tracked and integrated to mosaics individually (see Fig. 2). This avoids
the problem of parallax errors usually occurring from arbitrary motion and provides a
compact and non-redundant representation of the scene. Each plane defines a coarse
spatial context from which contextual models can be learned that interrelate objects
that frequently co-occur in such a sub-scene.

Object tracking:The acquisition of object models is a key to higher-level descriptions
of a scene. For object recognition an appearance-based VPL-classifier [1] is used that
can directly be trained from image patches. These are automatically extracted while
a user is focusing the target object. An entropy measure is used in order to segment
unknown objects from a more or less homogeneous table plane. In the learning mode
of the system the detected area is augmented to the view of the user. Once the first
view is registered by the system a data-driven tracking technique [6] is started that
provides additional views of the object. Each view that the system collects for learning
is checked with the user so that he or she can control the learning process. The patches
can be stored in the pictorial memory of the system for a fast online learning of
objects as well as a more accurate object learning on a longer time scale [1]. A label
is currently given by speech input based on a pre-defined lexicon.
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Fig. 3.Contextual models are learned from episodic memory content.

4 Object anchoring and the role of context

Object anchoring links corresponding object hypotheses that are detected at differ-
ent points in times to the same symbol. This is essential for representing episodes
over an extended period of time. In addition to the trajectory information from ob-
ject tracking, a second strategy is applied for linking that takes the 3-d position of
the object hypotheses into account. This can be estimated based on a self-localization
of the cameras [3]. Currently, we assume that each object is lying on a table plane.
Object hypotheses are fused over time if the 3-d positions are close enough to each
other. A Gaussian curve models the probability that two hypotheses refer to the same
object. (see Fig. 3(a)). For the final classification result the labels provided by the
object recognition component is integrated over a short period of time. Thereby, the
reliability value of a specific hypothesis is adapted. Only those hypotheses that have
a highly rated reliability value are used for contextual model learning.

Based on such kind of episodic data, contextual models can be estimated that
represent typical configurations of objects in a sub-scene. For that, we use simple
Bayesian networks with discrete conditional probability tables. In Fig. 3(b) a learned
parameterization of a Bayesian network is shown.

The contextual models in turn can be used to judge certain object hypotheses
given their context as well as can be used to classify more general scene contexts, like
’office table’ if a keyboard and computer mouse has been found. Thus, higher-level
categories can be detected that are defined through relations between objects.

5 Conclusion and Outlook

In this paper we presented a bootstrapping approach for the acquisition of knowledge
in unknown environments. Augmented Reality techniques are used in order to close



the interaction loop with the user. This acquisition process combines several visual
behaviors that are integrated using the active memory infrastructure. It is shown how
the tight coupling with the user can be used in order acquire grounded higher-level
representations. The demonstration system is running on 5 different laptops allowing
a soft real-time behavior. New objects can be learned in about 2-3 minutes acquiring
between 4 to 6 object views. Contextual models are learned on a longer time scale.
Parameters of Bayesian networks are estimated from about 5 minutes of regular sys-
tem usage where the corresponding scenery label is given by the user. Further system
development will focus on a further integration of the mosaiced sub-scenes and the
structural learning of contextual models. We think that the triadic interaction between
the system, the human, and the environment provides an ideal basis for pushing the
cognitive development of artificial systems to a further level. Augmented reality of-
fers strong interaction patterns for this purpose. On the other side, cognitive system
capabilities will lead to a next generation of assistance technology offering a variety
of applications.
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