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Abstract

Passive porous coatings have been proposed in literature as a means of delaying tran-

sition to turbulence in hypersonic boundary layers. The nonlinear stability of hypersonic

viscous flow over a sharp slender cone with passive porous walls is investigated in this

study. Hypersonic flows are unstable to viscous and inviscid disturbances, and following

Mack (1984) these have been called the first and second Mack modes. A weakly nonlinear

analysis of the instability of the flow to axisymmetric and non-axisymmetric viscous (first

Mack mode) disturbances is performed here. The attached shock and effect of curvature

are taken into account. Asymptotic methods are used at large Reynolds number and large

Mach number to examine the viscous modes of instability, which may be described by a

triple-deck structure. Various porous wall models have been incorporated into the stabil-

ity analysis. The eigenrelations governing the linear stability of the problem are derived.

Neutral and spatial instability results show the presence of multiple unstable modes and

the destabilising effect of the porous wall models on them. The weakly nonlinear stability

analysis carried out allows an equation for the amplitude of disturbances to be derived.

The stabilising or destabilising effect of nonlinearity is found to depend on the cone ra-

dius. It is shown that porous walls significantly influences the effect of nonlinearity. They

allow nonlinear effects to destabilise linearly unstable lower frequency modes and stabilise

linearly unstable higher frequency modes.
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Chapter 1

Introduction

The state of the boundary-layer flow over a flying surface has an enormous impact on

the viscous drag (or skin friction) experienced by a body. This is because the boundary

layer can undergo a transition from a smooth, low drag, laminar state to a chaotic, higher

drag turbulent state as it evolves over a flying surface. The transition process is still

not completely understood and has been an intense area of research for the past several

decades. A sound knowledge of this process is essential in devising methods to delay

the location along the flying surface at which the flow becomes turbulent. Transition to

turbulence becomes even more important at hypersonic speeds as a turbulent boundary

layer contributes significantly to aerodynamic heating of the body.

Laminar to turbulent transition of the boundary layer therefore has important impli-

cations on the design and performance of a hypersonic flight vehicle (Malik et al. 1990).

For example, early transition can increase the surface heat transfer by a factor of 3 − 8

which translates to higher cost and weight of thermal protection systems incorporated in

the vehicle (Schneider et al. 1999, 2004). Existing hypersonic vehicle designs fall under

either blunt configurations, moderate blunt lifting type configurations or air-breathing

types. The latter has relatively sharp leading edges and can achieve high lift-to-drag ra-

tios. Premature transition in such vehicles may become critical as it reduces propulsion
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efficiency, increases viscous drag (being up to 30% of total drag), as well as degrading

aerodynamic control surfaces and reaction control systems of the vehicle (Kimmel 2003).

Extensive experimental, numerical and theoretical studies have been carried out to

understand the instability mechanisms that arise in hypersonic flows over sharp slender

bodies. As a result of these studies, it is now widely accepted that transition to turbulence

in hypersonic flows over smooth bodies and with low levels of free-stream turbulence is as-

sociated with amplification of the first and/or second Mack modes. The first Mack mode

is the high speed counterpart of Tollmien-Schlichting waves, so a viscous instability, with

modes located close to the boundary. The second Mack mode is an inviscid instability

driven by a region of supersonic mean flow relative to the disturbance phase velocity. The

second-mode instability occurs when the Mach number becomes high (> 4 on insulated

surfaces), and has growth rates that exceed that of the first mode. Experimental findings

(Fedorov et al. 2003a,b and Stetson et al. 1982, 1993) reveal that the first-mode instabil-

ity occurs in a lower frequency band, 50− 100kHz, while the second mode occurs around

70−150kHz and higher in hypersonic boundary layers over a cone. Spectral data obtained

from various stations along the cone surface show that the first-mode fluctuations increase

their amplitude without any special selectivity in the frequency of the disturbances which

are amplified, while the second mode fluctuations are highly ‘tuned’ to the boundary-

layer thickness, resulting in considerable selectivity in the disturbance frequencies which

are most amplified (Stetson & Kimmel 1992). This tuning effect causes the second-mode

disturbance peaks to shift to lower frequencies as the boundary layer grows. The experi-

ments also confirm the dominance of the second mode in the disturbance spectra. Thus

the second mode is believed to be responsible for transition to turbulence on hypersonic

slender bodies, as it is the dominant instability.

This finding initiated several recent theoretical, experimental and numerical investi-

gations into concepts that can damp this instability and thereby achieve an increased
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laminar run over the flying surface. This has led to development of the concept of ‘ultra-

sonically absorptive coatings’ (UACs), which will be discussed in detail in this chapter.

However, compressible boundary layers are also susceptible to the lower frequency first-

mode disturbances, and there has been very little investigation into the effects that these

coatings may have on this type of instability. This forms the motivation behind the

present investigation.

1.1 Stability of compressible boundary layers

A compressible boundary layer is susceptible to two types of travelling-wave instability

modes. These are called Mack’s first and second modes as they were first identified by

Mack ( reviewed in Mack 1984) in compressible boundary layers. Recently different termi-

nologies have been introduced by Fedorov & Tumin (2010) with regards to the receptivity

study of Fedorov & Khokhlov (2001). Their analysis reveals that in a leading-edge region,

two discrete modes that are synchronized with acoustic waves of the continuous spectrum

exist. According to this terminology, a discrete mode is a fast (F) or slow (S) mode if it is

synchronized with the fast or slow acoustic wave of the continuous spectrum respectively,

in the limit of small Reynolds number. Depending on the flow parameters, both mode S

and mode F can be unstable or only mode S is unstable having two maxima of the growth

rate. The low-frequency (long-wavelength) maximum of the S mode is associated with

Mack’s first mode, whereas the high-frequency (short-wavelength) maximum is associated

with Mack’s second mode (Fedorov & Tumin 2010.) Cowley & Hall (1990) examined the

linear stability properties of both the first and second mode for the hypersonic flow over

a wedge. The first mode is a viscous instability which is governed by a triple-deck type

structure. The details of this analysis for a general hypersonic boundary layer were first

given by Smith (1989), who derived the scalings that need to be adopted in such analyses.

In addition to these viscous modes, a compressible boundary layer is susceptible to inviscid
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disturbances. Two classes of inviscid modes have been identified. One type consists of a

family of disturbances called the ‘acoustic modes’, whilst the second kind comprises a sin-

gle ‘vorticity mode’. At large values of Mach number, the vorticity mode is faster growing

than the acoustic modes. Concurrent with Cowley & Hall (1990), Smith & Brown (1990)

also investigated both forms of the inviscid modes and showed that a near-linking of the

neutral modes occur with increasing Mach number. They also found that the stability of

these inviscid modes is critically dependent on the choice of temperature-viscosity law.

This is because these disturbances are concentrated in a temperature adjustment layer

located within the main boundary layer (middle deck) whose precise form is dependent

on the viscosity law adopted. This contrasts with viscous disturbances which are concen-

trated near the wall (lower deck), and the choice of viscosity law only affects the bounds

on the parameters present in the problem.

Although at large Mach numbers the inviscid modes have larger growth rates than

the viscous modes, the latter may become important in certain situations such as ‘low

free-stream disturbance’ wind tunnels or instabilities in the presence of porosity or micro-

roughness. Furthermore, Cowley & Hall (1990) have shown that the presence of a shock

significantly affects the viscous modes, but has a negligible effect on the acoustic modes

unless the distance of the shock from the surface is of the order of the boundary layer

thickness. Their significant finding was that the presence of the shock gives rise to an

infinite number of unstable modes as it allows both incoming and outgoing waves in the

boundary layer. The influence of an attached shock on the growth rates of Tollmien-

Schlichting waves was also demonstrated by Chang et al. (1990). Numerical studies by

Stilla (1994), Leung & Emmanuel (1995), and Stuckert & Reed (1994) also conclude that

the effect of the shock must be taken into account.

The additional effects of curvature on the viscous instability was investigated by Sed-

dougui & Bassom (1997) who considered the linear stability of hypersonic flow over a
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cone. Their results conclude that in the presence of an attached shock, the effect of cur-

vature is significant. Multiple unstable modes are possible, and modes which exist in the

absence of a shock are now totally destroyed. In contrast to the planar case, the influence

of the shock is always present and the spatial growth rates decrease as the shock moves

away from the cone. The stability analysis of Duck & Hall (1989, 1999) for supersonic

flow over axisymmetric bodies show that neutral curves bear no resemblance to those in

the absence of curvature. Significant differences between hypersonic planar and conical

boundary layers were also elucidated by the experiments of Stetson et al. (1991) and

Wendt et al. (1995).

Several experimental studies have been conducted on conical models at hypersonic

speeds (Stetson et al. 1983, Lachowicz et al. 1996, Bountin et al. 2000, Kimmel et al.

1996, Germain & Hornung 1997, Schneider 2004). These experiments confirm the results

of linear stability theory, namely existence of multiple unstable regions, and the domi-

nance of higher frequency second mode instability. In addition to the first and second

mode disturbances identified by linear stability theory, subsequent stability experiments

(reviewed in Stetson 1988) observed disturbance growth at higher frequencies, which were

identified to be higher harmonics of the second mode disturbances. These were not ob-

served until significant second mode growth had occurred. Stetson (1988) and Kimmel

& Kendall (1991) attribute these findings to nonlinear wave propagation. These early

experimental studies are reviewed in Stetson & Kimmel (1992). Nonlinear interactions

involving the second mode were observed by Kimmel & Kendall (1991), Chokani (1999)

and Shiplyuk et al. (2003). These investigations were conducted using bispectral analysis

which involves statistical analysis of the disturbance spectrum at various downstream lo-

cations. Kimmel & Kendall (1991) and Chokani (1999) observed that harmonic resonance

was the dominant nonlinear interaction, while Shiplyuk et al. (2003) observed that sub-

harmonic resonance was the primary nonlinear interaction. Kimmel & Kendall (1991) and
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Chokani (1999) measured naturally occuring disturbances while Shiplyuk et al. (2003)

made measurements using artificial excitation of controlled disturbances. Subharmonic

or parametric resonance had previously also been observed in the weakly nonlinear region

of supersonic boundary layers by the investigations of Kosinov et al. (1994) on controlled

disturbances. Investigations by Chokani (2005) on natural disturbances in a ‘quiet’ wind

tunnel identified sum and difference interactions of the second Mack mode. These inter-

actions led to the generation of the first and second harmonic of the second Mack mode.

Further investigations following Shiplyuk et al. (2003) have been reported in Bountin et

al. (2008) and Maslov et al. (2010). They observed nonlinear interaction of second mode

waves with disturbances whose frequencies lie in the first-mode frequency range. They

found that the second-mode subharmonic frequency belongs to the range of frequencies

corresponding to the first-mode. These subharmonic interactions can be considered a

secondary instability as it involves the interaction between a primary 2-D second-mode

wave with a secondary 3-D first-mode wave.

These studies help us gain a better understanding of the role played by frequency

interactions in the transition process. Further insight can be obtained from studies per-

forming direct numerical simulations (DNS) of the complete Navier-Stokes equations.

The spatial DNS study of Bestek & Eissler (1996) at Mach 4.8 was able to confirm the

existence of multiple Mack modes. The presence of two further types of secondary insta-

bilities namely, oblique breakdown and fundamental (K-type) breakdown were observed

by the simulations of Husmeier & Fasel (2007). These studies matched the experimental

conditions of Stetson & Kimmell (1992). The simulations of Laible & Fasel (2011) and

Koevary et al. (2010) provide further proof of the relevance of these two transition scenar-

ios in hypersonic boundary layers. Fundamental breakdown, first observed by Klebanoff

(1962) in incompressible boundary layers, is characterised by the interaction of a 2-D

finite-amplitude primary wave with a pair of symmetric small-amplitude oblique waves
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at the same frequency (Koevary et al. 2010). Oblique breakdown, first observed by the

simulations of Thumm et al. (1990) in a Mach 1.6 flow, is characterised by the interaction

of a pair of oblique waves at the same frequency with identical but opposite spanwise

wavenumbers. The initial stage of this process may be described by a wave-vortex triad

consisting of the oblique waves and a streamwise vortex (Chang & Malik 1994). Evidence

of the oblique transition scenario in hypersonic boundary layers were also provided by the

simulations of Pruett & Chang (1995) corresponding to the experiments of Stetson et al.

(1983). The state of the art in DNS studies on hypersonic boundary layer stability and

transition is given in Wang & Zhong (2012). Much of the current knowledge of the physi-

cal mechanisms of hypersonic boundary layer stability and transition including transition

control strategies is reviewed in Fedorov (2011)

Despite these studies, the physical mechanism of nonlinear breakdown of laminar

hypersonic boundary layers is still not completely understood. There is still no consensus

on the dominant mechanisms for the breakdown in high-speed flows. The second Mack

mode is however thought to be dominant in these nonlinear processes and much scientific

attention has been devoted to efforts that can damp this instability.

1.2 Laminar flow control

Laminar flow control deals with techniques based on linear stability analysis to extend

the laminar region over the flying surface for the purposes of drag and surface heating

reduction. Broadly such techniques may be classified as being passive, active or reactive.

Passive techniques include concepts such as surface coatings, and shaping of the aero-

dynamic surface to induce favourable pressure gradients. They achieve their objective

without the need for introducing any disturbances into the flow. Active flow control refer

to techniques such as boundary layer suction and wall cooling. They utilize an open-loop

control scheme to achieve their objective. Reactive techniques on the other hand rely on
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(a)

(b)

(c)

Figure 1.1: Magnified images depicting three different types of ultrasonically absorptive
coatings. Shown are (a) stainless-steel perforated sheet, (b) felt-metal (stainless-steel
fibres sintered on a sheet), (c) ten layers of stainless-steel wire mesh.
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closed-loop control schemes and introduce disturbances that are counter-phase to the in-

stability. Wall vibrations, periodic blowing/suction, and alternating heating and cooling

fall under this category (Fedorov et al. 2001). Active control schemes have received the

most widespread attention over the past fifty years and several concepts have been inves-

tigated in experiments for subsonic and supersonic flow conditions. In hypersonic flow

conditions, active and reactive techniques have not found favour owing to technological

complexities and harsh flight environments. Simple passive flow control techniques offer

the best solution in this case. Linear stability analysis of Malmuth et al. (1998) and

proof of concept experiments by Rasheed (2001) propose such a scheme using acousti-

cally absorbing surfaces that damp the second mode instability. Some examples of porous

coatings that have been experimentally investigated are shown in figure 1.1.

1.2.1 Passive porous walls for laminar flow control

Malmuth et al. (1998) proposed that a passive ultrasonically absorptive coating (UAC)

may suppress the relatively high frequency fluctuations of the dominant second mode in

hypersonic flow, while not tripping the boundary layer due to roughness effects. Thus the

boundary layer could be stabilized by a passive disturbance energy extraction mechanism.

This hypothesis was examined using a linear inviscid stability analysis. Using the WKB

method, the authors formulated the boundary condition on an ultrasonically absorptive

wall for second and higher modes. Subsequently Fedorov & Malmuth (2001) analysed the

UAC effect using viscous linear stability theory and found that viscosity weakly affects

the stabilization mechanism. They consider an UAC of regular microstructure, namely a

relatively thin coating with cylindrical blind micro-holes and demonstrated a significant

decrease in the second mode growth rates. The UAC concept was investigated exper-

imentally by Rasheed et al. (2001) in a Mach 5 shock tunnel using a 5-deg half-angle

sharp cone. The experimental results qualitatively confirmed the theoretical predictions
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of Federov et al. (2001). To provide quantitative information, a series of stability ex-

periments (Federov et al. 2003a,b) was conducted in a Mach 6 shock tunnel using a

7-deg half-angle sharp cone. Non-parallel stability analyses for 2-D and 3-D disturbances

showed that the porous coating stabilizes the second mode and weakly destabilizes the

first mode. Hot-wire measurements of artificially excited wave packets associated with

the second mode provided good quantitative agreement with the theoretical predictions.

Further experimental measurements of natural and artificially excited disturbances in the

presence of UAC were reported in Maslov (2003) and support the stabilization effect on

the second mode instability. Maslov (2003) also report on parametric calculations that

investigate the effect of various factors such as wall cooling, gas rarefaction, and porous

layer characteristics on the UAC performance. Numerical investigations of Wang & Zhong

(2009, 2010, 2011a,b) for Mach 6 flow over a flat plate also showed that different types of

porous coatings destabilized mode S in Mack’s first mode region concurrent with second-

mode stabilization. This finding was also observed by the two-dimensional DNS of Egorov

et al. (2008).

Nonlinear aspects of hypersonic flow over porous coatings on a sharp cone are reported

in Chokani et al. (2005) and Bountin et al. (2010) who investigated the nonlinear in-

teraction of artificially excited second-mode disturbances using bispectral analysis. On

a solid surface, disturbance amplitude spectra revealed that the second mode was dom-

inant. The amplitude of the second mode also increased downstream and was always

larger than the amplitude of the first mode at a given station. On the porous surface,

the amplitude of the second mode was much smaller at all stations and showed only a

small change in its amplitude in the downstream direction. However, in contrast to the

solid surface, at a particular location on the porous surface, the amplitude of the first

mode was larger than that of the second mode. This effect was more evident at the most

upstream station. Bispectral measurements show that subharmonic and harmonic reso-
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nance of the second mode are observed on the solid surface and are significantly modified

on the porous surface. Harmonic resonance which is dominant on the solid surface was

completely absent on the porous surface. Subharmonic resonance of the second mode

increases in the downstream direction on solid surfaces, but was observed to be weak

and to persist further downstream on the porous surface. These studies also observed

subharmonic resonance of the first mode on porous surfaces that was not present on the

solid surface. Chokani et al. (2005) state that this nonlinear interaction is too weak

to adversely affect the performance of porous walls. Chokani et al. (2005) only consid-

ered measurements from the maximum mass-flow fluctuation location in the boundary

layer while Bountin et al. (2010) took measurements throughout the entire thickness of

the boundary layer. As the porous wall weakens resonant interactions in the maximum

fluctuation layer, nonlinear interactions above and below the layer start to play a major

role (Maslov et al. 2010). Nonlinear interaction between vortex (first-mode) waves and

filling of the low-frequency vortex-mode spectrum in the presence of porous walls have

also been found by the theoretical analysis of Gaponov & Terekhova (2009). They used

a nonlinear interaction model in three-wave resonance systems for compressible flat-plate

boundary layers. Gaponov et al. (2010) investigated experimentally and theoretically,

the influence of porous coatings on the stability and transition of a supersonic (Mach 2)

boundary layer over a flat plate. They found that the use of a porous coating destabilizes

the disturbances in supersonic boundary layers (oblique first-mode type) and accelerates

boundary-layer transition. Transition of a Mach 6 boundary layer over a flat plate with

porous coating was also investigated by three-dimensional temporal DNS of De Tullio &

Sandham (2010). Their calculations revealed that an oblique first-mode wave is the most

amplified mode in the presence of the porous surface. This wave is slightly destabilized

by the porous coating. With the oblique first mode excited, the flow becomes turbulent

due to nonlinear interactions without the need for secondary instabilities (as is the case
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over solid surfaces).

From these experimental and numerical investigations it is clear that the first Mack

mode instability is affected by the presence of porous coatings. This instability can

become destabilised by porous coatings and further research is warranted to ascertain

whether they play a role in premature breakdown of the laminar flow.

1.2.2 Porous wall models and formulation

The first theoretical investigation of the linear stability of hypersonic flows to include

the effects of an absorptive porous coating was reported in Fedorov & Malmuth (1996).

They included the effects of the porous coating by introducing the wall boundary con-

dition v(0) = Ap(0), where v is the wall normal velocity perturbation, p is the pressure

perturbation and A is a complex absorption coefficient. Their first investigation involved

an inviscid stability analysis of flow over a flat plate following Mack (1975), whereby a

compressible Rayleigh equation may be solved to obtain solutions for the pressure fluctua-

tions. From this solution, an expression for the absorption coefficient A was obtained as a

function of a reflection coefficient (defined as the ratio of reflected to incident wave on the

surface). Numerical results for temporal stability indicated that decreasing the reflection

coefficient (increasing absorption) tends to decrease the growth rate of the most unstable

mode. Following Mack (1984), a viscous spatial stability analysis was also performed

utilizing the same boundary condition. Results obtained showed the trend of strong sta-

bilization of spatial growth rate at second mode frequency with increasing absorption.

These analyses using a generic absorption coefficient successfully demonstrated that ul-

trasonic absorption could in principle damp second mode disturbances. It did not address

the issue of how a specific surface could be constructed to perform this task, and how

to obtain a boundary condition representative of a surface with specific microstructure.

Theoretical work to develop appropriate boundary conditions was first done by Gaponov.
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He studied the effects of porosity in subsonic (Gaponov 1971, 1975) and low supersonic

flows (Gaponov 1977). In his studies, the transition process is dominated by the unstable

growth of viscous Tollmien-Schlichting waves that correspond to first mode disturbances

in hypersonic flows. The propagation of disturbances within the porous wall is inde-

pendent of the type of disturbances, and following the analysis of Gaponov (1971, 1975,

1977), Federov & Malmuth (1996) developed a model appropriate for UACs. Fedorov &

Malmuth (1996) utilized the theory of sound wave propagation in thin, long tubes. This

problem is directly analogous to the problem of electrical transmission of current and

voltage over long, lossy transmission lines, which have been studied extensively. In this

case, the acoustic (or electric) field within the tube (transmission line) can be completely

characterized by a propagation constant (Λ) and a characteristic impedance (Zo). From

the electrical analogy, these two parameters can in turn be expressed in terms of a series

impedance (Z) and a shunt admittance (Y ) per unit length of tube through the relations

Z0 =
√

Z
Y

and Λ =
√
ZY . Expressions for Z and Y may be derived from the flow physics

of the problem. From the electrical analogy, input impedance Zi, which is a ratio of the

voltage to the current at the input of the transmission line, may be taken as analogous to

the ratio of pressure to the average vertical velocity at the entrance of the pore. Thus it

may be shown that Zi = p(0)
v(0)

= −Zo coth(Λh), where h is the non-dimensionalised depth

of the pore. The absorption coefficient for a single pore may now be taken as being the

reciprocal of the input impedance. This result is extended to the overall porous surface

by averaging the vertical velocity over the surface area using the porosity n defined as

n = Vol. of Pores
Total Vol.

= πr2

s2
, where r and s are the non-dimensionalised pore radius and pore

spacing. Thus A = n
Zi

. A similar analysis following the work of Stinson & Champoux

(1992) was also performed by Fedorov & Malmuth (1996) to develop the thermal admit-

tance for use in a thermal boundary condition. They have however found that thermal

perturbations had very little effect on the spatial growth rates and may be neglected.
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A different approach to the electrical analogy is described in Attenborough (1982),

Stinson (1991) and Stinson & Champoux (1992). They propose the use of a ‘complex

dynamic density’, ρ(ω) and ‘complex dynamic compressibility’, C(ω), where ω is the

angular frequency of disturbance propagation within the pore. The complex density

is derived based on the linearized momentum equation for the propagation of a plane

acoustic wave. It represents the effective increased density of the medium due to inertial

and viscous effects. The complex compressibility is obtained from the solution of the

continuity equation. The expressions for the characteristic impedance and the propagation

constant now becomes Z0 =
√
ρC and Λ = iω

√
ρ
C

. Such an approach allows a rational

extension of these ideas to tubes of arbitrary cross-sections and allows the consideration

of more general porous microstructures. The formulation of the porous wall model using

this approach was reported by Kozlov et al. (2005) and will be adopted in this study.

The work described thus far has been based on the classical solutions of Navier-Stokes

equations which describe acoustic waves travelling inside a long circular tube. Such re-

sults have been obtained under the assumption that the gas inside the pores is a contin-

uum. However this assumption is not always valid. Rarefaction effects become important

in flows within porous materials which have ultra-fine pores or operate at low ambient

pressures such that the molecular mean free path λm becomes comparable to the char-

acteristic length scale of the flow. Such cases may be modelled using the concept of

slip-flows, in which the gas is treated as a continuum except in thin Knudsen layers on

the wall. Molecular processes inside the Knudsen layer can affect the boundary condition.

On a macroscopic level, rarefaction effects lead to slipping and temperature jumps on

the interface boundary (Maslov 2003). For typical wind tunnel experimental conditions

involving UACs, the Knudsen number Kn = λm/r ∼ 0.1. Kozlov et al. (2005) analysed

the problem of propagation of sound in isolated long pores of arbitrary cross-section, ac-

counting for the rarefaction effects. Their analytical solutions for flat slits and pores of
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circular or rectangular cross-sections have been utilized in this study to model the effect

of various types of porous coatings. They consider each pore as an infinitely long tube

of characteristic cross-sectional length scale Lp filled with gas of low density. Beyond the

Knudsen layer and far from the tube ends, the disturbance generated by an infinitesimal

oscillatory pressure gradient is governed by linearized momentum and energy equations.

In these equations Λ is the dimensionless parameter, whose modulus characterizes the

ratio of the characteristic length to the viscous and thermal boundary layer thickness on

the tube walls. This quantity may be expressed as Λ =
√

iωρwL2
p/µw, where ρw, µw and

ω are the density, viscosity and frequency respectively of the gas flow inside each pore.

These equations may be solved for the amplitudes of gas particle velocity along the tube

and temperature disturbance subject to a slip flow boundary condition characterised by

a quantity B. This quantity B, is a function of the Knudsen number and depends on the

laws governing the interaction between gas molecules and a solid surface. The solutions

can then be expressed as a function F (B,Λ). The acoustic properties of an isolated pore

(dynamic density and dynamic compressibility) can be obtained by averaging of the gas

particle velocity and temperature respectively over the pore cross-sectional area. Finally

this allows us to obtain expressions for the characteristic impedance and propagation

constants as mentioned previously and thus obtain an expression for the porous layer

admittance. This approach can be used for porous walls that can be modelled as isolated

long pores with well defined cross-sectional area. Unfortunately, there is no rigorous the-

ory to predict these characteristics for porous materials of random microstructure. Since

the majority of thermal protection systems used in hypersonic flight vehicles have have

random microstructure, Fedorov et. al (2003b) investigated the use of fibrous absorbent

material (felt metal) consisting of a network of stainless steel fibres. Allard & Champoux

(1992) derived semi-empirical relations for the dynamic density and compressibility of such

materials. These relations were used by Fedorov et. al (2003) to derive the admittance
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for a random microstructure porous layer model.

1.3 Concluding remarks

In this chapter a brief survey of the literature concerning stability of hypersonic bound-

ary layers and the use of passive porous coatings to damp the dominant instability modes

in such flows has been presented. A background into the formulation of a theoretical

model to describe these porous coatings was also given. The focus of this thesis is on

utilising such porous models and performing a theoretical investigation into the linear

and weakly nonlinear stability of hypersonic flows over a sharp cone.

In Chapter 2 the basic flow problem and porous wall models are described. The

problem considered is the hypersonic flow over a sharp slender cone. The set of equations

governing such flows are the compressible Navier-Stokes equations and energy equation in

a spherical coordinate system. The basic flow is considered to be steady and axisymmetric.

The problem is considered in the limit of large Reynolds number and Mach number. The

incoming flow stream is parallel to the cone generatrix. A shock wave attached to the nose

of the cone is present. At large Reynolds numbers, the viscous nature of the flow is only

felt in a thin boundary layer close to the cone surface. Away from this boundary layer,

inviscid Euler equations can be used to describe the flow between the cone surface and the

shock. The flow must satisfy jump conditions at the shock. These jump conditions ensure

that mass, momentum and energy are conserved across the shock. Close to the cone

surface we consider the boundary layer problem. The flow here is coupled to the porous

coating through a wall boundary condition. Various porous wall models are used to model

the different types of porous coatings. The boundary layer equations bring back viscous

effects into the problem. In the limit of large Reynolds number an interaction between

the inviscid flow and the boundary layer occurs which may be described by dividing

the boundary layer into three regions, collectively called the “triple-deck”. Asymptotic
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solutions to the governing boundary layer equations can be sought in each region. The

theoretical framework for the subsequent stability analysis is setup in Chapter 2. The

stability problem is described in Chapter 3. In Chapter 4 the results of the linear and

weakly nonlinear analysis is presented. A discussion of these results with reference to

published experimental and numerical results is given in Chapter 5. Finally in Chapter

6, the conclusions of this study and possible avenues for further research are given.



Chapter 2

Formulation

The aim of the present investigation is to examine the stability of hypersonic flow

over a cone with porous walls where the attached shock and curvature are taken into

account. Porous wall models are described in Section 2.3. In Section 2.1, the inviscid

flow over the cone is described. The shock is a discontinuity that occurs in the normal

velocity of the flow. The conditions satisfied at the shock by a disturbance to this basic

flow are described in Section 2.2. The weakly nonlinear stability of the basic flow is then

investigated using the triple-deck formulation in Section 2.4.

2.1 Base Flow

The derivation of the basic flow follows Seddougui & Bassom (1997) and is described

here. The flow of a compressible, viscous gas over a sharp cone with porous boundary,

of semi-angle θc is considered at hypersonic speeds, with magnitude U0 parallel to its

axis. The attached shock makes an angle θs with the cone. The situation is illustrated in

figure 2.1. The main dimensional quantities are depicted in figure 2.2. Spherical polar

coordinates (x, θ, φ) are used to describe the flow. Here φ denotes the azimuthal angle.

The radial distance x has been non-dimensionalised with respect to L∗, the distance from

the tip of the cone to the location under consideration. Away from the surface of the cone,

18
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Figure 2.1: Geometry of the cone and the attached shock.

Figure 2.2: Geometry depicting main dimensional quantities.
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viscous effects are neglected and the fluid velocities (u, v, w), pressure (p) and density (ρ)

satisfy the compressible continuity, Euler and energy equations.

∂ρ

∂t
+

1

x2 sin θ

[
∂

∂x

(
x2 sin θρ u

)
+

∂

∂θ
(x sin θρ v) +

∂

∂φ
(xρw)

]
= 0,

ρ
Du

Dt
− ρ v2

x
− ρw2

x
= −∂p

∂x
,

ρ
Dv

Dt
+
ρ u v

x
− ρw2 cos θ

x sin θ
= −1

x

∂p

∂θ
,

ρ
Dw

Dt
+
ρ uw

x
− ρ v w cos θ

x sin θ
= − 1

x sin θ

∂p

∂φ
,

ργ
D

Dt

(
p

ρ

)
= (γ − 1)

Dp

Dt
,

(2.1.1)

where

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+
v

x

∂

∂θ
+

w

x sin θ

∂

∂φ
,

and γ = cp
cv

is the ratio of specific heats of the gas. We consider the steady, non-dimensional

version of these equations. The velocities are non-dimensionalised with respect to U−, the

magnitude of fluid velocity just behind the shock. The time, pressure and density are

non-dimensionalised with respect to L∗/U−, ρ−U
2
−, and ρ−, respectively, with ρ− being

the density behind the shock. Finally the temperature is non-dimensionalised with respect

to T−, the temperature just behind the shock. We define ε ≡ ρ+
ρ−

to be the ratio of gas

densities just ahead of the shock and just behind it and take it to be sufficiently small

to obtain a steady constant density solution. Such types of solutions were first obtained

by Hayes & Probstein (1966). The assumption of constant density is exact in the case of

hypersonic flow over a wedge, and is a suitable approximation for cases where pressure

changes in the flow field are small as can be expected for flow over a slender cone. This

assumption implies that the shock layer is thin, the density and viscosity are constant in

the region between the shock and the surface of the cone and that the shock inclination
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angle σ = θc + θs is a constant (i.e., oblique shock).

Since the flow behind a straight shock is isentropic, the flow in the region between the

shock and cone is irrotational. Thus for an axisymmetric conical flow the velocity potential

Φ satisfies Laplace’s equation in spherical coordinates. The general axisymmetric solution

of Laplace’s equation may be obtained using the method of separation of variables in terms

of Legendre polynomials. Following Seddougui & Bassom (1997) we can write

Φ = x
U0

U−
[AP1(z) +BQ1(z)] , (2.1.2a)

where P1 and Q1 are the Legendre functions

P1(z) = z,

Q1(z) =
z

2
ln

(
1 + z

z

)
− 1.

Here z ≡ cos θ and (u, v) = (∂Φ/∂x, (1/x)∂Φ/∂θ). A and B are constants that can be

determined from the conditions at the shock whose location is defined by zs = cosσ.

By considering conservation principles at an oblique shock we can show that the radial

component of velocity is constant across the shock and given by U0

U−
zs and that the polar

component of velocity is normal to the shock and satisfies v+ = v−/ε = −z U0

U−
(1− z2

s)
1/2

.

These conditions can be used to calculate A and B. Thus the basic flow solutions valid



CHAPTER 2. FORMULATION 22

in the region between the shock and the cone surface may be given as

u =
U0

U−
(AP1(z) +BQ1(z)) , (2.1.2b)

v = −U0

U−

(
1− z2

s

)1/2
(
A+B

(
Q0(z) +

z

1− z2

))
, (2.1.2c)(

U0

U−

)2

p =
1

2γ
ε(1 + ε)(1− z2

s)

−
[
ABQ0(z) +

B2

2

(
Q2

0(z) +
1

1− z2

)
+
A2

2
− ε

2
(1− z2)− z2

s

2

]
, (2.1.2d)

where Q0(z) = 1
2

ln
(

1+z
1−z

)
. Using conservation principles at the shock and the perfect gas

relations, Hayes & Probstein (2004) show that the density ratio may be written as

ε =

(
γ − 1

γ + 1

)(
1 +

2

(γ − 1)M2
+ sin2 σ

)
, (2.1.2e)

where M+ is the Mach number just ahead of the shock. Expressions for the remaining

flow quantities (pressure, velocity, Mach number) behind the shock are given in Seddougui

& Bassom (1997) in terms of the density ratio and shock inclination angle. We mention

a few important results here.

tan θs = ε tanσ, (2.1.2f)

M2
− =

M2
+ cos2 σ(1 + ε2 tan2 σ)1/2

1 + 1
2
(γ − 1)(1− ε2)M2

+ sin2 σ
, (2.1.2g)

M2
+ =

M2
−

cos2 σ(1 + ε2 tan2 σ)− 1
2
(γ − 1)(1− ε2)M2

− sin2 σ
. (2.1.2h)

The foregoing calculations allows us to completely describe the basic flow in the region

between the shock and the cone provided the location of the shock is known a priori. A

significant feature of this solution is that the velocities are not uniform in this region,

in contrast to the case for flow over a wedge. A typical streamline for flow past a cone
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undergoes an outward deflection when it crosses the shock. It then undergoes further

gradual deflection until it asymptotes to the cone body. Thus the total deflection of the

flow through the shock is equal to the cone angle θc. This situation is depicted in figure 2.3.

The problem that remains is to determine the location of the shock. In the case of flow

Figure 2.3: Typical streamline for compressible flow past a cone. (Taken from Rasmussen
1994.)

over a wedge (oblique shock) this can be obtained from geometrical considerations. For

the problem of flow over a cone we turn to Rasmussen (1994) who considers the “exact”

solution of the problem of supersonic flow over a cone as given by the Taylor-Maccoll

equation (Taylor & Maccoll 1933). This is an ordinary differential equation whose solution

is called exact because it can be made once and then tabulated, even though it must be

done numerically (Rasmussen 1994). Rasmussen (1994) then obtains an approximate

analytical solution of this equation in the hypersonic flow regime. From this solution an

explicit similarity expression for σ as a function of θc, M+ = M∞ and γ can be found.

For an axisymmetric conical flow recall that all flow variables are functions of the polar

angle θ only. By considering the axisymmetric form of (2.1.1) Rasmussen (1994) shows

that these equations may be reduced to form a single second-order ordinary differential
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equation for u(θ)

(
1− v2

ǎ2

)
d2u

dθ2
+ cot θ

du

dθ
+

(
2− v2

ǎ2

)
u = 0. (2.1.3a)

To obtain this equation we use v = du/dθ which is obtained from requiring that the

vorticity Ω = 1
x

(
v − du

dθ

)
= 0 and ǎ2, is the square of the local speed of sound and may

be expressed in terms of u. Following Rasmussen (1994) we can seek an approximate

analytical solution to (2.1.3a). This approach is equivalent to that followed by Hayes &

Probstein who also solved the axisymmetric form of (2.1.1) for the velocity potential. We

turn to the continuity equation in (2.1.1) and carrying out the x derivatives for a steady

axisymmetric conical flow we can obtain

dv

dθ
+ cot θv + 2u+

v

ρ

dρ

dθ
= 0. (2.1.3b)

We now set v dρ
dθ

= 0 in the above equation. This is correct on the cone surface where the

polar component of velocity v = 0. Away from the surface this can be interpreted as dρ
dθ

being small. We now are in effect making the constant density assumption for this flow.

(2.1.3b) thus becomes

du2

d2θ
+ cot θ

du

dθ
+ 2u = 0. (2.1.3c)

We can also note that the same equation may be obtained from (2.1.3a) by setting v2/ǎ2 =

0, as a linear approximation of the exact governing equation. Since u = cos θ satisfies

(2.1.3c) we can obtain the solution using the reduction of order method by seeking a

solution of the form u(θ) = Ǔ(θ) cos θ. Thus the solution that satisfies the boundary
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conditions at the shock may be obtained as

u(θ)

U0

= cos θ − (1− ε) cosσ sin2 σ

[
cos θ

cosσ
− 1 + cos θ ln

(
tan(σ/2)

tan(θ/2)

)]
, (2.1.3d)

v(θ)

U0

= − sin θ + (1− ε) cos β sin2 β

[
sin θ

cos β
+ cot θ + sin θ ln

(
tan(β/2)

tan(θ/2)

)]
. (2.1.3e)

For hypersonic flow over slender bodies we can define a similarity parameter Kσ = M∞σ,

such that in the limits σ → 0, θc → 0, and M∞ →∞, Kσ remains finite. This is called the

“hypersonic small-disturbance approximation”. On the cone surface v(θc) = 0. Keeping

only terms of order θ in (2.1.3e) we get

−θc
[
1− (1− ε)σ

2

θ2
c

]
= 0. (2.1.3f)

By using (2.1.2e) in the above equation we can obtain the following result

σ

θc
=

√
γ + 1

2
+

1

K2
c

, (2.1.3g)

where Kc ∼ M∞θc. Note that since Kc ∼ O(1), we get θs ∼ θc. Thus, we are now able

to prescribe the shock angle for a given cone angle and free-stream Mach number. Good

agreement between this approximate theory and the exact weak-shock solution for cones

is shown in Rasmussen (1994).

The basic flow solutions (2.1.2b) are not valid close to the surface of the cone, so we

introduce a boundary layer in this region. We define the Reynolds number as Re = ρ−U−L∗

µ−

and take it to be large. Since we are consider flow over a slender cone we take θc to be

small. This implies that θs will be also be small. The flow here satisfies the compressible

continuity, Navier-Stokes and energy equations in terms of non-dimensional coordinates

(x, r, φ) and Mach number M , just behind the shock. x and φ are as defined previously

and L∗r is the normal direction to the cone surface where r = a on the cone generatrix.
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The corresponding non-dimensional flow velocities, pressure, temperature and density are

(u, v, w), p, T , and ρ, respectively. Thus, neglecting terms of O(θc), the equations satisfied

by these quantities are

∂ρ

∂t
+

∂

∂x
(ρu) +

1

r

∂

∂r
(rρv) +

1

r

∂

∂φ
(ρw) = 0,

ρ
Du

Dt
=− ∂p

∂x
+

1

Re

{
∂

∂x

[
2µ
∂u

∂x
+

(
µ′ − 2µ

3

)
∇ · u

]
+

1

r

∂

∂r

[
µr

(
∂v

∂x
+
∂u

∂r

)]
+

1

r

∂

∂φ

[
µ

(
1

r

∂u

∂φ
+
∂w

∂x

)]}
,

ρ

(
Dv

Dt
− w2

r

)
=− ∂p

∂r
+

1

Re

{
∂

∂r

[
2µ
∂v

∂r
+

(
µ′ − 2µ

3

)
∇ · u

]
+

1

r

∂

∂φ

[
µ

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)]
+

∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂r

)]
+

2µ

r

(
∂v

∂r
− 1

r

∂w

∂φ
− v

r

)}
,

ρ

(
Dw

Dt
+
vw

r

)
=− 1

r

∂p

∂φ
+

1

Re

{
1

r

∂

∂φ

[
2µ

r

∂w

∂φ
+

(
µ′ − 2µ

3

)
∇ · u

]
+
∂

∂r

[
µ

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)]
+

∂

∂x

[
µ

(
∂w

∂x
+

1

r

∂u

∂φ

)]
+

2µ

r

(
∂w

∂r
+

1

r

∂v

∂φ
− w

r

)}
,

ρ
DT

Dt
=(γ − 1)M2Dp

Dt
+

1

PrRe

[
∂

∂x

(
µ
∂T

∂x

)
+

1

r

∂

∂r

(
rµ
∂T

∂r

)
+

1

r2

∂

∂φ

(
µ
∂T

∂φ

)]
+

(γ − 1)M2

Re
ΦT .

(2.1.4)

Here Pr is the Prandtl number, the viscosities µ and µ′ have been non-dimensionalised
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with respect to µ− and

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂r
+
w

r

∂

∂φ
,

∇ · u ≡ ∂u

∂x
+

1

r

∂

∂r
(rv) +

1

r

∂w

∂φ
,

ΦT ≡ 2µ

[(
∂u

∂x

)2

+

(
∂v

∂r

)2

+

(
1

r

∂w

∂φ
+
v

r

)2

+

1

2

{(
∂u

∂φ
+
∂w

∂x

)2

+

(
∂u

∂r
+
∂v

∂x

)2

+

(
1

r

∂v

∂φ
+
∂w

∂r
− w

r

)2
}]

+

(
µ′ − 2µ

3

)
(∇ · u)2 .

The non-dimensional temperature and viscosity on the cone surface is denoted by Tw

and µw. The boundary conditions are imposed at the cone surface where the flow is

coupled to the porous layer and at the shock where jump conditions need to be satisfied.

Following Seddougui & Bassom (1997) the only restriction imposed on the temperature

boundary condition is Tw >> 1, which is violated only for situations involving strong

cooling on the cone wall. Usually the wall temperature is taken to be Tw = TbTr, where

Tr is the adiabatic wall temperature given by Tr = 1 +
√
Pr γ−1

2
M2. Thus unless the

constant Tb is very small, Tw will be of O((γ − 1)M2) for both adiabatic walls (Tb = 1)

or isothermal walls. The analysis is unaffected by the particular choice of temperature-

viscosity law. The choice only affects bounds placed on various parameters of the problem

(see Section 2.4). Sutherland’s viscosity law (µw ∼ (1 + C)T
1/2
w ) is used henceforth.

2.2 Shock conditions

The conditions to be satisfied at the shock by a disturbance to the basic flow must

be now considered. They are derived in detail by Seddougui (1994). The main ideas

are summarised here. We consider a shock at θ = f(r, φ, t) and write θ = f(r, φ, t) − θ.

Under this transformation the governing flow equations may be transformed into jump

conditions at the shock. The basic flow solution (2.1.2b) satisfies the jump conditions at
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θ = 0. We assume there is a small disturbance just beneath the shock such that we can

write for example p = P+p̃, where P represents the known form of basic flow just beneath

the shock. The disturbance cannot propagate through the shock so just above the shock

we can write for example p = P , where P represents the basic flow just above the shock.

The shock will be perturbed from θ = σ and so we write f = σ+ f̃ . We restrict ourselves

to the linearised shock conditions which are obtained by substituting the disturbance

equations into the jump equations and neglecting non-linear terms. Seddougui (1994)

showed that although the basic flow is not uniform in the regions above and below the

shock, the jump conditions may be evaluated at the undisturbed shock location θ = σ

instead of θ = σ + f̃ .

The scales chosen in this problem are appropriate for acoustic (pressure) waves. As

shown by Cowley & Hall (1990) whenever an acoustic wave is incident on a shock, entropy

and vorticity waves are generated in addition to a reflected/transmitted acoustic wave.

The entropy/vorticity waves propagate in the direction of the mean flow with wavelengths

shorter than the acoustic wavelength. In our analysis we focus on the form of these

waves just below the shock and write all perturbations proportional to exp[i(αr + ν(θ −

σ) + nφ − Ωt)], where α and n are wavenumbers of the disturbance in the radial and

azimuthal directions, Ω is the frequency of the disturbance and ν, n are integers. We

let the disturbance be a linear combination of acoustic, vorticity and entropy waves and

denote the pressure amplitudes of the incident and reflected acoustic waves by p1 and p2

and their respective θ-wavenumbers by ν1 and ν2. Substitution of this form of disturbance

into the jump conditions at θ = σ will yield an expression involving p1 and p2. The limiting

process appropriate to the scalings chosen yield, to leading order, the required condition

to be satisfied at the shock as p1 + p2 = 0.
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2.3 Porous wall models

We will present results corresponding to porous surfaces used in previous experimental

investigations (Fedorov et al. 2003, Maslov 2003, Lukashevich et al. 2010). In all cases

the porous layer admittance Ay can be expressed in the form

Ay = −(φ0/Z0) tanh(Λh), (2.3.1)

where φ0 is the porosity and h is the thickness of the porous layer. The porous layer param-

eters are non-dimensionalised with respect to the boundary-layer displacement thickness

δ∗. Z0 and Λ are the characteristic impedance and propagation constant of an isolated

pore, respectively. Fedorov et al. (2006) give the following expressions for the porous

layer characteristics:

Z0 =

√
ρD/CD

M
√
Tw

and Λ =
iωM√
Tw

√
ρDCD, (2.3.2)

where ω is the frequency of disturbance propagation in the pore. These are functions of

the complex dynamic density ρD and complex dynamic compressibility CD. The precise

definitions of these quantities depends on the structure of the porous wall and are given

below for the cases investigated here. The wall boundary condition, in all cases, is then

given by

v = Ay (p− p−) , (2.3.3)

where p− = γ−1M−2.

2.3.1 Regular microstructure

Following Fedorov et al. (2001, 2006) we consider the porous layer on the cone surface

to be a sheet of thickness h∗ perforated with cylindrical blind holes of radius r∗p and equal
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Figure 2.4: Schematic of a typical regular microstructure model. Cylindrical pores of
thickness h∗, spaced s∗ apart may either have a circular cross-section (2.3.4) or a square
cross-section (2.3.6).

Figure 2.5: Schematic of the elementary cell of the random microstructure model (2.3.9),
taken from Fedorov et al. 2003b. Here d is the diameter of an individual fibre and b is
the width of a typical cell. These quantities can be used to obtain a typical pore radius
rp = 4d/(1 + π/4b) and porosity φ0 = 1− πd/4b (Fedorov et al. 2003b).
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spacing s∗ = r∗p
√
π/φ0 (see figure 2.4). This model takes into account gas rarefaction

effects. We have

ρD =
1

1− F (Bν , ζ)
, CD = 1 + (γ − 1)F (BE, ζ

√
Pr),

F (Bν , ζ) =
G(ζ)

1− 0.5Bνζ2G(ζ)
, F (BE, ζ

√
Pr) =

G(ζ
√

Pr)

1− 0.5BE(ζ
√

Pr)2G(ζ
√
Pr)

,


(2.3.4)

where

Bν = (2α−1
ν − 1)Kn, BE = [2γ(2α−1

E − 1)/((γ + 1)Pr)]Kn, G(ζ) =
2J1(ζ)

ζJ0(ζ)
, (2.3.5)

with ζ = rp
√

iωρwR/µw. Here J0,1 are Bessel functions of the first kind, αν and αE are

molecular accommodation coefficients, Kn is the Knudsen number and R is the Reynolds

number based on the boundary-layer displacement thickness of the gas flow.

2.3.2 Mesh microstructure

Following Lukashevich et al. (2010) we consider the porous coating on the cone surface

to comprise of several layers of stainless steel wire mesh as shown in figure 1.1c. A similar

model to the one described in Section 2.3.1 for a regular microstructure is employed.

Following Kozlov et al. (2005) we have different expressions for the complex dynamic

density and compressibility. Hence we can obtain the following expressions for the porous

layer characteristics for a square mesh microstructure:

ρD = 1/(1− F (ζ)), CD = 1 + (γ − 1)F (ζ̃),

F (ζ) = 1 + ζ2

∞∑
m=0

[
2

γ2
mβ

2
m

(
1− tanh(βm)

βm

)]
,

F (ζ̃) = 1 + ζ̃2

∞∑
m=0

[
2

γ2
mβ̃m

2

(
1− tanh(β̃m)

β̃m

)]
,


(2.3.6)
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where

γm = π

(
m+

1

2

)
, βm =

√
γ2
m − ζ2, β̃m =

√
γ2
m − ζ̃2, (2.3.7)

ζ =

√
iωρwã2

µw
R, and ζ̃ =

√
Prζ, (2.3.8)

with ã being the half-pore width (see figure 2.4). Following Lukashevich et al. (2010) gas

rarefaction effects are neglected in this model.

2.3.3 Random microstructure

Following Fedorov et al. (2003) we consider the porous layer on the cone surface to

have a random microstructure. Physically this type of coating represents felt metals that

comprise of a random network of cylindrical fibres. A similar model to the one used for the

regular microstructure is employed by modelling the microstructure based on elementary

cells as shown in figure 2.5. We have different expressions for the complex dynamic density

and compressibility. Fedorov et al. (2003b) give the following expressions for the porous

layer characteristics for flow over a felt metal microstructure:

ρD = a∞

(
1 +

g(λ1)

λ1

)
, CD = γ − γ − 1

1 + g(λ2)
λ2

,

g(λi) =

√
1 +

4a∞µ∗wλi
σ∗φ0r∗2p

, λ1 =
ia∞ρ

∗
wω
∗

φ0σ∗
, λ2 = 4Prλ1,

 (2.3.9)

with

r∗p =
πd∗

(1− φ0)(2− φ0)
. (2.3.10)

Here µ∗w, ρ∗w, and ω∗ are dimensional wall viscosity, wall density and frequency, respec-

tively. d∗ is the fibre diameter and σ∗ is the flow resistivity whose value is chosen to fit

the experimental data for flow over the felt metal. The tortuosity a∞ is taken to be unity.

Following Fedorov et al. (2003) gas rarefaction effects are neglected.
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2.3.4 Porous layer parameters and flow conditions

We now consider the variation of the magnitude of the porous layer admittance Ay

on two main parameters: characteristic pore-size Lp and porosity φ0. In figure 2.6a

we see the variation of |Ay| with Lp for the regular microstructure model (2.3.4) and

mesh microstructure model (2.3.6). Here Lp represents either the pore radius r∗p or half-

pore width ã∗, the porosity φ0 is fixed and the pores are assumed to be infinitely long

(h∗ >> r∗p). We can see that an increase in pore-size leads to a corresponding increase

in the magnitude of the porous wall admittance for both models. Figure 2.6b shows the

corresponding results for the random microstructure model (2.3.9). Here Lp represents

the typical pore radius r∗p (c.f. figure 2.5). We see that the variation of the porous wall

admittance with pore-size is small. By comparing figures 2.6a and 2.6b we see that for a

given pore-size and porosity the random microstructure model has the highest magnitude

of admittance, followed by the regular model and then the mesh model. In figure 2.7 we

show the variation of |Ay| with porosity φ0 for a fixed pore-size. We see that an increase in

porosity leads to a corresponding increase in the magnitude of the porous wall admittance

for all three models. Again we note that for a given porosity and pore-size the random

microstructure model has the highest magnitude of admittance followed by the regular

model and then the mesh model.

In order for the results of the asymptotic analysis carried out to be relevant to pub-

lished experimental studies the porous layer parameters and parameters for flow of a

perfect gas were chosen to correspond to the linear stability calculations and experiments

of Maslov (2003) and Fedorov et al. (2006). This will also enable a comparison of the

first mode results obtained here with the second mode results of these authors.

M− = 5.3, T ∗− = 56.4K, Pr = 0.708,
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Figure 2.6: Variation of the magnitude of the porous layer admittance Ay with charac-
teristic pore-size Lp(µm) and fixed porosity φ0 = 0.5. We show results for (a) the regular
microstructure model (2.3.4, ◦), mesh microstructure model (2.3.6, �) and (b) the random
microstructure model (2.3.9).
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Figure 2.7: Variation of the magnitude of the porous layer admittance Ay with porosity
φ0 for a fixed pore-size Lp = 50µm. We show results for (a) the regular microstructure
model (2.3.4, ◦), mesh microstructure model (2.3.6, �) and (b) the random microstructure
model (2.3.9).
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Re1 = 15.2× 106, Re = Re1L
∗, R =

√
Re,

Tw = Tad, Tad = 1 +
√
Pr

γ − 1

2
M2
−,

ρw =
1

Tw
, µw(Tw) =

1 + S

Tw + S
T 3/2
w , S =

110

T ∗−
.

Here Re1 is the unit Reynolds number taken to hold just behind the shock and the

boundary-layer displacement thickness is approximated using the Blasius length scale

δ∗ =
√
L∗/Re1. For the stability computations, the regular porous model parameters

are chosen as r∗p = 28.5µm, φ0 = 0.2 and h >> rp based on Maslov (2003) and Federov

et al. (2001). The last relation implies that Λh → ∞, and so our admittance equation

may be simplified to Ay = −φ0/Z0. This simplification was also made in Fedorov et

al. (2001). The porosity of the random microstructure (felt metal) is taken to be 0.75

and the fibre diameter is 30µm following Federov et al. (2003b). The porosity of the

mesh microstructure model is taken to be 0.8, and width of each pore section is taken to

be 100µm following Lukashevich et al. (2010). The results using these two models will

be compared with the regular microstructure model having a porosity of 0.2 and pore

radius of 30µm as regular porous models with higher porosity or pore-size have not been

investigated in experiments.

2.4 Triple-deck structure

The stability of the basic flow to Tollmien-Schlichting (first-mode) waves for Re >> 1

and M >> 1 is governed by a triple-deck structure. This formulation was used by

Cowley & Hall (1990) for flow over a wedge and by Duck & Hall (1989, 1990) for flow over

cylindrical bodies. It is assumed that the triple-deck structure lies in a weak interaction

region. Here weak interaction is defined by the parameter χ = M3
∞Re−1/2 << 1 (Brown

et al. 1991 and Stewartson 1964). For experiments conducted in a Mach 6 wind tunnel,

typical unit Reynolds numbers are Re1 ∼ 15× 106. For a typical test length of 0.5m, this
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gives χ ≈ 0.08 << 1. This result implies that our point of interest is far enough from the

nose of the cone to ensure that viscous-inviscid interaction between the boundary layer and

inviscid flow is small (Stewartson 1964). It was shown by Smith (1989) that an asymptotic

description of Tollmien-Schlichting waves can be obtained for wave directions sufficiently

oblique to lie outside the local wave-Mach-cone direction (tan θ >
√
M2
∞ − 1), where M∞

is the free-stream Mach number. In the limit of large Mach number, following Smith

(1989) Cowley & Hall (1990) gives the frequencies and the x and φ direction wavelengths

of the most rapidly growing waves as Re1/4µ
−1/4
w T

−3/4
w M−1/2, Re−3/8µ

3/8
w T

9/8
w M3/4, and

Re−3/8µ
3/8
w T

9/8
w M−1/4, respectively. Henceforth we take M− = M for convenience. These

fix the first-mode disturbances as short-scale fast disturbances. To adopt the classical

triple-deck formulation, we argue that at large Reynolds numbers, the normal direction

variation of our disturbances exhibit three main regions: lower deck which is the viscous

sublayer, the main deck which is the main boundary layer and the upper deck containing

potential flow. We can study how the growth rates of the oblique first-mode disturbances

are modified by the presence of the shock as the shock lies in the upper deck. For a fixed

free-stream Mach number and cone angle, the shock angle is shown to be θs ≈ θc. This

makes the thickness of the upper deck (where the shock is located) comparable with the

radius of the cone allowing us to capture the effects of the shock. We now follow Cowley

& Hall (1990) to formulate the appropriate asymptotic scalings. The conventional lower,

middle and upper scales are

Re−5/8µ5/8
w T 7/8

w M1/4, (2.4.1a)

Re−1/2µ1/2
w T 1/2

w , (2.4.1b)

Re−3/8µ3/8
w T 9/8

w M−1/4. (2.4.1c)

respectively. This is illustrated in figure 2.8. As stated, the first-mode disturbance
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Figure 2.8: Schematic showing the lower, middle and upper decks in relation to the shock.
Here ε = Re−1/8, and δ = Re−1/2.

wavelength (l) in the x-direction along the cone is of order

Re−3/8µ3/8
w T 9/8

w M3/4. (2.4.2)

Since the shock lies in the upper deck, from (2.1.2f) and (2.4.1c), and using θs is small we

see that

θs ∼ ε tanσ ∼ Re−3/8µ3/8
w T 9/8

w M−1/4, (2.4.3)

which from (2.4.2) implies that l ∼Mε tanσ. To neglect non-parallel effects we want the

wavelength l to be much less than the distance from the apex of the cone, L∗ = O(1).

Assuming σ << 1, we require

Mεσ << 1. (2.4.4)

From (2.1.2e) we can see that

ε = O

(
1

M2
+σ

2

)
. (2.4.5)
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From (2.1.2g) and (2.1.2h) we see that M+ ∼M−, so (2.4.4) becomes

σM >> 1. (2.4.6)

However for M2
+ > 0 in (2.1.2h) we require (neglecting O(ε2) terms) that

(γ − 1)(Mσ)2 < 2. (2.4.7)

Hence in order to consider the effect of the shock on the instability waves without effects

of non-parallelism we must make the assumption

(γ − 1) << 1, (2.4.8)

called the “Newtonian assumption”. In order to fix a scaling we use (2.4.7) to assume

that

(γ − 1)(Mσ)2 ∼ 1. (2.4.9)

Using Tw ∼ (γ − 1)M2 >> 1, Sutherlands viscosity law (µw ∼ T
1/2
w ) along with (2.4.5),

the shock interaction condition (2.4.3) becomes

M ∼ σ13/14Re3/14. (2.4.10)

The restriction (2.4.6) implies

σ >> Re−1/9, i.e. M >> Re1/9. (2.4.11)
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Pressure disturbances that develop in the lower deck generate a velocity perturbation

normal to the cone (and shock) in the upper deck. In order that the linearised shock

condition remains applicable we require the undisturbed velocity normal to the shock

(from the outer flow solution) to be larger than this generated velocity perturbation. From

Cowley & Hall (1990) the pressure perturbation is of order Re−1/4µ
1/4
w T

−1/4
w M−3/2 and

from the inviscid equations we can see that this generates a normal velocity perturbation

of order Re−1/4µ
1/4
w T

−1/4
w M−1/2 in the upper deck. From geometric considerations we can

show that the velocity normal to the shock is −εU0 sinσ. Thus we require

εσ >> Re−1/4µ1/4
w T−1/4

w M−1/2, (2.4.12)

or by using (2.4.5)

σ4M6 << Reµ−1
w Tw. (2.4.13)

Expressing µw and Tw in terms of M and using (2.4.10) in the above we can formulate

the following restrictions on the Mach number and shock angle

Re1/9 << M << Re7/37, Re−1/9 << σ << Re−1/37. (2.4.14)

The lower bounds are obtained from (2.4.11).

Typical wind tunnel experiments are conducted on 0.5m long 7◦ half-angle cone models

at a free stream Mach number M∞ ≈ 6 and unit Reynolds numbers Re1 ≈ 15×106. Using

(2.4.14) this requires that the shock angle σ be bounded as 9.85◦ < σ < 37.5◦ and the

lower bound on the Mach number behind the shock to be M ∼ 5.8. Using (2.1.3g) we

can calculate the experimental shock angle to be σ = 12.3◦ which lies within the range

of validity of the asymptotic analysis. From Section 2.3.4 we see that the typical Mach
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number behind the shock M− = 5.3 is reasonably close to the lower bound required for

the asymptotic analysis to be valid (M ∼ 5.8). The lower bound is attained when the

non-parallel assumption is violated.

Following Seddougui & Bassom (1997) we now restrict our attention to a location along

the cone surface where the non-dimensional radius a ∼ Re−3/8M−1/4µ
3/8
w T

9/8
w . This fixes

the size of the cone half-angle θc since sin(θc) = aL∗. This restriction also ensures that

the boundary layer thickness, O(Re−1/2L∗), is small compared to the cone radius allowing

the subsequent analysis to capture the effects of curvature on the stability problem. It is

convenient to scale out parameters such as Tw and µw as shown by Cowley & Hall (1990)

to simplify the analysis. We consider λ(x) = λ1 + . . . such that λ1 = λ̂x−1/2 is the leading

order neutral value of the boundary-layer skin-friction. λ̂ is taken to be equal to the

neutral Blasius solution value. This will make our problem valid for a weakly nonlinear

analysis. If we were to only consider the linear problem, then λ is a constant and can

also be scaled out of the problem as in Cowley & Hall (1990) and Seddougui & Bassom

(1997). Thus, the following scales are introduced

x = 1 + Re−3/8µ3/8
w T 9/8

w M3/4X,

a = Re−3/8µ3/8
w T 9/8

w M−1/4a,

t = Re−1/4µ1/4
w T 3/4

w M1/2τ.

(2.4.15)

These scales are fixed throughout the triple-deck structure.
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2.4.1 Lower deck

The lower deck is the region in which viscous effects are important. The non-linearity

of the problem appears here. The scalings here take the form

r − a = Re−5/8µ5/8
w T 7/8

w M1/4Y,

u ∼ Re−1/8µ1/8
w T 3/8

w M1/4U,

v ∼ Re−3/8µ3/8
w T 1/8

w M−1/4V,

w ∼ Re−1/8µ1/8
w T 3/8

w M−3/4W,

Ay ∼ Re−1/8µ1/8
w T 3/8

w M5/4Ay,

p ∼ γ−1M−2 +Re−1/4µ1/4
w T−1/4

w M−3/2P,

T ∼ Tw,

ρ ∼ T−1
w .

(2.4.16)

Substituting these expressions into the non-dimensional continuity and Navier-Stokes

equations give to leading order

UX + VY +
1

a
Wφ = 0,

Uτ + UUX + V UY +
W

a
Uφ = UY Y ,

Wτ + UWX + VWY +
W

a
Wφ = −1

a
Pφ +WY Y .

(2.4.17a)

In the hypersonic limit (M → ∞) the term PX does not appear at leading order. The

porous wall boundary condition is to be satisfied on the surface of the cone. In addition,

the solution here must match with the main deck in the limit Y →∞. Thus the necessary
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boundary conditions to be satisfied are

U = W = 0 and V = AyP on Y = 0,

U → λ(Y + A(X,φ, τ)), W → D/Y as Y →∞.
(2.4.17b)

Here A is a displacement function whose evolution will be obtained from the non-linear

stability analysis and D satisfies the equation DX = −Pφ/a.

2.4.2 Middle deck

The middle deck has the same thickness as the undisturbed boundary layer. Since

Tw >> 1 for M >> 1, there exists a thin transition region in which T is quickly reduced

to its free stream value of unity. Thus the middle deck consists of three regions (i) a high

temperature boundary layer region of thickness O(Re−1/2M−3/2) where T ∼ O(M2), (ii)

a thin region of O(Re−1/2) thickness where T ∼ O(1) and (iii) a small transition region

between the two. Similar solutions occur in all three regions, and we focus on region (i)

where the basic temperature is large and find the scalings here to be

r − a = Re−1/2µ1/2
w T 1/2

w y,

u ∼ U0(y) +Re−1/8µ1/8
w T 3/8

w M1/4AU0y,

v ∼ Re−1/4µ1/4
w T−1/4

w M−1/2AXU0,

w ∼ Re−1/4µ1/4
w T−1/4

w M−1/2DU0R0,

p ∼ Re−1/4µ1/4
w T−1/4

w M−3/2P,

ρ ∼ R0(y) +Re−1/8µ1/8
w T 3/8

w M1/4AR0y.

(2.4.18)

Here U0 and R0 are the non-dimensional velocity and density respectively of the unper-

turbed boundary layer flow. These may be obtained from solutions of the boundary layer

equations satisfying the conditions U0(y) → 1/(1 + ε2 tanσ2)1/2, R0(y) → 1 as y → ∞
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and U0(0) = 0, R0(0) = 1/Tw.

2.4.3 Upper deck

In the upper deck the basic flow quantities go to their values just below the shock. It

is here that the curvature effects are important. The flow in the upper deck can be scaled

as pressure-acoustic waves.

r = Re−3/8µ3/8
w T 9/8

w M−1/4r,

u ∼ 1 +Re−1/4µ1/4
w T−1/4

w M−3/2ũ,

v ∼ Re−1/4µ1/4
w T−1/4

w M−1/2ṽ,

w ∼ Re−1/4µ1/4
w T−1/4

w M−1/2w̃,

p ∼ Re−1/4µ1/4
w T−1/4

w M−3/2p̃,

ρ ∼ 1 +Re−1/4µ1/4
w T−1/4

w M−1/2ρ̃.

(2.4.19a)

Substituting the above into the governing inviscid equations then give us

ρ̃X + ṽr +
ṽ

r
+

1

r
w̃φ = 0,

ũX + p̃X = 0,

ṽX + p̃r = 0,

w̃X +
1

r
p̃φ = 0,

p̃X + ρ̃r = 0.

(2.4.19b)

These equations then reduce to

∂2p̃

∂r2
+

1

r

∂p̃

∂r
+

1

r2

∂2p̃

∂φ2
− ∂2p̃

∂X2
= 0. (2.4.19c)

The boundary conditions to be satisfied are obtained by matching the solution with the
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main deck as r → a, and by applying the necessary constraint at the location of the shock

(r = rs). The matching condition yields

p̃r = AXX and p̃ = P at r = a. (2.4.19d)

By considering linear waves beneath the shock (Section 2.2), Seddougui (1994) shows the

required shock condition to be

p̃ = 0 at r = rs. (2.4.19e)

In the absence of a shock, this condition will occur in the limit rs →∞.

2.4.4 Axisymmetric problem

Before proceeding to the stability problem we discuss the solution for axisymmetric

disturbances. Here the disturbances lose their φ co-ordinate dependence. This situation

is considered separately as now the Mach number can be completely scaled out of the

stability problem (Duck & Hall 1989). In the lower deck equations (2.4.17a), to leading

order, the pressure gradient term PX is not neglected. This ensures that a pressure term

is retained in the lower deck problem. The porous layer admittance now scales as

Ay = Re−1/8µ1/8
w T 3/8

w (M2 − 1)3/8Ay,

while the pressure perturbation scales as (M2−1)−1/4 instead of M−3/2. This necessitates

changes in the factors of M for u and ρ in the upper deck equations (2.4.19c). The analysis

follows that for non-axisymmetric disturbances with M replaced by appropriate powers

of (M2 − 1) throughout. The analysis of the axisymmetric problem is given in Section

3.4.



Chapter 3

Stability Problem

We proceed with analyzing the stability of the system of equations described in Chap-

ter 2. We adopt the method of Smith (1979a) who implemented a weakly nonlinear

analysis of an incompressible Blasius boundary layer to Tollmien-Schlichting waves. We

set up the nonlinear stability problem, from which the linear stability problem can be

recovered. The objective of the analysis is to monitor the streamwise development of the

Tollmien-Schlichting type (first-mode) disturbances. We consider disturbances propor-

tional to

E = exp[i(αX + nφ− Ωτ)], (3.0.1)

where α is the streamwise wavenumber, Ω is the frequency and n is the azimuthal

wavenumber which is an integer > 0. The subsequent analysis is strictly valid for n > 0,

with the special case of axisymmetric disturbances (n = 0) described in Section 3.4. In

this thesis, the focus is on the spatial evolution of small amplitude disturbances. Dis-

turbances that are spatially stable will have real values for the streamwise wavenumber

α. Such disturbances are said to be “neutrally stable”. These solutions of the governing

equations with real values for α and Ω for a particular choice of local cone radius a are

called neutral points. Existence of multiple neutral points will be demonstrated in Section

46
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4.1.1. Away from the linear neutral point, solutions for the streamwise wavenumber α

will be complex and disturbances can either grow or decay depending on the sign of its

imaginary part αi (Section 4.1.2). As spatially unstable disturbances (αi < 0) evolve

further away from a linear neutral point, nonlinear effects come into play. In this study

we perform a weakly nonlinear stability analysis. The key assumptions of the weakly

nonlinear theory is that we remain close to the linear neutral point such that the growth

rate is small. This implies that leading order dispersion relations can determined by the

linear analysis and nonlinear effects are included at higher order.

So we consider a weakly nonlinear disturbance that is allowed to develop in the vicinity

of a linear neutral point (real α,Ω with fixed n). If the relative amplitude of the distur-

bance in the lower deck is O(h), with h << 1, then the scaled amplitude A of the mode

will evolve on an O(h2) lengthscale. A lower bound on the possible size of h is obtained

from Hall & Smith (1984) who demonstrated that to neglect non-parallel effects we must

have

O(Re−3/32M3/16T 21/64
w ) << h << 1.

If the lower bound of this inequality is attained, then the lengthscale (x − 1) over

which the disturbance amplitude modulates, O(Re−3/8h−2), becomes identical to the

lengthscale over which non-parallelism of the basic flow occurs, O(h2). Due to our non-

dimensionalization we take the linear stability of the flow to occur at x = 1 and consider

a perturbation at the point

x = 1 + h2x2. (3.0.2a)

Since the skin friction is a function of x, it will also be slightly perturbed from its neutral
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value as

λ = λ1 + h2λ2, (3.0.2b)

where λ2 = x2
dλ
dx
|x=1. We fix the azimuthal wavenumber n and allow the frequency to

vary as

Ω = Ω1 + h2Ω2, (3.0.2c)

where Ω1 is the neutral value of the frequency obtained from the linear stability problem

(Section 3.1). To account for the slow streamwise modulation of the amplitude we now

introduce a new streamwise coordinate as

X̃ = h2X. (3.0.2d)

By the method of multiple scales we know that ∂
∂X
→ ∂

∂X
+ h2 ∂

∂X̃
. We now seek solu-

tions to our system of equations (2.4.17a) (lower deck) and (2.4.19c) (upper deck). The

perturbations imply that for h << 1 we seek solutions of the form

U = λ1(1 + h2λ2)Y + hU1 + h2U2 + h3U3 +O(h4),

(V,W, P,A, p̃) =
3∑
j=1

hj(Vj,Wj, Pj, Aj, p̃j) +O(h4).
(3.0.3)

Substitution of (3.0.3) into (2.4.17a, 2.4.19c) leads to a hierarchy of problems in increasing

orders of h. At O(h) we get

U1X + V1Y +
1

a
W1φ = 0, (3.0.4a)

U1τ + Y U1X + V1 = U1Y Y , (3.0.4b)
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W1τ + YW1X = −1

a
P1φ +W1Y Y , (3.0.4c)

p̃1rr +
1

r
p̃1r +

1

r2
p̃1φφ − p̃1XX = 0. (3.0.4d)

At O(h) the boundary conditions (2.4.17b, 2.4.19d, 2.4.19e) become

Y = 0 : U1,W1 = 0, V1 = AyP1, (3.0.5a)

Y =∞ : U1 → λ1A1, W1 → D1/Y, (3.0.5b)

r = rs : p̃1 = 0, (3.0.5c)

r = a : p̃1 = P1, p̃1r = A1XX . (3.0.5d)

At O(h2) we get

U2X + V2Y +
1

a
W2φ = 0, (3.0.6a)

U2τ + Y U2X + U1U1X + V1U1Y + V2 +
1

a
W1U1φ = U2Y Y , (3.0.6b)

W2τ + YW2X + V1W1Y +
1

a
W1W1φ + U1W1X = −1

a
P2φ +W2Y Y , (3.0.6c)

p̃2rr +
1

r
p̃2r +

1

r2
p̃2φφ − p̃2XX = 0. (3.0.6d)

At O(h2) the boundary conditions (2.4.17b, 2.4.19d, 2.4.19e) become

Y = 0 : U2,W2 = 0, V2 = AyP2, (3.0.7a)

Y =∞ : U2 → λ1A2, W2 → D2/Y, (3.0.7b)

r = rs : p̃2 = 0, (3.0.7c)

r = a : p̃2 = P2, p̃2r = A2XX . (3.0.7d)
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At O(h3) we get

U3X + V3Y +
1

a
W3φ = −U1X̃ , (3.0.8a)

U3τ + Y (U3X + U1X̃) + U1U2X + U1X(λ2Y + U2)

+ V1(λ2 + U2Y ) + V2U1Y + V3 +
1

a
W1U2φ +

1

a
W2U1φ = U3Y Y , (3.0.8b)

W3τ + Y (W3X +W1X̃) + U1W2X +W1X(λ2Y + U2)

+ V1W2Y + V3 +
1

a
W2W1φ +

1

a
W1W2φ + V2W1Y = −1

a
P3φ +W3Y Y , (3.0.8c)

p̃3rr +
1

r
p̃3r +

1

r2
p̃3φφ − p̃3XX − 2p̃1XX̃ = 0. (3.0.8d)

At O(h3) the boundary conditions (2.4.17b, 2.4.19d, 2.4.19e) become

Y = 0 : U3,W3 = 0, V3 = AyP3, (3.0.8e)

Y =∞ : U3 → λ1(A3 + λ2A1), W3 → D3/Y, (3.0.8f)

r = rs : p̃3 = 0, (3.0.8g)

r = a : p̃3 = P3, p̃3r = A3XX + 2A1XX . (3.0.8h)

We now address our problem at each order of h in turn.

3.1 First-order problem

The linear stability problem is described by the equations at O(h). The analysis fol-

lows that of Seddougui & Bassom (1997). They obtained the eigenrelations that govern

the linear stability of the flow for the solid wall case. This analysis is extended in a

straightforward manner for the porous wall case by incorporating the porous wall bound-

ary condition. We seek solutions to (3.0.4) of the form

(U1, V1,W1) = (U11(X̃, Y ), V11(X̃, Y ),W11(X̃, Y ))E + (c.c.), (3.1.1a)
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(P1, A1) = (P11(X̃), A11(X̃))E + (c.c.), (3.1.1b)

p̃1 = p̃11(X̃, r)E + (c.c.). (3.1.1c)

where E is given by (3.0.1) and (c.c.) represents the complex conjugate of the form Ac11E
−1,

with Ac11 the complex conjugate of A11. Substitution of (3.1.1c) in (3.0.4d) gives

d2p̃11

dr2
+

1

r

dp̃11

dr
+
(
α2 − n2/r2

)
p̃11 = 0, (3.1.2)

the solution of which is p̃11 = C1In(iαr)+C2Kn(iαr), where In and Kn are modified Bessel

functions of order n. Applying (3.0.5c) and the second condition from (3.0.5d) gives

p̃11 = −iαA11
In(iαrs)Kn(iαr)− In(iαr)Kn(iαrs)

I ′n(iαa)Kn(iαrs)− In(iαrs)K ′n(iαa)
. (3.1.3)

Substitution of (3.1.1a) and (3.1.1b) in (3.0.4a) to (3.0.4c) and making the transformation

ξ = ∆1/3Y + ξ0,

where ξ0 = −iΩ∆−2/3, (∆ = iα) gives

∆U11 + ∆1/3V11ξ + (∆n/αa)W11 = 0, (3.1.4a)

(−iΩ + ∆Y )U11 + V11 = ∆2/3U11ξξ, (3.1.4b)

(−iΩ + ∆Y )W11 = (−∆n/αa)P11 + ∆2/3W11ξξ. (3.1.4c)

Performing d
dξ

(3.1.4b) + d
dξ

(3.1.4c) × (n/α)− (3.1.4a) simplifies our system of lower deck

equations to the following single equation

(−iΩ + ∆Y )∆1/3(U11 + (n/αa)W11)ξ = ∆(U11 + (n/αa)W11)ξξξ.
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This may be rewritten as

(U11 + (n/αa)W11)ξξξ − ξ(U11 + (n/αa)W11)ξ = 0

which we can immediately recognize as Airy’s equation. The solution we require is the

one which is bounded as Y →∞. Thus we have

(U11 + (n/αa)W11)ξ = B1Ai(ξ), (3.1.5a)

U11 + (n/αa)W11 = B1

∫ ξ

ξ0

Ai(s)ds. (3.1.5b)

Here B1 is an unknown complex constant. Using solution (3.1.5) and applying the bound-

ary condition (3.0.5a) (when Y → 0) to (3.1.4b) and (3.1.4c) we can determine

B1 =
∆−2/3

Ai′(ξ0)
P11

(
Ay +

∆n2

α2a2

)
. (3.1.6a)

Applying the condition (3.0.5b) (when Y →∞) gives us

A11 = B1

∫ ∞
ξ0

Ai(s)ds, (3.1.6b)

which is a result of importance in the subsequent nonlinear analysis relating B1 to the

amplitude A11. Finally using our solution for B1 and applying the first boundary condition

in (3.0.5d) (when r = a) gives us a dispersion relation that relates the wavenumbers with

the frequency. Thus the required equation that governs the linear stability of our flow to

infinitesimal first mode disturbances is

Ai′(ξ0)∫∞
ξ0

Ai(ξ)dξ
= (iα)1/3

[
Ay +

in2

αa2

]
In(iαrs)Kn(iαa)− In(iαa)Kn(iαrs)

In(iαrs)K ′n(iαa)− I ′n(iαa)Kn(iαrs)
. (3.1.7)
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This eigenrelation (3.1.7) is valid for non-axisymmetric disturbance modes. The corre-

sponding relation for axisymmetric disturbances is given in Section 3.4. The solid wall

case is recovered by simply setting Ay = 0 in (3.1.7). Solutions to this equation that

have real α and Ω are said to be “neutrally stable” solutions i.e., they do not grow in

space or time. These solutions can be represented as curves in the (α, a) parameter space

and (Ω, a) parameter space. The presence of the shock allows multiple neutral modes.

Spatially varying solutions lie on either side of the neutral curves, and the sign of αi, the

imaginary part of the streamwise wavenumber α, determines whether the flow is stable

or unstable in these regions. Solutions for these complex wavenumbers govern the spatial

stability of the flow and by comparing results between the solid and porous wall cases

(Section 4.1) we can determine the effect of the porous wall on the linear stability of the

flow.

3.2 Second-order problem

We now proceed to the nonlinear stability of the problem and begin with the equations

at O(h2) (3.0.6). We seek solutions here in the form of

(U2, V2,W2) = (U22(X̃, Y ), V22(X̃, Y ),W22(X̃, Y ))E2

+ (U20(X̃, Y ), V20(X̃, Y ),W20(X̃, Y )) + (c.c.),

(P2, A2) = (P22(X̃), A22(X̃))E2 + (P20(X̃), A20(X̃)) + (c.c.),

p̃2 = p̃22(X̃, r)E2 + p̃20(X̃) + (c.c.),

(3.2.1)

where E is given by (3.0.1) and (c.c.) represents the complex conjugate of the form Ac22E
−2.

We can now proceed to substitute (3.2.1) into (3.0.6) and (3.0.7). We begin by looking
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at the upper deck problem (3.0.6d). We then obtain

(
d2p̃22

dr2
+

1

r

dp̃22

dr
−
[
(2iα)2 +

(2n)2

r2

]
p̃22

)
E2 +

d2p̃20

dr2
+

1

r

dp̃20

dr
= 0, (3.2.2a)

the solutions to which are

p̃22 = C21I2n(2iαr) + C22K2n(2iαr), (3.2.2b)

p̃20 = C20 + C21 ln(r). (3.2.2c)

3.2.1 Second-order terms

We now turn to the lower deck equations (3.0.6a), (3.0.6b) and (3.0.6c) and collect

terms that are proportional to E2 to yield

2∆U22 + V22Y +
1

a
2∆W22 = 0,

−2iΩU22 + ∆U2
11 + Y (2∆U22) + V11U11Y + V22 +

in

α
U11W11 = U22Y Y ,

−2iΩW22 + Y (2∆W22) + V11W11Y +
in

α
W 2

11 + ∆U11W11 = −2in

a
P22 +W22Y Y .

(3.2.3)

Applying the transformation in ξ to (3.2.3) we obtain

2∆U22 + V22ξ∆
1/3 + 2

∆n

αa
W22 = 0, (3.2.4a)

2(∆Y − iΩ)U22 + ∆U2
11 + V11U11ξ∆

1/3 + V22 +
∆n

αa
W11U11 = ∆2/3U22ξξ, (3.2.4b)

2(∆Y − iΩ)W22 + V11W11ξ∆
1/3 +

∆n

αa
W 2

11 + ∆W11U11 = −2
∆n

αa
P22 + ∆2/3W22ξξ.

(3.2.4c)

We can now proceed to eliminate the second-order pressure and velocity terms. Recall

that first-order terms are now known from our analysis in Section 3.1. We first take
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d
dξ

(3.2.4b) to obtain

2(∆Y − iΩ)U22ξ∆
1/3 + 2∆4/3U11U11ξ + 2U22∆ + ∆2/3(V11U11ξξ + V11ξU11ξ) + ∆1/3V22ξ

+
∆n

αa
(W11U11ξ +W11ξU11)∆1/3 = ∆U22ξξξ, (3.2.5a)

and subtracting from it (3.2.4a) we get

2(∆Y − iΩ)U22ξ∆
1/3 + 2∆4/3U11U11ξ + ∆2/3(V11U11ξξ + V11ξU11ξ)

+
∆n

αa
(W11U11ξ +W11ξU11)∆1/3 − 2

∆n

αa
W22 = ∆U22ξξξ. (3.2.5b)

Now we take (n/αa) d
dξ

(3.2.4c) to obtain

2(∆Y − iΩ)
n

αa
W22ξ + 2

∆n

αa
W22 + ∆2/3 ∆n

αa
(V11W11ξξ +W11ξV11ξ)

+2∆4/3

(
∆n

αa

)2

W11W11ξ + ∆4/3 ∆n

αa
(W11U11ξ +W11ξU11) =

∆n

αa
W22ξξξ, (3.2.5c)

and add it to (3.2.5b), use (∆Y − iΩ)∆1/3 = ∆ξ along with some rearranging of terms to

obtain a single equation

(
U22ξξξ +

∆n

αa
W22ξξξ

)
− 2ξ

(
U22ξ +

∆n

αa
W22ξ

)
= 2∆1/3

(
U11U11ξ +

(
∆n

αa

)2

W11W11ξ

)

+ ∆1/3
{
V11

(
U11ξξ +

n

αa
W11ξξ

)
+ V11ξ

(
U11ξ +

n

αa
W11ξ

)}
+ 2∆1/3

(
∆n

αa
W11U11ξ +

∆n

αa
W11ξU11

)
. (3.2.5d)

Since

d

dY

(
U11 +

∆n

αa
W11

)2

= 2∆1/3

(
U11U11ξ +

(
∆n

αa

)2

W11W11ξ +
∆n

αa
W11U11ξ

+
∆n

αa
W11ξU11

)
,
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we can simplify (3.2.5d) to finally obtain

(
U22ξξξ +

∆n

αa
W22ξξξ

)
− 2ξ

(
U22ξ +

∆n

αa
W22ξ

)
= ∆1/3F 2

11ξ + ∆−1/3 {V11F11ξξ + V11ξF11ξ} .

(3.2.5e)

Here we define

F11 = U11 +
∆n

αa
W11,

and from (3.1.5a) and (3.1.5b) we know that

F11 = B1

∫ ξ

ξ0

Ai(s)ds,

F11ξ = B1Ai(ξ) and

F11ξξ = B1Ai′(ξ).

What remains to be found is an expression for the first-order vertical velocity term.

From the first-order continuity equation (3.1.4a) we can see that

∆1/3V11ξ = −∆F11 = −∆B1

∫ ξ

ξ0

Ai(s)ds.

Integrating we obtain

V11 = V11(ξ0)−B1∆2/3

∫ ξ

ξ0

∫ ξ2

ξ0

Ai(ξ1)dξ1dξ2. (3.2.6a)

For the solid wall problem V11(ξ0) = 0. In this problem we know that V11(ξ0) = AyP11.
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So the RHS of (3.2.5e) becomes

∆1/3B2
1

[
Ai(ξ)

∫ ξ

ξ0

Ai(s)ds− Ai′(ξ)

∫ ξ

ξ0

∫ ξ2

ξ0

Ai(ξ1)dξ1dξ2 + Ay

(
Ai′(ξ0)

Ay + ∆n2

α2a2

)
Ai′(ξ)

]
,

(3.2.6b)

where we have eliminated P11 using (3.1.6a). If we use the identity

−
∫ ξ

ξ0

∫ ξ2

ξ0

Ai(ξ1)dξ1dξ2 = Ai′(ξ)− Ai′(ξ0)− ξ
∫ ξ

ξ0

Ai(ξ1)dξ1, (3.2.6c)

(which can be shown by using integration by parts) we can rewrite (3.2.6b) as

∆1/3B2
1

[
Ai(ξ)

∫ ξ

ξ0

Ai(s)ds+ [Ai′(ξ)]2 − Ai′(ξ)Ai′(ξ0)[1− AyP1]− ξAi(ξ)

∫ ξ

ξ0

Ai(ξ1)dξ1

]
.

(3.2.6d)

Here we define P1 = (Ay + ∆n2

α2a2
)−1 for simplicity. Finally we define F22 =

(
U22 + n

αa
W22

)
and obtain the following equation that describes the nonlinear second-order lower-deck

problem

F22ξξξ − 2ξF22ξ = ∆1/3B2
1

[
Ai(ξ)

∫ ξ

ξ0

Ai(s)ds+ [Ai′(ξ)]2 − Ai′(ξ)Ai′(ξ0)[1− AyP1]

− ξAi(ξ)

∫ ξ

ξ0

Ai(ξ1)dξ1

]
. (3.2.7)

The solution to (3.2.7) may be obtained as the superposition of the homogeneous solution

and particular integral. If we define a new variable ξ̂ = 21/3ξ then the homogeneous solu-

tion may be easily obtained as B2Ai(ξ̂), where B2 is a complex constant. The appropriate

form of the particular integral was given by Smith (1979a) allowing modifications for the
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porous wall boundary condition. Thus the complete solution to (3.2.7) is

F22ξ = B2Ai(ξ̂) + ∆1/3B2
1

[
Fp(ξ) + Ai′(ξ̂)

∫ ξ

ξ0

Ai(ξ1)dξ1

]
, (3.2.8a)

where

Fp(ξ) = Ai(ξ̂)

∫ ξ̂

ξ̂0

dq

Ai2(q)

∫ q1

∞
Ai(q2)R(q2)dq2, (3.2.8b)

R(ξ̂) = −2−2/3
[
2Ai(ξ)Ai′′(ξ) + (1− AyP1)Ai′(ξ0)Ai′(ξ)

]
. (3.2.8c)

We note here that by setting Ay = 0 in the expressions for Fp(ξ) and R(ξ̂), we obtain the

expressions of Smith (1979a). We can integrate (3.2.8a) once to obtain the solution to

the second-order lower-deck problem as

F22 = B2
1

∫ ξ

ξ0

H(t) +B2

∫ ξ

ξ0

Ai(21/3t)dt, (3.2.8d)

where

H(ξ) = ∆1/3

(
Fp(ξ) + Ai′(ξ)

(∫ ξ

ξ0

Ai(s)ds

))
= ∆1/3H. (3.2.8e)

Here we also state an useful result obtained by differentiating (3.2.8e) and evaluating it

at ξ = ξ0:

[dH
dξ

]
ξ=ξ0

=
21/3

Ai(ξ̂0)

∫ ξ̂0

∞
Ai(q2)R(q2)dq2 + Ai′(ξ0)Ai(ξ0). (3.2.8f)

3.2.2 Mean flow terms

We return to our O(h2) equations (3.0.6) and recall that the substitution of (3.2.1)

leads to mean flow terms such as A20. So we now proceed to collect all terms at O(E0)
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to obtain

V20Y = 0, (3.2.9a)

P20Y = 0, (3.2.9b)

V11U
c
11Y + V c

11U11Y + V20 +
in

α
(U11W

c
11 −W11U

c
11) = U20Y Y , (3.2.9c)

V11W
c
11Y + V c

11W11Y + ∆U c
11W11 −∆U11W

c
11 = W20Y Y . (3.2.9d)

We add (3.2.9c) to (n/αa)(3.2.9d) to obtain

V20 −
(
U20Y Y +

n

αa
W20Y Y

)
= −V11

(
U11Y +

n

αa
W11Y

)c
− {c.c.}. (3.2.10a)

Integrating (3.2.9a) we see that V20 =constant= V20(Y = 0) = AyP20, the value on the

wall. For the solid case V20 = 0. So returning to (3.2.10a) and making the transformation

in ξ we obtain

U20ξξ +
n

αa
W20ξξ = ∆−2/3

[
AyP20 + V11∆c1/3

[
U11ξ +

n

αa
W11ξ

]c
+ {c.c.}

]
. (3.2.10b)

Using (3.2.6a) and the conjugate of (3.1.5a) and defining a new function

f ∗(ξ) =∆2/3B1B
c
1

[(
AyP1Ai(ξ0)−

∫ ξ

ξ0

∫ ξ2

ξ0

Ai(ξ1)dξ1dξ2

)
+ AyP20

]
(∆c)1/3 Aic(ξ)

+ {c.c.}, (3.2.10c)

we can write (3.2.10b) tidily as

U20ξξ +
n

αa
W20ξξ = ∆−2/3f ∗(ξ). (3.2.11a)
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Integrating (3.2.11a) twice we can then obtain the mean flow solution as

F20 = U20 +
n

αa
W20 = ∆−2/3

∫ ξ

ξ0

∫ ξ2

∞
f ∗(ξ1)dξ1dξ2. (3.2.11b)

3.2.3 Second-order problem solution

We have now obtained solutions to the lower-deck problem at O(E2) and O(E0). To

obtain a complete solution to the second-order problem we need to match these solutions

with those obtained from the upper-deck problem. This procedure is similar to the linear

analysis of Section 3.1 the end result of which was the eigenrelation (3.1.7). A similar

procedure is carried out here, at the end of which, we will obtain a relationship between

B1 and B2, the complex constants at each order. So we turn to the upper deck solutions.

We begin with (3.2.2b), the solution at O(E2). The appropriate boundary conditions to

be satisfied are

p̃22(rs) = 0, p̃22(a) = P22, p̃22r(a) = −4α2A22.

We can then obtain the particular solution for the upper deck pressure term p̃22 as

p̃22(r) = −2iαA22
I2n(2iαrs)K2n(2iαr)− I2n(2iαr)K2n(2iαrs)

I ′2n(2iαa)K2n(2iαrs)− I2n(2iαrs)K ′2n(2iαa)

= −2iαA22G2(r). (3.2.12)

We now turn to the O(E0) upper deck problem and see that P20 remains arbitrary as

matching to the upper deck solution (3.2.2c) gives p̃20(a) = C21 ln(a/rs) = P20. So without

loss of generality we can set P20 = 0 for the remainder of the analysis. This also implies

that V20 = 0. Thus the porous wall does not influence the mean flow perturbations.

We now return to (3.0.6) and apply the boundary condition at Y = 0 (ξ = ξ0) to
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(3.0.6b) and (3.0.6c) and combining them gives,

F22Y = P22

[
Ay + 2

∆n2

αa2

]
+ AyP11F11Y . (3.2.13a)

By transforming variables to ξ and using (3.1.5a) we obtain

P22

[
Ay + 2

in2

αa2

]
+ ∆1/3B1Ai(ξ0)AyP11 = ∆2/3F22ξξ. (3.2.13b)

Now we apply the boundary condition as ξ → ∞. We see that F22|ξ→∞ = A22. Thus by∫∞
ξ

(3.2.8a) we get

A22 = B22−1/3

∫ ∞
ξ̂0

Ai(ξ1)dξ1 + ∆1/3B2
1

[∫ ∞
ξ0

Fp(ξ) +

∫ ∞
ξ0

Ai′(ξ2)

∫ ξ2

ξ0

Ai(ξ1)dξ1dξ2

]
= B22−1/3

∫ ∞
ξ̂0

Ai(ξ1)dξ1 +B2
1

∫ ∞
ξ0

H(ξ)dξ, (3.2.13c)

by using (3.2.8e). Now d
dξ

(3.2.8a)|ξ=ξ0 and using (3.2.8f) leads to

F22ξξ(ξ0) = 21/3B2Ai′(ξ̂0) + ∆1/3B2
1

[
dH

dξ

]
ξ=ξ0

. (3.2.13d)

We know that P22 = −2iαA22G2 and substituting in (3.2.13c) we can express the second

order pressure term as

P22 = −2iαG2

[
B
−1/3
22

∫ ∞
ξ̂0

Ai(ξ1)dξ1 +B2
1

∫ ∞
ξ0

H(ξ)dξ

]
.

Using this result and (3.2.13d) in (3.2.13b) gives

[(
Ay +

2in2

αa2

){
−2iαG2

[
B22−1/3

∫ ∞
ξ̂0

Ai(ξ1)dξ1 +B2
1∆1/3

∫ ∞
ξ0

H(ξ)dξ

]}
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+ ∆1/3B1Ai(ξ0)Ay (−∆A11G1)

]
=

[
21/3B2Ai′(ξ̂0) + ∆1/3B2

1

dH

dξ
(ξ0)

]
∆2/3 (3.2.14a)

Here we have redefined (3.1.3) as p11 = −∆A11G1(a). We can simplify (3.2.14a) and make

use of (3.1.6b) to obtain

B2

{
25/3 in2

αa2
(iα)1/3G2

∫ ∞
ξ̂0

Ai(ξ1)dξ1 + 21/3Ai′(ξ̂0)

}
+B2

{
22/3(iα)1/3G2

∫ ∞
ξ̂0

Ai(ξ1)dξ1

}
Ay = −B2

1

{
(iα)1/3dH

dξ
(ξ0)+

4in2

αa2
G2(iα)2/3

∫ ∞
ξ0

H(ξ)dξ

}
−

B2
1

{
2G2(iα)2/3

∫ ∞
ξ0

H(ξ)dξ +G1(iα)2/3Ai(ξ0)

∫ ∞
ξ0

Ai(s)ds

}
Ay (3.2.14b)

In terms of predefined constants (see Appendix A) we can write the above as

B2

{
2

in2

α2/3a2
G2T13 − T14

}
+B2

{
α1/3G2T13

}
Ay

= −B2
1α

1/3

{
T7 + 2

in2

α2/3a2
G2T12 +

[
α1/3G2T12 + T2

G1

2

]
Ay

}
. (3.2.14c)

The equation (3.2.14c) relates B2 to B2
1 . This completes our analysis of the second order

nonlinear stability problem.

3.3 Third-order problem

We now turn to our third and final system of equations (3.0.4c) and boundary condi-

tions (3.0.5c) at O(h3). The analysis at this order will reveal an evolution equation for

the unknown amplitude function A11(X̃). The coefficients of the terms in this equation

will be complex and they will be evaluated numerically. This in turn will allow us to

determine the stabilizing or destabilizing effects of nonlinearity on the flow. We proceed
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by seeking solutions of the form

A3 = A31E + A32E
2 + A33E

3 + Ac31E
−1 + Ac32E

−2 + Ac33E
−3 + A30, (3.3.1)

with similar expansions for U3, V3,W3, P3 and p̃3. Here E is given by (3.0.1).

3.3.1 Lower-deck problem

We begin with the lower-deck equations and substitute our solutions of the form (3.3.1)

in (3.0.8a), (3.0.8b) and (3.0.8c). We then collect all terms of O(E). This gives us the

following system of equations that describe the lower deck problem.

∆U31 + V3Y +
in

a
W31 = −∂U11

∂X̃
, (3.3.2a)

− iΩ2U11 + U31(∆Y − iΩ1) + Y (U11X̃ + ∆λ2U11) + ∆(U c
11U22 + U11U20) + λ2V11

+ V22U
c
11Y + V c

11U22Y + V11U20Y + V20U11Y + V31

+
in

a
[2U22W

c
11 −W22U

c
11 +W20U11] = U31Y Y , (3.3.2b)

− iΩ2W11 + (−iΩ1 + ∆Y )W31 + Y (W11X̃ + ∆λ2W11) + ∆(2U c
11W22 +W11U20 −W c

11U22)

+ V11W20Y + V c
11W22Y + V20W11Y + V22W

c
11Y

+
in

a
[W c

11W22 +W20W11] = − in

a
P31 +W31Y Y . (3.3.2c)

We will now eliminate the unknown pressure and velocity terms and reduce the system

to a single equation in the usual manner. First we take ∂
∂Y

(3.3.2c) to get

(−iΩ1 + ∆Y )W31Y + ∆W31 − iΩ2W11Y + Y

[
∂

∂Y

(
∂W11

∂X̃

)
+ ∆λ2W11Y

]
+

(
∂W11

∂X̃
+ ∆λ2W11

)
+ ∆ [2U c

11W22Y + 2U c
11YW22 −W c

11YU22 −W c
11U22Y +W11YU20

+W11U20Y ] + V11YW20Y + V11W20Y Y + V20W11Y Y + V c
11YW22Y + V c

11W22Y Y + V22YW
c
11Y +
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V22W
c
11Y Y +

in

a
[W c

11W22Y +W c
11YW22 +W20YW11 +W20W11Y ] = W31Y Y Y . (3.3.2d)

Then we take ∂
∂Y

(3.3.2b) and eliminate V31Y using (3.3.2a) to get

(−iΩ1 + ∆Y )U31Y − iΩ2W11Y + Y

[
∂

∂Y

(
∂U11

∂X̃

)
+ ∆λ2U11Y

]
+ ∆λ2U11

+ ∆ [U c
11YU22 + U c

11U22Y + U11YU20 + U11U20Y ] + λ2V11Y

+ V22YU
c
11Y + V22U

c
11Y Y + V11YU20Y + V11U20Y Y + V c

11YU22Y + V c
11U22Y Y + V20U11Y Y

− in

a
[2U22YW

c
11Y + 2U22W

c
11Y −W22YU

c
11 −W22U

c
11Y +W20YU11 +W20U11Y ] = U31Y Y Y .

(3.3.2e)

Now performing n
αa

(3.3.2d)+(3.3.2e) and rearranging terms we get

− iΩ2
∂

∂Y
F11 −

∂U11

∂X̃
+ λ2

∂

∂Y
V11 +

∂

∂Y
(∆λ2Y F11) +

∂

∂Y

(
Y
∂F11

∂X̃

)
+ ∆

∂

∂Y
(F c

11F22)

+ ∆
∂

∂Y
(F20F11) +

∂

∂Y
(V11F20Y + V c

11F22Y + V22F
c
11Y + V20F11Y )

=
(
U31Y Y Y +

n

αa
W31Y Y Y

)
− i(αY − Ω)

(
U31Y +

n

αa
W31Y

)
, (3.3.2f)

where F11 and F22 have been defined previously. To obtain (3.3.2f) we had the term ∂U11

∂X̃

added and subtracted from the RHS. We now make the transformation in ξ and define

F31 = αU31 + n
a
W31. This allows us to express our third-order lower-deck problem as

∂F 3
31

∂3ξ
− ξ ∂F31

∂ξ
= i

∂U11

∂X̃
−∆−2/3∂G

∂ξ
− Ω2F11ξ∆

1/3, (3.3.3a)

where we define a new function G(ξ) as

G(ξ) = −α

{
λ2V11 + ∆F c

11F22 + ∆F20F11 + ∆2/3λ2

(
ξ − ξ0

)
F11 + ∆−1/3

(
ξ − ξ0

)
F11X̃
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+∆1/3V11F20ξ + ∆1/3V c
11F22ξ + [∆1/3]cV22F

c
22ξ

}
.

(3.3.3b)

The boundary conditions that need to be satisfied by (3.3.3a) may be obtained from

(3.0.8e) and (3.0.8f) as

F31(ξ0) = 0, V31 = AyP31, (3.3.3c)

F31(ξ →∞)→ λ1(A31 + λ2A11). (3.3.3d)

Thus (3.3.3a) along with (3.3.3c) and (3.3.3d) define the third-order lower-deck problem.

We can observe that the homogeneous form of this problem is also satisfied by the linear

solution (3.1.5). Thus we need a compatibility condition that must hold to ensure the

validity of the inhomogeneous solution. This is obtained from the adjoint system of the

problem as demonstrated by Hall & Smith (1982).

3.3.2 Upper-deck problem

We now turn to the upper-deck problem at O(h3), (3.0.8d) to obtain a solution of the

upper deck pressure p̃31. We substitute (3.3.1) into (3.0.8d) and (3.0.8g), (3.0.8h) and col-

lect terms proportional to E. This gives us an inhomogeneous equation and corresponding

boundary conditions as follows:

p̃31rr +
1

r
p̃31r −

(
n2

r2
− α2

)
p̃31 = 2α2A11X̃G1(r), (3.3.4a)

p̃31(rs) = 0, (3.3.4b)

p̃31(a) = P31, (3.3.4c)

∂p̃31

∂r

∣∣∣∣
r=a

= iα
dA11

dX̃
− α2A31. (3.3.4d)
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Here we have used the definition p̃11 = −iαA11(X̃)G1(r). We now define

G1(r) = bnKn(iαr) + cnIn(iαr),

where bn and cn are defined as

bn =
In(iαrs)

I ′n(iαa)Kn(iαrs)− In(iαrs)K ′n(iαa)
(3.3.5)

cn =
−Kn(iαrs)

I ′n(iαa)Kn(iαrs)− In(iαrs)K ′n(iαa)
. (3.3.6)

We can now write the solution of (3.3.4a) as the superposition of a complementary function

and particular integral. We can immediately see that the complimentary function may

be given as

p̃31 = F1Kn(iαr) + F2In(iαr). (3.3.7a)

We choose the particular integral to be of the form

p̃31 = D1(r)Kn(iαr) +D2(r)In(iαr), (3.3.7b)

subject to

D′1(r)Kn(iαr) +D′2(r)In(iαr) = 0. (3.3.7c)

Substituting into (3.3.4a) gives

iα [D′1K
′
n(iαr) +D′2I

′
n(iαr)] = 2α2A11X̃ [bnKn(iαr) + cnIn(iαr)] . (3.3.7d)
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We can then simplify to obtain

D′1(r) = −iIn(iαr)

[
2αA11X̃{bnKn(iαr) + cnIn(iαr)}
In(iαr)K ′n(iαr)−Kn(iαr)I ′n(iαr)

]
,

D′2(r) = iKn(iαr)

[
2αA11X̃{bnKn(iαr) + cnIn(iαr)}
In(iαr)K ′n(iαr)−Kn(iαr)I ′n(iαr)

]
.

(3.3.7e)

Integrating and choosing D1(rs) = D2(rs) = 0 gives

D1(r) = −i

∫ r

rs

In(iαq)

[
2αA11X̃{bnKn(iαq) + cnIn(iαq)}
In(iαq)K ′n(iαq)−Kn(iαq)I ′n(iαq)

]
dq,

D2(r) = i

∫ r

rs

Kn(iαq)

[
2αA11X̃{bnKn(iαq) + cnIn(iαq)}
In(iαq)K ′n(iαq)−Kn(iαq)I ′n(iαq)

]
dq.

(3.3.7f)

Recall that we have cast the solution of (3.3.4a) in the form

p̃31(r) = F1Kn(iαr) + F2In(iαr) +D1(r)Kn(iαr) +D2(r)In(iαr), (3.3.8a)

subject to (3.3.4b), (3.3.4c) and (3.3.4d). We can solve for F1 and F2 using (3.3.4b) and

(3.3.4c). We get

F1 = −bn [A11X̃ + iαA31 −D1(a)K ′n(iαa)−D2(a)I ′n(iαa)] , (3.3.8b)

F2 = −cn [A11X̃ + iαA31 −D1(a)K ′n(iαa)−D2(a)I ′n(iαa)] . (3.3.8c)

Finally using (3.3.4d) we get

P31 = [F1 +D1(a)]Kn(iαa) + [F2 +D2(a)] In(iαa). (3.3.8d)
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D1(a) and D2(a) remains to be evaluated. It can be shown that the Wronskian

W [In(iαr), Kn(iαr)] = In(iαr)K ′n(iαr)−Kn(iαr)I ′n(iαr) = −1/iαr. Thus we can write

D1(a) = 2iαA11X̃ [bndn + cnen], (3.3.9a)

D2(a) = −2iαA11X̃ [bnfn + cndn]. (3.3.9b)

Here we define the following integrals

dn =

∫ rs

a

In(iαr)Kn(iαr)

W [In(iαr), Kn(iαr)]
dr,

en =

∫ rs

a

I2
n(iαr)

W [In(iαr), Kn(iαr)]
dr,

fn =

∫ rs

a

K2
n(iαr)

W [In(iαr), Kn(iαr)]
dr.

(3.3.9c)

We will now proceed to evaluate these integrals using certain properties of the Bessel

functions (Abramovitz & Stegun 1972). If we take t = αr, then it can be shown that

In(it) = e1/2nπiJn(t) and Kn(it) = −πi
2
e−1/2nπi[Jn(t) − iYn(t)]. Thus using this result and

the Wronskian we get

dn = −
∫ rs

a

(iαr)In(iαr)Kn(iαr)dr

= − π

2α

∫ αrs

αa

[tJ2
n(t)− itJn(t)Yn(t)]dt,

en = −
∫ rs

a

iαrI2
n(iαr)dr

= − ienπi

α

∫ αrs

αa

tJ2
n(t)dt,

fn = −
∫ rs

a

iαrK2
n(iαr)dr

=
iπ2

4α
e−nπi

∫ rs

a

t[Jn(t)− iYn(t)]2dt

=
iπ2

4α
e−nπi

∫ rs

a

[tJ2
n(t)− tY 2

n (t)− 2itJn(t)Yn(t)]dt.
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If we now use the result J−n(t)Jn(t) = (−1)nJ2
n(t) and Y−n(t)Yn(t) = (−1)nY 2

n (t) we can

define three integrals

I1 =

∫ rs

a

tJ2
n(t)dt = (−1)n

∫ rs

a

tJ−n(t)Jn(t)dt,

I2 =

∫ rs

a

tY 2
n (t)dt = (−1)n

∫ rs

a

tY−n(t)Yn(t)dt,

I3 =

∫ rs

a

tJn(t)Yn(t)dt = (−1)n
∫ rs

a

tJ−n(t)Yn(t)dt,

so that

dn = − π

2α
(I1 − iI3),

en = − i

α
enπiI1,

fn =
iπ2

aα
e−nπi(I1 − I2 − 2iI3).

We now evaluate these integrals using the following results

∫ z

tµ+ν+1JµJνdt =
zµ+ν+2

2(µ+ ν + 1)
[JµJν + Jµ+1Jν+1],∫ z

tµ+ν+1YµYνdt =
zµ+ν+2

2(µ+ ν + 1)
[YµYν + Yµ+1Yν+1],∫ z

tµ+ν+1JµYνdt =
zµ+ν+1

2(µ+ ν + 1)
[JµYν + Jµ+1Yν+1],

by setting ν = n and µ = −n. Thus we obtain

I1 =
α2r2

s

2

[
J2
n(αrs)− Jn−1(αrs)Jn+1(αrs)

]
− α2a2

2

[
J2
n(αa)− Jn−1(αa)Jn+1(αa)

]
,

I2 =
α2r2

s

2

[
Y 2
n (αrs)− Yn−1(αrs)Yn+1(αrs)

]
− α2a2

2

[
Y 2
n (αa)− Yn−1(αa)Yn+1(αa)

]
,
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I3 =
α2r2

s

2
[Jn(αrs)Yn(αrs)− Jn−1(αrs)Yn+1(αrs)]

− α2a2

2
[Jn(αa)Yn(αa)− Jn−1(αa)Yn+1(αa)] .

We can now revert back to modified Bessel functions In and Kn by making the appropriate

substitutions in the above expressions to obtain our required constants as

dn =− iαr2
s

2
[In(iαrs)Kn(iαrs) + In−1(iαrs)Kn+1(iαrs)]

+
iαa2

2
[In(iαa)Kn(iαa) + In−1(iαa)Kn+1(iαa)], (3.3.9d)

en =− iαr2
s

2
[I2
n(iαrs)− In−1(iαrs)In+1(iαrs)]

+
iαa2

2
[I2
n(iαa)− In−1(iαa)In+1(iαa)], (3.3.9e)

fn =− iαr2
s

2
[K2

n(iαrs)−Kn−1(iαrs)Kn+1(iαrs)]

+
iαa2

2
[K2

n(iαa)−Kn−1(iαa)Kn+1(iαa)]. (3.3.9f)

This completes our evaluation of D1(a) and D2(a). We have thus completed the solution

of the third-order upper-deck problem.

3.3.3 Adjoint problem

We are now at the stage where we can complete the solution of the third order prob-

lem to obtain the required amplitude equation. Recall that (3.3.3a) is an inhomogeneous

differential equation whose homogeneous solution is also a solution of the linear (first-

order) problem. The nonlinear forcing terms on the RHS of (3.3.3a) also contain terms

involving the linear solution. We thus need to establish a “solvability condition”. The

approach is to consider the adjoint of the equation (3.3.3a). The adjoint function satis-

fies the homogeneous problem and is orthogonal to the nonlinear forcing terms over the

domain. We then multiply our equation with its adjoint and integrate over the domain of
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our problem. This establishes the solvability condition from which an evolution equation

for the perturbation amplitude is obtained. Following the methodology of Hall & Smith

(1982) we define a vector W as

W =


F31

F31ξ

F31ξξ


so that the third order inhomogeneous problem is given by

∂W

∂ξ
−DW =


0

0

i∂U11

∂X̃
−∆−2/3 ∂G

∂ξ
− Ω2∆1/3F11ξ

 (3.3.10a)

where the matrix D is

D =


0 1 0

0 0 1

0 ξ 0


Notice that the homogeneous form of the problem is ∂W

∂ξ
−DW = 0 whose solution is the

eigenrelation from Section 3.1. Now define a system

∂

∂ξ


P

Q

R

+ DT


P

Q

R

 = 0, (3.3.10b)
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where

R(∞) = 0, Q(ξ0) = 0, and P (∞) =
Ai′(ξ0)∫∞

ξ0
Ai(ξ)dξ

R(ξ0).

We now need to obtain the vector (P,Q,R)T which we then multiply (3.3.10a) by and

integrate over the domain [ξ0,∞]. However we can notice from (3.3.10a) that it is the

third row of the matrix equation that corresponds to (3.3.3a) so in effect we only need to

obtain R(ξ) and use it to multiply (3.3.3a). Proceeding to analyse the system (3.3.10a)

we see that

∂

∂ξ


P

Q

R

+


0

P + ξR

Q

 = 0,

=⇒ ∂P

∂ξ
= 0,

∂Q

∂ξ
+ P + ξR = 0,

∂R

∂ξ
+Q = 0,

=⇒ ∂2R

∂ξ2
− ξR = P = constant,

a homogeneous solution of which is simply Ai(ξ). Consider now a function L(ξ) such that

∂2L

∂ξ2
− ξL = 1. (3.3.10c)

A particular integral of this equation is bL(ξ), where b is a constant. Following Hall &

Smith (1982) we can then write the solution as

R = Ai(ξ) + bL(ξ). (3.3.10d)

Since Q(ξ0) = 0 we can get R′(ξ0) = 0 and thus b = −Ai′(ξ0)
L′(ξ0)

. We now need to seek a

solution to (3.3.10c). Using the method of reduction of order we let L(ξ) = u(ξ)Ai(ξ).
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We can then show that

u(ξ) =

∫ ξ

ξ0

ds

Ai2(s)

∫ s

∞
Ai(q)dq,

so

L(ξ) = Ai(ξ)

∫ ξ

ξ0

ds

Ai2(s)

∫ s

∞
Ai(q)dq. (3.3.10e)

We now multiply both sides of (3.3.3a) by (3.3.10d) and integrate over [ξ0,∞]. Thus

∫ ∞
ξ0

[
Ai(ξ) + bL(ξ)

][
F31ξξξ − ξF31ξ

]
dξ =∫ ∞

ξ0

[
Ai(ξ) + bL(ξ)

] [
i
∂U11

∂X̃
−∆−2/3∂G

∂ξ
− Ω2∆1/3F11ξ

]
dξ.

(3.3.10f)

We have now obtained the orthogonality condition, which we can manipulate to derive

our required amplitude equation.

3.3.4 Amplitude equation

We will begin with the LHS of (3.3.10f). We know that R(∞) = 0, R′(ξ0) = 0 and

L(ξ0) = 0. Integrating by parts and using these results we get

−Ai(ξ0)F31ξξ(ξ0)−
[
R′(ξ)F31ξ

]∞
ξ0

+

∫ ∞
ξ0

F31ξR
′′(ξ)dξ =

∫ ∞
ξ0

F31ξ[ξR(ξ)]dξ.

Using Ai′′(ξ) = ξAi(ξ), along with F31ξ(∞) = 0, and R′(ξ0) = 0 we can simplify the above

expression to get

−Ai(ξ0)F31ξξ(ξ0) +

∫ ∞
ξ0

F31ξ[bL
′′(ξ)− ξbL(ξ)]dξ,
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and using (3.3.10c) we get

−Ai(ξ0)F31ξξ(ξ0) + b

∫ ∞
ξ0

F31ξdξ.

Now if we use the conditions on F31 from (3.3.3c) and (3.3.3d) we will get

LHS(3.3.10f) = −Ai(ξ0)F31ξξ(ξ0) + b [A31 + λ2A11] , (3.3.11a)

where we now need to find F31ξξ at ξ = ξ0. To do this we turn to our momentum equations

and take α(3.3.2b) + n/a(3.3.2c) with Y = 0. Transforming variables to ξ and evaluating

all terms involving our first-order and second-order solutions at ξ0, we get

[
αU31ξξ +

n

a
αW31ξξ

]
ξ=ξ0

= ∆−2/3
{ in2

a2
P31 + αV31 + αλ2V11

}
ξ=ξ0

+ α∆−1/3
{
V22F

c
11ξ + V c

11F22ξ + V11F20ξ

}
ξ=ξ0

, (3.3.11b)

where we have F11(ξ0) = B1Ai(ξ0), F20(ξ0) = ∆−2/3
∫ ξ0
∞ f ∗(ξ)dξ and F22(ξ0) = B2Ai(ξ̂0).

We also use Vii = AyPii, where P11 = −∆A11G1(a) and P22 = −2∆A22G2(a). Thus we

can write (3.3.11a) as

− Ai(ξ0)

[
∆−2/3

{(
αAy +

in2

a2

)
P31 + αλ2AyP11

}

+ α∆−1/3

{
Bc

1Ai(ξ0)cAyP22 + (AyP11)cB2Ai(ξ̂0) + ∆−2/3AyP11

∫ ξ0

∞
f ∗(s)ds

}]

+ bα [A31 + λ2A11] . (3.3.11c)

If we differentiate (3.3.10e) we can express the constant b as

b =
Ai′(ξ0)Ai(ξ0)∫∞
ξ0

Ai(s)ds
. (3.3.12)
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The objective now is to express all terms in our adjoint problem in terms of the

amplitude functions. We begin with A31. By looking at the RHS of (3.3.10f) we can see

that it contains no A31 terms. We turn to LHS of (3.3.10f) and see that A31 appears

both explicitly and from the P31 term. By looking at (3.3.8b) and (3.3.8c), we see that

the expressions for F1 and F2 contain terms with A31. Thus writing out explicitly all

coefficients of A31 in the LHS of (3.3.10f) we see that

−Ai(ξ0)

?︷ ︸︸ ︷
∆1/3P−1

1

[
bnKn(iαa) + cnIn(iαa)

]
+

Ai′(ξ0)Ai(ξ0)∫∞
ξ0

Ai(s)ds
, (3.3.13)

where from (3.1.7), the linear dispersion relation, we can see that term ? = Ai′(ξ0)∫∞
ξ0

Ai(s)ds .

Thus we see that all terms that are coefficients of A31 cancel. We have thus eliminated

A31 terms.

We now turn our attention to terms that contain A11 and A22. We can express A22

in terms of A11 using the results from our second-order analysis since we may write

B1 = A11/κ, where κ =
∫∞
ξ0

Ai(s)ds. Thus (3.2.14c) may be written as

B2 = −A
2
11

κ2
α1/3(B5B6), (3.3.14a)

where B5 and B6 are

B−1
5 =

{
2

in2

α2/3a2
G2T13 − T14 +

{
α1/3G2T13

}
Ay

}
, (3.3.14b)

B6 =

{
T7 + 2

in2

α2/3a2
G2T12 +

[
α1/3G2T12 + T2

G1

2

]
Ay

}
. (3.3.14c)

This allows us to write (3.2.13c) as

A22 = −A
2
11

κ2

[
2−1/3

(∫ ∞
ξ̂0

Ai(s)ds

)
B5B6 + ∆1/3

∫ ∞
ξ0

H(s)ds

]
(3.3.14d)
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and (3.2.10c) as

∫ ξ0

∞
f ∗(ξ)dξ = ∆|A11|2|M1|2

[∫ ξ0

∞
f ∗∗(ξ)dξ

]
,

where

f ∗∗(ξ) = i1/3Aic(ξ)

{
P1AyAi(ξ0) +

[
Ai′(ξ)− Ai′(ξ0)− ξ

∫ ξ

ξ0

Ai(t)dt

]}
+ {c.c.}.

(3.3.14e)

We now turn back to (3.3.11c) describing the LHS of (3.3.10f).

We define P2 =
(
Ay + 2∆n2

(αa)2

)−1

and rename G1 and G2 as gn and g2n respectively.

The pressure term P31 contains terms proportional to A11X̃ . P31 is defined by (3.3.4a)

where F1, F2 are defined by (3.3.8b) and (3.3.8c) and D1(a), D2(a) are defined by (3.3.9a)

and (3.3.9b) respectively. We will make use of the linear eigenrelation (3.1.7) to express

gn in terms of Airy functions where possible. We will also use predefined constants, Lij,

and Tij listed in Appendix A to write the equations in a compact manner. Since we can

write A11A
c
11 = |A11|2 , we will find that some terms from F31ξξ(ξ0) are proportional to

A11|A11|2, while the remaining terms are proportional to λ2A11. Thus

LHS terms multiplying
∂A11

∂X̃
=

iAi(ξ0)Ai′(ξ0)κ−1 − 2(iα)1/3Ai(ξ0)αP−1
1 ×[

(bnfn + cndn)

{
Kn(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1K

′
n(iαa)

}

− (bndn + cnen)

{
In(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1I

′
n(iαa)

}]

= −i4/3T3κ
−1 − 2(iα)1/3Ai(ξ0)αP−1

1 ×
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[
(bnfn + cndn)

{
Kn(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1K

′
n(iαa)

}

− (bndn + cnen)

{
In(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1I

′
n(iαa)

}]
.

(3.3.15a)

LHS terms multiplying λ2A11 = α
[
Ai′(ξ0)Ai(ξ0)κ−1 + Ay

(
Ai(ξ0)gn∆1/3

) ]
= α

{
−i1/3T3κ

−1 − i1/3T3κ
−1Ay

}
. (3.3.15b)

LHS terms multiplying A11|A11|2 = −αAi(ξ0)(iα)−1/3 [V22F11ξ + V c
11F22ξ + V11F20ξ]ξ=ξ0 .

(3.3.15c)

We do not need to consider the last set of terms as we will show later that similar terms

arise on the RHS of the equation that allows us to cancel them. In the solid case these

set of LHS terms would be zero.

We have now completed the consideration of the LHS of our adjoint problem. We can

now consider

RHS(3.3.10f) =

∫ ∞
ξ0

[
Ai(ξ) + bL(ξ)

]{
iU11X̃ −∆−2/3Gξ − Ω2∆1/3F11ξ

}
dξ. (3.3.16a)

We will begin by expressing ∂U11

∂X̃
in terms of A11. From the lower-deck equation (3.1.4c)

we can write

W11ξξ − ξW11 = ∆−2/3 in

a
P11.

Since P11 is not a function of ξ, the above is just an inhomogeneous Airy’s equation with
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a constant in RHS. Thus the solution may be written as

W11 = ∆−2/3 in

a
P11L(ξ) =

in

a

Ai′(ξ0)

κ
P1A11L(ξ).

Going back to the first-order problem we know that

F11 = B

∫ ξ

ξ0

Ai(s)ds = A11κ
−1

∫ ξ

ξ0

Ai(s)ds, (3.3.16b)

using (3.1.6b). So we can now express ∂U11

∂X̃
as

∂U11

∂X̃
=
∂A11

∂X̃

{
κ−1

(∫ ξ

ξ0

Ai(s)ds

)
− in

a

Ai′(ξ0)

κ
P1L(ξ)

}
. (3.3.16c)

We will now rename the adjoint function R(ξ) as K(ξ) and write the first term in (3.3.16a)

as

∫ ∞
ξ0

[K(ξ){iU11X̃}] dξ =
∂A11

∂X̃

[
iκ−1

∫ ∞
ξ0

K(ξ)
(∫ ξ

ξ0

Ai(s)ds
)
dξ

+
n2

αa2

Ai′(ξ0)

κ
P1

∫ ∞
ξ0

K(ξ)L(ξ)dξ

]
. (3.3.16d)

The third term in (3.3.16a) becomes

−
∫ ∞
ξ0

K(ξ){Ω2∆1/3A11Ai(ξ)κ−1}dξ = −
(∫ ∞

ξ0

K(ξ)Ai(ξ)dξ

)
∆1/3Ω2κ

−1A11. (3.3.16e)

Using integration by parts we can show that

∫ ∞
ξ0

K(ξ)Ai(ξ)dξ = −
∫ ∞
ξ0

[
K ′(ξ)

(∫ ξ

ξ0

Ai(s)ds

)
dξ

]
.
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Thus (3.3.16e) becomes

Ω2A11∆1/3κ−1

(∫ ∞
ξ0

[
K ′(ξ)

(∫ ξ

ξ0

Ai(s)ds

)
dξ

])
= (iα1/3)

T18

κ
. (3.3.16f)

We now need to consider the expression ∂G
∂ξ

in (3.3.16a). We can see that this expression

contains terms multiplying λ2A11, A11X̃ and A11|A11|2. We will begin by considering terms

multiplying λ2A11. These terms are

−α(iα)−2/3

∫ ∞
ξ0

K(ξ)
∂

∂ξ

[
V11 + ∆2/3

(
ξ − ξ0

)
F11

]
dξ. (3.3.17a)

By using (3.2.6c) and (3.2.6a) and then substituting in the above we will obtain

α

κ

∫ ∞
ξ0

K(ξ)(ξ − ξ0)Ai(ξ)dξ, (3.3.17b)

which using integration by parts may be written as

α

κ

{[
K(ξ)(ξ − ξ0)

∫ ξ

ξ0

Ai(s)ds

]∞
ξ0

−
∫ ∞
ξ0

∂

∂ξ
[K(ξ)(ξ − ξ0)]

(∫ ξ

ξ0

Ai(s)ds

)
dξ

}
.

(3.3.17c)

The second term in the above may be written as

−α
κ

∫ ξ

ξ0

(
(ξ − ξ0)K ′(ξ) +K(ξ)

)(∫ ξ

ξ0

Ai(s)ds

)
dξ = −α

κ
i1/3T1. (3.3.17d)

We need to evaluate the upper limit of the first term in (3.3.17c). By using the definitions

of L(ξ) and K(ξ) and noting that for ξ >> 1, L(ξ) ∼ −1
ξ

we can obtain the following

result

lim
ξ→∞

[
K(ξ)(ξ − ξ0)

∫ ξ

ξ0

Ai(s)ds

]
= lim

ξ→∞

{[
Ai(ξ)− Ai′(ξ0)L(ξ)

L′(ξ0)

]
(ξ − ξ0)

∫ ξ

ξ0

Ai(s)ds

}
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=
Ai′(ξ0)

L′(ξ0)

∫ ∞
ξ0

Ai(s)ds = −Ai(ξ0)Ai′(ξ0). (3.3.17e)

We may thus write (3.3.17c) as

−α
κ

i1/3T1 +
α

κ
i1/3T3. (3.3.17f)

We will now consider the term in ∂G
∂ξ

multiplying A11X̃ . This term is

(iα)−1/3 (ξ − ξ0)F11X̃ = A11X̃κ
−1(iα)−1/3 (ξ − ξ0)

(∫ ξ

ξ0

Ai(s)ds

)
.

Thus the term proportional to A11X̃ in (3.3.16a) is

− iκ−1

∫ ∞
ξ0

K(ξ)
∂

∂ξ

[
(ξ − ξ0)

(∫ ξ

ξ0

Ai(s)ds

)]
dξ,

= −iκ−1

∫ ∞
ξ0

K(ξ)

(∫ ξ

ξ0

Ai(s)ds

)
dξ + i4/3κ−1T1 − i4/3T3. (3.3.18a)

By combining (3.3.16d) and (3.3.18a) we can get

RHS terms multiplying
∂A11

∂X̃
=

= i4/3
T1

κ
− i4/3

T3

κ
+

n2

αa2

Ai′(ξ0)

κ
P1

∫ ∞
ξ0

K(ξ)L(ξ)dξ. (3.3.18b)

We will now define a new function P (ξ) that contains all terms proportional to A11|A11|2

in ∂G
∂ξ

. We can use integration by parts to write these terms from (3.3.16a) as

α∆−2/3

∫ ∞
ξ0

K(ξ)
∂

∂ξ

[
P (ξ)

]
dξ = α∆−2/3

([
P (ξ)K(ξ)

]∞
ξ0

−
∫ ∞
ξ0

K ′(ξ)P (ξ)dξ

)

= −α∆−2/3P (ξ0)Ai(ξ0)− α∆−2/3

∫ ∞
ξ0

K ′(ξ)P (ξ)dξ. (3.3.19a)
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Here

P (ξ0) =
[
∆F c

11F22 + ∆F20F11 + ∆1/3V11F20ξ + ∆1/3V c
11F22ξ + (∆c)1/3 V22F

c
22ξ

]
ξ=ξ0

(3.3.19b)

Since F11(ξ0) = 0 we can see that −αAi(ξ0)(iα)−1/3 [V22F11ξ + V c
11F22ξ + V11F20ξ]ξ=ξ0 can-

cels with −α∆−2/3Ai(ξ0)P (ξ0). So we are left with the following expression on the RHS

to consider:

−α∆−2/3

∫ ∞
ξ0

K ′(ξ)P (ξ)dξ. (3.3.19c)

We need to turn to the definition of G(ξ), (3.3.3b) and examine each of the terms in the

expression

P (ξ) = ∆F c
11F22 + ∆F20F11 + ∆1/3V11F20ξ + ∆1/3V c

11F22ξ + V22

(
∆1/3F11ξ

)c
,

one by one. We begin with

∆F c
11F22 = ∆

(
A11

κ

∫ ξ

ξ0

Ai(s)ds

)c(
B2

∫ ξ

ξ0

Ai(21/3s)ds+ ∆1/3A
2
11

κ2

∫ ξ

ξ0

H(s)ds

)
.

Thus

−α (iα)−2/3

∫ ∞
ξ0

K ′(ξ)(iα)F c
11F22dξ =

−α (iα)−2/3

κ|κ|2
[
α4/3B5B6T9 − α4/3T8

]
. (3.3.20a)

Next we look at

∆F20F11 = ∆

[
(iα)−2/3

∫ ξ

ξ0

(∫ ξ0

∞
f ∗∗(t)dt

)
dξ
|A11|2

|κ|2

] [
A11

κ

∫ ξ

ξ0

Ai(s)ds

]
.
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Thus

−α (iα)−2/3

∫ ∞
ξ0

K ′(ξ)(iα)F20F11dξ =
−α (iα)−2/3

κ|κ|2
(
−α4/3T6

)
. (3.3.20b)

Next we look at

∆1/3V11F20ξ = ∆1/3

[
AyP11 +

A11

κ

(
Ai′(ξ)− Ai′(ξ0)− ξ

∫ ξ

ξ0

Ai(s)ds

)]
×

A11|2

|κ|2

[
α

∫ ξ

∞
f ∗∗(t)dt

]
.

Thus

−α (iα)−2/3

∫ ∞
ξ0

K ′(ξ)∆1/3V11F20ξ =
−α (iα)−2/3

κ|κ|2
{
α4/3T15 + α2T22P1Ay

}
. (3.3.20c)

Next we look at

∆1/3V c
11F22ξ = −∆1/3

[
AcyP

c
11 + ∆2/3cA

c
11

κc

(
Ai′(ξ)− Ai′(ξ0)− ξ

∫ ∞
ξ0

Ai(s)ds

)c]
×

A2
11

κ2

[
B5B6Ai(ξ̂) + ∆1/3H(ξ)

]
.

Thus

− α (iα)−2/3

∫ ∞
ξ0

K ′(ξ)∆1/3V c
11F22ξdξ =

− −α (iα)−2/3

κ|κ|2
{
α4/3T16 − α4/3T17B5B6 + AcyPc1

(
α4/3T23 − α4/3B5B6T24

)}
. (3.3.20d)

The remaining term to be examined contains the second-order velocity term V22, for which

we have not yet found an explicit expression. This may be obtained from the continuity

equation at second order (3.2.4a). Integrating (3.2.4a) and substituting in the second-
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order solution (3.2.8a) we obtain the solution

V22 =AyP22 + |A11|2κ−2

[
2α1/3∆2/3B5B6

∫ ξ

ξ0

(∫ t

ξ0

Ai(21/3s)ds

)
dt −

2∆

∫ ξ

ξ0

(∫ t

ξ0

H(s)ds

)
dt

]
.

We can express the term P22 in terms of known functions from (3.2.13a). Thus

P22 = P2

[
−i−2/3α−1/3B5B6Ai′

(
ξ̂0

)
+ (iα)−1/3H

′
(ξ0)− Ay [(iα)Ai′(ξ0)Ai(ξ0)P1]

]
.

The term occurring in the RHS is

− α (iα)−2/3

∫ ∞
ξ0

K ′(ξ)∆1/3cV22F
c
11ξdξ = (3.3.20e)

− α (iα)−2/3

κ|κ|2
{

2α4/3B5B6T11 − 2α4/3T10

}
+ (3.3.20f)

− i−2/3 (α)5/3

κ|κ|2
AyP2T25

[
α−4/3T14B5B6 + α−4/3T7 − AyP1T13

]
. (3.3.20g)

We have now completely expressed the adjoint problem (3.3.10f) as an equation for the

amplitude function A11(X̃), which we can express as

a1
dA11

dX̃
= (a2λ2 + a3Ω2)A11 + a4A11|A11|2. (3.3.21)

What remains is to combine the left- and right-hand terms together to explicitly obtain

the four complex constant coefficients in (3.3.21). We begin with a1 and combine the

appropriate terms from (3.3.15) with (3.3.18b) to get

a1 = −i4/3
T1

κ
− n2

αa2

Ai′(ξ0)

κ
P1

∫ ∞
ξ0

K(ξ)L(ξ)dξ
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− 2(iα)1/3Ai(ξ0)αP−1
1

[
(bnfn + cndn)

{
Kn(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1K

′
n(iαa)

}

− (bndn + cnen)

{
In(iαa)− Ai′(ξ0)

κ
(iα)−1/3P1I

′
n(iαa)

}]
. (3.3.22a)

We move on to a2 and combine the appropriate terms from (3.3.15) with (3.3.17f) to get

a2 = −ακ−1i−1/3T1 + 2ακ−1i−1/3T3 + ακ−1Ayi
1/3T3

= i−2/3αL2 + ακ−1Ayi
1/3T3. (3.3.22b)

(3.3.16f) gives us the expression for a3 as

a3 = (iα)1/3κ−1T18. (3.3.22c)

Finally we will look at a4 which contains terms only from the right-hand side. We rename

B5 and B6 as L9 and L10, respectively. Collecting all the terms from (3.3.20) we get

a4 =
i−2/3α5/3

κ|κ|2

[
T8 + T6 − T15 − T16 − 2T10 − (T9 − T17 + 2T11)L9L10

− Ay
(
α2/3P1T22 − P2T25L12

)
− AcyPc1 (T23 − T24L9L10)

]

=
i−2/3α5/3

κ|κ|2
[
L11 − Ay

[
α2/3P1T22 − P2T25L12

]
− AcyPc1L13

]
. (3.3.22d)

The coefficients a1-a4 with Ay = 0 can be shown to agree with that of Stephen (2006).

3.4 Axisymmetric problem

From the discussion in Section 2.4.4 it is clear that we must consider the case of ax-

isymmetric disturbances separately. We first seek solutions to the linear stability problem

just as in Section 3.1. Since the disturbances are axisymmetric we lose any φ dependence
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and there is no W component in our equations. For these disturbances the pressure per-

turbation in the upper deck satisfies (3.1.2) with n = 0. The solution in this case is given

by

p̃0
11 = iαA11

I0(iαrs)K0(iαr)− I0(iαr)K0(iαrs)

I0(iαrs)K ′0(iαa)− I ′0(iαa)K ′0(iαrs)

= −iαA11G
0
1(r). (3.4.1a)

Following the same procedures described in Section 3.1 and applying the matching and

boundary conditions will eventually give us the corresponding eigenrelation for axisym-

metric disturbances as

Ai′(ξ0)∫∞
ξ0

Ai(ξ)dξ
= −(iα)1/3

[
Ay + iα

]
I0(iαrs)K0(iαa)− I0(iαa)K0(iαrs)

I0(iαrs)K1(iαa) + I1(iαa)K0(iαrs)
. (3.4.1b)

We note here the difference between the axiymmetric eigenrelation (3.4.1b) and the non-

axisymmetric version (3.1.7). Moving to the nonlinear second-order problem, the pressure

perturbation equation in the upper deck satisfies (3.2.2a) with n = 0 . The solution is

given by

p̃0
22(r) = −2iαA22

I0(2iαrs)K0(2iαr)− I0(2iαr)K0(2iαrs)

I ′0(2iαa)K0(2iαrs)− I0(2iαrs)K ′0(2iαa)

= −2iαA22G
0
2(r). (3.4.2a)

We can now follow a similar procedure as outlined in Section 3.2.3, to obtain a relationship

between B1 and B2
2 . This is obtained as

−2∆G0
2(a)

[
B22−1/3

∫ ∞
ξ̂0

Ai(s)ds
](
Ay + 2∆

)
−∆−2/321/3B2Ai′(ξ̂0)

= ∆−1/3B2
1

(
21/3F ′p(ξ̂0) + Ai′(ξ0)Ai(ξ0)

)
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+ 2∆G0
2(a)

(
Ay + 2∆

)
B2

1

[
∆1/3

[ ∫ ∞
ξ̂0

Fp(ξ)dξ +

∫ ∞
ξ̂0

Ai′(ξ)dξ

∫ ξ2

ξ0

Ai(ξ1)dξ1

]]

+ AyB
2
1∆4/3G0

1(a)Ai(ξ0)

∫ ∞
ξ0

Ai(s)ds. (3.4.2b)

Finally at the third order we will consider solutions for fixed frequency Ω, thus the

resulting amplitude equation will be

a10
dA11

dX̃
= a20λ2A11 + a40A11|A11|2. (3.4.3)

The solution at third order is carried out in a similar fashion to the non-axisymmetric

case. The upper deck pressure perturbation is now required to satisfy

p̃0
31rr +

1

r
p̃0

31r + α2p̃0
31 = 2α2A11X̃G

0
1(r). (3.4.4)

The solution obtained is similar to (3.3.8d), but with all the terms now functions of

modified Bessel functions of zero order. Recall that the axisymmetric lower-deck momen-

tum equation contains the term − dP
dX

, whose contribution to the third-order problem is

−iαP31 − ∂P11

∂X̃
. This modifies the solution of U11 in the adjoint problem and makes an

additional contribution proportional to ∂A11

∂X̃
. The coefficients in (3.4.3) may be expressed

as

a10 = −i4/3T1κ
−1 − 2(iα)1/3Ai(ξ0)αP−1

10 ×[
(b0f0 + c0d0)

{
K0(iαa)− Ai′(ξ0)

κ
(iα)−1/3P10K

′
0(iαa)

}

− (b0d0 + c0e0)

{
I0(iαa)− Ai′(ξ0)

κ
(iα)−1/3P10I

′
0(iαa)

}]
, (3.4.5a)

a20 = i−2/3αL2 + ακ−1Ayi
1/3T3, (3.4.5b)
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a40 =
i−2/3α5/3

κ|κ|2
[
L0

11 − Ay
[
α2/3P10T22 − P20T25L

0
12

]
− AcyPc10L

0
13

]
. (3.4.5c)

The coefficients a10-a40 with Ay = 0 can be shown to agree with that of Stephen (2006) .

3.5 Concluding remarks

The lengthy analysis presented in Chapter 3 allows us to obtain a leading order dis-

persion relation from a linear analysis, and a weakly nonlinear evolution equation at

higher order. The dispersion relations can be solved to obtain both neutrally stable and

spatially varying solutions. The evolution equation describes the slow evolution of dis-

turbances away from the linear neutral point. The sign of the coefficients of the equation

determines whether nonlinear effects stabilise or destabilise the flow. The evaluations can

be done for the case with porous walls and for the case of solid walls by setting Ay = 0

where appropriate. In this way the effect of porous walls on the stability of the viscous

disturbances can be studied.



Chapter 4

Results

Numerical solutions of the linear non-axisymmetric and axisymmetric eigenrelations

(3.1.7) and (3.4.1b) are presented in Section 4.1. Neutral stability of the problem is first

examined in Section 4.1.1. Here solutions to eigenrelations (3.1.7) and (3.4.1b) for real

values of Ω and α are sought. The spatial stability problem is examined in Section 4.1.2.

Here the concern is with spatial evolution of disturbances. Results are presented for

solutions of (3.1.7) and (3.4.1b) with Ω real and α complex. In Section 4.2 the effect of

varying various parameters of the porous wall models is examined. Finally the results

of weakly nonlinear stability problem is presented in Section 4.3. Here the concern is

with the numerical evaluation of the coefficients in (3.3.21) and (3.4.3). The numerical

results presented in this chapter will be compared with some published experimental and

numerical results in Chapter 5.

4.1 Linear stability results

Before proceeding to the numerical solution, a relationship between the angular fre-

quency of disturbances propagating through the pore (ω) and the first-mode disturbance

frequency (Ω) (in the lower deck) is obtained. For non-axisymmetric disturbances

ω =
R

Re

[
Re1/4µ−1/4

w T−3/4
w M−1/2

]
Ω (4.1.1)

88
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and for axisymmetric disturbances

ω =
R

Re

[
Re1/4µ−1/4

w T−3/4
w (M2 − 1)1/4

]
Ω. (4.1.2)

The relevant flow parameters used in the calculations are given in Section 2.3. The cone

angle and Mach number from the experiments will determine the shock angle θs and the

scaled cone radius a. An approximate value of the shock angle may be obtained using.

sinσ = sin θc

(
γ + 1

2
+

1

M2
∞ sin2 θc

)1/2

, (4.1.3)

where σ = θs + θc. Once the shock angle has been determined from this equation, the

ratio a/rs may be obtained from geometric arguments. We find for a slender cone of half

angle θc = 70 and M∞ = 6 that

a

rs
≈ sin θc

tan θs + sin θc
= 0.57, (4.1.4)

where we have taken cos θc ≈ 1.

4.1.1 Neutral solutions of the eigenrelations

We first consider neutrally stable solutions of the eigenrelations. The presence of shock

allows multiple modes of the solution. Neutral solutions for α and Ω are presented against

the local cone radius a. For a fixed cone angle, the effect of increasing a is to move further

downstream along the cone. Regions of instability lie above the neutral curves. Figure 4.1a

presents the neutral solutions to the axisymmetric eigenrelation (3.4.1b) for a solid wall

and for the regular microstructure model (2.3.4). There are an infinite number of neutral

modes. The presence of multiple modes can be supported by asymptotic approximations

of the eigenrelations as shown in Section 5.1. The first four modes of the solution are
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depicted here. We do not notice any discernible difference between the α solutions for

solid and porous walls with the exception of the first (lowest) mode. Figure 4.1b shows the

corresponding Ω solutions. The neutral curves for porous walls are lower than in the solid

case. Thus flow over the porous wall will become unstable for slightly lower frequencies

than those for the solid wall. This indicates that the porous wall has a destabilising effect

on the neutral stability of the flow.

We now turn to neutrally stable solutions of the non-axisymmetric eigenrelation (3.1.7).

Figure 4.2 depicts the neutral curves for the first azimuthal mode (n = 1). Once again

in figure 4.2a we see that the destabilising effect of the porous wall on α solutions is very

slight. However the corresponding Ω solutions in figure 4.2b show that the porous wall has

a significant destabilising effect. With the exception of the first mode, the curves corre-

sponding to the porous case are significantly lower than that of the solid case. Figure 4.3

shows corresponding neutral solutions for n = 2. Here we see there is no discernible

change in the behaviour of the solutions of α. For the solid wall case, neutral curves of

Ω are slightly lower for n = 2 compared to n = 1 at small values of a. As a increases the

differences become negligible. Similar behaviour is observed for solutions of the porous

wall case. By comparing figures 4.1b and 4.2b, we see that the differences between the

curves corresponding to the solid and porous wall cases reduce. Similar trends can be

observed in figure 4.4 which shows the neutral curves for n = 3.

Next we consider neutral solutions using the random microstructure model of (2.3.9).

The results using this model are compared with those obtained using the regular mi-

crostructure model. The porosity of the felt metal is 0.75 and the fibre diameter is 30µm.

For comparison the regular microstructure model is used with a porosity of 0.2 and pore

radius of 30µm. In figure 4.5 which shows the axisymmetric neutral modes, we see that

neutral curves for the felt metal case are much lower than those for the regular porous

model for all modes. This difference reduces for the higher modes in the limit of small
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Figure 4.1: The first four neutral modes of (3.4.1b). Shown is (a) α, (b) Ω against local
cone radius a for a/rs = 0.57, n = 0: —, solid wall; −−−, regular microstructure model
(2.3.4).
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Figure 4.2: The first five neutral modes of (3.1.7). Shown is (a) α, (b) Ω against local
cone radius a for a/rs = 0.57, n = 1: —, solid wall; −−−, regular microstructure model
(2.3.4).
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Figure 4.3: The first five neutral modes of (3.1.7). Shown is (a) α, (b) Ω against local
cone radius a for a/rs = 0.57, n = 2: —, solid wall; −−−, regular microstructure model
(2.3.4).
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Figure 4.4: The first five neutral modes of (3.1.7). Shown is (a) α, (b) Ω against local
cone radius a for a/rs = 0.57, n = 3: —, solid wall; −−−, regular microstructure model
(2.3.4).
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Figure 4.5: The first four neutral modes of (3.4.1b). Shown is Ω against local cone radius
a for a/rs = 0.57, n = 0: —, random microstructure model (2.3.9); − − −, regular
microstructure model (2.3.4).
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Figure 4.6: The first five neutral modes of (3.1.7) with n = 1. Shown is Ω against local
cone radius a for a/rs = 0.57: —, random microstructure model (2.3.9); − − −, regular
microstructure model (2.3.4).
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Figure 4.7: The first four neutral modes of (3.4.1b). Shown is Ω against local cone
radius a for a/rs = 0.57, n = 0: —, mesh microstructure model (2.3.6); − − −, regular
microstructure model (2.3.4).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

 Ω

a

Figure 4.8: The first five neutral modes of (3.1.7) with n = 1. Shown is Ω against
local cone radius a for a/rs = 0.57: mesh microstructure model (2.3.6); − − −, regular
microstructure model (2.3.4).
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a. In figure 4.6 which shows the non-axisymmetric neutral modes, we see that with the

exception of the first mode, neutral values of Ω for the felt metal are significantly lower

than the corresponding ones for regular porous model. The felt metal thus significantly

destabilises both axisymmetric and non-axisymmetric neutral modes when compared to

the regular porous model.

Finally we consider the mesh microstructure model of (2.3.6). The results using this

model are compared with those obtained using the regular microstructure model. The

porosity of the mesh model is 0.8, and width of each pore section is 100µm. For comparison

the regular porous model is used with a porosity of 0.2 and pore diameter of 60µm. In

figures 4.7 and 4.8 we see that the higher porosity of the mesh model leads to slightly

lower neutral curves.

Although porous coatings using felt metal or stainless steel wire meshes are easier to

incorporate into existing thermal protection systems, from these comparisons we can see

that they have the potential to excite disturbances across a wider range of frequencies in

the first-mode spectrum.

4.1.2 Spatial stability computations

We now examine the spatial evolution of disturbances by seeking solutions of the

eigenrelations with Ω real and α complex. If α = αr + iαi then αi > 0 denotes stability

while αi < 0 is indicative of spatial instability. Figure 4.9 shows the dependence of the

spatial growth-rate parameter αi on the mode frequency Ω for n = 0 for a few choices

of cone radii a. At each value of a there is a complete family of modes, as observed in

the neutral solutions. We can see that for each member of the family there is a cut-

off frequency Ωc such that for Ω < Ωc that particular spatial mode is stable (αi > 0)

but it becomes unstable (αi < 0) if Ω > Ωc. We can clearly see in figure 4.9 that the

porous wall leads to larger unstable growth rates when compared to the solid wall. The
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Figure 4.9: Spatial growth rate parameter αi(Ω) for non-neutral axisymmetric modes
(n = 0): —, solid wall; −−−, regular microstructure model (2.3.4). We show the growth
rates of the first four modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d) a = 2.0.



CHAPTER 4. RESULTS 99

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  10  20  30  40  50  60

α i

Ω

(a)

-0.5

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50
α i

Ω

(b)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  10  20  30  40  50

α i

Ω

(c)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  5  10  15  20  25  30  35  40

α i

Ω

(d)

Figure 4.10: Spatial growth rate parameter αi(Ω) for non-neutral non-axisymmetric modes
with n = 1: —, solid wall; − − −, regular microstructure model (2.3.4). We show the
growth rates of the first five modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d) a = 2.0.
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Figure 4.11: Spatial growth rate parameter αi(Ω) for non-neutral non-axisymmetric modes
with n = 2: —, solid wall; − − −, regular microstructure model (2.3.4). We show the
growth rates of the first five modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d) a = 2.0.
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maximum unstable growth rates occur for disturbances with the same frequency for both

solid and porous walls. We notice that for the solid wall the growth rate of all the modes

approaches zero at high frequencies. This is not the case for the porous walls as we can

see that unstable growth rates persist in the limit of large Ω. As we increase a the index

of the most unstable mode (with largest −αi) rises from mode 1 to 2. As we increase a

we also notice that the maximum unstable growth rates decrease. These effects occur for

both solid and porous walls.

The corresponding growth rates for the first azimuthal mode n = 1 are shown in figure

4.10. The destabilizing effect of the porous wall is more significant than the axisymmetric

case. We see this from the fact that the maximum unstable growth rates are much larger

for the porous wall compared to the solid wall. We again see that as a increases the

maximum unstable growth rates decrease. In the solid wall case we see that all unstable

disturbances diminish to zero at high frequencies. It is the lowest mode that gives the

largest growth rate with the higher modes being effectively damped. Disturbances over

the porous wall however do not vanish in the limit of large frequencies, and it is the higher

modes that give the largest maximum growth rates. This results in the peak unstable

growth rates occurring for disturbances with higher frequencies when compared to the

solid wall case. This is in contrast to the axisymmetric case where peak growth rates

were concentrated around a narrow low frequency band for both solid and porous walls.

Corresponding growth rate curves for n = 2 are presented in figure 4.11. The results

exhibit the same trends as that observed for n = 1.

To gain a better understanding of which azimuthal mode is most dangerous we look

at figure 4.12. In this figure we isolate the mode with the maximum growth rate from

among the first ten modes for increasing values of a. Since increasing a leads to shifting

our point of interest downstream along the cone surface, we plot the maximum growth

rate against streamwise distance L∗. The range of L∗ is chosen to correspond to a typical
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Figure 4.12: Variation of spatial growth rate parameter σmax = max(| − αi(Ω)|) with
longitudinal distance L∗: —, solid wall; − − −, regular microstructure model (2.3.4).
Symbols refer to azimuthal wavenumbers: ◦, n = 0; M, n = 1; �, n = 2; �, n = 3.

model length tested in experiments. We return to dimensional variables to account for

the difference in scalings for the axisymmetric and non-axisymmetric disturbances. First

of all we can see that the axisymmetric disturbances have much lower maximum unstable

growth rates compared to the non-axisymmetric disturbances for both solid and porous

walls. The extent of destabilisation is thus less significant for the axisymmetric modes. As

expected from the spatial stability results presented earlier, maximum unstable growth

rates decrease downstream along the cone surface for both solid and porous walls. For

the solid wall case, higher azimuthal wavenumbers have the largest growth rates. For the

porous wall case which non-axisymmetric azimuthal mode has the largest growth rate

depends on the cone radius although overall differences between the non-axisymmetric

modes remains small. The destabilising effect of the porous wall dramatically reduces

downstream especially for higher azimuthal wavenumbers.
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Figure 4.13: Spatial growth rate parameter αi(Ω) for non-neutral axisymmetric modes
(n = 0): —, random microstructure model (2.3.9); −−−, regular microstructure model
(2.3.4). We show the growth rates of the first four modes for (a) a = 0.6, (b) a = 1.0, (c)
a = 1.5, (d) a = 2.0.
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Figure 4.14: Spatial growth rate parameter αi(Ω) for non-neutral non-axisymmetric modes
with n = 1: —, random microstructure model (2.3.9); −−−, regular microstructure model
(2.3.4). We show the growth rates of the first five modes for (a) a = 0.6, (b) a = 1.0, (c)
a = 1.5, (d) a = 2.0.
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Figure 4.15: Spatial growth rate parameter αi(Ω) for non-neutral axisymmetric modes:
—, mesh microstructure model (2.3.6); −−−, regular microstructure model (2.3.4). We
show the growth rates of the first four modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d)
a = 2.0.
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Figure 4.16: Spatial growth rate parameter αi(Ω) for non-axisymmetric modes with n = 1:
—, mesh microstructure model (2.3.6); −−−, regular microstructure model (2.3.4). We
show the growth rates of the first five modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d)
a = 2.0.



CHAPTER 4. RESULTS 107

We now consider the spatial stability results using the random microstructure model

of (2.3.9). The neutral stability results comparing this model to the regular porous

model of (2.3.4) were shown in figures 4.5 and 4.6 for axisymmetric and non-axisymmetric

disturbances, respectively. We examine the spatial stability of these disturbances in figure

4.13 for n = 0 and in figure 4.14 for n = 1. In these figures we see that the felt metal

leads to significantly larger maximum unstable growth rates when compared to the regular

porous model. For axisymmetric modes the frequency at which the maximum unstable

growth rate occurs is preserved while for non-axisymmetric modes, the maximum unstable

growth is shifted to significantly higher frequencies which decrease with increasing a.

The felt metal coating is thus highly deleterious to the first-mode instability. Similar

findings have also been reported experimentally (Shiplyuk 2004), who attribute the greater

destabilisation of the first mode to elevated roughness of the felt metal coating.

Next we consider the spatial stability results using the mesh microstructure model of

(2.3.6). The neutral stability results comparing this model to the regular porous model of

(2.3.4) were shown in figures 4.7 and 4.8 for axisymmetric and non-axisymmetric distur-

bances respectively. We examine the spatial stability of these disturbances in figure 4.15

for n = 0 and in figure 4.16 for n = 1. From these figures we see that the higher porosity

of the mesh microstructure leads to slightly greater destabilisation of both axisymmetric

and non-axisymmetric disturbances when compared to the regular porous model.

4.2 Parametric studies

The results presented in Section 4.1 allow us to conclude that the porous layer has a

destabilising effect on both axisymmetric and non-axisymmetric disturbances. All modes

generated by the shock are destabilised by the presence of the porous wall. Which mode

is the most dangerous depends on the azimuthal wavenumber and cone radius. The

porous wall influences the stability of the flow through the wall admittance Ay. Since
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Figure 4.17: The first five neutral modes of (3.1.7) with n = 1. Shown is Ω against local
cone radius a for a/rs = 0.57 using regular microstructure model (2.3.4): —, Tw = 0.25Tad;
−−−, Tw = Tad.

the objective of using porous layers is to stabilise the boundary layer, we can examine

the parameters that affect the wall admittance and quantify their effect on the maximum

unstable growth rates. We will focus our attention mainly on the regular porous model.

4.2.1 Effect of moderate wall cooling

From Section 2.3 we see that Ay depends on the wall temperature Tw. Recall that in

Chapter 2 we argue that the stability analysis is valid for Tw >> 1. To study the effects of

different wall temperatures we maintain this restriction and vary the wall temperature as

0.25 < Tw/Tad < 1.0. This corresponds to typical experimental situations and numerical

investigations (Fedorov et al. 2001, Maslov 2003) where the non-dimensional adiabatic

wall temperature is Tad = 5.5 − 7.0. We restrict our attention to non-axisymmetric

disturbances with n = 1. Figure 4.17 shows the effect of wall temperature on the neutral

stability. We see that decreasing the wall temperature from Tw = Tad to Tw = 0.25Tad
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Figure 4.18: Spatial growth rate parameter αi(Ω) for non-axisymmetric modes with n = 1
using regular microstructure model (2.3.4): —, Tw = 0.25Tad; −−−, Tw = Tad. We show
the growth rates of the first five modes for (a) a = 0.6, (b) a = 1.0, (c) a = 1.5, (d)
a = 2.0.



CHAPTER 4. RESULTS 110

leads to a corresponding decrease of the neutral curves for all values of cone radius a.

Thus wall cooling has a destabilising effect in the presence of the porous wall. Figure

4.18 shows the corresponding effect of wall cooling on the spatial stability. Concomitant

with a decrease in the cut-off frequencies for spatial instability (as may be expected

from the neutral results), we see that decreasing the wall temperature from Tw = Tad to

Tw = 0.25Tad leads to significantly larger unstable growth rates at all values of a. There is

a very slight shift in the peak unstable growth rates to lower frequencies with increasing

a. From these two results we can conclude that cooling the wall in the presence of porous

coatings significantly destabilises Mack’s first mode disturbances and leads to significant

amplification of unstable disturbances at all streamwise locations. Further discussion is

presented in Section 5.2.3.

4.2.2 Effect of gas rarefaction

As the flow density on the cone wall is relatively small, gas rarefaction effects are

important for the flow inside the pores. The regular porous model of (2.3.4) accounts for

this effect. Here we examine the influence of gas rarefaction effects within the pore on

the stability of the flow. The Knudsen number can be expressed as

Kn =
µwM−
rpR

√
2πγTw. (4.2.1)

Figure 4.19 shows the effect of finite Knudsen number on the neutral modes. We see that

gas rarefaction has a destabilising effect on the flow. A similar situation is also revealed in

figure 4.20 which shows the effect of finite Knudsen number on the spatial stability of the

flow. We see that gas rarefaction leads to larger amplification of unstable disturbances

(particularly the higher modes) at a particular frequency.
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Figure 4.19: The first five neutral modes of (3.1.7) with n = 1. Shown is Ω against local
cone radius a for a/rs = 0.57: —, Kn = 0; −−−, Kn = 0.494. Results are shown using
the regular porous model (2.3.4).
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Figure 4.20: Spatial growth rate parameter αi(Ω)| for non-axisymmetric mode n = 1: —,
Kn = 0; − − −, Kn = 0.494. Results are shown using the regular porous model (2.3.4)
at a = 0.6.
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4.2.3 Effect of porous layer characteristics

The porous layer characteristics are defined by quantities that physically characterise

the porous layer i.e., pore radius r∗p, porosity φ0 and pore depth h∗. Effects of varying

pore thickness are also studied by considering the mesh microstructure model of (2.3.6).

In this type of porous layer, the overall thickness of the porous wall can be controlled by

the number of layers of stainless steel mesh that are laid on top of each other.
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Figure 4.21: Variation of spatial growth rate parameter σmax = max(|−αi(Ω)|) with pore
radius r∗p for non-neutral non-axisymmetric mode n = 1. Results are shown using the
regular porous model (2.3.4) with φ0 = 0.2, Λh >> 1 at a = 0.8.

We begin with the regular porous model and examine the variation of maximum

unstable growth rates with increasing pore radius, porosity and pore depth. We again

focus on the first non-axisymmetric mode n = 1. In figure 4.21 we fix the porosity at

φ0 = 0.25 and vary the pore radius while in figure 4.22 we fix the pore radius at r∗p = 30µm

and vary the porosity. In figure 4.21 we see that larger pore radii for fixed porosity leads to

larger maximum growth rates. Similarly we see from figure 4.22 that increasing porosity
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Figure 4.22: Variation of spatial growth rate parameter σmax = max(| − αi(Ω)|) with
porosity φ0 for non-neutral non-axisymmetric mode n = 1. Results are shown using the
regular porous model (2.3.4) with rp = 30µm, Λh >> 1 at a = 0.8.

(by decreasing pore spacing) for fixed sized pores leads to larger maximum growth rates.

We have performed these computations in the limit of infinite pore depth (Λh >> 1).

We now examine the effect of finite pore depth on the maximum unstable growth rates.

In figure 4.23a we fix the porosity and pore radius and vary the pore thickness h∗. We

see that for very thin porous layers, the maximum growth rate is minimum and does not

change with porous layer thickness. For thicker porous layers, the maximum unstable

growth rates increase until they level off at very high thickness. Finally in figure 4.23b we

examine the effect of increasing the number of stainless steel mesh layers on the maximum

unstable growth rates. We see that the maximum growth rate peaks at h∗ = 0.15mm,

and then reduces and levels off for thicker layers. Further discussion is presented in

Section 5.2.3.
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Figure 4.23: Variation of spatial growth rate parameter σmax = max(|−αi(Ω)|) with pore
depth for non-neutral non-axisymmetric mode n = 1. Results are shown at a = 0.8 using
(a) the regular porous model (2.3.4) with rp = 30µm, φ0 = 0.2; (b) mesh microstructure
model (2.3.6) with ã = 50µm, φ0 = 0.8
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4.3 Nonlinear stability results

In this section results obtained from the numerical evaluation of the coefficients in

(3.3.21) and (3.4.3) will be presented. Attention will be largely focused on the coefficient

of the nonlinear term in these equations (Re(a4/a1) and Re(a40/a10)).

4.3.1 Solid wall

We turn to the non-axisymmetric problem and the evolution equation (3.3.21). We

can obtain a solution to this equation using separation of variables. Following Stuart

(1960) we can determine an explicit expression for the amplitude |A11|2 as

|A11|2 =
2KeKX̃[

KC1 − 2Re
(
a4
a1

)
eKX̃

] , (4.3.1a)

where K = 2Re
(
a2
a1
λ2 + a3

a1
Ω2

)
and C1 is a constant of integration. When K > 0 we

have linear instability. Note that λ2 is negative downstream of the neutral location. If

then Re
(
a4
a1

)
< 0, nonlinear effects are stabilising and the linearly unstable mode is

supercritically stable with an equilibrium amplitude given by

|A11| =

√√√√√Re
(
a2
a1
λ2 + a3

a1
Ω2

)
−Re

(
a4
a1

) . (4.3.1b)

In figure 4.24a we show Re(a2/a1) as a function of a for n = 1 corresponding to the

first five neutral modes of the non-axisymmetric eigenrelation (3.1.7) for a solid wall.

The arrows here and on all the subsequent figures indicate increasing mode number.

We can see that this quantity is always negative. The results for n = 2 are shown in

figure 4.25a. The magnitudes are decreased when compared to n = 1. The corresponding

values of Re(a3/a1) are shown in figures 4.24b and 4.25b, respectively for n = 1 and
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Figure 4.24: (a) Re(a2/a1); (b) Re(a3/a1), as a function of local cone radius a for the first
five modes. Results are shown for solid wall with n = 1 and a/rs = 0.57.
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Figure 4.25: (a) Re(a2/a1); (b) Re(a3/a1), as a function of local cone radius a for the first
five modes. Results are shown for solid wall with n = 2 and a/rs = 0.57.
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Figure 4.26: Re(a4/a1) for the first five modes as a function of local cone radius a for
(a) 0 6 a 6 1.0; (b) 1.0 6 a 6 5.0. Results are shown for a solid wall with n = 1 and
a/rs = 0.57.
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Figure 4.27: (a) Re(a4/a1) for the first five modes as a function of local cone radius a for
0 6 a 6 2.3. Results are shown for a solid wall with n = 2 and a/rs = 0.57; (b) Re(a4/a1)
for the first mode as a function of a.

Figure 4.28: Re(a4/a1) for the first five modes as a function of local cone radius a for
2.3 6 a 6 5.0. Results are shown for a solid wall with n = 2 and a/rs = 0.57.
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n = 2. There is a difference in behaviour of Re(a3/a1) for the first mode for small

values of a, corresponding to the anomalous behaviour of the lowest neutral solution

(see figure 4.2). The effect of increasing the azimuthal wavenumber is to decrease the

magnitude of Re(a3/a1).

We now investigate the effect of nonlinearity on linearly unstable disturbances by

considering the sign of Re(a4/a1). In order to see the behaviour of the different modes

the values of Re(a4/a1) versus a for 0 < a 6 1 is shown in figure 4.26a and for 1 6 a 6 5

is shown in figure 4.26b for n = 1. In figures 4.26a and 4.26b we can see that the sign

of Re(a4/a1) is always positive for the first mode (m = 1). Thus nonlinear effects always

destabilise this mode possibly leading to a subcritical instability. The effect of nonlinearity

on the remaining four modes depends on the value of a. For a < 1, Re(a4/a1) < 0 leading

to supercritical instability. As the value of a increases, the sign of Re(a4/a1) becomes

positive beginning with the higher modes indicating that nonlinear effects now destablise

these linearly unstable modes. We also notice an overlapping of modes m > 1 for a certain

range of a, such that for a < 0.425 we see the stabilising effect of nonlinearity increasing

with mode number and for a > 1.5, we see it decreasing with increasing mode number. In

the limit of large a we can see that Re(a4/a1)→ 0 for all the modes, with the first mode

having the highest amplitude. Recall that for a fixed cone angle the effect of increasing

a is to move further along the cone surface. Thus at large streamwise distances we can

expect nonlinear disturbance amplitudes to be very small. The corresponding results for

Re(a4/a1) with n = 2 can be seen in figures 4.27 and 4.28. In figure 4.27a we can see

that effect of nonlinearity on modes m > 1 for n = 2 are similar to that for n = 1.

Higher azimuthal wavenumber allows the stabilising effect of nonlinearity to persist for

larger ranges of a. In figure 4.28 we see that Re(a4/a1) becomes positive for a > 2.3 with

the higher modes becoming destabilised first. We again notice a region of overlapping of

modes m > 1 similiar to that seen for n = 1. The range of overlap is now wider and shifted
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to higher values (1 < a < 3.3). The effect of azimuthal wavenumber is more significant on

the first mode as can be seen in figure 4.27b. Here we see that the first mode is stabilised

by nonlinearity for a narrow range of a (Re(a4/a1) < 0 when 1.6 < a < 3.3). In the limit

of large a nonlinear effects on the first mode persist while the effects on the higher modes

diminish as Re(a4/a1) → 0 for these modes. The effect of nonlinearity for disturbances

with n = 3 have also been investigated. The results (see later) indicate that overall trends

remain similar to that for n = 2. We may thus conclude that nonlinear effects tend to

stabilise the higher modes over a wider range of a for higher azimuthal wavenumbers, and

the first mode becomes the most destabilised by nonlinearity at large values of a.

We consider the effect of nonlinearity on axisymmetric disturbances next. Axisym-

metric disturbances are linearly unstable if Re(a20λ2/a10) > 0. If Re(a40/a10) < 0 for

these disturbances then nonlinear effects are stabilising and the linearly unstable modes

are supercritically stable with an equilibrium amplitude

|A11| = (−λ2)1/2

(
−Re(a20)

−Re(a40)

)1/2

.

In figure 4.29a we can see Re(a20/a10) as a function of a. We notice that this quantity

is always negative so disturbances are linearly unstable. Figure 4.29b shows Re(a40/a10)

versus a corresponding to the first four modes. We see that this quantity is negative for

all the modes with the exception of the first mode. For this mode, Re(a40/a10) becomes

slightly positive for a > 2.3. Thus, we can expect nonlinear effects to stabilise linearly

unstable axisymmetric disturbances with the exception of the first mode which is slightly

destabilised above a certain value of a.

The results discussed above for Re(a40/a10) and Re(a4/a1) differ from those presented

by Stephen (2006). In that paper it was reported that Re(a40/a10) and Re(a4/a1) were

always negative, so the nonlinear effects were always stabilising. Our corrected results
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have shown the significant result that the nonlinear effects are destabilising for particular

ranges of a.

4.3.1.1 Effect of the shock and curvature

Before proceeding to investigate the effect of porous coatings on the nonlinear stability

it is useful to consider the stability problem in the absence of a shock. The problem in the

absence of shock was first considered by Duck & Hall (1989, 1990). It can be shown that

the neutral curves in the absence of shock differ fundamentally from those in the presence

of shock as solutions are only possible for a finite range of a (Seddougui & Bassom 1997).

If no shock is present, solutions to the upper deck problem, (2.4.19c) at first order are

only proportional to Kn(iαr), allowing only for outgoing waves as r → ∞. Here the

shock condition (2.4.19e) is applied at rs →∞. This modifies the resulting eigenrelation.

The nonlinear stability analysis can be carried out in a straightforward manner for this

problem. Figure 4.30 shows Re(a4/a1) as a function of a for n = 1 and n = 2. It can

be seen that the sign of Re(a4/a1) is always negative and two solution branches exist for

0 < a < 0.75 for n = 1 and 0 < a < 1.75 for n = 2. Thus in the absence of shock

nonlinear effects are stabilising for all admissible values of a.

We can deduce the significance of curvature on the nonlinear stability by comparing

our results for a solid wall to those obtained from the analysis of Seddougui & Bassom

(1994) for the weakly nonlinear stability of flow over a wedge. Figure 4.31 shows the

variation of the Re(a3), the coefficient of the nonlinear term of the amplitude equation in

their paper (cf. equation 5.1) with β1, the leading order scaled spanwise wavenumber. The

results are shown for a scaled shock distance ys = 1.73 which corresponds to a/rs = 0.57,

the condition considered in this study. Corresponding results (cf. figure 5) shown in

Seddougui & Bassom (1994) were obtained using incorrect values for two constants in

their equation 4.12. Our corrected results shows the significant result that for a small

range of 0 < β1 < 0.7, Re(a3) > 0. Thus nonlinear effects will be destabilizing for
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Figure 4.29: (a) Re(a20/a10); (b) Re(a40/a10) for the first four modes as a function of local
cone radius a. Results are shown for solid wall with n = 0 and a/rs = 0.57. Results for
the first mode are indicated by ◦.
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Figure 4.30: Re(a4/a1) as a function of local cone radius a in the absence of shock. Results
are shown for solid wall with (a) n = 1 and (b) n = 2.

disturbances with these spanwise wavenumbers. By comparing the magnitudes of Re(a3)

and Re(a4/a1) (from figure 4.26 for example) we can infer that curvature has the effect

of making the nonlinear effects stronger.

4.3.2 Effect of porous walls

We can now investigate the effect of porous coatings. We begin by considering the

regular porous wall model of (2.3.4). The results using this model are compared to the

results for a solid wall for non-axisymmetric modes.

We turn to figure 4.32 which compares Re(a4/a1) for n = 1 between the solid and

regular porous walls for the first five modes (m = 1 − 5). We see that nonlinear effects

are enhanced by the porous wall giving larger values of Re(a4/a1). In the presence of

the porous wall nonlinear effects destabilise the lower modes (first and second) while

stabilising the higher modes (three to five). We can see this from the fact that Re(a4/a1)

for the porous wall has larger positive values for the first and second modes compared to
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Figure 4.31: Re(a3) for the first five modes as a function of spanwise wavenumber β1 for
ys = 1.73 (cf. equation 5.1 of Seddougui & Bassom 1994).

the solid wall and that Re(a4/a1) for the porous wall becomes positive at larger values

of a compared with the solid wall for the higher modes. However once destabilised, the

higher modes of the porous wall have larger values of Re(a4/a1) compared to the solid

wall. For large enough values of a, we can expect the nonlinear effects to diminish just as

in the solid wall case.

Figure 4.33 shows the corresponding results for Re(a4/a1) with n = 2. Here we see

that nonlinearity destabilises the first, second, third and fourth modes in comparison

to corresponding modes of the solid wall, while stabilising the fifth and possibly higher

modes of the porous wall. Results obtained for n = 3 in figure 4.34 show that nonlinearity

destabilizes all of the first five modes of the porous wall compared to the solid wall. We

can thus infer that in presence of the porous wall, nonlinearity destabilizes lower modes

with their mode number increasing with azimuthal wavenumber.

We now compare the effect of porosity on the nonlinear stability of axisymmetric

disturbances. We look at figure 4.35 which shows Re(a40/a10) as a function of a for the
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Figure 4.32: Re(a4/a1) for the first five modes as a function of local cone radius a for
n = 1 and a/rs = 0.57: —, solid wall; −−−, regular microstructure model (2.3.4).
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Figure 4.33: Re(a4/a1) for the first five modes as a function of local cone radius a for
n = 2 and a/rs = 0.57: —, solid wall; −−−, regular microstructure model (2.3.4).



CHAPTER 4. RESULTS 127

-2

-1.5

-1

-0.5

 0

 0.5

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
e(

a 4
/a

1)

a

1

2

3
4

5

Figure 4.34: Re(a4/a1) for the first five modes as a function of local cone radius a for
n = 3 and a/rs = 0.57: —, solid wall; −−−, regular microstructure model (2.3.4).
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Figure 4.35: Re(a40/a10) for the first four modes as a function of local cone radius a for
n = 0 and a/rs = 0.57: —, solid wall; − − −, regular microstructure model (2.3.4).
Results for the first mode are indicated by • for solid wall and ◦ for porous wall.
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Figure 4.36: Re(a4/a1) for the first five modes as a function of local cone radius a for n = 1
and a/rs = 0.57: —, random microstructure model (2.3.9); −−−, regular microstructure
model (2.3.4).

porous wall and solid wall. Here we see that in the presence of porous wall all the modes

are destabilised by nonlinearity with the most significant effect being felt by the first

mode. This mode is destabilised for all values of a.

Next we consider the random microstructure model of (2.3.9). The results using

this model are compared with those obtained using the regular microstructure model.

Figure 4.36 shows Re(a4/a1) for n = 1 for both the models. We see that nonlinear effects

destabilise the first two modes of the felt metal model when compared to the regular

porous model. The effect on the higher modes is opposite as we see that Re(a4/a1)

becomes positive at smaller values of a for the regular porous model as compared to the

felt metal model. Once destabilized, values of Re(a4/a1) are more positive for the felt

metal indicating that nonlinear amplification of disturbances will be stronger.

Finally we consider the mesh microstructure model of (2.3.6). Figure 4.37 shows

Re(a4/a1) for n = 1 for both the models. The effect of the two models on the first
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Figure 4.37: Re(a4/a1) for the first five modes as a function of local cone radius a for n = 1
and a/rs = 0.57: —, mesh microstructure model (2.3.6); − − −, regular microstructure
model (2.3.4).

mode is similar. For the higher modes nonlinear effects are slightly more destabilising for

the regular model compared to the mesh model. This can again be seen by noting that

Re(a4/a1) becomes positive at smaller values of a for the regular model compared to the

mesh model. The effect of higher porosity is considered in more detail in the next section.

4.3.2.1 Parametric studies

In Section 4.2 the effects of wall cooling, porosity and pore-depth on the linear sta-

bility problem was investigated. In this section we examine their effects on the nonlinear

stability.

We begin by examining the nonlinear stability results for the regular porous model

with a higher porosity of φ0 = π
4
. In figures 4.38a and 4.38b for n = 0 and n = 1,

respectively, we see that higher porosity leads to nonlinearity having a stabilizing effect

on mode numbers greater than one. This can be seen by noting the increase in the value

of a where Re(a4/a1) becomes positive. However, for large values of a the destabilising
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effect of nonlinearity is stronger with Re(a4/a1) being slightly larger for higher porosity.

In figure 4.39a for n = 2 we see the stabilising effect of higher porosity for mode numbers

greater than two and in figure 4.39b for n = 3 we see it for mode numbers greater than

three.

In Section 4.2.1 we showed that moderate levels of wall cooling leads to a significant

destabilisation of linearly unstable disturbances. The effect of nonlinearity on these dis-

turbances is now considered. In figure 4.40 we show Re(a4/a1) against a for n = 1 for

Tw = Tad and Tw = 0.25Tad. The effect of wall cooling is to destabilise the first mode and

stabilise the remaining modes. We can see this by noting that for the first mode Re(a4/a1)

is larger for the colder wall and for the higher modes Re(a4/a1) becomes positive at larger

values of a. Thus at smaller values of a, nonlinearity stabilises the modes that are most

linearly amplified by wall cooling. At large enough a, these higher modes become desta-

bilised by nonlinearity with Re(a4/a1) being more positive and thereby leading to greater

nonlinear amplification in the presence of the colder wall.

Further discussion of the nonlinear stability results is presented in Section 5.3.



CHAPTER 4. RESULTS 131

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
e(

a 4
0/

a 1
0)

a

(a)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
e(

a 4
/a

1)

a

(b)

Figure 4.38: Re(a4/a1) as a function of local cone radius a for a/rs = 0.57 and (a)
n = 0; (b) n = 1. Results are shown using the regular microstructure model (2.3.4): —,
φ0 = π/4; − − −,φ0 = 0.2. Symbols refer to mode number: ×, m = 1; �, m = 2; �,
m = 3; ◦, m = 4; •, m = 5.
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Figure 4.39: Re(a4/a1) as a function of local cone radius a for a/rs = 0.57 and (a)
n = 2; (b) n = 3. Results are shown using the regular microstructure model (2.3.4): —,
φ0 = π/4; − − −,φ0 = 0.2. Symbols refer to mode number: ×, m = 1; �, m = 2; �,
m = 3; ◦, m = 4; •, m = 5.
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n = 1 and a/rs = 0.57 using regular microstructure model (2.3.4): —, Tw = 0.25Tad;
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Chapter 5

Discussion

In this study the weakly nonlinear stability of viscous modes in a hypersonic boundary

layer on a slender cone was investigated. The problem was considered at increasing orders

of the relative size of the disturbance amplitude of the viscous disturbances. After a

lengthy analysis, an evolution equation that describes the streamwise development of

the amplitude was derived at third order. The linear stability problem is obtained at

first order and is governed by the solutions to the axisymmetric and non-axisymmetric

eigenrelations. The effect of nonlinearity on disturbances that are linearly unstable is

ascertained from the numerical evaluation of the coefficients of the evolution equation.

We derive some asymptotic approximations to the eigenrelations and coefficients of the

amplitude equation in Section 5.1. We summarise the results of the linear stability analysis

in Section 5.2 and compare them with published studies on the second-mode instability

in the presence of porous coatings. Finally in Section 5.3 we summarise the results of the

nonlinear stability analysis and discuss the transition process for hypersonic boundary

layers.

134
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5.1 Asymptotic approximations - Solid wall case

In this section we will consider some asymptotic approximations to the non-axisymmetric

linear eigenrelation and nonlinear coefficient Re(a4/a1) in the limit of large a and small

a. We will consider the linear eigenrelation (3.1.7) in the following form

Ai′(ξ0)∫∞
ξ0

Ai(ξ)dξ
= i1/3α4/3 n2

α2a2

Jn(αa)Yn(αrs)− Jn(αrs)Yn(αa)

Jn(αrs)Y ′n(αa)− J ′n(αa)Yn(αrs)
, (5.1.1)

where we have set Ay = 0 and written the modified Bessel functions In and Kn in terms

of Jn and Yn. For neutral solutions of (5.1.1), as in the classic planar incompressible

stability problem it is found from the numerical results that ξ0 ≈ −2.297i1/3, and that

the LHS may be approximated as 1.001i1/3. This result is not valid for the porous wall

case, due to the presence of the complex admittance term Ay in the equation. We can

then seek to approximate the RHS of (5.1.1) depending on the size of the arguments of

the Bessel functions. This will allow us to derive an approximate solution for α in the

limit of large a or small a. This solution can then be substituted in the expressions for

the nonlinear coefficients a4 and a1 to also obtain an approximate solution for Re(a4/a1).

Thus we will be able to get an analytic confirmation of the behaviour of α and Re(a4/a1)

illustrated by the numerical results.

5.1.1 Limit: a >> 1

We will begin by considering the limit of large a. Recall that we consider a/rs to be

some fixed quantity which implies that rs is also large in this limit. From the numerical

results (see figure 4.2 for example), we can see that in this limit α tends to some O(1)

quantity. This suggests that for large enough a we may consider αa >> 1 and αrs >> 1.

If we define z = αrs and η = α(rs − a), then we can write (5.1.1) as
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Ai′(ξ0)∫∞
ξ0

Ai(ξ)dξ
= i1/3α4/3 n2

α2a2

Jn(z − η)Yn(z)− Jn(z)Yn(z − η)

Jn(z)Y ′n(z − η)− J ′n(z − η)Yn(z)
(5.1.2)

We then use the large argument expansions of the Bessel functions Jn and Yn as given in

Abramovitz & Stegun (1972). We have to O(1/z2)

Jn(z) ∼
√

2

πz

[(
1− (µ− 1)(µ− 9)

128z2

)
Cn(z)− µ− 1

8z
Sn(z)

]
,

J ′n(z) ∼−
√

2

πz

[(
1− (µ− 1)(µ+ 15)

128z2

)
Sn(z) +

µ+ 3

8z
Cn(z)

]
,

Yn(z) ∼
√

2

πz

[(
1− (µ− 1)(µ− 9)

128z2

)
Sn(z) +

µ− 1

8z
Cn(z)

]
,

Y ′n(z) ∼
√

2

πz

[(
1− (µ− 1)(µ+ 15)

128z2

)
Cn(z) +

µ+ 3

8z
Sn(z)

]
,

(5.1.3a)

where we define µ = 4n2 and

Cn(z) = cos

(
z −

(
n

2
+

1

4

))
,

Sn(z) = sin

(
z −

(
n

2
+

1

4

))
.

(5.1.3b)

We can also make use of the fact that

cos

(
z − η −

(
n

2
+

1

4

))
= Cn(z) cos(η) + Sn(z) sin(η),

sin

(
z − η −

(
n

2
+

1

4

))
= Sn(z) cos(η)− Cn(z) sin(η).

(5.1.3c)

Using (5.1.3) we can obtain

Jn(z − η)Yn(z)− Jn(z)Yn(z − η) ∼
2

π
√
z(z − η)

[
sin(η) +

µ− 1

8z
cos(η)− µ− 1

8(z − η)
cos(η)
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− (µ− 1)(µ− 9)

128z2
sin(η)− (µ− 1)(µ− 9)

128(z − η)2
sin(η) +

(µ− 1)2

64z(z − η)
sin(η)

]
, (5.1.4a)

Jn(z)Y ′n(z − η)− Yn(z)J ′n(z − η) ∼
2

π
√
z(z − η)

[
cos(η)− µ− 1

8z
sin(η) +

µ+ 3

8(z − η)
sin(η)

− (µ− 1)(µ− 9)

128z2
cos(η)− (µ− 1)(µ+ 15)

128(z − η)2
cos(η) +

(µ− 1)2

64z(z − η)
cos(η)

]
. (5.1.4b)

So to leading order (5.1.1) may be approximated as

1.001i1/3 ≈ i1/3n2

a2α2/3

sin(η)

cos(η)
,

which requires

tan(η) ≈ a2α2/3

n2
>> 1. (5.1.4c)

So we let

η = (2m− 1)π/2− δ, m = 1, 2, . . . , δ << 1. (5.1.4d)

Then we can show that

tan ((2m− 1)π/2− δ) =
sin ((2m− 1)π/2 + δ) cos(δ)− cos ((2m− 1)π/2 + δ) sin(δ)

cos ((2m− 1)π/2 + δ) cos(δ)− sin ((2m− 1)π/2 + δ) sin(δ)

=
cos(δ)

sin(δ)
≈ 1− δ2/2 + . . .

δ − δ3/6 + . . .
, (5.1.4e)

where we obtain the last expression using Taylor expansions. Using (5.1.4e) in (5.1.4c),

to leading order we get

δ =
n2

a2α2/3
.
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If we define ε = rs − a, then

α =
η

ε
≈ (2m− 1)π/2ε−1,

a = rs

(
1− ε

rs

)
.

So

δ ≈ n2ε2/3

r2
s ((2m− 1)π/2)2/3

, (5.1.4f)

and using (5.1.4d) we can finally write

α ∼ (2m− 1)π/2ε−1 − n2ε2/3

r2
s ((2m− 1)π/2)2/3

+ . . . . (5.1.4g)

We note here that this same equation was derived in Seddougui & Bassom (1997). In

their paper ε << 1. We have shown that this solution is also valid if ε ∼ O(1) and

η ∼ O(1). The prediction given by (5.1.4g) is shown in figure 5.1a for n = 1 and in figure

5.1b for n = 2. We can see very good agreement between this asymptotic solution and

the computed values especially for the higher modes. The relatively poorer agreement for

the first mode is due to z and z− η not being large enough to make (5.1.4a) and (5.1.4b)

sufficiently accurate.

We can now turn to the nonlinear coefficients a4 and a1 in (3.3.22d) and (3.3.22a)

respectively. If we set Ay = 0 in these equations we can then write them in the form given

in Stephen (2006), using the definitions from Seddougui & Bassom (1994). Thus

a4 =i−2/3α5/3α
2/3a2L5 − 2in2g2nL6

α2/3a2L7 − 2in2g2nL8

, (5.1.5a)

a1 =− i4/3L1 + 2L4i1/3α1/3n
2

a2

[
(bndn + cnen)

(
Kn(iαa)− K ′n(iαa)α2/3a2

in2

)
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Figure 5.1: The first five neutral values of α for (a) n = 1; (b) n = 2: —, numerical
solution of (5.1.1), −−−; the asymptotic approximation (5.1.4g).
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− (bnfn + cndn)

(
In(iαa)− I ′n(iαa)α2/3a2

in2

)]
, (5.1.5b)

where L1 − L8, are O(1) constants.

We will begin by looking at a4. We consider the term g2n. We can write this term as

g2n = i
J2n(2(z − η))Y2n(2z)− J2n(2z)Y2n(2(z − η))

J2n(2z)Y ′2n(2(z − η))− Y2n(2z)J ′2n(2(z − η))
.

Substituting the appropriate expressions using (5.1.3) we can show that

g2n ≈ i

[
sin(2η)− 16n2 − 1

16z
cos(2η)− 16n2 − 1

16(z − η)
cos(2η)− (16n2 − 1)(16n2 − 9)

512z2
sin(2η)

+
(16n2 − 1)(16n2 − 9)

512(z − η)2
sin(2η) +

(16n2 − 1)2

256z(z − η)
sin(2η)

]
×[

cos(2η)− 16n2 − 1

16z
sin(2η)− 16n2 + 3

16(z − η)
sin(2η)− (16n2 − 1)(16n2 − 9)

512z2
cos(2η)

− (16n2 − 1)(16n2 + 15)

512(z − η)2
cos(2η) +

(16n2 − 1)2

256z(z − η)
cos(2η)

]−1

. (5.1.5c)

So to leading order, using (5.1.4d) we can write

g2n ≈ i tan(2η)

≈ i
sin ((2m− 1)π + 2δ) cos(2δ)− cos ((2m− 1)π + 2δ) sin(2δ)

cos ((2m− 1)π + 2δ) cos(2δ)− sin ((2m− 1)π + 2δ) sin(2δ)

= −i
sin(2δ)

cos(2δ)
≈ −2i

δ − 4δ3/3 + . . .

1− δ2 + . . .
≈ −2iδ

[
1 +

2δ2

3
+ . . .

]
. (5.1.5d)

Thus g2n ∼ O(δ) << 1. Using this result we can approximate (5.1.5a) as

a4 ∼ i−2/3α5/3L5

L7

, (5.1.5e)

where we have neglected the g2n terms as they are much smaller than the O(a2) terms in

the numerator and denominator of the fraction. Using (5.1.4g) we can write the approx-
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imation for a4 as

a4 = i−2/3L5

L7

((2m− 1)π/2)5/3 ε−5/3 − i−2/3 5n2L5

3r2
sL7

ε−1 + . . . . (5.1.5f)
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Figure 5.2: Real and Imaginary parts of a4 for n = 1. Shown are —, the numerical
evaluation of (5.1.5a), −−−; the asymptotic approximation (5.1.5f).

The solution given by (5.1.5f) is compared with the numerical evaluation of (5.1.5a)

in figure 5.2 for n = 1 and in figure 5.3 for n = 2. We can see that there is very good

agreement between the asymptotic solution and the computed values for all the modes.

We will now look at a1. From (5.1.5b) we can see that our task is to expand the

various terms containing the Bessel functions. We start with bn and cn. The definition

of these functions are given (3.3.5). We will write these functions in terms of the Bessel

functions Jn and Yn. If we consider η/z to be small, we can simplify (5.1.4b) to obtain

Jn(z)Y ′n(z − η)− Yn(z)J ′n(z − η) ∼ 2

π
√
z(z − η)

[
cos(η) +

sin(η)

2z
+ . . .

]
, (5.1.6a)

which is the denominator term of bn and cn. Using (5.1.4d) and Taylor expansions we can
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Figure 5.3: Real and Imaginary parts of a4 for n = 2. Shown are —, the numerical
evaluation of (5.1.5a), −−−; the asymptotic approximation (5.1.5f).

write

sin(η) = (−1)m+1

[
1− δ2

2
+ . . .

]
,

cos(η) = (−1)m+1

[
δ − δ3

3
+ . . .

]
.

(5.1.6b)

Similarly using the above results alongwith (5.1.3c) we can write

Cn(z − η) =(−1)m
(
−Sn(z) + Cn(z)δ + Sn(z)δ2/2− Cn(z)δ3/6

)
,

Sn(z − η) =(−1)m
(
Cn(z) + Sn(z)δ − Cn(z)δ2/2− Sn(z)δ3/6

)
.

(5.1.6c)

Substituting (5.1.6b) in (5.1.6a) we get

[Jn(z)Y ′n(z − η)− Yn(z)J ′n(z − η)]
−1 ∼

i(−1)m
√
z(z − η)

1

δ

(
1 +

1

2zδ
+ . . .

)
(5.1.6d)
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Using the above result and substituting (5.1.6b) in (5.1.3) we can write

bn ≈ i(−1)me
1
2
nπi

√
2(z − η)

π

1

δ

[
Cn(z)− µ− 1

8z
Sn(z)

](
1 +

1

2zδ
+ . . .

)
, (5.1.6e)

cn ≈
1

2
πie−

1
2
nπi

√
π(z − η)

2

1

δ

(
1 +

1

2zδ
+ . . .

)
×[

(Cn(z)− iSn(z))− i (Cn(z)− iSn(z))
µ− 1

8z

]
. (5.1.6f)

Using the definitions of Cn(z) and Sn(z) from (5.1.3) we can obtain the following results

Cn−1(z) = −Sn(z) Sn−1(z) = Cn(z),

Cn+1(z) = Sn(z) Sn+1(z) = −Cn(z).

Using the above in (5.1.6c) we also get

Cn+1(z − η) =(−1)m
(
−Cn(z) + Sn(z)δ − Cn(z)δ2/2− Sn(z)δ3/6

)
,

Sn+1(z − η) =(−1)m
(
Sn(z)− Cn(z)δ − Sn(z)δ2/2 + Cn(z)δ3/6

)
,

Cn−1(z − η) =(−1)m
(
−Cn(z)− Sn(z)δ + Cn(z)δ2/2 + Sn(z)δ3/6

)
,

Sn−1(z − η) =(−1)m
(
−Sn(z) + Cn(z)δ + Sn(z)δ2/2− Cn(z)δ3/6

)
.

(5.1.6g)

We will now need to expand dn, en and fn (3.3.9d) for large arguments. We will write each

of the functions in terms of Jn and Yn. Substituting the asymptotic forms from (5.1.3)

and using (5.1.6b) we will obtain after some simplification

In(iz)Kn(iz) =
−πi

2
Jn(z) (Jn(z)− iYn(z))

=
−1

z

[
iCn(z) (Cn(z)− iSn(z)) +

1

8z
(Cn(z)− iSn(z))2 (µ− 1)

]
,

In−1(iz)Kn+1(iz) =
πi

2
Jn−1(z) (Jn+1(z)− iYn+1(z))
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=
1

z

[
Sn(z) (Cn(z)− iSn(z)) +

1

8z
(Cn(z)− iSn(z))2 (µ+ 3)− n

z

]
.

Adding the above two expressions we get

In(iz)Kn(iz) + In−1(iz)Kn+1(iz) =
1

z

[
−i +

1

2z
(Cn(z)− iSn(z))2 − n

z

]
.

Similarly using (5.1.6c) in the above result we can get

In(i(z − η))Kn(i(z − η)) + In−1(i(z − η))Kn+1(i(z − η)) =

=
1

z − η

[
−i− 1

2z
(Cn(z)− iSn(z))2 − n

z
− iδ

z
(Cn(z)− iSn(z))2

]
.

Thus we can get an expression for dn as

dn ≈
irs
2z

(Cn(z)− iSn(z))2 − ε

2
+O(ε/z). (5.1.6h)

Now we will consider en, and following the same procedure as before we will obtain the

following terms

I2
n(iz) = enπiJ2

n(z)

=
2

πz

(
C2
n(z)− Sn(z)Cn(z)

4z
(µ− 1)

)
,

In−1(iz)In+1(iz) = enπiJn−1(z)Jn+1(z)

=
2

πz

(
−S2

n(z)− Sn(z)Cn(z)

4z
(µ+ 3)

)
.

Subtracting the above expressions we get

I2
n(iz)− In−1(iz)In+1(iz) = enπi 2

πz

[
1 +

Sn(z)Cn(z)

z

]
.
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Similarly using (5.1.6c) in the above result we can get

I2
n(i(z − η))− In−1(i(z − η))In+1(i(z − η)) =

enπi 2

π(z − η)

[
1− Sn(z)Cn(z)

z
+
δ

z

(
C2
n(z)− S2

n(z)
)]
.

Thus we can get an expression for en as

en ≈
−irse

nπi

π

(
2Sn(z)Cn(z)

z

)
− iε

π
enπi +O(ε/z). (5.1.6i)

Now we need to consider fn and following the same procedure as before we will obtain

the following terms

K2
n(iz) = −π

2

4
e−nπi

(
J(z)− iYn(z)

)2

= − π

2z
e−nπi (Cn(z)− iSn(z))2

(
1− i

4z
(µ− 1)

)
,

Kn−1(iz)Kn+1(iz) = −π
2

4
e−nπi (Jn−1(z)− iYn−1(z)) (Jn+1(z)− iYn+1(z))

= − π

2z
e−nπi (Cn(z)− iSn(z))2

[
1− i

4z
(µ+ 3)

]
.

Subtracting the above expressions we get

K2
n(iz)−Kn−1(iz)Kn+1(iz) =

−iπ

2z
e−nπi (Cn(z)− iSn(z))2 1

z
.

Similarly using (5.1.6c) in the above result we can get

K2
n(i(z − η))−Kn−1(i(z − η))Kn+1(i(z − η)) =

iπ

2(z − η)
e−nπi (Cn(z)− iSn(z))2

(
1 +

2iδ

z

)
1

z
.
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Thus we can get an expression for fn as

fn ≈ −
π

2
rse
−nπi (Cn(z)− iSn(z))2 1

z
+O(ε/z). (5.1.6j)

So now we can combine all these results and obtain to leading order

bndn + cnen ≈ (−1)menπi/2

√
z − η

2π

rs
2zδ

(
Cn(z) + Sn(z)

εz

rs

)(
1 +

1

2zδ

)
,

bnfn + cndn ≈ (−1)me−nπi/2

√
π(z − η)

2

1

δ

(
1 +

1

2zδ

)
(Cn(z)− iSn(z))

[
−irs
2z

+
ε

2

]
.

We now look at the expression for a1 in (5.1.5b). We can expect Kn(i(z − η)) and

K ′n(i(z − η)) to be of the same order. From (5.1.4c) and (5.1.4e) we can see that

α2/3a2/n2 ∼ tan(η) ∼ O(1/δ).

Thus K ′n(i(z − η))δ−1 >> Kn(i(z − η)) and we can ignore the latter term when trying

to obtain a leading order expansion for a1. Using (5.1.3) and (5.1.6c) we can obtain the

following expansions

K ′n(i(z − η)) = (−1)m
e−nπi/2

4

√
2π

z − η
(Cn(z)− iSn(z))

[
2 + 2iδ − i

µ+ 3

4z
+O(δ/z)

]
,

I ′n(i(z − η)) = (−1)m
−ie−nπi/2

2

√
2

π(z − η)
×[

−2Cn(z)− 2Sn(z)δ +
Sn(z)

4z
(µ+ 3) +O(δ/z)

]
.

(5.1.6k)

Thus, we can obtain after simplification

−(bndn + cnen)K ′n(i(z − η))
α2/3a2

in2
=
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=
−rsa2

2zδn2

(
1 +

1

2zδ

)
((2m− 1)π/2) ε−2/3

(
−iCn(z)− iSn(z)

εz

rs

)
(Cn(z)− iSn(z)),

(5.1.6l)

where we have used α ∼ ((2m− 1)π/2) ε−1. Similarly,

−(bnfn + cndn)I ′n(i(z − η))
α2/3a2

in2
=

=
−rsa2

2zδn2

(
1 +

1

2zδ

)
((2m− 1)π/2) ε−2/3(Cn(z)− iSn(z))(−2Cn(z)

(
−irs
2z

+
ε

2

)
.

(5.1.6m)

Substituting the above two expressions in (5.1.5b) and retaining only the largest terms

will give us

a1 ≈ −L4
i1/3r2

s

n2
((2m− 1)π/2)5/3 ε−2/3

(
1 +

1

2zδ

)
.

Since z = αrs and using (5.1.4f) for δ, we get

1

2zδ
=

−ε1/3rs

2n2 ((2m− 1)π/2)1/3
,

which allows us to express a1 as

a1 ≈ −L4
i1/3r2

s

n2
((2m− 1)π/2)5/3 ε−2/3

(
1− −ε1/3rs

2n2 ((2m− 1)π/2)1/3

)
. (5.1.7)

Finally (5.1.5f)/(5.1.7) gives us

Re(a4/a1) ≈ iL5

L4L7

n2

r2
s

(
ε−1 +

ε−2/3rs

n2 ((2m− 1)π/2)2/3
− 5n2ε−1/3

r2
s ((2m− 1)π/2)1/3

− 5n2

rs ((2m− 1)π/2)
+ . . .

)
. (5.1.8)
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We note here that this equation is similar to that presented in Stephen (2006) for the

limit ε→ 0. The solution given by (5.1.8) is compared with the numerical evaluation of
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Figure 5.4: Re(a4/a1) for n = 1. Shown are —, the numerical evaluation of
Re((5.1.5a)/(5.1.5b)); −−−, the asymptotic approximation (5.1.8).

Re(a4/a1) using (5.1.5a) and (5.1.5b) in figure 5.4 for n = 1 and in figure 5.5 for n = 2.

We see from these figures that the agreement between the asymptotic approximation and

the numerical results is poor. The main limitation of the asymptotic series describing a1 is

that the expansions for the Bessel function terms dn, en and fn were truncated at O(ε/z).

For a fixed ratio a/rs = s say, O(ε/z) ∼ O(α−1(1−s)), which is strictly not small. We can

expect better agreement by retaining terms at this order and determining the next terms

in the asymptotic series expansion (5.1.7), for a1. This would however make the necessary

algebraic simplification very cumbersome. The asymptotic approximation (5.1.8) however

gives an analytic confirmation that Re(a4/a1)→ 0+ for a >> 1, and that the first mode

(m = 1) will be the dominant mode in this limit.
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Figure 5.5: Re(a4/a1) for n = 2. Shown are —, the numerical evaluation of
Re((5.1.5a)/(5.1.5b)); −−−, the asymptotic approximation (5.1.8).

5.1.2 Limit: a << 1

We can now consider the limit of small a. From the numerical results (see figure 4.2 for

example), we can see two distinct behaviours for α as a→ 0. For the first mode (m = 1),

we see that α→ 0 as a→ 0. Thus in this limit we can take αrs << 1 and αa << 1, and

use the small argument expansions for the Bessel functions (Abramovitz & Stegun 1972)



CHAPTER 5. DISCUSSION 150

in the linear eigenrelation (5.1.1). Thus we have

Jn(αa)Yn(αrs)− Jn(αrs)Yn(αa) ≈

1

n!

(
1

2
αa

)n [
−(n− 1)!

π

(
1

2
αrs

)−n]
+

(
1

2
αrs

)n
1

n!

[
(n− 1)!

π

(
1

2
αa

)−n]

=
1

nπ

[(rs
a

)n
−
(
a

rs

)n]
,

1

2
[Jn(αrs)Y

′
n(αa)− J ′n(αa)Yn(αrs)] ≈

1

nπ

(
1

2
αrs

)n [−(n− 2)!

π

(
1

2
αa

)−n+1

+
n!

π

(
1

2
αa

)−n−1
]

=
(n− 1)!

π

(
1

2
αrs

)−n [
1

(n− 1)!

(
1

2
αa

)n−1

− 1

(n+ 1)!

(
1

2
αa

)n+1
]

≈ 2

παa

[(rs
a

)n
+

(
a

rs

)n]
.

(5.1.9a)

Substituting the above expansions in (5.1.1) we get

1.001i1/3 = i1/3
nα1/3

a


(
rs
a

)n
−
(
a
rs

)n
(
rs
a

)n
+
(
a
rs

)n
3

,

which allows us to obtain the leading order approximation for α as

α ≈
(

1.001
a

n

)3


(
rs
a

)n
−
(
a
rs

)n
(
rs
a

)n
+
(
a
rs

)n
3

. (5.1.9b)

The prediction given by (5.1.9b) is shown in figure 5.6a for n = 1 and in figure 5.6b for

n = 2. We can see very good agreement between the asymptotic approximation and the

numerical solution of (5.1.1).

We now return to neutral results in figure 4.2 once again and see for the higher

modes (m > 1), that α >> 1 as a → 0. This means that the arguments of the Bessel
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Figure 5.6: The first neutral values of α for (a) n = 1; (b) n = 2: —, numerical solution
of (5.1.1); −−−, the asymptotic approximation (5.1.9b).
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Figure 5.7: Neutral values of α for n = 1. Shown are the second to fifth modes with —,
numerical solution of (5.1.1) and •, the leading order approximation (5.1.9f).

functions αrs, αa tend towards some finite O(1) quantity as a→ 0. Thus we are unable

to approximate the Bessel functions in a similar fashion to what has been done thus far.

We will instead try to approximate the behaviour of α using Taylor expansions. We let

z = αrs, and thus αa = sz, where a/rs = s. Then we let α = α/rs, where α = O(1).

Then Ω = Ωr
−2/3
s , where Ω = O(1). Therefore ξ0 = −i1/3Ωα−2/3 = −2.297i1/3. Thus the

linear eigenrelation (5.1.1) can be approximated as

1.001 =
n2

s2
α−2/3r−4/3

s G(α), (5.1.9c)

where G(α), is the ratio of the Bessel function terms. In (5.1.9c) we can see that r
−4/3
s >>

1, and thus in order for the LHS to balance the RHS we require G(α) << 1. So we let

α = α0 + r4/3
s α1, (5.1.9d)
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such that α0 are the m + 1 roots of G(α) = 0, for m = 1, 2, . . .. This means that we

require

Jn(sα0)Yn(α0)− Jn(α0)Yn(sα0) = 0. (5.1.9e)

We now let

F (α) = α−2/3r−4/3
s G(α)− 1.001

n2

s2
= 0.

Substituting in (5.1.9d) we can use Taylor expansion to write

F
(
α0 + r4/3

s α1

)
= F (α0) + r4/3

s α1F
′(α0) + . . . ,

where

F (α0) = −1.001
n2

s2
,

F ′(α0) = α0
−2/3r−4/3

s G′α0).

Thus we can express

α = α0 + r4/3
s

(
1.001

n2

s2

)
α0

2/3

G′(α0)
. (5.1.9f)

Because we are unable to obtain an explicit analytic approximation for α we will be

unable to proceed to utilise this expansion in the nonlinear coefficients. The value of

this expansion lies in showing that in the limit of small a, to leading order the m + 1

neutral modes of α behaves as the m + 1 roots of (5.1.9e) . Once these roots have been

numerically obtained, they can be used as initial guesses for the numerical solution of the

full eigenrelation. In figure 5.7 we can see that this leading order approximation for α has
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excellent agreement with the numerical solution of (5.1.1).

5.2 Discussion of linear stability results

5.2.1 Summary of neutral stability results

In Section 4.1.1 we presented the results of the neutral stability problem. The porous

coatings were shown to have a significant effect only on the neutral values of frequency

Ω. All three porous wall models produced a destabilising effect on the neutral curves.

The felt-metal microstructure produced the most significant destabilisation. The mesh

microstructure model despite having higher porosity produced comparable destabilisation

to the regular circular pore microstructure model of lower porosity. The destabilising

effect of porous coatings was more significant for non-axisymmetric neutral disturbances

when compared to neutral axisymmetric disturbances. The difference between the neutral

curves of the solid and porous walls was shown to decrease with increasing azimuthal

wavenumber n.

5.2.2 Summary of spatial stability results

In Section 4.1.2 we presented results of the spatial stability problem. It was shown

that the porous coatings will lead to larger amplification of unstable disturbances for both

axisymmetric and non-axisymmetric disturbances. The largest unstable growth rates for

axisymmetric disturbances occur for the first or second mode at small frequencies, while

for non-axisymmetric modes it is always the highest mode that has the largest unstable

growth rates (at higher frequencies). This is in contrast to the solid wall case, where

it is always the lower modes that have the largest growth rates. It was seen that for

increasing cone radii a, there is a marked decrease in the maximum unstable growth rates.

This effect is more pronounced for the porous wall case. When comparing the effect of

various porous wall models, it was seen that the felt-metal model produces significantly
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larger unstable growth rates when compared to the regular porous model. The mesh

microstructure model produced slightly larger unstable growth rates when compared to

the regular porous model.

5.2.3 Discussion of parametric studies and comparison with sec-

ond Mack mode studies

In Section 4.2 we examined the effect of some porous model parameters on the stability

of the viscous modes. In Section 4.2.1 we showed that a moderate cooling of the porous

cone surface leads to destabilisation of the neutral curves and significantly larger maxi-

mum unstable growth rates. Since the wall temperature Tw affects only the porous layer

admittance quantity and is otherwise scaled out of the problem we are unable to consider

the effect of wall cooling on the the solid wall case in this study. It must be noted that

in this analysis we refer to moderate wall cooling in the sense that the wall temperature

Tw is still large, and any decrease in its value does not alter the mean flow profiles of

streamwise velocity and temperature. The studies of Fedorov et al. (2001) and Maslov

(2003) investigate the effect of similar reductions in wall temperature on Mack’s second

mode instability. In these studies, the authors report a strong reduction of second mode

growth rates on colder walls. Let us consider the porous wall model equations (2.3.1) and

(2.3.4) in the asymptotic limit of deep pores (Λh >> 1) and relatively small pore size

(|ζ| << 1). Using the small argument asymptotic forms of Bessel functions J0 ∼ 1− 1
4
ζ2

and J1 ∼ 1
2
ζ, we can then show that the wall admittance varies as Ay ∼ |ζ|T 1/2

w . Using the

formula for ζ, we can then show that Ay ∼ O(T
−11/16
w ). Thus a decrease in Tw will lead to

a corresponding increase in the porous wall admittance. This results in greater destabili-

sation of Mack’s first-mode disturbances and greater stabilisation of Mack’s second-mode

disturbances, consistent with our observations and published results.

In Section 4.2.2 we examined the effect of Knudsen layers over the porous surface on the
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instability of the first Mack mode disturbances and showed them to have a destabilising

effect. From (2.3.4) we can deduce that finite Knudsen numbers increase the value of

the porous layer admittance. Gas rarefaction effects are reported to be stabilising for

Mack’s second-mode disturbances as Knudsen layers allow deeper penetration of these

disturbances into the pores (Maslov 2003, Fedorov et al. 2006).

In Section 4.2.3 we examined the effect of varying the pore radius, porosity and pore

depth on the maximum unstable spatial growth rates. It was found that increasing pore

radius or porosity had the effect of increasing the maximum growth rates. Theoretical

investigation of the effect of increasing porosity and pore radius on Mack’s second mode

growth rates was reported in Fedorov et al. (2001). They show that increasing the

pore radius and porosity leads to substantial reduction of the second-mode growth rates.

Parametric studies of regular porous coatings and mesh coatings have been carried out

with the focus on the stabilisation of Mack’s second-mode instability (Fedorov et al. 2001,

2008, Lukashevich et al. 2010). These studies reveal that the porous layer performance

can be optimised by controlling the porous layer thickness. These parametric studies

indicate that optimal porous coatings have thickness h ≈ 3− 3.5rp. Our results indicate

that porous layer thickness in this range for regular porous coatings also provide optimal

first mode stabilisation.

Parametric studies also show that high porosity provides maximum second-mode sta-

bilisation. However numerical studies of Bres et al. (2009) reveal that porous coatings

with too closely spaced pores trigger a new shorter wavelength instability whose growth

rate can be larger than that of Mack’s second mode. The authors have attempted to

optimize the design of porous coatings based on the acoustic scattering properties of the

porous layer. They propose a porous coating with fixed low porosity comprising of span-

wise grooves. Each porous cavity has a depth H, half-width b and spacing s, all of which

vary along the longitudinal length of the cone. Following Kozlov et al. (2005) the regular
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porous model of (2.3.4) can be used to study this model by making the following changes:

ζ = b

√
iωρw
µw

R, F (B, ζ) =
tan ζ

ζ[1−Bζ tan ζ]
. (5.2.1)

The effect of this new design on the first mode instability is examined. In figure 5.8
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Figure 5.8: Variation of spatial growth rate parameter σmax = max(| − αi(Ω)|) with
longitudinal distance L∗: —, spanwise grooves with variable thickness (5.2.3); − − −,
regular microstructure model (2.3.4) with infinite thickness. Results are shown for non-
neutral non-axisymmetric mode n = 1.

maximum unstable growth rates of the first azimuthal mode n = 1 are compared using

this porous model and the regular porous model both with porosity φ0 = 0.2. The

regular porous model is assumed to be infinitely thick and the pore radius is fixed at

25µm. From figure 5.8 we see that at smaller streamwise distance the new design leads

to lower amplification of unstable disturbances and with increasing streamwise distance

the difference between the growth rates of the two models becomes very small. This

novel design corresponds to porous coatings with low porosity and large cavity aspect



CHAPTER 5. DISCUSSION 158

ratio (2b/H) i.e., thinner coatings with less pores. These type of coatings are easier to

manufacture and incorporate into thermal protection systems in hypersonic vehicles (Bres

et al. 2009).

Figure 5.9: Spatial growth rate of the most unstable disturbance (second mode) on solid
and porous surfaces (taken from Maslov 2003).

Numerical and experimental investigations of ultrasonic absorptive coatings have been

reviewed in Section 1.2.1. The numerical studies investigated the effect of the porous

coating on inviscid (Mack’s second-mode) disturbances. These studies were concerned

with the non-parallel linear stability problem for the planar case (no curvature effects).

Nevertheless the results of the linear stability analysis conducted here can been compared

with these results. Using figure 4.12 we can make a comparison of the dimensional growth

rates for the first mode disturbances enhanced by the porous surface with those reported

in Maslov (2003) for the second mode (figure 5.9). We see that the size of the maximum

Mack’s first-mode growth rates (figure 4.12) are smaller than those reported for the second-

mode. In figure 5.10 we show the frequencies at which these maximum growth rates

occur for Mack’s first-mode. In figure 5.10 we can see that the frequency of the most

unstable disturbances decrease in the downstream direction. We know that maximum

unstable growth rates can be expected at small values of the streamwise distance. The

experimental observed range for first-mode frequencies (Kendall 1967, Stetson et al. 1983,
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Figure 5.10: Variation of frequency parameter F = Ω∗/Re with longitudinal distance L∗

using the regular microstructure model (2.3.4). Symbols refer to azimuthal wavenumbers:
M, n = 1; �, n = 2; �, n = 3.

Maslov 2003) is reported to be around F = 4 − 5 × 10−5. In figure 5.10 we see that the

maximum growth rates occur at frequencies higher than this range. In the experimentally

observed frequency range we can expect first-mode growth rates enhanced by the porous

wall to be an order of magnitude smaller than those of the second-mode.

5.3 Discussion of nonlinear stability results

Results of the weakly nonlinear analysis have been presented in Section 4.3. The

effect of the attached shock is found to be significant. In the absence of a shock, unstable

solutions are possible only for a finite range of cone radius a and nonlinearity stabilises

linearly unstable disturbances for all admissible values of a. The presence of the shock

leads to multiple unstable modes for all values of a. The influence of curvature is also

important. Curvature was found to enhance nonlinear effects.

The effect of nonlinearity is dependent on the mode number and cone radius a. For
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axisymmetric disturbances on a solid wall, nonlinear effects tend to stabilise all higher

modes while the lowest mode is slightly destabilised when a becomes large enough. In

the presence of the porous wall all the modes are destabilised when compared to the solid

wall. Our linear stability results show that the lowest mode is the most unstable and has

largest spatial growth rates for both solid and porous walls. This most dangerous mode

is also the most destabilized by nonlinearity in the presence of the porous wall.

For non-axisymmetric disturbances on a solid wall, nonlinear effects destabilise the

lowest mode, while the higher modes are stabilised until a certain value of a which increases

with azimuthal wavenumber. All porous wall models destabilise the neutral modes. When

considering the effect of nonlinearity on linearly unstable modes, we can state that lower

modes are greatly destabilised by nonlinearity while it has a stabilising effect on the higher

modes. We show that it is the higher modes that have the largest spatial growth rates

in the presence of the porous wall. The effect of nonlinearity is to stabilize these most

linearly amplified modes by pushing the point of subcritical instability to larger values of

a.

The random microstructure felt metal model was compared with the regular porous

model. The felt metal significantly destabilises the neutral modes and strongly ampli-

fies the linearly unstable modes with the higher modes giving the largest growth rates.

Nonlinear effects in the presence of the felt metal coating stabilise these more dangerous

higher modes over a larger range of a while destabilising the more slowly growing lower

modes. When comparing the difference between the mesh microstructure model and the

regular porous model, we notice similar effects between both models on all the modes.

The regular porous model slightly destabilises all modes when compared to the mesh

model. Since the felt metal and mesh coating have higher porosity, to corroborate these

findings, nonlinear stability results for the regular porous model with a higher porosity of

φ0 = π
4

was obtained. We show that porous coatings with higher porosity allows nonlin-
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ear effects to stabilise higher mode number disturbances at a particular location with the

mode number of the lowest mode that is stabilised increasing with increasing azimuthal

wavenumber.

In Section 5.2.3 we discussed the limitations of porous coatings with very high porosi-

ties on the linear stability of the flow. A novel porous coating with low porosity and small

thickness was considered and shown to produce smaller destabilisation of linearly unstable

disturbances. The effect of nonlinearity in the presence of this coating is shown in figure

5.11. Here we can see Re(a4/a1) against streamwise distance L∗ for the spanwise groove

model with variable thickness and the regular porous model with infinite thickness. We

see that in the presence of the novel porous coating model, nonlinearity has a stabilising

effect on all the modes.
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5.4 Relevance to the physics of laminar to turbulent

transition

The weakly nonlinear stability of the first Mack mode (viscous) disturbances in the

hypersonic boundary layer on a sharp slender cone with passive porous walls has been

investigated. The analysis shows that small-amplitude linearly unstable disturbances can

either evolve from the linear neutral point towards an equilibrium amplitude or there is a

threshold amplitude.. The stability of this disturbance is dependent on the mode number

and the local cone radius a where the viscous-inviscid interaction takes place. There

are two situations depending on whether Re(a4/a1) is negative or positive for a particular

value of a. If Re(a4/a1) < 0 we have supercritical instability and an equilibrium amplitude

so linearly unstable disturbances grow but saturate. If Re(a4/a1) > 0 then we have

subcritical instability and an initial threshold amplitude. Disturbances smaller than this

amplitude grow but ultimately decay. For disturbances larger than this amplitude there

will be unbounded growth. Thus, in the latter case nonlinear effects could lead a finite-

amplitude mode towards breakdown and transition to turbulence. Thus, the size of the

incoming disturbances is important in leading to transition to turbulence. The analysis

here reveals the particular values of a for which the equilibrium state is subcritically

unstable. Here nonlinearity enhances the amplification of a small-amplitude disturbance

proportional to E that interacts with its harmonic, E2 and mean flow disturbance, E0.

The effect of the attached shock is found to be significant. The presence of the shock

leads to multiple unstable modes for all values of a. In the absence of shock, unstable

solutions are possible only for a finite range of cone radius a and nonlinearity stabilises

linearly unstable disturbances for all admissible values of a.

There have been some studies that investigate the nonlinear behaviour of viscous first-

mode disturbances. Bicoherence diagrams from the experimental investigation of Bountin
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et al. (2010) show that in the low-frequency range (f1, f2 < 100 kHz) nonlinear processes

proceed more intensely on the porous surface compared to the solid. The authors suggest

that this may be caused by the growth of the low-frequency disturbance amplitudes due

to surface roughness. Bicoherence measurements of Chokani et al. (2005) have also

identified a nonlinear interaction that is associated with the destabilised Mack’s first mode.

Simulations by De Tullio & Sandham (2010) of transition over a flat plate in the presence

of oblique Mack’s first mode show that the first mode grows faster than Mack’s second

mode and drives the flow directly to a turbulent state by nonlinear interactions. De Tullio

& Sandham (2010) state that the first mode regains importance in the transition process

at high Mach numbers for porous surfaces. Our results show that for sufficiently large a,

nonlinear effects destabilise all linearly unstable viscous modes on a solid cone surface.

At small values of a, corresponding to typical lengths of models tested in wind tunnels,

it is the unstable mode with the lowest frequency that is destabilised by nonlinearity.

Spatial instability results demonstrate that these are the fastest growing disturbances but

maximum growth rates are significantly smaller than the second Mack mode. This may

explain why in experiments, transition has been observed due to the second Mack mode

on solid cones. In the presence of porous walls, lower-frequency first Mack modes are also

destabilised by nonlinearity while higher-frequency first Mack modes that are destabilised

on the solid wall at a particular location now become stabilised for a range of a. This

effect is enhanced by models with higher porosity. Thus over porous surfaces we can

expect interaction of first Mack modes in the low-frequency spectrum to lead to nonlinear

amplification of disturbance amplitudes beyond the critical value.



Chapter 6

Conclusions

6.1 Limitations and further work

A comprehensive set of experiments exploring the effects of the porous coating have

been published in Maslov (2003) and Rasheed (2001). Rasheed’s results indicate that

the porous coating is effective in damping the dominant inviscid modes and delaying

transition compared to the solid case. Stability experiments of Maslov (2003) conclude

that weak amplification of first-mode disturbances, and strong damping of second-mode

disturbances occur in the presence of porous coatings. A direct comparison of our linear

stability results with their experimental results was not done. They present their results

in the form of disturbance amplitude spectra. In theory, the growth rate parameter (αi)

can be calculated by differentiating a polynomial curve-fit of the disturbance amplitude

data. However as tabulated data was not available, this procedure was not done in this

study.

As discussed by Seddougui & Bassom (1997) with reference to the study by Stuckert

& Reed (1994), the inclusion of non-parallelism is an important factor when performing

theoretical investigations that can be compared with experiments. Smith (1979b) showed

that non-parallel effects emerge at higher orders of the asymptotic solution. His analysis

164
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considered the flow stability of Blasius boundary layers and the analysis involved was

laborious. The inclusion of non-parallel effects is yet to be done for the hypersonic viscous

stability problems. The stability analysis performed here is based on the assumption of a

weak hypersonic interaction (χ << 1) as discussed in Section 2.4. As the Mach number

increases, viscous interaction with the inviscid flowfield will become important. Chang et

al. (1990) state that accounting for the viscous/inviscid interaction of the mean flow in

their numerical studies on the linear stability of hypersonic boundary layers led to better

agreement with the sharp cone experiment of Stetson et al. (1983) performed at Mach 8.

The stability analysis considered here (based on Stephen 2006) and that of Seddougui

& Bassom (1994) does not consider any nonlinearities that can occur in the vicinity of

the shock position rs. Referring to the bounds on the shock inclination angle, (2.4.14),

Seddougui & Bassom (1994) state that once σ reaches a value of O(Re−1/37), the shock-

layer problem becomes nonlinear. In such a situation, the velocity normal to the shock

from the inviscid (outer flow) solution becomes comparable with the vertical velocity

perturbation in the upper deck. Now, viscous effects in entropy and shear waves which

are produced when the acoustic wave meets the shock and then convected with the flow

cannot be ignored.

The porous wall models (derived from the analytical solution of Kozlov et al. 2005)

and boundary condition (Malmuth et al. 1998) employed in this analysis is only an

approximation as it ignores small scale effects that occur at the mouth and bottom of the

porous cavity. These effects are mainly generated due to acoustic scattering occurring

within each pore. Coupling between disturbances from neighbouring pore cavities is also

not accounted for. Bres et al. (2009, 2010) and Sandham & Ludeke (2009) used DNS to

resolve the flow within the pore cavities and study the acoustic properties of the porous

layer. The results of the DNS investigations showed good agreement with those obtained

using the theoretical model validating the robustness of the models used. A limiting
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assumption of the theoretical model of the porous wall boundary condition is that the

coating roughness is negligibly small (Fedorov et al. 2011). This ensures that the porous

cavities do not trip the boundary layer i.e., there is no mean-flow distortion due to the

presence of the porous coating. The theory used does not provide specific restrictions on

the pore size.

Recently, parametric studies of porous wall models are underway with the focus on

minimising the destabilising effect on the first Mack mode (Wang & Zhong 2010, 2011a,b).

These authors have analysed the porous wall admittance and studied the effect of the ad-

mittance phase angle on Mack’s first mode destabilisation. They investigated the variation

of the phase angle of admittance with pore radius and thickness and show that there is a

minimum phase angle indicating an optimal thickness or pore radius. Numerical simula-

tions using the optimal pore radius indicate weaker destabilisation of the first mode (Wang

& Zhong 2011b). Preliminary results are obtained by computing the variation of phase

angle of the admittance Ay with pore radius rp for a typical first Mack mode frequency of

100 kHz. These results are presented in figure 6.1. These results are not in quantitative

agreement with Wang & Zhong (2011b). Moreover, we expect the smallest first-mode

growth rates to occur in the limit of zero pore radius (solid wall). Further investigation

in this area is required to resolve this issue and determine whether controlling the phase

angle of admittance is a viable technique for designing optimum porous coatings.

In realistic flight situations, the surfaces of hypersonic flying vehicles will have tem-

peratures much below adiabatic values. In these type of situations, reductions in surface

temperature can be expected to alter the basic boundary layer flow at the surface leading

to greatly increased surface heat transfer and shear stress. Studies that investigate the

effect of such levels of surface cooling on the instability of viscous disturbances include

those by Seddougui et al. (1991) for compressible flow over a flat plate, Gaponov &

Terekhova (2010) for supersonic and hypersonic flow over porous surfaces, and the widely
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Figure 6.1: Variation of the phase angle of admittance Ay using the regular porous model
(2.3.4) with pore radius r∗p.

cited experimental investigations of Lysenko & Maslov (1984) for supersonic flow over a

flat plate. Seddougui et al. (1991) show that even moderate levels of wall cooling, alters

the triple-deck structure that exists in the uncooled case, provoking a new structure that

includes an O(Re−3/4) viscous lower tier and an O(Re−2/3) buffer tier. The findings of Ly-

senko & Maslov (1984) conclude that wall cooling destabilises the first mode-disturbances,

while Seddougui et al. (1991) report increase in the growth rate of first-mode distur-

bances. They however also report that wavenumbers and frequencies associated with the

first-mode instability increase with surface cooling, at a given Reynolds number. The

investigations of Gaponov & Terekhova (2011) accounting for both linear growth and

nonlinear resonance interactions (three-wave systems) makes a distinction between the

effect of wall cooling on supersonic (M = 2) and hypersonic (M = 5) flows. They expect

wall cooling on porous surfaces to delay transition to turbulence for supersonic flow and

accelerate transition for the hypersonic flow. A extension of the weakly nonlinear stability

analysis conducted here into different wall cooling regimes that properly accounts for any



CHAPTER 6. CONCLUSIONS 168

altered flow structure is important. Such an analysis will be invaluable in clarifying the

effect of wall cooling on the viscous instability modes. The effects of porous walls can

then be systematically included into such analysis as done in this study.

From the discussion in Section 5.3 with regards to the weakly nonlinear stability

results it is evident that further research is required to establish whether Mack’s first-mode

instability can cause transition to turbulence in the presence of porous walls. The results

of this study show that for a certain range of local cone radius a, nonlinearity can cause an

unbounded amplification of linearly unstable small-amplitude disturbances. Once these

disturbances reach finite amplitudes, they can drive secondary instabilities that lead to

the breakdown of the flow. Various routes of transition have been observed numerically

and experimentally in hypersonic boundary layers (discussed in the literature review).

Among these, the two main routes through which the first Mack mode instability can

lead to the breakdown of laminar flow are fundamental and subharmonic breakdown. The

application of triple-deck asymptotic theory to describe the three-dimensional nonlinear

development of Tollmien-Schlichting (TS) waves towards breakdown in planar boundary

layers has been reviewed in Bowles (2000a,b). These studies are able to describe the

features observed in experiments on the fundamental breakdown scenario in terms of a

sequence of singularities in a hierarchy of governing equations. In this scenario 2-D TS

waves develop into aligned rows of lambda (Λ)-shaped structures, called lambda vortices.

This is then followed by a rapid breakdown to short-scaled structures called spikes. This

process is characterised by the roll-up of vorticity in strong shear-layers associated with

the lambda vortex into spanwise vortices, which subsequently develop into hairpin or

omega (Ω)-vortices, and travel downstream as coherent stuctures in the flow (Bowles

2000a,b, Kachanov 1994). A weakly nonlinear analysis of the triple-deck equations is

carried out using the method of multiple scales accounting for relatively slow spanwise

variation (Smith & Walton 1989) and high frequencies (Stewart & Smith 1992, Smith &
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Bowles 1992) in addition to the relatively slow streamwise variation. This type of analysis

leads to coupled nonlinear partial differential equations that describe TS-wave/vortex

interactions. These interactions terminate in a singularity finite distance downstream

manifested as a blow-up of the vortex and wave amplitudes and spanwise focussing of the

vortices (Stewart & Smith 1992). A fully nonlinear analysis of the triple-deck equations

is then required. The singularity is resolved on a shorter streamwise lengthscale allowing

normal pressure gradients to enter (Bowles 2000b, Smith 1988). Such analyses (Li et al.

1998, Smith et al. 2000) have been able to provide theoretical descriptions consistent

with experiments. The subharmonic breakdown scenario is visualised as the appearance

of alternating rows of staggered lambda vortices in the flow. This results from a resonant

triad interaction between a pair of oblique subharmonic modes with a fundamental 2-D

mode. The 2-D travelling waves scale on the ‘upper-branch’ of the TS neutral curve in

contrast to the asymptotic analysis carried out in this study which scales on the ‘lower-

branch’. Nonlinear effects come into play in thin critical layers (where the phase speed

of the disturbance is equal to the undisturbed fluid velocity). Resonant triad interactions

and the role of nonlinear critical layers in subharmonic resonance in boundary layers have

been studied by Mankbadi (1991), Mankbadi et al. (1993) and Goldstein (1995).

6.2 Conclusions

In this thesis an analysis of the weakly nonlinear stability of viscous (Mack’s first mode)

disturbances in the hypersonic boundary layer on a sharp slender cone with passive porous

walls has been presented. A hierarchy of problems at increasing orders of the size of the

relative amplitude of disturbances is considered. As a result of the analysis, an amplitude

equation that describes the streamwise evolution of the disturbance amplitude has been

derived. The linear stability of the disturbances is governed by the problem at first order.

The linear stability problem was described by two eigenrelations depending on the nature
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of the disturbances. The resulting transcendental equations were solved numerically for

neutral solutions and spatially varying solutions. The results obtained demonstrated the

destabilizing effect of porous coatings on the first-mode instability.

The coefficients of the nonlinear amplitude equation were numerically evaluated. The

stability of the flow is governed by the signs of the real part of the coefficients. Numerical

evaluation of the coefficients in this equation reveals that the stabilising or destabilising

effect of nonlinearity on linearly unstable disturbances is dependent on the cone radius.

The presence of porous walls significantly influences the effect of nonlinearity.



Appendix A
Abbreviations

Expressions involving integrals of Airy functions arise from terms containing the ad-

joint function and solutions for the flow perturbations. Such expressions also arise in

other weakly nonlinear stability problems. Bassom (1989) first defined and evaluated

these constants in his study of the nonlinear stability of free-surface flows. They were

also used in the nonlinear stability problem of a cone with solid wall by Stephen (2006)

and for that of a wedge by Seddougui & Bassom (1994). The definitions for all constants

Tij used here reduce to those defined in Bassom (1989) and Seddougui & Bassom (1994)

by setting Ay = 0 where appropriate. The definitions of a1 to a4 and their axisymmetric

counterparts can also be shown to reduce to those defined in Stephen (2006) by setting

Ay = 0.

T1 = i−1/3

∫ ∞
ξo

[
K(ξ) +K ′(ξ)(ξ − ξo)

]( ∫ ξ

ξo

Ai(s)ds
)
dξ,

T3 = −i−1/3Ai(ξo)Ai′(ξo),

T6 = −i1/3
∫ ∞
ξo

K ′(ξ)
(∫ ξ

ξo

Ai(s)ds
)(∫ ξ

ξo

(∫ ξ1

∞
f ∗∗(t)dt

)
dξ1

)
dξ,

T7 = i1/3
[
dH(ξ)

dξ

]
ξ=ξ0

,

T8 = −i4/3
∫ ∞
ξo

K ′(ξ)
(∫ ξ

ξo

H(t)dt
)(∫ ξ

ξo

Ai(s)ds
)c
dξ,
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T10 = i2/3
∫ ∞
ξo

K ′(ξ)

(∫ ξ

ξo

(∫ t

ξo

H(s)ds

)
dt

)(
Ai′(ξ)

)c
dξ,

T11 = i1/3
∫ ∞
ξo

K ′(ξ)
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ξo

Ai(21/3s)ds
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dt

)(
Ai(ξ)

)c
dξ,

T12 = 2i2/3
∫ ∞
ξo

H(t)dt,

T13 = 22/3i1/3
∫ ∞
ξ̂0

Ai(s)ds,

T14 = −21/3 d

dξ̂
[Ai(ξ̂)]ξ̂=ξ̂o ,
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H(ξ)dξ,

T17 = i−1/3
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(
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T20 = T6 + T8 + 2T10 − T15 − T16,
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2
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}
,
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