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Abstract

In order to study computationally increasingly complex systems using theo-

retical methods model Hamiltonians are required to accurately describe the

potential energy surface they represent. Also ab-initio methods improve the

calculation of the excited states of these complex systems becomes increas-

ingly feasible. One such model Hamiltonian described herein, the Vibronic

Coupling Hamiltonian, has previously shown its versitility and ability to

describe a variety of non-adiabatic problems. This thesis describes a new

method, a genetic algorithm, for the parameterisation of the Vibronic Cou-

pling Hamiltonian to describe both previously calculated potential energy

surfaces (allene and pentatetraene) and newly calculated (cyclo-butadiene

and toluene) potential energy surfaces. In order to test this genetic al-

gorithm quantum nuclear dynamics calculations were performed using the

multi-configurational time dependent hartree method and the results com-

pared to experiment.
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Chapter 1

Introduction

The study of photochemistry can be applied to a wide variety of everyday

life. From photosynthesis, which accounts for the production of all of our

food and air [1], to the balance of greenhouse gases in our atmosphere [2]. In

its simplest terms photochemistry is the interaction of light with a molecule

leading to the generation of a molecule in an excited state [3]. These ex-

cited states have properties, their energies and lifetimes, which are entirely

dependent of the electronic and nuclear configuration on that state. We can

therefore consider all of photochemistry as the study of the time evolution

of the nuclear and electronic structure following excitation by a radiation

field [4].

A variety of photochemical processes can occur following this initial exci-

tation, a summary of these is depicted in figure 1.1. The intial excitation can

also be termed absorbance, as it can also be described as the absorbance of

a photon. This is a very fast transition of the time scale of ∼ 10−15 s. This

is a type of radiative process, two other radiative processes can then occur

namely fluorescence and phosphorescence. Flourescence is the emission of

a photon from an electronically excited singlet electronic state and occurs
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on the time scale ∼ 10−8 s. Phosphorescence is the emission of a photon

from an electronically excited triplet state, which is a spin forbidden process

and as such occurs on a much slower time scale of ∼ 10−3 s. Spin forbidden

processes are discussed further in the Symmetry and Group Theory Section

2.5.

The energy can also be redistributed within the molecule by a number

of non-radiative processes. Two of these are depicted in figure 1.1. Inter-

nal conversion is the non-radiative process where the energy, or wavepacket,

moves to a lower energy excited state and is of the time scale ∼ 10−12 s.

This occurs when a vibrational state of an excited state can couple with a

vibrational state of a lower energy excited state. Internal Conversion (IC) is

a spin allowed transition, when the wavepacket moves from an excited state

to a lower energy excited state of a different spin multiplicity this is termed

Intersystem Crossing (ISC). As this transition is spin forbidden it occurs on a

much slower time scale of ∼ 10−3 s to ∼ 10−1 s. Unlike Internal Conversion,

where coupling between vibrations allows the transition, Intersystem Cross-

ing occurs as a result of spin-orbit coupling (In small atoms this is between

the total spin angular momentum and the total orbital angular momentum.)

Other non radiative processes can occur, most typically vibrational relax-

ation where the energy is transferred to its surroundings (which cannot occur

for isolated molecules), Intramolecular Vibrational Relaxation (IVR) where

a localised vibrational excitation is irreversibly dissipated (relaxed) through-

out the molecule and by passing through a Conical Intersection (CI), which

in a two dimensional system, is an intersection between two potential energy

surfaces (when their energies become degenerate) which allows the energy to

return to a lower energy electronic state without emitting a photon (unlike

flourescence and phosphorescence which also return the molecule to a lower

Introduction 2



Introduction 1.0

Fig. 1.1: A diagram depiciting the electronic states of a molecule and the photo-
chemical processes between them, where Si is the singlet state i, Ti is the triplet
state i, A is Absorbance, F is fluorescence, P is phosphorescence, IC is Internal
conversion and ISC is Intersystem Crossing.
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r

E

Fig. 1.2: A diagram depiciting a simple conical intersection where E is the energy
and r is a reaction co-ordinate. The red arrow depicts absorbance of a photon
to an excited state and the blue arrow depicts the path the wavepacket can take
through the conical intersection to return to the ground state.

electronic state). This is demonstrated in figure 1.2 and discussed further in

section 2.6.

These processes can be examined experimentally by measuring the radi-

ation intensity as a function of the wavelength, this is termed spectroscopy.

As the resonant frequencies have large amplitudes they can be identified

using spectroscopic methods. In Quantum Mechanical terms one can say

that the coupling between an atom/molecule and a photon is analogous to

a resonance. As the coupling between an atom/molecule is strongest when

the energy of the photon matches the energy difference between two states,

the spectrum can be used to experimentally determine the energy difference

between states. In order to determine the rates of these processes it is nec-

cessary to perform time-resolved spectroscopy.

Time-resolved spectroscopy has advanced leaps and bounds with numer-

ous technological developments. From simple shuttered appertures to flash

bulbs and finally laser pulses the study of chemistry has advanced rapidly,
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and with every advance we are able to look in a greater time resolution than

before. Recent improvments in experimental techniques, particularly the

pump-probe scheme developed by Zewail [5, 6], has allowed chemists to ex-

plore the time-evolution of a wavepacket on the femto second time regime. In

the pump-probe scheme developed by Zewail [5, 6] an electronically excited

state that one wishes to examine is prepared with a laser pule, the pump

pulse, and then probed with a second laser pulse at a fixed time delay. By

performing this experiment with a variety of time delays one achieves a time

resolved spectrum.

The first example ultrafast spectroscopy, that is time resolved spectroscopy

on the fempto second time scale, was the study of the bond breaking dynam-

ics of I-CN [7]. A schematic representation of the potential energy surface

is shown in figure 1.3 and the spectroscopic results are shown in figure 1.4.

This method has been used for a variety of systems [6] using a number of

spectroscopic techniques.

The spectra shown in figure 1.4 are produced using laser induced floures-

cence, where a molecule is excited by a laser and after a short period of time

(typically on the order of nanoseconds) the excited species (in this case an

ion) emits a photon which is then deteced. As the laser induced flourescence

is related to the Frank Condon (FC) overlap one can determine the motion

of the wavepacket from the ion yeild. Another important technique used

in ultrafast spectroscopy is time resolved photoelectron spectroscopy, where

the second laser pulse (probe pulse) ionises the target molecule and the ki-

netic energy of the resulting electron is measured. One can use this kinetic

energy to determine the binding energy (the energy required to remove an

electron from its atomic/molecular orbital) using the relationship expressed

Introduction 5
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Fig. 1.3: A simplification of the potential energy surface of I-CN, the pump pulse
causes a vertical transition from V0 to V1 and the motion of the wavepacket after
is indicated by the arrows. Reproduced from [7].

Fig. 1.4: Experimental results showing the spectra for 4 different time delays
superimposed on each other. The spectra show the I-CN bond stretching and
breaking after excitation. Reproduced from [6].
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in equation 1.1.

Ek = hυ − Eb (1.1)

where Ek is the kinetic energy of the ejected electron, h is Planck’s constant,

υ is the wavelength of the photon causing the ejection of the electron and Eb

is the binding energy.

The data produced from spectroscopic techniques is extensive and it is

here that theoretical methods can help to explain the observed results. In

order to do this we need to solve the time dependent Schrödinger equation

so that we may propagate a wavepacket across a potential energy surface.

These wavepacket dynamics calculations are only possible for molecules with

a single electron, unless approximations are used. One such approximation

is the Multi-Configurational Time Dependent Hartree method (MCTDH) [8].

In order to use these methods we must first have a potential energy sur-

face to propagate our wavepacket on. The calculation of electronically excited

states is a difficult problem in the field of theoretical chemistry [9]. Although

many computational methods exist in order to calculate these excited state

energies, they are computationally expensive and fraught with other prob-

lems (which are discussed in later chapters). Once we have these potential

energy surfaces we need them in a form which can be quickly analysed by our

wave propogation method, usually in the form of a mathematical function.

One such example is the Vibronic Coupling Hamiltonian (VCHAM) which

has been frequently used [10–12] to describe a number of non-adiabatic prob-

lems such as Intramolecular Vibrational Relaxation which is discussed in

chapter 6. The VCHAM is well suited as a general purpose Hamiltonian
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due to its simple formulation. So far the VCHAM has been used for a wide

variety of simple examples of non-adiabatic problems. For larger problems

the VCHAM becomes more difficult to use as it increasingly has a vast num-

ber of parameters. In order to use the VCHAM these parameters must be

optimized to fit the calculated excited state energies.

The optimisation of these parameters forms a major part of this thesis.

Ideally we would like to have the perfect set of parameters to minimise the

difference between the model Hamiltonian and the calculated excited state

energies; this ‘perfect set’ is the global minimum. Unfortunately simple op-

timisation routines are only able to find a local minimum, that being the

nearest minimum to their initial starting value. The development of a global

optimisation technique, specifically a genetic algorithm, its applications and

a variety of test cases are presented here.

In the course of this thesis several molecules are discussed, of particu-

lar important are the molecules cyclobutadiene, allene, pentatetraene and

toluene (their structures are shown in figure 1.5). With the exception of

toluene these molecules are used as test cases for the genetic algorithm de-

veloped as part of my doctoral studies. Cyclobutadiene has been studied

extensively experimentally [13–15] and theoretically [12,16–18] due to inter-

esting nature of it’s ground state. As it is a ring with 4 π electrons Hückel’s

rule would predict that cyclobutadiene would be unstable, anti aromatic and

have a triplet ground state. However both experimental [13] and theoreti-

cal studies [18] have shown that there is a nonplanar rectangular distotion

to a singlet ground state. This is caused by the Jahn-Teller effect which is

discussed in section 2.6. Allene and Pentatetraene were both originally in-
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Fig. 1.5: A diagram showing the chemical structures of the molecules discussed in
detail in this thesis, where (a) is cyclobutadiene, (b) is allene, (c) is pentatetraene
and (d) is toluene.

vestigated due to the presence of Jahn-Teller coupling 2.6 and their interest

as molecular wires [10, 11]
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Chapter 2

Background Theory

In this chapter the theory underlying the research reported and the computa-

tional methods described in the subsequent chapters is disscussed. The main

theory presented is the Schödinger equation and its two main forms, the

time dependent and time independent perspective. The time independent

Schrödinger equation is used for electronic structure methods which describe

the energetics of the system of interest. In the subsequent chapters these

energetics are calculated at a variety of geometries in order to build up a

potential energy surface (PES). The time dependent Schrödinger equation is

used for the dynamic calculations, where a wavepacket is propagated accross

the potential energy surface.

It is not feasible to solve the Schrödinger equation exactly for systems con-

taining more than a few electrons due to the size of wavefunction needed to

describe it. The complexity of the decription increases dramatically with the

number of degrees of freedom (DOF) and the size of the basis set and re-

quires the use of approximations. Once such approximation commonly used

and discussed below is the Born-Oppenheimer approximation.
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Schrödinger Equation 2.1

2.1 Schrödinger Equation

The Schrödinger equation was devised by Erwin Schödinger in 1926 [19] as

a way of describing how the quantum state of a physical system changes in

time. This quantum state, usually referred to as the wavefunction (Ψ) is a

complete description of the physical system. In its time dependent form the

Schrödinger equation describes the time evolution of the system and where

the Hamiltonian is not explicitly dependent of time (in a stationary state) the

time independent form can also be used. The time dependent Schrödinger

equation (TDSE) can be written

−i~∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.1)

and the Hamiltonian operator (Ĥ) is written:

Ĥ = − ~2

2µi

∇2
i + V (r) (2.2)

i is
√
−1 and ~ is Plancks constant divided by 2π.

Ψ(r, t) = ψ(r)T (t) (2.3)

where ψ(r) is the spatial wavefunction and T(t) is the temporal part. Substi-

tuting equation 2.3 into equation 2.1 and dividing by the overall wavefunction

we obtain two equations:

−i~∂T (t)
∂t

= ET (t) (2.4a)

Ĥψ(r) = Eψ(r) (2.4b)
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Equation 2.4b is the time independent Schrödinger equation. This equa-

tion is an example of an eigenvalue equation. E is the eigenvalue and can

take on certain discrete values depending on the eigenfunction ψ and linear

operator Ĥ. Equation 2.4a can be developed to give the solution:

T (t) = T0 exp
−iEt/~ (2.5)

We may now write the solutions of the TDSE as

Ψ(x, t) = ψ(r)T0 exp
−iEt/~ (2.6)

This describes the time evolution of the wavefunction. T0 is the initial tem-

poral wavefunction which can be absorbed into ψ(r).

2.2 Born-Oppenheimer Approximation

The Born-Oppenheimer Approximation was proposed by Max Born and J.

Robert Oppenheimer in 1927 [20] as a way of alleviating the huge effort re-

quired to solve the Schödinger equation for molecules larger than H2. This

is achieved by separating the electronic parts of the wavefunction from the

nuclear parts. In its simplest form can be expressed as:

Ψtotal = ΨnuclearΨelectronic (2.7)

Physically this represents the electrons moving in the static field of the nu-

clei and ignores any correlation between the two. As electrons move signif-

icantly faster than nuclei, relatively, this approximation is reasonable but

many quantum effects occuring on or near this time scale require some de-
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scription of this correlation as will be shown later. One can describe the

Hamiltonian in this approximation in terms of the kinetic and potential en-

ergy terms:

H = Te + TN + Ve + VN + VeN (2.8a)

H =
∑
i

− ~2

2m

∂2

∂r2i
+
∑
i

− ~2

2Mi

∂2

∂R2
i

+
∑
j>i

e2

|ri − rj|
+
∑
j>i

ZiZje
2

|Ri −Rj|
−
∑
ij

Zje
2

|ri −Rj|
(2.8b)

Te and TN are the kinetic energy terms for the electrons and nuclei, Ve and

VN are the potential energy terms for the electrons and nuclei and VeN is the

nuclear-electronic potential coupling term. Ri,
∂2

∂R2
i

are the nuclear position

and momentum, Zi is the nuclear charge and ri,
∂2

∂r2i
are the electronic posi-

tion and momentum.

Equation 2.8b shows that even in the simplest molecule, it is very computa-

tionally expensive to solve the Schrödinger equation analytically due to the

large number of terms. An approximation to overcome this difficulty to use

the vast difference between the mass of the electrons and the nuclei [20]. The

mass difference means that the position of the electrons will effectively change

instantly with respect to any change in the nuclear geometry. This allows

us to consider the nuclear geometry as fixed, and so solve the Schrödinger

equation. This can be shown by expressing the full wavefunction as:

Ψ(r;R) = ψ(r;R)χ(R) (2.9)

Substituting equation 2.9 into equation 2.4b with the Hamiltonian in equa-

tion 2.8b we obtain:
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[T̂N(R) + T̂e(r) + V̂eN(r,R) + V̂NN(R) + V̂ee(r)]ψ(r;R)χ(R) = Eψ(r;R)χ(R)

(2.10)

since T̂e contains no R dependence, we can write:

T̂eψ(r;R)χ(R) = χT̂eψ (2.11)

The same cannot be assumed for the nuclear kinetic energy term because it

is dependent on R, hence it must be expressed, using the product rule, as

2.12:

∂2

∂R2
ψ(r;R)χ(R) = ψ

∂2

∂R2
χ+ 2

∂

∂R
ψ
∂

∂R
χ+ χ

∂2

∂R2
ψ (2.12)

This is more commonly written as:

Hψχ = Teψχ+ Veψχ++VNψχ+ VeNψχ+W = Eψχ (2.13)

W = −
∑
j

~2

2m
(ψ

∂2

∂R2
χ+ 2

∂

∂R
ψ(r;R)

∂

∂R
χ(R) + χ

∂2

∂R2
ψ) (2.14)

In equation 2.14 the last two terms involve derivatives of the electronic wave-

function, with respect to nuclear coordinates, however both of these terms

are proportional to the mass ratio between electrons and nuclei, and hence

due to the massive difference in size these terms can be ignored. This means

the Schrödinger equation in the Born-Oppenheimer approximation is written

as:

ψTNχ+ (Teψ + Veψ ++VNψ + VeNψ)χ = Eψχ (2.15)
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we may multiply on the left by ψ∗ to yield the nuclear Schrödinger equation:

(TN + V )χ = Eχ (2.16)

From equation 2.14 it is possible to deduce the limit of this approximation. It

can be shown [21] and is described below in section 2.3.2 that the approxima-

tion breaks down when electronic states are close in energy. In excited states

fast nuclear vibrations mean that the two neglected terms can no longer be

ignored. This results in the coupling between nuclear and electronic motion

and some interesting and important dynamical features.

2.3 The Adiabatic and Diabatic Picture

The section will introduce the basis of both the diabatic and adiabatic theo-

ries, as well as their definition. The Adiabatic theory [21,22], for a quantum

mechanical system, states that under slowly changing external conditions the

system can adapt its functional form, where rapid changes leave no time for

the system to adapt leaving the probabilty matrix unchanged. The diabatic

theory however states that rapidly changing conditions do not allow time for

the system to adapt, resulting in no change in the probability density. This

results in there, typically, being no final eigenstate of the Hamiltonian with

the same functional form as the initial state.

2.3.1 Adiabatic Representation

The adiabatic representation and limit can be shown by expressing the TDSE

in the previously written form 2.1 where the Hamiltonian and wavefunction
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are written as

H(t) =


Ea Vab(t) ...

Vba(t) Eb ...

... ... ...

 (2.17)

Ψ(t) =


Ψa

Ψb

...

 (2.18)

If Vab and Vba are small and therefore slowly changing, as we are assuming

in the adiabatic representation, it is possible to write:

U−1(t)H(t)U(t) = D(t) (2.19)

U−1Ψ = Ψ′ (2.20)

where U is a unitary evolution operator defined exp−iHt/~, which transforms

Ψ(0) into Ψ(t). The TDSE can be written:

i~
∂

∂t
(UΨ′(t)) = i~

(
U(t)

∂Ψ′

∂t
+
∂U(t)

∂t
Ψ′
)

= H(t)U(t)Ψ′(t) (2.21)

by multiplying through by U−1 it can be written in the form:

i~
∂

∂t
(Ψ′(t)) = D(t)Ψ′(t)− i~U−1(t)

∂U(t)

∂t
Ψ′ (2.22)

and hence if H(t) is slow varying then so will U(t) and U−1(t) meaning the

second term on the right hand side will be small and can be neglected [21].
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2.3.2 Non-adiabatic Corrections

The Born-Oppenheimer Approximation (BOA) in the presence of significant

off-diagonal terms in the Hamiltonian matrix (representing strong coupling

between two electronic states, typically close in enerrgy) means that it is no

longer possible to ignore the right hand side term in equation 2.22. It is

possible to simplify equation 2.22 so that the wavefunction is written:

(
T̂N + Vi

)
|Ψi⟩ −

∑
j

Λij|Ψi⟩ = i~
∂

∂t
|Ψi⟩ (2.23)

where i and j represent the two states, and Λij is the non-adiabatic coupling

term which is written:

Λij =
~2

2
(Gij + 2Fij∇) (2.24)

where Gij is a matrix which can be further broken down into the form

Gij = ∇+ Fij +
∑
k

Fik.Fkj (2.25)

This shows that the force matrix Fij is the defining quantity in the strength

of the non-adiabatic coupling, which itself is dependent on the energy gap

between the two states:

Fij =
1√
M

1

Vj − Vi
⟨ψi|

∂H̃el

∂R
|ψj⟩ (2.26)

where M is the mass, Vj−Vi is the gap between the two states and ⟨ψi|
∂H̃el

∂R
|ψj⟩

is the force between the two states as a function of coordinate, R.
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2.3.3 Diabatic Representation

Equation 2.26 shows the limit of the adiabatic picture. This representation

breaks down when the energy gap between the two states tends to zero, (Vj-

Vi → 0 resulting in Fij → ∞). In order to accurately represent the system

it is preferable to switch to a diabatic representation.

In order to change to a diabatic representation we must replace the adi-

abatic coupling terms with a diabatic coupling matrix which contains the

whole potential. The diabatic representation is the logical choice for sys-

tems containing significant non-adiabatic effects as it removes singularities

created as Vj-Vi → 0 creating a smooth and simple surface [23]. In this

representation the Schrödinger equation is expressed:

T̃N |χi⟩+
∑
j

Wij|χj⟩ = i~
∂

∂t
|χi⟩ (2.27)

where Wij represents the potential matrix, coupling is represented by the

off-diagonal elements. Wij can be expressed as:

Wij = ⟨ϕi|H̃el|ϕj⟩ (2.28)

The diabatic states of a system are usually obtained from a unitary trans-

formation of the adiabatic states. The orthogonal matrix, S transforms the

operator from adiabatic to diabatic:

(
|Φ1⟩|Φ2⟩

)
= S

(
|ϕ1⟩|ϕ2⟩

)
(2.29)
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The Vibronic Coupling Hamiltonian 2.4

In two state space the matrix, S can be written as a R dependent rotation:

S(R) =

cosθ(R) −sinθ(R)

sinθ(R) −cosθ(R)

 (2.30)

where θ is the mixing angle between the two adiabatic states. From equation

2.30 we can write:

W 11 = ⟨Φ1|Ĥel|Φ1⟩ = V1 cos
2 θ + V2 sin

2 θ (2.31)

W 22 = ⟨Φ2|Ĥel|Φ2⟩ = V1 sin
2 θ + V2 cos

2 θ (2.32)

for the on-diagonal terms. For the off-diagonal terms we write:

W12 = ⟨Φ1|Ĥel|Φ2⟩ = (V1 − V2) cos θ sin θ (2.33)

where V1,2 are the adiabatic energies, W11 and W22 are the diabatic potential

energies and W12 is the coupling.

2.4 The Vibronic Coupling Hamiltonian

In the following calculations a model Hamiltonian, the Vibronic Coupling

Hamiltonian2, is used where a set of N coupled states can be represented

by a zeroth order Hamiltonian (H(0)), a diagonal matrix containing kinetic

energy operators(W(0)) and a set of diabatic coupling matrices(W(1)):

H = H(0) +W(0) +W(1) + ..... (2.34)
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The Vibronic Coupling Hamiltonian 2.5

The zeroth order Hamiltonian, H(0), can be expressed using a harmonic os-

cillator around the Frank-Condon point. The zeroth order diagonal coupling

matrix contains the energy of the electronic states at (Q0), where ϕ is the

diabatic electronic wavefunction.

W
(0)
ii = ⟨ϕi(Q0)|Hel|ϕj(Q0)⟩ (2.35)

where Hel is the standard clamped nucleus electronic Hamiltonian and ϕi

the diabatic electronic functions. The following expressions describe the first

order on-diagonal terms W
(1)
ii , the first order off diagonal terms W

(1)
ij and the

second order on diagonal terms W
(2)
ij

W
(1)
ii =

∑
α

κ(i)α Qα (2.36)

W
(1)
ij =

∑
α

λ(i,j)α Qα (2.37)

W
(2)
ij =

1

2

∑
α,β

γ(i)QαQβ (2.38)

The use of symmetry arguments is very important in the VCHAM. Many

expansion coefficients must be zero, only those where the product of the

symmetries of the electronic states and the normal modes in question con-

tain the totally symmetric irreducible repsentation are non-zero. This is

shown in 2.39 for a first order off diagonal term (λ) for C2v symmetry:

Γi ⊗ Γα ⊗ Γj ⊃ A1 (2.39)

where Γi denotes the symmetry of the electronic state i and Γα denotes the

symmetry of the normal vibrational mode α.
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2.5 Symmetry and Group Theory

Understanding of the symmetry present in molcules is particuarly useful as

it can be used to explain or predict a variety of chemical properties, for ex-

ample its dipole moment and its allowed spectroscopic transitions [3, 4, 24].

For electronic structure, and other computational chemical, methods one can

greatly reduce the ammount of computational expense by only calculating

once for elements with the same symmetry.

Although a number of frameworks exist for the study of molecular symmetry

the predominant framework is Group Theory [3, 24] (another major frame-

work is the crystal systems used for bulk solids). Group Theory, as the name

suggests, is a mathematical field which studies algebraic structures known as

groups. It is a powerful method for analyzing systems (abstract as well as

physical) in which symmetry is present.

One classifies a molecule according to group theory by assigning it a point

group. A point group is a set of symmetry operations (a permutation of

the atoms such that the molecule is transformed into an identical geometry

to its initial geometry) for which at least one point remains fixed under all

operations of the group. Figure 2.1 shows the symmetry operations present

in a simple example molecule (H20).

In addition to rotation axes and planes of symmetry, as demonstrated in

figure 2.1 , the other symmetry operations are inversion centres, rotation-

reflective axes (also known as a improper rotation axis) and the identity

operation. An inversion centre (denoted I) is a point where each atom has

an identical atom diametrically opposite this centre at an equal distance away

from this centre. Rotation-reflective axes are an operation where a rotation

about an axis followed by a reflection in a plane perpendicular to it results
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Fig. 2.1: A figure showing the symmetry operations present in the H2O molecule.
(a) shows the C2 rotation axis (where the 2 indicates that the rotation is valid at
(360

◦

2 ) , (b) shows a plane of symmetry (denoted σ, as does (c).

in a molecule indistinguishable to it. The identity operation consists of no

change, being analogous to multiplying by unity, and is denoted (E).

Point groups can be expressed succinctly using character tables. Character

tables consist of rows corresponding to irreducible representations and whose

columns correspond to classes of group elements. An example character table

for the C2v point group in shown in table 2.1. When multiple planes of

symmetry exist, as in both the previous figure 2.1 and in the character table

2.1 that follows, the different planes are differentiated from each other either

by their relation to the principal axis or by using cartesian co-ordinates. The

principal axis is the rotation axis with the highest order (n when the rotation

is valid at (360
◦

n
) .If the plane of symmetry is perpendicular to the principal

axis it is termed horizontal and denoted by a subscript h (e.g. σh), when

the plane of symmetry is parallel to the principal axis it is termed vertical

and denoted by a subscript v (e.g. σv), and when the plane of symmetry

is a vertical and also bisects the angle between two 2nd order rotation axes
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E C2(z) σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Table 2.1: The C2v character table where C2(z) is a 2nd order rotation axis along
the z axis, σv(xz) is a plane of symmetry parallel to the principle axis.

perpendicular to the principal axis the plane is termed dihedral and denoted

by a subscript d (e.g. σd). Cartersian co-ordinates can also be used to

denote the plane in question, using subscripts x,y,z in order to denote the

plane in question (e.g.σxz ). These two forms are equivalent when convention

is followed by defining the z-axis as that of the principle axis.

The character shown in table 2.1 is an example of an Abelian point group.

Abelian point groups are commutative, that is the result of applying the

group operation to two group elements is independent on their order, as

shown in equation 2.40. When the point groups are not commutative, where

a group operation performed on atleast two group elements are dependent on

their order, they are termed non-abelian (non-commutative) point groups.

a · b = b · a (2.40)

where a and b are group elements and · is a group operation.

Knowledge of a molecule’s symmetry allows us to predict the type of tran-

sitions that may occur. This can be acieved by evaluation of the transition

moment integral (equation 2.41) which for a transition to occur must be non-

zero [25].

∫ ∞

∞
ψ1µψ2dτ (2.41)
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where psi1 and psi2 are the wavefunctions of the two states involved in the

transition and µ is the transition moment operator. The transition is allowed

if the direct product of the symmetries of the two states and the transition

dipole operator spans the symmetry of the totally symmetric function (in

the case of C2v in figure 2.1 the totally symmetric function is An as it has a

value of 1 with respect to each element). In practice one does not need to

consider the transition moment integral, it is enough to know the symme-

try of the transition moment operator. With this knowledge rules regarding

which transitions result in a non-zero transition moment integral have been

derived, termed selection rules [3, 25].

For electronic transitions the selection rules are that the total spin cannot

change (δS = 0), that the change in total orbital angular momentum can be

δL = 0or1 (but L = 0 to L = 0 is forbidden), that the change in the total

angular momentum can be δJ = 0or1 (but J = 0 to J = 0 is forbidden)

and that the initial and final wavefunctions must change in parity (where

the sum of the orbital angular momentum over all electrons, which can be

even or odd).

For vibrational transitions the selection rule is such that vibration transi-

tions are allowed as long as the change in vibration state is plus or minus a

positive integer (δv = ±1, 2, .... When δv = 1 this is called the fundamental

vibration, those with larger δvare called overtones and only weakly allowed.

2.6 Jahn-Teller and Conical Intersections

The Jahn-Teller effect/theorem is an interesting effect whose definition greatly

relies on group theory arguments. When the geometry for a non-linear

molecule is described by a point group possesing degenerate irreducible rep-
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resentations there always exists at least one non-totally symmetric vibration

which makes electronically degenerate states unstable at this geometry [26].

This is particuarly apparent later in the thesis in the section on cyclobuta-

diene 4.3.

The Jahn-Teller effect gives rise to a conical intersection, but another effect

can also give rise to conical intersections. The psuedo Jahn-Teller effect (or

second order Jahn-Teller effect) arises when molecules with a non-degenerate

ground electronic state and a degenerate excited state which is low lying, dis-

tortions arise that results in mixing of the ground and excited states which

in turn lowers the ground-state energy.

In order for a molecule to have a Jahn-Teller CI it must fulfill the require-

ments of the Jahn-Teller theorum, specifically a molecular symmetry of C3

or higher axis of rotation is required to generate degenerate irreducible rep-

resentations of the point group and having a non-totally symmetric vibration

of the same symmetry as the co-ordinates of the CI [27]. This type of con-

ical intersection is also referred to as a symmetry allowed CI, in constract

with with other two types of CIs namely accidental symmetry allowed and

accidental same symmetry. Accicdental symmetry allowed CIs are between

states with different point groups, and the elecronic states may or may not

be degenerate when the symmetry is present. Accidental same symmetry

CIs are between states with the same point group, as these cannot be antic-

ipated using group theory arguments only recent advances in computational

methods [27] have allowed these CIs to be investigated. Example plots of

Conical Intersections are shown in figure 2.2.
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Fig. 2.2: The figure of the left shows an accidental symmetry allowed CI and right
Jahn-Teller CI. Figure taken from [23].

2.7 Optimization

In order to select the parameters of the VCHAM potential energy surfaces

are caculcated using electronic structure methods and the parameters are

optimised to fit the calculated surfaces. This is an example of an optimisation

problem, where one desires the best solution from all possible solutions. In

the case of the VCHAM this is the set of parameters that yields the lowest

root mean square deviation (RMSD) from the calculated surfaces.

This is typically achieved using local optimisation where one starts with an

initial guess and then improves on the guess in an iterative process. In an

early example, the Newton-Raphson method [28], where given a function

f(x), its derivative f ′(x) and a previous guess xn the Newton-Raphson gives

us the following expression for the first iteration (xn+1):

xn+1 = xn
f(xn)

f ′(xn)
(2.42)

Although an efficient optimisation technique the Newton-Raphson method

has some deficiencies. In particular a poor initial guess can lead to non-

convergence and in cases where the calculation of the function and its deriva-
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tive are computationaly expensive the algorithm becomes inefficient. Nu-

merous other methods for local optimisation exist which improve on the

Newton-Raphson method with respect to its convergence problems such as

the Simplex [29] and Conjugate-Gradient [30] methods both of which are

used in the linear optimisation presented later in this thesis.

These methods however are still flawed, in that many problems have a large

number of local minima. Local optimisers work by improving on an ini-

tial guess and are only able to find the local minima closest to the initial

guess. Finding the global minima is a challenging problem and practically

impossible for many situations. The brute force approach to solving a global

optimization problem is a full space search, where f(x) is solved for all pos-

sible values of x.

Numerous techniques have been developed in order to solve global optimi-

sation approaches without resorting to full space searches. These can be

classified as either Deterministic, Stochastic or Metaheurisitic. Determin-

istic approaches always return the same result for the same input, such as

Branch and Bound methods [31] where the search space in separated into

subsets (branches). In these Deterministic approaches if there is a subset A

whose lower bound (of f(x)) is greater than the upper bound of subset B

then subset A maybe discarded.

Stochastic methods use random variables as part of the optimisation prob-

lems, the classic example of which is the Monte Carlo [32] method where

candidate solutions are generated at random over the seach space and then

evaluated. Metaheurisitic methods [33] optimise a function by iteratively

improving a candidate solution and often involve some sort of stochastic el-

ement.
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2.8 Intramolecular Vibrational Relaxation

Intramolecular Vibrational Relaxation (IVR) is the process where vibrational

energy localised in a particular mode is redistributed amongst the vibrational

modes of a molecule. In early statistical theories IVR is assumed to be rapid

and complete [34, 35]. More recent models [36–38] require coupling coupling

matrix elements between the initially prepared state and all other vibrational

states (although this is implemented in a variety of ways.)

Small molecules however do not relax statistically, as for example a study by

Crim et. al. showed for bimolecular reactions of vibrationaly excited H2O

and HOD [39, 40].
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Chapter 3

Computation and Methodology

The computational methods used in this thesis can be divided into two

categories, time independent electronic structure methods and time depen-

dent methods. The time independent electronic structure methods are used

to describe the potential energy surface at a variety of nuclear geometries.

Time dependent dynamic methods are used to determine the movement of

a wavepacket on the potential energy surface calculated by the electronic

structure methods.

Several electronic structure methods are used in this thesis. These methods

are used sequentially in order to improve the result of the previous method.

This is achieved by improving the treatment of electron-electron repulsion

(correlation). As all of these methods optimise an initial guess, by using a

simpler treatment of electron-electron repulsion initial convergence problems

can be avoided.

The starting point for most ab-initio calculations is the Hartree-Fock (HF)

method. The HF method treats the electronic interactions as an averaged

field, hence the effects of electronic correlation are neglected. The next level

of theory used in this thesis is complete active space self consistent field

(CASSCF) theory which uses multiple excited electronic configurations in
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determinants which account for electronic correlation statically. The com-

plete active space with 2nd order perturbation (CASPT2/CASMP2) uses a

second order perturbation to include dynamic correlation effects [4, 9, 41].

The dynamic calculations are performed using the multi configurational time

dependent hartree (MCTDH) method [8, 23, 42]. This multiconfigurational

approach implements correlation between the motion along the co-ordinates

in question, which is not completely described in the mean field time depen-

dent hartree (TDH) method.

3.1 Hartree-Fock Self Consistant Field (HF-

SCF)

HF is the starting point for most ab-initio electronic structure methods. The

HF method does not treat the electronic correlation. Each electron is con-

sidered to be moving in a field generated by (n-1) electrons. The HF Fock

method is exact if the electron-electron repulsion term is ignored.

Ĥe = T̂e + V̂ne + V̂ee + V̂nn (3.1)

where Ĥe is the electronic Hamiltonian, T̂e is the electronic kinetic energy

operator, V̂ne is the nuclear-electronic potential energy operator, V̂ee is the

electronic-electronic potential energy operator and V̂nn is the nuclear-nuclear

potential energy operator. By ignoring the electron-electron, V̂ee, term of

the electronic hamiltonian 3.1 the wavefunction can be expressed as a simple

product of one electron wavefunctions as shown in equation 3.2.

Φ = Φa(1)Φb(2) . . .Φz(n) (3.2)
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where the first electron is described by Φa, the second by Φb and so on. This

wavefunction (Φ) depends upon the co-ordinates of each electron and the

positions of the nuclei. In order to fulfill the Pauli principle the product

wavefunction must be expressed as a Slater determinant [4, 9, 41].

ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(1) Φ2(1) . . . Φn(1)

Φ1(2) Φ2(2) . . . Φn(2)

. . . . . . . . . . . .

Φ1(N) Φ2(N) . . . Φn(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.3)

where Φn(N) represents a spin orbital for electron n. In order to determine

the combination of spin orbitals which produces the best wavefunction one

uses the variational theory to minimise the Rayleigh ratio of the determinant.

EHF =
⟨Φ(R)|Ĥ|Φ(R)⟩
⟨Φ(R) | Φ(R)⟩

(3.4)

where EHF is the energy of the ground state in nuclear configuration R.

Performing this minimisation an expression for the optimal (HF) orbitals is

obtained. This is written as:

FiΦa(1) = ϵaΦa(1) (3.5)

Fi = hi +
∑
a

(Ja − ka) (3.6)

where F is the Fock operator, h is the core Hamiltonian, J is the coloumb

operator and K is the exchange operator. For any electron Φa interacting

with electron Φb these operators are defined as:

Ja | Φb(2)⟩ = ⟨Φa(1)|
1

|ra − rb|
| Φb(1)|Φb(2)⟩ (3.7)
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Ka | Φb(2)⟩ = ⟨Φa(1)|
1

|ra − rb|
|Φb(1)⟩Φa(2)⟩ (3.8)

In order to solve equation 3.5, which would be computationally complex for

molecular systems. Roothan and Hall [43] suggested expanding the spin or-

bitals in a known basis set with the form:

Φa =
∑
α

cαχα (3.9)

where cα are the coefficients which are calculated using the self consistent

field (SCF) method and χα are the basis functions. The linear combination

of these basis functions describe the wavefunction under consideration, which

is represented as a vector containing the coefficients of the basis functions.

These functions are typically used in sets designed to be able to represent the

molcular orbitals. The SCF method changes the nature of the problem to

the calculation of coefficients. Using equation 3.5 and 3.9 we can now write:

Fi

m∑
j=1

cjαχα(1) = ϵa

m∑
j=1

cjαχα(1) (3.10)

By multiplying by χj(1) and integrating over the spin space we can write:

FC = SCϵ (3.11)

where F is the Fock matrix ⟨χa|Fi|χb⟩, S is the overlap matrix ⟨χa | χb⟩

and C is a matrix containing the spin orbital coeffiecients. This cannot be

solved directly because the matrix elements of the Fock matrix involve in-

tegrals over the Coulomb and exchange operators which are dependent on

the spatial wavefunctions. It can be solved by taking an initial guess of the

coefficients (equation 3.9). These are then evaluated using equation 3.12.
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det|F− ϵaS| = 0 (3.12)

By solving equation 3.12 we receive new values for the coefficients. This

continues in an iterative manner until a predefined convergence criterion is

reached.

3.2 Basis Sets

The results can be improved, energetically, by increasing the size of the basis

set. A basis set is a set of functions used to describe the molecular orbitals,

although with a very small system (atoms and diatomics) the Hartree-Fock

equations may be solved by mapping the orbitals on a grid (termed numerical

Hartree-Fock) [9]. In practice all calculations use a basis set expansion to

describe the molecular orbitals as a set of known functions. Although in prin-

ciple any type of function may be used (exponential, Gaussian, polynomial

etc.) typically exponential and gaussian are used. Each molecular orbital is

expanded in terms of the basis functions (also referred to as atomic orbitals,

the method itself called a linear combination of atomic orbitals) as shown in

fig 3.13.

ϕi =
M∑
α

cα,iχα (3.13)

where phii is the molecular orbital i, cα,i is the coefficient for the basis

function (atomic orbital) α and molecular orbital i, and χα is the basis func-

tion (atomic orbital) α. The first type of basis function used extensively were

Slater Type Orbitals (STOs) [44] which are functions that decay exponen-

tially with distance from the nuclei. Although these functions are well suited
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to describe molecular orbitals the calculation of multi-centred two-electron

integrals is computationaly expensive.

It was later discovered that STOs could be approximated as linear combina-

tions of Gaussian functions [45] , which overcomes the expense of the STO as

it is much easier to calculate the two-electron integrals with Gaussian func-

tions. It is significantly easier to calculate to electron integrals with Gaussian

Type Orbitals (GTO) as the product of two Gaussian functions, with differ-

ent positions and exponents, can be written as a single Gaussian function

located between the two original functions.

Minimal basis sets are able to represent all the electrons on each atom, the

most common of which is the STO-nG series where STO indicates Slater

Type Orbitals and n represents the number of primitive Gaussian functions

comprising a single basis function. The majority of research is performed

with larger basis sets, for example split-valence basis sets.

As it is the valence electrons that primarily take part in molecular bonding it

is common to represent valence electrons with a linear combination of more

than one basis function (GTOs, which are a linear combination of primitive

Gaussian functions.) These different orbitals have different spatial magni-

tudes and the combination allows the wavefunction to extend and adapt to

the molecular environment. As minimal basis sets are fixed they are unable

to adjust to different molcular environments resulting in inaccuracies. Basis

sets where multiple basis functions are used to describe each valence atomic

orbital are referred to as double-zeta, triple-zeta, quadruple-zeta etc.

In this paper basis sets created by the group of John Pople [9, 45] are used,

typically referred to as Pople basis sets. These are descibed in A-BCDEg

notation, where A represents the number of primitive Gaussians comprising

each core atomic orbital basis function. B, C, D, and E show that the valence
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orbitals are composed of four basis functions each, the first consisting of B

primitive gaussian functions, the second D primitive gaussian functions and

so on. In this case this is a quadruple-zeta split-valence basis set, in the case

of a double-zeta split-valence basis set the D and E would be omitted.

Another common addition to basis sets, minimal and split-valence alike, is

the use of polarization functions to describe the polarization of the orbitals.

In the case of a s type orbital a p type orbital would be added to describe

the polarization, for a p type orbital a d type orbital would be added and

so on. In the case of Pople basis sets an asterisk * is used to denoted the

addition of polarization functions, a double asterisk ** indicates that polar-

ization functions are also added to the light atoms (hydrogens).

In order to obtain a more accurate result, particularly in terms of its energet-

ics, the electronic correlation must be calculated more accurately than in the

HF method detailed above. The following sections detail some approaches

towards the inclusion of electronic correlation.

3.3 Configuration Interaction

The simplest to understand method for including the the electronic corre-

lation is the Configuration Interaction (CI) Method. This method uses a

linear combination of slater determinants (configurations) to describe the

wavefunction and mixing (interaction) of different electronic states, giving

rise to the name Configuration Interaction. As CI goes beyond HF it is often

described, like the electronic structure methods that follow, as a post Hartree

Fock method [9].

In order to include the electron correlation the CI method uses a variational

wavefunction defined as a linear combination of Configuration State Func-
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tions (CSFs). A CSF is a symmetry adapted linear combination of slater

determinants and is defined in equation 3.14 , with the CI wavefunction de-

fined in equation 3.14

ψ =
∑
i

ciΦi (3.14)

where psi is configuration state function, c are coefficients and Φ is a

slater determinant.

Ψ =
∑
k

ckψk (3.15)

where c are coefficients and ψ are configuration state function as described

in 3.14. The CSFs are built from spin orbitals, so the wavefunction can also

be expressed as in terms of spin orbitals as shown in equation 3.16.

Ψ =
∑
k=0

ckϕk (3.16)

where Φ is the wavefunction, c is a coefficient and ϕ is configuration state

function. When the expansion in equation 3.16 includes all CSFs of the ap-

propriate symmetry this is termed a full configuration interaction procedure.

A full CI solves the Schrödinger equation exactly (within the limits of the

basis set).

This is a constrained optimization, where the energy is minimised under the

constraint that the total CI wavefunction is normalised. By introducing a

lagrange multiplier [9] we can rewrite equation 3.15 as equation 3.17.

L = ⟨ΨCI |Ĥ|ΨCI⟩ − λ[⟨ΨCI |ΨCI⟩ − 1] (3.17)

where L is the Lagrange function, ΨCI is the CI wavefunction, Ĥ and λ is
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the Lagrange multiplier. Theses two terms (left hand and right hand terms

in equation 3.17 can be written in terms of determinants (see equation 3.14)

as follows.

⟨ΨCI |Ĥ|ΨCI⟩ =
∑
i=0

∑
j=0

aiaj⟨Φi|Ĥ|Φj⟩ =
∑
i=0

a2iEi +
∑
i=0

∑
j=0

aiaj⟨Φi|Ĥ|Φj⟩

(3.18)

λ[⟨ΨCI |ΨCI⟩ − 1] =
∑
i=0

∑
j=0

aiaj⟨Φi|Φj⟩ =
∑
i=0

a2i ⟨Φi|Φj⟩ =
∑
i=0

a2i (3.19)

The diagonal elements of the Hamiltonian operator in equation 3.18 are the

energies of the corresponding determinants. As the determinants are built

from orthogonal molecular orbitals the overlap elements between different

determinants are zero. The variational procedure can then be used to set all

the derivatives of the lagrange function 3.17 ,with respect to the ai expansion

coefficients, equal to zero, as shown in equations 3.20,3.21 and 3.22.

δL

δai
=

∑
j

ai⟨Φj|ĤΦi⟩ − 2λai = 0 (3.20)

ai(⟨Φi|Ĥ|Φj⟩ − λ) +
∑
j ̸=i

aj⟨Φi|Ĥ|Φj⟩ = 0 (3.21)

ai(Ei − λ) +
∑
j ̸=i

aj⟨Φi|Ĥ|Φj⟩ = 0 (3.22)

As there is one equation, as expressed in equation 3.22, for each i the varia-

tional problem becomes one of solving a set of CI secular equations. Where

Hij = ⟨Φi|Ĥ|Φj⟩ one can express this problem in matrix form, as shown in
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equation 3.23.

H(t) =



H00 − E H01 ... H0j ...

H10 H11 − E ... H1j ...

... ... ... ... ...

Hj0 ... ... Hjj − E ...

... ... ... ... ...





a0

a1

...

aj

...


=



0

0

...

0

...


(3.23)

Solving the secular equation is equivalent to diagonalising the CI matrix.

The CI energy as the lowest eigenvalue of the CI matrix and the correspond-

ing eigenvector contains the ai coefficients in front determinants in equation

3.14. The computational effort required when using the CI method is pro-

portional to the size of the CI matrix. Even for small systems, e.g. H2O with

a 6-31G∗ basis set, the CI matrix is vast. With 10 electroncs and 38 spin

orbitals (H2O example) there are k10,n ways of distributing the electrons in

the 28 empty orbitals. Thus the number of excited states for a given exci-

tation level is k10,n · k28,n. The total number of excited determinants will be

a sum over 10 such terms (analogous to each electron being excited to each

possible excited state), which is equivalent to k38,10 the total number of ways

10 electrons can be distributed in 38 orbitals. This is expressed in equation

3.24 and in a more general form in equation 3.25.

NumberofSDs =
10∑
n=0

k10,n · k28,n =
38!

10!(38− 10)!
(3.24)

NumberofCSFs =
M !(M + 1)!

(N
2
)! (N

2
+ 1)!(M − N

2
)!(M − N

2
+ 1)!

(3.25)

So for the H2O example, with the basis set 6-31G∗ basis set there are 20x106

CSFs. This factorial groth of the number of CSFs makes the CI method
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unfeasibile for any sizeable molecule. The following sections go on to de-

tail alternative methods to include electronic correlation, but without the

expenses of a CI calculation./

3.4 Complete Active Space Self Consistant

Field (CASSCF)

By using a mean field approach the HF method fails to take into account in-

stantaneous electron-electron interactions and therefore is unable to describe

the numerous quantum effects that rely on an accurate description of the

electronic distribution, As discussed in the previous section the HF method

yields a set of spin orbitals forming a Slater determinant in which the lowest

n orbital are occupied by 2n electrons. We can describe the system with

many more determinants by occupying the virtual orbitals.

By considering multiple electronic configurations, using the virtual orbitals

as well as the ground state configuration, we are able to improve our descrip-

tion of the electronic correlation. The multi configurational self consistent

field method (MCSCF) optimises both the co-efficients in front of the deter-

minants and the spin orbitals used for constructing the determinants. This

is analogous to performing a configuration interaction calculation but only

over a limited number of configurations.

The major problem with the MCSCF method is selecting the necessary con-

figurations for an accuate description of the property(ies) of interest. In this

thesis this problem is alleviated by using the complete active space self consis-

tent field (CASSCF) method [9]. In the CASSCF method the configurations

are selected by partitioning the molecular orbitals into active, core and vir-

tual orbitals. Active orbitals are typically some of the highest occupied and
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lowest unoccupied molecular orbitals from a previous HF calculation. Core

orbitals remain doubly occupied and virtual orbitals remain unoccupied in

all determinants.

The active molecular orbitals are selected by hand, by considering all the

orbitals likely to change significantly while exploring the problem at hand.

In the case of the research presented in this thesis, where many points are

required on the excited state potential energy surface, the orbitals occupied

in the excited states of interest and where the distortion from the ground

state equilibrium geometry changes the orbital dramatically.

3.5 Complete Active Space with 2nd Order

Perturbation (CASPT2)

The multi reference nature of CASSCF allows it to take into account static

correlation, however to improve the description of the system further dy-

namic correlation is required. One method for including this is the use a

perturbative method such as complete active space with the 2nd order per-

turbation (CASPT2) [46]. The basis of the CASPT2 method is the division

of the hamiltonian into a zero order part (Ĥ0) and a perturbation (V̂ ).

Ĥ = Ĥ0 + λ(̂V ) (3.26)

where λ is the perturbation factor. In CASPT2 the zero order Hamiltonian

Ĥ0 is the CASSCF hamiltonian. Substituting this into the time independent

Schrödinger equation (TISE) we obtain:

Ĥ | ΦI⟩ = (Ĥ0 + λV̂ ) | Φi⟩ = ϵi | Φi⟩ (3.27)
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where ΦI is the CASPT2 wavefunction and Φi is the CASSCF wavefunction.

We know the eigenfunction and the eigenvalue of H0 is:

Ĥ0 | Φ(0)
i ⟩ = W a

i | Φ(a)
i ⟩ (3.28)

In order to converge on the full Hamiltonian, Ĥ, we must systematically im-

prove the eigenvalues of Ĥ0. In order to achieve this we expand the exact

eigenfunctions and eigenvalues in a Taylor series in λ which gives us the fol-

lowing:

ϵi =W (0)
n + λ2W (1) + . . . (3.29)

|Φi⟩ = |Ψ(0)
i ⟩+ λ|Ψ(1)

i ⟩+ λ(2)|Ψ(2)
i ⟩+ . . . (3.30)

where ϵi is the orbital energy for orbital i, W n
i is the nth order correction

to the energy, Ψn
i is the nth order correction to the wavefunction. With the

expansions in equation 3.29 and 3.30 the TISE 3.27 becomes:

(H0+λV )(|Ψ(0)
i ⟩+λ|Ψ(1)⟩+ . . .) = (W 0

i +λW
(1)
i + . . .)(|Ψ(0)

i ⟩+λ|Ψ(1)
i ⟩+ . . .

(3.31)

As this holds for any value of λ we can collect terms with the same power of

λ to give:

λ0 : H0|Ψ(0)
i ⟩ = W

(0)
i |Ψ(0)

i ⟩ (3.32)

λ1 : H0|Ψ(1)
i ⟩+ V |Ψ(0)

i ⟩ =W
(0)
i |Ψ(1)

i ⟩+W
(0)
i |Ψ(0)

i ⟩ (3.33)

λ2 : H0|Ψ(2)
i ⟩+ V |Ψ(1)

i ⟩ = W
(0)
i |Ψ(2)

i ⟩+W
(1)
i |Ψ(1)

i ⟩+W
(2)
i |Ψ(0)

i ⟩ (3.34)

λn : H0|Ψ(n)
i ⟩+ V |Ψ(n−1)

i ⟩ =
n∑

j=0

W
(j)
i |Ψ(n−j)

j ⟩ (3.35)
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The zero order equation is just the Schrödinger equation for the unperturbed

problem. The first order equation contains just two unknowns, the first order

correction to the energy, W , and the first order correction to the wavefunc-

tion. The nth order energy correction, W n, can be calculated by multiplying

from the left by Φ0 and integrating using the turnover rule equation 3.36 to

give us equation 3.37.

⟨Φ0|H0|Φi⟩ = ⟨Φi|H0|Φ0⟩ (3.36)

Wn = ⟨Φ0|V |Φ(n−1)⟩ (3.37)

We are still dealing with undetermined quantities, energy and wavefunction

corrections at each order. However using the complete set of functions gener-

ated by the unperturbed Schrödinger equation we can expand the first order

correction in these functions. For the λ1 equation 3.33 becomes:

|Ψ(1)
i ⟩ =

∑
n

cin|n⟩ (3.38)

We can then multiply 3.33 by ⟨n| and using the knowledge that the zero

order wave functions are orthogonal we can derive:

(W
(0)
i −W (0)

n )⟨n|Ψ(1)
i ⟩ = ⟨n|V |Ψ0

i ⟩ (3.39)

and using |Ψ(i)
i =

∑
n|n⟩⟨n | Ψ(1)

i ⟩ with equation 3.37 where n = 1 we derive

W 2
i =

∑
n

⟨Ψ0
i |V |n⟩⟨n | Ψ(1)

i ⟩ (3.40)

and by finally using equation 3.39 we arrive at a term for the 2nd order en-

ergy correction:
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W
(2)
i =

∑
n|⟨Ψ0

i |V |n⟩|2

W
(0)
i −W

(0)
n

(3.41)

The formulae for higher corrections become increasingly complex. Correc-

tions can be expressed in terms of matrix elements of the pertubation op-

erator over the energies. The CASPT2 method only uses a second order

perturbation. This allows us to calculate energies in a molecular system very

accurately, particularly where the CASSCF worked well.

CASPT2 is not without its difficulties however, problems can arise when two

electronic states have very similar energies or when intruder states occur.

Intruder states arise when the energy of a pertubation is of a similar mag-

nitude to the energy associated with the zero order wavefunction. To solve

these problems Roos et al. [47] devised a method of shifting the energy levels

and recalculated without this interference. In an energy shift calculation the

Hamiltonian takes the form:

Ĥ0 = Ĥ0 + ζPe (3.42)

where ζ is a small positive shift value and Pe is a projection operator on the

interacting space. This succesfully removes the intruder states and allows

calculation of almost degenerate levels without shifting the relative energy

of the states.
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3.6 Multi-Configurational Time Dependent

Hartree (MCTDH)

Molecular dynamics methods were first developed for the study of hard

spheres [48, 49] in the late 1950s. This and other early work [50] used clas-

sical particles swarming over a potential energy surface. These studies were

able to reproduce much useful information, but they were not without in-

accuracies. In order to account for the inaccuracies semi-classical methods

were developed. One study of note was the use of Gaussian wavepackets by

Heller [51] which is commonly used in modern methods.

The first full quantum dynamics simulation was reported by McCullough

and Wyatt [52] in 1969 on the H+H2 exchange reaction. Since then there

have been numerous important developments for example the introduction

of grid based methods such as the Fast Fourier Transform (FFT) method by

Koslov [53] and the Discrete Variational Representation (DVR) [54].

The normal approach for solving the TDSE using a propagating wavepacket

is to express the wavefunction in a time independent basis with time depen-

dent co-efficients:

Ψ(Q1, . . . , Qf , t) =

N1∑
j1=1

. . .

N1∑
j1=1

(cj1 , . . . , cjf (t)

f∏
k=1

χ
(k)
jk
(Qk) (3.43)

where f specifies the number of degrees of freedom, Q1, . . . , Qf are normal

mode nuclear coordinates, cj1 , . . . , cjf are the time dependent coefficients and

χ
(k)
jk

are the time independent basis functions and Nf is the number of basis

functions used for the f th degree of freedom (DOF). The disadvantage of

this approach is that the computational effort grows exponentially with the

number of DOF. The number of coefficients for a calculation with N basis

functions and f degrees of freedom is N f .

Computation and Methodology 44



Multi-Configurational Time Dependent
Hartree (MCTDH) 3.6

For large systems this is not practical and approximate methods for solving

the time dependent Schrödinger equation must be implemented. An example

of this is the time dependent hartree (TDH) approach. In this approximation

the basis functions are time dependent, unlike those in the standard method,

giving us the following expression for the wavefunction.

Ψ(Q1, . . . , Qf , t) = a(t)φ1(Q1, t) . . . φf (Qf , t) (3.44)

where a(t) is a time dependent complex number and φ are one dimensional

functions. The product φ1φ2 . . . is called a Hartree product. The time in-

dependent basis functions optimally describe the evolving wavepacket but,

as in HF theory, each DOF is only affected by the other evolving DOF in

an averaged fashion. The lack of correlation in the TDH approach leads to

poor performance, particularly where the PES changes significantly over the

width of the wavepacket. In the way MCSCF uses multiple configurations

to add correlation to HF calculations the same technique can be used to add

correlation to TDH calculations.

3.6.1 General Formulation

The multi configurational time dependent hartree (MCTDH) method uses

this concept, giving us an expression for the wavefunction as a linear combi-

nation of Hartree products:

Ψ(Q1, . . . , Qf , t) =

n1∑
j1=1

. . .

nf∑
jf=1

Aj1 , . . . ,jf (t)
∏

φ
(k)
jk
(Qk, t) (3.45)

Ψ(Q1, . . . , Qf , t) =
∑
j

AjΦj (3.46)
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where Aj1 , . . . ,jf denotes the MCTDH expansion coefficients and φ
(k)
jk

are the

expansion functions for each k DOF, referred to as single particle functions

(SPF). The number of configurations represented in the wavefunction is nf
k

by setting the number of configurations to 1 equation 3.45 becomes the TDH

wavefunction equation 3.46 defines the composite index and Φ is the Hartree

product.

Using the Dirac-Frenkel variational principle and equation 3.45 one can ob-

tain a set of coupled equations of motion. Equation 3.47 shows the equation

for the expansion coefficients and equation 3.48 shows the equations for each

set of SPFs:

iAj =
∑
i

KAi (3.47)

iφ(k) = (1− P k)(ρ(p))−1H(k)φ(k) (3.48)

Aj uses a composite index representing Aj1 , . . . , Ajf , ρ
(p) is the density ma-

trix, P (k) is a projector onto the SPF space and H(k) is the mean field oper-

ator. The matrix K is the Hamiltonian operator in the Hartree basis:

K = ⟨ΦJ |H|ΦI⟩ (3.49)

The projection operator (1− P k) where:

P k = |φ(k)
j ⟩⟨φ(k)

j | (3.50)

ensures that the time derivative of the SPF retains orthogonality. When the

basis is complete, where 1 − P = 0, the SPF become time independent and

the equations of motion are indentical to the standard method. H(k), the

mean field operator, and ρ(k), the density matrix are expressed:

Computation and Methodology 46



Multi-Configurational Time Dependent
Hartree (MCTDH) 3.6

⟨H⟩(k)ab = ⟨Ψ(k)
a |H|Ψ(k)

b ⟩ (3.51)

ρ
(k)
ab = ⟨Ψ(k)

a | Ψ(k)
b ⟩ (3.52)

where the single hole functions Ψ
(k)
a ignore the SPF of the kth mode, φ

(k)
a

and the integration is over all the DOF except k. The mean field operators

represent the correclation between two different sets of SPFs (J and L).

3.6.2 Memory requirements

As mentioned previously the standard method expressed in 3.43 has a large

scaling problem (N f coefficients where f is the number of DOF and N the

number of basis function). This leads to large memory requirements with

even relatively small systems. The memory requirements for the MCTDH

method however can be expressed as:

memory np + pnNd (3.53)

where n is the number of SPF, p the number of particles, N is the number of

time independent basis functions required to describe the single particle func-

tion. The first term in the expression is the number of A coefficients and the

second is the representation of the SPF using a set of DVR functions written:

φ
(k)
j (Qk) =

Nk∑
k=1

a
(k)
kj
χ
(k)
k (Qk) (3.54)

Although there is still exponential scaling n < N and p < d resulting in a

significantly reduced scaling problem.
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3.6.3 DVR Functions

The DVR is a widely used grid based representation for wavefunctions and

operators. This provides an alternative to the problem of solving complex

integrals [54–56] which in a numerical calulation is often challenging. The

time independent basis of the DVR functions exist in various forms such

as harmonic, Legendre and exponential. In order to solve the equations of

motion (3.47 and 3.48) we must evaluate the elements of the Hamiltonian

matrix k:

⟨φ(1,2,...)
j1

. . . φ
(1,2,...)
j1

|H|φ(1,2,...)
j1

. . . φ
(1,2,...)
j1

⟩ = ⟨φ(1,2,...)
j1

. . . φ
(1,2,...)
j1

|T+V |φ(1,2,...)
j1

. . . φ
(1,2,...)
j1

⟩

(3.55)

A set of DVR functions (χ(v)(qv)) along coordinate qv has a diagonal position

representation, therefore:

⟨χ(v)
i |qv|χ(v)

j ⟩ = q(v)v δij (3.56)

The eigenvalue of this matrix provide the grid points related to the DVR

functions. If there are sufficient grid points to describe the wavepacket the

potential energy operator can be considered diagonal in this basis. The ki-

netic operator usually acts on one coordinate and therefore matrix elements

are evaluated in the finite bases representation (FBR). This can be trans-

formed using the FBR-DVR transformation, details of which can be found

in reference [8]
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3.6.4 Autocorrelation Functions and Calculation of Spec-

tra

Spectra are calculated using an autocorrelation function calculated by a

quantum dynamics simulation. A time dependent autocorrelation function,

C(t) indicates how a wavepacket overlaps its initial value.

C(t) = ⟨Ψ(0) | Ψ(t)⟩ (3.57)

The absorption spectrum, I(ω) for a given molecule us generated by a Fourier

transform of C(t) to the frequency domain.

I(ω)

∫ ∞

−∞
C(t)e−iωtdt (3.58)

The auto correlation function is usually modified before performing FT in

order to avoid problems during the FT and to add lorentzian broadening.

Firstly the autocorrelation function is multiplied by cos2(nπt
2T

) where n =

1,2,3... and T denotes the final time (plus one time step), in order to re-

duce artifacts created by overshooting of the fourier sum at a discontinuity

jump. Secondly in order to add Lorentzian broadening to model spectro-

scopic resolution, or any other type of damping the autocorrelation function

is multiplied by exp(−|t|
τ i

) where τ is the damping time [8].

3.6.5 Geometry Optimization

Geometry optimization, or energy minimization (with respect to optimiz-

ing the geometry to find the lowest energy), methods are used to compute

the equilibrium geometry of molecules. In the course of this thesis geome-

try optimizations are performed at numerous points before performing other

calculations discussed above using the calculated geometry. The equilibrium
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geometry corresponds to the global minimum on the potential energy surface

of the molecule in question, other geometries can also be calculated corre-

sponding to reactive intermediates and transition states (local minima and

maxima respectively).

The optimization techniques discussed in section 2.7 are frequently used to

optimise geometries. First order approaches, those that only require cal-

culation of the first order analytic derivatives, such as the Newton-Raphson

method are common as are those in extended versions (termed Quasi-Newton

methods, such as Conjugate-Gradient) which can be considered an interme-

diary method between first and second order approaches. Second order ap-

proaches, requiring second order derivatives, are able to reach convergence

using less iterations than first order methods [57] but due to the fourth/fifth

order scaling of the computational expense with system size second order

methods quickly become impractical.

In this thesis the geometry optimization method used is the Berny algo-

rithm [58, 59] in redundant internal co-ordinates [60, 61] as implemented in

the GAUSSIAN 03 [62] program. This uses Newton-Raphson optimization

steps but in order to avoid the convergence difficulties the Berny algorithm

uses the rational functional model [63] and the trust radius model [57] in or-

der to control Newton-Raphson step sizes. The number of iterations required

to reach convergence is also reduced compared to true first order methods

using a least-squares minimisation scheme, namely direct inversion in the

iterative subspace [64]
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Genetic Algorithm

4.1 Introduction

The development of a genetic algorithm to fit model potential energy surfaces

to ab-initio calculated surfaces was prompted by difficulties in the fitting of

the toluene model surfaces. In order for the model surface fitting to reach a

satisfactory conclusion certain co-efficients of the model required initial values

determined by hand. This time consuming approach was not desireable and

an automatic approach was required.

The coefficients of the model surface can be determined by evaulating the

derivatives of the surfaces at Q0. A more appropriate method is to calculate

the parameters that best fit the model surfaces to the ab-initio calculated

surfaces. Previously this has been performed by calculating points along the

various normal modes and optimizing the parameters [42, 65] by optimizing

the least-squares fit function

F = Σωi(V
calc
i − V mod

i )2 (4.1)
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Where V calc
i are the ab-initio calulated potential energies and V mod

i are the

model potential energies at point i and ωi is a weighting function which can

be used to preferentialy fit the reference points of lower energy.

Numerous algorithms have been used for optimizations such as this, for ex-

ample Newton’s method (or the Newton-Raphson method) [28] and the Con-

jugate Gradient [66] method. Newton’s method is a well known algorithm for

finding the roots of equations, it can also be used to find local maxima and

minima of functions, as these are the roots of the derivative function. Pro-

vided that the function in question is twice differentiable and the initial guess

x0 is close enough the stationary point x then the iterative sequence(xn) is

defined as:

xn+1 = xn −
f ′(xn)

f ′′(xn)
, n ≥ 0 (4.2)

Although powerful Newton’s method has numerous short comings. The re-

quirement for the direct calculation of the derivative which is often time

consuming and in our case the difficulties reaching convergence make it quite

impractical. A more practical alternative is the conjugate gradient method,

which has been used for much of my own work. If we define the optimiza-

tion problem as Ax = b where x is our soloution and A is a symmetric,

positive-definite and real n ∗ n matrix the we define the iterative sequence

as:

xn+1 = xn + αn+1pn+1 (4.3)
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pn+1 = rn −
∑
i≤n

pTi Arn
pTi Api

pi (4.4)

αn + 1 =
pTn+1rk

pTn+1Apk+1

(4.5)

Where pn are our conjugate vectors and rn is the residual at the nth step.

This method has numerous benefits in terms of ease of convergence and in

the size and complexity of the systems it is able to handle. However both

of these methods are still limited to finding the local minima closest to their

initial value and are hence termed local optimizers. In order to determine

the optimal fit, the global minimum, a global optimizer is required. Only

a full space search, where one generates every possible set of parameters

and evaluates their fitness, is able to determine the global minmum with

certainty. This is a computationally expensive route, as evaluating the fit-

ness requires calculating the deviation from the ab-initio reference points.

Solving the model for each reference point is time consuming, and in a full

space search it would need to be calculated for every possible value of each

parameter. For a simple model of 10 parameters, for example, taking each

parameter as a double precision real number (2048 possible values of the ex-

ponent and 4,294,927,296 possible values of the fraction) and limiting each

value to a sensible range (-4 to 4 eV) would give us 3.006 ∗ 1010 possible

values for each parameter. This is prohibitively expensive and has promoted

the creation of numerous techniques which explore the full search space and

locate probable global minima. For geometry optimization problems global

optimization algorithms are used routinely for clusters [67, 68], Nano parti-

cles [69], crystal structures [70] and biomolecules [71]. The majority of global

optimization methods used for geometry optimization incorporate random el-

ements and are termed stochastic optimizers. These algorithms deliberately

introduce randomness into the search process in order to reduce the sensitiv-
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ity of small modelling errors (which can cause local optimization algorithms

to converge to a local minima) and to provide a means of moving away from

a local minimum. Examples of global optimizers include Monte-Carlo op-

timization [32, 72], basin hopping [73, 74], simulated annealing [74, 75] and

stochastic tunneling [76]. Monte-Carlo methods are quite varied, being the

oldest global optimization technique, but follow a simple pattern where so-

lutions are randomly generated and their fitness tested. Variations include

Monte-Carlo with local optimization where local optimization is performed

on each solution allowing it to reach the bottom of the local minima, greatly

enhancing the area searched.

Basin hopping is another variation on the Monte-Carlo method where the

search space is transformed into a collection of basins (analogous with local

minima) by lowering the barriers between local minima and explores them

by hopping between them. The ‘hopping’ is determined by random Monte-

Carlo moves and then evaluated. Simulated annealing is a method analogous

to annealing in metallurgy, where heating and controlled cooling of a mate-

rial is used to increase the size of its crystals and reduce their defects. Each

iteration of the simulated annealing method replaces the current solution by

a random nearby solution, chosen with a probability that depends on its dif-

ference from a global parameter T (temperature), that is slowly decreased

during the process.

Simulated annealing is especially effective when only an acceptable solution

is required, rather than the global minima. As the temperature lowers the

solution becomes trapped in a minima, this can be overcome using stochas-

tic tunneling, which acts in much the same way as basin hopping effects

Monte-Carlo optimization. By lowering the barriers between local minima

the method effectively allows tunneling, promoting movement to another
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minimum.

Other methods use a combination of procedures, such as random generation,

movement and mutation of a solution to explore the surface, making deci-

sions based on the fitness of a given solution to ’intelligently’ explore a given

search space and are termed meta-heuristics. Due to the random elements

used in meta-hueristic algorithms many algorithms are often classified as ei-

ther category.

A common meta-heuistic is Ant-colony optimization [77]. This mimics the

action of ants looking for food, when an ant finds food it leaves a pheromone

trail back to its nest. Other ants are more likely to follow the path, rein-

forcing it with more pheromone, than continuing to travel at random. Over

time the pheromone trail evaporates, reducing its strength. The longer it

takes an ant to travel the path the weaker it becomes. This means a short

path will become more attractive, faster, than a longer one leading to an

optimal soloution. Several other algorithms have been developed based on

swarm intelligence such as Particle Swarm Optimization [78] and Bees opti-

mization [79] (also known as Bee colony optimization).

4.2 The VCHAM Genetic Algorithm

The global optimization method selected for our purposes is the genetic al-

gorithm. This a common meta-huerisitic which tries to mimic evolution and

natural selection in order to reach the optimal solution. It is an iterative

method where subsequent ’generations’ of potential solutions are subjected

to mutation operators, crossover operators and fitness based selection. In our

case the fitness of a given solution is the root mean square of the standrad

deviation (RMSD) between the model surface and the ab-initio reference

points.
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4.2.1 Intitial Population

The initial population, or initial parameter sets, is usually generated at ran-

dom. The option exists, as used in other genetic algorithms, to seed the

initial population with any number of user generated parameter sets. Early

testing showed that placing user generated parameter sets in the initial pop-

ulation often led to early convergence on seeded paramter sets without any

real exploration of the search space, although several other techniques are

available, and discussed below, to avoid this early convergence making this a

viable approach. Seeding the intitial population also has its uses as a means

to further analyse previous results or as a way of continuing a previous opti-

mization.

The initial parameters are scaled by the frequency of the relevent mode as

shown in equations 4.6-4.10. By scaling to the frequency of the mode we can

dramatically reduce the search space, which in turn reduces the time needed

for the algorithm to converge.

κi,s = rωi (4.6)

λi,s,s1 = rωi (4.7)

γi,j,s,s1 = r
√
ωiωj (4.8)

µi,j,s,s1 = r
√
ωiωj (4.9)

ιi,i,j,s,s1 = r 3
√
ωiωiωj (4.10)

Genetic Algorithm 56



The VCHAM Genetic Algorithm 4.2

4.2.2 Mutation Operator

The mutation operator is used to maintain diversity in the population and

provide another means to leave a local minimum. This is often achieved

by changing arbitrary values to a new value, this is decribed in equations

4.11,4.15 where greek characters denote coupling parameters, the superscript

mut denotes the mutated value and ini denotes the initial value, r is a random

number generated between -0.5 and 0.5, s is a scaling factor described below

and ωi is the frequency of mode i.

κmut
i,s = κini + (rsωi) (4.11)

λmut
i,s,s1 = λini + (rsωi) (4.12)

γmut
i,j,s,s1 = γini + (rs

√
ωiωj) (4.13)

µmut
i,j,s,s1 = µini + (rs

√
ωiωj) (4.14)

ιmut
i,i,j,s,s1 = ιini + (rs 3

√
ωiωiωj) (4.15)

The optional scaling factor, s, can be used to lower the magnitude of the

mutation as the optimisation progresses. This factor was added after prelim-

inary tests showed that large mutations late in the opimization caused such

a significant increase in the deviation from the ab-initio reference points that

all mutated parameter sets were dropped from the population within a few

generations making the mutation operator ineffective as a source of new pa-

rameter values and as a means of maintaining diversity.

The danger with this scaling is that in the latter stages of the genetic opti-

mization the mutations are so small that the new parameter sets generated
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were within the same local minima as the initial parameter set. As another

means of reducing this risk, while still limiting mutations, was to reduce the

ratio of mutated parameters to those left at their initial value rather the

magnitude of the parameter change. This is implemented as a probabilty,

resulting in a greater variation of mutated parameter sets than a fixed ratio.

4.2.3 Crossover Operator

The crossover operator is used to vary the parameter sets from one gener-

ation to the next by generating new sets of parameters from a mixture of

multiple ‘parent’ parameter sets. It is analogous to biological reproduction.

This is eachieved by randomly pairing the population and producing two

‘child’ parameter sets from a mixture of the two parents’ parameters. The

first child is generated by taking each parameter from one of its parents at

random, the second child is generated from the parameters not used by the

first child. This crossover method is called ‘uniform crossover’. In many

genetic algorithm implementations this step is fitness based, so that only the

best parameter sets go on to populate the next generation. In the VCHAM

genetic algorithm it is only the selection operator that makes decisions based

on fitness in order to minimise the number of times the deviation from the

ab-initio reference points, as this is the most time consuming part of the al-

gorithm (computational details are given in a the section below). This type

of algorithm is termed ‘elite selection’ as it allows parent parameters sets to

compete the child parameter sets.
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4.2.4 Selection

The selection operator removes parameter sets based on their fitness, in this

case a lower RMSD from the ab-initio reference points. This aims to preserve

some of the weaker parameter sets in order to maintain genetic diversity. In

the VCHAM genetic algorithm this is implemented using tournament se-

lection. Tournament selection is where two parameter sets are selected at

random and the set with the lower deviation from the ab-initio sets is put

into the next generation. By only considering two at a time we preserve some

weaker parameter sets.

4.2.5 Termination

The final operator, termination, halts the algorithm when any number of user

specified end-conditions have been met. Typically this is a specified limit in

order to avoid unneccessary computational expense, such as a maximum

number of generations or a time limit. The algorithm will also terminate

when the change in deviation from the ab-initio reference points from one

interation to next reaches a suitable cutoff, typically 1 ∗ 10−9 eV.

4.2.6 Local Populations

Initial testing showed that as the algorithm proceeds a tendency for sizeable

proportions of the population has very similar values, decreasing the effi-

ciency of the algorithm. To counter this tendency a new operator was added

which compared each parameter set against the rest of the population and

identify those with similar values. Once identified these ‘local’ populations

are reduced in size to a fixed percentage of the population, typically five

Genetic Algorithm 59



Cyclobutadiene: A Test Case 4.3

percent.

Those that are removed are replaced with a new parameter sets generated

at random using the same method as the initial population operator. This

has the effect of greatly increasing the genetic diversity and the effeciency of

the algorithm when these local populations arise. As the algorithm is quite

expensive computationaly and ineffective before local populations arise this

operator is only used after fifty generations as local populations tend not to

arise early on.

4.3 Cyclobutadiene: A Test Case

4.3.1 Introduction

In order to test the genetic algorithm we required a suitable case, specifically

one which has been studied before both experimentally and theoretically

previously. Previous work undertaken by Saddique and Worth [12] into cy-

clobutadiene used a locally optimized VCHAM and also calculated a photo-

electron spectrum that was compared with experimental work on the same

molecule. The model used had 18 degrees of freedom, 3 electronic states and

128 non-zero parameters (using a second order model). Despite cyclobutadi-

ene’s simplicity the previous calculation was not able to accurately reproduce

the photo-electron electron spectrum quantitatively.

Over the last century [80] cyclobutadiene and it’s derivatives have been stud-

ied extensively, and for much of this time several of its fundamental proper-

ties were under dispute. One might expect initially the cyclobutadiene would

have a square planar ground state geometry. However the Huckel 4n+2 rule

predicts this to be unstable, as experiment [13] and calculations [18, 81, 82]
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Fig. 4.1: Potential energy surface along a hypothetical reaction co-ordinate linking
the two rectagular forms of cyclobutadiene.

showed. This can be explained by vibronic coupling between the X̃1B1g and

the A1A1g state at D4h which induces the lowering of symmetry and results

in a rectangular structure with lower symmetry (D2h), as apposed to a square

ground state with D4h as illustrated in figure 4.1. This is also referred to as

a second-order or pseudo Jahn-Teller as the two states are not electroncally

degenerate despite the orbital degeneracy (see figure 4.2).

Cyclobutadiene has been of interest theoretically for some time [80] and

has been frequently used to help explain quite challenging experimental

work [83, 84]. Early experimental work on cyclobutadiene was often ham-

pered by the difficulty in synthesis, which often led to by products (no-

tably CO2 [85]) which interfered with analysis. This in itself led to signifi-

cant efforts studying derivatives of cyclobutadiene, hoping to block dimeri-

sation without significantly perturbing the π system. It was not until it was

possible to photochemically generate cyclobutadiene in a noble gas matrix

at cryogenic temperatures that the parent compound could be studied di-

rectly [13,14,86,87].

While virtually all theoretical calculations agreed qualitatively that cyclobu-

tadiene in its S0 state would have a rectangular equilibrium geometry the
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| 1 > | 2 > | 3 >

Fig. 4.2: The four molecular orbitals, ϕ1-ϕ4 of cyclobutadiene defining the active
space and the three configuration |1 >, |2 > and |3 > which describe the lowest
three singlet states
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relative energies of the lowest singlet state at D4h geometry were often in

disagreement. Of particular importance were Allingers PPP-CI calcula-

tions [88,89] which showed that the D2h geometries would have no transitions

above 200nm, where as the D4h would have a significant transition at approx-

imately 370nm which was later used to help analyse the experimental work.

4.3.2 Previous Application of the VCHAM

As mentioned above, the previous theoretical work undertaken by Saddique

and Worth used local optimization to fit the VCHAM to the ab-initio refer-

ence points. This fitted VCHAM was then used in a wave packet propogation

calculation in order to calculate the photo-electron spectrum, and compare

to experimental work. The experimental photo-electron spectrum, taken by

Kohn and Chen [13] and shown in figure 4.3 is the spectrum with highest

vibrational resolution to date. The previous work was able to qualitatively

reproduce the experimental spectrum (see figure 4.4) but unable to repro-

duce the vibrational progression quantitatively. In the work by Saddique and

Worth [12] a six mode second order spectrum was also calculated, which is

reproduced in figure 4.5. Although the vibrational progression is the same

in both spectra, the larger model was unable to match the experimental fea-

tures as closely.

In their own paper Kohn and Chen produced a model spectrum (Figure

4.6) alongside the experimental which was also unable to quantitatively re-

produce the vibrational progression found in their experimental mode. As

their model only included the vibrational modes which produce a rectangu-

lar distortion (b1g) rhomboidal distortion (b2g) and only using linear vibronic

coupling it is quite limited in its scope and a model that includes additional
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Ionisation Potential (eV)

Fig. 4.3: Experimental photoelectron spectrum reproduced from [13], with a re-
ported vibrational progression of 0.08 ± 0.03 eV of cylcobutadiene
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Fig. 4.4: Saddique and Worth spectrum reproduced from [12] with a vibrational
progression of 0.18eV using a two mode linear model.
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Fig. 4.5: Saddique and Worth spectrum reproduced from [12] with a vibrational
progression of 0.18eV using a six mode second order model.

degrees of freedom, particularly those that break the D4h symmetry of the

square cyclobutadiene structure, as well as higher order terms in order to

better describe the potential energy surface should be able to reproduce the

experimental spectrum to a higher degree of accuracy.

Comparing the photo-electron spectrum is a more accurate method to deter-

mine whether the fitting procedure arrives at the correct coupling parameters

in our model hamiltonian, as opposed to the best fit of the parameters to the

ab-initio reference points. With the computational expense of a full space

search, this provides us with an excellent way of determining whether our

parameters are accurate.

4.3.3 Applying the Genetic Algorithm

In order to compare the effectiveness of the genetic algorithm the poten-

tial energy surface was calculated along every vibrational mode and between

all of those where symmetry allowed coupling. To set up the model the
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Ionisation Potential (eV)

Fig. 4.6: Model photoelectron spectrum reproduced from [13], with a vibrational
progression of 0.29 eV (The scale and quality of the spectra make this difficult to
determine accurately)

geometry was optimised using CASSCF and a 6-31g∗ basis set using the

GAUSSIAN [90] quantum chemistry package, as was performed in the pre-

vious theoretical work by our group. Defining the symmetry with the C2

axis bisecting the bonds and C
′
2 bisecting the atom (Same as in the review

by Nakamure et. al. [18]) we expanded about the equilibrium geometry here

after referred to as Q0.

Using frequencies calculated at the CASSCF level (Table 4.1) geometries

were calculated along each vibration, and between vibrations where coupling

is allowed by symmetry, and their energies calculated at the CASPT2 level

using the 6-31g∗ basis set and the MOLPRO [91] quantum chemistry pack-

age. The same active space was used as in the previous work, namely the four

π moleculate orbitals ϕ1-ϕ4 shown in 4.2. CASPT2 is a signicant improve-

ment over the previous work where the CASSCF method was used, but as

it was cited that inaccuracies in the potential energy surface were the reason

for the difficulty in quantitatively reproducing the photo-electron spectrum

it seemed prudent to use a method that accounted for electron correlation.

Genetic Algorithm 66



Cyclobutadiene: A Test Case 4.3

Mode MP2 CAS(4,4) Experimental
1au 471.9 535.1 -
1b2g 490.0 432.4 531
1b2u 554.0 524.1 576
2au 710.0 734.4 -
1b2u 749.8 852.6 721
1b1g 777.3 699.6 -
1b3g 858.7 966.3 723
1ag 991.6 999.3 989
1b1u 1080 1131 1028
2ag 1149 1215 1059
2b3g 1201 1307 -
2b2u 1292 1411 1245
3ag 1601 1513 1678
2b1u 1615 1640 1526
3b3g 3264 3403 3093
3b2u 3278 3417 3107
3b1u 3298 3430 3124
4ag 3307 3445 3140

Table 4.1: Frequencies of neutral cyclobutadiene calculated at the D2h minimum
energy geometry using both MP2 and CASSCF methods (using a 6-31G* basis
set) compared to experimental frequncies in cm−1. Experimental frequencies are
taken from reference [14] except for 1b1u which is taken from refence [15].

These calculations gave us a database of 483 reference points (the odd num-

ber is due to the failure of some calculations to converge). This provides a

more than adequate description of the potential energy surface. The number

of points used is higher than required in order that the test accurately re-

flects the black box nature of the genetic algorithm. The number of reference

points could be greatly reduced, particularly for harmonic modes where no

loss of features would occur. Often this is done in order to avoid compu-

tational expense, as in order to evalute the RMSD the model needs to be

calculated for each reference point.

For a second-order on-diagonal model this gives 482 parameters. This model

is used for comparison with the previous theoretical work by our group, a

full model is discussed in section 4.3.4. Using a small population of 100 and
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Fig. 4.7: The vibrational modes (a) ν1(1a1g) a ring stretching vibration, (b)
ν4(2b1g) a rectagular vibration and (c) ν6(1b2g) a romboidal vibration.
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Fig. 4.8: Calculated ab-initio points (using CASPT2) and fitted surfaces from the
Genetic Algorithm along the vibrational modes (a) ν1(1a1g), (b) ν4(2b1g) and (c)
ν6(1b2g) using an on-diagonal second order model.

terminating the algorithm after 200 generations an acceptable fit was calcu-

lated. This calculation took only 20 minutes on a standard linux workstation

(2.4Ghz Pentium 4 with 512MB of RAM). Example vibrational modes modes

from these fits are shown in figure 4.8 and figures depicting the vibartional

modes are shown in figure 4.7. Further optimization using the conjugate

gradient method gives considerably better fits 4.9, lowering the root mean

square of the deviation (RMSD) of the model to the ab-initio reference points

from 11.3 to 0.18 eV. This is still higher than in the previous theoretical work,

which has a RMSD of 0.069 eV, which can be ascribed to the increased num-

ber of modes in the system with anharmonicity which cannot be adequately

described by the harmonic oscilator used as the zeroth order potential. In
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Fig. 4.9: Calculated ab-initio points (using CASPT2) and fitted surfaces from
the Genetic Algorithm and Conjugate Gradient algorithm along the vibrational
modes (a) ν1(1a1g), (b) ν4(2b1g) and (c) ν6(1b2g) using an on-diagonal second
order model.

the more complete model described in theory chapter this is overcome by

using morse potentials as the zeroth order potential. The photo-electron

spectrum (Figure 4.10) was calculated using wavepacket dynamics simulti-

ons performed using the MCTDH method. The first step was to obtain the

ground state nucleur wavefunction for the neutral molecule by propagating

in imaginary time to a guess wavepacket using the vibronic coupling model

Hamiltonian neutral molecule. The guess wavepacket was then taken as

the ground state harmonic oscillator eigenfunction of the zero-order hamilto-

nian. The nuclear wavefunction at time t, Ψ(t), is then obtained by solving

the time-dependent Schrödinger equation, allowing the initial wavefuntion to

evolve over the set of surfaces. The spectrum calculated in this manner is

shown in figure 4.10 which, is able to reproduce the appearence of the exper-

imental spectra qualitatively as well as yielding a vibrational progression of

0.12 eV, signifcantly closer to the experimental value of 0.08 ± 0.03 eV than

the previous work by Saddique and Worth.
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Fig. 4.10: Theoretical spectrum produced using parameters from the combined
genetic algorithm and conjugate gradient approach using an on-diagonal second
order model, with a vibrational progression of 0.12eV.

4.3.4 18 mode Cyclobutadiene model

Using the same database of ab-initio reference points a 3rd order model

(fitting out to off diagonal quadratic-linear co-ordinate ι) was fitted using the

genetic algorithm. This required the fitting of 1211 non-zero parameters and

as mentioned above for the anharmonic modes morse potentials were used.

This calculation took 56 minutes, compared to the previous calculation which

required only 20 minutes. Example modes from the genetic algorithm fit are

shown in figure 4.11 as are the fits after subsequent local optimization using

the conjugate gradient method in figure 4.12. As you can be seen from figure

4.11 the genetic algorithm is quite capable of fitting parameters for these

surface. However upon local optimisation (Figure 4.12) some of the work

is undone as the local optimiser rejects the upturned nature of S1 along the

ν9(1B3g) normal mode. By using morse functions it was possible to produce a

better fit to the ab-initio surface for ν1(1a1g). Using the VCHAM fitted with

the combined genetic algorithm local optimisation approach and now all 18
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Fig. 4.11: Calculated ab-initio points and fitted surfaces from the Genetic Algo-
rithm along the vibrational modes (a) ν1(1a1g), (b) ν4(2b1g), (c) ν6(1b2g) and (d)
ν9(1b3g) using an off-diagonal third order model.
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Fig. 4.12: Calculated ab-initio points and fitted surfaces from the Genetic Al-
gorithm and Conjugate-Gradient optimization along the vibrational modes (a)
ν1(1a1g), (b) ν4(2b1g), (c) ν6(1b2g) and (d) ν9(1B3g) using an off-diagonal third
order model.
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Fig. 4.13: Theoretical spectrum produced using parameters from the combined
genetic algorithm and conjugate gradient approach using an off-diagonal third
order model, with a vibrational progression of 0.12 eV

modes, as opposed to the previous spectrum which used the same vibrational

modes as the original spectrum calculated by Saddique and Worth [12]. The

spectrum, shown in figure 4.13, has the same vibrational progression (0.12

eV) as the 6 mode genetical algorithm shown above (Figure 4.10) as well as

fitting the general shape shown in the experimental spectrum (Figure 4.3).

Without an experimental spectrum of higher resolution it is difficult to say

whether the 18 mode model has improved over the 6 mode model.
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Chapter 5

Allene and Pentatetraene

As a further test for the genetic algorithm two molecules previously studied

using the MCTDH method were selected and a new VCHAM fitted to the

previously calculated PES. By using the same PES surface as that used by

the previous study, differences in the calculated absorption spectrum would

be due to differences in fitting procedure. Both allene [10] and pentate-

trane [10, 11] display strong coupling effects involving cationic states with

degenerate components. These can be represented as localised charge at ei-

ther end of the allene and pentatetrane molecules.

5.1 Allene

5.1.1 Introduction

The original work using MCTDH on allene [10] was undertaken in order

to simulate the charge transfer process. This was achieved by artificially

depopulating one component and observing the transfer of charge into the

depopulated component.
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Fig. 5.1: A diagram showing cuts through the potential energy surface along modes
υ4(B1),υ5(B2) and υ8(E) (from left to right).

5.1.2 Potential Energy Surface

The intial geometry optimisation and vibrational normal mode calculations

were taken from the previous work [10], where they were calculated using the

MP4 method and a the 6-311G* basis set. This was used to generate geome-

tries with which to build up the PES. Unlike previously where normal mode

co-ordinates were used, the allene work used rectilinear normal coordinates.

The excited states were then calculated using the ab-initio outer-valence

green’s function (OVGF) [92,93] method along the non-degenerate modes. as

implemented in the GAUSSIAN 98 program [94]. The OVGF method ionises

a single valence electron from its HF orbital and determines the ionisation

energy using a Green’s function aproach. The degenerate modes, due to fail-

ures in the OVGF method, were calculated using th ADC(3) method [95].

Some example cuts can be seen in figure 5.1.
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Fig. 5.2: A diagram showing genetic algorithm fits of the VCHAM along the modes
υ4(B1),υ5(B2) and υ8(E) (from left to right)

5.1.3 Model Hamiltonian

Using the calculated PES from the previous work by Markman et. al. [10]

a genetic algorithm optimisation was performed with a population of two

thousand for three hundred generations. The VCHAM was used up to second

order off-diagonal terms with 176 non-zero coupling terms to be optimised.

Some example modes with the VCHAM fits overlaid are shown in figure 5.1.

As can be see from figure 5.1 the genetic algorithm frequently performed

rather poorly when dealing with very large coupling terms (those modes

with very deep wells.) When optimising locally the lower energy points are

often given a greater weighting than the higher energy points to ensure the

well height is accurate. The genetic algorithm was run without this energy

weighting in order to test its robustness, but it appears energyweighting may

be neccessary in further genetic algorithm runs.

Using the genetic algorithm as an initial guess for local optimisation, where

large energy-weighting was used, the VCHAM parameters were further fitted.

Some example fits of the final VCHAM are shown in figure 5.3.

In order to compare the parameters from both fits those parameters cal-
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Fig. 5.3: A diagram showing combined genetic algoirthm and local optimisation
fits of the VCHAM along the modes υ4(B1),υ5(B2) and υ8(E) (from left to right)

i Symmetry κ
(1)
i κ

(3)
i κ

(4)
i γ

(1)
ii γ

(3)
ii γ

(4)
ii γ

(5)
ii

1 A1 -0.3767 -0.6400 -0.4327 -0.0562 -0.0248 0.0207 -0.0140
2 A1 -0.2482 0.3926 0.3472 0.0000 -0.0295 -0.0359 -0.0264
3 A1 -0.1993 -0.2089 0.1573 -0.0348 -0.0248 -0.0215 -0.0104
4 B1 -0.0689 0.0762 -0.0781 -0.0008
5 B2 0.4132 0.0000 0.0000 0.0000 0.0000
6 B2 0.1003 -0.0156 -0.1641 -0.0201 0.0310
7 B2 0.3200 -0.2460 0.0000 0.0000 0.0000
8 E -0.0361 -0.1001 0.1592 0.0104
9 E -0.0363 -0.0361 -0.0173 -0.0013
10 E 0.0000 -0.0115 -0.0113 -0.0109
11 E -0.0247 -0.0222 -0.0903 -0.1410 s

Table 5.1: Linear and quadratic coupling parameters (in eV) for Allene calculated
used a combined genetic alogoirthm local optimisation approach.

culated with the combined genetic algorithm local optimisation method dis-

cussed above are presented along with those calculated using only local op-

timisation in the original work on allene [10]. The first table 5.1 shows the

linear and quadratic on-diagonal coupling paramaters from this work and the

second table 5.2 shows the same parameters taken from Table II in [10].
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i Symmetry κ
(1)
i κ

(3)
i κ

(4)
i γ

(1)
ii γ

(3)
ii γ

(4)
ii γ

(5)
ii

1 A1 -0.4471 -0.2762 -0.4491 -0.0251 -0.0029 0.0166
2 A1 -0.2527 0.4702 0.3564 -0.0492 -0.0311 -0.0265
3 A1 -0.1874 -0.0237 0.0988 0.0000 0.0000 -0.0117
4 B1 -0.0418 -0.1656 -0.0788
5 B2 0.3364 0.0440 0.0036 -0.0020
6 B2 0.0865 0.0073 0.0037 -0.0206
7 B2 0.3163 -0.0530 -0.0688 0.0020
8 E 0.0061 -0.0813 0.1674
9 E -0.0164 -0.0434 -0.0152
10 E 0.0216 -0.1656 -0.0112
11 E -0.0200 -0.0600 -0.0828 -0.1320

Table 5.2: Linear and quadratic coupling parameters (in eV) for Allene using local
optimisation taken from [10]

5.1.4 Absorption Spectrum

Using the VCHAM fitted using the combined genetic algoithm local optimi-

sation approach an absorption spectrum was calculated 5.5 and compared to

the experimental spectrum in figure 5.4 reproduced from reference [96].

5.2 Pentatetraene

5.2.1 Introduction

Pentatetraene was previously studied using a VCHAM [10] and used to gen-

erate a simulated photoelectron spectrum of the pentatetraene cation [11].

5.2.2 Potential Energy Surface

As with qllene the intial geometry optimisation and vibrational normal mode

calculations were taken from the previous work [10], where they were calcu-

lated using the MP4 method using the 6-311G* basis set. This was used

to generate geometries with which to build up the PES. Unlike previously
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Fig. 5.4: The absorption spectrum of allene taken from reference [96]
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Fig. 5.5: The absorption spectra of allene calculated using the VCHAM fitted
using the combined genetic algorithm local optimisation approach.
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Fig. 5.6: A diagram showing cuts through the potential energy surface along modes
υ13(B2),υ17(B2) and υ19(A1) (from left to right)

where normal mode co-ordinates were used, the allene work used rectilinear

normal coordinates.

The excited states were then calculated using the ab-initio outer-valence

green’s function (OVGF) [92, 93] method along the non-degenerate modes.

as implemented in the GAUSSIAN 98 program [94]. The OVGF method ion-

isaes a single valence electron from its HF orbital and determines the ionisa-

tion energy using a Green’s function aproach. The degenerate modes, due to

failures in the OVGF method, were calculated using th ADC(3) method [95].

Some example cuts can be seen in figure 5.6.

5.2.3 Model Hamiltonian

Using the calculated PES from the previous work by Markman et. al. [10,

11] a genetic algorithm optimisation was performed with a population of

two thousand for two thousand generations. Some example modes with the

VCHAM fits overlaid are shown in figure 5.7. Again the Genetic Algorithm

is unable to fit deep wells (υ13(B2)) and anharmonic surfaces (υ19(A1)).
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Fig. 5.7: A diagram showing genetic algorithm fits of the VCHAM along modes
υ13(B2),υ17(B2) and υ19(A1) (from left to right)
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Fig. 5.8: A diagram showing combined genetic algoirthm and local optimisation
fits of the VCHAM along modes υ13(B2),υ17(B2) and υ19(A1) (from left to right)

By adding Morse potentials as the zeroth order potential and applying an

energy weighting on those modes with particuarly deep wells during local

optimisation, better fits can be achieved. These combined genetic algorithm

local optimisation fits are shown in figure 5.8.

5.2.4 Photoelectron Spectrum

Using the VCHAM fitted using the combined genetic algoithm local opti-

misation approach an absorption spectra was calculated (Figure 5.9) and
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Fig. 5.9: The photoelectron spectrum of pentatetraene calculated using the
VCHAM fitted using the combined genetic algorithm local optimisation approach.

compared to the experimental spectrum in figure 5.10 reproduced from ref-

erence [97].
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Fig. 5.10: The photoelectron spectrum of pentatetraene reproduced from [97].
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Chapter 6

Toluene

6.1 Introduction

Toluene as a mono-substituted benzene derivative allows us to study the ef-

fect of the addition of a simple methyl group to benzene. As benzene derivates

form a basis for a wide variety of organic compounds found in nature we can

use toluene as a model for the effect of a simple rotation, from the methyl

group, on the photophysics of similar compounds. Unlike benzene which

has been studied in great detail both experimentally [98–101] and theoreti-

caly [102–105] the photophysics of toluene has been left largely unexplored

since pioneering work in 1946 by Ginsburg et. al [106]. With initial work

focusing on other derivates of benzene such as para-difluorobenzene and flu-

orotoluene [107–109], toluene was later explored in 1986 by Parmenter and

Stone [110] with a view to exploring the effect of the methyl rotor as an IVR

accelerator. They found that the iteraction of this degree of freedom with

the vibrational modes induced rapid IVR.

In more recent work using time-resolved photo-electron velocity map imag-

ing the Reid group have been able to explore this in much greater de-

tail [111–113]. Particular attention is paid to the Fermi resonance at 457
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Fig. 6.1: Time Dependent Photoelecton Spectrum following the preparation of the
6a1 + 10b116b1 Fermi resonance at 457 cm−1 with a 1ps laser pulse, as a function
of the time delay between excitation and ionization with a second identical laser
pulse. Reproduced from [113]

cm−1 showing oscillations in the intensities of the 6a1 and 10b116b1 peaks

(shown in figure 6.1). In their most recent work [114] anharmonic coupling

matrix elements were derived from their spectra.

In order to explore the photophysics of toluene a model Hamiltonian must

be prepared in order to run wavepacket dynamics. To calculate points along

the normal modes of toluene a frequency calculation is first performed. This

was done by first optimising the geometry of toluene to its equilibrium geom-

etry, with an experimentally determined equilibirum geometry as an initial

starting point. This, and the subsequent frequency calculation, were per-

formed at the MP2 level with a 6-31g* basis set. A comparison of calculated

and experimentally determined frequencies is shown in figure 6.1.
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Mode Varsonyl MP2 Experimental Descrition
Notation

2 υ10b 207.29 216 CH3 wag
5 υ16b 451.58 464 para CH out of plane
6 υ6a 502.98 521 Ring breathing
7 υ6b 528.79 623 Ring bend
10 υ18a 809.97 1030 Ring bend
14 υ17b 887.64 3 CH out of plane
15 υ9a 1024.36 3 CH rock
18 υ12 1148.24 1003 C − CH3 stretch
22 υ13 1264.39 3 C − CH3 stretch

Table 6.1: Comparison of calculated and experimental vibrational frequencies for
selected vibrational modes of toluene. Experimental frequencies taken from [115]

This shows reasonably small differences between the calculated frequen-

cies and the experimentally determined frequencies. With this information

a number of geometries about the equilibrium geometry can be calculated

along and between the vibrational modes in order to fit the VCHAM.

6.2 Potential Energy Surface

Points along the normal modes were initialy calculated using the CASSCF

method and a 6-31g* basis set. The active space selected was that of the 3

bonding and 3 antibonding configurations of the out of plane p orbitals, as

shown in figure 6.2. Some example cuts along the vibrational modes υ10b,

υ16b and υ6a (those that are involved in the Fermi resonance) are shown in

figure 6.3.

To assess the accuracy of these calculations they were repeated at a higher

level of theory, specifically the CASPT2 method using a slightly larger basis
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Fig. 6.2: A diagram showing the 6 molecular orbitals selected for the active space
on toluene.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

-10 -8 -6 -4 -2  0  2  4  6  8  10

E
ne

rg
y 

[e
V

]

Q

Mode 10b

0.0

2.0

4.0

6.0

8.0

10.0

12.0

-10 -8 -6 -4 -2  0  2  4  6  8  10

Q

Mode 16b

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

-10 -5  0  5  10

Q

Mode 6b

Fig. 6.3: Example cuts through the potential energy surface of toluene calculated at
the CASSCF(6,6) level using a 6-31g* basis set. The cuts are along the vibrational
modes υ10b, υ16b and υ6a (left to right)
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Fig. 6.4: Example cuts through the potential energy surface of toluene calculated at
the CASPT2(6,6) level using a 6-31g** basis set. The cuts are along the vibrational
modes υ10b, υ16b and υ6a (left to right).

set (6-31g**) but the same active space. While superficially the results were

similar, the energetics were quite different. Some example cuts along the

same vibrational modes are shown in figure 6.4.

A more detailed comparison shows that rather than a small change in en-

ergy for the excited states the addition of electron correlation the CASPT2

calculations shifts the S4 state in the CASSCF calculations to a lower energy

than S3, a change of 1.79 eV. A labelled comparison of the two calculations

is shown in figure 6.5.

This also has the effect of changing the curvature of the S2-S4 surfaces,

which would have a significant effect on the parameters fitted to these sur-

faces. It was also found that along some of vibrations the (6,6) active space

was insufficient. Initially it was considered that increasing the active space

to include the out of plane p orbitals on the methyl group (orbitals on the

right in figure 6.6) would increase the stability. Calculations however showed

that this was not the root of the problem and that the geometries that were
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Fig. 6.5: Comparison of the the potential energy surface along mode υ16b between
the CASSCF(6,6), left, calculations and the CASPT2(6,6),left, calculations. The
energy of the 5th state (S4) in the CASSCF calculations is significantly lower in
the CASPT2 calculations making it the third state (S2)

State CASSCF(6,6)CASPT2(6,6)CASPT(6,7) Experimental
s1 5.00 5.01 4.74 4.65
s2 8.16 6.52 5.87
s3 8.19 7.95 7.14
s4 8.31 8.11 7.25

Table 6.2: A table comparing the energies of the first four excited states of toluene
as calculated with CASSF(6,6), CASPT2(6,6) and CASPT2(6,7) methods and
experimental values where available (in eV).

failing were those where significant ring deformations produced a consider-

able overlap with the in plane p orbitals on the methyl group (orbitals on

the left in figure 6.6). The excited state energies calculated using the various

methods and active spaces are shown in table 6.2.

The following modes were calculated using the 6,7 active space υ10b,υ6b,υ18a,υ9a,υ19a

and υ13. As the state energies differed prior to and VCHAM fitting proce-

dure all of the surfaces calculated using the CASPT2(6,6) active space were
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Fig. 6.6: Molecular orbitals based on the methyl group of toluene considered for
inclusion in the active space. The molecular orbital on the left shows considerable
in plane p character whereas the molecular orbital on the right shows out of plane
p character.

shifted in energy to those calculated using the (6,7) active space.

6.3 Model Hamiltonian

Initial attempts to fit the VCHAM parameters to the calculated ab-intio

reference points used only linear optimisation, but met with some difficulty.

This is part led to the development of the Genetic Algorithm to fit these pa-

rameters. The Hamiltonian here was calulated using an initial genetic algo-

rithm fitting procedure, running for 200 generations and an initial population

of 1000, then a local optimiser was used to conclude the fitting. Example fits

along three selected modes are shown in figure 6.7.

The following tables 6.3,6.4 and 6.5 show some of the coupling parameters

arrived at by the fitting procedure.
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Fig. 6.7: Example cuts through the potential energy surface of toluene with the
VCHAM fits overlaid. The cuts are along the vibrational modes υ10b, υ16b and
υ6a (left to right).

Mode S1

υ10b -
0.00820

υ16b 0.00793
υ6a 0.00552
υ6b 0.00710
υ18a -

0.09160
υ17b -

0.00056
υ9a 0.12310
υ12 -
υ13 -

0.07160

Table 6.3: A table showing the 1st order on-diagonal terms, κ of the VCHAM for
some of the important vibrational modes of toluene
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Mode S1 − S2

υ10b 0.00100
υ16b 0.03840
υ6a -
υ6b -
υ18a -
υ17b -
υ9a -
υ12 0.00070
υ13 -

Table 6.4: The 1st order off diagonal terms, λ, coupling with the first excited state
of the VCHAM for some of the important vibrational modes of toluene

Mode S0 S1

υ10b 0.01170 -0.00730
υ16b 0.03320 -0.04022
υ6a 0.08350 0.00035
υ6b -0.00100 -0.01330
υ18a -0.00330 -0.00910
υ17b 0.06670 -0.00637
υ9a -0.00300 -0.00290
υ12 0.01790 0.00510
υ13 -0.00170 -0.00090

Table 6.5: The second order on diagonal, γ, terms of the VCHAM for some of the
important vibrational modes of toluene
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Fig. 6.8: Flourescence excitation spectrum of toluene in the region of the S1 −
S0(

1B2 −1 A1) band reproduced from /citelawrance:1995.

6.4 Absorption Spectrum

In order to test the validity of the model it is useful to attempt to reproduce

the experimental spectrum. For comparison the experimental spectrum re-

ported by Lawrance [115] is shown in figure 6.8.

The following calculated spectra were all obtained by generating an initial

wavepacket on the S1 surface and allowing it to propagate. For each spec-

trum this propogation lasted for 500 fs and during the analysis a damping

time of 500 fs was used and a damping factor of 1. The first spectrum, figure

6.9, uses only the first order and on-diagonal second order parameters (κ,λ

and on diagonal γ).
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Fig. 6.9: A simulated absorption spectrum calculated using the toluene VCHAM
with first order and on-diagonal second order parameters

By comparison with the experimental spectrum, in figure 6.8, we can see

that many of the peaks have a very weak intensity. Most of these peaks are

only visible in the absorption spectrum due to a large change in their transi-

tion dipole moment, or they are part of a double excitation peak where one of

the relevent vibrations is only visible due to a large change in their transition

dipole moment. These can be added by relaxing the initial wavepacket under

the influence of a transition dipole moment operator fitted to calculations of

the transition dipole moment along each vibration. This makes a significant

difference to the absorption spectrum as shown in figure 6.10.

The transition dipole moment operator has visibly increased the intensity of

18a peak and more importantly has increased the intensity of the 6a peak so

it is no longer hidden underneath the 16b10b peak. This is important as these
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Fig. 6.10: A simulated absorption spectrum calculated using the toluene VCHAM
with first order and on-diagonal second order parameters after using the transition
dipole operator to relax the initial wavepacket
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Fig. 6.11: A simulated absorption spectrum calculated using the off-diagonal sec-
ond order toluene VCHAM after using the transition dipole operator to relax the
initial wavepacket

three vibrations constitute the Fermi resonance detected experimentally. Al-

though all of the important peaks are now visible their relative intensities still

differ significantly from the experimental spectrum, figure 6.8. This can of-

ten be improved by improving the model to include higher order parameters.

The spectrum in figure 6.11 shows the result of the inclusion of second-order

off diagonal coupling terms.

6.5 Conclusion

Attempts to reproduce the absorption spectrum of toluene are qualitatively

successful, all of the major peaks in the absorptions spectra are present. Their
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relative intensities however remain a problem, one which was not solved by

adding higher order terms. This is either due to the requirement for even

higher order terms or of inaccurate representation of the diagonal cuts be-

tween vibrational modes. As the geometries were calculated away from the

equilibrium geometry convergence failure became increasingly common.

Along vibrations where there were significant distortions, typically ring bend-

ing modes, a (6,7) active space was required. A larger active space may be

required in order to calculate the geometries between vibrations in order to

yield correct coupling terms for higher order parameters. Innacuracies in

the PES, especially in a highly coupled system such as toluene, can lead to

significant errors in the dynamic calculations.
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Conclusion

The three genetic algorithm test cases (cyclo-butadiene, allene and pentate-

traene) were all fitted with relative ease. Both allene and pentatetraene were

fitted to previous calculated PESs and were able to reproduce the experi-

mental spectrum. This indicates that the sucess of the dynamic calculations

presented here was the resut of an improved fit of the VCHAM. The sucess

of the cyclo-butadiene test case in particular was important, as it shows the

success of the genetic algorithm fitting method with a newly calculated PES.

Although the Toluene surfaces were later optimised with the genetic algo-

rithm additional time and effort was spent on the local optimisation stage

than with the other test cases, making it unfair to compare it with cyclo-

butadiene, allene and pentatetraene.

Calculating the excited states of toluene proved to be quite difficult and in-

order to improve on the surfaces calculated in this thesis a significantly more

computationally expensive method will most likely be required. The use of a

reasonable basis set and a particularly high order method, namely CASPT2,

suggests that improvment on teh calculation of these surfaces would require

a significant invesment of computational resources aswell as a detailed study

of the active orbitals required when moving away from the equilibrium ge-
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ometry along certain modes.

The VCHAM was able to fit the calculated surfaces of toluene well which

combined with the difficulties in the calculation of the PES suggests that

innacuracies in the toluene dynamics calculations were liekly due to incor-

rect ab-initio potential energy surfaces. One problem with the VCHAM was

that for a problem as large as toluene the number of parameters requiring

optimisation became vast.
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