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Abstract  

Direct Infusion (DI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry 

(MS) is becoming a popular measurement platform in metabolomics. This thesis aims to advance 

the data processing and analysis pipeline of the DI FT-ICR based metabolomics, and broaden its 

applicability to a clinical research. To meet the first objective, the issue of missing data that occur 

in a final data matrix containing metabolite relative abundances measured for each sample 

analysed, is addressed. The nature of these data and their effect on the subsequent data analyses 

are investigated. Eight common and/or easily accessible missing data estimation algorithms are 

examined and a three stage approach is proposed to aid the identification of the optimal one. 

Finally, a novel survival analysis approach is introduced and assessed as an alternative way of 

missing data treatment prior univariate analysis. To address the second objective, DI FT-ICR MS 

based metabolomics is assessed in terms of its applicability to research investigating 

metabolomic changes occurring in liver grafts throughout the human orthotopic liver 

transplantation (OLT). The feasibility of this approach to a clinical setting is validated and its 

potential to provide a wealth of novel metabolic information associated with OLT is 

demonstrated.  



ii 
 

Acknowledgments 

 I would like to thank my supervisor, Prof. Mark Viant for his help and support throughout my 

PhD and the University of Birmingham for funding this research. I extend my thanks to the 

members of Centre for Systems Biology, in particular to Dr Jan-Ulrich Kreft and Dr Rafik 

Salama, for their guidance and advice, not necessarily limited to my research and therefore much 

appreciated. I offer my thanks to Prof. Krystian Kubica and Prof. Małgorzata Kotulska from 

Wroclaw University of Technology – thank you for believing in me. I thank my family and my 

friends for reminding me that the world does not end with my research and for making the last 

four years of my life memorable. Last, thank you Birmingham for your warm welcome, lively 

atmosphere, amazing people and interesting places. 



iii 
 

Table of content 

 

CHAPTER 1: Introduction _____________________________________________________ 1 

1.1 Introduction to metabolomics __________________________________________________ 2 

1.2 Direct infusion Fourier transform ion cyclotron resonance mass spectrometry based 

metabolomics _________________________________________________________________ 5 

1.2.1 Principle of DI nESI FT-ICR mass spectrometry _______________________________ 8 

1.2.2 Sample preparation and data acquisition ____________________________________ 10 

1.2.3 Data processing: measuring the metabolome _________________________________ 11 

1.2.4 Data analysis: univariate and multivariate statistical methods for high-dimensional 

metabolome data ____________________________________________________________ 14 

1.2.5 Current limitations ______________________________________________________ 18 

1.3 Metabolomics in surgery ____________________________________________________ 19 

1.3.1 Metabolomics in orthotopic liver transplantation ______________________________ 22 

1.4. Research aims ____________________________________________________________ 24 

1.5 Thesis structure ____________________________________________________________ 25 

 

CHAPTER 2: Missing Data – Towards Optimal Imputation Method _________________ 27 

2.1 Introduction ______________________________________________________________ 28 

2.1.1 Missing data in statistical analysis _________________________________________ 28 

2.1.2 Missing data in metabolomics _____________________________________________ 32 

2.2 Materials and Methods ______________________________________________________ 36 

2.2.1 Mass spectrometry datasets _______________________________________________ 36 

2.2.2 Occurrence and distribution patterns of missing data __________________________ 38 

2.2.3 Impact of missing data imputation on statistical analyses _______________________ 38 

2.2.4 Performance of missing data estimation algorithms ____________________________ 42 

2.4 Results and Discussion ______________________________________________________ 44 

2.3.1 Occurrence and distribution patterns of missing data in DI FT-ICR MS metabolomics 44 

2.3.2 Impact of missing data imputation on univariate data analysis ___________________ 48 

2.3.3 Impact of missing data imputation on multivariate data analysis __________________ 51 

2.3.4 Performance of missing data estimation algorithms ____________________________ 53 

2.4 Missing data estimation: is there an optimal method? ______________________________ 57 



iv 
 

2.5 Concluding remarks ________________________________________________________ 60 

 

CHAPTER 3: Missing Data – Survival Analysis Approach __________________________ 62 

3.1 Introduction ______________________________________________________________ 63 

3.2 Introduction to survival analysis_______________________________________________ 64 

3.2.1 Survival function and Kaplan-Meier survival estimate __________________________ 66 

3.2.2 Comparison of survival curves ____________________________________________ 68 

3.3 Survival analysis and the univariate analysis of FT-ICR MS based metabolomics spectra__ 71 

3.4 Materials and methods ______________________________________________________ 74 

3.4.1 Applicability of the log-rank test to the univariate analysis ______________________ 75 

3.4.2 Performance of the log-rank test for the univariate analysis _____________________ 77 

3.5 Results and discussion ______________________________________________________ 77 

3.5.1 Applicability of the log-rank test for the univariate analysis _____________________ 77 

3.5.2 Performance of the log-rank test for the univariate analysis _____________________ 82 

3.6 Concluding remarks ________________________________________________________ 85 

 

CHAPTER 4: Additional Advances In Data Processing And Analysis _________________ 87 

4.1 Introduction ______________________________________________________________ 88 

4.2 Comparing ordered sets _____________________________________________________ 90 

4.2.1 Mathematical representation ______________________________________________ 91 

4.2.2 Computational solution and applicability to data analysis in a metabolomic experiment93 

4.3 Visualisation tool for sets comparison __________________________________________ 95 

4.3.1 Realisation ____________________________________________________________ 95 

4.3.2 Applicability to signal processing in a metabolomics experiment__________________ 97 

 

CHAPTER 5: Metabolomics study of Human Liver Transplantation ________________ 100 

5.1 Introduction _____________________________________________________________ 101 

5.2 Application of metabolomics to investigate the process of human liver transplantation ___ 102 

5.3 Materials and methods _____________________________________________________ 106 

5.3.1 Clinical data _________________________________________________________ 106 

5.3.2 Liver biopsy and FT-ICR MS metabolomics _________________________________ 107 

5.3.3 Extracellular fluid and CEAD metabolomics ________________________________ 108 

5.3.4 Statistical analyses _____________________________________________________ 109 



v 
 

5.4 Results _________________________________________________________________ 110 

5.4.1 Liver metabolism of cold phase vs. post reperfusion ___________________________ 110 

5.4.2 Redox metabolism in microdialysates post reperfusion ________________________ 114 

5.5 Discussion _______________________________________________________________ 115 

 

CHAPTER 6: Final Conclusions And Future Work _______________________________ 118 

6.1 Missing data _____________________________________________________________ 120 

6.2 Orthotopic liver transplantation ______________________________________________ 124 

6.3 Additional advances in data processing and analysis ______________________________ 125 

6.4 Concluding remarks _______________________________________________________ 126 

 

References _________________________________________________________________ 128 

Appendix A: Missing values in mass spectrometry based metabolomics: an undervalued step in 

the data processing pipeline. Supplementary Material ________________________________ 139 

Appendix B: Application of metabolomics to investigate the process of human orthotopic liver 

transplantation: a proof-of-principle study. Supplementary Material ____________________ 170 

 



vi 
 

List of figures 

Figure 1.1 A typical workflow of a metabolomics experiment employing DI FT-

ICR mass spectrometry 

7 

Figure 1.2 Figure 1.2 Brief principle of ultrahigh resolution mass spectrometry 

using FT-ICR/MS 

8 

Figure 1.3 Example of a principal component scores plot with corresponding 

loadings values for the PC1 and PC2 

16 

Figure 2.1 Classification of missing data handling methods in statistical analysis 

with an application to pattern classification. 

28 

Figure 2.2 Flow chart summarising the analyses of missing values performed in this 

study 

43 

Figure 2.3 Probability of the occurrence of noisy peaks as a function of m/z ratio 

and percentage of missing data vs. mean peaks abundance for the four 

datasets 

45 

Figure 2.4 Comparison of eight different missing value estimation methods based 

upon their effects on the PCA scores plots for the CCLn dataset 

54 

Figure 2.5 Analyses of four DI FT-ICR MS datasets after first introducing and then 

estimating missing data in the ‘complete’ datasets as MNAR 

56 

Figure 3.1 Study time (survival time) for ten patients following a surgery for 

malignant melanoma 

68 

Figure 3.2 Figure 3.2 Example of the estimated survival function  for the survival 

times of women  and men  following surgery for malignant melanoma 

70 

Figure 3.3 Diagram showing the relationship between right censored medical data 

and the left censored DI FT-ICR MS based metabolomics data 

73 

Figure 3.4 Venn diagrams for the a) HL and b) DM datasets, showing the overlap 

between significantly changed peaks following the missing data 

estimation with S, MED and KNN and the application of the log-rank 

test 

79 

Figure 3.5 Distribution of m/z values and the number of missing data for the 

significantly changed peaks following the log-rank test and the 

estimation of the missing data with S, MED and KNN 

81 

Figure 3.6 Figure 3.5 Comparison of peaks identified as significantly changed for 

the HL dataset following missing data estimation with S, MED and 

KNN and the survival analysis approach 

84 

Figure 3.7 Figure 3.6 Error [%] on the p values obtained following univariate 

testing on the missing data estimated with S, MED, KNN and the log-

86 



vii 
 

rank rank on the left-censored data. HL dataset 

Figure 3.8 Error [%] on the p values of the significantly changed peaks for peaks 

containing differing amounts of missing data (i.e. from 1 to 10 missing 

entries). DM dataset, following a) S, b) MED, c) KNN and d) survival 

analysis approach 

85 

Figure 4.1 Diagrams showing interactions among six sets a) Venn diagram, b) 

Edward’s Venn diagram 

90 

Figure 4.2 An example of the graph showing the increase of the Smax value 

throughout the N permutations; Data generated for two sets of 500 

elements each 

94 

Figure 4.3 Figure 4.3 Hierarchical clustering (Euclidean distance, agglomeration 

method: complete) for eight different imputation methods for the top 5% 

of peaks contributing towards separation along PC1 for a) CCLn, b) 

CCLp, c) DM and d) HL datasets 

95 

Figure 4.4 Graphical representation of all the interactions between the reference set 

and three other sets 

97 

Figure 4.5 The amount of peaks for all the possibilities among the three extract 

blank spectra obtained for CCLn, DM and HL datasets, positive ion 

mode 

99 

Figure 5.1 Principal component analysis scores plots for (a) positive and (b) 

negative ion mode FT-ICR mass spectra of liver biopsies, showing 

separation between the cold phase (T1, circles) and post reperfusion 

samples (T2, squares) 

111 

Figure 5.2 Principal components analysis scores plots for CEAD time course data 

showing that in general redox metabolism following OLT changes 

rapidly before stabilizing at ca. 21 h post reperfusion 

114 



viii 
 

List of tables 

Table 2.1 List of the DI FT-ICR MS based metabolomic datasets analysed together 

with some of their basic properties 

38 

Table 2.2 Summary of which KEGG human pathways are ‘active’ in the human 

liver (HL) dataset, after estimating the missing values with eight 

different algorithms 

50 

Table 3.1 Number of deaths  at the j
th

 distinct death time in each of two groups of 

patients 

70 

Table 3.2 Summary of the significantly changed peaks, between biological groups, 

for the three datasets treated with missing value estimation methods (S, 

MED, KNN) and for the survial analysis approach 

78 

Table 3.3 Selected putative metabolite names assigned to the specific to the 

survival analysis peaks 

82 

Table 4.1 Similarity metric, ODist, values between the eight missing value 

estimation methods based on the 5% top peaks contributing towards the 

separation along PC1 for the four datasets: CCLp, CCLn, DM and HL 

94 

Table 5.1 Demographic data on recipients and timings of OLT and biopsy 

samplings (min) 

105 

Table 5.2 Metabolites that changed most significantly between cold phase and post 

reperfusion 

112 



1 
 

CHAPTER 1 

Introduction
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1.1 Introduction to metabolomics 

 Metabolomics is a relatively new field with the term ‘metabolome’ first used in a published 

peer-reviewed journal in 1998 (Oliver, Winson et al. 1998). Shortly afterwards, ‘metabonomics’, 

interchangeably used with ‘metabolomics’, was defined as ‘the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or 

genetic modifications’(Nicholson, K. et al. 1999). In simple words, metabolomics is a study of 

low-molecular-weight (typically less than 1,500 Da) compounds, intermediates and products of 

metabolism, such as arising from carbohydrates, lipids, nucleotides, amino acids, bile acids or 

other organic acids and bases etc. These metabolites, measured simultaneously offer an insight 

into the functioning of metabolic pathways of the whole biological system or of its selected 

cellular, tissue or organ levels (Fiehn 2002).  

It is believed that metabolites, being further down the line from genes or proteins to functions 

(the end products of cellular regulatory processes), relate the closest (when compared to genes 

and proteins) with the activities of the biological systems at a functional level and represent an 

ultimate biological system’s response to external and internal stimuli (Fiehn 2002, Goodacre, 

Vaidyanathan et al. 2004). For example, studying the genes and proteins cannot provide a 

complete picture on what is happening in the cell, since a vast of the its actual activity, including 

cell signalling, energy transfer and cell-to-cell communication is regulated at the metabolite level 

(Schmidt 2004). In addition, metabolites are the first line of response to the changes in the actual 

cellular environment, for example reflecting the modifications in nutrition or the exposure to 

drugs and/or pollutants. This central to metabolomics belief was captured by Prof. Bill Lasely 

from the University of California, when he said “Genomics and proteomics tell you what might 

happen, but metabolomics tell you what actually did happen”.  
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The above makes metabolomics a useful tool in various fields, with some of its current (and 

potential) applications including to drug assessment, functional genomics, toxicology, clinical 

studies, disease diagnosis, nutrition studies, metabolic engineering or environmental studies. To 

name just few examples, i) analysis of urine in rats exposed to three model hepatotoxins (α-

naphthyl isothiocyanate, d-(+)-galactosamine, and butylated hydroxytoluene) has uncovered 

novel metabolic markers of liver damage, being able to differentiate between biliary and 

parenchymal injury (Beckwith-Hall, Nicholson et al. 1998) ii) intracellular concentration of 

metabolites have revealed silent phenotypes in yeast – after deletion of genes having no overt 

phenotype in terms of growth rate or other fluxes when deleted from the genome (Raamsdonk 

2001), iii) metabolomics study has indentified novel biomarkers, pseudouridine and 2-

oxoglutarate, predictive of heart failure in patients with systolic heart failure (Dunn, Broadhurst 

et al. 2007) and iv) metabolic studies have been used to show that the whole-grain fed rats had 

higher urinary levels of Kreb’s cycle intermediates, aromatic acids and hippuric acid as well as 

reduced levels of plasma and liver glutathione, all indicative of a better health status, i.e. shift in 

the basal metabolic rate and a lowered oxidative stress (Fardet, Canlet et al. 2007) - with similar 

methods being transferable to address challenges such as finding new ways of treating and/or 

preventing diseases brought on by malnutrition, over eating or an unbalanced diet (Wishart 

2008). 

The exact number of metabolites present in human metabolome remains a subject of debate, 

largely depending on the metabolome definition; however these number is estimated to be 

somewhere between as low as 2,000 and as high as 20,000 with metabolites occurring at a wide 

range of abundances (intensities) (Schmidt 2004, Kaddurah-Daouk, Kristal et al. 2008). For these 

reasons, it was only when novel analytical technologies appeared, being able to detect and 
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measure simultaneously low-molecular-weight compounds diverse in terms of their 

physiochemical properties, metabolomics experienced its rapid growth. Currently, the main 

metabolites detection platforms include mass spectrometry (MS) and nuclear magnetic resonance 

mass spectroscopy (NMR), with the former being often coupled with methods of gas or liquid 

chromatography for metabolites separation prior their quantification (Kaddurah-Daouk, Kristal et 

al. 2008). The collected data need to be processed and analysed in order to address a given 

biological aim of the study such as identifying a specific disease signature. The data processing 

and analysis steps have become a significant and a compound step of the metabolomics 

experiment drawing from various fields including, and often combining, engineering, 

chemometrics, computer sciences, statistics and other mathematical approaches.  

Metabolomics offers a unique opportunity to investigate genotype-phenotype and genotype-

envirotype relationships, and as it has been mentioned earlier it is already applicable to various 

fields, helping to address significant biological questions. However, it is not without challenges 

ahead. Being able i) to simultaneously, accurately and reproducibility detect and quantify 

thousands of metabolites within a biological samples, ii) to process and analyse the collected data 

and iii) to put the obtained results in the biochemical, and ideally in the ‘omics’ context to gain a 

full insight of processes at the cellular level is not an easy task. Therefore, there is room for 

improvement of every step in the metabolomics experiment (sample preparation, data acquisition 

or data mining) and the methods for greater metabolome coverage, better metabolite 

identification, enhanced reproducibility for long-term studies or feature selections methods are 

still currently being sought and developed (Dunn 2008).  
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1.2 Direct infusion Fourier transform ion cyclotron resonance mass spectrometry based 

metabolomics 

 The huge physiochemical diversity of metabolites as well as their occurrence at a vast range of 

abundance spanning up to nine order of magnitude combined with a short half-life (Han, Danell 

et al. 2008) offers a challenge for analytical chemistry, and currently none of the existing 

analytical methods can alone cover (detect and quantify) all the metabolites forming the human 

metabolome (Dunn, Bailey et al. 2005, Mayr 2008). Historically, nuclear magnetic resonance 

(NMR) method marked the beginning of metabolomics, being able to measure in a non-invasive 

and not-selective way of a wide range of metabolites, offering a high analytical reproducibility 

whilst maintaining the simplicity of the sample preparation step (Dunn, Bailey et al. 2005). 

However, only the compounds possessing a property known as nuclear spin (the spinning motion 

of the nucleus about its own axis) and present in sufficiently high (medium to high) abundance 

can be detect with this method (less than 40 in a typical experiment) (Goodacre, Vaidyanathan et 

al. 2004, Mayr 2008). For these reasons, mass spectrometry has become an alternative, and 

currently largely employed method of choice by the metabolomics investigators. Invented in 

1912, it is now a well-developed analytical platform successfully used in various scientific fields, 

and offering metabolomics a measurement of a wide range of compounds classes at their 

physiological concentrations as well as the identification of these compounds through their 

molecular mass (indicative of the molecular formula) or via collection of fragmentation mass 

spectra (indicative of molecular structure) (Dunn 2008).   

 Mass spectrometry has been operating in an unchanged since its invention workflow which 

comprises of sample introduction (gas, liquid or solid form), ion source converting sample into 

charged ions, mass analyser separating ions based on their mass-to-charge (m/z) ratio and a 
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detection system; all coupled to a computer system for data acquisition and system’s control 

(Hollywood, Brison et al. 2006, Dunn 2008). Naturally, various enhancements and adaptations of 

mass spectrometry has been developed and these mainly include coupling mass spectrometry 

with gas or liquid chromatography for an improved metabolites separation (prior entering mass 

spectrometer), developments of a range of ionization methods (e.g. atmospheric pressure 

chemical ionization, chemical, electron impact or electrospray ionization) or advances in mass 

analyser techniques (e.g. Fourier transform ion cyclotron resonance, linear quadrupole, Orbitrap, 

Time of flight or Triple quadrupole) (Dunn 2008, Mayr 2008). Out of these, direct infusion (DI) 

Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry is noticeable for its 

ultrahigh resolution, sensitivity and mass accuracy (Ohta, Shibata et al. 2007).  FT MS analyser 

has the highest resolving power (resolution) of all mass analysers (>100,000) which combined 

with the sub-ppm (<1 parts per million error) mass accuracy allows alone, without the utilisation 

of time-consuming chromatographic separation steps, the measurement of complex mixtures and 

the identification of metabolites based on the assignments of molecular formulas to each single 

mass-to-charge ratio (Brown, Kruppa et al. 2005).   

 A workflow of a typical fingerprinting metabolomic experiment, where a rapid snapshot of the 

global biochemical state is measured (as oppose to metabolomics profiling where only a number 

of pre-defined metabolites is identified and quantified) and involving the use of the DI FT-ICR 

MS technology (as well as routinely conducted at the University of Birmingham) is shown on 

Figure 1.1. Following the experimental design, the extracted from tissue, urine or serum 

metabolites (samples) are detected and quantified in the FT-ICR MS analyser. The collected 

series of mass-to-charge spectra are then processed (or pre-processed; e.g. checked for quality, 

subjected to the non-biological noise removal methods or mathematically transformed) to 
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improve further data analysis and yield a desirable data format such as a two dimensional matrix 

containing metabolite relative abundances (concentrations) organised with each variable (ions 

indicative of metabolites names) measured in unique column and each sample analysed in a 

unique row. Final step includes data analysis that employs various machine learning approaches 

to measure the deviation from ‘normality’, e.g. the differences of drug-treated samples as oppose 

to control samples for sample classification and hypothesis generation or to develop statistical 

models enabling a distinction of newly obtained sample distinction, useful in diagnostic (Ellis, 

Dunn et al. 2007). The fingerprinting approach offers a mechanistic insight into biochemical 

pathways altered under given perturbation (caused by disease, influenced by the environmental or 

therapeutic factors) and is known as a hypothesis-generating strategy (Goodacre, Vaidyanathan et 

al. 2004). Further data analysis include the integration of the experimental results with other 

metabolomics, ‘omics’ or other relevant data to gain a full understanding of the processes at the 

molecular level.  

 
Figure 1.1 A typical workflow of a metabolomics experiment employing DI FT-ICR mass spectrometry 
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1.2.1 Principle of DI nESI FT-ICR mass spectrometry 

DI nESI FT-ICR mass spectrometry is based on detection of coherently excited ions cyclotron 

motion (Figure 1.2). First, nanoelectrospray ionization (nESI) is used to convert the sample of 

interest into a fine aerosol containing ions. Briefly, to achieve this homogenized, in a liquid form 

sample mixed with solvent is spread at the low flow are (ca. <300nL/min) through an emitter 

(electrospray needle) across a high (typically several kV) potential difference (Gibson, Mugo et 

al. 2009). Ions already present in the solution and the ones formed due to electrochemical 

reactions with the solvent are released at the end of the needle as charged droplets. These get 

smaller as the solvent evaporates and reach the Rayleigh limit, i.e. the point where the surface 

tension can no longer sustain the excess of ions (positive or negative depending on the ionisation 

mode) and where they undergo “Coulomb explosions” ripping them apart to form smaller 

droplets. This process reiterates until the droplets are small enough to produce gas-phase ions 

(Wilm and Mann 1996, Gibson, Mugo et al. 2009) .  

 

Figure 1.2 Brief principle of ultrahigh resolution mass spectrometry using FT-ICR/MS 
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 Generated during the nanoelectrospray ions pass through a series of pumping stages at 

increasingly high vacuum to eventually enter the ion trap (with two trapping plates at both ends 

preventing ions to escape and with pressures ranging from 10
-10

 to 10
-11

 mBar and temperature 

close to absolute zero) located inside a spatially uniform magnetic field (typically of 4.7 to 13 T). 

Each of these ions moving in a presence of such field is subject to a Lorentz force given by Eq. 

1.1 in which m, z and v denote mass, charge and velocity (respectively) of the moving ion and B 

is the strength of the magnetic field which bend the ion path into a circle of radius r (magnetic 

component of the Lorentz field is perpendicular to the plane determined by vectors v and B, 

where B = - B0 * k) (Marshall, Hendrickson et al. 1998, Barrow, Burkitt et al. 2005). 

    
  

  
      

Eq. 1.1 

For the ion velocity in the xy plane (plane perpendicular to B) it becomes Eq. 1.2 showing that the 

frequency of the ions rotation is dependent on their mass to charge ratio (m/z), where ωc denotes 

the induced cyclotron frequency.  

    
   
 

 
Eq. 1.2 

At this stage, however, the radius r of the motion is not big enough for the detector plates to 

receive the signal and therefore the excitation plates are used to accelerate ions to a larger 

detectable orbital radius by applying a spatially uniform electric field oscillating near the 

cyclotron frequency of ions – a frequency sweep pulse is used to excite all the ions. This results 

in the simultaneous measurement of all the ions and produces a signal of all the ions frequencies 

in time domain and a resulting signal called free induction decay (FID) composed of 

interferogram of superimposed sine waves (due to the ions moving in the circle). Here, Fourier 
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transform (mathematical transformation) is used to decompose the FID signal into its constituent 

frequencies and convert them into the mass spectrum (Marshall, Hendrickson et al. 1998, 

Marshall and Hendrickson 2002).   

1.2.2 Sample preparation and data acquisition 

Metabolites in the samples that are about to be measured via DI nESI FT-ICR mass 

spectrometry have to first be extracted from the biological organisms. Typically, extracellular 

metabolites present in humans are obtained non-invasively from urine or invasively in the form 

of serum, plasma or cerebrospinal fluid (Dunn, Bailey et al. 2005) and the intracellular 

metabolites can be extracted via a tissue biopsy (Wu, Southam et al. 2008, Hrydziuszko, Silva et 

al. 2010). The extraction protocol can affect the metabolome’s composition and in turn the 

subsequent data interpretation. Wu et al. have shown that a two-step method with 10 min 

partitioning provides the most accurate (when compared to stepwise and all-in-one methods) 

snapshot of metabolome for both NMR and MS metabolomics (Wu, Southam et al. 2008). 

Briefly, in the first step of this extraction method, sample is being homogenised in the presence 

of methanol and water, and in the second step the chloroform and water are added, maintaining 

the methanol/chloroform/water ratio of 2:2:1.8 respectively throughout the whole extraction 

process. Samples are then centrifuged and polar fractions can be removed and stored (at -80°C) 

until the FT-ICR mass spectrometry analysis (Wu, Southam et al. 2008, Taylor, Weber et al. 

2009).  

At the other end of the metabolites quantification process one wishes to detect physico-

chemically varied metabolites, occurring both as the low and high abundance ions maintaining a 

high mass accuracy to enable consequent metabolites identification: unique empirical formulas 
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are derived from the mass-to-charge values. This means that in a conventional data acquisition 

mode increased number of ions has to enter the FT-ICR MS analyser with a potential upside of 

their measured mass accuracy being impaired due to undesirable ions interactions resulting in 

space-charge effects. The spectral stitching method has been proposed in 2007 to address this 

limitation (Southam, Payne et al. 2007). Instead of using a standard wide scan range mode, ions 

in the limited mass-to-charge ratio range (e.g. 70 to 90 m/z ratio only) are transmitted and 

detected by the FT-ICR MS analyser, resulting in the increased sensitivity and overcoming the 

problem of undesirable ions interactions. To obtain a wide range spectrum (for all the ions 

present), the data acquisition is repeated for several overlapping m/z ranges and the information 

from the overlapping regions is used to ‘stitch’ the spectra together. The application of this 

method has resulted in a reduced mass accuracy error and improved dynamic range (the ratio of 

the highest to the lowest concentration metabolite detected) when compared to a typical wide 

scan method, with a final absolute mass error of 0.48 ppm and over 3000 ions detected in flatfish 

liver extract (4.3-fold increase) (a hybrid 7-T FT-ICR mass spectrometer from Thermo Fisher 

Scientific and 200nL/min flow rate and 1.65kV nanoelectrospray from NanoMate, Advion 

Biosciences)(Southam, Payne et al. 2007). 

1.2.3 Data processing: measuring the metabolome 

 Following data acquisition, the obtained mass spectra are subjected to various data processing 

(or pre-processing) methods, i.e. mathematical operations, in order to facilitate and enhance the 

subsequent data analysis. These methods typically include, but are not limited to, filtering 

methods to remove the measurement noise (not representing biological information), peak 

detection methods to detect their exact position and quantify them, normalization approaches to 
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reduce the systematic variation both between the samples and across the peaks, transformations 

to change the scale of the data, method of handling outliers and missing data (Goodacre, 

Broadhurst et al. 2007, Katajamaa and Orešič 2007). Depending on the experimental design, 

specific features of the analytical platform and the acquired data and as well as the subsequent 

data analysis, various data pre-treatment methods may be applicable.  

 A three-stage filter is an example of the possible measurement noise filtering method that is 

applied routinely at the metabolomics research group at the University of Birmingham (Payne, 

Southam et al. 2009). In this approach, each biological sample and the polar fraction of the 

“extract blank” (prepared in the same way as biological sample but with no biological material 

added) is measured in triplicate. The frequency centre of each peak is determined by applying 

KCe (e = 5.5) interpolation to local maxima (Keefe and Comisarow 1990). The measurement 

noise is distinguished from real (arising from biological samples not from technical artefacts) 

signal and removed in three steps in which: i) the all the peaks below (low intensity) a pre-

defined (typically 3.5) hard signal-to-noise ratio (SNR) are removed, ii) the three technical 

replicates are merged together to yield a single mass spectrum that represent each sample that 

includes peaks present in at least two out of three technical replicates (peaks are considered to 

arise from the same metabolite when appearing with 1.5 ppm spread) and iii) biological spectra 

are formed into a rectangular dataset with intensities values for each m/z (columns) and for each 

biological sample (rows) that includes only those peaks that are present across a pre-defined 

percentage (typically 50%) across all of the biological samples. In addition, following the 

‘replicate’ filter (second step) peaks appearing both in biological sample and the “extract blank” 

are being removed if they are of higher intensity in the “extract blank” (Payne, Southam et al. 

2009, Taylor, Weber et al. 2009). The spectral noise appeared to be white and to determine the 



13 
 

noise threshold, the noise in the spectrum was approximated with Rayleigh distribution model 

(verified by experimentation) with a single parameter σ. The threshold was then determined using 

a probabilistic model described by multiple steps including selection of the initial sub-range of 

the spectrum, fitting the sub-range data to the Rayleigh model using maximum likelihood 

algorithm yielding a value of σ, solving cumulative distribution function of the Rayleigh 

distribution model as well as further steps to e.g. ensure that the optimal sub-range of the 

spectrum is used for the threshold estimation (described in details in (Southam, Payne et al. 

2007). This approach enables to eliminate the measurement noise that may arise from technical 

imperfections of the MS analysed e.g. arising from undesirable ion-ion interactions inside the 

detector cell, ion suppression or limited electrospray ionization process as well as possible 

contaminations of the biological samples during their preparation stage (“extract blank”).  

Normalization and transformation methods may include a vast range of approaches. Some of 

most common ones include reducing the variance between samples by normalizing to a constant 

sum, to a constant feature (e.g. to an internal standard) or to a reference sample as in probabilistic 

quotient normalization where the reference spectrum is derived by calculating the median of the 

control samples and all the peaks are divided by the median of their quotients obtained when 

compared to the reference spectrum (Dieterle, Ross et al. 2006). Logarithm transformation is 

used to reduce the variance between the variables (peaks), especially important prior of the 

multivariate analysis to reduce the chances of the most intense peaks being the most dominating 

ones. Generalised logarithm transformation in which data is modified depending both on the 

original intensity and the transformation parameter, has been proposed as a further improvement 

to the logarithm transformation and has shown to outperform the autoscaling (within column, 

subtracting from each value the mean and diving by the standard deviation) and Pareto scaling 
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(same as autoscaling but diving by the square root of the standard deviation) for the 

discriminating between classes of the NMR metabolomics datasets (van den Berg, Hoefsloot et 

al. 2006, Goodacre, Broadhurst et al. 2007, Parsons, Ludwig et al. 2007).  

  Another key issue is deciding on treatment the missing data in the final dataset. These missing 

data can arise both from the technical and biological reasons, i.e. metabolites not detected from 

some of the samples due to technical limitations of the MS analyser (e.g. intensity values below 

the limit of detection) or metabolites intensity values truly equal to zero due to a genuine 

biological heterogeneity between the analysed samples (Hrydziuszko and Viant). A common 

approach for metabolomics study is to impute the missing data with a plausible value to yield a 

complete datasets for subsequent data analysis. Some of the imputation methods include 

substitution missing entries with a small arbitrary chosen value (0.001 or half of the minimum 

value found in the dataset), substitution with mean or median value of the non-missing data 

across a given peak or more advanced imputation methods such as k-nearest imputation, multiple 

imputation or Bayesian Principal Component Analysis estimation. The imputation of missing 

values in the metabolomic data processing pipeline is one of the main objectives of this thesis and 

therefore discussed in considerably greater detail in Chapter 2.  

1.2.4 Data analysis: univariate and multivariate statistical methods for high-dimensional 

metabolome data 

The applied data-processing methods depend upon the analysed datasets and may vary 

between the research groups, different experimental designs and the questions to be addressed. 

Even more is true of the methods used in the subsequent data analysis, as these may draw upon 

statistics, data mining, machine learning, artificial intelligence, probability theory etc. and with 

the existing methods being constantly redefined and with the new methods being developed 
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(Goodacre, Vaidyanathan et al. 2004, Goodacre, Broadhurst et al. 2007). It is not possible to 

discuss each of the data analysis used, however some of the most common techniques are 

outlined below. Considering a fingerprinting metabolomics experiment, in which a snapshot of 

all metabolites is measured to generate new hypotheses, to identify novel biomarkers or to 

provide a sample classification tool based on their biological properties (e.g. healthy and 

diseased), data analysis methods may include univariate and multivariate statistical methods, 

unsupervised and supervised learning methods (Goodacre, Vaidyanathan et al. 2004).  

Typically, statistical hypothesis tests such as t-test, z-test or ANOVA are the univariate 

methods (taking account one variable i.e. here applied to each peak individually) used to test 

whether the means of the groups (e.g. healthy and diseased) are equal and thus to identify the 

potential biomarkers (Kirkwood and Sterne 2003). When the data does not meet the criterion of 

the normality assumption, the non-parametric univariate methods, such as Mann-Whitney U or 

Kruskal-Wallis test are used. Along the statistical hypothesis test, the fold change is being 

calculated to provide the information on the direction of the concentration change (e.g. a given 

peak concentration increasing or decreasing following an exposure to the tested drug or the 

treatment). Due to several thousands of peaks being subjected to a statistical hypothesis testing, 

an important issue of the increased chances of committing a type I error (incorrectly rejecting a 

null hypothesis) arises, thus leading to wrongly identifying a set of peaks as significantly 

different between the groups. This is addressed via applying various correction methods, 

including a simple Bonferroni or a more advanced Benjamini and Hochberg methods (Benjamini 

and Hochberg 1995).  

One of the most commonly used in metabolomics multivariate data analysis method is 

Principal Component Analysis (PCA) - an unsupervised (using unlabeled data and no prior 
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information) method applied to gain an overview of the large datasets, identify outliers and trends 

in the data. PCA is a mathematical transformation that maps high-dimensional data onto a lower-

dimensional space the captures most of the information from the original data; or in different 

terms it converts a large number of intercorrelated variables to a smaller set of uncorrelated 

variables (principal components) while maintaining the variation of the dataset. Therefore, the  

 
Figure 1.3 Example of a principal component scores plot for three biologically different samples groups (on the left) 

and corresponding loadings values for the PC1 and PC2 (on the right); Blue circles: cancer leukemia cell line, control 

group; red triangles: exposed to medroxyprogestorne; green squares: exposed to indomethacin  

original samples are represented by coordinates scores (T) in the new space which dimensions 

are linear combinations of the original variables, called loadings (P) Figure 1.3 (Abdi and 

Williams 2010). The original data X can be then approximated via  

        
  

Eq. 1.3 

where 
T
 denotes the transpose of the matrix, and the subscript a denotes number of components 

taken into account, with the  

                Eq. 1.4 
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where n and p indicating the number of rows and columns in the matrix. For the amax, the 

approximation of the original data is perfect with  

      
Eq. 1.5 

The principal components are found in such a way that the first one captures the highest variance 

(accounts for as much of the variability in the original datasets as possible) and the subsequent 

principal components capture the remaining variance in the decreasing order. They are 

orthogonal combinations of variables defined in such a way that the variances of the scores are 

maximal, the sum of Euclidean distances between the scores is maximal and the reconstruction of 

X is as close as possible to the original.  

Principal component analysis is not a classification method, yet is it often a first choice 

method in a metabolomics experiment to give a quick overview of the data, possible groupings 

and outliers. Other unsupervised methods include hierarchical clustering methods or Kohonen 

neural methods. When the labels are available and the sample size of the study justifies the use of 

the supervised methods (sample size not leading towards obvious over-fitting) methods such as 

discriminate analysis, partial least squares regression or neural networks may used or the 

evolutionary-based algorithms such a genetic algorithms to find a ‘model’ that will correctly link 

the inputs with the targets (Goodacre, Vaidyanathan et al. 2004).  

Finally, placing the statistically significant finding from the data analysis into a biological 

context requires assigning peaks to their metabolites identities. The ultra-high mass accuracy of 

the DI FT-ICR mass spectrometer enables the assignment of the empirical formulae to the peaks 

using an elemental composition calculator and to match the observed m/z values of the peak to 

the metabolite identifies found in the online databases such as Kyoto Encyclopaedia of Genes and 
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Genomes (KEGG) (Kanehisa, Goto et al. 2010) or Human Metabolome Database (HMDB) 

(Wishart, Knox et al. 2009, Kanehisa, Goto et al. 2010).  

1.2.5 Current limitations   

DI FT-ICR mass spectrometer may allow achieving the highest mass resolution and mass 

accuracy, and therefore enables the analysis of the complex metabolic extracts (Brown, Kruppa et 

al. 2005, Dunn 2008). The accurate mass measurements provide a rapid way to identify the 

majority of the metabolites without a need to resort to chromatography methods; making DI FT-

ICR based metabolomics an ideal tool to simultaneously acquire all the available information 

(Brown, Kruppa et al. 2005). However, there are still challenges ahead.  

The future progress in various aspects of DI FT-ICR MS based metabolomics will benefit the 

applicability and the effectiveness of this approach. The study designs and protocols need to be 

optimized, especially if DI FT-ICR MS based metabolomics is introduced to a new area such as 

nutrition or oncology research (Scalbert, Brennan et al. 2009). The metabolites detection and 

quantification should account for any unwanted sources of variations and yet yield a replicable, 

comparable between laboratories measurements. Finally, to turn the collected raw metabolite data 

into a biological knowledge, an assortment of data processing, statistical analysis and data storage 

formats is needed (Fiehn, Robertson et al. 2007, Allwood, Ellis et al. 2008). The limitations 

central to this thesis include the issue of missing data (data processing) and the metabolites 

identification (data analysis).    

Within data processing stage there is a common problem of missing data occurrence, which 

can arise from both technical and biological reasons impeding the usage of the majority of the 

statistical analysis methods  (Steuer, Morgenthal et al. 2007, Hrydziuszko and Viant 2011). A 
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further knowledge of the exact nature of these missing data and the extent of their effect of the 

data analysis is of importance for a better linkage between raw data and the biological 

knowledge. Currently, there is limited research on missing data such as their optimal ways of 

handling prior data analysis, e.g. by applying missing data estimation algorithms. As stated in 

section 1.2.3 Data processing: measuring metabolome, addressing the problem of missing data is 

one of the main objectives of this thesis, therefore this limitation and its implications are 

discussed at length in Chapters 2 and 3.  

 Drawing biological conclusions and/or obtaining a novel knowledge remain the hardest parts 

of the DI FT-ICR MS based metabolomics experiment. The high mass accuracy and resolution 

may allow resolving all metabolite peaks that represent different metabolites masses as well 

obtain their elemental compositions. Further heuristic rules are applied to narrow the possible 

molecular formulae by filtering out the unfeasible ones (e.g. containing unlikely high number of 

elements). These in combination with using the metabolite databases enable assigning a 

metabolite name. However, despite these advances, elucidation of the correct compound structure 

remains a challenge (Kind and Fiehn 2007). The number of potential empirical formulae 

calculated for a given peak increases with the m/z values. Mass steroisomers and isometric 

molecules cannot be distinguished, e.g. glucose and galactose sharing the same empirical formula 

of C6H12O6 (Weber, Southam et al. 2011). And the databases do not yet contain information on 

all the vast numbers of metabolites (Scalbert, Brennan et al. 2009).    

1.3 Metabolomics in surgery 

  Being the building blocks and substrates of all cellular processes, metabolites reflect the 

dynamic processes underlying cellular homeostasis. Therefore, metabolomics studies of human 
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diseases can contribute to the elucidation of their pathophysiological mechanisms, leading to an 

improved diagnostics, treatment, patients’ monitoring and finally, where applicable, surgical 

interventions. Recent years have brought an initial research into the application of metabolomics 

mainly, but not limited to organ (e.g. kidney, liver and heart) transplantation. 

 Adequate monitoring of organ physiology during and following transplantation to detect organ 

reperfusion injury (tissue damage caused by the returning blood supply following the period of 

ischemia, lack of oxygen) and to assess organ function or dysfunction can alone decide upon the 

success of the whole procedure and a patient’s full recovery. The metabolomics studies in this 

area have been predominately focused on kidney transplantation, the most frequent (excluding 

cornea transplantation and exceeding 2500 procedures a year in UK only) organ transplantation 

procedure for the patients with end-stage renal diseases (NHS Blood and Transplant). With over 

30 metabolomics studies published, the main trends seem to be utilizing metabolomics in 

assessing ischemia-reperfusion injury, characterizing immunosuppressive drug toxicity and organ 

(dys)function (Wishart 2006). For example, Wang et al. have used the matrix-assisted laser 

desorption/ionization Fourier transform mass spectrometry to analyse urinary samples from 

transplant patients to address the questions whether urinary metabolites can distinguish and 

predict the patients developing acute clinical rejection following the transplantation (Wang, Zhou 

et al. 2008). Examination of the metabolic mass spectra from patients with and without the 

evidence of rejection pinpointed a set of eight small molecules (yet to be identified) that enable 

patients’ distinction. Mao et al. also addressed the same question, however via studying serum 

metabolites and using gas-chromatograph mass spectrometry (Mao, Bai et al. 2008). They have 

identified 17 metabolites that were significantly higher in the group of patients developing acute 

rejection and resulted in 77.3% prediction accuracy; these included, among others, amino acid 
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(phenylalanine, serine, glycine, threonine, valine), carbohydrates (galactose oxime, glycose, 

fructose), caroboxylic acid, lactate, urea and myo-inositol. These and similar studies are of great 

importance, since there is still a need to find an ideal biomarker (ideal set of biomarkers) for 

kidney function following transplantation; currently used serum creatinine lacks high sensitivity 

and specificity as it is dependent on muscle mass, hydration status and can be elevated due to 

multiple cases of graft injury (Sarwal 2009). Other metabolomics studies have proven to be of 

advantage when applied to assessing the effects of the immunosuppressive therapy: high pressure 

liquid chromatography mass spectrometry was used to track serum concentrations of 

cyclosporine (CsA, immunosuppressive drug) and its metabolites (Vollenbroeker, Koch et al. 

2005). It has been previously shown that the long-term use of CsA is limited by nephrotoxicity 

and elevated risks of cardiovascular diseases. Vollenbroeker at al. have shown that some of the 

CsA metabolites correlate with several inflammatory and artherosclerotic markers, and therefore 

the use of CsA may be improved (e.g. by choosing the optimal, shorter, postoperative treatment 

time).  Metabolomics applied to heart transplantation studies aims at addressing questions similar 

to those of kidney transplantation, mainly there has been a considerable interest in developing 

fast and non-invasive methods to measure cardiac function and/or to detect cardiac rejection 

following the transplantation. For example, Eugene et al. have used proton magnetic resonance 

spectroscopy method of plasma samples to try to detect the acute cardiac rejection in patients 

undergoing heart transplantation, achieving high sensitivity and specificity (>90%) based on the 

selected methyl and methylene peaks mainly arising from lipoproteins (Eugene, Le Moyec et al. 

1991). It is beyond the scope of this section to discuss all the metabolomics studies in organ 

transplantation, however a solid review was done and presented by Wishart (Wishart 2005). 
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  Although the majority of ‘surgical’ metabolomics studies focusing on organ transplantation, 

there are few others showing that metabolomics is applicable to a broader range of clinical 

studies. Mutch et al. used successfully both gas and liquid chromatography-coupled mass 

spectrometry to analyse serum metabolites from patients before and following roux-en-Y gastric 

bypass surgery  to understand the numerous metabolic adaptations associated with the procedure 

such as weight loss, increased insulin sensitivity and glucose homeostasis (Mutch, Fuhrmann et 

al. 2009). Finally, metabolomics has become of interest to surgical oncology, as a potential new 

tool improving cancer detection and treatment. There has been much metabolomics research 

aimed at identifying biomarkers capable of early diagnosis of breast, ovarian, colon and prostate 

cancer showing that metabolomics holds promise as an non-invasive mean of detecting early-

stage malignancy and also monitoring treatment efficacy (Davis, Bathe et al. 2011). 

Metabolomics tools could especially play an important role when the diagnosis of cancer type 

with the currently available methods remains a challenge – for number of tumours discriminating 

between benign and malignant disease is still not straightforward with the potential misdiagnosis 

leading to life-threatening operations being performed for benign and inadequate treatment being 

undertaken for the malignant disease.  

1.3.1 Metabolomics in orthotopic liver transplantation 

  Liver transplantation is the currently only known treatment for the end-stage liver diseases, 

with over 600 liver transplants taking place in United Kingdom each year. In orthotopic liver 

transplantation (OLT), most commonly used technique, the native liver is removed and replaced 

by the donor organ (as oppose to split donation). It is estimated that due to the shortage of 

available organs, approximately 10% of potential recipients die while on the waiting list (2007-
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2008 Transplant Activity in UK, National Health Service annual report). Furthermore, the 

molecular mechanisms undergoing in the graft during the transplantation process (removal from 

the donor, ice storage and reimplantation) are not fully understood. Therefore OLT could benefit 

from the metabolomics studies, which providing novel molecular insight into the biochemical 

pathways altered during OLT could lead to a) increasing donor pools by including marginal 

donors or those obtained by donation after cardiac death, b) improving the therapeutic 

interventions to minimize tissue damage and maximize the likelihood of grafts success, c) 

advancing post-OLT patients’ monitoring and identification of graft dysfunction or poor function 

or finally d) providing further information for a more advanced system of donor-recipient 

matching. As in the kidney transplantation, several metabolomics studies have been already 

carried out to assess whether novel metabolomics biomarkers can be found to inform upon liver 

function following OLT. Majority of these studies employed NMR-based metabolomics methods 

and have resulted in the promising findings (Wishart 2005)(see Chapter 5 for further details). DI 

FT-ICR mass spectrometry based metabolomics, with its ability to detect thousands of peaks in 

the biological sample has a considerable potential for investigating liver metabolism during and 

following OLT. Studies to verify the applicability of this metabolomics approach to this 

extremely varied clinical settings (large human-to-human metabolic variations; differences in the 

OLT procedure e.g. varying graft ice storage times; variations between donor and recipient 

metabolism; different indications for performing OLT; multiple prior and post OLT treatments) 

need still to be undertaken.  
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1.4. Research aims 

The overall aim of this work is to advance and to develop the data processing pipeline for the 

DI FT-ICR mass spectrometry based metabolomics to improve the human liver transplantation 

surgery. In particular, the below main questions are asked: 

i) does the treatment of missing data during the data processing stage influence the 

subsequent data analysis? If so, what are consequences of choosing different 

approaches? What are the nature and the reasons for the occurrence of missing data? 

Can this information be used to identify the optimal missing data estimation algorithm 

that applied once during data processing stage will yield the correct results of the 

subsequent univariate and multivariate data analyses (Chapter 2) 

ii) can the survival analysis methods for the right censored data be used as an alternative 

way to handle missing values? Can DI FT-ICR mass spectrometry metabolomic data 

be represented as right censored data? If so, what are the advantages and limitations of 

this novel approach? (Chapter 3) 

iii) can DI FT-ICR mass spectrometry based metabolomics be applicable to a highly 

variable clinical study to metabolic processes of liver grafts during human orthotopic 

liver transplantation (OLT)? Can it inform the OLT by characterizing multiple 

metabolic changes occurring upon OLT, providing novel insight into the biochemical 

pathways and/or suggesting novel therapeutic interventions for the improved 

outcomes? (Chapter 5) 
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1.5 Thesis structure 

Chapter 1 contains a general introduction to the thesis. It briefly outlines, quite extensive now, 

field of metabolomics, focusing on the human metabolomics, i.e. studies on the molecules found 

in humans, as oppose to plant or environmental metabolomics. It introduces metabolomics 

research based on the analytical platform of direct infusion Fourier transform ion cyclotron 

resonance mass spectrometry, discussing its theoretical background and a typical experimental 

pipe-line and current limitations. It finishes with a section on applicability of metabolomics in 

surgery.  

Chapter 2 is the first of the research chapters containing published paper on missing data in DI 

FT-ICR mass spectrometry based metabolomics (Hrydziuszko and Viant). It addresses the 

question on the nature of missing data and how to choose the optimal imputation method, with 

the proposed algorithms and findings transferable to metabolomics studies employing other mass 

spectrometry platforms.   

Chapter 3 introduces a branch of statistics called survival analysis, especially the definitions of 

censored data and their methods of analyses. Further, it introduces the mathematical lemma that 

the above methods can be used to analyse the left censored data. Further it discusses the 

applicability to the above survival analysis approach to handle missing data in DI FT-ICR mass 

spectrometry based metabolomics (novel approach) and presents the results on testing this 

approach.  

Chapter 4 includes the supplementary work on advancing data processing and data analysis 

methods for the DI FT-ICR mass spectrometry based metabolomics that was carried out as a 

result of additional questions that arose while addressing the main research aims. Mainly it 

presents a software developed for the “extract blank” analysis (applied in a published study; 
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(Taylor, Weber et al. 2009)  and the algorithm for comparing the ordered lists, both of which can 

be applicable to and of potential use during the data processing and analysis stages (Hrydziuszko 

and Viant 2012).   

Chapter 5 discusses the applied part of the research, i.e. to the clinical study of liver 

transplantation. In particular it presents a pilot study used to verify the applicability of the DI FT-

ICR MS to the study of human liver transplantation and it is an edited version of the published 

article (Hrydziuszko, Silva et al. 2010).   

 Chapter 6 contains the summary and conclusions of this thesis. It also highlights and discusses 

the need for further work that has emerged during the presented in this thesis research.
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CHAPTER 2 

 Missing Data – Towards Optimal Imputation Method 
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2.1 Introduction 

2.1.1 Missing data in statistical analysis 

 Missing data are a common complication of any real-world study, mostly occurring due to study 

design, due to chance or due to technical reasons (Nicholas and Ken 2008). Where missing data cannot be 

prevented by design the need for the statistical analysis with missing data arises. A vast range of missing 

data handling approaches has become available in recent years. These can be grouped into four major 

categories based on the generic approaches of addressing the problem of missing data occurrence as 

summarized in Figure 2.1 (García-Laencina, Sancho-Gómez et al. 2010). 

 

Figure 2.1 Classification of missing data handling methods in statistical analysis with an application to pattern 

classification. 

Historically the oldest and the simplest category comprises deletion methods which focus on the 

analysis of the observed values, such as complete-case method, weighted complete-case analysis or 
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available-case analysis (Little and Rubin 2002). In complete-case method only cases (samples) where all 

the variables are present are considered (list-wise deletion), resulting in a simplistic approach with 

potential disadvantage of a major information loss and analysis bias when the missing data are not present 

at random (MCAR, defined below) (Schafer and Graham 2002). To adjust for this bias, Rubin introduced 

the idea of constructing weights for complete cases, a concept related to weighting in randomization 

inference for finite population surveys (Little and Rubin 2002). Available-case method discards data at the 

level of variables (pair-wise deletion), making a better use of data than complete-case analysis (all 

available values are considered). This in turn leads to a different number of variables for each case and 

thus making a subsequent data analysis (e.g. classification methods) challenging (García-Laencina, 

Sancho-Gómez et al. 2010). 

The objective of the missing data imputation method is to produce a complete datasets by replacing 

missing values with plausible estimates to enable statistical analysis using standard data analysis 

approaches (Myers 2000). The earliest used methods included simple approaches where only one 

plausible value was assigned to each missing datum. The last observation carried forward was commonly 

implemented in longitudinal measurements observed for the patients, where the last value was used to 

replace the subsequent missing data (Myers 2000). Another undemanding method is mean or median 

imputation, in which missing values for a variable are replaced by the observed mean or median for that 

particular variable (remaining cases) (McKnight, McKnight et al. 2007). The last observation carried 

forwards as well as mean and median imputation tend to artificially reduce the variance, biasing the 

estimates by not taking into account the likely correlations between the various components of 

the data (García-Laencina, Sancho-Gómez et al. 2010). When the variables of interest are 

correlated with the data that are present in the complete sample regression imputation may be 

used. Here, the missing components are replaced by the predicted values from a regression model 

(linear or non-linear) built using the components of the vector (across samples) that are present. 
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This enables to preserve the variance and the covariance of variables with missing data, yet the 

imputed values follow a single regression model and cannot reflect any inherent variation in the 

data (García-Laencina, Sancho-Gómez et al. 2010). Hot and cold deck procedures replace the 

missing data from a similar complete data vector from the given the same (hot) or other similar 

(cold) dataset. Here, the disadvantage is the underestimation of standard errors due to decreased 

variability since the imputed values are drawn from the data already present in the dataset 

(McKnight, McKnight et al. 2007). To overcome the above shortcomings of reduced variability and not 

taking into account covariance structure, multiple imputation methods have been proposed in which 

missing data is filled n times according to an appropriate assumed model (e.g. linear), yielding n datasets. 

Each of these datasets is subjected to a statistical analysis and the results from the n datasets are combined 

for inference, providing valid statistical inferences reflecting the uncertainty due to missing data, e.g. valid 

confidence intervals for the estimated parameters (Little and Rubin 2002). Second group of missing data 

imputation methods is based on the machine learning procedures (often complex), in which a predictive 

model is built to estimate values used for missing data substitution. Example methods comprise k-nearest 

neighbour (KNN) imputation (details in 2.3 Materials and Methods), self-organizing map (SOM), multi-

layer perceptron (MLP) imputation or other neural networks based methods such as auto-associative 

neural network, recurrent neural network or multi-task networks (Marlin 2008, García-Laencina, Sancho-

Gómez et al. 2010, Jerez, Molina et al. 2010).  

Model-based procedures allow obtaining parameter estimates given the observed data, the relationships 

among observed variables and constrains imposed by underlying distribution. The model-based name 

reflects the fact that the assumption about the joint distribution of all variables in the model has to be made 

(McKnight, McKnight et al. 2007, García-Laencina, Sancho-Gómez et al. 2010). Unlike the imputation 

methods, model-based procedures do not assign any values to the missing data, but they treat the data ‘as 

if’ they were observed, yielding estimates of parameters and statistics. The most popular model-based 
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procedure for handling missing data seem to be maximum likelihood (ML) with a basic principle of 

choosing estimates with values that maximize the probability of obtaining the observed data. This is 

accomplished by the use of the likelihood function that estimates the probability of the data as a function 

of the data and the unknown parameters (Enders 2001). The Expectation Maximization (EM) allows 

obtaining ML estimates when data are missing. EM handles missing data by solving smaller, complete 

data problems, providing estimates for the entire dataset that is including both the observed and missing 

values. The procedure is repeated in an iterative process including imputing values for missing data using 

ML, generating parameters estimates incorporating the imputed data, re-imputing values based on these 

parameters and re-estimating parameters based on the re-imputed data; all eventually converging on ML 

estimates (Enders 2001, Little and Rubin 2002, McKnight, McKnight et al. 2007). When the underlying 

distribution is unknown, Markov chain Monte Carlo (MCMC) procedures offers greater flexibility. Here, 

briefly the ultimate goal is to obtain a desired posterior distribution, given the observed data and the 

information gained from the data to update the statistical model that can be used for parameter estimation. 

MCMC methods generate simulated values in a Markov chain (sequence of random values whose 

probabilities depend only on the values at the previous step). Similar to EM, the observed data are 

augmented with simulated values of the missing values in an iterative algorithm (imputation and posterior 

step) to yield parameter estimates (McKnight, McKnight et al. 2007).  

 In pattern classification problems several methods have been proposed that does not require a prior 

missing data imputation; with the missing values being handled in classification problems avoiding the 

need for the explicit imputations. Some of these methods include neural network ensembles, decision 

trees, fuzzy approaches or support vector machines, other are multivariate exploratory and predictive 

approaches such as modification introduced to Principal Component Analysis or Partial Least Squares 

Discriminant Analysis to handle some amount of missing (Andersson and Bro 1998, Walczak and Massart 

2001, García-Laencina, Sancho-Gómez et al. 2010). 
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2.1.2 Missing data in metabolomics 

Many questions addressed using metabolomic approaches are similar to those being asked in 

transcriptomics and/or proteomic investigations, e.g. which metabolites, genes and/or proteins 

differ significantly between biological groups under considerations such as healthy vs. diseased, 

or control vs. drug-treated samples (Defamie, Cursio et al. 2008). Moreover, for many ‘omics 

experiments the final data formats (after instrument specific processing) are alike, with a 

rectangular matrix containing gene expression values or metabolite relative abundances, and 

organised with each variable measured in a unique column and each sample analysed in a unique 

row. This consistency of data format has facilitated the use of the same or similar univariate and 

multivariate statistical methods (including computational data analysis or pattern recognition 

methods) in metabolomics as are used in other ‘omics' approaches (Goodacre, Vaidyanathan et 

al. 2004). However, while in other ‘omics' fields there has and continues to be considerable 

interest in understanding and developing appropriate techniques to handle missing data (prior to 

statistical analysis), it has received minimal attention in metabolomics. Missing values (also 

referred to as missing data or missing entries) may arise in metabolomics experiments for a 

number of reasons. In the case of direct infusion Fourier transform ion cyclotron resonance (DI 

FT-ICR) mass spectrometry (MS) based metabolomics, they could have a biological and/or 

technical origin. A metabolite abundance value for a specific sample may not be available when 

several samples are analysed and then all the measurements are compiled into a data matrix for 

further comparison or analysis. For some samples a specific peak may not be present for genuine 

biological reasons, e.g. due to heterogeneity between samples, or in other cases its abundance is 

below the detection limit of the mass spectrometer, or alternatively it was not measured properly 
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owing to a technical problem such as a temporary reduction in electrospray performance due to 

particulate material in the spray nozzle (Payne, Southam et al. 2009). 

Metabolomics researches often face such problems with missing data. These problems can be 

(and have been) addressed by a) simply disregarding all the variables for which missing data are 

present (Xia, Psychogios et al. 2009), b) using data analysis methods (including univariate and 

multivariate) that have been shown to be able to handle some proportion of missing data (Kenny, 

Broadhurst et al. 2010, Blanchet, Smolinska et al. 2011) or c) estimating missing data with 

various imputation algorithms (Xia, Psychogios et al. 2009, Kenny, Broadhurst et al. 2010) 

Focusing on the part of the data for which all the measurements are present could be an optimal 

solution when only a small proportion of variables are affected by missing data, however, this is 

typically not the case in most metabolomics experiments. Some statistical software packages 

allow univariate statistical testing (e.g. t test or ANOVA in R or Matlab) on samples with missing 

data by simply disregarding the missing entries, and some multivariate exploratory or predictive 

approaches have been developed to handle some amount of missing data (e.g. missing data 

Principal Component Analysis or Partial Least Squares Discriminant Analysis (Andersson and 

Bro 1998, Walczak and Massart 2001). 

While this strategy may be appropriate when dealing with large sample size studies that 

contain few missing data, it may be problematic for metabolomics studies in which the sample 

size is often limited and thus ignoring missing data could diminish the power of the statistical 

tests. Furthermore, it is not uncommon that missing data occurs predominantly in one biological 

group (at least for the case of DI FT-ICR MS metabolomics) and when combined with a small 

sample size this can lead to an insufficient number of metabolites measured for this approach 

(e.g. at least two detected measurements per biological group are needed to perform a t test in the 
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R or Matlab environments). Hence, imputing missing data prior to data analysis represents a 

practical solution in applied metabolomics since i) it yields a simple, consistent, rapid and 

automated data processing pipeline, ii) the resulting data matrix is compatible with a very wide 

array of univariate or multivariate analyses, iii) this approach facilitates a comparison of 

univariate and multivariate statistical results for specific metabolites of interest (e.g. biomarkers), 

and iv) it provides a complete profile of metabolite concentrations that can be used in a consistent 

manner in other types of data analysis (e.g. integration with other ‘omics datasets). The 

importance of appropriate handling of missing data has been recognised in the analysis of DNA 

microarray (Troyanskaya, Cantor et al. 2001) and gel-based proteomics data (Pedreschi, Hertog 

et al. 2008, Albrecht, Kniemeyer et al. 2010). For example, studies have been reported on how 

missing values affect statistical parameter estimations (Troyanskaya, Cantor et al. 2001), how 

they influence the results of univariate (de Brevern, Hazout et al. 2004, Scheel, Aldrin et al. 

2005) and multivariate data analysis (Pedreschi, Hertog et al. 2008), what is the optimal method 

of their imputation (Jörnsten, Wang et al. 2005, Scheel, Aldrin et al. 2005, Kim, Lee et al. 2007, 

Tuikkala, Elo et al. 2008), and how to develop robust data analysis algorithms for datasets with 

significant amount of missing entries (Kim, Lee et al. 2007). In metabolomics, none of the above 

questions has yet been thoroughly addressed. This is particularly surprisingly given that mass 

spectrometry based metabolomic analyses (e.g., DI FT-ICR MS) typically generate datasets with 

considerable amounts of missing data (Southam, Payne et al. 2007, Han, Danell et al. 2008, 

Taylor, Weber et al. 2009). Furthermore, it has been suggested that missing values do not affect 

the data analysis outcome, but that their treatment (i.e. deletion or estimation) is carried out only 

for computational convenience (Steuer, Morgenthal et al. 2007). Current methods for handling 

missing data in metabolomics involve simple methods such as replacing a missing value by the 
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mean or median of the available measurements for that variable, replacing with some small 

arbitrary number, or k-nearest neighbour imputation (Steuer, Morgenthal et al. 2007) 

(GeneSpring MS software (Alignment Technologies). A quite different approach, reported by 

Sangster et al. (Sangster, Wingate et al. 2007), estimates missing values by returning to the raw 

spectral data and integrating the areas of the missing peaks which are below the applied signal-to-

noise ratio (SNR) threshold, but in close proximity to the peaks’ known m/z value. 

Here, we analyse missing data in the context of DI FT-ICR MS based metabolomics 

measurements, but with the findings of our analyses potentially transferable and of importance 

for other metabolomics studies. We investigate not only the nature of the missing data but also 

their effects on data analysis, both univariate and multivariate. Specifically we addressed the 

following questions: what are the potential origins of missing data in metabolomic datasets? Do 

they appear at random, or as a function of peak intensity and/or m/z value? Do they affect the 

outcome of commonly used univariate and multivariate data analyses? And if so, what is the 

optimal method of replacing their values as part of a consistent and automated data processing 

pipeline that will provide the metabolomics researchers with a complete data matrix that is 

compatible with many univariate and multivariate statistical analyses or other data mining 

algorithms? With more than a dozen imputation methods available and published (not limited to 

‘omics' studies), we focus our investigations on the eight commonly used and reported methods 

in applied ‘omics studies that are readily implementable (by other researchers) in the R 

computing environment, ultimately providing a (potentially expandable) benchmark for the 

questions above. Finally, to maximise the generality of our findings, we have investigated three 

widely differing biological datasets (including cellular, tissue and whole organism extracts from 
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in vitro and in vivo experimentation) that were measured in positive and/or negative ion mode 

FT-ICR MS. 

2.2 Materials and Methods 

2.2.1 Mass spectrometry datasets 

The three FT-ICR MS datasets were available for theoretical consideration of missing data 

problem, experimental design and data collection done by other researches, at the Environmental 

Metabolomics Research Laboratory, University of Birmingham. These comprised of 1) CCL – 

cancer cell line, specifically an acute myeloid leukaemia cell line (K562) cultured and treated 

under hypoxic conditions, comprising of 6 control samples, 6 samples exposed to indomethacin 

(non-steroidal anti-inflammatory drug) and 6 samples treated with medroxyprogesterone acetate 

(component of hormonal contraceptives), all measured in positive (CCLp) and negative ion mode 

(CCLn); 2) DM – Daphnia magna (a freshwater invertebrate) exposed for 24 h to 1.5 mg/L of 

2,4-dinitrophenol, a cellular metabolic toxicant which obstructs oxidative phosphorylation, 

comprising of 10 control and 10 exposed samples measured in negative ion mode only (Taylor, 

Weber et al. 2010); 3) HL – human liver biopsies taken throughout orthotopic liver 

transplantation, comprising 7 biopsies taken soon after organ retrieval and 7 further biopsies 

taken post-reperfusion of blood circulation in the recipient patient, measured in positive ion mode 

only (Hrydziuszko, Silva et al. 2010). All cell, tissue or whole organism samples were extracted 

using a methanol/chloroform/water method (Wu, Southam et al. 2008), and the polar metabolites 

were analysed using a hybrid 7-T direct infusion nanoelectrospray FT-ICR mass spectrometer 

(Thermo Fisher Scientific LTQ FT) over the range m/z 70 to 500. All CCL and DM samples were 

analysed in triplicate, and the HL samples in duplicate; these represent technical replicates of 

each sample for use in the subsequent noise filtering algorithm. Spectra were processed as 
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described previously (Taylor, Weber et al. 2009), including a 3-step filtering algorithm to 

eliminate noise peaks (Payne, Southam et al. 2009). Specifically, the first filtering step comprised 

of a hard SNR threshold, below which peaks were rejected (2.5 for CCL datasets and 3.5 for DM 

and HL datasets). In the second step, only peaks present in 2 out of 3 technical replicates (for 

CCL and DM datasets) and 2 out of 2 replicates (HL dataset) were retained, and the intensities 

averaged to create a single spectrum per biological sample. In the third step, only peaks present in 

at least 50% of the samples were retained (specifically across all samples for each of the DM and 

HL datasets, and across samples within each biological group for the CCL datasets; Table 1). 

Probabilistic quotient normalisation was then performed on all of the datasets (prior to univariate 

and multivariate analyses) (Dieterle, Ross et al. 2006) followed by the generalised log 

transformation (prior to multivariate analysis only, in order to stabilise the variance across the 

peaks and avoid the highest abundance peaks dominating in the multivariate analyses) (Parsons, 

Ludwig et al. 2007). Individual peak intensities were confirmed to follow normal distributions as 

tested with the Shapiro-Wilk normality test (for >99% of the peaks that have no missing data and 

that have been measured in at least three samples; this is in agreement with our previous 

unpublished observations for other (including larger sample size) metabolomics datasets obtained 

via DI FT-ICR MS). At this stage of analysis, each dataset contained m peaks and n samples with 

multiple missing values (Table 1). The median of the coefficients of variation of the peak 

intensities, reflecting biological diversity within each dataset (Parsons, Ekman et al. 2009), was 

17.21%, 20.24%, 25.59% and 60.99% for CCLn, CCLp, DM and HL, respectively (excluding 

peaks with missing data) confirming, as expected, that the metabolic heterogeneity increased 

from cell line extracts to laboratory cultured organisms to clinical samples.  
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Table 2.1 List of the DI FT-ICR MS based metabolomic datasets analysed together with some of their basic 

properties. 

Dataset 
Brief 

Description 

Median of 
coefficient of 
variation [%] 

No .of 
sample

s 

No. of 
groups 

No. of 
peaks 

Missing 
values [%] 

Peaks with 
missing values 

[%] 

CCLn 
Human cancer cell line 

K562, negative ion mode 
17.21 18 3 6770 22.01 51.67 

CCLp 
Human cancer cell line 

K562, positive ion mode 
20.24 18 3 4426 28.53 64.96 

DM 
Daphnia magna exposed 
for 24h to dinitrophenol, 

negative ion mode 
25.59 20 2 4196 14.63 55.22 

HL 
Human liver tissue prior and 

post liver transplantation, 
positive ion mode 

60.99 14 2 1805 23.66 78.73 

2.2.2 Occurrence and distribution patterns of missing data 

The properties of the missing values in the FT-ICR MS datasets were examined using two 

methods. First, the distribution of the missing values across each dataset was determined to be 

‘missing completely at random’ (MCAR) or not. This employed Little’s test of MCAR for 

multivariate data with missing values (Little 1988). Second, their occurrence patterns were 

assessed using Pearson’s correlation between missing data properties and the dataset features, 

specifically the amount of missing data vs. both the abundances and m/z values of the non-

missing data peaks.  

2.2.3 Impact of missing data imputation on statistical analyses 

We then compared eight common and/or readily available missing data imputation (or 

estimation) methods in terms of their impact on univariate and multivariate data analysis as well 

as in terms of their performance for handling missing values (experimental design summarised in 

Figure 2.2). This was performed on all three FT-ICR MS datasets, as described below. Specifically, 

the eight estimation methods comprised: 1) S – substitution of missing values with a small 

predefined value (e.g. 0.01) (as used in GeneSpring MS software; Alignment Technologies); 2) 

HM – substitution with half of the minimum value found in the non-missing data (Xia, 
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Psychogios et al. 2009); 3) M – substitution with the mean of the non-missing values across all 

samples for that peak (Steuer, Morgenthal et al. 2007); 4) MED – substitution with the median of 

the non-missing values across all samples (Steuer, Morgenthal et al. 2007); 5) KNN – weighted k-

nearest neighbour algorithm in which k (here k = 5; different k values did not significantly affect 

our analysis, data not shown) metabolites most similar in terms of their intensity profiles across 

all samples are identified based on the Euclidean distance similarity measure to the metabolite 

having a missing datum for a given sample; the missing datum is then estimated as the weighted 

average of the k metabolites for that sample with their contribution weighted by their similarity 

(Troyanskaya, Cantor et al. 2001, Steuer, Morgenthal et al. 2007); 6) BPCA – Bayesian PCA 

missing value estimation, a three-stage algorithm based on principal component regression, 

Bayesian estimation and the expectation-maximisation repetitive algorithm; briefly during the 

principal component regression the missing data of a metabolite’s intensity profile are estimated 

from the observed values using the PCA result, followed by a Bayesian estimation in which 

residual error and the projection of metabolites on the principal components are considered as 

normal independent variables with unknown parameters which are inferred in the final 

expectation-maximization algorithm step (Oba, Sato et al. 2003, Xia, Psychogios et al. 2009); 7) 

MI – multivariate imputation by chained equations (Buuren and Groothuis-Oudshoorn 2010); 8) 

REP – modified version of Sangster’s method as used by us previously, for which a missing 

value is substituted with the average intensity of the nearest (in term of m/z value) peaks from the 

raw measurements of the technical replicates (Sangster, Wingate et al. 2007). Methods S and HM 

substitute the missing values with a relatively small value and act on the assumption that missing 

data do not influence the outcome of the subsequent data analysis due to a low amount of missing 

data. Methods M and MED impute missing data using a row mean or median and assume that the 
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metabolite’s intensity is similar across all the experiments (i.e. samples). Furthermore, along with 

the S and HM methods, M and MED do not use the information contained in the structure of the 

data. KNN searches for the k metabolites (or more specifically peaks in the mass spectra) that 

have similar measured signal intensities across the biological samples as compared to the peak 

for which the missing entry is present. The missing value is then replaced with the weighted 

average of the corresponding non-missing values from the group of k peaks that were identified 

as most similar. BPCA and MI methods use the global structure of the dataset, in a way that all 

the metabolites are taken into consideration to obtain the imputed value. BPCA estimates the 

missing data in a three-stage process starting with principal component regression, followed by 

Bayesian estimation and finishing with an expectation-maximisation like repetitive algorithm; 

this approach has been shown to outperform KNN for gene expression data (cDNA microarrays) 

when the number of samples was large (>30) and the missing data occurred randomly (Oba, Sato 

et al. 2003, Albrecht, Kniemeyer et al. 2010). MI, multivariate imputation by chained equations 

(available in the R environment in a MICE library) is a method of multiple imputation in which 

each variable is estimated using a regression model conditional on all the other variables 

iteratively looping through all the variables with missing data; here we used the predictive mean 

matching implementation (Little and Rubin 2002), similar to the regression method. Method REP 

attempts to utilise peak abundance information captured in the technical replicates that lies 

beneath the SNR threshold by estimating missing data via the average of the closest (in terms of 

m/z) peaks in each of the three (two for HL dataset) technical replicates.  

After imputing the missing values for the three FT-ICR MS datasets, using all eight methods, 

statistical tests were employed to determine the metabolic differences between the sample classes 

(e.g. between the control and two drug-treated groups in the CCL study). This allowed us to 
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examine the impact of each imputation method on finding significantly changed peaks via 

univariate testing (t-test or ANOVA between groups with Benjamini and Hochberg correction for 

multiple testing (Benjamini and Hochberg 1995) as well as via multivariate principal component 

analysis (PCA) scores and loadings values. This approach was chosen as it is routinely used in 

metabolomics to provide an initial unsupervised explorative analysis and because it is appropriate 

for the sizes of the datasets investigated here (containing thousands of peaks and only up to ten 

samples per biological group); supervised methods such as partial least squares discriminate 

analysis would likely lead to over-fitting in the modelling (Broadhurst and Kell 2006, 

Westerhuis, Hoefsloot et al. 2008). The eight missing value estimation methods were further 

compared in terms of the outcome of both univariate and multivariate analysis via hierarchical 

clustering, in which the Euclidean distance was calculated for the groups of peaks significantly 

changed between biological groups for the univariate analysis and for the top 5% of peaks 

contributing to the separation along the first and the second principal components (PC1 and PC2) 

based on their loading values. For the univariate approach, the Euclidean distance was calculated 

based on the overlap (percentage) of the number of identified as significantly changed peaks 

between every two missing data estimation methods. For the PCA, since the order (i.e. ranking 

based on loading values) of these peaks holds important information about the PCA results, we 

developed a measure referred to as ODist that compares the number of shared peaks between any 

two imputation methods as well as their rank order; i.e. in addition to calculating the amount of 

overlap in the top 5% of peaks between two imputation methods, we assigned a higher 

‘similarity’ value for methods for which the top peaks are in the same order (see Supplementary 

Material, ‘Impact of missing data imputation on multivariate data analysis’). 



42 
 

In addition, to assess the impact on the final biochemical interpretation of the data, we have 

compared the eight methods in terms of detecting significantly ‘active’ KEGG (Kyoto 

Encyclopaedia of Genes and Genomes) human pathways (Kanehisa, Araki et al. 2008). Here we 

defined a significantly ‘active’ pathway as follows: for significantly changed peaks between 

groups (univariate analysis) or the top 5% of peaks contributing towards separation along PC1 or 

PC2, we assigned one (or more) putative metabolite names (Sumner, Amberg et al. 2007) to each 

m/z value, based upon accurate mass measurements and the KEGG database, taking into account 

commonly detected ion forms ([M-e]
+
, [M+H]

+
, [M+Na]

+
, [M+

39
K]

+
, [M+2Na-H]

+
, [M+2

39
K-H]

+
 

for positive ion mode and [M+e]
-
, [M-H]

-
, [M+

35
Cl]

-
, [M+

37
Cl]

-
, [M+HAc-H]

-
 (HAc, acetic acid) 

for negative ion mode). Following that, for each putatively identified metabolite, we listed all 

KEGG pathways for which it is involved. The probability that a peak i belongs to a pathway j 

was calculated via Pi(pathwayj | peaki) = ∑ putative metabolite assignments of peak i that are 

involved in pathway j / ∑ putative assignments for peak i. We marked pathways as significantly 

‘active’ if for at least one of the peaks they were observed with a probability greater than or equal 

to 0.75.  

2.2.4 Performance of missing data estimation algorithms 

To assess the performance of the missing data imputation algorithms, we used ‘complete’ 

CCLn, CCLp, DM and HL datasets that were created by excluding all peaks that contained 

missing values. Next, we deliberately introduced missing values, either completely at random 

(MCAR) or not at random (MNAR) (Little and Rubin 2010), generating datasets with missing 

data entries but for which we knew the real (original) values. These missing data were again 

imputed using each of the eight methods described above (for REP we estimated the values of the  
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Figure 2.2 Flow chart summarising the approach for the analyses of missing values (MV) performed in this study.
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deliberately introduced missing entries using the information from the triplicate technical 

measurements, explained below). The imputed missing values (for all eight methods) were 

compared to the original deliberately excluded values in terms of normalised root mean square 

errors (NRMSE) (Troyanskaya, Cantor et al. 2001) and also the outcome of univariate and 

multivariate (PCA) data analysis. The whole procedure (both for MCAR and MNAR) was 

repeated 100 times. Furthermore, the amount of missing data generated was ca. 20% for each 

‘complete’ dataset, similar to the amount of real missing data in the original datasets. For MNAR, 

missing values were introduced to mirror the missing data properties that we discovered in the 

original datasets, mainly to capture their relationship with the signal intensity and m/z ratio. For 

each original dataset linear regression model was built to capture the relationship between signal 

intensity (non-missing data) and m/z ratio and the frequencies of missing data occurrence were 

noted for each SIM window as well as the overall percentage of missing data (ca. 20% as in 

Table 2.1). The same amount of missing was introduced to the ‘complete’ datasets by identifying 

the number of missing data per SIM window to maintain the original datasets proportions and 

second, based on the regression model, selecting which of the observed data should be labelled as 

missing.  

2.3 Results and Discussion 

2.3.1 Occurrence and distribution patterns of missing data in DI FT-ICR MS metabolomics 

A typical DI FT-ICR MS based metabolomics dataset measured and processed as described 

above contains ca. 20% of missing data (Table 2.1), which equates to up to 80% of peaks having 

at least one missing value across the analysed samples. Little’s MCAR test revealed that this 

missing data does not occur completely at random (p = 0.029, 0.032, 0.021 and 0.045 for CCLn, 
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CCLp, DM and HL datasets respectively), i.e. they do not follow a random distribution. If Y 

denotes a rectangular dataset (e.g., with each peak’s abundance in a unique column and each

 

Figure 2.3 Probability of the occurrence of noisy peaks as a function of m/z ratio and percentage of missing data vs. 

mean peaks abundance for the four datasets. Probability of the occurrence of noisy peaks as a function of m/z ratio 

for a) CCLn, b) CCLp, c) DM and d) HL datasets. Each sample in the CCL and DM datasets was measured as 3 

technical replicates, and therefore noisy peaks are defined as occurring in 1 or 2 out of 3 measurements only (prior 

noise filtering). HL samples were measured as duplicates, with noisy peaks defined as occurring in 1 out of 2 

measurements only. Relationships shown for all separately for all available samples in each dataset (marked in 

multiple lines on the graphs). Percentage of missing data vs. mean peak abundances (binned in 100 intervals with a 

sample filter 50%) for e) CCLn, f) CCLp, g) DM and h) HL datasets. The top 5% of peak abundances have been 

removed for plotting purposes. 

sample in a unique row) containing missing data, Y can be split into two subsets Yo (observed 

values) and Ym (missing data). A dummy matrix D could then indicate the location of the missing 

values in Y, such that dij = 1 if yij is missing and dij = 0 if yij is present. Following Rubin’s 

established categories for the mechanisms of missing data (Rubin 1976) for MCAR (missing 

completely at random; intuitively perceived as random), by definition, there is no relationship Ф 

between D and either Ym or Yo, meaning that a pattern (occurrence) of missing data is not 

dependent on the values that are missing (e.g. all low intensity values in the dataset are missing) 

nor on the observed data (e.g. missing data occur for those metabolites with measured low 
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intensity). For non-randomness, missing values may occur as MAR (missing at random, with a 

relationship Ф between D and Yo; counter-intuitive since it denotes one type of non-randomness) 

or MNAR (missing not at random, with a relationship Ф between D and Ym and possibly Yo; 

describing the other type of non-randomness) ((Rubin 1976, Little and Rubin 2002). For both the 

random and non-random scenarios, missing data may arise due to technical errors, biological 

factors, or a mixture of the two. The relationship Ф between D and Ym is theoretical and therefore 

cannot be assessed due to the lack of information about the missing data. However, the analysis  

of the relationship between D and Yo showed that missing data in FT-ICR mass spectra is a 

function of both the abundances of observed peaks as well as their m/z values. For the former, the 

lower the (mean) peak abundance the greater the amount of missing data that the peak contains 

(Pearson correlation coefficient of -0.80, -0.85, -0.89 and -0.90 for the CCLn, CCLp, DM and HL 

datasets respectively; Figure 2.3). For the latter, the analysis of the technical replicates showed 

that the probability of observing noisy peaks (i.e. missing in one or more of the technical 

replicates) is high for low m/z value signals, decreasing in probability for mid-range m/z values, 

and increasing again for high m/z signals (Figure 2.3). This trend was quite apparent for both 

CCL and the DM datasets, with a small exception (i.e. no increase for the high m/z peaks) for the 

most biologically variable HL dataset. This effect was of unknown origin. We have confirmed 

that these relationships are not due to our data processing, i.e. the three stage noise filtering 

algorithm. Further investigation of the potential source(s) of this relationship is beyond the scope 

of our study, possibly arising from a technical peculiarity of the FT-ICR MS instrumentation.  

 Two relationships were discovered above, i.e. D being correlated significantly with non-

missing value peak abundances (Yo) and also with m/z values. These relationships highlight 

important information about the occurrence and distribution of missing data that needs to be 
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considered prior to their treatment. The large percentage of peaks containing missing data implies 

that simply removing them would dramatically reduce the size of the dataset (by ca. 80%). 

Furthermore the abundance relationship indicates that removing peaks with missing data, or 

inadequate estimation of missing entries, could result in a substantial bias since only peaks with 

the highest abundances would be kept, hindering subsequent biomarker discovery. We have 

demonstrated this latter effect while investigating the influence of the third step of the noise 

filtering algorithm (retaining only those peaks present in s% or more of the samples, and 

equivalent to discarding peaks with missing data) on the distribution of missing data across 

biological groups. Figure A1 (Appendix A) shows the effects on the missing data distributions 

for s≥0%, s≥25%, s≥50% and s≥75% for the DM and HL datasets. The most interesting result 

was obtained for the HL dataset, for which there was a significant difference in the number of 

missing values between the cold-phase and post-reperfusion groups when all peaks were retained 

(s≥0%), but this difference became non-significant for settings of s≥25% and above. From our 

biochemical knowledge of the processes occurring during liver transplantation, we hypothesise 

that this is a case where peaks with missing data that genuinely carried important biological 

information were mistakenly removed (assumed to represent noise peaks), as it has been shown 

that during the cold phase liver metabolism ceases and it restarts upon reperfusion with an 

increased production of bile acids and urea (Hrydziuszko, Silva et al. 2010). Overall, our 

assessment of the missing data within DI FT-ICR MS datasets reveals that missing values do not 

occur completely at random but instead as a function of (at least) peak abundance and m/z value, 

and that peaks with missing values potentially carry importance biological information.  
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2.3.2 Impact of missing data imputation on univariate data analysis 

The potential impacts of the eight missing data estimation techniques on the ability to discover 

significant differences in peak abundances between biological groups were evaluated using 

univariate statistical tests (either t-tests or ANOVAs). Different imputation methods ultimately 

yielded quite diverse data analysis outcomes. Specifically, the number of peaks identified as 

significantly different between groups varied considerably between the eight estimation methods, 

from 2.65% to 14.70%, from 0.58% to 10.20%, from 7.44% to 14.20%, and from 1.72% to 

14.24% for the CCLn, CCLp, DM and HL datasets, respectively (Appendix A Table A1). As 

expected, based on the underlying mechanisms of the missing data estimation algorithms, some 

methods performed comparably, e.g. S and HM, and M and MED (Appendix A Figure A2 and 

Table A2), while others were strongly dependent on the structure of the dataset, e.g. for the CCL 

datasets, BPCA and REP performed similar to M and MED, while for the DM and HL datasets, 

REP resembled S and HM. 

Further investigation of the peaks detected as significantly different between biological groups 

showed that substantial proportions of these peaks were comprised of those which initially had 

missing data. Specifically, for the CCLn, CCLp, DM and HL datasets, the minimum percentage 

occurrence of this type of significant peak (from across all eight estimation methods) was 24.73% 

(for the BPCA method), 15.38% (BPCA), 23.72% (M) and 32.26% (MED), respectively 

(Appendix A Table A1). The maximum percentages of significant peaks (which originally had 

missing values) were surprisingly high, at 72.62% (KNN), 83.66% (HM), 49.66% (HM) and 

85.99% (S) for the same four datasets, respectively. In the worst case scenario of inadequate 

imputation of missing data entries, these minimum and maximum percentages provide an 

estimate of the false positive error rate associated with the arguably critical identification of 
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significantly changing peaks. This error rate would most likely be in the upper range of 

percentages for methods such as S and HM if the missing data were to represent high abundance 

metabolites, and also for M and MED if the opposite were true with missing entries representing 

low abundance metabolites. This is further visualised in Figures A3 and A4 (Appendix A) that 

show the distribution of the number of missing data (prior to imputation) that occur specifically 

within the significantly changing peaks only. 

Having analysed the percentages of significantly changing peaks between biological groups 

that initially had missing data, we then investigated which of the samples originally had these 

missing values. Interestingly, the results showed that missing entries tend to be located in one of 

the biological groups, rather than being spread equally across all the groups (Appendix A Table 

A3). This is a further important observation that helps to verify our earlier hypothesis that 

missing data may in fact represent true differences between biological groups, and therefore their 

accurate imputation is of considerable importance. Also, as above, it demonstrates a potential 

danger when using substitution (S and HM) or simple imputation (M and MED) methods. For the 

case of low peak abundances, it does not mean that a small arbitrarily chosen value would 

represent the missing data accurately; also, for high peak abundances, it should not be assumed 

that the mean or median of the non-missing values would represent an optimally imputed value. 

Rather, it is quite possible that when an inappropriate missing value estimation method is used 

we may not only lose the knowledge of which peaks are significant or not, but we may introduce 

further bias by identifying non-significant peaks as significantly different between groups. 

Our results therefore point to the potential bias in the biochemical interpretation of 

metabolomics data, if missing values are estimated incorrectly. To verify this we have compared 

what we refer to as ‘active’ human pathways observed following the estimation of missing data, 
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across all eight algorithms. These again resulted in quite diverse outcomes of ‘active’ pathways 

with only 20.0%, 14.4% and 0.0% (for CCLn, CCLp and HL datasets, respectively) of pathways 

observed across all of the missing data algorithms (Table 2.2, Appendix A Tables A4-A5); note 

that this approach was not applied to the non-human DM dataset. The highest number of ‘active’ 

pathways was detected for the S, HM and KNN methods, while the lowest for M, MED and 

BPCA. Prior biochemical knowledge can also aid the interpretation of these findings. For 

example, for the HL dataset, arginine and proline metabolism and taurine and hypotaurine 

metabolism are known to play a substantial role in liver transplantation (Silva, Mirza et al. 2006, 

Kincius, Liang et al. 2007). Both these pathways were discovered to be ‘active’ following 

treatment of missing values by the S, HM, KNN and REP methods, while BPCA treatment did not 

lead to either being classed as active. Overall, the results presented here provide substantial 

evidence that the choice of missing value estimation method has a substantial effect on the 

outcome and interpretation of univariate statistical analysis. 

Table 2.2 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on the 

significantly changing peaks between cold phase and post reperfusion groups) in the human liver (HL) dataset, after 

estimating the missing values with eight different algorithms. 
KEGG pathway S HM M MED KNN BPCA MI REP 

Purine metabolism X* X X - X X X X 

ABC transporters X X X X X - X X 

Neuroactive ligand-receptor interaction, Taurine and hypotaurine 
metabolism 

X X - X X - X X 

Pyrimidine metabolism, Arginine and proline metabolism X X X - X - - X 

Nicotinate and nicotinamide metabolism, Tyrosine metabolism, Drug 
metabolism - cytochrome P45 

X X - - X - X X 

Glycine, serine and threonine metabolism, Aminoacyl-tRNA 
biosynthesis, Cysteine and methionine metabolism, Alanine, aspartate 
and glutamate metabolism 

X X - - - X - X 

Galactose metabolism X X - - X - - X 

Lysine degradation, Histidine metabolism, beta-Alanine metabolism, 
Phenylalanine metabolism, Tryptophan metabolism 

X X - - - - - X 

Ether lipid metabolism, Calcium signalling pathway, Fc gamma R-
mediated phagocytosis 

X X - - - - - - 

Cyanoamino acid metabolism, Glutathione metabolism, Thiamine 
metabolism,  Nitrogen metabolism 

X - - - - - - - 

Taste transduction - - - - - - - X 

* X indicates that a pathway is ‘active’ for this particular method. 
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2.3.3 Impact of missing data imputation on multivariate data analysis 

Similar to the results from the univariate analyses, the eight missing data estimation 

techniques also led to diverse outputs from the multivariate data analysis. Specifically, this was 

assessed from the clustering (or not) of samples from different biological groups on PCA scores 

plots (Figure 2.4 and Appendix A Figures A5-A7). The differences between the eight estimation 

techniques were most evident for the most biologically homogeneous dataset, the cell line 

extracts. For example, for CCLn there were clear differences between the control, indomethacin 

treated and medroxyprogesterone acetate treated groups after estimating the missing entries with 

S, HM, KNN and MI, a separation between the control and two drug treated groups (but no 

separation between drug treatments) after M, MED and REP, and no separation between any of 

the groups after BPCA. The differential effects of the eight estimation methods on the PCA 

results were further demonstrated by the large spread of the variances captured by the first two 

principal components: the relative standard deviations of the variances were 36.10% and 16.58% 

for PC1 and PC2 respectively for CCLn, 57.46% and 29.53% for CCLp, 56.52% and 15.13% for 

DM, and 38.64% and 11.72% for the HL dataset (Appendix A Table A6). 

Comparison of the top 5% of peaks contributing towards the separation along PC1 and along 

PC2 showed, as for the univariate analyses, that some estimation methods performed quite 

similarly (Appendix A Figures A8-A9 and Tables A7-A8). For example, the largest overlap in 

significant peaks for the univariate data analysis was between S and HM (97.51%, 97.61%, 

99.83% and 97.28% overlap for CCLn, CCLp, DM and HL, respectively) followed by a slightly 

smaller overlap between M and MED (95.33%, 92.86%, 95.38% and 68.29%), while for the top 

5% of peaks from the PCAs the similarities (expressed as ODist; see Chapter 4, comparing 

ordered sets) were largest between M and MED (97.08%, 84.82%, 96.19% and 86.67% for PC1, 
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and 94.46%, 88.39%, 92.38% and 75.56% for PC2) and followed by S and HM (76.68%, 

70.09%, 82.38% and 61.11% for PC1 and 77.84%, 64.29%, 80.00% and 71.11% for PC2). For 

the PCA results, the smallest overlap was between the S and BPCA methods, whereas for the 

univariate data analysis the smallest overlap was between S and M or MED. An important 

observation from these findings is that the differences in the statistical results between the eight 

estimation methods were larger for the PCA than for the univariate analyses, indicating that the 

multivariate data analysis may be more sensitive to the missing data estimation technique used.  

This observation of the higher sensitivity of multivariate analysis to missing data estimation 

was additionally verified by further examination of the top 5% of peaks contributing towards the 

separation of biological groups along the principal components (from each PCA). In general, 

these subsets of m/z values contained a larger proportion of peaks that initially contained missing 

data as well as a larger proportion of missing entries than their univariate equivalents (except for 

the BPCA method applied to the CCLn, DM and HL datasets). For the S and HM methods, 

virtually all the peaks in this top 5% subset contained at least one missing value prior to their 

estimation (Appendix A Table A6, Figures A10-A11, Tables A9-A10). Furthermore, the 

considerable differences in the results of the PCAs between the eight estimation methods were 

further illustrated by substantial heterogeneity in the observed ‘active’ human pathways. 

Specifically, there were no common pathways following application of the eight tested estimation 

methods for CCLn (for the top 5% of peaks contributing to PC1 and to PC2), CCLp (for top 5% of 

peaks contributing to PC2) and HL (for top 5% of peaks contributing to PC1). Virtually none of 

the remaining dataset and principal component combinations exhibited overlap across all eight 

estimation methods, except for 2.11% and 3.85% of ‘active’ pathways for CCLp (PC1) and HL 

(PC2), respectively (Appendix A Tables A11-A15). Overall, these analyses provide definitive 
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evidence that the choice of missing value estimation method has a substantial effect on the results 

of the multivariate statistical analysis used here.  

2.3.4 Performance of missing data estimation algorithms 

Assessing the effects of missing data estimation methods on the ‘complete’ datasets, which 

had missing values deliberately introduced either at random (MCAR, missing completely at 

random; mentioned here as a comparative benchmark only and with results reported in the 

Appendix A) or in a way that mimics the missing data distribution and properties of actual FT-

ICR MS metabolomics datasets (MNAR, missing not at random), revealed further interesting 

findings. Before examining these results, it is worth noting that the ‘complete’ datasets may not 

be a perfect representation of the ‘original’ datasets in terms of the metabolites’ intensities as a 

larger proportion of the peaks that were removed to create the ‘complete’ datasets were of 

relatively low intensity (i.e. the actual missing data did not occur at random, but occurred in part 

as a function of peak intensity). However, once missing data were intentionally introduced to the 

‘complete’ datasets to mimic their distribution in the ‘original’ data, the ‘complete’ datasets 

regain similar properties to the ‘original’ datasets; in fact this represents the best possible 

approach to assess the performance of missing values estimation algorithms even when missing 

data are a function of intensity (Scheel, Aldrin et al. 2005, Albrecht, Kniemeyer et al. 2010) since 

the estimation methods are compared internally within the ‘complete’ matrix. Here, an obvious 

bias could occur for method S, with a small predefined value (0.01), while the seven other 

methods should capture the relationship of the ‘original’ data. This limitation should, however, be 

kept in mind and this component of the comparison of imputation algorithms should be combined 
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with the findings from the missing data distributions and their influence on the data analysis (see 

above) to select the optimal missing data estimation method.  

 

 

Figure 2.4 Comparison of eight different missing value estimation methods based upon their effects on the PCA 

scores plots for the CCLn dataset. Samples labelled as: control cancer cells (diamonds), indomethacin treated 

(squares) and medroxyprogesterone acetate treated (triangles). 

The performances of the eight methods were evaluated in terms of normalised root mean 

square errors (NRMSE), where the best approach results in the smallest NRMSE between the 

known, deliberately deleted, ‘missing’ data and the values that were subsequently estimated for 

them (averaged across N=100 runs). Five of the eight estimation methods yielded similarly small 

average NRMSE values, specifically methods MI, BPCA, KNN, MED and M, while methods 

REP, S and HM performed poorly (Figure 2.5; Appendix A Figure A12, Table A16). This trend 

was observed both when the missing data was introduced completely at random (MCAR) as well 

as for the more realistic case of introduced values not at random (MNAR). For the case of 
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MCAR, is it expected that M and MED yield good results since being a least squares estimator 

method they give the best approximation when no information on the missing data is available 

(when averaged over many runs). This hints at the challenge of deriving robust conclusions as to 

which imputation method is optimal for a given nature and distribution of missing values, 

discussed below. 

Next the eight algorithms were assessed in terms of their impact on univariate data analysis, 

evaluated using the area under the receiver-operating characteristics (ROC) curve. Specifically, 

for each run (repeated 100 times), data were deliberately removed from the complete dataset 

(MCAR and MNAR) and then these ‘missing values’ were estimated via each of the eight 

methods, and significantly changed peaks at various statistical significance levels were identified 

and compared with the ones identified for the original complete datasets (with no missing values) 

using an ROC curve. The area under the ROC curve (AUC) was averaged across 100 runs, with 

the best method (i.e. closest to the complete dataset) having the highest AUC value (up to 1). The 

highest performance methods were similar to the best estimation algorithms from the NRMSE 

assessment, i.e. the largest AUC was observed for the M, MED and KNN methods, and the 

smallest for REP, S and HM methods (Figure 2.5;  Appendix A Figure A12 and Table A17) with 

no differences being detected between introducing missing data as MCAR or MNAR.  

To provide a framework for the interpretation of the multivariate data analysis, we first 

conducted a PCA on each of the four ‘complete’ datasets, and then tested the significance of any 

group separation by calculating p values (t test or ANOVA) for the PC scores along both PC1 and 

PC2 (Appendix A Figure A13). Similar to the ROC assessment, for missing data introduced more 

realistically as MNAR, M, MED and KNN outperformed the five other estimation methods by 
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revealing the known significant separation between the biological groups in PCA scores plots. 

Specifically a significant separation along PC1 for the DM and HL datasets was revealed after  

 

Figure 2.5 Analyses of four DI FT-ICR MS datasets after first introducing and then estimating missing data in the 

‘complete’ datasets as MNAR (average of 100 runs). Boxplots of NRMSE values for the a) CCLn, b) CCLp, c) DM 

and d) HL datasets; boxplots of area under ROC curves (AUC) for e) CCLn, f) CCLp, g) DM and h) HL datasets; and 

distribution of p values (ANOVA or t test on PC scores) for i) CCLn (PC2 axis), j) CCLp (PC2 axis), k) DM (PC1 

axis) and l) HL (PC1 axis) datasets, where the vertical lines indicate the p values for the complete datasets and 

therefore represent the ideal result following missing value estimation. 

imputing missing entries with the majority of the eight methods (except for method S for the DM 

dataset, and S and REP for the HL dataset), but there were few false positive errors along PC2 

after M and MED imputation (DM dataset) and BPCA and MI imputation (HL dataset). 

Comparison to the MCAR shows that multivariate data analysis is more prone to errors and 

miscalculations than for the univariate data analysis. This is further supported by the similarities 

of the top 5% of peaks contributing to the separation of biological groups (along PC1 or PC2), for 

which the similarity values are quite different between MCAR and MNAR (Appendix A Figures 
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A14-A15, Table A20). Overall this supports our earlier findings that multivariate data analysis is 

more sensitive than univariate analysis to the occurrence of missing values. Furthermore we have 

shown that the M, MED and KNN estimation methods appear to outperform the others, although 

see the discussion below.  

2.4 Missing data estimation: is there an optimal method? 

Based upon the studies to date on missing data, described here and conducted in other ‘omics' 

fields, there are currently no grounds to prescribe any one estimation method for dealing with 

missing entries in metabolomic datasets. However, based upon our findings, it is clearly of 

considerable importance to address the question of what is the optimal treatment of missing data. 

For example, simply deleting the variables that contain missing data or, as we have shown, 

estimating those values with an arbitrarily selected method will likely introduce a large bias to the 

dataset and significantly affect further data analysis and interpretation. The first step in selecting 

an appropriate estimation method should be focused on characterising the nature of the missing 

values within the given dataset. Typically a metabolomics study will have measured thousands of 

peaks and, as presented here, one should try to infer the relationships between the missing data 

and the non-missing data. In addition, one should try to establish whether missing data occur as a 

result of metabolite abundances being below the detection limit of the analytical platform 

(thought to be the primary case for our FT-ICR MS datasets) or instead if they represent non-

detects (i.e. metabolites not measured due to a failure of the analytical platform). With this 

information, as well as with the assessment of whether and to what extent missing data influence 

a particular data analysis method, an appropriate missing data estimation technique can be 

chosen, as discussed below; this three-stage approach is outlined in Figure 2.2.  
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In the case of the three DI FT-ICR MS based metabolomic datasets investigated here our 

initial findings suggest that the preferred methods of estimating missing values are KNN, M and 

MED. These three methods achieved a good balance between enabling the statistical analyses to 

reveal the expected metabolic differences between biological groups (Figure 2.4 and Appendix A 

Figures A5-A7) and yet did not identify too many potentially false positive biomarkers, i.e. the 

significantly changing peaks (univariate; Appendix A Table A1) or those peaks contributing 

towards separation in PCA space (multivariate; Appendix A Table A6) generally did not contain 

the highest number of missing data when compared to other estimation methods. The KNN, M 

and MED also performed the best when assessed using the ‘complete’ datasets with deliberately 

introduced missing values that were MNAR. These three methods yielded low NRMSE values, 

high AUC values associated with the univariate analyses, and impressively low p values 

associated with the separation of samples in multivariate space (Figure 2.5).  

We then sought to further compare these three methods, M, MED and KNN, to find the 

optimal approach. Although KNN was slightly outperformed by M and MED for the NRMSE and 

univariate analysis (using the ‘complete’ datasets with deliberately introduced missing values as 

MNAR) we hypothesised that the M and MED methods may introduce a larger bias into the 

datasets due to the way that they estimate missing values; i.e. it is likely that by calculating the 

mean or median of the non-missing measured values, estimated peak abundances would take on 

large values, possibly with the majority of peaks being estimated above the SNR threshold. We 

therefore evaluated the original datasets (from part B of Figure 1) and confirmed that this is 

indeed the case. Specifically, for both the M and MED methods, almost all peaks (ca. 71-95%) 

were predicted to have intensities above the threshold (for the CCLn, CCLp, DM and HL 

datasets), as opposed to KNN for which there was an almost equal split of estimated intensities 
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below and above the SNR threshold (ca. 38-66% of peaks above the threshold; Appendix A 

Table A21). Considering the proven relationship in our FT-ICR MS datasets between peak 

abundances and the number of missing values, it is logical to expect that many, if not the 

majority, of missing values should lie on or below the SNR threshold. Therefore, based upon our 

analyses, we conclude that the KNN method imputes the most realistic values in these datasets 

and therefore is the preferred method over M and MED. This conclusion is strongly backed by 

existing literature which states that imputing mean values is not a good approach (Little and 

Rubin 2002, Buuren and Groothuis-Oudshoorn 2010). Furthermore, both the M and MED 

methods are disadvantaged by the fact that they can cause an artificial reduction of variance. 

Overall, we therefore consider KNN to be the optimal missing value imputation method for the 

datasets examined here. 

Generalising our findings and drawing upon previously published relevant literature, we 

recommend some pragmatic guidelines for the applied metabolomics researcher to decide upon 

which missing data estimation algorithms to use: a) assess whether there is a need to impute 

missing data (especially if univariate analysis are to be conducted) as any imputation method will 

potentially bias the data analysis; b) avoid replacing missing data with small arbitrarily chosen 

numbers (as in S, HM and REP methods) since this greatly affects the data analysis; only consider 

these methods when the number of missing data is low and the majority of missing entries are 

known to result from measurements below the limit of detection; c) if the origin of the missing 

data is largely unknown or the majority of missing entries are non-detects rather than 

measurements below the limit of detection, select an estimation algorithm that is based on 

searching for local or global similarities such as KNN (that has been shown to be optimal in this 

study); d) consider MED or M imputation only when the missing data represent true non-detects 
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as opposed to measurements below the limit of detection; and e) ideally evaluate the chosen 

method against alternative algorithms to avoid obviously biased missing data imputation. This 

last point need not be limited to the eight imputation approaches presented here, but could 

possibly include other Multiple Imputation methods or the Expectation-Maximisation algorithm 

as used in other fields (Schafer 1999, Little and Rubin 2002). Finally, the development of novel 

imputation methods remains an active field, for example the LinCmb (Jörnsten, Wang et al. 

2005) algorithm for microarray expression profiles that adapts to the structure of the data by 

changing emphasis on the local and global imputation methods, and hence the metabolomics 

researcher should be aware of on-going progress in this field to help guide their selection in the 

future.   

2.5 Concluding remarks  

We have shown that missing values play an important role in DI FT-ICR MS based 

metabolomics data, and that their estimation is very strongly reflected in the final data analysis 

outcome, for both univariate and multivariate approaches. Therefore, we conclude that the 

optimal treatment of missing data is a crucial step in the data processing pipeline to which special 

attention should be paid. Even though this study is based on three DI FT-ICR MS based 

metabolomic datasets, our analyses and findings are more generally applicable and of interest to 

all metabolomics studies. We propose a three step process in order to determine an optimal 

method for missing value estimation for a given dataset and analytical platform (summarised in 

Figure 2.2), that includes: assessing the nature of the missing data, analysing the impact of 

missing data treatments on the final data analysis outcome, and analysing the performance of 

missing data algorithms on the ‘complete’ datasets if available. Using this three step approach, 
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we conclude that the optimal missing data estimation technique for DI FT-ICR MS based 

metabolomics is the KNN method. 
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CHAPTER 3 

 Missing Data – Survival Analysis Approach
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3.1 Introduction 

 Chapter 2 discussed the problems of missing data in the DI FT-ICR MS based metabolomics 

datasets. Various categories of handling missing data (deletion methods, imputation methods, 

model-based as well as machine learning procedures) were outlined, with the imputation methods 

being identified as the practical, convenient and potentially robust approaches in the 

metabolomics data processing pipeline. However, none of the examined in Chapter 4 methods or 

other known to the author missing data handling approaches was developed to specifically fit the 

purposes of the DI FT-ICR MS datasets. It appears that not the entire information is being used to 

infer the properties of the missing data, in particular the knowledge about the noisy peaks seems 

to be disregarded. Similar to two-colour cDNA microarray data where the analysis involves 

subtracting background values from foreground (Schützenmeister and Piepho 2010), in DI FT-

ICR MS based metabolomics one has an indication of the peaks that fall below the applied 

signal-to-noise threshold or below the limits of detection of the mass analyzer (noise filtering 

methods described in Chapter 1) as well as the amount of missing data and the intensity of the 

non-missing data relationship found and discussed in Chapter 2. Treating missing data without 

taking into account this information seems like a potential disadvantage and therefore methods of 

the statistical analysis of the censored data are considered. For these data, it is known that the 

value of the missing data is beyond/below certain value or in a given range (depending on the 

censoring data, e.g. patients survived beyond 100 days following surgery or water zinc 

concentration fall below the limit of detection of a given measurement technology) and 

appropriate statistical analysis branch (survival analysis) has been developed to take into account 

such properties to provide unbiased estimates of parameters and statistics. Here, an attempt is 

being made to bring the methods of survival analysis for the right censored data to the data 
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analysis (univariate) of the DI FT-ICR MS based metabolomics datasets, as an alternative way to 

handling missing data that draws upon the available knowledge of the spectra noise. 

3.2 Introduction to survival analysis 

Survival analysis is a statistical approach designed to analyse the data in the form of times 

from a well defined time origin until the occurrence of some particular event or time point 

(Collett 2003). Originally, the approach was invented to study mortality tables from centuries ago 

with death being the event of focus (interest), hence the term ‘survival analysis’. Today, the main 

use of survival analysis remains in, but is not limited to, the medical and allied areas of research. 

Other applications include to economics, engineering or geography, with survival time being a 

generic term and possibly referring to time until stockmarket crashes, time until equipment 

failure or time until an earthquake and so on  (Machin, Cheung et al. 2006).   

Given an example of a study for 10 patients undergoing a surgery for malignant melanoma, 

one expects that patients are not all recruited at exactly the same time, but accrue over a period of 

months or even years (Figure 3.1). After recruitment, patients are followed until they die (event 

of interest), or until a point in the calendar that marks the end of the study when the data analysis 

takes place (Collett 2003). If the event (death) occurred in all patients prior the end of the study, 

the true times to event would be known and therefore, several methods of statistical analysis 

would be applicable to analyse the data, e.g. to compare the mean survival times between men 

and women. However, the opposite is usual true, i.e. at the end of the study time the event of 

interest was not observed for some of the patients, with some of them simply dropping out of the 

trial, dying from other causes (here patients #1, #3 and #6, Figure 3.1), or still alive at the end of 

the study (here patients #9 and #10) (Clark, Bradburn et al. 2003).  
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Survival analysis data are not amendable to standard statistical procedures used in data 

analysis due to two main reasons. Firstly, there are usually not normally distributed, but are rather 

positively skewed due to ‘many early events and relatively few late ones’ (Clark, Bradburn et al. 

2003). Secondly, the survival times are frequently censored as the true (exact) time to event is not 

known. Each patient entering a study at time t0 dies at time t0+t, with t being the time to event 

that ideally would be known. For the censored data (here patients #1, #3, #6, #9 and #10) the t is 

not available, but the censored survival time is, i.e. the time for which the individual was last 

known to be alive at time t0+c, with c denoting maximum observed survival time. For the 

malignant melanoma example, one can speak of right censored data since the censoring occurs 

after the patient has entered into a study, that is, to the right of the last known (observed) survival  

 
Figure 3.1 Study time (survival time) for ten patients following a surgery for malignant melanoma. The vertical line 

to the left denotes the end of the recruitment period and the vertical line to the right denotes the end of study. For 

some of the patients (#1, #3, #6, #9 and #10) the exact survival times (true time to event) are not known, since the 

patients are lost from the follow-up or have died from a cause other than malignant melanoma (#1, #3 and #6) or are 

still alive at the end of the study (#9 and #10). Circle markers indicate right censored data, for which the true time to 

event (i.e. death) is not known.  
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time with the right-censored time being smaller than the true, not known, survival time (Collett 

2003, Dupont 2009). Other types of censoring are also possible, including left and interval 

censoring. Considering a study ‘investigating the time to recurrence of a cancer following 

surgical removal of the primary tumour’, the left censoring data could arise in the case for those 

patients being examined at 3 months and already having a recurrence of cancer (i.e. the event has 

occurred, but the starting point is not known, here being anytime within the 3 months period). 

Having a second check-up point, e.g. at 6 months, can yield interval censoring data, for those 

patients that have had recurrence of cancer during the first and second examination period (Clark, 

Bradburn et al. 2003). Most survival times are, however, right censored and the majority of 

statistical methods were developed to take these into account.  

3.1.1 Survival function and Kaplan-Meier survival estimate 

 The survival function plays, next to a related hazard function, an important role in 

summarizing and modelling survival data. The survival probability (survival function) S(t) is the 

probability that an individual survives from a given time (e.g. surgery for malignant melanoma) 

to a specified time in the future (Clark, Bradburn et al. 2003). The actual survival time of an 

individual, t, can be regarded as the value of a variable T, which can take any non-negative value 

with different values having a probability distribution and T being a random variable associated 

with the survival time. Given that random variable T has a probability distribution with 

underlying probability density function f(t), the distribution function of T is as in equation Eq. 3.1 

and represents the probability that the survival time is less than some value t.  

                    
 

 

 Eq. 3.1 
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The survival function, S(t), can now be defined as a probability that the survival time is greater 

than or equal to t as in Eq. 3.2 

                    Eq. 3.2 

and used to represent the probability that the individual survives from a given time of interest to a 

time beyond t. 

Estimating the survival function is ‘an initial step in the analysis of survival data’ (Clark, 

Bradburn et al. 2003), allowing one to present numerical and graphical summaries of the survival 

times for individuals in different groups (e.g. the difference between survival times between men 

and women following surgery for malignant melanoma) (Collett 2003). The Kaplan-Meier (K-M, 

or product-limit) method allows one to obtain this estimation nonparametrically from the 

observed censored and uncensored survival times (Kaplan and Meier 1958). Assuming that for 

the k out of n patients that have entered into the study the events occur independently during the 

study time at distinct times, such as in Eq. 3.3 

                       Eq. 3.3 

The probabilities of surviving from one interval to another may be multiplied together to yield a 

cumulative survival probability, more precisely the ‘probability S(tj) of being alive at time tj is 

calculated from S(tj-1) the probability of being alive at tj-1’ (Clark, Bradburn et al. 2003) as in Eq. 

3.4 

 

                 
  

  
  Eq. 3.4 

where nj denotes ‘the number of patients alive just before tj and dj [denotes] the number of events 

at tj’ (Clark, Bradburn et al. 2003). K-M estimator ‘allows each patient to contribute information 
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to the calculations’ as long as no event is observed for them, and simply reduces to the ratio of 

the number of individuals events free (for which the event has not yet happened) at time t divided 

by the number of people in the study when there is no censored data present (Clark, Bradburn et 

al. 2003). Graphically, the K-M estimate of the survival curve is plotted as a step function, 

starting from 1 (100% of patients alive at t0), dropping instantaneously at each time of death 

(event) to a new level, progressively declining towards 0 as in Figure 3.2 (Machin, Cheung et al. 

2006).  

 
Figure 3.2 Example of the estimated survival function (vertical bars indicate censored data) with confidence 

intervals for the survival times of women (in black) and men (in blue) following surgery for malignant melanoma 

3.1.2 Comparison of survival curves 

 The estimated survival functions, which allow us to obtain numerical and graphical summaries 

of the censored data, can be informally used when comparing two groups of patients (e.g. 

survival times of men and women following the surgery for malignant melanoma). More formal 

procedures do however exist, e.g. the log-rank test which is the most widely used and robust 
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method of comparing two or more survival curves (Peto, Pike et al. 1977, Clark, Bradburn et al. 

2003).  

 Considering two groups, Group I and Group II having survival functions of S1(t) and S2(t) 

respectively, a log-rank test tests the null hypothesis (Eq. 3.5) of equal survivorship for all r 

distinct death times such as t(1)<t(2)<….<t(r).  

                          Eq. 3.5 

Letting n1j and n2j denote the number of patients at risk of death in the Group I and Group II 

respectively at the time t(j), there are d j= d1j + d2j deaths in total out of all nj = n1j + n2j patients at 

risk. The observed death rate at the time t(j) is then dj/nj and if the null hypothesis is true, the 

expected number of deaths among patients in Group I given that dj deaths occurred in both 

groups is as in  Eq. 3.6 

                       Eq. 3.6 

The greater the difference between d1j and E[d1j | dj], the greater the evidence that the null 

hypothesis can be rejected (Dupont 2009). To assess the extent of this difference, a 2 x 2 table 

can be constructed for each r distinct death time of the number of patients who die or survive in 

the two groups (Table 3.1) (Collett 2003) and the overall measure of the deviation of the 

observed values of d1j from their expected values can be then calculated as a sum of the 

differences d1j-e1j over the total number of death times r for the two groups, where dij denotes 

number of deaths in Group I and e1j number of expected deaths in Group I given that dj deaths 

occurred in both groups.  
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Table 3.1 Number of deaths (events) at the j
th

 distinct death time in each of two groups of patients 

 Number of deaths at t(j) Number surviving beyond t(j) Number at risk just before t(j) 

Group I d1j n1j-d1j n1j 

Group II d2j n2j-d2j n2j 

Total dj nj-dj nj 

The resulting statistic is given by Eq. 3.7 with the corresponding variance shown in Eq. 3.8 

              

 

   

 Eq. 3.7 

 

 
               

 

   

 Eq. 3.8 

where  

     
               

  
       

 Eq. 3.9 

 

   

And finally we can write Eq. 3.10 

 
  
 

  
   

  Eq. 3.10 

with a log-rank test statistic having a chi-squared distribution with one degree of freedom. 

Analogously, log-rank test can be extended to enable three or more groups of survival data to be 

compared (Collett 2003) with U-statistics shown in Eq. 3.11 and for comparing the observed 

number of deaths in groups 1,2,..., g-1 with their expected values   

           
     

  
 

 

   

 Eq. 3.11 

for k=1,2,…,g-1. 
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3.3 Survival analysis and the univariate analysis of FT-ICR MS based metabolomics 

spectra 

 As discussed in previous chapters, an important step in the data processing of the metabolomics 

data obtained via DI FT-ICR mass spectrometry is the treatment of missing data. In this chapter I 

address whether a survival analysis approach, i.e. treating the missing peak abundance data as left 

censored (being below the limit of detection of the MS analyser and/or below the applied signal-

to-noise threshold) may offer an alternative strategy for finding statistically changed between 

biological groups metabolic traits via univariate testing (log-rank test) and without the need of 

using any of the missing data estimation algorithms. This approach could be of relevance since it 

was shown in Chapter 2 that even though the missing data may occur for technical and biological 

reasons, there was a strong association between the amount of missing data and the signal 

intensity, i.e. strongly suggesting that the majority of missing data are in fact left censored, being 

below the applied known signal-to-noise threshold. Furthermore, this approach is of interest as it 

incorporates information about the signal-to-noise threshold and/or the detection limits of the MS 

analyser, as oppose to treating the missing metabolites as entries with no information available.   

 Survival analysis methods, described earlier for right censored data and including the K-M 

estimator of survival function and the log-rank test for comparing the survivorships between 

groups can easily be applicable to left censored data. Suppose that n peaks (metabolic traits) 

within a given sample (e.g. blood or tissue) are analysed using DI FT-ICR mass spectrometry as 

described in Chapter 1, then a single observation (peak indicative of metabolite) can be written as  

               Eq. 3.12 

With X0 denoting the true peak height (indicative of metabolite concentration) and dc the limit of 

detection (LOD) of the mass analyzer (or here identified noise threshold), then the mass spectrum 

containing n peaks can be represented as n pairs of random variables as in Eq. 3.13 
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                                 Eq. 3.13 

where Xn denotes observed peak height (either true observed value or the one set at LOD and  

     
                              
                              

            Eq. 3.14 

A given peak’s abundance (intensity) can be further thought of as being randomly selected from 

an unknown distribution F(x) as in 

                                        Eq. 3.15 

where Y=A-x, y=A-x, and A is a large positive number. Let S(y) = P(Y ≥ y), where S(y) is the 

survival function described earlier. Therefore it can be seen from equation Eq. 3.15 that 

F(x) = S(y), meaning that the distribution of the left-censored random variable X is equal to the 

survival function of the right-censored random variable Y as shown in Figure 3. 3 (She 1997). 

Consequently the estimation of the descriptive statistics (e.g. mean, standard deviation) is 

equivalent to the estimate of the descriptive statistics from the right-censored data by a simple 

‘flipping’ transformation as in Eq. 3.16, in which the initial right-censored data are transformed 

to left-censored data by subtraction from an arbitrarily chosen large positive value. Similarly, the 

log-rank test can be employed to compare two or more groups (Helsel 2005). 

 Y = A - X Eq. 3.16 

There have been only a few studies in the environmental sciences that have employed this 

approach. Millard and Deverel studied groundwater chemistry data from two sites in California, 

with the data obtained characterized with multiple detection limits, showing that only the 

methods from the survival analysis were applicable to their data (Millard and Deverel 1988). She 

(She 1997) compared ‘the performance of the Kaplan-Meier estimator with maximum likelihood, 

probability plotting and substitution methods by Monte Carlo simulations to estimate the 
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descriptive statistics for the left censored water quality data’. His results showed that the Kaplan-

Meier estimator performs as well as or better than the other commonly used methods (She 1997). 

 

Figure 3. 3 Diagram showing the relationship between right censored medical data and the left censored DI FT-ICR 

MS based metabolomics data.  In both datasets: truly observed data and the censored data can be identified. In 

medical data unavailable patients’ survival data are assigned the last observed data for a given patient and the 

information that the patient survived beyond it; in DI FT-ICR MS the missing metabolite peak is assigned the noise 

threshold and the information that its true value is below it. The mathematical transformation can be applied showing 

the equivalence of the two types of censoring. 
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Here, the following questions are addressed: i) can survival analysis methods be applicable to 

the univariate analysis of the DI FT-ICR mass spectrometry based metabolomics data that is 

characterized by up to 20% amount of missing data affecting ca. 80% of all variables and ii), if 

so, can these methods improve the univariate analysis in comparison to the missing value 

estimation methods assessed in Chapter 2, in particular the best performing k-nearest neighbour 

imputation method?  

3.4 Materials and methods 

 Applicability and performance of the log-rank test to the univariate analysis of the DI FT-ICR 

mass spectrometry based metabolomics data were tested using the original datasets of Daphnia 

magna (DM) and human liver biopsies (HL) as described in Chapter 2 (Materials and Methods). 

The cancer cell line (CCLp and CCLn) datasets were not analysed in this chapter, as it was shown 

earlier that due to the noise filtering strategy applied (retaining only peaks present in 50% of the 

samples within each biological group at the sample filter stage, based on the additional 

information obtained by a prior analysis of the datasets by a NMR technology) the analyses of 

these datasets with a consequent interpretation of the results in the context of missing data offers 

some additional challenges. Here, a single (more typical) DI FT-ICR MS based metabolomics 

experiment is assumed that cannot draw from any external biological knowledge, thus employing 

a standard, across all samples, sample filter.  

 Similarity, not all the missing data estimation methods described and discussed in Chapter 2 

were used for testing the applicability and the performance of the new survival approach. For 

clarity of interpreting the results, the three methods were chosen based upon the results in 

Chapter 2. These included S, MED and KNN. Substitution with half of the minimum value found 
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in the non-missing data (HM) and substitution with mean of the non-missing values across all the 

samples for a given peak (M) were disregarded as their performance was shown to yield similar 

results to S and MED respectively; Bayesian PCA missing value estimation, multivariate 

imputation by chained equations and a modified version of Sangster’s method (REP) were 

outperformed by other methods, including M and KNN.  

3.4.1 Applicability of the log-rank test to the univariate analysis 

 As justified above, the applicability of the log-rank test to the univariate analysis of the DI FT-

ICR mass spectrometry based metabolomics data was assessed using the ‘original’ datasets of 

DM and HL and in the context of the three (S, MED and KNN) missing data estimation methods. 

As in Chapter 2, missing data were estimated using the three imputation methods and then 

univariate testing (t-test or ANOVA) was employed to determine the metabolic differences 

between sample classes. The log-rank test was applied on a peak-by-peak basis to also test for the 

occurrence of significantly different peaks between the biological groups. For this approach, the 

missing values were assumed to be left-censored, i.e. below the applied signal-to-noise threshold 

(SNR), with the actual threshold values set to 3.5 times the SNR value applied in the first step on 

the noise filtering algorithm. SNR values were derived from the ‘raw’ technical replicate spectra 

(prior to any noise removal) using the SNR definition of 'height of signal peak in magnitude 

spectrum divided by the standard deviation of the white Gaussian noise in a signal free region of 

the real and imaginary components of the complex spectrum' (Payne, Southam et al. 2009). Due 

to the SIM-stitching data acquisition method, a final mass spectrum (e.g. for a single technical 

replicate) was assigned a set of 21 threshold values, with a maximum threshold value for a given 

SIM window carried forward to a single mass spectrum representing a biological sample in the 
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final datasets (formed from the three technical replicates during the replicate filter stage). With 

the threshold values defined, the left-censored data were ‘flipped’ into right-censored data by 

subtracting them from the maximum value of all of the non-missing data found in the given (DM 

or HL) dataset. The log-rank test was then employed and the p values were obtained (corrected 

with Benjamini and Hochberg method for multiple testing (Benjamini and Hochberg 1995)), 

indicative of the metabolic difference between the sample classes.  

 The above resulted in a total of four sets of peaks, one for each of the missing data treatment 

methods (S, MED and KNN estimation) and one for the log-rank test on the estimated with K-M 

survival curves, with corresponding p values indicative of the significance of the metabolic 

differences between the biological groups. These four sets were further reduced to include only 

these peaks that initially contained missing values, resulting in 2317 and 1421 peaks for the DM 

and HL datasets respectively. Assuming a 0.05 significance level for rejecting the null hypothesis 

that there are no metabolic differences, the sets were compared in terms of the percentage of 

peaks indicative of metabolic differences between the biological groups (p value <0.05) and the 

percentage of missing data points in these peaks (with respect to all data points in the reduced 

sets). Further set diagrams (Venn diagrams created by VennDiagram R package) were used to 

show all the possible logical relations between the significantly changed peaks from the four sets 

(Chen and Boutros 2011). The peaks that were identified as significantly different based solely on 

the log-rank test and not by any other missing data estimation method were further investigated 

by comparing to the peaks identified as significantly different following missing data estimation 

with all three remaining methods. Here, mass-to-charge ratio, percentage of missing data initially 

present and the abundance of the non-missing data as well as the biological context were 

examined.  
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3.4.2 Performance of the log-rank test for the univariate analysis  

 To assess the performance of the log-rank test, the ‘complete’ DM and HL datasets were used 

and missing data were deliberately introduced not at random (MNAR, as described in the 

previous chapter). The missing data were then imputed with the three missing data estimation 

methods S, MED and KNN or were assigned a threshold value for the survival analysis approach. 

These threshold values were selected to reflect their characteristics in the ‘original’ datasets and 

derived in a way to retain the similar ratio as in the original datasets between the threshold values 

and the median values of the non-missing data for a given SIM window, separately for each 

sample. Results from applying t-tests to the imputed datasets, using S, MED and KNN, as well as 

of the log-rank test on the left-censored data were compared against the results obtained for the 

‘complete’ datasets, with the whole procedure repeated 100 times. The percentage of added and 

lost peaks was calculated for each method, at the 0.05 significance level of rejecting a null 

hypothesis (as above). The actual errors on the obtained p values were also examined.  

3.5 Results and discussion 

3.5.1 Applicability of the log-rank test for the univariate analysis 

 The survival analysis approach yielded the highest percentage of significantly changed peaks 

across sample classes, resulting in 20.76% and 14.98% for the HL and DM datasets respectively 

(Table 3.2). These percentages were almost 4 times higher than for the KNN and also noticeably 

higher than for S, which yielded the second highest percentage of peaks significantly changed 

between biological groups. This did not however translate into the highest percentage of data 

points that initially were missing with approximately 23% and 14% of the data points for HL and 

DM datasets respectively. The high percentage of significantly changed peaks across sample 
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classes may indicate that the survival analysis approach does not diminish the power of detecting 

potential biomarkers. The comparable to other methods percentage of data points that were 

initially missing may suggest that the identified as significantly changed peaks represent true 

metabolic difference between biological groups.  

Table 3.2 Summary of the significantly changed peaks, between biological groups, for the three datasets treated with missing 
value estimation methods (S, MED, KNN) and for the untreated dataset that was analysed using the log-rank test 

 HL DM 

 S MED KNN K-M S MED KNN K-M 

SP [%] 15.83 0.14 5.21 20.76 11.83 1.73 4.27 14.98 

SDP with MV [%] 22.60 7.14 21.43 23.05 14.16 16.25 14.55 13.92 

SP, percentage of significantly changed peaks with respect to all, initially containing missing data peaks (1421 and 

2317 peaks for HL and DM datasets respectively); SDP with MV, percentage of missing data points in the 

significantly changed peaks with respect to all data points in the significantly changed peaks 

The Venn diagrams of the four sets revealed further two interesting observations, mainly that 

the peaks identified as significantly different via a survival analysis approach can be split into 

two subsets (marked in yellow and green on Figure 3.4): one containing peaks that are also 

identified as significant via other methods (in yellow) and the second one including peaks that are 

significant only for the survival analysis approach (i.e. not indentified by any of the three 

remaining missing data estimation methods, in green) (Figure 3.4). The majority of the peaks in 

the survival analysis set occur within the first subset, with approximately 70% and 75% for the 

HL and DM datasets respectively. In particular there was a large overlap between survival 

analysis peaks and the S and KNN methods for both of the analysed datasets: out of 295 peaks in 

the survival analysis set, 66.7% and 16.9% overlapped with S and KNN respectively for the HL 

dataset. Similarly for the DM dataset: out of 347 peaks 74.90% and 20.17% overlapped with S 

and KNN. The second subset (in green) included 98 and 86 peaks for the HL and DM datasets 

respectively (approx. 30% and 25% with respect to all the peaks in the survival analysis set). The 

similar classification of the peaks identified as significantly different via the three remaining 
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methods would not yield equally high percentage of method specific peaks, with only 4.88%, 

9.46% and 0% peaks specific for S, KNN and MED respectively for HL dataset and 4.37%, 

19.2% and 0% for S, KNN and MED respectively for the DM dataset. 

 

 
Figure 3.4 Venn diagrams for the a) HL and b) DM datasets, showing the overlap between significantly changed 

peaks following the missing data estimation with S, MED and KNN and the application of the log-rank test 

The above analysis based on the logical relations between the four sets shows that while the 

survival analysis approach is comparable to the commonly used missing data estimation methods 

(majority of the peaks identified as significantly different via this method can be also identified 

via some or all of the remaining methods) and identifies additional significant peaks, informing 

biomarker discovery. To further understand the latter, those peaks identified solely by survival 

analysis were investigated by comparing against the peaks that were identified as significantly 

different following missing data estimation with all three remaining methods (49 and 29 peaks 

for the HL and DM dataset respectively, excluding MED subset for the HL dataset as it contained 

only two peaks). The identified peaks that are common to the various missing data estimation 

methods may be regarded as being less sensitive to missing data imputation approaches, having a 

higher probability of representing true differences in metabolic traits across samples classes and 
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therefore providing a good reference group of peaks for the validation of new methods (i.e. here, 

the survival analysis approach); hereafter referred to as “reference peaks”. 

Analyses of the m/z ratios and intensities of the non-missing data have confirmed that those 

peaks specific to the survival analysis do not differ in their properties from the reference peaks. 

The distributions of the mass-to-charge ratios were similar to the corresponding distributions for 

the reference peaks and the distributions of the number of data initially missing (per peak across 

all the sample classes) resembled even closer uniform distribution than the one for the reference 

peaks (Figure 3.5). The former may be interpreted as the specific to the survival analysis 

approach peaks are not affected (or caused) by the association found and discussed earlier 

between m/z ratio and the amount of missing data (Chapter 2, Occurrence and distribution 

patterns of missing data). The latter shows (but should be interpreted with caution due to a 

relatively small group size) that these peaks are not dominated by the ‘extreme’ cases of the 

missing data (cases of missing data prevailing in one of the biological groups), but rather they 

comprise of peaks that initially had missing data spread across the biological groups (data not 

shown). The interquartile range of the non-missing data was 156 578 and 124 922 for the specific 

to survival analysis approach peaks and the reference groups respectively for the HL datasets, and 

similar 21 487 and 24 256 for the DM datasets. These comparable interquartile ranges may 

indicate that the specific to the survival analysis peaks are also not affected by the second pattern 

found and discussed in Chapter 2, that is the more missing data present with lower the peaks 

intensities.  
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Figure 3.5 Distribution of m/z values and the number of missing data for the significantly changed peaks following 

the log-rank test and the estimation of the missing data with S, MED and KNN for HL dataset. Distribution of m/z 

values a) for the 98 peaks specific to log-rank test, b) for the 49 peaks common to the S, MED, KNN and log-rank 

test. Distribution of peaks having 1 to 7 missing data prior imputation for c) 98 peaks specific to log-rank test and d) 

49 peaks common to the S, MED, KNN and log-rank test.  

Further encouraging results were obtained when assessing specific to survival analysis peaks 

following assignment of putative metabolites names based upon accurate mass measurements and 

the KEGG database for the HL datasets. Out of 98 peaks, 32 were assigned a metabolite name(s) 

and interpreted within a given biological context of human orthotopic liver transplantation 

(OLT). This analysis revealed that several metabolites that are expected to change throughout 

OLT were in fact detected as changing significantly by the survival analysis approach. It is 

believed (as discussed in Chapter 5) that following reperfusion, liver grafts re-start their 

metabolic activity that can be observed as an increased urea production (including raised levels of 

urea cycle intermediates), an increased production of bile acids and the removal of the 
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compounds found in the preservation solution. The specific to survival analysis approach, in fact 

included, among others amino acids of alanine, proline and L-citrulline, all increased post 

reperfusion. The latter is particularly interesting since citrulline is synthesised from ornithine and 

carbamoyl phosphate in one of the central reactions in the urea cycle (Berg, Tymoczko et al. 

2006). Further putative metabolite names included mannitol (part of the preservation solution; 

decreased post reperfusion) and glycodeoxycholate (a secondary bile acid; increased post 

reperfusion), all in agreement with the expected biochemical changes. Methionine sulfoxide was 

another relevant metabolite identified since it is ‘an oxidation product of methionine with reactive 

oxygen species via 2-electron-dependent mechanism’, produced typically by the activated 

neutrophils and thus reflecting the oxidative stress (Mashima, Nakanishi-Ueda et al. 2003), that 

occurs in liver grafts during the reperfusion injury (Chapter 5).  

Table 3.3 Selected putative metabolite names assigned to the specific to the survival analysis peaks 

Metabolite name Adduct Fold change 

   
Alanine H 1.34 

Proline H 3.86 

L-Citrulline H 2.67 

   
Mannitol 2K-H 0.53 

Glycodeoxycholate K39 9.44 

Methionine sulfoxide H 2.58 

   
Succinate K,H 0.65 

sn-Glycerol 3-phosphate H 0.71 

Adenosine 5-diphosphate 2Na-H 10.32 

   
L-Aspartate K,H 1.91 

N-Methyl-L-glutamate Na 2.45 

Uridine monophosphate 2Na-H 2.63 

   
 

3.5.2 Performance of the log-rank test for the univariate analysis  

 Consistent with the results above, the survival analysis approach also identified a large 

proportion of peaks as changing significantly in the ‘complete’ datasets, following introduction of 

missing data as MNAR. The averaged percentage (across 100 runs) of significant peaks relative 
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to all peaks were 19.0%, 13.8%, 13.2%, and 17.4% for S, MED, KNN and log-rank test 

respectively for the HL dataset and 25.75%, 18.15%, 19.95% and 29.9% for the DM dataset 

(Figure 3.6). This have yielded a low percentage of peaks lost following the survival analysis 

approach and the missing data estimation with S¸ with averaged across 100 runs values of 22.9%, 

32.1%, 27.6% and 21.2% for the S, MED, KNN and log-rank test respectively for the HL dataset 

and 31.1%, 41.5%, 36.5% and 30.4% for the DM dataset. The average error of the added and lost 

peaks across the runs has indicated that the survival analysis approach yields a comparable error 

to the KNN algorithm with the overall average of 20.95%, 22.95%, 20.4% and 19.3% for the S, 

MED, KNN and log-rank test respectively for the HL dataset and the 26.9%, 29.8%, 26.0% and 

25.18% for DM dataset.  

 Taking into account that the significance level does not always have to be chosen as 5%, the 

actual errors on the estimated p values (comparing p values from the complete dataset and the p 

values from each of the four methods) were also assessed. For each run, these were calculated as 

a percentage error on each peak for each of the methods of handling missing data (three missing 

data estimation algorithms and survival analysis approach). Pooled across 100 runs, the 

distributions of these errors were quite comparable between the four methods (Figure 3.7), both 

for all of the peaks and the peaks that in the ‘complete’ datasets were significantly different at the 

5% significance level. With these errors split into groups based on the number of missing data 

initially present across samples for a given peak, it was revealed that the errors of p value 

estimations did not increase linearly with the increasing number of missing data across samples 

(Figure 3.8) for the survival analysis approach as it did for the missing data estimation method S. 
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Figure 3.6 Comparison of peaks identified as significantly changed for the HL dataset following missing data 

estimation with S, MED and KNN and the survival analysis approach. Percentage of a) peaks added and b) peaks lost 

for the N simulation runs when compared to the reference peak list obtained from the analysis of the ‘complete’ 

dataset; c) average of a) and b).  

 
Figure 3.7 Error [%] on the p values obtained following univariate testing on the missing data estimated with S, 

MED, KNN and the log-rank rank on the left-censored data. HL dataset:  a) all the peaks containing missing data 

(mean percentage of 104.5%, 206.9%, 146.2% and 101.4% for S, MED, KNN and K-M respectively), b) 

significantly changed peaks as in the complete dataset (mean percentage of 43.3%, 57.4%, 58.5% and 49.0% for S, 

MED, KNN and K-M respectively). Corresponding median values for the DM dataset (boxplots not shown) are 

105.9%, 167.5%, 120.6% and 85.0% for S, MED, KNN and K-M respectively for all the incomplete peaks and 

42.5%, 53.4%, 45.05%, 39.1% for the significantly changed peaks.  
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Figure 3.8 Error [%] on the p values of the significantly changed peaks for peaks containing differing amounts of 

missing data (i.e. from 1 to 10 missing entries). DM dataset, following a) S, b) MED, c) KNN and d) survival 

analysis approach  

3.6 Concluding remarks 

 Investigations into the applicability and performance of the survival analysis approach to 

univariate testing of DI FT-ICR MS based metabolomics data have resulted in a set of 

encouraging observations that suggest that this approach should be considered when dealing with 

missing data. It has been shown that a simple estimation of noise values (based on the median 

intensity of the peaks present in the signal free regions of spectrum) used to create left censored 

data, followed by their transformation into right censored data and identifying peaks indicative of 

significance metabolic difference between biological groups via a log-rank test was feasible. This 

approach also enabled detecting a large number of the potentially interesting peaks. These results 

were obtained for both of the analysed datasets of DM and HL, with the latter one characterized 

by large metabolic heterogeneity. Further analyses have shown that a sub-set of the peaks 
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identified as significant using survival analysis approach can also be detected following missing 

data estimation (S, MED and KNN). The study of the specific to survival analysis approach peaks 

did not give any grounds to classify the survival analysis approach as not applicable nor as not 

feasible, either. On the contrary, the characteristics of these peaks such as m/z ratios, distributions 

of missing data and the intensities of the initially non-missing data were all in line with the 

selected reference peaks that are less likely to be affected by various missing data estimation 

approaches, yet still containing missing data. The more ‘uniform’ distribution of the number of 

peaks grouped according to the number of missing data present (Figure 3.7) suggests that this 

approach offers higher sensitivity to detect significantly changed peaks in ‘non-extreme’ cases 

(i.e. when missing data are spread across biological groups as oppose to are being clustered in 

samples from one biological group) but this should be further verified on a bigger datasets. The 

analyses of these peaks in terms of their biochemical context for the HL datasets also confirmed 

the applicability of the survival analysis approach. Unfortunately, as discussed in Chapter 2, these 

results cannot be solely used as an indication whether the tested approach is optimal and/or 

outperforming other methods (due to the inherit nature of the problem). However, combined with 

the results of assessing the performance of this method based on the ‘complete’ datasets and 

introducing missing data at MNAR, it has been shown that this method should not be excluded 

when deciding upon the treatment of missing data during the data processing stage. The strength 

of this method seems to lie in identifying a vast number of peaks that may represent true 

significant metabolic differences without the actual need to estimate the missing data. This can be 

especially useful in the hypothesis generating studies for which estimating missing data with the 

commonly used algorithms fails to provide a large enough subset of peaks indicative to true 

metabolic difference between biological groups for further verifications and analyses.  
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CHAPTER 4 

 Additional Advances In Data Processing And Analysis
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4.1 Introduction 

 Many aspects of the data analysis of the metabolomics datasets can be regarded in terms of 

finite sets and set theory. A set is a collection of well-defined and distinct objects, which for the 

purpose of this chapter can be assumed either unordered or ordered. Formally, a set S is called 

finite if for some natural number n the one-to-one correspondence function (bijection) exists such 

as Eq. 4.1 and it can be written as in Eq. 4.2 (Goldrei 1996).  

                Eq. 4.1 

 S=             Eq. 4.2 

A partially ordered set, also known as poset, formalizes the intuitive concept of an ordering of the 

set objects. Let R be a random relation on a set S, then if R satisfies the conditions of reflexivity 

(Eq. 4.3), antisymmetricity (Eq. 4.4) and transitivity (Eq. 4.5), it is a partial order relation and (S, 

R) is called a partially ordered set or a poset (Devlin 1993).  

 

                      Eq. 4.3 

                         Eq. 4.4 

                               Eq. 4.5 

 Mass spectra obtained via DI FT-ICR MS based metabolomics may be considered as sets 

containing objects (here peaks indicative of metabolites), therefore the comparison of spectra 

may be viewed from the set theory perspective. Throughout the metabolomics experiment and the 

subsequent data analysis, one may be interested in comparing peaks presence (or absence) across 

two or more biological samples using the binary operations on sets such as union (pooled 

objects), intersections (common objects), difference (objects specific to one of the sets) and so 

on (Goldrei 1996). Partially ordered sets can be obtained when comparing two sets of peaks 

arranged from the most to the least important one according to a specific criterion, e.g. sorted 
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according to their p values (following univariate testing) or their loadings values (following 

principal component analysis), for example to compare results between two experiments of 

interest, e.g. Daphnia magna exposed to drugs of different mode-of-action.  

The comparison of sets as well as the visualization of these results is a further important part 

of biology and ‘omics’ experiments, since often the integration of multiple datasets (sets) is 

required to gain a full understanding of the underlying biological mechanisms (Chen and Boutros 

2011). For the former, there are currently no methods (to the author’s knowledge) available that 

would allow obtaining simple metrics of the (dis)similarity of the two partially ordered sets, here 

two peak lists that typically would arise when sorting peaks based on their p or loadings values 

following univariate and multivariate data analysis respectively. Ideally, a simple measure should 

capture both the amount of the overlapping peaks as well as their position in the two sets. For the 

latter, visualization methods used include textual tables, network diagrams, heatmaps and the 

Venn and Euler diagrams, with the Venn diagrams employing circle and ellipses to display all 

n
2
-n+1 possibilities created by the interaction of n sets (as on Figure 3.4 in Chapter 3) and being 

highly popular due to their familiarity and simplicity (Chen and Boutros 2011). Venn himself has 

shown that his diagrams can be constructed for any number of sets, however the comparison of 

higher number of sets (n>4) requires adding non-congruent and/or non-convex shapes. A 

symmetry no longer can be achieved which deprives the Venn diagrams their aesthetics and 

simplicity of comprehension (Venn 1971). To overcome some of the above issues, Edwards has 

proposed creating the Venn diagrams (Edward’s Venn diagrams) by segmenting the surface of 

the sphere (Figure 4.1). However, regardless of the method chosen, the more number of sets are 

being compared, the harder it is to interpret results, especially when different shapes are being 

introduced to allow for all the interacting possibilities (Edwards 1989).  
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Figure 4.1 Diagrams showing interactions among six sets a) Venn diagram, b) Edward’s Venn diagram 

 While working on the primary objectives of this thesis, two methods (tools) were developed 

that may be of benefit to ‘omics’ studies when handling results that may be regarded as sets. The 

first one is a metric reflecting the similarity of two ordered peak lists (posets), taking into account 

both number of the shared between two lists peaks and their positions that can be assigned based 

on any of the chosen criteria (e.g. derived from data analysis). The second one is a visualisation 

tool that identifies and displays the amount of shared peaks between the lists (sets) via a series of 

colour-coded horizontal bars.  

4.2 Comparing ordered sets 

 Initially, the idea of developing a metric to quantify the (dis)similarity between the two 

ordered sets arose while assessing the various missing data estimation strategies for DI FT-ICR 

mass spectrometry data. As discussed in Chapter 2, in order to compare the results of the missing 

data estimation algorithms in terms of principal component analysis, the lists containing the top 

5% peaks contributing towards samples separation along PC 1 or PC 2 (peaks ranked according 

to their loadings values) had to be considered.   
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4.2.1 Mathematical representation 

 The similarity measure, ordered distance (ODist) of two ordered lists was developed to 

capture both the number of common objects among the two sets as well as their positions. Let A 

and B denote sets such as Eq. 4.6 and Eq. 4.7 

               Eq. 4.6 

               Eq. 4.7 

where the objects in the sets are ordered according to some external criterion in descending order 

with the first element of the highest importance (e.g. the smallest p value) and the last element of 

the least importance. Also, let C represent a set containing all the objects which are members of 

both A and B as in Eq. 4.8 

                   Eq. 4.8 

where 0 < k ≤ n+m. The similarity measure, ODist¸ between the two sets A and B is expressed by 

two sub-components. The first one, ODisti, takes into account solely the number of objects 

common between A and B as in Eq. 4.9 (also known as Jaccard index) 

        
     

     
 Eq. 4.9 

where | | denotes cardinality (number of elements) of the set. The second, ODistp captures the 

order of the elements that are common to A and B as in Eq. 4.10 

          
  

    
 Eq. 4.10 

 
where Sp is the score measuring, for each element c ϵ C (elements common to both A and B) the 

sum of the difference between their positions in the two sets. Defining functions returning an 

index (position) of the i
th

 element of the set as in Eq. 4.11 and Eq. 4.12 
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Eq. 4.11 

 

            Eq. 4.12 

the Sp can be written as in Eq. 4.13  

                        

 

   

 Eq. 4.13 

The Smax is the maximum sum of the difference between the positions of the common elements, 

allowing the elements in A and B to permute (rearrange) to achieve the highest score. Defining 

functions returning the permuted index (position) of the i
th

 element of the set as in Eq. 4.14 and 

Eq. 4.15 

                                 
Eq. 4.14 

 

                                   Eq. 4.15 

the Smax can be written as in Eq. 4.16 

                                

 

    

 Eq. 4.16 

Finally, the overall similarity measure ODist is expressed as in Eq. 4.17 

                                         Eq. 4.17 

and typically c1 = c2 = 0.5 for equal contributions of the two sub-components being. 

 The above measure can be easily expanded to measure the similarity between any number of 

sets with ODisti as in Eq. 4.18  

  

        
          

          
 Eq. 4.18 

and Smax being a mean value of all the pair-wise comparison among every two sets as in Eq. 4.19 
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          Eq. 4.19 

 

4.2.2 Computational solution and applicability to data analysis in a metabolomic experiment 

 The similarity measure was implemented in R language as a series of independent functions, 

including the calculation of ODisti, the calculation of Sp and the Smax matrix and based on these, 

the function calculating of the overall ODistp and the ODist similarity measure. While 

computational coding of the majority of these calculations was straightforward, obtaining the 

maximum sum of the difference between the positions of the common elements Smax requires 

finding, for each pair of sets being assessed, factorial n! and m! number of permutations without 

replacement, where n and m are the cardinality of the two sets respectively. For the purpose of 

this thesis, a basic solution was employed, with a pre-defined number of permutations used and 

the Smax set the maximum value obtained. An accompanying graph was produced to assess 

whether the increase in the number of permutations yields an increase of the Smax value for the 

specific conditions (in particular number of peaks in the assessed lists) (Figure 4.2).  

 The developed ordered distance measure was initially developed for and used while 

addressing the missing data research aims, in particular when assessing the influence of the 

missing data on the multivariate data analysis. The calculated ODist metric for the lists 

containing the top 5% peaks contributing towards the separation along PC1 and PC2 following 

imputation of missing data using the eight missing data estimation algorithms (as described in 

Chapter 2) allowed to identify methods that performed in a similar manner, further strengthening 

the overall (univariate and multivariate) results (Table 4.1 and Figure 4.3; Appendix A: Figure 

A8-A9, Table A7-A8). These results are in the published paper:  Hrydziuszko, O. and M. Viant 
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"Missing values in mass spectrometry based metabolomics: an undervalued step in the data 

processing pipeline." Metabolomics: 1-14. 

 

 

 
Figure 4.2 An example of the graph showing the increase of the Smax value throughout the N permutations; Data 

generated for two sets of 500 elements each.     

Table 4.1 Similarity metric, ODist, values between the eight missing value estimation methods based on the 5% top 

peaks contributing towards the separation along PC1 for the four datasets: CCLp, CCLn, DM and HL for c1 = c2 = 0.5 
  S HM M MED KNN BPCA MI REP 

CCLp\ CCLn 

S 100.00 76.68 0.87 1.17 27.99 0.58 20.41 6.71 

HM 70.09 100.00 2.62 2.92 14.87 4.08 23.91 9.62 

M 4.46 16.96 100.00 97.08 0.00 21.28 3.50 51.31 

MED 7.56 13.84 84.82 100.00 0.00 20.70 3.79 51.02 

KNN 9.82 8.04 12.50 12.05 100.00 0.00 19.83 3.50 

BPCA 5.80 16.07 25.89 26.34 9.82 100.00 4.96 9.91 

MI 12.05 16.96 13.39 13.39 25.45 14.29 100.00 5.54 

 REP 17.86 34.38 37.95 38.84 16.52 24.11 16.96 100.00 

DM \ HL 

 S HM M MED KNN BPCA MI REP 

S 100.00 82.38 1.90 3.33 4.76 3.33 19.05 22.86 

HM 61.11 100.00 5.24 6.67 11.43 6.19 23.33 30.95 

M 3.33 26.67 100.00 96.19 89.52 34.76 63.33 64.29 

MED 5.56 31.11 86.67 100.00 90.95 35.24 65.24 68.10 

KNN 26.67 47.78 62.22 67.78 100.00 35.24 69.52 70.48 

BPCA 2.22 10.00 23.33 23.33 21.11 100.00 33.81 32.38 

MI 22.22 42.22 52.22 55.56 65.56 21.11 100.00 70.48 

 REP 34.44 65.56 50.00 55.56 67.78 21.11 62.22 100.00 

Blue: data for CCLp and DM, yellow: data for CCLn and HL 

 



95 
 

 
Figure 4.3 Hierarchical clustering (Euclidean distance, agglomeration method: complete) for eight different 

imputation methods for the top 5% of peaks contributing towards separation along PC1 for a) CCLn, b) CCLp, c) DM 

and d) HL datasets. 

  

4.3 Visualisation tool for sets comparison 

 The visualisation tool to show the amount of common objects between the peak lists of 

interest (for all occurring possibilities) was initially developed to investigate the unexpected 

observation of a very high number of peaks in the blank mass spectrum - an extract blank 

prepared using identical methods of sample preparation but with no biological material added to 

the solvents. This number was comparable to the number of peaks detected for the biological 

samples, therefore a visualisation tool was developed to reveal whether these peaks were 

common to all the biological samples in this experiment or whether there were specific to blank 

spectrum, possibly offering some additional insight into this phenomenon.  

4.3.1 Realisation 

 As an alternative to intersecting geometrical shapes as circles or ellipses that are used in Venn 

Diagrams, it was assumed that it is possible to represent the relationships between the sets via a 

series of horizontal bars. These bars are colour-coded to denote the amount of objects common 

between the sets for all of the logical possibilities (Figure 4.4). One of the sets can be marked as a 

reference one, with its colour-coded bars to be displayed at the very top of the diagram and a bar 

indicative of the amount of the specific only to this set elements (not present in the remaining 
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sets) drawn to the very left of the graph (here used for the extract blank) The remaining sets are 

being added below the reference set, with their corresponding colour-coded bars arranged in a 

decreasing order, e.g. the number of elements common among the four sets (reference set and the 

three other sets) followed by the number of elements common among the three other sets, 

followed by number of elements common among only two sets and finally the number of 

elements specific to each of the three other sets (towards the right hand side of the diagram). The 

size of each coloured bar represents the number of elements falling into each specific category 

(logical possibility, e.g. common among the three other sets) and can be estimated based on the x-

axis. The exact numbers of these elements are saved in the output text file.  

 Representing each set as a horizontal bar, divided into colour-coded regions, enables effortless 

comparisons of any number of sets since adding a set requires simply appending another 

horizontal bar below the already present ones, therefore eliminating the necessity to introduce 

non-congruent shapes. Also, the visual understanding and interpretation of the results is 

straightforward, even when considering higher number (n>4) of sets.  
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Figure 4.4 Graphical representation of all the interactions between the reference set and three other sets; CCLp 

datasets used here for illustration purposes; reference set: blank; set 1: control samples; set 2: samples exposed to 

indomethacin; set 3: samples exposed to medroxyprogesterone acetate 

4.3.2 Applicability to signal processing in a metabolomics experiment 

 The comparable to biological samples number of peaks detected for the extract blank was 

initially observed while performing one of the first environmental studies of toxicity testing in 

Daphnia magna employing the DI FT-ICR mass spectrometry metabolomics and the novel SIM-

stitching algorithm for the metabolites detection at the Environmental Metabolomics Research 

Laboratory, University of Birmingham (Taylor, Weber et al. 2009). The extract blank contained 

several thousand of peaks, similar to the number of peaks in the biological samples of the 

analysed Daphnia magna dataset. This observation was unexpected, since extract blank is 

prepared following the same protocol as used for the preparation of the biological samples, but 

with no biological material added (see Chapters 1 and 2). Quite opposite, one would anticipate to 

detect only a small set of peaks reflecting the presence of methanol, water and formic acid or 

ammonium acetate for positive and negative ion mode of analysis respectively.  
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 With the aid of the developed visualisation tool, it was shown that the majority of peaks 

occurring in the extract blank spectrum become suppressed as soon as biological material 

(metabolites) are added. It was speculated that the peaks measured for the biological samples are 

the ones of higher concentrations and therefore must have successfully competed for charge 

during the electrospray ionisation process. The peaks present in extract blank, on the other hand, 

are likely to include contaminants from the air and/or substances leaking from the plastic sample 

preparation tubes (plasticisers). Thes results highlight the analytical sensitivity of DI FT-ICR 

mass spectrometry. This theory is further supported when comparing the extract blank mass 

spectra obtained throughout various metabolomics studies, e.g. analyzing the cancer cell line, 

Daphnia magna and human liver datasets (as described Chapter 2)(Figure 4.5). Among these 

three quite different datasets, there were approximately 500 peaks common across the extract 

blank mass spectra, both for the positive and the negative ion mode of analyses. This 

phenomenon is a clear demonstration of the finite dynamic range of the DI FT-ICR mass 

spectrometry detector, which is all now being accounted for during the signal processing stage. In 

addition to the three stage noise filtering strategy (Chapter 1) peaks present in the extract blank 

spectrum are being removed from the biological samples spectra based on a user’s pre-defined 

settings, typically these peaks are being removed if they are more intense in the extract blank 

spectrum than in the biological spectra. The first successful application of this tool was in the 

same environmental study for which the observation of the high number of peaks for the extract 

blank was made with the results published in Metabolomics: Taylor, N., R. Weber, et al. (2009). 

"A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR 

mass spectrometry metabolomics." Metabolomics 5(1): 44-58. 
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Figure 4.5 The amount of peaks for all the possibilities among the three extract blank spectra obtained for CCLn, 

DM and HL datasets, positive ion mode 
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CHAPTER 5 

 Metabolomics study of Human Liver Transplantation 
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5.1 Introduction 

 The liver is the second most commonly transplanted major organ (after kidney), yet the 

biochemical mechanisms undergoing in the organ throughout and following surgery are still 

poorly understood (Seaberg, Belle et al. 1998). Metabolomics, especially mass spectrometry 

based approach, offers a potentially very powerful tool to gain further insight into graft metabolic 

activity that could in turn improve the outcome and the survival following the surgery. Here, a 

proof-of-principle metaboloimics study is presented based on a limited cohort of patients to 

address the question whether the DI FT-ICR mass spectrometry based metabolomics can be 

applicable to investigate metabolic process of liver grafts in a highly variable study of clinical 

liver transplantation. The samples collected and measured (DI FT-ICR MS) resulted in a dataset 

that was used both to address the outlined question as well as to aid the research on missing data 

as presented in Chapters 2 and 3. For the latter, it offered a biologically diverse, highly 

heterogeneous dataset (as measured by the coefficient of variation, Chapter 2) that complemented 

datasets obtained from more controlled studies (cancer cell line, Daphnia magna described in 

Chapter 2) thus enabling a thorough testing of the missing data estimation methods as well as the 

novel approach based on survival analysis concept. The proof-of-principle metabolomics study 

was carried out simultaneously to the research on missing data, and therefore the results 

presented and published in this chapter (Hrydziuszko, Silva et al. 2010) are based on the method 

that was being employed at the time at the Environmental Metabolomics Research Laboratory, 

University of Birmingham, that is the modified version of Sangster’s method for which a missing 

value is substituted with the average intensity of the nearest (in term of m/z value) peaks from the 

raw measurements of the technical replicates (Sangster, Wingate et al. 2007).  



102 
 

5.2 Application of metabolomics to investigate the process of human liver transplantation 

Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver disease. In the 

UK, where ca. 600 liver transplants occur each year, approximately 10% of potential recipients 

die while on the waiting list (2007-2008 Transplant Activity in UK, National Health Service 

annual report). The shortage of organs available for OLT has resulted in a drive to increase donor 

pools by, for example, including marginal organs or those obtained by donation after cardiac 

death (Reddy, Zilvetti et al. 2004, Attia, Silva et al. 2008). In order to optimize outcomes by 

improving OLT strategies, knowledge of biochemical and molecular changes in the liver graft 

during and following transplantation is invaluable (Vascotto, Cesaratto et al. 2006). Of special 

interest are preservation and ischemia/reperfusion (I/R) injury, multi-factorial processes which 

affect graft function and recipient survival post OLT (Carini and Albano 2003, Carini and Albano 

2003, Fondevila, Busuttil et al. 2003, Fondevila, Busuttil et al. 2003). During the process of liver 

transplantation, at the donor operation, the liver is retrieved following the arrest of blood 

circulation, cold-flushed with preservation solution (University of Wisconsin) and stored in ice 

(commencing cold ischemia; Greek isch – restriction, hema - blood). In the recipient operation, 

following explantation of the diseased liver, the graft is taken out of its cold environment for 

reimplantation.  From that time until the reanastomosis of the blood vessels and bile duct and the 

establishment of recipient blood supply, warm ischemia prevails. Temperature, ischemia and 

introduction of the oxygenated blood contribute towards the graft injury, and some of the major 

biochemical processes include influx of sodium and chloride ions into the cell and alteration of 

calcium homeostasis (Clavien, Harvey et al. 1992, Hansen, Dawson et al. 1994), cease of aerobic 

glycolysis, which subsequently leads to acidosis, loss of mitochondrial respiration, ATP depletion 

and deterioration of energy-dependent metabolic pathways and transport processes (ischemia) 
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(Kang 2002). Additionally, re-oxygenation aggravates ischemic effects (reperfusion injury). 

These effects could be subdivided into early and late reperfusion injury. Immediately following 

reperfusion (up to 4 h) a major cause of injury is oxidative stress due to reactive oxygen species 

(ROS); this is then followed by inflammatory cytokines which results in the late injury (Bilzer 

and Gerbes 2000, Berrevoet, Schafer et al. 2003). Until now, these molecular mechanisms of I/R 

injury have been studied at a holistic level using transcriptomics (Conti, Scala et al. 2007, 

Defamie, Cursio et al. 2008) and proteomics (Vascotto, Cesaratto et al. 2006) approaches. 

However with the development of technologies for small-molecule analysis (i.e. those typically 

<1000 Da, arising from carbohydrates, lipids, nucleotides, amino acids, bile acids, other organic 

acids and bases, etc.), metabolomics could offer a complementary picture to transcriptomics, 

proteomics and/or histology analyses (Wishart 2005). 

Metabolomics (in particular mass spectrometry based approaches) can characterize many 

hundreds of metabolites simultaneously (Wishart 2005), informing upon multiple metabolic 

pathways and providing a more comprehensive picture of liver (dys)function. It could provide (i) 

novel mechanistic insight into the biochemical pathways altered during OLT, (ii) targets for 

therapeutic interventions to minimize tissue damage and maximize likelihood of graft success, 

and (iii) molecular biomarker signatures to complement or improve upon existing clinical and 

histopathological markers of graft dysfunction following liver transplantation (either a reversible 

initial poor function or irreversible, primary non-function, which results in death of the recipient 

if retransplantation does not occur (Lemasters and Thurman 1997). This is of importance since 

metabolic responses are rapid (in seconds or minutes, while other physiological responses are 

often measured in days and/or weeks)(Wishart 2005). Consequently there is increasing interest in 

applying metabolomics during/after clinical organ transplantation for monitoring kidney, heart 
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and liver (Wishart 2005, Sarwal 2009). Examples include a successful attempt to detect acute 

cardiac rejection by analysing plasma by proton nuclear magnetic resonance (NMR) spectroscopy 

(Eugene, Le Moyec et al. 1991, Mouly-Bandini, Vion-Dury et al. 2000);  profiling acute renal 

rejection by gas-chromatography mass spectrometry (Mao, Bai et al. 2008); and monitoring 

kidney-transplant patients’ immune responses and drug effects in early recovery using urine 

samples analysed by NMR (Stenlund, Madsen et al. 2009). In liver transplantation, NMR-based 

metabolomics studies have showed that individual metabolites may act as indicators of liver 

function: for example, primary graft dysfunction may be characterized by constant levels of 

glycerophosphocholine (in the liver tissue) throughout OLT (Duarte, Stanley et al. 2005), by 

increased glutamine levels (serum and urine), and by decreased urea levels (urine) following 

OLT (Singh, Yachha et al. 2003). In addition, serum bile acid concentrations were shown to 

perform better than standard liver biochemical function tests by 48 h (Azer, McCaughan et al. 

1994) and AST based evaluation by 1-3 days (Baumgarner, Scholmerich et al. 1995) when 

assessing liver function. Furthermore, the overall blood metabolite profile can be informative of 

the successful transplant (Serkova, Zhang et al. 2007). 

Direct infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 

based metabolomics, in conjunction with selected ion monitoring (SIM) spectral stitching 

(Southam, Payne et al. 2007), has been shown to detect thousands of peaks (corresponding to 

many hundreds of metabolites) in biological samples and thus has considerable potential for 

investigating liver metabolism during OLT at a holistic level. Coulometric electrochemical array 

detection (CEAD) is a highly sensitive analytical platform specific for the analysis of metabolites 

involved in reduction and oxidation (redox) reactions and, therefore, highly relevant for studying 

I/R injury. In addition, it has been shown that microdialysis, coupled to targeted metabolite 
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analysis, enables continuous monitoring of graft metabolism both during and following OLT 

(Silva, Richards et al. 2005). Both of these analytical techniques offer considerably higher 

sensitivity than the already well established NMR metabolomics approach (Viant, Bearden et al. 

2008, Taylor, Weber et al. 2009), although current limitations of FT-ICR MS include lower 

technical reproducibility and less quantitative analysis than NMR spectroscopy (Payne, Southam 

et al. 2009). However, by avoiding the need for chromatographic separation (i.e. liquid 

chromatography (LC) or gas chromatography), direct infusion FT-ICR MS benefits from a more 

rapid analysis than NMR spectroscopy or LC-MS, but subsequent metabolite identification relies 

solely on the mass-to-charge ratio of each peak with no additional information from LC retention 

time (Griffiths 2008). The challenges of CEAD metabolomics include difficulties of 

unambiguous metabolite identification. 

Here we report the use of metabolomics in the setting of OLT, applying the complementary 

techniques of FT-ICR MS (of liver biopsy extracts) and CEAD (of microdialysates). The primary 

goal of this study is to determine the applicability of these approaches for characterizing I/R 

injury (and associated metabolic changes during and subsequent to OLT) within only a small 

cohort of patients; i.e. we address the question as to whether the large biological variation 

anticipated between patients will mask the metabolic changes induced by OLT. This is 

anticipated to be much more of a challenge for human samples derived from a clinical setting as 

compared to inbred animal or plant models derived from a controlled environment (Bijlsma, 

Bobeldijk et al. 2005). Our longer term goals, using these metabolomics approaches, are to better 

understand the molecular mechanisms of OLT, generate new testable hypotheses, and discover 

novel biomarker profiles of diagnostic potential.  
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5.3 Materials and methods 

Eight adult patients undergoing OLT were recruited to study metabolic changes with FT-ICR 

MS and CEAD in the liver grafts before and after transplantation. The study was approved by the 

South Birmingham Research Ethics Committee. Patients were consented both for the OLT and 

for this study. 

5.3.1 Clinical data 

Standard clinical and biochemical data were collected during organ recovery and OLT. Briefly, 

median age of recipients was 58 (range 46-62). The median Model for End-Stage Liver Disease 

score was 20 (range 15-22). The aetiology of liver disease is shown in Table 5.1. Spontaneous 

intra-cranial bleed was the cause of brain death in all donors  except for one donation after 

cardiac death and the median donor age was 66 (range 40-72). The donors spent a median of 2 

 (range 1-6) days on the ITU. Seven out of 8 livers were recovered while donors were on 

mechanical support, one liver was obtained by donation after cardiac death (H7). Standard liver 

function tests indicated that one recipient (H8) developed features of initial poor function (IPF) in  

Table 5.1 Demographic data on recipients and timings of OLT and biopsy samplings (min) 

Patient Age Sex 
Indications 

for OLT 
a
 

Time of first 
biopsy, T1 

b
 

Cold 
ischemia 

time 

Warm 
ischemia 

time 

Duration of 
reperfusion 
prior to T2 

Time of 
second 

biopsy, T2 
b
 

Patient 
status 2 
months 

after OLT 

H1 58 M A1AT 110 450 40 68 580 Alive 

H2 59 M PSC 100 600 34 76 724 Alive 

H3 54 M Hep C+HCC 110 250 47 86 387 Deceased 

H4 62 M NASH+HCC 120 560 35 83 685 Alive 

H5 61 F PBC 115 410 41 83 541 Alive 

H6 51 F Hep C+HCC 100 410 42 85 542 Alive 

H7 46 M NASH  80 400 32 81 522 Deceased 

H8 53 M  ALD+HCC 125 490 27 83 607 Alive 
a
 Abbreviations: A1AT, crytogenic cirrhosis; PSC, primary sclerosing cholangitis; Hep C, hepatitis C cirrhosis; 

HCC, hepatocellular cancer; NASH, non-alcoholic steatohepatitis; PBC primary biliary cirrhosis; ALD, alcoholic 

liver disease. 
b
 After graft first placed on ice. 
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the graft with AST levels of >1500 IU/L on the second day following OLT (Table B1, 

Appendix B). Two recipients died within 2 months following OLT (H3 after 6 weeks due to 

disseminated intravascular coagulation secondary to sepsis and multi organ failure, and H7 after 

5 days due to unexplained cardiac arrest). 

5.3.2 Liver biopsy and FT-ICR MS metabolomics 

Liver tissue samples were obtained by Menghini biopsy for seven liver grafts (not available 

for H1) at two stages during OLT: T1, after organ retrieval, perfusion with preservation solution 

(University of Wisconsin) during the “back-table” preparation, while the liver was maintained at 

4C (during cold ischemia period; cold ischemic injury); T2, at the end of the recipient procedure 

before abdominal closure (after warm ischemic period and reperfusion; warm ischemic and 

reperfusion injury), resulting in a total of 14 samples (Table 5.1). One-half of each biopsy was 

subject to histological examination and the other half was extracted using a 

methanol:chloroform:water method (Wu, Southam et al. 2008), and the polar metabolites 

analysed by ultra-high resolution direct infusion nanoelectrospray FT-ICR mass spectrometry 

(Thermo Fisher Scientific LTQ FT)  from m/z 70 to 500. Nanoelectrospray settings included a 

flow rate of 200nL/min, backing pressure of 0.3 psi, and electrospray voltage of +1.7 and -1.7 kV 

for positive and negative ion mode respectively. Each sample was analysed in duplicate and 

spectra were processed as described previously (Taylor, Weber et al. 2009), including a 3-step 

filtering algorithm (Payne, Southam et al. 2009). Briefly, for each infused sample, molecules are 

ionised (i.e. by addition of a proton [M+H]
+
, removal of a proton [M-H]

-
 or addition of another 

cation [M+Na]
+
) due to the high electric field in the electrospray ion source and then analysed 

based on their mass-to-charge ratio (Kebarle 2000, Griffiths 2008). A single compound can form 
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multiple ion forms. In this study all commonly detected ‘adducts’ were taken into account, that 

comprised of [M-e]
+
, [M+H]

+
, [M+Na]

+
, [M+

39
K]

+
, [M+

41
K]

+
, [M+2Na-H]

+
, [M+2

39
K-H]

+
, 

[M+NH4]
+
 for positive ion mode and [M+e]

-
, [M-H]

-
, [M+

35
Cl]

-
, [M+

37
Cl]

-
, [M+HAc-H]

-
, where 

HAc is acetic acid for negative ion mode (Tong, Bell et al. 1999). Due to the noise filtering 

process only compounds present in 50% or more of all the samples were retained for further 

analysis. This exclude from the final peak list all of the known drugs (including all the possible 

ions forms coming from the drugs) administered to the donors and recipients, since none of them 

were administered to more than half of the patients. 

5.3.3 Extracellular fluid and CEAD metabolomics 

At the end of the recipient operation, a microdialysis catheter was inserted into the liver as 

described previously (Silva, Richards et al. 2005). Serial hourly dialysate samples were collected 

during the next 48 h (Table B2, Appendix B, not available for H8) and 10 l of each sample were 

injected into the HPLC/CEAD system. In this system, a sample is introduced in HPLC and 

separated on the chromatographic column. Here, 3 electrode elements are present (working, 

counter and reference) and a fixed potential difference is applied between the working and the 

reference electrodes. This potential drives an electrochemical reaction at the working electrode’s 

surface, transferring electrons that produce the current, balanced by a current flowing in the 

opposite direction at the auxiliary electrode. The current from the electrochemical reaction (in 

pico- or nanoampere) is amplified to a range of ± 1 Volt and when plotted appears as a function 

of time in a series of peaks (Acworth, Naoi et al. 1997). Coularray 5600A 16-channel 

metabolomics system; ESA Analytical Ltd, Aylesbury, UK was used. Separation was carried out 

on a Chromospher ODS column (5 m, 150x3 mm with guard column; Varian Chromopack, 
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Walton-on-Thames, UK) using a binary mobile phase gradient which was produced by pumping 

(1mL/min) 40 mM sodium dihydrogen phosphate buffer, pH 3.2, containing 10
-4

 M sodium 

heptane sulphonic acid (A) for 3 min, before then introducing methanol:acetonitrile, 9:1 v/v, 

containing 10
-4

 M sodium heptane sulphonic acid (B). Solvent B was increased linearly from 0 to 

5% (v/v) over 7 min, and then from 5 to 30% over the next 25 min. After maintaining these 

conditions for a further 2 min the system was returned to the original equilibration buffer (A) and 

allowed to restabilise. Metabolite detection was achieved by incrementing the 16 cells of the 

array in 60-mV steps from 0 to 900 mV (see Appendix B for details). Chromatographic data were 

aligned, peak areas integrated, and only reproducible peaks (present in every sample) were kept. 

The retained peaks in each chromatogram were normalized to unit area, and generalized 

logarithm transformed (transformation parameter =1x10
-6

 (Parsons, Ludwig et al. 2007)). 

5.3.4 Statistical analyses 

Liver biopsy mass spectra were analysed with multivariate (principal components analysis; 

PCA) and univariate approaches (t-test with Benjamini and Hochberg (BH) correction for 

multiple testing, after verifying that data follow the normal distribution, Lilliefors test). Grubbs 

tests (with BH correction) were used to identify outlying peaks in the post reperfusion phase (T2) 

for patient H8 (who developed IPF, based on AST levels >1500 IU/L within 2 days after OLT, 

Table B2, Appendix B). Time course CEAD data were analysed with PCA. This type of analysis 

(PCA) is widely applied to multivariate metabolomics datasets, i.e. comprising of many samples 

for which n (n>1) variables (in this case signals in a mass spectrum arising from metabolites) are 

measured at the same time (Nicholson, K. et al. 1999, Martens and Martens 2001). Each variable 

can be regarded as a unique dimension, and therefore each sample can be represented in n-
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dimensional space. However, such space is difficult to visualise and interpret, thus PCA reduces 

this dimensionality using a projection technique so that individual samples can be compared in a 

lower (e.g. two dimensional) space – termed a PCA scores plot. The more clustered the samples 

are in the scores plot, the more metabolically similar they are and vice versa. Also, the most 

important variables that explain the variation in the original data set can be identified based upon 

their contribution (i.e. their loadings) to the sample position (scores) in the new reduced 

dimension.   

5.4 Results 

5.4.1 Liver metabolism of cold phase vs. post reperfusion 

Liver biopsies had a wide range of micro and macro steatosis (from mild to severe) both in T1 

and T2 (Table B3, Appendix B). FT-ICR mass spectra of the biopsies contained 1772 and 2437 

reproducibly detected peaks for positive and negative ion modes, respectively. Of this total of 

4209 peaks detected, 1349 were putatively identified based upon accurate mass measurements 

and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa, Araki et al. 

2008, Taylor, Weber et al. 2009, Kanehisa, Goto et al. 2010) PCA revealed a clear separation of 

the biopsies from the cold phase (T1) and post reperfusion (T2), along PC1 (Figure 5.1), for all 

but one patient (H7); this pattern was equally evident in both the positive and negative ion mode 

datasets, hence verifying the observation. Univariate analysis also identified many significantly 

changing peaks between T1 and T2, specifically 4.6% and 19.8% of all the positive and negative 

ion mode data, respectively. Based on the putative metabolite assignments, the biggest metabolic 

changes upon reperfusion (in top 1% of PC1 loadings, with smallest p values and/or largest fold 

changes; Table 5.1) comprised of an increase of urea production and urea cycle intermediate 
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levels (e.g. N4-acetylaminobutanal, 5’-Methylthioadenosine), and increased bile acid levels (e.g. 

chenodeoxyglycocholate, glycodeoxycholate, glycochenodeoxycholate and glycholate). Also, 

compounds present in the UW preservation solution decreased in relative abundance within the  

 
Figure 5.1 Principal component analysis scores plots for (a) positive and (b) negative ion mode FT-ICR mass spectra 

of liver biopsies, showing separation between the cold phase (T1, circles) and post reperfusion samples (T2, squares). 

A further intriguing separation of the post reperfusion biopsies is evident (liver biopsies H3, H4, H7 and H8 

clustered in one group, H2, H5 and H8 in the other). 

 

biopsies following reperfusion (e.g. mannitol, lactabionic acid). The fold change for each of these 

UW compounds was consistent upon reperfusion, except for those metabolites that occurred both 

in the preservation solution and endogenously within the liver (e.g. adenosine and glutathione; 

Table B4 and B5, Appendix B). Further molecular changes included an anticipated disturbance of 

energy metabolism, with consistent fold increases of several metabolites (e.g. formate, 
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Table 5.2 Metabolites that changed most significantly between cold phase and post reperfusion 
a
 

Putative metabolite 
b
 

Fold 
change 

c
 

p 
value

d
 

m/z 
Empirical 
formula 

Adduct Reason for inclusion Rank 

        

Urea metabolism        

Urea 2.87 0.022 83.02158 CH4N2O Na t test 9 

N4-Acetylaminobutanal 
(3) 

2.76 0.012 130.08627 C6H11NO2 H t test 4 

5'-Methylthioadenosine 
(2) 

10.8 0.26 338.05072 C11H15N5O3S 
41

K Large increase 13 

     
 

  

Bile acid metabolism        

Chenodeoxyglycocholate, 
Glycodeoxycholate 

and/or 
Glycochenodeoxycholate 

24.1 0.17 472.30359 

C26H43NO5 

Na Large increase, PC1 loadings 2, 17 

9.81 0.13 488.27758 
39

K Large increase 15 

Glycocholate 14.5 0.061 488.29844 C26H43NO6 Na Large increase 6 

        

Preservation solution        

Mannitol (5) 0.0877 0.048 205.06824 

C6H14O6 

Na Large decrease 30 

Mannitol (5)(3) 

0.0637 0.096 221.04218 
39

K PC 1 loadings 8 

0.597 0.11 223.04031 
41

K PC 1 loadings, large decrease 
10, 
25 

     
 

  

Energy metabolism        

Oxaloacetate (5) 0.0482 0.049 191.01974 C4H4O5 HAc-H PC 1 loadings 17 

ADP (3) 14.0 0.21 472.00083 C10H15N5O10P2 2Na-H Large increase 7 

        

Other        

Phosphoethanolamine 3.12 0.022 164.00832 C2H8NO4P Na t test 10 

N1-Methyl-2-pyridone-5-
carboxamide (2) 

2.77 0.022 175.04782 C7H8N2O2 Na t test 12 

L-Histidine 3.72 0.026 178.05874 C6H9N3O2 Na t test 18 

L-Glutamate (8)(5)(5) 

4.43 0.0029 182.02257 

C5H9NO4 

35
Cl t test 8 

2.55 0.0029 184.01963 
37

Cl t test 9 

8.26 0.071 192.02433 2Na-H Large increase 20 

6-Carboxyhexanoate (3) 12.1 0.42 197.02222 C7H12O4 
39

K-2H Large increase 14 

-Ribazole 0.0433 0.045 315.09320 C14H18N2O4 
37

Cl PC 1 loadings 5 

Sphingosine 1-phosphate 9.15 0.19 424.22000 C18H38NO5P 2Na-H Large increase 18 

S-Adenosyl-L-
homocysteine 

17.5 0.3258 461.04088 C14H20N6O5S 2
39

K-H Large increase 4 

a
 The selected peaks were within the top 1% of the PC1 loadings, had the smallest p values, or largest up or down 

fold changes. 
b
 Values in parentheses show the number of all possible putative metabolite identities. 

c
 Relative metabolite concentration in post reperfusion relative to cold phase sample. 

d
 p value – cold phase (T1) vs. post reperfusion (T2), p values corrected for multiple testing with Benjamini and 

Hochberg 
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orthophosphate, ADP) particularly those involved in oxidative phosphorylation (e.g. fumarate, 

succinate) in post reperfusion biopsies (Table B6 and B7, Appendix B). 

Reconsidering the entire metabolic fingerprints, the PCA scores plots (Figure 5.1) revealed 

that liver biopsies collected during the cold phase (T1) were metabolically more similar to each 

other (tightly clustered) than post reperfusion (except H7, which was identified as an outlier in 

the cold phase, T1). In the post reperfusion phase T2, liver biopsies tended to separate into two 

groups along PC2 (H3, H4, H6 and H7 in one group and H2, H5 and H8 in the other). The major 

contributors to this partial separation within the post reperfusion biopsies were, amongst others, 

putatively identified as L-valine, L-glutamate, L-glutamine, inosine monophosphate (IMP), 

creatine, taurine, all detected as multiple ionization forms  or with a unique putative metabolite 

assignment (Table B8, Appendix B). 

For the one patient that developed IPF (H8), Grubbs tests identified 9 peaks in the biopsy mass 

spectra that were different (statistical outliers) in the post reperfusion phase (T2) compared to all 

other patients. Of these potential indicators of IPF, only creatine and inosine monophosphate 

(IMP) could be putatively assigned to human metabolites (Table B9, Appendix B).  
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5.4.2 Redox metabolism in microdialysates post reperfusion 

A total of 19 reproducible peaks were detected by CEAD in the microdialysates and subject to 

PCA (no possible to identify based on the CEAD alone). Time trajectories on the scores plots 

were quite consistent for all patients (Figure 5.2). The earliest dialysate samples from the patients 

(5-6h post reperfusion) group together with large positive PC1 scores, as highlighted by the 

average metabolic trajectory for all patients (Figure 5.2). Samples from subsequent time points 

were similarly grouped, but towards increasingly more negative PC1 scores. This shift along the 

PC1 axis was greatest for samples obtained up to 21 h post reperfusion, after which a period of 

metabolic stability ensued.  

 
Figure 5.2 Principal components analysis scores plots for CEAD time course data showing that in general redox 

metabolism following OLT changes rapidly before stabilizing at ca. 21 h post reperfusion. a) PCA scores showing 

the metabolic trajectory for each patient separately; b) PCA scores showing the average trajectory across all patients 

(error bars represent SEM). The majority of variance was derived from two patients (H3 and H4). 
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5.5 Discussion 

FT-ICR mass spectrometry of liver biopsy extracts allowed the rapid and reproducible 

detection of 4209 unique peaks, representing a wealth of metabolic information on the functional 

biochemical changes associated with liver transplantation. This preliminary study revealed that, 

from a holistic viewpoint, liver grafts share a similar metabolic profile in the cold phase, 

suggesting that metabolism is down-regulated in a consistent manner. This is in itself quite 

remarkable given the relative heterogeneity (in terms of patient-to-patient metabolic variation and 

the inevitable differences in seven OLT procedures) and small number of donors involved. 

Furthermore, several anticipated metabolic differences between cold phase and post reperfusion 

biopsies were identified, which serve to verify the FT-ICR MS approach and its applicability for 

measuring multiple metabolic pathways simultaneously. Specifically, we documented evidence 

that reperfused grafts restart their metabolic activity and physiological functions, including 

synthesis (e.g. bile acid production, urea synthesis) and excretion (clearance of UW solution), 

with the latter effect also in agreement with a previous NMR study (Singh, Yachha et al. 2003). 

The metabolic differences between T1 and T2 liver biopsies can largely be attributed to 

temperature changes in the tissue (i.e. low in T1, affecting enzymatic activity) and/or the presence 

and absence of blood flow (i.e. no flow in T1 and in the early T2 following oxygenated blood flow 

after reperfusion). Again from a holistic viewpoint, liver biopsies exhibited considerably greater 

metabolic variability following reperfusion. This is again what would be expected considering the 

variation in the OLT procedure as well as the impact of the recipient’s metabolism on the graft. 

Considering the second analytical approach, the combination of microdialysis sampling and 

CEAD time trajectory data allowed the longitudinal analysis of liver metabolism post 

reperfusion. It detected a series of changes in the redox metabolism of extracellular fluid, 
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revealing a rapidly changing liver metabolism immediately post reperfusion followed by 

stabilization after ca. 21 h. 

The FT-ICR mass spectra revealed two further intriguing findings, which, due to the small 

number of patients, must be interpreted with caution. First, the only liver graft obtained by 

donation after cardiac death corresponded to the only outlier on the PCA scores plot, having a 

metabolite profile in the cold phase more similar to the other livers’ metabolic profiles in the post 

reperfusion (T2) stage. This may have resulted from a less effective perfusion of the graft with 

preservation solution, since it was performed after a period of circulatory arrest (e.g. possibility 

of micro clot formation), which would have several consequences for graft metabolism. For 

example, less effective preservation could result in potentially ongoing and injurious metabolic 

activity within the cold phase graft (T1) that more closely resembles post reperfusion (T2) 

metabolism. The second intriguing finding from the FT-ICR measurements, revealed in both the 

positive and negative ion PCA scores plots, is the apparent separation of the post reperfusion 

biopsies into two groups. This may arise from differing rates of metabolic recovery of liver 

function across the seven patients (1-2 h post reperfusion), which is supported by the CEAD data 

that shows considerable change in metabolism up to 21 h post reperfusion. It is important to note 

that it is unlikely that this separation is related to any variation in the OLT procedure (i.e. 

different hospital units of organ retrieval, different surgical teams etc.). Furthermore, none of the 

patterns in the PCA scores plots (neither at stage T1 nor at T2) could be explained by cold or 

warm ischemia times, which have been quoted to have a significant effect on the quality of grafts 

and procedure outcome (Lemasters and Thurman 1997). However,  our results are consistent with 

previous studies, showing that cold and warm ischemia times are not the primary cause of liver 

dysfunction when they are below 10 h and 60 min for cold and warm ischemia respectively 
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(Fern ndez-Merino, Nun o-Garza et al. 2003, Tekin, Imber et al. 2004, Stahl, Kreke et al. 2008). 

In the current study, the mean cold ischemia time was 446 ± 108 min, and mean warm ischemia 

time was 37 ± 5 min.  

Collectively, this study shows that FT-ICR mass spectrometry and CEAD are useful tools for 

characterizing multiple metabolic pathways in the liver throughout and following OLT. We have 

focused our interpretation and discussion on the measurements of known and expected 

biochemical changes during OLT since this serves to validate the application of these 

metabolomics methods. However, it is crucial to emphasize that more than 4000 signals were 

detected in the mass spectra and CEAD chromatograms, which could contain a wealth of novel 

metabolic information associated with OLT including predictive markers of clinical outcome or 

IPF. However, extracting such knowledge would require the application of more powerful 

supervised multivariate statistical methods, which in turn is dependent upon a considerably larger 

patient cohort. Such studies are now being initiated at Birmingham. In addition, the definitive 

identification of the metabolites within these metabolomics datasets would further strengthen our 

interpretation. This awaits the on-going development of automated metabolite identification 

strategies. However, to our knowledge this study represents the first application of FT-ICR MS 

based metabolomics to human samples derived from a clinical setting. The initial success of this 

study, in terms of the ability to identify key metabolic changes within a relatively heterogeneous 

group of only eight donor livers, is most encouraging.  
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CHAPTER 6 

 Final Conclusions And Future Work
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The primary objectives of this thesis, as stated in Chapter 1, were to advance the data 

processing pipeline for a metabolomics experiment that employs the DI FT-ICR mass 

spectrometry platform and to investigate the applicability of this platform to a clinical study. To 

address the first of these aims, the issue of missing data occurrence in the final data matrix was 

investigated. It has been shown that missing data affect majority of the variables (peaks) and their 

estimation influences the results of the subsequent data analysis, both univariate and multivariate 

one. Eight missing data estimation algorithms were investigated to identify the optimal 

imputation approach, by drawing conclusions based upon the analyses of the nature of missing 

data, results of the specific data analyses (ANOVA and PCA) as well as the analyses of these 

methods performance assessed on the ‘complete’ datasets with missing data introduced at MCAR 

and MNAR (Hrydziuszko and Viant 2011). A novel approach based on the survival analysis was 

also investigated as an alternative to missing data estimation prior univariate data analysis 

(manuscript in preparation). To address the second the thesis’s aims, consecutive liver biopsies 

taken throughout human orthotopic liver transplantation were analysed via DI FT-ICR MS based 

metabolomics with results showing that this approach is feasible and potentially informing upon 

multiple metabolic changes occurring throughout OLT (Hrydziuszko, Silva et al. 2010). Two 

supplementary methods of data processing and analysis were developed while addressing the 

primary objectives of the thesis. These included a single metric defying similarity between two or 

more ordered sets and a diagram to compare two or more sets. The similarity metric was used in 

the missing data study (identifying the optimal missing data estimation method) (Hrydziuszko 

and Viant 2011) and the diagram was introduced to the environmental study of toxicity testing in 

Daphnia magna  to investigate the peaks detected in the ‘extract blank’(Taylor, Weber et al. 

2009).  
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6.1 Missing data 

The occurrence of missing data is not limited to metabolomics, but it is a common 

complication of any real-world study. The appropriate handling of missing data has become a 

subject of an extensive research and a field in itself. For instance, various leading commercial 

statistical software has started providing user with extensions to analyze missing data patterns 

and methods of their estimation (STATA, SAS, MLwiN) (Horton and Lipsitz 2001, Carlin, 

Galati et al. 2008). Since multiple imputations have been identified as flexible and powerful 

approach, many advances were made with examples comprising multilevel multiple imputation 

with mixed response types (Carpenter, Goldstein et al. 2011), multiple imputation strategies for 

multiple group structural equation models (Enders and Gottschall 2011) or a parametric fractional 

imputation for missing data analysis (Kim 2011). On the other hand, survival analysis has been 

extensively used to analyze the censored data, especially in medical and biological fields where 

the nature of clinical studies and patients’ mortality yields a problem of right censored data 

(Kirkwood and Sterne 2003). Here, although the majority of methods were developed for such 

data, the problem of left censored data was recognized and re-definition of left censored into right 

censored data identified to yield statistics and estimators of interest (Klein and Moeschberger 

2003).  The research presented in thesis aimed at narrowing the gap between the missing data 

handling techniques in metabolomics as well as using the ‘fit for purposes’ methods that would 

take into account the full available information from the DI FT-ICR MS based metabolomics 

spectra.  

The studies discussed in Chapters 2 and 3 are the first to thoroughly address missing data in 

the DI FT-ICR mass spectrometry based metabolomics. Here, missing data were investigated 

with the aim of informing and optimizing data processing pipeline and the subsequent data 
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analyses, in particular identifying metabolic traits changing significantly between the sample 

classes. It was shown that missing values constitute up to 20% of all data in the final data matrix, 

yet they affect up to 80% of all the variables (peaks). The investigation of the properties of these 

missing entries confirmed that they do not occur at random, but they are i) a function of the 

peak’s intensity (non-missing data observed; the lower the peak’s abundance the higher amount 

of missing data) and ii) a function of peak’s mass-to-charge ratio (unexplained increased number 

of missing data for the lower and upper mass-to-charge ratio peaks). Due to the prevalence of 

missing data in the final data matrix, any method based on the deletions (i.e. excluding variables 

with missing data) seems impractical and leads towards a removal of the majority of the dataset 

and inefficient or biased data analyses (based on the high intensity and from the middle range of 

the detected mass-to-charge ratios peaks). Further, data analysis methods designed to handle 

some proportions of missing data may not represent the optimal approach either as it was shown 

that for the analysed datasets missing data commonly predominate in one of the biological 

groups. This combined with a typically small sample size (many more variables than samples in 

the ‘omics’ experiments) may not be sufficient to provide enough statistical power to 

discriminate between metabolic changes across sample classes, or may simply fail to provide 

enough observed measurements to the use of such methods in the first place. From a purely 

practical point of view, the ideal data processing pipeline would incorporate a missing data 

estimation procedure that applied once would yield a complete data matrix ready for further data 

analysis. Therefore, eight common and/or easily accessible missing data estimation algorithms 

were investigated, taking into account the results of the subsequent data analysis and the 

biochemical interpretation of the results. It was demonstrated that the choice of the missing data 

estimation method plays an important role as it largely affects both the univariate and 



122 
 

multivariate data analysis. It was also discussed that out the eight compared methods k-nearest 

neighbour imputation was the optimal choice for the analysed biological datasets and the SIM-

stitching method of detecting metabolites.  

 The above analyses led to development of a three-stage approach that informs data processing 

pipeline. By i) analyzing the nature of missing data, ii) assessing their influence on the 

subsequent data analysis (univariate and multivariate) and iii) investigating the performance of 

the algorithms based on the ‘complete’ data, the informative decision upon the optimal missing 

data estimation strategy can be made. This developed approach is not limited to the DI FT-ICR 

MS, but in fact can be used in the studies employing other metabolomics platforms.  

 A further work on missing data included introducing a novel approach based on the survival 

analysis. A theory behind it, in particular the validity of applying survival analysis methods 

(including log-rank test) designed for the right censored data to the left censored data following 

the simple transformation of the latter was discussed. It was then demonstrated that missing data 

in the DI FT-ICR MS based metabolomics can be regarded and represented as left censored with 

using the spectrum noise levels as censoring information. This approach was further assessed in 

terms of its applicability (and performance) to the univariate analyses of the DI FT-ICR MS 

metabolomics datasets. It was shown that to yield plausible results, with a set of identified as 

significantly changed across biological groups peaks having numerous peaks also identified with 

other missing data estimation methods as well numerous peaks offering an increased chance of 

finding predictive biomarkers (not detected with other missing data estimation methods, yet 

plausible due to their characteristics and biological context interpretation), thus highly relevant to 

focused on hypotheses generation studies.  
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 Future work on survival analysis approach should address the validity of the assumption that 

the missing values can be regarded as the left-censored data with the threshold values derived 

from the applied signal-to-noise ratio. In the datasets discussed in Chapters 2 and 3 this approach 

seemed to be correct due to the nature of missing data, in particular their increased occurrence for 

the low intensity peaks (missing data as a function of the peaks intensity). However, this should 

be further examined as well as other conditions and assumptions under which this approach is 

feasible and beneficial. These could include the influence of the sample size, number of censored 

data present, the methods of estimating threshold values or occurrence of missing data (e.g. 

prevailing in one of or occurring across sample classes). In addition, the multivariate survival 

analysis methods should be investigated in the light of their applicability to the DI FT-ICR MS 

metabolomic datasets. Here, the mulitivariate survival data are defined as data for which 

independence between survival times cannot be assumed, e.g. studies of patients from the same 

family (common genetic background) or employees from the same company (common 

environmental exposure) (Hougaard 2000). This in turn could be reflected in the DI FT-ICR MS 

metabolomics datasets where the peaks (indicative of metabolites) are not independent (e.g. 

metabolites measured from the same metabolic pathway or the same metabolite measured 

multiple times due to different ionization forms) and yielding parallel data for which the number 

of times is fixed by design with many early events. To investigate the effects of covariates, to 

evaluate their dependencies, obtaining estimates and statistics or make predictions shared frailty 

models or multivariate frailty models can be considered. If feasible, analogical approach to the 

univariate one, could offer an alternative approach to analyse the multivariate data.  

 The selection of the optimal missing data estimation method represents an intrinsically 

insolvable problem since the correct answer can only be known while the true values of the 
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missing entries are known. Therefore, one can only try inferring the ‘right’ strategy based on the 

nature of missing data present, their influence on the subsequent data analysis and incorporating 

elements of the prior biochemical knowledge, hence the three-step approach was developed in 

this thesis. To improve the understanding of the missing data, a crucial part of the above 

approach, additional experiments should be carefully planned and conducted. Based on the 

resulted presented in this thesis, these would aim at addressing the technical and biological 

reasons for missing data occurrence to enable easier and robust interpretation of the subsequent 

data analysis.  

6.2 Orthotopic liver transplantation 

 The analyses of liver biopsies taken throughout the OLT have confirmed that DI FT-ICR mass 

spectrometry is an adequate tool for characterising multiple metabolic pathways in this clinical 

setting. The large biological variation anticipated between patients (variability between donors, 

between recipients and between OLT procedures themselves) did not mask the metabolic changes 

induced by OLT. Despite the small cohort of patient, the DI FT-ICR MS enabled observing the 

expected biochemical changes upon OLT, including bile acids and urea synthesis and clearance 

of UW solution following OLT, all indicative of liver grafts restarting their healthy metabolic 

activity and physiological functions. In addition to the anticipated changes, DI FT-ICR MS 

allowed the observation of thousands (>4000) of unique peaks and further interesting patterns 

(e.g. separation of the biopsies taken post-reperfusion into two groups, albeit on a small number 

of samples). These initial findings encouraged further studies, which with more biopsies taken to 

enable more robust statistical analyses are now being analysed in the Environmental 

Metabolomics Research Laboratory, University of Birmingham. This on-going work will also 
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incorporate the previous findings on the missing value estimation and handling techniques, 

hopefully leading to the discovery of novel metabolic mechanisms important for the control of 

the ischemia/reperfusion injury thus leading towards development of the OLT strategies. 

Currently, despite hundreds of liver transplants being performed each year in the UK, the 

knowledge of the biochemical changes in the liver graft during OLT is limited and the overall 

1-year survival rate is reported to be around 80%, with 5-year survival rate decreasing to around 

60%. These rates depend upon multiple factors, some of which can be addressed with the DI 

FT-ICR MS based metabolomics, in particular organ preservation routine used, donor and 

recipient selection (and pairing), surgical and anaesthetic methods and during and post surgery 

monitoring. With the metabolomic platform verified to be able to detect and characterize many 

hundreds of metabolites, next research question should address all of the above aspects, aiming to 

increase the number of immediate successful outcomes as well as survival rates e.g. by providing 

metabolic markers predictive of graft success or enabling improved donor-recipient matching.  

6.3 Additional advances in data processing and analysis 

The similarity metric between ordered sets and the diagram to compare different sets were 

developed while addressing the primary objectives of this thesis. In particular, a similarity metric 

was developed to compare lists of peaks ranked according to their loading values following 

principal component analysis when comparing the impact of various missing data estimation 

algorithms on the multivariate analysis. In addition a visualisation tool was developed to help to 

understand the observation of the extract blank mass spectrum containing a comparable number 

of peaks to a biological mass spectrum, when first using a SIM-stitching method of metabolites 

acquisition for an environmental DI FT-ICR MS based metabolomics study. This tool was 
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invaluable for reassuring the experimentalists that the peaks measured in biological extracts were 

in fact specific to those extracts. Although being designed to address very specific issues, both of 

these methods offer further useful applications to metabolomics data processing and analysis. 

Hypothesis generating studies, in particular aimed at identifying potential biomarkers of disease, 

deal with lists of potentially interesting peaks that may be ranked according to some criteria of 

interest (p values, loadings values etc.). These can be considered in the light of ordered sets and 

easily compared using the developed similarity metric. Peak lists can also be easily visualised and 

compared to a reference (e.g. control) peaks list. Both of these tools are now used by researchers 

at the Environmental Metabolomics Research Laboratory, University of Birmingham. Currently, 

the similarity metric and the visualisation tool are implemented under R and Matlab respectively. 

Future work will be focused on creating an R package containing both of these developed tools 

that can be freely distributed and easily used. 

6.4 Concluding remarks  

 Thesis objectives have been successfully met, both for the optimizing data processing pipeline 

and contributing towards OLT study. I have developed numerous approaches and algorithms that 

were reported in publications. These included a research into choosing optimal missing data 

estimation strategy (Hrydziuszko and Viant 2011) and introducing a novel approach of missing 

data handling prior univariate data analysis (in preparation). In addition, a similarity metrics was 

developed to support the studies on missing data (Hrydziuszko and Viant 2011) and a 

visualisation tool that supported the metabolomics investigation (Taylor, Weber et al. 2009). I 

have also assessed the applicability of the DI FT-ICR MS based metabolomics for a clinical study 

of OLT (Hrydziuszko, Silva et al. 2010). These developments and results are now in routine use 
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Environmental Metabolomics Research Laboratory, University of Birmingham, informing data 

processing and analysis of new studies.  
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SM: Occurrence and distribution patterns of missing data 

 

 

 
Figure A1 Boxplots of the amount of missing data per biological group for various settings of the sample filter 

(part of the 3-step noise filtering algorithm) for a) DM (with C: control and DNP: dinitrophenol-treated groups) 

and b) HL (with CP: cold phase and PR: post reperfusion groups). Noise filtering strategies may hinder or 

introduce significant differences between biological groups, e.g. reducing the difference between the biological 

groups for the HL dataset. 
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SM: Impact of missing data imputation on univariate data analysis 
 
Table A1 Number of significantly changed peaks identified after imputing missing data with eight missing data 

estimation algorithms. 
  S HM M MED KNN BPCA MI REP MEAN RSD 

CCLn 

SP [%] 12.83 12.63 3.08 3.02 14.70 2.65 11.05 5.09 8.13 63.21 

SP with MV[%] 70.68 70.32 29.86 28.99 72.62 24.73 68.21 50.72 52.01 40.71 

SDP with MV[%] 41.76 41.30 7.06 6.60 46.26 5.46 42.00 22.68 26.64 68.24 

CCLp 

SP [%] 10.20 10.09 0.91 0.89 6.75 0.58 3.14 2.69 4.41 92.01 

SP with MV[%] 83.84 83.66 39.02 37.50 80.53 15.38 70.21 68.60 59.84 43.14 

SDP with MV[%] 51.42 51.05 8.40 6.81 53.89 1.28 42.32 31.86 30.88 71.90 

DM 
 

SP [%] 14.18 14.20 7.44 7.70 10.13 9.27 9.03 13.20 10.64 26.44 

SP with MV[%] 49.58 49.66 23.72 25.70 37.65 33.68 32.98 47.11 37.51 27.61 

SDP with MV[%] 14.55 14.54 2.96 3.17 7.76 6.77 6.83 12.36 8.62 54.26 

HL 

SP [%] 14.24 13.85 2.11 1.72 5.93 4.10 3.10 10.69 6.97 74.70 

SP with MV[%] 85.99 85.60 39.47 32.26 70.09 63.51 55.36 80.83 64.14 32.03 

SDP with MV[%] 28.65 28.49 6.39 3.00 20.16 22.68 11.73 26.28 18.42 54.91 

SP [%], number of Significantly-changed Peaks (percentage in respect to the number of all peaks in the dataset). 

SP with MV [%], Number of SP with missing values (MV) [%] (percentage of significantly changed peaks 

containing at least one missing value across all samples with respect to the number of all significantly changed 

peaks). SDP with MV [%], Number of SDP with missing values [%] (specifically the percentage of Data Points 

with missing values in the Significantly-changed peaks, with respect to all data points in the significantly 

changed peaks). 
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Figure A2 Comparison of the eight missing value estimation methods based upon the hierarchical clustering 

(Euclidean distance, agglomeration method: complete) of the significantly changed peaks from univariate 

analysis of the a) CCLn, b) CCLp, c) DM and d) HL datasets. 
 

 

 
Table A2 Numerical values derived from the hierarchical clustering in Figure A2, showing the similarities 

between the eight missing value estimation methods in terms of which peaks were found to change significantly 

using univariate analysis. 

  S HM M MED KNN BPCA MI REP 

CCLp \ CCLn 

S 100.00 97.51 23.28 22.96 40.27 20.27 41.21 35.65 

HM 97.61 100.00 23.65 23.33 39.85 20.60 41.09 36.52 

M 8.71 8.81 100.00 95.33 20.45 83.64 26.01 57.75 

MED 8.50 8.59 92.86 100.00 20.18 85.24 25.98 57.95 

KNN 20.99 21.35 12.05 11.73 100.00 18.06 37.97 24.61 

BPCA 5.68 5.74 63.41 65.00 8.22 100.00 23.36 50.85 

MI 16.76 16.93 22.15 21.48 19.03 18.44 100.00 31.16 

 REP 22.15 22.65 33.88 33.06 21.49 21.49 31.66 100.00 

HL \ DM 

 S HM M MED KNN BPCA MI REP 

S 100.00 99.83 45.59 47.59 56.44 51.38 55.84 70.73 

HM 97.28 100.00 45.51 47.51 56.36 51.31 56.00 70.88 

M 14.34 14.74 100.00 95.38 69.04 73.95 72.75 52.20 

MED 12.06 12.40 68.29 100.00 71.56 74.51 73.33 53.59 

KNN 37.36 38.37 33.03 28.97 100.00 73.56 72.90 64.26 

BPCA 23.97 23.66 41.77 36.36 36.09 100.00 74.15 57.96 

MI 21.32 21.91 59.32 52.63 48.18 38.30 100.00 59.22 

 REP 65.44 66.54 18.46 16.06 45.63 25.35 27.69 100.00 

Highlighted in yellow, values for CCLn and DM, in blue for CCLp and HL. 
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Figure A3 Percentage of peaks having zero up to the maximum number of missing values per sample (i.e. up to 

16 for this CCLn dataset) considering only those peaks that significantly changed (univariate analysis), for each 

of the eight estimation methods; a) shows distribution plots for each method, b) equivalent information presented 

as stacked boxplots. 

 
 

 

 
Figure A4 Boxplots (stacked) showing the percentage of significantly changed peaks containing various 

amounts of missing values per sample, ranging from zero (in blue) up to 15, 10 and 7 (in brown) for the a) CCLp, 

b) DM and c) HL datasets respectively. 
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Table A3 The five most commonly occurring patterns of missing values across samples for the significantly 

changed peaks identified after missing data estimation with the eight methods. 

 Pattern/percentage 

 1 2 3 4 5 

CCLn 

S 000 / 29.32* 266 / 23.98 166 / 8.64 066 / 6.59 126 / 5.34 

HM 000 / 29.68 266 / 23.67 166 / 8.78 066 / 6.58 016 / 4.97 

M 000 / 70.14 001 / 8.06 006 / 7.11 016 / 3.79 003 / 2.84 

MED 000 / 71.01 001 / 7.73 006 / 7.25 016 / 3.86 003 / 2.90 

KNN 000 / 27.38 366 / 21.13 266 / 9.42 236 / 7.24 336 / 5.85 

BPCA 000 / 75.27 001 / 7.14 006 / 7.14 003 / 2.75 016 / 2.75 

MI 000 / 31.79 366 / 18.60 266 / 7.65 236 / 6.46 136 / 4.22 

REP 000 / 49.28 066 / 9.46 006 / 7.16 001 / 4.87 016 / 4.58 

CCLp 

S 266 / 31.00 000 /16.16 166 / 12.45 066 / 7.86 036 / 7.64 

HM 266 / 30.46 000 /16.34 166 / 12.58 066 / 7.95 036 / 7.51 

M 000 / 60.98 001 /9.76 003 / 7.32 002 / 4.88 006 / 4.88 

MED 000 / 62.50 001 /10.00 003 / 10.00 002 / 5.00 006 / 5.00 

KNN 366 / 36.63 000 / 19.47 266 / 7.92 236 / 5.94 336 / 3.96 

BPCA 000 / 84.62 001 / 11.54 003 / 3.85 002 / 0.00 011 / 0.00 

MI 000 / 29.79 366 / 19.86 066 / 6.38 036 / 4.96 236 / 4.96 

REP 000 / 31.40 066 / 14.88 001 / 7.44 036 / 6.61 003 / 5.79 

DM 

S 00 / 50.42 01 / 6.22 03 / 4.37 04 / 4.03 02 / 3.53 

HM 00 / 50.34 01 / 6.21 03 / 4.36 04 / 4.03 02 / 3.69 

M 00 / 76.28 01 / 9.29 03 / 2.56 02 / 2.24 12 / 2.24 

MED 00 / 74.30 01 / 9.91 03 / 3.41 02 / 2.48 12 / 2.17 

KNN 00 / 62.35 01 / 9.41 03 / 3.53 02 / 3.06 04 / 2.59 

BPCA 00 / 66.32 01 / 9.25 02 / 3.08 03 / 2.57 12 / 2.57 

MI 00 / 67.02 01 / 9.23 02 / 3.69 03 / 3.43 04 / 2.37 

REP 00 / 52.89 01 / 8.3 03 / 3.79 02 / 3.07 04 / 3.07 

HL 

S 00 / 14.01 05 / 12.45 16 / 11.67 06 / 9.73 01 /8.56 

HM 00 / 14.40 16 / 11.60 05 / 11.20 06 / 10.00 01 /8.80 

M 00 / 60.53 01 / 13.16 13 / 7.89 02 / 5.26 11 /5.26 

MED 00 / 67.74 01 / 25.81 11 / 3.23 12 / 3.23 02 /0.00 

KNN 00 / 29.91 01 / 11.21 16 / 9.35 02 / 7.48 03 / 7.48 

BPCA 00 / 36.49 07 / 22.97 01 / 8.11 12 / 5.41 13 / 5.41 

MI 00 / 44.64 01 / 17.86 02 / 7.14 03 / 5.36 13 / 5.36 

REP 00 / 19.17 16 / 11.40 01 / 9.84 03 / 7.25 05 / 7.25 

*Pattern 000 corresponds to no missing data for none of the 3 groups; pattern 266 corresponds to 2 missing values in one 

of the groups and 6 missing values in each of the two remaining groups. The number after the slash represents the 

percent occurrence of the pattern. 
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Table A4 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the significantly different peaks between the control and two drug treated groups) in the CCLn dataset, after 

estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Drug metabolism X* X X X X - X X 

Purine metabolism, Glycerophospholipid metabolism X X - - X - X X 

Sulfur metabolism X X - - X - - X 

Lysine degradation, Histidine metabolism, Amino sugar and nucleotide 
sugar metabolism, Phenylalanine metabolism, D-Arginine and D-
ornithine metabolism, Tryptophan metabolism, Pantothenate and 
CoA biosynthesis, Taste transduction 

X X - - X - X - 

Cyanoamino acid metabolism, beta-Alanine metabolism X X - - - - X - 

Ascorbate and aldarate metabolism X X - - - - - X 

Drug metabolism - cytochrome P450 X X - - X - - - 

Nitrogen metabolism, Aminoacyl-tRNA biosynthesis, Nicotinate and 
nicotinamide metabolism 

X X - - - - - - 

Lysine biosynthesis, Pathways in cancer, Prostate cancer, alpha-
Linolenic acid metabolism, Autoimmune thyroid disease, Biosynthesis 
of unsaturated fatty acids 

- - - - X - - - 

Sphingolipid metabolism, Fatty acid biosynthesis, Arachidonic acid 
metabolism 

- - - - - - X - 

* X indicates that a pathway is ‘active’ for this particular method. 

 

 

 

Table A5 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the significantly different peaks between the control and two drug treated groups) in the CCLp dataset, after 

estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Pyrimidine metabolism, Alanine, aspartate and glutamate metabolism X X X X X - X X 

Thiamine metabolism X X - - X - X X 

Butanoate metabolism, Drug metabolism - cytochrome P45 X X - - X - X - 

Galactose metabolism, Glycerolipid metabolism, Purine metabolism, 
Glycine, serine and threonine metabolism, Ubiquinone and other 
terpenoid-quinone biosynthesis, Steroid hormone biosynthesis, 
Sphingolipid metabolism, Neuroactive ligand-receptor interaction, 
Metabolism of xenobiotics by cytochrome P45 

X X - - X - - - 

 Vitamin B6 metabolism, alpha-Linolenic acid metabolism X X - - - - X - 

 Parkinson's disease - - - - X - X X 

beta-Alanine metabolism, Pantothenate and CoA biosynthesis, 
Phenylalanine metabolism, Biotin metabolism, Tyrosine metabolism, 
Fatty acid metabolism, Nicotinate and nicotinamide metabolism 

X X - - - - - - 

Phenylalanine, tyrosine and tryptophan biosynthesis, Taurine and 
hypotaurine metabolism, Oxidative phosphorylation 

- - - - X - - - 

 Amino sugar and nucleotide sugar metabolism - - - - - - X - 

* X indicates that a pathway is ‘active’ for this particular method. 
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SM: Impact of missing data imputation on multivariate data analysis 
 

 
Figure A5 PCA scores plots for the CCLp datasets obtained after estimating missing data with the eight 

methods:  controls (black diamonds), indomethacin treated (red squares), medroxyprogesterone acetate treated 

(green triangles) cancer cells. 

 

 

 
Figure A6 PCA scores plots for the DM datasets obtained after estimating missing data with the eight methods: 

controls (black diamonds), dinitrophenol exposed (red squares) Daphnia magna. 
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Figure A7 PCA scores plots for the HL datasets obtained after estimating missing data with the eight methods: 

cold phase (black diamonds), post-reperfusion (red squares) human liver extracts. 
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Table A6 Influence of missing data estimation algorithms on PCA: variance captured for principal components, 

peaks with missing data, and percentage of missing data out of the top 5% of peaks contributing towards 

separation along PC1 and PC2. 
Datase

t 
PC Parameter S HM M MED KNN BPCA MI REP MEAN RSD 

CCLn 

1 

Variance 17.00 17.60 21.12 21.35 32.13 41.29 23.15 17.09 23.84 36.10 

Peaks with MV 100.00 97.08 17.20 17.78 100.00 7.58 95.04 59.48 61.77 67.42 

MV [%] 56.04 51.21 2.24 2.17 67.33 1.75 64.87 24.78 33.80 86.57 

2 

Variance 15.43 15.49 14.47 14.81 11.14 17.70 20.14 15.70 15.61 16.58 

Peaks with MV 100.00 100.00 37.61 37.90 91.84 7.29 98.54 79.30 69.06 52.45 

MV [%] 60.50 58.08 8.05 7.66 62.89 1.83 70.08 40.51 38.70 73.65 

CCLp 

1 

Variance 17.12 17.78 15.71 17.16 18.66 54.75 21.47 19.11 22.72 57.46 

Peaks with MV 100.00 98.66 42.86 43.75 92.86 31.25 91.52 83.93 73.10 39.21 

MV [%] 58.16 57.51 12.80 12.28 66.17 14.04 63.00 47.89 41.48 58.18 

2 

Variance 14.18 13.83 15.28 15.83 15.82 28.16 13.60 14.34 16.38 29.53 

Peaks with MV 100.00 100.00 41.96 39.73 97.32 29.02 91.96 74.11 71.76 42.14 

MV [%] 59.35 57.99 10.19 7.42 70.41 13.42 61.78 36.66 39.65 65.79 

DM 

1 

Variance 15.28 17.71 26.21 27.38 26.77 66.49 20.57 27.10 28.44 56.52 

Peaks with MV 100.00 100.00 33.33 34.76 40.00 20.00 57.62 60.00 55.71 54.30 

MV [%] 41.55 39.19 4.31 5.17 6.86 3.40 16.60 17.10 16.77 92.46 

2 

Variance 9.51 10.25 12.66 13.23 12.84 8.93 10.90 13.02 11.42 15.13 

Peaks with MV 100.00 100.00 19.05 22.38 31.90 13.33 66.19 61.43 51.79 68.31 

MV [%] 38.12 36.43 2.86 3.33 5.90 1.81 22.10 16.10 15.83 94.91 

HL 

1 

Variance 24.38 28.99 24.49 26.80 30.21 61.82 26.05 36.23 32.37 38.64 

Peaks with MV 100.00 98.89 52.22 54.44 77.78 21.11 84.44 87.78 72.08 37.93 

MV [%] 44.44 37.86 10.40 11.59 23.81 3.97 26.35 28.65 23.38 59.92 

2 

Variance 15.38 17.46 19.92 21.35 21.47 16.92 20.01 20.39 19.11 11.72 

Peaks with MV 100.00 100.00 45.56 53.33 62.22 22.22 73.33 76.67 66.67 40.03 

MV [%] 40.08 36.59 9.52 12.78 15.79 4.21 20.40 20.95 20.04 62.79 
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Figure A8 Hierarchical clustering (Euclidean distance, agglomeration method: complete) for eight different 

imputation methods for the top 5% of peaks contributing towards separation along PC1 for a) CCLn, b) CCLp, c) 

DM and d) HL datasets. 
 

 

 

 
Figure A9 Hierarchical clustering (Euclidean distance, agglomeration method: complete) for eight different 

imputation methods for the top 5% of peaks contributing towards separation along PC2 for  a) CCLn, b) CCLp, c) 

DM and d) HL datasets. 
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Table A7 Numerical values derived from the hierarchical clustering in Figure A8 showing the similarities between the eight 

missing value estimation methods in terms of which peaks contribute towards the separation along PC1. Similarities values 

expressed as Rt and measured between the top 5% peaks contributing towards separation along PC1. 

  S HM M MED KNN BPCA MI REP 

CCLp\ 
CCLn 

S 100.00 76.68 0.87 1.17 27.99 0.58 20.41 6.71 

HM 70.09 100.00 2.62 2.92 14.87 4.08 23.91 9.62 

M 4.46 16.96 100.00 97.08 0.00 21.28 3.50 51.31 

MED 7.56 13.84 84.82 100.00 0.00 20.70 3.79 51.02 

KNN 9.82 8.04 12.50 12.05 100.00 0.00 19.83 3.50 

BPCA 5.80 16.07 25.89 26.34 9.82 100.00 4.96 9.91 

MI 12.05 16.96 13.39 13.39 25.45 14.29 100.00 5.54 

 REP 17.86 34.38 37.95 38.84 16.52 24.11 16.96 100.00 

DM \ 
HL 

 S HM M MED KNN BPCA MI REP 

S 100.00 82.38 1.90 3.33 4.76 3.33 19.05 22.86 

HM 61.11 100.00 5.24 6.67 11.43 6.19 23.33 30.95 

M 3.33 26.67 100.00 96.19 89.52 34.76 63.33 64.29 

MED 5.56 31.11 86.67 100.00 90.95 35.24 65.24 68.10 

KNN 26.67 47.78 62.22 67.78 100.00 35.24 69.52 70.48 

BPCA 2.22 10.00 23.33 23.33 21.11 100.00 33.81 32.38 

MI 22.22 42.22 52.22 55.56 65.56 21.11 100.00 70.48 

 REP 34.44 65.56 50.00 55.56 67.78 21.11 62.22 100.00 

 

The similarity measure is based on the number of overlapping peaks between the two ranked lists (Ra) and the 

order of the peaks in the list (Rb), i.e. if the same peak is present in the two ranked lists being compared, Rb is 

showing the difference in ranks (the positions of the peak) the bigger the value the ranks are more similar (peaks 

occupy similar position in the two ordered lists) (see Chapter 4 for details) 
 
 
 
 
 
 

Table A8 Numerical values derived from the hierarchical clustering in Figure A9 showing the similarities 

between the eight missing value estimation methods in terms of which peaks contribute towards the separation 

along PC2. Similarities values expressed as Rt. 

  S HM M MED KNN BPCA MI REP 

CCLp\CCL

n 

S 100.00 77.84 7.29 7.00 14.29 0.58 21.87 18.66 

HM 64.29 100.00 8.75 8.16 14.58 1.75 19.83 18.95 

M 4.46 9.38 100.00 94.46 11.37 17.78 6.12 41.69 

MED 1.76 4.91 88.39 100.00 11.08 17.78 5.83 43.44 

KNN 13.39 9.38 4.02 4.02 100.00 5.54 20.12 18.95 

BPCA 1.79 12.50 24.55 22.32 2.23 100.00 1.46 10.50 

MI 16.96 18.30 12.50 10.27 16.07 21.88 100.00 12.83 

 REP 6.70 14.29 47.32 49.55 8.04 14.29 9.82 100.00 

DM \ HL 

 S HM M MED KNN BPCA MI REP 

S 100.00
0 

80.00 0.48 1.90 2.38 0.95 20.48 7.14 

HM 71.11 100.00 1.90 4.29 4.76 3.81 20.00 13.33 

M 1.11 4.44 100.00 92.38 83.81 22.86 44.76 40.95 

MED 2.22 8.89 75.56 100.00 88.10 24.76 45.24 47.14 

KNN 4.44 10.00 68.89 83.33 100.00 22.38 46.19 48.10 

BPCA 0.00 1.11 21.11 16.67 13.33 100.00 10.95 15.71 

MI 5.56 8.89 56.67 63.33 65.56 8.89 100.00 23.33 

 REP 13.33 21.11 51.11 65.56 71.11 3.33 58.89 100.00 
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Figure A10 Boxplots (stacked) showing percentage out of top 5% of peaks contributing towards separation 

along PC1 containing various amounts of missing values per sample, ranging from zero (in blue) up to 15, 15, 10 

and 7 (in brown) for the CCLn, CCLp, DM and HL datasets respectively. 

 
Figure A11 Boxplots (stacked) showing percentage out of top 5% of peaks contributing towards separation 

along PC2 containing various amounts of missing values per sample, ranging from zero (in blue) up to 15, 15, 10 

and 7 (in brown) for the CCLn, CCLp, DM and HL datasets respectively. Distributions for PC1 (Figure A10) and 

for PC2 are shifted towards the middle and to the right, i.e. towards the larger number of missing data across the 

analysed samples when compared with the univariate equivalents.  



 

156 
 

Table A9 The five most commonly occurring patterns of missing values across samples for the top 5% of peaks 

contributing towards separation along PC1 after missing data estimation with the eight methods. 

  
Pattern / Percentage 

S HM M MED KNN BCPA MI REP 

CCLn 

1 266 / 15.45 266 / 9.62 000 / 82.8 000 / 82.22 663 / 15.16 000 / 92.42 366 / 13.70 000 /40.52 

2 066 / 8.45 066 / 8.45 100 / 5.83 100 / 6.12 633 / 11.95 100 / 1.46 636 / 13.70 100 /6.12 

3 166 / 7.58 166 / 7.00 001 / 2.33 001 / 2.33 636 / 8.75 001 / 1.17 663 / 8.16 366 /3.21 

4 622 / 7.29 600 / 4.96 010 / 1.75 010 / 1.46 622 / 7.58 110 / 0.87 626 / 5.54 663 /3.21 

5 612 / 6.41 610 / 4.37 101 / 1.46 101 / 1.46 632 / 7.58 010 / 0.58 000 / 4.96 636 /2.62 

CCLp 

1 661 / 17.41 336 / 8.48 000 / 57.14 000 / 56.25 663 / 26.34 000/ 68.75 663 / 18.30 000 / 16.07 

2 631 / 10.71 66 / 8.04 336 / 7.59 010 / 6.25 636 / 12.50 336 / 4.02 366 / 14.29 366 / 10.27 

3 066 / 8.04 661 / 8.04 010 / 5.80 326 / 2.68 366 / 9.38 636 / 4.02 662 / 10.27 336 / 9.38 

4 226 / 6.25 631 / 6.7 100 / 1.79 100 / 1.79 662 / 8.93 010 / 3.57 000 / 8.48 636 / 8.93 

5 136 / 5.80 660 / 5.36 110 / 1.79 110 / 1.79 000 / 7.14 366 / 1.79 633 / 6.70 663 / 4.46 

DM 

1 28 / 5.71 70 / 4.76 00 / 66.67 00 / 65.24 00 / 60.00 00 / 80.00 00 / 42.38 00 /40.00 

2 18 / 5.24 18 / 4.76 10 / 6.67 10 / 6.67 10 / 6.19 01 / 3.81 10 / 4.76 10 / 3.81 

3 70 / 4.76 61 / 4.29 01 / 5.71 01 / 5.24 01 / 4.76 10 / 3.33 20 / 4.29 01 / 3.81 

4 61 / 4.76 91 / 4.29 02 / 2.86 02 / 2.86 20 / 3.33 02 / 1.90 01 / 2.86 11 / 2.38 

5 91 / 4.76 19 / 4.29 11 / 2.86 11 / 2.38 02 / 2.86 11 / 1.43 11 / 2.38 20 / 2.38 

HL 

1 60 / 21.11 16 / 18.89 00 / 47.78 00 /45.56 00 / 22.22 00 / 78.89 00 / 15.56 16 / 13.33 

2 16 / 18.89 13 / 10.00 01/ 10.00 13/10.00 13/ 10.00 01 / 5.56 13 / 8.89 00 / 12.22 

3 70 / 18.89 15 / 10.00 13/ 10.00 01 /8.89 01 / 7.78 10 / 3.33 01 / 7.78 13 / 12.22 

4 50 / 12.22 50 / 7.78 10 / 8.89 10 /7.78 15 / 7.78 03 / 2.22 14 / 7.78 01 / 7.78 

5 15/ 10.00 70 / 7.78 14 / 5.56 14 /5.56 16 / 7.78 22 / 2.22 60 / 6.67 14 / 6.67 

 

 

 

Table A10 The five most commonly occurring patterns of missing values across samples for the top 5% of peaks 

contributing towards separation along PC2 after missing data estimation with the eight methods. 

 
Pattern / Percentage 

S HM M MED KNN BCPA MI REP 

CCLn 

1 626 / 13.12 662 / 7.87 000 / 62.39 000 / 62.10 366 / 16.91 000 / 92.71 663 / 25.66 000 / 20.7 

2 661 / 10.20 661 / 7.00 010 / 5.54 010 / 4.66 663 / 10.79 010 / 0.87 662 / 10.5 066 / 6.41 

3 662 / 8.16 626 / 5.54 060 / 2.92 100 / 2.92 662 / 8.75 100 / 0.87 636 / 7.29 366 /  4.37 

4 361 / 7.00 361 / 5.25 100 / 2.33 060 / 2.92 000 / 8.16 001 / 0.58 366 / 7.00 060 / 3.50 

5 362 / 4.96 606 / 4.37 001 / 2.04 001 / 1.75 266 / 5.25 110 / 0.58 336 / 4.66 166 / 3.50 

CCLp 

1 626 / 16.07 636 / 10.71 000 / 58.04 000/ 60.27 366 / 20.09 000 / 70.98 366 / 12.95 000 / 25.89 

2 636 / 10.27 626 / 8.04 010 / 9.82 010 / 10.27 663 / 16.07 336 / 7.59 663 / 12.95 366 /9.38 

3 360 / 7.14 360 / 5.36 100 / 1.79 100 / 2.23 636 / 11.61 010 / 3.13 636 / 11.61 010 / 5.80 

4 261 / 6.70 066 / 5.36 020 / 1.79 020 / 1.79 362 / 7.59 366 / 2.68 000 / 8.04 066 / 5.80 

5 262 / 6.70 261 / 4.91 002 / 1.34 001 / 1.34 662 / 4.91 326 / 1.34 336 / 4.91 663 / 4.02 

DM 

1 44 / 7.14 44 / 7.62 00 / 80.95 00 / 77.62 00 / 68.1 00 / 86.67 00 / 33.81 00 / 38.57 

2 46 / 7.14 46 / 5.71 01 / 4.76 01 / 4.76 10 / 4.76 10 / 2.86 46 / 5.71 10 / 6.67 

3 34 / 5.24 55 / 4.76 10 / 2.38 10 / 3.81 01 / 4.76 01 / 2.86 01 / 3.81 20 / 3.81 

4 64 / 5.24 12 / 4.29 11 / 1.43 32 / 1.90 11 / 2.86 02 / 1.90 55 / 3.81 01 / 3.33 

5 55 / 5.24 32 / 4.29 20 / 1.43 11 / 1.43 20 / 2.38 11 / 0.95 11 / 3.33 21 / 2.86 

HL 

1 43 / 23.33 23 / 16.67 00 / 54.44 00 / 46.67 00 / 37.78 00 / 77.78 00 / 26.67 00 / 23.33 

2 23 / 16.67 42 / 13.33 01 / 8.89 01 / 7.78 01 / 8.89 01 / 5.56 01/ 10.00 01/ 10.00 

3 33 / 15.56 43 / 11.11 30 / 6.67 30 / 7.78 30 / 6.67 13 / 3.33 30 / 6.67 42 / 6.67 

4 42 / 10.00 33 / 10.00 20 / 5.56 20 / 5.56 20 / 5.56 14 / 3.33 20 / 4.44 20 / 5.56 

5 12 / 5.56 13 / 8.89 10 / 3.33 10 / 4.44 60 / 4.44 10 / 2.22 03 / 4.44 11 / 5.56 

The most commonly occurring missing data sample patterns (in Table A9 and Table A10) included missing 

entries within a large proportion of the samples per biological group, for the majority of the estimation 

algorithms. The only exceptions resulted from methods M and MED, for which single missing data entries were 

dominant. 
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Table A11 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the top 5% of peaks contributing towards separation along PC1 between the control and two drug treated groups) 

in the CCLn dataset, after estimating the missing values with eight different algorithms. 
KEGG pathway S HM M MED KNN BPCA MI REP 

 Sphingolipid metabolism X X X X - X X X 

 Purine metabolism X X - X X X X X 

 Pyrimidine metabolism X X - - - X X X 

 Glycine, serine and threonine metabolism X X - - X X X - 

 Drug metabolism X X - - X - X X 

 Amino sugar and nucleotide sugar metabolism, Histidine metabolism X X - - X - X - 

 Cysteine and methionine metabolism, ABC transporters X X - - - X X - 

 Ascorbate and aldarate metabolism, Nicotinate and nicotinamide 
metabolism 

X X - - - X - - 

 Fatty acid biosynthesis - - - - - X X X 

 Lysine degradation X - - - X - X - 

 Arginine and proline metabolism X - - - - X X - 

 Glutathione metabolism - X - - - X X - 

 Drug metabolism - cytochrome P450 X X - - X - - - 

 Pyruvate metabolism X X - - - - - - 

 Arachidonic acid metabolism - X - - - - X - 

 Biosynthesis of unsaturated fatty acids - - - - - X - X 

 Phenylalanine metabolism - - - - X - X - 

 Pentose phosphate pathway, Pentose and glucuronate 
interconversions, Glycerolipid metabolism, Glycerophospholipid 
metabolism, Tryptophan metabolism, Phenylalanine, tyrosine and 
tryptophan biosynthesis, beta-Alanine metabolism, Selenoamino acid 
metabolism, Pantothenate and CoA biosynthesis, Metabolism of 
xenobiotics by cytochrome P450, Aminoacyl-tRNA biosynthesis, 
Neuroactive ligand-receptor interaction, Taste transduction 

- - - - - X - - 

 alpha-Linolenic acid metabolism, Cyanoamino acid metabolism - - - - - - X - 

 Alanine, aspartate and glutamate metabolism - - - - - - - X 

 Lysine biosynthesis - - - - X - - - 
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Table A12 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on the top 5% 

of peaks contributing towards separation along PC2 between the control and two drug treated groups) in the CCLn dataset, 

after estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Pentose and glucuronate interconversions - X X X X X X X 

Purine metabolism X X X X - X X X 

Cysteine and methionine metabolism, ABC transporters X X X X X X - X 

Sphingolipid metabolism - X X X - X X X 

Pyrimidine metabolism - - X X X - X X 

Glutathione metabolism - - X X X X - X 

Pyruvate metabolism, Alanine, aspartate and glutamate metabolism - - X X - - X X 

Drug metabolism - other enzymes X - X X - - X - 

Amino sugar and nucleotide sugar metabolism X X - - - X - - 

Sulfur metabolism X X - - - - - X 

Biosynthesis of unsaturated fatty acids - - - X X X - - 

Arginine and proline metabolism, Tryptophan metabolism, Neuroactive 
ligand-receptor interaction 

- - X X - X - - 

Histidine metabolism - - X X - - X - 

Tyrosine metabolism - - X X - - - X 

Ascorbate and aldarate metabolism, Glycerophospholipid metabolism, 
Glycine, serine and threonine metabolism 

- - - - - X - X 

Nicotinate and nicotinamide metabolism - - - - - X X - 

Pantothenate and CoA biosynthesis - - X - X - - - 

Metabolism of xenobiotics by cytochrome P450 X X - - - - - - 

Fatty acid biosynthesis, Fatty acid metabolism, Steroid biosynthesis, 
Glycerolipid metabolism, Selenoamino acid metabolism, Terpenoid 
backbone biosynthesis, Aminoacyl-tRNA biosynthesis 

- - - - - X - - 

Arachidonic acid metabolism, Lysine degradation, Phenylalanine 
metabolism, Autoimmune thyroid disease 

- - - - - - X - 

alpha-Linolenic acid metabolism - - - - X - - - 
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Table A13 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the top 5% of peaks contributing towards separation along PC1 between the control and two drug treated groups) 

in the CCLp dataset, after estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Pyrimidine metabolism, Alanine, aspartate and glutamate metabolism X X X X X - X X 

Drug metabolism - cytochrome P450 - X X X X X X X 

Glycolysis / Gluconeogenesis X X X X X - X - 

Ether lipid metabolism X - X X X - X X 

Glycine, serine and threonine metabolism X X X X X X - - 

Cysteine and methionine metabolism X - X X X X X - 

beta-Alanine metabolism X X X X - X X - 

Sphingolipid metabolism - - X X X X - X 

Linoleic acid metabolism X X X X - - - X 

Purine metabolism, Glutathione metabolism, ABC transporters - - X X - X X X 

Taurine and hypotaurine metabolism - - X X X X X - 

Arginine and proline metabolism - - X X - X - X 

Butanoate metabolism - X - - X - X - 

Primary bile acid biosynthesis - - X - - X - X 

Phenylalanine metabolism, Thiamine metabolism, Metabolism of 
xenobiotics by cytochrome P450 

X X - - - X - - 

D-Arginine and D-ornithine metabolism - - X X X - - - 

Vitamin B6 metabolism - - X X - - X - 

Retinol metabolism, Epithelial cell signalling in Helicobacter pylori 
infection 

- - X X - - - X 

Limonene and pinene degradation - X - - - X X - 

Neuroactive ligand-receptor interaction - - X - X X - - 

Oocyte meiosis, Progesterone-mediated oocyte maturation, Pathways 
in cancer, Prostate cancer 

X X - - - - X - 

Pentose and glucuronate interconversions, Fatty acid biosynthesis, 
Fatty acid metabolism 

- - X X - - - - 

Galactose metabolism, Glycerolipid metabolism, Pantothenate and 
CoA biosynthesis 

X X - - - - - - 

Steroid biosynthesis - - - X - - - X 

Arachidonic acid metabolism - X - - - - - X 

alpha-Linolenic acid metabolism - - - X - - X - 

Valine, leucine and isoleucine degradation - X - - - X - - 

Ascorbate and aldarate metabolism, Amino sugar and nucleotide sugar 
metabolism, Histidine metabolism 

- - - - - - X - 

Oxidative phosphorylation, Lysine degradation, Tryptophan 
metabolism, Parkinson's disease 

- - - - - X - - 

Phenylalanine, tyrosine and tryptophan biosynthesis, Ubiquinone and 
other terpenoid-quinone biosynthesis 

- - - - X - - - 
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Table A14 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the top 5% of peaks contributing towards separation along PC2 between the control and two drug treated groups) 

in the CCLp dataset, after estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Pentose and glucuronate interconversions - X X X X X X X 

Purine metabolism X X X X - X X X 

Cysteine and methionine metabolism, ABC transporters X X X X X X - X 

Sphingolipid metabolism - X X X - X X X 

Pyrimidine metabolism - - X X X - X X 

Glutathione metabolism - - X X X X - X 

Pyruvate metabolism, Alanine, aspartate and glutamate metabolism - - X X - - X X 

Drug metabolism - other enzymes X - X X - - X - 

Amino sugar and nucleotide sugar metabolism X X - - - X - - 

Sulfur metabolism X X - - - - - X 

Biosynthesis of unsaturated fatty acids - - - X X X - - 

Arginine and proline metabolism, Tryptophan metabolism, 
Neuroactive ligand-receptor interaction 

- - X X - X - - 

Histidine metabolism - - X X - - X - 

Tyrosine metabolism - - X X - - - X 

Ascorbate and aldarate metabolism, Glycerophospholipid metabolism, 
Glycine, serine and threonine metabolism 

- - - - - X - X 

Nicotinate and nicotinamide metabolism - - - - - X X - 

Pantothenate and CoA biosynthesis - - X - X - - - 

Metabolism of xenobiotics by cytochrome P450 X X - - - - - - 

Fatty acid biosynthesis, Fatty acid metabolism, Steroid biosynthesis, 
Glycerolipid metabolism, Selenoamino acid metabolism, Terpenoid 
backbone biosynthesis, Aminoacyl-tRNA biosynthesis 

- - - - - X - - 

Arachidonic acid metabolism, Lysine degradation, Phenylalanine 
metabolism, Autoimmune thyroid disease 

- - - - - - X - 

alpha-Linolenic acid metabolism - - - - X - - - 
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Table A 15 Summary of which KEGG human pathways are ‘active’ (i.e. observed with 75% likelihood based on 

the top 5% of peaks contributing towards separation along PC1 between the cold phase and post-reperfusion 

groups) in the HL dataset, after estimating the missing values with eight different algorithms. 

KEGG pathway S HM M MED KNN BPCA MI REP 

Sphingolipid metabolism X X X X X X X - 

Primary bile acid biosynthesis - - X X X X X X 

Glycerophospholipid metabolism X - X X X X X - 

Glycine, serine and threonine metabolism, Cysteine and methionine 
metabolism 

X X X X - X X - 

Arginine and proline metabolism - X X X X - X X 

Aminoacyl-tRNA biosynthesis X X X X - - X - 

Purine metabolism - X - - - X X X 

Alanine, aspartate and glutamate metabolism X X - - - - X X 

Lysine degradation X - - - X X X - 

ABC transporters - - X X - X X - 

Neuroactive ligand-receptor interaction X X X - - - X - 

Metabolism of xenobiotics by cytochrome P450 X X - - - - - X 

Histidine metabolism, beta-Alanine metabolism - - X X - - - - 

Glutathione metabolism - - - - - X X - 

Calcium signalling pathway, Fc gamma R-mediated phagocytosis X X - - - - - - 

Glyoxylate and dicarboxylate metabolism, Nitrogen metabolism, 
Cyanoamino acid metabolism, Thiamine metabolism, Nicotinate and 
nicotinamide metabolism 

- - - - - - X - 

Oxidative phosphorylation, Taurine and hypotaurine metabolism, 
Parkinson's disease 

- - X - - - - - 

Ether lipid metabolism, Arachidonic acid metabolism, Phenylalanine 
metabolism 

- - - - - X - - 

Valine, leucine and isoleucine degradation - X - - - - - - 
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SM: Missing data imputation algorithms performance 

 
 

 
Figure A12 Analyses of four DI FT-ICR MS datasets after first introducing and then estimating missing data in 

the ‘complete’ datasets as MCAR (average of 100 runs). Boxplots of NRMSE values for the a) CCLn, b) CCLp, 

c) DM and d) HL datasets; boxplots of area under ROC curves (AUC) for e) CCLn, f) CCLp, g) DM and h) HL 

datasets; and distribution of p values (ANOVA or t test on PC scores) for i) CCLn (PC2 axis), j) CCLp (PC2 

axis), k) DM (PC1 axis) and l) HL (PC1 axis) datasets, where the vertical lines indicate the p values for the 

complete datasets and therefore represent the ideal result following missing value estimation. 
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Figure A13 PCA scores plots on the ‘complete’ datasets (i.e. after excluding any peaks that have missing values) 

for a) CCLn, b) CCLp, c) DM and d) HL datasets. Symbols as defined in Figures A5-A7. 
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Table A16 Mean NRMSE and corresponding relative standard deviation (RSD) values for N=100 runs when introducing missing data as MCAR and MNAR; 

complementary to the Figure 5 and Figure A13 boxplots.  
MEAN S HM M MED KNN BPCA MI REP 

CCLn 0.47, 0.16* 0.47, 0.16 0.10, 0.03 0.10, 0.03 0.19, 0.07 0.11, 0.03 0.17, 0.12 1.02, 0.34 

CCLp 0.53, 0.22 0.53, 0.22 0.23, 0.09 0.23, 0.09 0.39, 0.15 0.31, 0.10 0.29, 0.20 0.97, 0.38 

DM 0.38, 0.15 0.38, 0.15 0.10, 0.03 0.11, 0.03 0.18, 0.06 0.06, 0.02 0.10, 0.04 0.87, 0.29 

HL 0.48, 0.18 0.48, 0.18 0.27, 0.10 0.27, 0.10 0.44, 0.15 0.29, 0.08 0.29, 0.08 0.86, 0.28 

RSD S HM M MED KNN BPCA MI REP 

CCLn 9.51, 23.85 9.52, 23.95 12.41, 30.9 14.00, 35.53 19.77, 34.31 21.86, 44.75 23.78, 25.53 16.21, 42.39 

CCLp 13.35, 26.74 13.36, 26.77 33.03, 72.06 36.07, 79.08 15.16, 35.74 49.03, 89.91 26.87, 51.31 19.92, 44.24 

DM 15.34, 34.8 15.34, 34.8 22.08, 48.94 25.46, 52.87 22.11, 48.04 21.82, 36.33 33.97, 61.35 22.76, 55.65 

HL 22.51, 56.11 22.51, 56.12 25.35, 60.12 29.00, 66.19 25.75, 68.5 47.42, 51.99 47.42, 51.99 24.15, 68.05 

* First value corresponds to MCAR, the second to MNAR 

 

 

 

Table A17 Mean AUC and corresponding relative standard deviation (RSD) values for N=100 runs when introducing missing data as MCAR and MNAR, 

complementary to the Figure 5 and Figure A13 boxplots. 
MEAN S HM M MED KNN BPCA MI REP 

CCLn 0.64, 0.8* 0.65, 0.81 0.98, 0.93 0.97, 0.95 0.97, 0.91 0.90, 0.92 0.89, 0.91 0.57, 0.79 

CCLp 0.69, 0.83 0.7, 0.83 0.97, 0.9 0.96, 0.94 0.95, 0.89 0.79, 0.90 0.85, 0.90 0.62, 0.83 

DM 0.76, 0.83 0.76, 0.83 0.98, 0.97 0.98, 0.97 0.98, 0.97 0.86, 0.92 0.9, 0.90 0.69, 0.79 

HL 0.87, 0.90 0.87, 0.90 0.98, 0.98 0.96, 0.97 0.96, 0.96 0.85, 0.86 0.85, 0.86 0.78, 0.83 

RSD S HM M MED KNN BPCA MI REP 

CCLn 3.45, 2.31 3.39, 2.30 0.37, 1.24 0.42, 0.86 0.62, 1.35 1.96, 1.81 1.69, 1.52 4.23, 2.41 

CCLp 6.03, 4.02 6.27, 3.96 0.97, 3.32 1.25, 1.66 1.78, 3.10 6.81, 2.97 4.19, 2.48 7.96, 4.88 

DM 2.12, 1.58 2.1, 1.56 0.27, 0.45 0.27, 0.44 0.22, 0.52 2.67, 1.64 1.35, 1.39 2.12, 2.39 

HL 3.03, 3.22 3.03, 3.18 0.92, 0.80 1.66, 1.11 2.05, 1.96 5.65, 3.91 5.65, 3.91 5.38, 4.79 

* First value corresponds to MCAR, the second to MNAR
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Table A18 P values (from t test or ANOVA) with corresponding RSD values for the PC1 and PC2 scores for the four datasets when introducing missing data as 

MCAR; complementary to the Figure A13 boxplots. 

 
MEAN RSD [%] 

CCLn CCLp DM HL CCLn CCLp DM HL 

PC1 

S 0.51 0.50 0.46 0.47 52.33 66.03 64.43 58.67 

HM 0.42 0.41 0.10 0.15 85.02 74.24 173.03 154.58 

M 0.41 0.20 0.00 0.00 5.09 82.85 35.25 420.16 

MED 0.39 0.12 0.00 0.01 4.74 123.64 31.51 502.77 

KNN 0.41 0.51 0.00 0.03 3.13 37.56 26.20 437.61 

BPCA 0.52 0.61 0.00 0.07 31.39 46.32 137.91 213.33 

MI 0.50 0.60 0.00 0.07 50.53 41.03 192.61 213.33 

REP 0.53 0.46 0.27 0.29 59.13 55.74 110.52 96.36 

 CCLn CCLp DM HL CCLn CCLp DM HL 

PC2 

S 0.36 0.47 0.41 0.37 82.73 63.27 69.8 73.8 

HM 0.45 0.49 0.30 0.41 65.30 66.94 94.63 78.03 

M 0.00 0.05 0.07 0.64 151.60 195.22 22.79 44.4 

MED 0.00 0.06 0.06 0.56 143.29 168.45 19.88 54.66 

KNN 0.00 0.01 0.10 0.49 213.50 111.03 13.19 66.43 

BPCA 0.26 0.36 0.67 0.30 110.58 72.57 37.12 101.1 

MI 0.50 0.30 0.57 0.31 56.24 76.83 50.20 101.1 

REP 0.45 0.53 0.26 0.46 59.77 56.14 90.56 65.31 

* Highlighted in blue datasets with no missing data introduced for which for the corresponding PC1 there is a significant difference (at 0.05 level) while performing t test or 

ANOVA on scores values; highlighted in yellow methods for which there is a significant difference after introducing missing data and estimating them with the specific 

method.
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Table A19 P values (from t test or ANOVA) with corresponding RSD values for the PC1 and PC2 scores for the four datasets when introducing missing data as 

MNAR; complementary to the Figure A5 boxplots. 

 
MEAN RSD [%] 

CCLn CCLp DM HL CCLn CCLp DM HL 

PC1 

S 0.41 0.46 0.43 0.37 74.05 63.98 77.98 79.76 

HM 0.27 0.28 0.02 0.04 95.39 94.68 578.34 344.29 

M 0.35 0.08 0.00 0.00 4.27 52.86 29.2 148.98 

MED 0.35 0.06 0.00 0.00 3.97 38.26 26.84 132.04 

KNN 0.42 0.33 0.00 0.00 27.23 61.52 22.41 370.92 

BPCA 0.50 0.75 0.00 0.03 10.07 9.7 30.24 36.8 

MI 0.49 0.73 0.00 0.03 17.64 15.6 85.75 36.8 

REP 0.46 0.70 0.01 0.10 50.47 27.15 289.95 156.12 

 CCLn CCLp DM HL CCLn CCLp DM HL 

PC2 

S 0.52 0.48 0.45 0.46 59.57 64.1 72.35 53.43 

HM 0.28 0.43 0.34 0.27 103.96 72.03 87.31 100.86 

M 0.00 0.03 0.05 0.83 94.68 68.21 15.84 17.19 

MED 0.00 0.04 0.05 0.81 76.94 40.33 14.25 17.05 

KNN 0.00 0.04 0.07 0.72 390.92 222.44 16.86 28.52 

BPCA 0.64 0.12 0.57 0.01 51.01 44.17 22.49 142.09 

MI 0.55 0.11 0.54 0.01 56.86 54.44 38.17 142.09 

REP 0.58 0.18 0.45 0.06 44.44 108.17 57.95 294.54 
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Figure A14 Similarities between the top 5% of peaks contributing towards the separation along PC1 and PC2 

expressed as ODisti, ODistp and ODist when introducing missing data as MCAR; a-c) CCLn for PC2 axis, d-f) 

CCLp for PC2 axis, g-i) DM for PC1 axis, and j-l) HL for PC1 axis. 
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Figure A15 Similarities between the top 5% of peaks contributing towards the separation along PC1 and PC2 

expressed as as ODisti, ODistp and ODist when introducing missing data as MNAR; a-c) CCLn for PC2 axis, d-f) 

CCLp for PC2 axis, g-i) DM for PC1 axis, and j-l) HL for PC1 axis. 
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Table A20 Mean similarity measure expressed as Ra, Rb and Rt across N=100 runs for the top 5% of peaks 

contributing towards separation along PC1 and PC2 while introducing missing data as MCAR and as MNAR. 
   S HM M MED KNN BCPA MI REP 

MCAR 

CCLn (PC2) 

ODisti 0.05 0.07 0.78 0.77 0.78 0.23 0.16 0.11 

ODistp 0.41 0.25 0.68 0.68 0.71 0.13 0.14 0.17 

ODist 0.23 0.16 0.73 0.73 0.75 0.18 0.15 0.14 

CCLp (PC2) 

ODisti 0.06 0.10 0.73 0.71 0.68 0.31 0.29 0.16 

ODistp 0.52 0.44 0.48 0.49 0.42 0.29 0.28 0.36 

ODist 0.29 0.27 0.6 0.60 0.55 0.30 0.29 0.26 

DM (PC1) 

ODisti 0.07 0.16 0.88 0.88 0.93 0.34 0.33 0.16 

ODistp 0.56 0.38 0.66 0.64 0.75 0.21 0.23 0.35 

ODist 0.31 0.27 0.77 0.76 0.84 0.27 0.28 0.25 

HL (PC1) 

ODisti 0.05 0.17 0.75 0.69 0.71 0.21 0.21 0.18 

ODistp 0.48 0.59 0.67 0.68 0.72 0.76 0.75 0.64 

ODist 0.26 0.38 0.71 0.68 0.71 0.48 0.48 0.41 

MNAR 

CCLn (PC2) 

ODisti 0.04 0.07 0.79 0.79 0.30 0.21 0.18 0.14 

ODistp 0.53 0.4 0.75 0.75 0.40 0.13 0.18 0.18 

ODist 0.28 0.24 0.77 0.77 0.35 0.17 0.18 0.16 

CCLp (PC2) 

ODisti 0.04 0.09 0.78 0.77 0.42 0.35 0.31 0.27 

ODistp 0.5 0.45 0.60 0.58 0.35 0.32 0.28 0.31 

ODist 0.27 0.27 0.69 0.67 0.38 0.33 0.30 0.29 

DM (PC1) 

ODisti 0.02 0.24 0.89 0.88 0.93 0.35 0.33 0.3 

ODistp 0.48 0.34 0.75 0.74 0.84 0.19 0.23 0.28 

ODist 0.25 0.29 0.82 0.81 0.88 0.27 0.28 0.29 

HL (PC1) 

ODisti 0.03 0.33 0.85 0.85 0.82 0.21 0.21 0.19 

ODistp 0.27 0.61 0.77 0.75 0.81 0.76 0.76 0.73 

ODist 0.15 0.47 0.81 0.80 0.82 0.49 0.49 0.46 

 

 

 
Table A21 Percentage of estimated missing data whose values are above the applied signal-to-noise ratio (SNR) 

threshold as defined for the original datasets. 

 M MED KNN 

CCLn 94.56 94.62 65.93 

CCLp 70.58 70.98 37.91 

DM 72.29 76.36 57.73 

HL 77.06 76.96 58.3 
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Application of metabolomics to investigate the process of human 

orthotopic liver transplantation: a proof-of-principle study. 

Supplementary Material 



 

171 
 

Contents 
Table B1 Liver function tests 48 hours following OLT ............................................................... 172 

Table B2 Time of microdialysate collection following OLT........................................................ 172 

Table B3 Histology of liver biopsies: steatosis levels (micro and macro) assessed during cold 

phase and post reperfusion .......................................................................................................... 172 

Table B4 Compounds from UW solution found in the liver biopsy mass spectra with other 

possible metabolite assignments. ................................................................................................. 173 

Table B5 Fold changes of compounds from UW solution found in the liver biopsy mass spectra, 

with p values (t test with Benjamini and Hochberg correction for multiple testing). ................. 174 

Table B6 Peaks with putative metabolite assignments and fold changes (post reperfusion / cold 

phase) involved in energy metabolites (based on KEGG database classification). .................... 175 

Table B7 Peaks with putative metabolite assignments and fold changes (post reperfusion / cold 

phase) involved in oxidative phosphorylation (based on KEGG database classification). ........ 176 

Table B8 Top 5% of putatively identified peaks that contribute towards an apparent separation of 

the post reperfusion liver biopsy spectra on the PCA scores plot. .............................................. 177 

Table B9 Peaks identified by Grubbs test as outliers in the post reperfusion phase for patient H8 

that developed IPF....................................................................................................................... 179 

Table B10 Retention times, optimum redox potential and direction of concentration change post 

reperfusion for 19 reproducible peaks detected by CEAD .......................................................... 180 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

172 
 

Table B1 Liver function tests 48 hours following OLT 

Patient 
AST 

[IU/L] 

AKP 

[IU/L] 

Bilirubin 

[μmol/L] 

Urea 

[mg/dL] 

Creatine 

[μmol/L] 
INR 

H1 387 132 85 14 155 1.8 

H2 115 212 122 18.7 203 1 

H3 920 101 44 6.3 125 1.5 

H4 498 106 76 17.3 2.6 1.9 

H5 874 130 103 11.8 161 1.7 

H6 255 184 44 11.4 134 1.2 

H7 291 156 230 17.1 205 1.4 

H8 3939 103 79 16.4 310 1.7 

Abbrevations: AST, aspartate aminotransferase, AKP, INR 

 

Table B2 Time of microdialysate collection following OLT 

Patient TCEAD1 [h] TCEAD2 [h] TCEAD3 [h] TCEAD4 [h] TCEAD5 [h] TCEAD6 [h] TCEAD7 [h] 

H1 5 9 17 21 27 nc 45 

H2 5 9 15 21 27 39 45 

H3 5 9 15 nc 27 39 nc 

H4 6 9 14 21 27 nc 46 

H5 5 9 15 nc 26 40 46 

H6 5 9 15 21 27 39 45 

H7 5 9 15 21 27 39 45 

Abbreviations: nc, not collected 

 
Table B3 Histology of liver biopsies: steatosis levels (micro and macro) assessed during cold phase and post 

reperfusion 

 Cold phase Post reperfusion 

Patient micro [%] macro [%] micro [%] macro [%] 

H1 <5 <5 25 <5 

H2 10-15 <5 50-60 <5 

H3 20 25-30 50 25 

H4 50 5 70 10 

H5 10-15 5 20-25 5 

H6 30 0 60 <5 

H7 35 <5 40 <5 

H8 35 70 50-60 25 
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Table B4 Compounds from UW solution found in the liver biopsy mass spectra with other possible metabolite 

assignments. 

Compound name 
Peak 

index 
Adduct 

Mass error 

(ppm) 
Other metabolites with same accurate mass 

Adenosine 640 [+ H] 0.34 

Deoxyguanosine;  

Adenosine 717 [+ Na] 0.06 

Adenosine 661 [- H ] 0.00 

Adenosine 992 [+ Cl] -0.21 

Adenosine 1019 [+Cl[37]] -0.17 

Adenosine 1274 [+ Hac - H] -0.56 

Allopurinol 64 [+ H] -0.17 

Hypoxanthine 

Allopurinol 113 [+ Na] -0.18 

Allopurinol 191 [+ K] -0.17 

Allopurinol 37 [- H ] -0.11 

Allopurinol 102 [+ Cl] -0.04 

Allopurinol 176 [+ Hac - H] 0.08 

Citrate 379 [+ Na] -0.16 Oxaloacetate;Isocitrate; (1R,2S)-1-

Hydroxypropane-1,2,3-tricarboxylate; 5-Dehydro-

4-deoxy-D-glucarate; 2,5-Didehydro-D-gluconate; 

Carboxymethyloxysuccinate; (4R,5S)-4,5,6-

Trihydroxy-2,3-dioxohexanoate; (1S,2S)-1-

Hydroxypropane-1,2,3-tricarboxylate; 

 

 

 

 

 

Citrate 464 [+ K] 0.10 

Citrate 483 [2Na-H] -0.42 

Citrate 645 [2K -H] 0.29 

Citrate 171 [- H ] -0.06 

Citrate 415 [+ Cl] -0.01 

Glutathione 783 [+ H] 0.24 

- 

Glutathione 865 [+ Na] -0.39 

Glutathione 965 [+ K] -0.24 

Glutathione 1024 [2Na-H] -0.58 

Glutathione 1178 [2K -H] 0.24 

Glutathione 1041 [- H ] 0.04 

Glutathione 1404 [+ Cl] -0.17 

Lactobionic acid 1055 [+ H] -0.26 

- 

Lactobionic acid 1164 [+ Na] 0.24 

Lactobionic acid 1247 [+ K] -0.03 

Lactobionic acid 1295 [2Na-H] -0.01 

Lactobionic acid 1472 [2K -H] 0.05 

Lactobionic acid 1537 [- H ] 0.40 

Mannitol 352 [+ Na] 0.10 

D-Sorbitol; D-Iditol; L-Iditol; Galactitol; L-

Glucitol; 

 

Mannitol 406 [+ K] 0.09 

Mannitol 444 [2Na-H] 0.07 

Mannitol 590 [2K -H] -0.11 

Mannitol 129 [- H ] -0.14 

Mannitol 339 [+ Cl] 0.24 

Mannitol 355 [+Cl[37]] 0.10 

Mannitol 498 [+ Hac - H] 0.14 
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Table B5 Fold changes of compounds from UW solution found in the liver biopsy mass spectra, with p values (t test 

with Benjamini and Hochberg correction for multiple testing). 

Compound name 
Peak 

index 
Adduct 

Fold 

change 
p value 

Adenosine 640 [+H] 1.25 0.688 

Adenosine 717 [+Na] 2.67 0.081 

Adenosine 661 [- H ] 1.89 0.128 

Adenosine 992 [+ Cl] 3.85 0.044 

Adenosine 1019 [+Cl[37]] 4.21 0.042 

Adenosine 1274 [+ Hac - H] 1.76 0.360 

Allopurinol 64 [+H] 0.96 0.921 

Allopurinol 113 [+Na] 0.88 0.685 

Allopurinol 191 [+K] 0.36 0.121 

Allopurinol 37 [- H ] 0.68 0.300 

Allopurinol 102 [+ Cl] 1.14 0.801 

Allopurinol 176 [+ Hac - H] 1.39 0.351 

Citrate 379 [+Na] 0.17 0.182 

Citrate 464 [+K] 0.10 0.167 

Citrate 475 [+K[41]] 0.11 0.199 

Citrate 483 [2Na-H] 0.38 0.178 

Citrate 645 [2K-H] 0.19 0.115 

Citrate 171 [- H ] 0.05 0.049 

Citrate 415 [+ Cl] 0.77 0.585 

Glutathione 783 [+H] 0.61 0.557 

Glutathione 865 [+Na] 0.91 0.865 

Glutathione 965 [+K] 0.79 0.779 

Glutathione 982 [+K[41]] 0.84 0.818 

Glutathione 1024 [2Na-H] 2.58 0.303 

Glutathione 1178 [2K-H] 1.32 0.738 

Glutathione 1041 [- H ] 0.72 0.596 

Glutathione 1404 [+ Cl] 1.19 0.768 

Lactobionic acid 1055 [+H] 0.35 0.324 

Lactobionic acid 1164 [+Na] 0.85 0.726 

Lactobionic acid 1247 [+K] 0.52 0.324 

Lactobionic acid 1259 [+K[41]] 0.52 0.321 

Lactobionic acid 1295 [2Na-H] 1.66 0.513 

Lactobionic acid 1472 [2K-H] 0.64 0.500 

Lactobionic acid 1537 [- H ] 0.41 0.078 

Mannitol 352 [+Na] 0.09 0.048 

Mannitol 406 [+K] 0.06 0.096 

Mannitol 422 [+K[41]] 0.06 0.110 

Mannitol 444 [2Na-H] 0.80 0.636 

Mannitol 590 [2K-H] 0.45 0.243 

Mannitol 129 [- H ] 0.09 0.043 

Mannitol 339 [+ Cl] 0.08 0.049 

Mannitol 355 [+Cl[37]] 0.12 0.044 

Mannitol 498 [+ Hac - H] 0.06 0.044 

Yellow highlighting indicates those compounds with average abundances that were increased post reperfusion, green 

highlighting indicates those compounds that change significantly (p < 0.05) post reperfusion. 
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Table B6 Peaks with putative metabolite assignments and fold changes (post reperfusion / cold phase) involved in energy metabolites (based on KEGG database 

classification). 

Peak 

index 
m/z Fold change p value Formula Putative Metabolite Adduct 

KEGG 

ID 
P [%]* 

1 76.03931 1.69 0.3402 C2H5NO2 Glycine H C00037 100 

21 90.97665 6.42 0.1834 CH2O2 Formate 2*Na-H C00058 100 

46 122.92452 2.47 0.2712 CH2O2 Formate 2*K(39)-H C00058 100 

187 174.89594 2.77 0.2773 H3PO4 Orthophosphate 2*K(39)-H C00009 100 

223 184.05802 2.75 0.3425 C6H11NO4 N-Methyl-L-glutamate Na C01046 66.67 

1541 450.01887 4.77 0.0606 C10H15N5O10P2 ADP Na C00008 66.67 

1653 472.00083 14.02 0.2087 C10H15N5O10P2 ADP 2*Na-H C00008 66.67 

5 81.97013 2.07 0.1957 CH3NO Formamide K(39)-2*H C00488 100 

7 82.97193 2.89 0.0814 CH2O2 Formate Cl(37) C00058 100 

19 96.96011 0.17 0.0410 H2SO4 Sulfate '-H' C00059 100 

21 96.96962 1.35 0.3852 H3PO4 Orthophosphate '-H' C00009 100 

34 132.94639 1.68 0.0645 H3PO4 Orthophosphate Cl(35) C00009 100 

49 145.01425 0.15 0.1145 C5H6O5 2-Oxoglutarate '-H' C00026 100 

187 198.9179 1.24 0.5621 P2H4O7 Pyrophosphate Na-2*H C00013 100 

344 218.06704 0.77 0.4351 C8H13NO6 O-Succinyl-L-homoserine '-H' C01118 100 

2183 448.00429 6.14 0.0558 C10H15N5O10P2 ADP Na-2*H C00008 66.67 

2277 463.97834 3.93 0.2345 C10H15N5O10P2 ADP K(39)-2*H C00008 66.67 

Yellow highlighting indicates those peaks which increased in concentration post reperfusion. The final column shows the probability (in %) that a given peak is 

involved in energy metabolism; data filtered to retain peaks with P > 60%; p values corrected for multiple testing with Benjamini-Hochberg 
*
 The probability that a given peak is associated with energy metabolism (with no distinction for any specific energy metabolism pathways, i.e. nitrogen 

metabolism, sulphur metabolism, oxidative phosphorylation etc.) was calculated as follows: for each peaki (i=1…n), a putative metabolite identity was assigned 

based on the accurate mass measurement. Then Pi (energy metabolism  peaki) = ∑ putative assignments for peaki that are involved in energy metabolism / ∑ 

putative assignments for peaki. 
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Table B7 Peaks with putative metabolite assignments and fold changes (post reperfusion / cold phase) involved in oxidative phosphorylation (based on KEGG 

database classification). 

Peak index m/z Fold change p value Formula Putative metabolite Adduct KEGG ID 

62 134.04478 3.33 0.0705 C4H4O4 Fumarate NH4+ C00122 

104 156.98979 0.46 0.0882 C4H6O4 Succinate K(39) C00042 

187 174.89594 2.77 0.2773 H3PO4 Orthophosphate 2*K(39)-H C00009 

315 194.94563 1.06 0.8983 C4H6O4 Succinate 2*K(39)-H C00042 

1541 450.01887 4.77 0.0606 C10H15N5O10P2 ADP Na C00008 

1653 472.00083 14.02 0.2087 C10H15N5O10P2 ADP 2*Na-H C00008 

21 96.96962 1.35 0.3853 H3PO4 Orthophosphate '-H' C00009 

34 132.94639 1.68 0.0645 H3PO4 Orthophosphate Cl(35) C00009 

112 175.02485 1.53 0.5002 C4H4O4 Fumarate HAc-H C00122 

114 177.04048 1.45 0.2257 C4H6O4 Succinate HAc-H C00042 

187 198.9179 1.24 0.5622 P2H4O7 Pyrophosphate Na-2*H C00013 

2017 426.0223 3.30 0.1179 C10H15N5O10P2 ADP '-H' C00008 

2183 448.00429 6.14 0.0558 C10H15N5O10P2 ADP Na-2*H C00008 

2277 463.97834 3.93 0.2346 C10H15N5O10P2 ADP K(39)-2*H C00008 

Yellow highlighting indicates those peaks which increased in concentration post reperfusion. p values corrected for multiple testing with Benjamini-Hochberg 
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Table B8 Top 5% of putatively identified peaks that contribute towards an apparent separation of the post 

reperfusion liver biopsy spectra on the PCA scores plot. 

Peak 

index 
m/z 

PC1 

loading

s 

Fold 

change 

p 

value 

Empirical 

formula 
Putative metabolite Adduct 

101 156.0421

5 
0.087 4.64 0.208

6 
C5H11NO2 L-Valine; K(39) 

101 156.0421

5 
0.087 4.64 0.208

6 
C5H11NO2 5-Aminopentanoate; K(39) 

101 156.0421

5 
0.087 4.64 0.208

6 
C5H11NO2 Betaine; K(39) 

101 156.0421

5 
0.087 4.64 0.208

6 
C5H11NO2 Amyl nitrite; K(39) 

101 156.0421

5 
0.087 4.64 0.208

6 
C5H11NO2 4-Methylaminobutyrate; K(39) 

108 158.0402

8 
0.079 4.45 0.190

3 
C5H11NO2 L-Valine; K(41) 

108 158.0402

8 
0.079 4.45 0.190

3 
C5H11NO2 5-Aminopentanoate; K(41) 

108 158.0402

8 
0.079 4.45 0.190

3 
C5H11NO2 Betaine; K(41) 

108 158.0402

8 
0.079 4.45 0.190

3 
C5H11NO2 Amyl nitrite; K(41) 

108 158.0402

8 
0.079 4.45 0.190

3 
C5H11NO2 4-Methylaminobutyrate; K(41) 

1600 461.0408

8 
0.078 17.49 0.348

8 
C14H20N6O5S S-Adenosyl-L-homocysteine; 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C3H8NO6P O-Phospho-L-serine; K(39) 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 L-Glutamate; 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 D-Glutamate; 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 Glutamate; 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 O-Acetyl-L-serine; 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 L-4-Hydroxyglutamate semialdehyde 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate 2*K(39)-H 

419 223.9721

9 
0.072 3.97 0.046

3 
C5H9NO4 N-Methyl-D-aspartic acid; 2*K(39)-H 

690 271.1033

2 
0.066 0.22 0.131

0 
C7H16O7 Volemitol; HAc-H 

319 200.0683

9 
0.068 1.42 0.181

1 
C7H15NO3 L-Carnitine; K(39) 

179 197.0222

2 
0.064 12.07 0.033

9 
C7H12O4 6-Carboxyhexanoate; K(39)-2*H 

179 197.0222

2 
0.064 12.07 0.033

9 
C7H12O4 2-Propylsuccinic acid; K(39)-2*H 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 (R)-3,3-Dimethylmalate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 3-Ethylmalate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 2-Hydroxyadipate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 (R)-2-Ethylmalate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 L-Rhamnono-1,4-lactone; Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 3-Hydroxy-3-methylglutarate; Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 2-Dehydro-3-deoxy-L-rhamnonate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 2-Dehydro-3-deoxy-D-fuconate Cl(35) 

179 197.0222

2 
0.064 12.07 0.493

6 
C6H10O5 (S)-2-(Hydroxymethyl)glutarate Cl(35) 

1145 315.0932 0.061 0.04 0.493

6 
C14H18N2O4 alpha-Ribazole; Cl(37) 

583 261.0112

3 
0.066 8.09 0.304

1 
C5H13O7P 2-C-Methyl-D-erythritol 4-phosphate 2*Na-H 

232 185.0323

1 
0.065 2.03 0.035

8 
C5H10N2O3 L-Glutamine; K(39) 

232 185.0323

1 
0.065 2.03 0.035

8 
C5H10N2O3 D-Glutamine; K(39) 

232 185.0323

1 
0.065 2.03 0.035

8 
C5H10N2O3 3-Ureidoisobutyrate K(39) 

1826 384.9957

1 
0.058 3.27 0.165

3 
C10H13N4O8P IMP; K(39)-2*H 

160 170.0326

4 
0.064 0.47 0.131

1 
C4H9N3O2 Creatine; K(39) 

145 167.0217

3 
0.064 1.76 0.047

5 
C5H8N2O2 5,6-Dihydrothymine; K(39) 

145 167.0217

3 
0.064 1.76 0.047

5 
C5H8N2O2 gamma-Amino-gamma-cyanobutanoate; K(39) 

132 163.9778

2 
0.063 3.02 0.077

2 
C2H7NO3S Taurine; K(39) 

888 338.0507

2 
0.061 10.81 0.302

7 
C11H15N5O3S 5'-Methylthioadenosine; K(41) 

888 338.0507

2 
0.061 10.81 0.302

7 
C10H15N2O9P 1-(5-Phosphoribosyl)imidazole-4-

acetate 
'-e' 

1413 344.0324

9 
0.056 0.93 0.701

8 
C10H17N3O6S Glutathione; K(39)-2*H 

242 186.0163

1 
0.06 2.65 0.026

2 
C3H5O6P Phosphoenolpyruvate; NH4+ 

242 186.0163

1 
0.06 2.65 0.026

2 
C3H8NO6P O-Phospho-L-serine; H 

242 186.0163

1 
0.06 2.65 0.026

2 
C3H5O6P 3-Phosphonopyruvate NH4+ 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 L-Glutamate; K(39) 
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242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 D-Glutamate; K(39) 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 Glutamate; K(39) 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 O-Acetyl-L-serine; K(39) 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 L-4-Hydroxyglutamate semialdehyde K(39) 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate K(39) 

242 186.0163

1 
0.06 2.65 0.026

2 
C5H9NO4 N-Methyl-D-aspartic acid; K(39) 

187 174.8959

4 
0.06 2.77 0.105

2 
H3PO4 Orthophosphate; 2*K(39)-H 

1369 422.3240

8 
0.06 0.34 0.483

7 
C23H45NO4 L-Palmitoylcarnitine Na 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 Glycerone; 2*K(39)-H 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 (S)-Lactate; 2*K(39)-H 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 (R)-Lactate; 2*K(39)-H 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 D-Glyceraldehyde 2*K(39)-H 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 3-Hydroxypropanoate; 2*K(39)-H 

144 166.9507

4 
0.06 2.02 0.027

9 
C3H6O3 Glyceraldehyde; 2*K(39)-H 

1259 326.076 0.054 1.69 0.873

7 
C14H15N3O5 Entacapone Na-2*H 

325 203.0079

6 
0.059 3.01 0.089

4 
C10H6O2 1,4-Naphthoquinone; 2*Na-H 

325 203.0079

6 
0.059 3.01 0.089

4 
C10H6O2 1,2-Naphthoquinone; 2*Na-H 

254 208.9622

8 
0.054 3.39 0.108

8 
C3H9O6P sn-Glycerol 3-phosphate; K(39)-2*H 

24 98.99552 0.058 2.52 0.199

0 
CH4N2O Urea; K(39) 

555 254.0190

7 
0.057 0.8 0.036

8 
C5H14NO6P sn-glycero-3-Phosphoethanolamine; K(39) 

94 154.0264

9 
0.054 3.03 0.068

8 
C5H9NO2 L-Proline; K(39) 

94 154.0264

9 
0.054 3.03 0.068

8 
C5H9NO2 D-Proline K(39) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 L-Glutamate; K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 D-Glutamate; K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 Glutamate; K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 O-Acetyl-L-serine; K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 L-4-Hydroxyglutamate semialdehyde K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate K(41) 

257 188.0144 0.054 3.12 0.046

4 
C5H9NO4 N-Methyl-D-aspartic acid; K(41) 

PCA was redone to include only post reperfusion spectra, so that the separation of the post reperfusion biopsies into 

two groups occurred along PC1. Metabolites were filtered for those present either in the Human Metabolome 

Database (http://hmdb.ca/) or the KEGG database. 
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Table B9 Peaks identified by Grubbs test as outliers in the post reperfusion phase for patient H8 that developed IPF. 

Peak 

index 
m/z 

Fold 

change 

Empirical 

formula 
Metabolite Adduct KEGG pathways 

178 172.03074 0.95 C4H9N3O2 Creatine K(41) 
ko00260 Glycine, serine and threonine metabolism; ko00330 Arginine and 

proline metabolism 

178 172.03074 0.95 C4H9N3O2 3-Guanidinopropanoate K(41)  

599 261.14455 1.22     

913 339.07742 1.64 C10H18N2O8 N-Glycosyl-L-asparagine 2*Na-H  

976 346.98844 45.5     

1535 443.34801 2.43     

482 240.05479 21.98     

609 258.9946 0.93     

1842 384.99571 3.51 C10H13N4O8P IMP K(39)-2*H ko00230 Purine metabolism; ko04742 Taste transduction 

1857 386.11406 3.39     
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Table B10 Retention times, optimum redox potential and direction of concentration change post reperfusion for 19 reproducible peaks detected by CEAD 

Peak 

number Retention time (min) 

Optimum redox 

potential Direction of concentration change post reperfusion 

  mean min max (mV)   

1 1.680 1.642 1.708 420 unchanged 

2 1.696 1.658 1.725 720 unchanged 

3 1.768 1.725 1.808 960 increased slightly (~20%) from 21h 

4 1.854 1.808 1.883 480 increased slightly (~20%) to 21h, decreasing slightly (~20%) thereafter 

5 1.990 1.950 2.025 720 unchanged 

6 2.376 2.317 2.417 840 very marked decrease (~95%) to 21h, very low thereafter 

7* 2.562 2.492 2.608 720 slight decrease (~30%) to 9h, unchanged thereafter 

8 2.645 2.567 2.717 960 slight decrease (~30%) to 9h, unchanged thereafter 

9 3.009 2.925 3.075 960 steady but progressive decrease (~40%) over 48h 

10* 6.434 6.300 6.542 900 steady but progressive increase (~ x2) over 48h 

11 13.089 12.808 13.292 720 decrease (~40%) to 21h, increasing slightly (~20%) thereafter 

12* 14.309 14.000 14.533 720 initial decrease (~40%) to 17h and then stable 

13 14.373 14.075 14.600 960 initial decrease (~40%) to 9h and then stable 

14 16.571 16.358 16.725 960 unchanged 

15 17.814 17.558 17.992 720 relatively stable for 27h, then increased (~ x2) to 46h 

16 25.754 25.592 25.875 720 very low at 6h, then sharp increase (~ x6) to 21h, then stable 

18 26.775 26.658 26.858 360 unchanged 

19 26.812 26.692 26.892 540 unchanged 
*On the basis of co-elution with authentic standards, and on comparable electrochemical characteristics, the following peaks were ascribed a provisional identity: 7 – tyrosine, 10 – kynurenine and 12 - tryptoph 



 

181 
 

 


