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Abstract

Quantile-quantile plots are in use to compare univariate distributions for a long time,

but as there is no ordering in higher dimension, there is no straight forward generalisa-

tion of quantiles for the multivariate data and hence there is no visual tool which can be

considered as a generalisation of quantile-quantile plots to compare multivariate distri-

butions. In this work we have considered some notions of multivariate ranks, quantiles

and data depths. Based on spatial rank, we have constructed central rank regions and

some measures of scale. We proposed a scale-scale plot, which can be used to compare

multivariate distributions. Under spherical symmetry, our scale curves have some nice

closed form formula, however they are not equivariant under affine transformations. We

discussed this issue with illustrations and proposed an affine equivariant version based

on data-driven transformations. We established some characterisation results for the pro-

posed affine equivariant scale curves under elliptic symmetry and used the fact to propose

some visual test of location and scale in the family of elliptically symmetric distributions.

Our proposed scale-scale plot is based on volume functionals of central rank region. We

gave some asymptotic results regarding the distribution of the volume functional and

constructed a test statistic based on the volume functional. We proposed some asymp-

totic results regarding the distribution of the test statistic and also studied the power

of the proposed test of multivariate normality. As further applications to our scale-scale

plots, we discuss the behaviour of our proposed scale-scale plots when the distribution is

not elliptically symmetric with illustrations and study the power of the test of for skew

elliptic and g and h distribution based on the previously defines test statistic. Among

other application of the scale-scale plots, we propose a kurtosis plot, which can be used

to study the peakedness and tail behaviour of the multivariate distributions, a visual test

of location and scale.
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CHAPTER 1

INTRODUCTION

Characterising and describing the underlying distribution of a data set is the basis of

statistical analysis. In many statistical analyses some quantitative measures are used to

describe various features of the data and summarise them. Suppose that X1, X2, · · · , Xn

are independently and identically distributed (i.i.d) observations in R with a distribution,

which is continuous with respect to the Lebesgue measure and symmetric about some

unknown θ ∈ R, i.e. f(x − θ) = f(θ − x) for all x ∈ R, where f is the common density

function. The distribution can be characterised in many ways, for example, it can be

characterised by a parametric model or by a parametric model which is contaminated by

a small non-parametric mixture (see Bickel and Lehmann (1975a)). One of the important

characteristic of the underlying distribution would be some measure of location of the

centre. When the distribution is symmetric about a parameter in some sense, a natural

location parameter would be the centre of symmetry. Bickel and Lehmann (1975b) de-

scribed the required properties of a measure of location. For example, a natural choice

for the centre of symmetry for a symmetric univariate distribution is the median of the

distribution.

The notions of symmetry for multivariate distributions can have many variations: it

could be based on the properties of the distribution function, of the characteristic function

or of the density function. One may alternatively demand invariance in relation to specific

classes of transformations. In the following section we introduce a few of the most popular
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concepts of symmetry for multivariate distributions.

1.1 Concepts of Symmetry for Multivariate Distri-

butions

Many of the examples of multivariate symmetry of a random vector X about some location

parameter θ can be expressed in terms of some suitable transformations of the centred

vector X− θ. We now discuss a few of such concepts.

X is said to have a spherically symmetric distribution about a point θ, in Rd, if the

distribution of X− θ remains unchanged under any orthogonal transformation. Some of

the oldest references on spherically symmetric distributions are Maxwell (1860), Bartlett

(1934) and Hartman and Wintner (1940). An excellent review of spherical symmetry, can

be found in Chmielewski (1981).

For a spherically symmetric distribution, the length of the random vector ||X−θ|| and

its direction vector X−θ
||X−θ|| are distributed independently, see Dempster (1969) for a proof.

The characteristic function of X, derived by Lord (1954), is of the form eit
T θh(tT t), where

h(·) is some suitable real-valued function and t ∈ Rd. Moreover the density f(x) of X, if

exists, is then a function of (x− θ)T (x− θ).

A generalisation to the concept of spherical symmetry is that of elliptical symmetry. A

random vector X defined on Rd with distribution function F is said to have an elliptically

symmetric distribution about θ ∈ Rd if there exists d×d matrix A such that A(X−θ) has

a spherically symmetric distribution about 0. In other words, an affine transformation

of a spherically symmetric random variable generates an elliptically symmetric random

variable. One may note that the family of elliptically symmetric distributions is closed

under affine transformations.

From our discussion of the spherical symmetry and the definition of the elliptically

symmetry, it follows that if X is elliptically symmetric about θ with scale matrix Σ, then
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its characteristic function takes the form eit
T θh(tTΣt), where h(·) is some suitable real-

valued function and t ∈ Rd. Moreover the density f(x) of X, if it exists, is a function of

(x−θ)TΣ−1(x−θ). An alternative characterisation in terms of the matrix A was consid-

ered by Beran (1979), who also developed one of the earliest tests of elliptical symmetry.

A detailed discussion of the properties of the elliptically symmetric distributions can be

found in Fang, Kotz and Ng (1990).

We will again come back to spherical and elliptically symmetric distributions in Chap-

ter 2 where we will discuss some characterisations of the rank functions for these distri-

butions. Subsequently we will develop a test of elliptical symmetry in Chapter 6.

Perhaps the most immediate extension of the concept of univariate symmetry to the

multivariate regime for a random vector X defined on Rd is to be centrally symmetric about

θ ∈ Rd, i.e. to have (X − θ) and (θ −X) to have the same distribution. This concept

of symmetry is more general to either of the situations we described above, for example,

the uniform distribution on the d-dimensional hypercube [−1, 1]d is centrally symmetric

but not spherically or elliptically symmetric. Zuo and Serfling (2000) established that

this symmetry may alternatively be characterised by the requirement that uT (X−θ) and

uT (θ −X) have the same univariate distribution for every unit vector u ∈ Rd.

Liu (1990) introduced a more general idea of symmetry: a random vector X ∈ Rd

is angularly symmetric about θ ∈ Rd if X−θ
||X−θ|| and θ−X

||θ−X|| have the same distribution, or

equivalently, if X−θ
||X−θ|| is centrally symmetric. Liu (1990) noted that the point of angular

symmetry θ of X, if exists, is unique as long as the distribution of X is not concentrated

on a line in Rd with more than one median. For some more characterisations of this

symmetry, see Serfling (2006).

Clearly, the four concepts of symmetry we have discussed so far increasingly generalise

the concept of multivariate symmetry in the sense that spherical symmetry implies ellip-

tical symmetry, which in turn implies central symmetry, and further, central symmetry

implies angular symmetry. It is interesting to note that all of the above concepts reduce
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to the same notion of univariate symmetry defined before (Serfling (2006)).

Some other generalisations of the concept of central symmetry exist: X ∈ Rd is defined

to be sign-symmetric about θ ∈ Rd if (X− θ) = (X1− θ1, X2− θ2, · · · , Xd− θd) have the

same distribution as (±(X1 − θ1),±(X2 − θ2), · · · ,±(Xd − θd)) for all 2d choices of +/−

combinations. Blough (1989) defined d× d matrices Bk by

Bk = ((bij))k =


0 if i 6= j

1 if i = j 6= k

−1 if i = j = k,

and correspondingly defined X ∈ Rd to be symmetric of degree m if there exists a vector

θ = (θ1, θ2, · · · , θm, 0, · · · , 0)T in Rd and an orthogonal transformation T such that T(X−

θ) have the same distribution as B1B2 · · ·BmT(X−θ). Symmetry of degree d is therefore

the regular central symmetry. In general symmetry of order m means symmetry about m

mutually orthogonal (d− 1)- dimensional hyperplanes.

Beran and Millar (1997) looked at the various ideas of symmetry from a characterisa-

tion concept in terms of probabilities of half-spaces. For A0, a compact subgroup of all

orthogonal transformations on Rd, define a random vector X ∈ Rd to be A0-symmetric

about θ ∈ Rd if the distribution of X−θ remains unchanged under any orthogonal trans-

formation from A0. Clearly, when A0 is the space of all orthogonal transformations,

this symmetry reduces to the spherical symmetry, the central symmetry corresponds

to A0 consisting of the identity transformation and its negative, and sign- symmetry

is achieved when A0 is the group of all the d-dimensional transformations of the type

(±1,±1, · · · ,±1)T . Hence one may think that the sign-symmetry is somewhere in be-

tween spherical and central symmetry in terms of generality.

Cambanis, Keener and Simons (1983) attempted a different generalisation of the idea

of spherical symmetry. They define a random vector X ∈ Rd to be α-symmetric about θ =
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(θ1, θ2, · · · , θd)T , if the characteristic function of X is of the form eit
T θh(|t1|α, |t2|α, · · · , |td|α)

for some α > 0. The spherical symmetry is obtained as a special case for α = 2. For

d = 1, this idea reduces to the usual symmetry regardless of the value of α.

Finally, we discuss a concept of symmetry, due to Zuo and Serfling (2000), based on

the idea of a symmetry over halfspaces. The halfspaces over Rd are defined by

H(s, t) = {x ∈ Rd : sTx ≤ t}, s ∈ Sd−1 = {u ∈ Rd : ||u|| = 1}, t ∈ R.

A random vector X ∈ Rd is then halfspace symmetric about θ ∈ Rd if

P (X ∈ H) ≥ 1

2
,

for every closed halfspace H with θ on the boundary. Among the notable characteristics

of halfspace symmetry, one may note that the angular symmetry about a point implies

the halfspace symmetry about that point, which means that this is the most general form

of symmetry that we discuss. Furthermore, similar to the case of angular symmetry, it

may be shown that the point of halfspace symmetry θ of X, if exists, is unique as long as

the distribution of X is not concentrated on a line in Rd with more than one median. For

proofs of these results and further discussions, one may refer to Zuo and Serfling (2000).

With the various notions of symmetry in hand, one may wish to see a few examples.

In the following section we introduce some popular multivariate distributions, all of which

are elliptically symmetric and will be used throughout the thesis.

1.2 Some Multivariate Distributions

Multivariate Normal Distribution : Suppose X is a d-dimensional random vector

with multivariate normal distribution Nd(θ,Σ) and f(x) is the density function of X.
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Then

f(x) =
1

(2π)d/2|Σ 1
2 |
exp

(
1

2
(x− θ)TΣ−1(x− θ)

)
.

Here θ is the location vector and Σ is the covariance matrix of X. We say that X is a

standard d-variate normal distribution if θ = 0 and Σ = Id.

It may be noted that the standard multivariate normal distribution is symmetric in

every sense described in Section 1.1, whereas a general multivariate normal distribution is

not necessarily spherically symmetric, sign-symmetric or A0 symmetric but satisfies the

conditions of the other concepts of symmetry defined above.

Multivariate Laplace Distribution : Suppose X is a d-variate random variable

with multivariate Laplace distribution with mean µ and covariance matrix Σ. Then the

density f(x) of X is given by

f(x) ∝ 1

|Σ| 12
exp

(
−
√

(x− θ)TΣ−1(x− θ)
)
.

By standard d-variate Laplace distribution we denote the multivariate Laplace distribu-

tion which corresponds to θ = 0 and Σ = Id.

Like the case of the multivariate normal distribution, the standard multivariate Laplace

distribution is symmetric in every sense described in Section 1.1. Similarly, a general mul-

tivariate Laplace distribution is not necessarily spherically symmetric, sign-symmetric or

A0 symmetric but satisfies the conditions of the other concepts of symmetry defined above.

Multivariate t Distribution: The density of the standard d-variate t-distribution

with k degrees of freedom is obtained from X√
Z/k

where X has multivariate normal distri-

bution Nd(0, I), Z has χ2
k distribution and X and Z are independent of each other. If Y

is a d-variate t distribution with k degrees of freedom location vector θ and scale matrix

Σ, the density f(y) of Y is given by

f(y) =
Γ
(
k+d

2

)
Γ
(
ν
2

)
k
d
2π

d
2 |Σ| 12 [1 + 1

d
(y − θ)TΣ−1(y − θ)]

k+d
2

.

6



The multivariate t distribution is another example of a distribution which is symmetric

in every sense described in Section 1.1.

1.3 Notions of Data Depth

The idea of data depth came from a location theory problem considered by Weber (1909).

Here one tries to locate a point x ∈ Rd such that it has the minimum distance from all

the points in some sense. To solve this problem Gini and Galvani (1929) introduced a

concept of spatial median. Let us assume that X is a random vector in Rd with absolutely

continuous probability distribution F . The L2 depth and the L2 depth median or the

spatial median is defined as follows.

Definition 1.3.1 The L2 depth at x with respect to F is,

L2D(F ; x) = (1 + E(||X− x||2))−1 (1.1)

The corresponding L2-depth median is defined as,

MedL2D = arg maxx∈RdL2D(F ; x). (1.2)

The geometric idea behind this median is to minimise the sum of Euclidean distances

to the observations. Brown (1983) introduced the term spatial median for the L2 median

and showed that its empirical distribution is asymptotically normal. Spatial median is

equivariant under orthogonal transformations but it is not equivariant under general non-

singular transformation of the data (see Chaudhuri (1992)).The spatial median has a 50%

breakdown point. Brown (1983) studied the properties of the spatial median extensively

and introduced a sign test analogue, the angle test, based on the angles between the

spatial median and the observations.

Other than the L2 depth, the Mahalanobis depth function (see Mahalanobis (1936)) is

one of the oldest and well known depth function. The Mahalanobis depth function is
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defined as follows:

Definition 1.3.2 The Mahalanobis depth at x with respect to F is,

MD(F ; x) = [1 + (x− µF )TΣ−1
F (x− µF )]−1 (1.3)

where µF and ΣF are the mean vector and dispersion matrix of F respectively.

The median associated with the Mahalanobis depth is obtained by minimising the stan-

dardised Euclidean norm. As Mahalanobis depth is affine invariant, this median is affine

equivariant. This median was also mentioned by Haldane (1948) and is sometimes referred

to as Haldane’s multivariate median (Isogai (1985)). Isogai (1985) obtained various mea-

sures of multivariate skewness based on this median.

Tukey (1975) suggested the following notion of data depth, the half space depth:

Definition 1.3.3 The Half-Space depth at x with respect to F

HD(F ; x) = inf
H

{
P (H) : H is a closed half-space in Rd and x ∈ H

}
. (1.4)

Based on this depth the median can be defined as

MedHD = arg max
x∈Rd

HD(F ; x). (1.5)

The sample version of the half-space depth for the one dimensional case can be described

in the following way: consider a one dimensional data set, X = {X1, X2, · · · , Xn}, the

depth of θ would be the minimum number of data points on the either side of θ. In

numerical terms, this can be expressed as

D(θ) = min(# {i : Xi ≤ θ} ,# {i : Xi ≥ θ}) (1.6)

In d-dimension, to find the depth of the point θ with respect to the multivariate data

set {X1, · · · ,Xn} one would draw a plane through the point θ. Then rotate this plane
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and keep track of the smallest number of points on one side of the plane. Then depth of

θ, D(θ) = Smallest proportion of points in a closed half-space containing θ.

For d = 2 Rousseeuw and Ruts (1996) gave an exact algorithm to compute the depth

contours of a bivariate data set with respect to the half space depth in O(n log n) time.

Later Rousseeuw and Struyf (1998) obtained an algorithm to compute the depth contours

with respect to the half-space depth in three dimensions in O(n2 log n) time. Johnson and

Preparata (1978) provided an algorithm of order O(nd−1 log n) for the computation of the

half-space depth of a given point, but they did not consider it practical for d > 4. Struyf

and Rousseeuw (2000) gave an algorithm named DEEPLOC, which can approximate the

maximum depth in higher dimensions. DEEPLOC has a time complexity ofO(kmn log n+

kdn + md3 + mdn), where k is the number of steps taken by the program and m is the

number of directions.

The half-space median, as defined in (1.5), is affine equivariant. The breakdown point

for the sample version of this median is nearly 1
3

and this property has been studied

extensively by Donoho (1982), Donoho and Huber (1983), Donoho and Gasko (1987) and

Chen (1995). Bai and He (1999) showed that it is also asymptotically normal. This

median may not be a unique point. In two dimensions this median can be computed in

O(n2log2n) time by an algorithm HALFMED suggested by Rousseeuw and Ruts (1998),

but computation gets increasingly difficult as the dimension increases. Rousseeuw and

Struyf (1998) discusses a fast algorithm to obtain the spatial median in higher dimensions.

It may be noted that the Hodges sign test statistic, to be defined formally later in

Section 1.5, is equivalent to the half-space depth of the origin.

Liu (1988) suggested another notion of data depth named simplicial depth using random

simplices.

Definition 1.3.4 The simplicial depth at x with respect to F is defined as,

SD(F ; x) = PF {x ∈ S[X1, · · · , Xd+1]} (1.7)
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where S[X1, · · · , Xd+1] is a closed simplex formed by (d + 1) random observations from

F , as (d+ 1) vertices.

The median corresponding to this depth is defined as,

MedSD = arg max
x∈Rd

SD(F ; x) (1.8)

In one dimension, this depth function gives the proportion of intervals with two ob-

servations as end points containing x ∈ R, i.e., SD(F ;x) = P (x ∈ X1X2), where X1X2 is

the line segment joining observations X1 and X2. In dimension d > 1, this depth gives the

probability of the point x is inside the simplices formed by (d + 1) random observations

from F . The simplicial depth median is equivariant under general affine transformations.

For two dimensions Rousseeuw and Ruts (1996) algorithm converges in O(n log n) time for

simplical depth as well. This attains the lower bound, see Aloupis, Cortes, Gomez, Soss

and Toussaint (2002). Cheng and Ouyang (2001) suggested an algorithm to compute the

simplical depth with a time complexity of O(n4) for d = 4. Rousseeuw and Ruts proposed

an O(n3) algorithm for d = 3. For dimensions more than 4, there is no known efficient

algorithm.

Liu (1988, 1990) showed that the sample version of this median is consistent. Arcones,

Chen and Gine (1994) showed that it is asymptotically normal using U-statistics. For

convergence properties one can see Liu (1990) and Dümbgen (1992). One problem with

this median is again its computation. Aloupis, Langerman, Soss and Toussaint (2003)

provides an algorithm to compute this median in dimension d = 2 in O(n4) time. No

known algorithm exists for higher dimensions.

Oja (1983) also defined a depth function based on simplices. This depth is related with

the volume of the simplices in d-dimension. In the univariate case, the volume would be

the distance between two points in R. The formal definition for the d-dimensional case

follows:

Definition 1.3.5 The Oja depth at x with respect to F is defined as,
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OD(F ;x) = [1 + EF {volume (S[x, X1, · · · , Xd])}]−1 (1.9)

where S[x, X1, · · · , Xd] is the closed simplex with vertices x and d random observations,

say X1, · · · , Xd, from F .

The median corresponding to this depth, known as Oja’s median is defined as,

MedOD = arg max
x∈Rd

OD(F ; x). (1.10)

This median is also equivariant under general affine transformations. Oja and Niinimaa

(1985) showed that the sample version of this median is asymptotically as efficient as the

spatial median when the underlying distribution is multivariate normal. Niinima, Oja

and Tableman (1990) showed that this median has 0% breakdown. Arcones, Chen and

Gine (1994) showed that the sample version of this median is asymptotically normal using

U-statistic type representation. Ronkainen, Oja and Orponen (2003) obtained an exact

algorithm to compute the Oja median in d dimensions in O(dnd log n) time.

There are many other defintions of depths, such as, convex hull peeling depth by Bar-

nett (1976), majority depth by Singh (1991), projection depth (see Donoho and Gasko

(1992), Liu (1992)), likelihood depth by Fraiman and Meloche (1996), zonoid depth by

Koshevoy and Mosler (1997). The value of depth is usually different for different defini-

tions but all of them basically indicate that a larger value of depth of a point x implies

a deeper or a more central x with respect to F . Every notion of depth gives rise to a

partial ordering of multivariate data. This ordering helps one to rank the sample points

from the centre to the outward way. It also gives us the nested contours depending upon

depth and these depth contours form a sequence of nested convex sets.

There are a few desirable properties for the depth functions, which are listed below

following Zuo and Serfling (2000).

1. Affine invariance: D(F ; x) is independent of the underlying coordinate system
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i.e. for any random vector X ∈ Rd, for any non singular d × d matrix A and any

d-dimensional vector b,

D(FAX+b; Ax + b) = D(F ; x) (1.11)

2. Maximality at centre: As the depth function gives us a centre outward ordering,

so we expect that the maximum depth would be obtained at the centre of symmetry

i.e., if F is symmetric about a point θ in some sense, then D(F ; x) is maximal at

θ.

3. Decreasing along rays: This property can also be described as the property

of monotonicity relative to the deepest point. As we expect to have the greatest

depth at the centre of symmetry, if any point x ∈ Rd moves away from the deepest

point along any fixed ray through the centre of symmetry, then the depth function

decreases monotonically i.e., the depth D(F ; x) decreases along each ray from the

deepest point.

4. Vanishing at infinity: When a point x ∈ Rd moves further away from the centre

of symmetry, which is the deepest point, the depth of the point decreases and

it approaches zero as the point x ∈ Rd moves to infinity, i.e., D(F ; x) → 0, as

||x|| → ∞.

5. Symmetry: When the distribution is symmetric about a point, then the greatest

depth is achieved there and the depth function should decrease in the same way

along any ray which gives a symmetric depth function i.e., if F is symmetric about

a point θ in some sense, then D(F ; x) is also symmetric.

6. Continuity with respect to x and continuity with respect to F: Given a

fixed continuous multivariate distribution function F , D(F ; x) is continuous as a

function of x and given a fixed x, D(F ; x) is continuous as a function of F .
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7. Quasi-concavity as a function of x: The depth contours form sequence of

nested convex set i.e., the sets {x : D(F ; x) ≥ c} is convex for each real c and

{x : D(F ; x) ≥ c1} ⊆ {x : D(F ; x) ≥ c2} if c2 ≤ c1.

The properties 1, 2, 3, 4 are the most important ones as they help us to define a statis-

tical depth function. Almost all of the above mentioned depth based medians are affine

equivariant with the exception of the L2 depth median. It is desirable that a depth func-

tion is affine equivariant or at least a modified version should be affine equivariant. For

example, Rao (1988) suggested a modification to the L2D in the following way

L̃2D(F ; x) = (1 + E(||X− x||Σ−1))−1 (1.12)

where Σ is the covariance matrix of F and ||X− x||Σ−1 =
√

(X− x)TΣ−1(X− x). This

modification makes L2D affine invariant. Liu (1990) showed that the simplicial depth

SD(F ; x) defined in (1.7) satisfies properties 1, 2, 3 and 4. Zuo and Serfling (2000) dis-

cussed how these four properties are satisfied by various depth functions.

From the point of view of satisfying the above four properties, the half space depth seems

to be the most elligible depth.

1.4 Multivariate Quantiles

In the univariate setup, quantiles characterise the underlying distribution. Quantiles are

used to construct quantile-quantile (Q-Q) plots to visually compare the shape of the

distribution with some hypothesised distribution. Let Z be a univariate random variable

such that E|Z| <∞. Then the p-th quantile Q(p) of Z for 0 < p < 1 is defined as

Q(p) = inf {z : P (Z ≤ z) ≥ p} ,

which can also be characterised as
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arg min
θ∈R

E {|Z − θ|+ (2p− 1)(Z − θ)} (Ferguson (1967)).

When the data are multivariate, it is quite natural for the quantiles to have both

magnitude and direction as suggested by Brown and Hettmansperger (1987). Babu and

Rao (1988) defined the vector of quantiles of the marginal distributions as the multivariate

quantile vector.

Even though this vector of quantiles is quite easy to compute, as marginal distributions

do not characterise the joint distribution, this definition of multivariate quantiles can not

characterise a general multivariate distribution.

Chaudhuri (1996) extended the definition of the univariate quantiles to higher dimensions

by defining the u-th quantile Q(u) of X ∈ Rd as any minimiser of the function

E {Φ(u,X− θ)− Φ(u,X)}

where ||u|| < 1 and Φ(u, t) = ||t||+ uT t, and ||.|| is the usual Euclidean norm. This defi-

nition of multivariate quantiles was popularised as geometric quantiles or spatial quantiles.

Koltchinskii (1997) showed that these quantiles characterise the multivariate distribution.

Further, the geometric quantiles are also equivariant under rotations of the data cloud.

However, they are not equivariant under general affine transformations.

Suppose X1,X2, · · · ,Xn are random variables in Rd and the sample version of the

geometric quantile, Qn(u) is defined as the minimiser of

n∑
i=1

{
||Xi − θ||+ uT (Xi − θ)

}
.

A few properties of the sample version of the geometric quantile are as follows.

1. The sample version of the geometric quantile Qn(u) would always exist for any given

u ∈ Bd where Bd is the open unit ball in d- dimension and it would be unique for
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d ≥ 2 unless Xi’s are all along a straight line in Rd.

2. Suppose A is a d× d orthogonal matrix and b is a fixed d-dimensional vector. Let

Yi = AXi + b and set v = Au. If QY
n (v) is the sample version of the geometric

quantile corresponding to v and depending on Y1, · · · ,Yn, then

QY
n (v) = QY

n (Au) = AQn(u) + b (1.13)

3. Suppose c > 0 is a fixed scalar and let Yi = cXi. Then the sample version of the

geometric quantile based on Yi’s would be cQn(u).

Chaudhuri (1996) proposed an algorithm based on Newton-Raphson method for the com-

putation of such quantiles. The geometric quantiles constructed in this way can be use-

ful to extend quantile regression from univariate to multivariate model (see Chakraborty

(2003)) and also to construct L estimates of univariate location. Chaudhuri (1996) showed

that the joint asymptotic distribution of the centred and normalised geometric quantiles

would be Gaussian with mean zero. These geometric quantiles are consistent estimates

of the corresponding population quantiles and their rate of convergence is n−
1
2 . In the

univariate case, quantiles can be thought of as inverse of the cumulative density func-

tions. Similarly in the multivariate case, the geometric quantile Q(u) can be obtained by

inverting the equation

E

(
Q(u)−X

||Q(u)−X||

)
= u.

Geometric quantiles also help us to find out how close a data point is to the centre of the

multivariate data set.

Chaudhuri (1996) also remarked that geometric quantiles can be used to construct

quantile balls {Qn(u) : |u| < r} with radius r ∈ (0, 1), which can be thought of multi-

variate analog of univariate quantile range. If we take λ(r) as a d-dimensional Lebesgue

measure of this set, then for a suitable r, t ∈ (0, 1) with r < t, λ(r)
λ(t)

can be considered

15



as a measure of kurtosis in the multivariate case. In an alternative approach Avérous

and Meste (1994, 1997) developed an affine invariant kurtosis function for the multivari-

ate case using a similar concept of median balls obtained minimising a distance function

based on arbitrary convex norm functions.

1.5 Sign and Rank Based Methods

In this section we discuss some sign and rank based methods that could be used to get

some insight about various location parameters of the distribution.

A univariate sign test can be considered as a test for the median θ of the corresponding

probability distribution generating the data. Here one will test H0 : θ = θ0 against, for

example, H1 : θ 6= θ0. The test statistic would be
∑n

i=1 I(Xi − θ0 ≤ 0), which will

have a binomial distribution with parameters n and 1
2

under H0. Hence under H0 the

distribution of the test statistic does not depend on F . For details we refer to Oja (1999).

Alternatively, based on the Sign function defined as follows

Sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

one can obtain

n∑
i=1

Sign(Xi − θ) =
n∑
i=1

I(Xi − θ0 ≤ 0)− Sn = n− 2Sn

where Sn =
∑n

i=1 I(Xi− θ0 < 0). Hence Sn can also be used instead of
∑n

i=1 Sign(Xi− θ)

to test for H0. As this test is simple and distribution free in the univariate case, a

multivariate version of this test would be quite helpful. There are several ways of defining

the median of a multivariate distribution thus there are many possibilities for multivariate

sign tests.
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Now suppose X1,X2, · · · ,Xn are i.i.d. in Rd with a common absolutely continuous

distribution function F with coordinate-wise median θ. To perform a sign test in the

multivariate median case we need to specify the Sign function first. One easy choice would

be Sign(Xi) = (Sign(Xi1), Sign(Xi2), · · · , Sign(Xid))
T where Xij is the j-th component of

the random vector Xi. The test based on Sign(X1), Sign(X2), · · · , Sign(Xn) is a test for

vector of the medians of its real valued components.

Several modifications of the classical sign test has been suggested in literature. Two

of the most famous attempts were by Hodges (1955) and Blumen (1958). Hodges (1955)

suggested a bivariate sign-test statistic

TH = sup
λ∈R2:||λ||=1

∣∣∣∣∣
n∑
i=1

Sign(λTXi)

∣∣∣∣∣ (1.14)

where λTXi is the projection of Xi onto the 2-dimensional hyperplane which passes

through the origin and λ is the normal vector. This test statistic TH was used for bi-

variate sign test and based on TH , H0 was rejected for large values of TH . This test is

”association invariant”(see Puri and Sen (1971)) and distribution free, and has an obvious

generalisation to higher dimensions (Chaudhury and Sengupta (1993)). Blumen (1958)

computed a bivariate sign test statistic for a bivariate dataset (xi, yi) for i = 1, · · · , n

v2 =
2

n

( n∑
i=1

Sign(yi/xi) cos
πj

n

)2

+

(
n∑
i=1

Sign(yi/xi) sin
πj

n

)2
 , (1.15)

rejecting for large values of v2. Like Hodges’ test, this test is also affine-invariant and

distribution free. Blumen’s test belongs to a class of strictly distribution-free locally most

powerful affine invariant sign tests defined by Oja and Nyblom (1989). This test was

generalised by Randles (1989), based on interdirections, to a multivariate sign test.

Among the other notable attempts at multivariate sign tests, Bennett (1962) sug-

gested a multivariate sign test and later Chatterjee (1966) proposed a bivariate sign test

which essentially were combinations of component sign tests. Bickel (1965) obtained a
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generalisation of the Wilcoxon signed rank test.

More recently Oja and Nyblom (1989) proposed a bivariate sign test based on the

angle created by the observations at a centre of location. Brown and Hettmansperger

(1989) and Brown, Hettmansperger, Nyblom and Oja (1992) investigated a bivariate sign

test based on the gradient of the Oja objective function

T (θ) =
∑
i<j

A(xi, xj, θ)

where A(a, b, c) is the area of a triangle whose vertices are a, b and c. All these recent

tests are affine invariant. Chaudhuri and Sengupta (1993) generalised Randles’ test to a

broad class of affine invariant multivariate sign tests by transformation-retransformation

method of which Hodges’ test is also an example.

Based on the sign function, one can define the univariate centred rank function as

follows:

Rn(x) =
1

n

n∑
i=1

Sign(x−Xi). (1.16)

This statistic could be used as an estimator of location. It has both magnitude (robust

distances from the median) and direction (sign with respect to the median) information,

and if R(x) = 2F (x)− 1, then sup |Rn(x)−R(x)| goes to 0 in probability, see Oja (1999).

Let us discuss an example where this can be used. Suppose F is a continuous univariate

symmetric distribution with density function f(x− θ) where θ as the unknown centre of

symmetry. We wish to estimate θ and test the null hypothesis H0 : θ = 0. The univariate

sample median θ̂ is the solution of the implicit equation Rn(θ̂) = 1
n

∑n
i=1 Sign(θ̂ −Xi) =

0. The sign test statistics for testing the null hypothesis H0 : θ = 0 is Rn(0). For

univariate median and sign test under general assumptions the limiting distribution of

n
1
2 θ̂ is univariate normal

(
0, 1

(2f(0))2

)
(Oja (1999)).

Rank tests were originally developed to provide exact tests for nonparametric hypoth-

esis. These tests could be thought of as a subfamily of permutation tests, though results
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known for permutation tests are not very useful for rank tests. Rank test procedures

are simple, fast, distribution free and can be applied even when only ranking data are

available.

1.6 Current Work

In the last two decades, there has been an extensive development in the proposals for

multivariate versions of quantiles and their uses in describing various aspects of the mul-

tivariate data. Chaudhuri (1996) proposed geometric quantiles, which are multivariate

quantities indexed by vector a u in the d-dimensional unit ball, based on minimising Eu-

clidean distances. Chakraborty (2001) generalised the definition of geometric quantiles

for other lp distances and made the quantiles equivariant under affine transformations

using a transformation retransformation technique. He also suggested a bivariate version

of the Q-Q plot using affine equivariant quantiles. However that definition of Q-Q plot

cannot be extended to higher dimensions in any natural way. Marden (1998) also pro-

posed a bivariate version of the Q-Q plots based on geometric quantiles. Serfling (2010)

provides a detailed discussion on latest developments and several properties of the geomet-

ric quantiles and other definitions of multivariate quantiles primarily based on geometric

quantiles.

In a different development Balanda and MacGillivray (1990) proposed spread-spread

plots to compare univariate distributions where the spread functionals preserve the spread

ordering of Bickel and Lehmann (1979). The spread-spread plots are quite useful in

detecting the changes in the shape of the distributions at the peak or at the tails and it

displays a growth pattern. Liu, Parelius and Singh (1999) gave another concept of data

plot using the concept of data depth. They proposed depth-depth plots using which they

discussed characteristics of a multivariate distribution, such as location, scale, skewness,

kurtosis etc. Singh, Tyler, Zhang and Mukherjee (2009) defined quantile scale curves

which are based on the volumes of regions with respect to the simplicial depth functions.
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The quantile scale curves suggested by them have been utilised as a graphical test for

finding out linear or nonlinear association between two groups of variables, measuring

heavy tailedness of a distribution and testing for multivariate location and scale.

There are some more graphical tools available in the literature to detect non-normality

for high dimensional data; see, for example, Liang, Pan and Yang (2004), Fang, Li, and

Liang (1998), Liang and Ng (2009). However all of these methods heavily depend on

different characterisations of multivariate normal distribution and cannot be extended to

a large class of multivariate distributions.

In this thesis, recent developments in multivariate quantiles and ranks and the concept

of univariate spread-spread plots are combined to propose graphical methods of comparing

multivariate distributions. In Chapter 2, we define a notion of multivariate rank vector

and propose a scale-scale plot motivated by the idea of Liu, Parelius and Singh (1999)

and study its properties under the assumptions of elliptical symmetry. In Chapter 3, we

discuss the asymptotic properties of the central rank region based volume functional. In

Chapter 4, we discuss the uses of scale-scale plot as visual tests with examples in the

one sample and two sample problems and propose some theoretical test procedures. In

Chapter 5, we propose a test statistic based on the volume functional and perform a

test of goodness of fit of multivariate normality and multivariate Laplace distribution.

In Chapter 6, we discuss scale-scale plot for some non-elliptical distributions and a test

for elliptical symmetry. These scale-scale plots are also quite useful in detecting the

deviations in regard to peakedness or tail behaviour which we have proposed in Chapter

7. In Chapter 7 we also propose some visual tests of multivariate location and scale as

some further applications of our scale-scale plots. Chapter 8 concludes and discusses some

further extensions.
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CHAPTER 2

SCALE CURVES BASED ON MULTIVARIATE
RANKS

We have seen before the usefulness of sign and rank functions in construction of several

described measures of the distribution and for tests of location. In this chapter we intro-

duce a notion of multivariate rank vectors and use that to construct some measures of

scale for the multivariate distributions.

2.1 Definitions and Some Properties

To begin with, we define a multivariate sign function followed by rank and rank regions.

Definition 2.1.1 For x ∈ Rd, the multivariate sign function is defined as

Sign(x) =


x
||x|| , if x 6= 0,

0, if x = 0,

(2.1)

where ||x|| =
√
x2

1 + · · ·+ x2
d, x = (x1, · · · , xd)T .

The sign function Sign(x) for x 6= 0 gives the unit direction vector for x.

Definition 2.1.2 Suppose X ∈ Rd is a random vector with distribution function F , which

21



is absolutely continuous with respect to the Lebesgue measure on Rd. Then the multi-

variate spatial rank for a d-dimensional vector x with respect to X is defined as,

RF (x) = EF

(
x−X

||x−X||

)
. (2.2)

Note that the spatial median, θ, can be obtained by solving

RF (θ) = 0. (2.3)

We can also see that this rank function RF (x) is the inverse function of the multivariate ge-

ometric quantile function Q(u) defined by Chaudhuri (1996) in the sense that RF (x) = u

implies that Q(u) = x and vice-versa. As the relation between data depth D(.) and the

multivariate spatial rank RF (.) would be given by D(x) = 1 − ||RF (x)||, a measure of

outlyingness can be defined using ||RF (x)||. It can be verified that this outlyingness func-

tion is invariant under orthogonal and homogeneous scale transformations. For related

discussion one can see Serfling (2004, 2006b). This rank orders the multivariate data in

central outward way.

We now define formally the sample version of the rank function in the univariate set

up.

Definition 2.1.3 The (sample) centred rank of x with respect to a random sample

X1, X2, · · · , Xn ∈ R with distribution F on R is given by

RFn(x) =
1

n

n∑
i=1

Sign(x−Xi). (2.4)

This centred rank function has the following properties,

1. −1 ≤ RFn(x) ≤ 1.

2. RFn(x) = 0 implies that x is the median of X1, · · · , Xn.
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3. RFn(x) = −1 implies x ≤ min {X1, X2, · · · , Xn} and RFn(x) = +1 implies x ≥

max {X1, X2, · · · , Xn}.

4. E(RFn(x)) = 2F (x)− 1.

In a similar way we can define a multivariate version of rank using the definition of sign

vector:

Definition 2.1.4 Suppose X1,X2, · · · ,Xn ∈ Rd is a random sample with common dis-

tribution function F on Rd, d ≥ 1. The centred rank of x ∈ Rd with respect to

X1,X2, · · · ,Xn is

RFn(x) =
1

n

n∑
i=1

Sign(x−Xi) =
1

n

n∑
i=1

x−Xi

||x−Xi||
. (2.5)

This multivariate rank has similar properties to the univariate rank function:

1. ||RFn(x)|| < 1 for all x ∈ Rd.

2. ||RFn(x)|| = 0 means that x is the spatial median of the data X1,X2, · · · , Xn in

Rd.

3. Smaller values of ||RFn(x)|| imply that x is located more centrally with respect to

the data points and larger values of ||RFn(x)|| imply that x is an extreme point with

respect to the data cloud. The direction of the vector RFn(x) suggests the direction

in which x is extreme compared to the data cloud.

4. RF (x) = E(RFn(x)) is an injective function of the multivariate distribution function

F , see Koltchinskii (1997). Hence RF (x) characterises a multivariate distribution.

Based on this notion of multivariate rank, we now define the multivariate central rank

region.

Definition 2.1.5 Suppose 0 < p < 1. Let rF (p) be the p-th quantile of the distribution

of ||RF (X)|| with X ∈ Rd. The central rank region denoted by CF (p) is defined as
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CF (p) = {x : ||RF (x)|| ≤ rF (p)} . (2.6)

The volume of the multivariate central rank region is given by

VF (p) = volume of CF (p), 0 < p < 1. (2.7)

Here CF (p) is the central region around the median, which has probability mass p, i.e.

P (CF (p)) = p, if F is absolutely continuous with respect to the Lebesgue measure in

Rd. In the univariate case CF (p) is the central interval around the median, which has a

probability mass p and VF (p) is the length of the interval. If the length of the interval

is short, then the spread of the distribution is also small hence the measure of spread

follows that satisfies properties in Bickel and Lehmann (1979). Thus when p varies from

0 to 1, one can study the changes of spread with the tails of the distribution. VF (p) gives

a measure of change of scale in univariate case, it does a similar thing for the multivariate

case.

Let us now go back to the sample version and denote the p-th quantile of ||RFn(X1)||, · · · ,

||RFn(Xn)|| by rFn(p). Based on this we can define the sample central rank region:

Definition 2.1.6 The sample central rank regions are defined as

CFn(p) = {x : ||RFn(x)|| ≤ rFn(p)} , 0 < p < 1.

We denote the volume of CFn(p) by VFn.

One can consider a plot of VF (p) against p, named scale curve, to visualise the measure of

spread for varying p (see Liu, Parelius and Singh (1999) in the context of simplicial depth

based on scale curves). Figure 2.1 gives us the plot of VF (p) against p i.e. scale plot for

standard bivariate normal distribution, standard bivariate t distribution with 3 degrees of

freedom and standard bivariate Laplace distribution. The definitions of these distributions

are given in Section 1.2. For smaller values of p, the scales of these three distributions are
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Figure 2.1: Scale plot for Bivariate normal , bivariate t distribution with 3 degrees of
freedom and bivariate Laplace distribution, all with location θ = (0, 0)T and scale matrix
Σ = I2.

similar, but the scale for standard bivariate Laplace and standard t distribution with 3

degrees of freedom increases at a faster rate than standard bivariate normal distribution.

This suggests that standard bivariate Laplace distribution and standard t distribution

with 3 degrees of freedom have larger tails compared to standard bivariate normal.

Figure 2.2 gives scale curves for the standard trivariate normal, standard trivariate

Laplace and standard trivariate t distribution with 3 degrees of freedom and we see similar

features.
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Figure 2.2: Scale plot for Trivariate normal, trivariate t distribution with 3 degrees of
freedom and trivariate Laplace distribution all with location θ = (0, 0, 0)T and scale
matrix Σ = I3.

2.2 Spherically and Elliptically Symmetric Distribu-

tions

We noted earlier that for a spherically symmetric distribution, the length of the random

vector ||X − θ|| and its direction X−θ
||X−θ|| are distributed independently. The following

theorem asserts that the length of the rank vector RF (x) depends only on the length of

the vector x− θ and not on the direction of the vector x− θ where θ is the centre of the

spherical symmetry of F .

Theorem 2.2.1 Let X ∈ Rd be a random vector with distribution function F , which is

spherically symmetric about θ ∈ Rd. Then the spatial rank vector of x can be written as
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Figure 2.3: The first column of plots represent non-affine equivariant version of scale curves
for bivariate normal, Laplace and t-distribution with 3 degrees of freedom. The second
column of plots present the affine equivariant scale curves for the same distributions.
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RF (x) = h(||x− θ||) x− θ
||x− θ||

(2.8)

where h(.) is an increasing function.

Proof : Without loss of generality let us take θ = 0. Let us define a function SF (x) as

follows,

SF (x) = EF {||x−X|| − ||X||} . (2.9)

such that EF {||x−X|| − ||X||} <∞.

Let us consider a d-dimensional orthogonal matrix A. Then we have,

SF (Ax) = EF {||Ax−X|| − ||X||}

= EF

{√
(Ax−X)T (Ax−X)−

√
XTX

}
= EF

{√
(x−ATX)TATA(x−ATX)−

√
(AX)TAX

}
= EF

{
||x−ATX|| − ||ATX||

}
= SF (x). (2.10)

The last equality holds as X and ATX have the same distribution for any orthogonal

matrix A. Hence if we rotate x, then SF (x) remains unchanged. So SF (x) does not

depend on x
||x|| and is a function of ||x|| only. Let SF (x) = g(||x||), then

S ′F (x) = g′(||x||). x

||x||
. (2.11)

Also from (2.9) we have,

S ′F (x) = EF

(
x−X

||x−X||

)
= RF (x). (2.12)

Hence from (2.11) and (2.12) we have,
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RF (x) = g′(||x||). x

||x||
.

Letting g′(||x||) = h(||x||) we get (2.8). Now we need to show that h(||x||) is an increasing

function. We can see that ||RF (x)|| = h(||x||). Suppose ||x|| = r. As h is a function of

||x||, so without loss of generality we can take x = (r, 0, · · · , 0)T . Then h(r) = ||RF (x)||

implies

RF (x) = h(r)(1, 0, · · · , 0)T . (2.13)

Also,

RF (x) =

(
EF

(
r −X1

||x−X||

)
, EF

(
−X2

||x−X||

)
, · · · , EF

(
−Xd

||x−X||

))T
, (2.14)

where X = (X1, · · · , Xd)
T . From (2.13) and (2.14) we get,

h(r) = EF

(
r −X1√

(r −X1)2 +X2
2 + · · ·+X2

d

)
. (2.15)

Differentiating (2.15) we get,

h′(r) = EF

(
X2

2 + · · ·+X2
d

((r −X1)2 +X2
2 + · · ·+X2

d)
3
2

)
≥ 0. (2.16)

Thus h is an increasing function and that completes the proof. �

From Theorem 2.2.1, the central rank region CF (p) for the spherically symmetric case can

be written as

CF (p) = {x : ||x|| ≤ rF (p)} (2.17)

where rF (p) is the p-th quantile of ||X − θ||, and hence we can write down the formula

for the volume functional for the scale curve of a spherically symmetric distribution in a
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nice closed form.

Corollary 2.2.1 Let X ∈ Rd be a random vector with distribution function F , which is

spherically symmetric about θ. Also suppose that the multivariate central rank regions are

denoted by CF (p). If VF (p) is the volume of the central rank region CF (p), then,

VF (p) =
π
d
2 (rF (p))d

Γ(d
2

+ 1)
, (2.18)

where rF (p) is the p-th quantile of ||X− θ||.

Proof : From (2.17) we can say that CF (p) describes a sphere Sd when F is spherically

symmetric. Thus VF (p) is the volume of the sphere Sd with radius rF (p). Hence, the

volume of the central rank region for spherically symmetric distributions is obtained as

in equation (2.18). �

We note that for the standard multivariate normal distribution in Rd, r2
F (p) will be

the p-th quantile of the χ2
d distribution; correspondingly, for the standard multivariate

Laplace distribution in Rd, rF (p) will be the p-th quantile of the Γ(d, 1) distribution and

for the standard multivariate t distribution with ν degrees of freedom in Rd, r2
F (p)/d will

be the p-th quantile of the Fd,ν distribution.

A main deficiency of the definition of multivariate rank vector in (2.2) is that although

it is invariant under orthogonal transformations, it is not invariant under a general affine

transformation of the data. Thus the scale curve based on the central rank regions are

not affine equivariant. We now take a look at the Figure 2.3. Let us take a closer look at

the curve for the bivariate normal distribution in Figure 2.3(a). In Figure 2.3(a) we have

plotted p against VF (p) taking different values of the correlation ρ for bivariate normal

distribution with mean vector θ = (0, 0)T and the scale matrix

Σ =

 1 ρ

ρ 1

 .
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As the correlation ρ increases, the spread of the data points should become more and

more elliptical and so the spread VF (p) should decrease with increasing value of ρ. But

we can see that the scale curves are not in any specific order of ρ. The reason is that

though the distributions are taking more and more elliptical form, the volume is being

estimated with respect to a sphere as the volume here is based on a rank which is not

affine invariant. So it requires that we modify the definition of the multivariate rank to

be affine invariant.

To make the multivariate rank invariant under affine transformations, we utilise the

transformation-retransformation method of Chakraborty (2001):

Definition 2.2.1 Let X1, · · · ,Xn be data points on Rd. Suppose Xi0 ,Xi1 , · · · ,Xid are

d + 1 data points in Rd. Let α = {i0, i1, · · · , id} denote the set of (d + 1) indices. Then

we can define a data-driven coordinate system with Xi0 as the origin and the coordinate

axes given by the vectors Xi1−Xi0 , . . . ,Xid−Xi0. Transforming all the observations into

the new coordinate system and computing the multivariate rank vector, we can define

RFn(x) =
1

n

n∑
i=1,i/∈α

{X(α)}−1 (x−Xi)

|| {X(α)}−1 (x−Xi)||
(2.19)

under the assumption that {X(α)}−1 exists, where X(α) is the d×d transformation matrix,

whose columns are Xi1 −Xi0 ,Xi2 −Xi0 , · · · ,Xid −Xi0.

The transformation matrix X(α) is chosen in such a way that {X(α)}T Σ−1X(α)

becomes as close as possible to a diagonal matrix with equal diagonal elements where

Σ is the scatter matrix associated with the underlying distribution of the Xi’s. As the

parameter Σ is unknown in practice, an affine equivariant consistent estimate of Σ, say

Σ̂, is used. After estimating Σ̂, the transformation matrix X(α) is chosen in such a way

that the eigen values of the positive definite matrix {X(α)}T Σ̂−1X(α) becomes as equal

as possible. To achieve this one can minimise the ratio between the arithmetic mean and

the geometric mean of the eigen values of the matrix. The trace of a symmetric matrix

gives the sum of its eigen values and the determinant of the symmetric matrix gives the
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product of the eigen values. Thus a quantity A(α) is minimised over α = {i0, i1, · · · , id}

to achieve the goal, where A(α) is defined as

A(α) =
trace[{X(α)}T Σ̂−1X(α)]/d

[det {X(α)}T Σ̂−1X(α)]1/d
.

For a detailed discussion on the optimality of this selection procedure see Chakraborty

(2001). One can define RF (x) to be the population version of RFn(x) defined above. The

transformation-retransformation spatial rank RF (x) is affine invariant in the sense that if

the distribution of X is denoted by F and the distribution of Y = AX+b is denoted by G

for some non-singular matrix A and d-dimensional vector b, then RG(Ax + b) = RF (x).

Using this affine invariant version of spatial rank, we can have similar central rank regions

and scale curves as before. There are also other versions of affine invariant ranks available

and these can also be used to form affine invariant central rank regions and scale curves,

see Serfling (2010).

In Figure 2.3(b) we plotted the affine equivariant version of the scale curves based on

the above definition of affine invariant rank vectors for the bivariate normal distribution

with mean vector θ and variance matrix Σ as before for different correlation coefficients

ρ and we observe that the ordering between the scale curves with higher values of the

correlation coefficient showing smaller scales. From now on, we restrict our discussion to

the affine invariant versions of the multivariate ranks and corresponding scale curves.

We now consider a more general case of the spherically symmetric case, the elliptically

symmetric distributions. The following theorem states a closed form formula for the affine

equivariant scale curve when the underlying distribution is elliptically symmetric.

Theorem 2.2.2 If the distribution of the random vector X is elliptically symmetric, that

is, it has a density of the form

f(x) = |Σ|−
1
2h((x− θ)TΣ−1(x− θ)) (2.20)

32



for some strictly decreasing, continuous, non-negative scalar function h and positive def-

inite matrix Σ and RF (x) is the affine invariant spatial rank function as defined before,

we have

VF (p) =
π
d
2 |Σ| 12 ζdp

Γ(d
2

+ 1)
(2.21)

where P ((X− θ)TΣ−1(X− θ) ≤ ζ2
p ) = p.

Proof : Let Y = Σ−
1
2 (X− θ), then Y has a spherically symmetric distribution about

0. Let F0 denote the distribution of Y. Then by the affine equivariance of the rank

function RF (x), we have RF0(Y) = RF0(Σ
− 1

2 (X − θ)) = RF (X). This implies that

rF (p) = rF0(p), where rF (p) and rF0(p) are the p-th quantiles of the distributions of

||RF (X)|| and ||RF0(Y)|| respectively. Thus,

CF (p) = {x : ||RF (x)|| ≤ rF (p)}

=
{

x : ||RF0(Σ
− 1

2 (x− θ))|| ≤ rF (p)
}

=
{

Σ
1
2 y + θ : ||RF0(y)|| ≤ rF0(p)

}
= Σ

1
2CF0(p) + θ. (2.22)

Therefore, VF (p) = |Σ| 12VF0(p). Now proceeding as in the proof of Corollary 2.2.1, it

is easy to note that ||RF0(y)|| is a non-negative increasing function of ||y|| only, which

implies that

VF0(p) =
π
d
2

Γ(d
2

+ 1)
ζdp (2.23)

where ζp is given by,

P ((X− θ)TΣ−1(X− θ) ≤ ζ2
p ) = P (YTY ≤ ζ2

p ) = p. (2.24)
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This proves the theorem. �

2.3 Scale-Scale Plot

We have seen earlier that verifying the distributional assumptions of the multivariate

data and comparing samples of multivariate data are not easy tasks. In this section we

propose a scale-scale plot to compare multivariate distributions as a generalisation of the

univariate quantile quantile plot. If F and G are two d-dimensional distributions, we

define a scale-scale plot as follows.

Definition 2.3.1 Let F and G denote two d-dimensional distribution functions and VF (p)

and VG(p) be the volumes of the affine equivariant central rank regions CF (p) and CG(p)

respectively for 0 < p < 1. Then a scale-scale plot is a plot of VF (p) against VG(p).

If F = G, then the scale-scale plot will be a 45◦ line passing through the origin. Since

VF (0) = 0 for all continuous distributions F , the scale-scale plot will always pass through

the origin and we cannot detect a change in origin with the scale-scale plot. However, if

we can detect that the two multivariate distributions are same up to a location shift, quite

often it is not difficult to estimate the location shift efficiently. For elliptically symmetric

distributions F and G, we have the following characterisation:

Theorem 2.3.1 Assume that X,Y ∈ Rd have distributions F and G, respectively, which

are elliptically symmetric. Then Y
d
= AX+b for some d×d matrix A and d-dimensional

vector b if and only if VG(p) = k.VF (p), 0 < p < 1 for some k > 0.

Proof : Suppose that the probability density functions of X and Y are given by

f(x) = |ΣX|−
1
2hX((x− θX)TΣ−1

X (x− θX))

and
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Figure 2.4: Affine equivariant version of Scale-Scale plots for (a) bivariate normal distri-
bution (b)bivariate t distribution with 3 df (c)bivariate Laplace distribution comparing
the standard distributions (ρ = 0) with different values of ρ.
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g(y) = |ΣY|−
1
2 gY((y − θY)TΣ−1

Y (y − θY))

respectively. Then by Theorem 2.2.2, we have

VF (p) =
π
d
2 |ΣX|

1
2 ζdX,p

Γ(d
2

+ 1)
(2.25)

and

VG(p) =
π
d
2 |ΣY|

1
2 ζdY,p

Γ(d
2

+ 1)
(2.26)

where ζdX,p and ζdY,p are the p-th quantiles of the distributions of
√

(X− θX)TΣ−1
X (X− θX)

and
√

(Y − θY)TΣ−1
Y (Y − θY) respectively.

If Y = AX + b, we have hX = gY, ΣY = AΣAT and θY = AθX + b, which implies

(X− θX)TΣ−1
X (X− θX) = (Y − θY)TΣ−1

Y (Y − θY)

and thus

ζX,p = ζY,p for all p ∈ [0, 1).

Therefore,

VG(p) = |A|VF (p).

Now to prove the converse, let us assume that VG(p) = k.VF (p), then again by Theorem

2.2.2, we have

ζY,p = k∗ζX,p, for some k∗ > 0 and for all p ∈ [0, 1).

Then by elliptic symmetry of the distributions of X and Y, we have

Σ
− 1

2
Y (Y − θY) = k∗Σ

− 1
2

X (X− θX)
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and therefore

Y = k∗Σ
1
2
YΣ
− 1

2
X X− k∗Σ

1
2
YΣ
− 1

2
X θX + θY

which proves the theorem with

A = k∗Σ
1
2
YΣ
− 1

2
X and b = −k∗Σ

1
2
YΣ
− 1

2
X θX + θY. �

Theorem 2.3.1 suggests that if X and Y are in the same elliptically symmetric family of

distributions but possibly differ in the location parameter θ and the scale matrix Σ, the

scale-scale plot will be a straight line. The slope of that straight line is determined by the

determinants of the scale matrices associated with them. Figure 2.4(a) shows scale-scale

plots for bivariate normal distributions with the mean vector θ = (0, 0)T and the scale

matrix

Σ =

 1 ρ

ρ 1


for ρ = 0.5, 0.75 and 0.95, where ρ is the correlation coefficient between X and Y,

compared with the standard bivariate normal distribution.

We can see that the slopes of the straight lines in these scale-scale plots are decreasing

with the increasing value of the correlation coefficient ρ. Figures 2.4(b) and (c) show

similar scale-scale plots for bivariate Laplace distribution and bivariate t distribution

with 3 degrees of freedom respectively and we observe the similar decrease in slopes for

the scale curves.
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CHAPTER 3

ASYMPTOTIC DISTRIBUTION OF VFN

In the previous chapter, we have defined the volume functional based on the rank regions.

Here in this chapter we will be discussing the asymptotic properties of the corresponding

sample volume functional {VFn(p), 0 < p < 1}. Wang and Serfling (2006) discussed a

similar idea for a general data depth, where they showed the convergence of the scale

curve to a Brownian bridge under some very restrictive set up for a univariate case.

In their works they considered a general depth function D(x, F ) and its corresponding

central region CF,D(p) for a distribution F , with volume VF,D(p). Following the concepts

of Einmahl and Mason (1990), the VF,D(p) is a generalised quantile function. For the

sample version they established a weak convergence of the quantile process. Wang and

Serfling (2006) modified the definition of the scale curve by restricting the central regions

to some specific form and showed that the modified volume functional converges weakly

to the Brownian bridge over a closed set.

In the next section we will show that the scale curve converges to a Brownian bridge

under some very general conditions, without the need to modify the central regions.

3.1 Asymptotic Results

For the rest of this thesis, unless stated otherwise, X1,X2, · · · ,Xn ∈ Rd are independent

with common distribution function F which is continuous with respect to the Lebesgue
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measure in Rd. We now show that {VFn(p), 0 < p < 1} converges to a Brownian bridge

under some regularity conditions which are stated as follows:

A1 The probability measure P of the data in Rd has corresponding cdf F possessing a

density f(x), which is positive for all x ∈ supp(F ).

A2 ||RF (x)|| is continuous in x.

A3 The set {x : ||RF (x)|| = r} is nonempty for all 0 < r < r∗F = supx ||RF (x)||.

A4 As a function of p, with rF (p) ∈ (0, r∗F ), VF (p) is finite, strictly increasing and pos-

sesses a continuous derivative.

A5 VF is twice differentiable at p. v′F is bounded in a neighbourhood of p, 0 < p < 1,

where vF (p) = d
dp
VF (p). Moreover vF (p) is bounded away from 0 in a neighbourhood

of p. The bounds may be functions of p.

As p increases, rF (p) also increases and by assumptions A1, A2 and A3 we can say that the

monotonicity is strict. Assumptions A4 and A5 signify the existence of the scaling factor

vF (p). These assumptions, as we will see later in Section 3.2, are satisfied by some of the

most common elliptically symmetric distributions, eg. multivariate normal, multivariate

Laplace and multivariate t distributions. Similar assumptions can also be seen in Serfling

(2002b), as well as in Bahadur (1966) in the context of quantile functions.

We require the following inverse volume functionals as follows before we state the main

theorem:

Definition 3.1.1

V −1
F (y) = F -probability of the smallest central region CF (.) having volume ≥ y.

V −1
Fn

(y) = Fn-probability of the smallest central region CFn(.) having volume ≥ y.
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Note that if A5 is true, then V −1
F is well defined. Moreover

d

dy
V −1
F (y)

∣∣
y=VF (p)

=
1

vF (V −1
F (VF (p)))

=
1

vF (p)
> 0,

which implies that V −1
F is strictly increasing in a neighbourhood of VF (p).

We are now ready to state the main theorem of this chapter, which describes the asymp-

totic distribution of the volume functional for the rank based regions.

Theorem 3.1.1 Suppose the assumptions A1-A5 hold. Then

{
√
n {vF (p)}−1 (VFn(p)− VF (p)), 0 < p < 1} (3.1)

converges to a Brownian Bridge with covariance kernel Γ(p1, p2) = p1(1 − p2) where 0 <

p1 ≤ p2 < 1 and n→∞.

Note that the covariance kernel can alternatively written as,

Γ(p1, p2) =


p(1− p), if p1 = p2 = p

min {p1, p2} − p1p2, if p1 6= p2.

This theorem tells us that the volume functional for the rank based regions converges to

a Brownian Bridge at a
√
n rate under some general conditions. The proof for the above

theorem is arrived at through a series of lemmas as proved below.

Lemma 3.1.1 Let

Yin =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
j 6=i

Xj −Xi

||Xj −Xi||

∣∣∣∣∣
∣∣∣∣∣ , Zin =

∣∣∣∣∣∣∣∣EX

(
X−Xi

||X−Xi||

)∣∣∣∣∣∣∣∣ (3.2)

where X ∼ F . Then under conditions A1 and A2,

Yin − Zin = OP

(
1√
n

)
(3.3)
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Proof : Let us condition on X1 = x1. Then,

√
n

(
1

n

n∑
j=2

Xj − x1

||Xj − x1||
− EX

(
X− x1

||X− x1||

))

⇒ Nd

(
0, EF

{(
X− x1

||X− x1||

)(
X− x1

||X− x1||

)T})
as n→∞,∀ x1 ∈ Rd (3.4)

where the density of the limiting multivariate normal is φ(x|x1).

Then as n→∞, the limiting density function of

√
n

(
1

n

n∑
j=2

Xj −X1

||Xj −X1||
− EX

(
X−X1

||X−X1||

))

is given by φ(x|x1).fX1(x1). Hence

1

n

n∑
j=2

Xj −X1

||Xj −X1||
− EX

(
X−X1

||X−X1||

)
= OP

(
1√
n

)
(3.5)

It follows that,

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
j 6=i

Xj −Xi

||Xj −Xi||

∣∣∣∣∣
∣∣∣∣∣−
∣∣∣∣∣∣∣∣EX

(
X−Xi

||X−Xi||

)∣∣∣∣∣∣∣∣ = OP

(
1√
n

)
(3.6)

Recall from (3.2),

Yin =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
j 6=i

Xj −Xi

||Xj −Xi||

∣∣∣∣∣
∣∣∣∣∣ , Zin =

∣∣∣∣∣∣∣∣EX

(
X−Xi

||X−Xi||

)∣∣∣∣∣∣∣∣
Hence we have our result,

Yin − Zin = OP

(
1√
n

)
.�

Lemma 3.1.2 Let Yin and Zin be as in (3.2). Define, Y ∗in = I(Yin ≤ y), Z∗in = I(Zin ≤ y)

where y ∈ R. Then if A1 and A2 holds,
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(
1

n

n∑
i=1

Y ∗in −
1

n

n∑
i=1

Z∗in

)
= o(e−n) w.p. 1. (3.7)

Proof:

E(exp(it(Y ∗in − Z∗in)en)) = 1.P [Y ∗in − Z∗in = 0] + exp(iten).P [Y ∗in − Z∗in = 1]

+ exp(−iten).P [Y ∗in − Z∗in = −1] (3.8)

When

Y ∗in − Z∗in = 1⇔ Yin ≤ y < Zin

and

Y ∗in − Z∗in = −1⇔ Zin ≤ y < Yin.

Now, from Lemma 3.1.1 we have for every ε > 0, ∃c > 0 such that

P [
√
n|Yin − Zin| > c] < ε,∀n (3.9)

where Yin and Zin are defined in (3.2). Let us fix an ε and choose a corresponding c such

that (3.9) is satisfied.

P [Y ∗in − Z∗in = 1] = P [Yin ≤ y < Zin]

= P [Yin ≤ y < Zin,
√
n|Yin − Zin| > c]

+ P [Yin ≤ y < Zin,
√
n|Yin − Zin| ≤ c]

≤ ε+ P

[
Yin ≤ y < Zin, |Yin − Zin| ≤

c√
n

]
( from Lemma 3.1.1)

≤ ε+ P

[
Zin −

c√
n
≤ y < Zin

]
= ε+ P

[
y < Zin ≤ y +

c√
n

]
(3.10)
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As Zin has a bounded continuous density at a compact neighbourhood of y by A1 and

A2,

P

(
y < Zin ≤ y +

c√
n

)
=

∫ y+ c√
n

y

fZin(x)dx ≤ k
c√
n

for some k ∈ R+. Hence from (3.10)

P [Y ∗in − Z∗in = 1] ≤ ε+
kc√
n

(3.11)

Similarly,

P [Y ∗in − Z∗in = −1] ≤ ε+
k1c1√
n

for some k1 ∈ R+. (3.12)

So,

E(exp(it(Y ∗in − Z∗in)en))

= 1.P [Y ∗in − Z∗in = 0] + exp(iten).P [Y ∗in − Z∗in = 1]

+ exp(−iten).P [Y ∗in − Z∗in = −1]

= 1− P [Y ∗in − Z∗in = 1]− P [Y ∗in − Z∗in = −1]

+ exp(iten).P [Y ∗in − Z∗in = 1] + exp(−iten).P [Y ∗in − Z∗in = −1]

= 1 + (exp(iten − 1).P [Y ∗in − Z∗in = 1]

+ (exp(−iten)− 1).P [Y ∗in − Z∗in = −1] (3.13)

Now,
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|(exp(iten − 1).P [Y ∗in − Z∗in = 1] + (exp(−iten)− 1).P [Y ∗in − Z∗in = −1]|

≤ |(exp(iten − 1)|.P [Y ∗in − Z∗in = 1] + |(exp(−iten)− 1)|.P [Y ∗in − Z∗in = −1]

≤ 2

(
ε+

kc√
n

+ ε+
k1c1√
n

)
,∀ε > 0

→ 0, as n→∞. (3.14)

Thus,

E(exp(it(Y ∗in − Z∗in)en))→ 1, as n→∞

and hence

(Y ∗in − Z∗in)en
a.s.−−→ 0, as n→∞.

Hence,

en

(
1

n

n∑
i=1

Y ∗in −
1

n

n∑
i=1

Z∗in

)
a.s.−−→ 0 as n→∞. (3.15)

So, (
1

n

n∑
i=1

Y ∗in −
1

n

n∑
i=1

Z∗in

)
= o(e−n) with probability 1.

Thus the lemma is proved. �

We now recall from Section 2.1 that rF (p) is the p-th quantile of ||RF (X)|| and rFn(p) is

the sample version.

Lemma 3.1.3 Under A1, A2 and A3, rFn(p)
a.s.−−→ rF (p) as n → ∞ for all 0 < p < 1.

Moreover

rFn(p)− rF (p) = OP

(
1√
n

)
(3.16)

.
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Proof: From Lemma 3.1.1, for every ε > 0, ∃ c > 0 such that, P [
√
n|Yin − Zin| > c] <

ε,∀n where Yin and Zin are defined in (3.2).

Now I

(
||EX

(
X−Xi

||X−Xi||

)
|| ≤ y

)
, 1 ≤ i ≤ n, are independently and identically distributed

random variables. Hence by the strong law of large numbers we can say,

1

n

n∑
i=1

I

(
||EX

(
X−Xi

||X−Xi||

)
|| ≤ y

)
−P

[
||EX

(
X−Xi

||X−Xi||

)
|| ≤ y

]
= o(1) w.p. 1. (3.17)

So, by Lemma 3.1.2 and (3.17), we get

1

n

n∑
i=1

(
I

(
|| 1
n

n∑
j=1,j 6=i

Xj −Xi

||Xj −Xi||
|| ≤ y

))
− P

[
||EX

(
X−Xi

||X−Xi||

)
|| ≤ y

]
= o(1) w.p. 1.

(3.18)

Let F ∗(y) = P
(
||EX

(
X−Xi

||X−Xi||

)
|| ≤ y

)
and F ∗n(y) = 1

n

∑n
i=1 I

(
|| 1
n

∑n
j 6=i

Xj−Xi

||Xj−Xi|| || ≤ y
)

then F ∗n(y)
a.s.−−→ F ∗(y).

Let rF (p) be the unique solution (existence ensured by A3) of F ∗(x−) ≤ p ≤ F ∗(x). Then

F ∗(rF (p)− ε) < p < F ∗(rF (p) + ε), for all ε > 0.

Now F ∗n(rF (p)− ε) a.s.−−→ F ∗(rF (p)− ε) and F ∗n(rF (p) + ε)
a.s.−−→ F ∗(rF (p) + ε) as n→∞.

Hence

P (F ∗m(rF (p)− ε) < p < F ∗m(rF (p) + ε),∀m ≥ n) → 1, as n→∞

⇒ P (rF (p)− ε < F ∗m
−1(p) < rF (p) + ε,∀m ≥ n) → 1, as n→∞

⇒ P

[
Supm≥n|rFm(p)− rF (p)| > ε

]
→ 0, n→∞

⇒ rFn(p)
a.s.−−→ rF (p) (3.19)

by Hoeffding’s lemma, following Theorem 2.3.2 of Serfling (1980).
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Now we establish (3.16). We take Gn(t) as

Gn(t) = P (
√
n|rFn(p)− rF (p)| ≤ t)

= P

(
rF (p)− t√

n
≤ rFn(p) ≤ rF (p) +

t√
n

)
= P

(
p ≤ F ∗n

(
rF (p) +

t√
n

))
= P (np ≤ zn),

where zn =
∑n

i=1 Vin with Vin = I
(
|| 1
n

∑
j 6=i

Xj−Xi

||Xj−Xi|| || ≤ rF (p) + t√
n

)
. Now

zn
n

=
1

n

n∑
i=1

Vin

=
1

n

n∑
i=1

I

(
|| 1
n

∑
j 6=i

Xj −Xi

||Xj −Xi||
|| ≤ rF (p) +

t√
n

)

=
1

n

n∑
i=1

I

(∣∣∣∣∣∣∣∣EX ( X−Xi

||X−Xi||

) ∣∣∣∣∣∣∣∣ ≤ rF (p) +
t√
n

)
+ o(e−n) w.p. 1 by Lemma 3.1.2

Thus,

zn =
n∑
i=1

I

(∣∣∣∣∣∣∣∣EX ( X−Xi

||X−Xi||

) ∣∣∣∣∣∣∣∣ ≤ rF (p) +
t√
n

)
+ o(ne−n) (3.20)

has a binomial distribution, Bin
(
n, F ∗

(
rF (p) + t√

n

))
. Hence proceeding as the proof

of Theorem A, Serfling (1980), (pp. 78), we can show that for some suitable c, Gn(t) ≈

Φ(ct) +O
(

1√
n

)
, implying (3.16), where Φ is the cdf of N(0, 1). �

Remark 1. The c used in the proof of Lemma 3.1.3 is given by c =

√
p(1−p)

F ∗(rF (p))
and does

not depend on n.

Remark 2. We have essentially proved that
√
n(rFn(p) − rF (p)) ⇒ N(0, c2) in dis-

tribution. However that result is not required for our main theorem, so we are not

emphasizing on the proof for this.

We now shift our attention to VFn(p) and VF (p) and establish a bound on its rate of

convergence towards VF (p).
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Lemma 3.1.4 Under A1, A2 and A3, VFn(p)− VF (p) = OP

(
1√
n

)
Proof :

|VFn(p)− VF (p)|

= |volume {x : ||RFn(x)|| ≤ rFn(p)} − volume {x : ||RF (x)|| ≤ rF (p)} |

≤ |volume {x : ||RFn(x)|| ≤ rFn(p)} − volume {x : ||RF (x)|| ≤ rFn(p)} |

+ |volume {x : ||RF (x)|| ≤ rFn(p)} − volume {x : ||RF (x)|| ≤ rF (p)} | (3.21)

Now by central limit theorem for independent and identical random variables RFn(x) −

RF (x) = OP

(
1√
n

)
. Thus ||RFn(x)|| − ||RF (x)|| = OP

(
1√
n

)
. Hence

|volume {x : ||RFn(x)|| ≤ rFn(p)} − volume {x : ||RF (x)|| ≤ rFn(p)} |

= volume

{
x : min(||RFn(x)||, ||RF (x)||) ≤ rFn(p) ≤ max(||RFn(x)||, ||RF (x)||)

}

= volume

{
x : min(||RFn(x)||, ||RF (x)||) ≤ rFn(p)

≤ min(||RFn(x)||, ||RF (x)||) +OP

(
1√
n

)}
(

as ||RFn(x)|| = ||RF (x)||+OP

(
1√
n

))

= OP

(
1√
n

)
(3.22)
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as the region is a dimension-1 or higher torus with difference of inner diameter and outer

diameter of order OP

(
1√
n

)
. Also

|volume {x : ||RF (x)|| ≤ rFn(p)} − volume {x : ||RF (x)|| ≤ rF (p)} |

= volume {x : min(rFn(p), rF (p)) ≤ ||RF (x)|| ≤ max(rFn(p), rF (p))}

= volume

{
x : min(rFn(p), rF (p)) ≤ ||RF (x)|| ≤ min(rFn(p), rF (p)) +OP

(
1√
n

)}
(by A1 and A2)

= OP

(
1

n
d
2

)
(3.23)

since the region is a hyper-torus with difference of inner and outer diameter beingOP

(
1√
n

)
.

Thus,

VFn(p)− VF (p) = OP

(
1√
n

)
+OP

(
1

n
d
2

)
⇒ VFn(p)− VF (p) = OP

(
1√
n

)
. (3.24)

Hence the lemma is proved. �

The following result will be required to establish a useful approximation of V −1
Fn

(VF (p)).

Lemma 3.1.5 Suppose {an} and {bn} are two sequences of real numbers such that for

a ∈ R taking values on [0,∞], an → a and bn → a, as n→∞. Then under the following

conditions:

1. supS

∣∣∣∣||RFn(x)|| − ||RF (x)||
∣∣∣∣→ 0 almost surely for any bounded set S ∈ Rd,

2. P {x : ||RF (x)|| = c} = 0 for any c ∈ R,

we have,

P (Can
Fn

(p)∆Cbn
F (p))→ 0 (3.25)

almost surely on the set S, where A∆B = (A ∪B)\(A ∩B), Can
Fn

(p) = {x : ||RFn(x)|| ≤ an},

Cbn
F (p) = {x : ||RF (x)|| ≤ bn}.
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Proof:

∞⋂
n=1

∞⋃
N=n

(
Can
Fn

(p)∆Cbn
F (p)

)
= {x : x ∈ Can

Fn
(p)∆Cbn

F (p) infinitely often}

= {x : (||RFn(x)|| ≤ an) 4 (||RF (x)|| ≤ bn) infinitely often}

= {x : (||RFn(x)|| ≤ an, ||RF (x)|| > bn)

∪(||RFn(x)|| > an, ||RF (x)|| ≤ bn) infinitely often}

= {x : ||RF (x)|| = a}

for almost all ω ∈ S. Hence, P (∪∞N=nC
an
Fn

(p)∆Cbn
F (p)) → 0 on S almost surely by condi-

tions 1 and 2 of the lemma. �.

Lemma 3.1.6 Under A1-A4,

V −1
Fn

(VF (p))− 1

n

n∑
j=1

I(Xj ∈ CF (p)) = o(e−n) w.p. 1. (3.26)

Proof : Let C∗Fn(p) = Smallest CFn(.) with volume ≥ VF (p). Then

|P (X1 ∈ Smallest CFn with volume ≥ VF (p))− P (X1 ∈ CF (p))|

≤ P (X1 ∈ C∗Fn(p)∆CF (p))

Now

X1 ∈ CF (p)⇔ ||RF (X1)|| ≤ rF (p)

⇔ ||EX
(

X1 −X

||X1 −X||

)
|| ≤ rF (p).

Let pn be the smallest number such that CFn(pn) has volume ≥ VF (p). Hence,

C∗Fn(p) = CFn(pn) = {x : ||RFn(x)|| ≤ rFn(pn)} .
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Let

A∗1n = I(X1 ∈ Smallest CFn(.) with volume ≥ VF (p)) = I(X1 ∈ CFn(pn))

and

A∗∗1 = I(X1 ∈ CF (p))

Now the moment generating function of en(A∗∗1 − A∗1n) is

E(exp(it(A∗∗1 − A∗1n)en))

= 1.P (A∗∗1 = A∗1n) + eite
n

.P (A∗∗1 − A∗1n = 1) + e−ite
n

.P (A∗∗1 − A∗1n = −1)

→ 1 if both P (A∗∗1 − A∗1n = 1)→ 0, P (A∗∗1 − A∗1n = −1)→ 0 (3.27)

which would imply en(A∗∗1 − A∗1n)
p−→ 0 and this would imply A∗∗1 − A∗1n = op(e

−n)

It remains to show that P (A∗∗1 − A∗1n = 1)→ 0 and P (A∗∗1 − A∗1n = −1)→ 0 as n→∞.

Now

P (A∗∗1 − A∗1n = 1) + P (A∗∗1 − A∗1n = −1)

= P (C∗Fn(p)∆CF (p))

= P ({||RFn(X1) ≤ rFn(pn)}∆ {||RFn(X1)|| ≤ rF (p)}) . (3.28)

Hence, if we can show that rFn(pn)
a.s.−−→ rF (p), then (3.27) will follow by Lemma 3.1.5.

We have already seen from Lemma 3.1.4, VFn(p)
a.s.−−→ VF (p).

Hence for a given ε > 0, there exists N such that for all n ≥ N ,

VFn(p+ ε) ≥ VF (p) > VFn(p− ε). (3.29)

Further, as the volume of CFn(pn) = VF (p), hence by the nesting property of CFn(p) we

have

CFn(p− ε) ⊆ CFn(pn) ⊆ CFn(p+ ε). (3.30)
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Thus,

p+ ε ≥ pn > p− ε, a.s.

So,

rFn(p+ ε) ≥ rFn(pn) > rFn(p) for n ≥ N, a.s.

⇒ rFn(pn) − rFn(p)
a.s.−−→ 0

As from Lemma 3.1.3, rFn(p)− rF (p)
a.s.−−→ 0, we can say

rFn(pn)
a.s.−−→ rF (p)

and hence,

P (C∗Fn(p)∆CF (p))→ 0

which proves (3.27). So,

I(X1 ∈ CFn(pn)) − I(X1 ∈ CF (p)) = o(e−n) w.p. 1

1

n

n∑
j=1

I(Xj ∈ CFn(pn)) − 1

n

n∑
j=1

I(Xj ∈ CF (p)) = o(e−n) w.p. 1

where V −1
Fn

(VF (p)) = 1
n

∑n
j=1 I(Xj ∈ CFn(pn)). Thus the lemma is proved. �

We now aim to prove a result which establishes a relation between V −1
Fn

(x)− V −1
Fn

(VF (p))

and V −1
F (x)− V −1

F (VF (p)) for x’s close to VF (p). For this we will use the following result

by Bernstein.

Fact 3.1.1 For any n and any z, 0 ≤ z ≤ 1, let B(n, z) denote a binomial random

variable. Then

P (|B(n, z)− nz| ≥ t) ≤ 2e−h, (3.31)
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for all t > 0, where

h = h(n, z, t) =
t2

2[nz(1− z) + t
3

max {z, 1− z}]
. (3.32)

The proof is omitted and can be found in Uspensky (1937).

Consider the following setup. Let us define

Gn(x) =
[
V −1
Fn

(x)− V −1
Fn

(VF (p))
]
−
[
V −1
F (x)− V −1

F (VF (p))
]

(3.33)

Now let {an : n = 1, 2, · · · } be a sequence of positive constants such that

an ∼
log n

n
1
2

, as n→∞. (3.34)

Let

In = (VF (p)− an, VF (p) + an) (3.35)

and define Hn = supx∈In |Gn(x)|.

The following lemma is similar to a lemma proved by Bahadur (1966).

Lemma 3.1.7 Under A1-A5,

Hn = OP (n−
3
4 log n)

Proof : Let

bn ∼ n
1
4 , (3.36)

as n = 1, 2, · · · . For any integer r, let

ηr,n = VF (p) + anb
−1
n r.

Further, let

Jr,n = [ηr,n, ηr+1,n]
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and define

αr,n = V −1
F (ηr+1,n)− V −1

F (ηr,n).

V −1
Fn

and V −1
F are clearly non-decreasing for x ∈ Jr,n. So,

Gn(x) ≤ V −1
Fn

(ηr+1,n)− V −1
Fn

(VF (p))− V −1
F (ηr,n) + p

= Gn(ηr+1,n) + αr,n.

Also, for x ∈ Jr,n, Gn(x) ≥ Gn(ηr,n)− αr,n. Hence,

Hn ≤ max {|Gn(ηr,n)| : −bn ≤ r ≤ bn}+ max {αr,n : −bn ≤ r ≤ bn − 1}

= Kn + βn (say). (3.37)

Since ηr+1,n − ηr,n = anb
−1
n r for each r, since |ηr,n − VF (p)| ≤ an for |r| ≤ bn and since

V −1
F is sufficiently smooth in a bounded neighbourhood of VF (p), hence from (3.34) and

(3.36), βn = O(n−
3
4 log n).

Let us now choose a suitable c1 > 0 (whose choice is to be clarified later) and define

νn = c1n
− 3

4 log n, for n = 1, 2, · · · . We now show that
∑

n P (Kn ≥ νn) < ∞, which

implies by Borel-Cantelli lemma that P (lim supn→∞(Kn ≥ νn)) = 0, which would in turn

imply that Kn = OP (νn) and this in turn proves Hn = OP (n−
3
4 log n). Hence, it remains

to show that ∑
n

P (Kn ≥ νn) <∞. (3.38)

Now,

Kn = max {|Gn(ηr,n)| : −bn ≤ r ≤ bn} ,

ηr,n = VF (p) + anb
−1
n r,

νn ∼ n−
3
4 log n, bn ∼ n

1
4 , an ∼ n−

1
2 log n.
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Choose and fix c2 such that

c2 >
d

dy
V −1
F (y)

∣∣
y=VF (p)

=
1

vF (p)
. (3.39)

Let N be an integer so large such that

V −1
F (VF (p) + an)− V −1

F (VF (p)) < c2an

and

V −1
F (VF (p))− V −1

F (VF (p)− an) < c2an

for all n > N . Now the distribution of |Gn(ηr,n)| is that of n−1|B(n, z) − nz|, where

z = |V −1
F (ηr,n − p)| = zr,n (say).

|Gn(ηr,n)| = |V −1
Fn

(ηr,n)− V −1
Fn

(VF (p))− V −1
F (ηr,n) + p|

=

∣∣∣∣ 1n
n∑
j=1

I(Xj ∈ CF (p)∆CF (p∗n))− |p∗n − p|
∣∣∣∣+ o(1) (by Fact 3.1.1)

=

∣∣∣∣ 1nBin(n, |p∗n − p|)− |p∗n − p|
∣∣∣∣

=

∣∣∣∣ 1nBin(n, z)− z
∣∣∣∣

where p∗n = V −1
F (ηr,n).

Consequently by (3.31),

P (|Gn(ηr,n)| ≥ νn) ≤ 2e−hn(r) (3.40)

where hn(r) = h(n, zn, nνn) is given by (3.32). Since

h(n, z, t) ≥ t2

2(nz + t)
,
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and since n > N and |r| ≤ bn imply zn ≤ c2an, it follows that

P (|Gn(ηr,n)| ≥ νn) ≤ 2e−δn (3.41)

for n > N and |r| < bn, where δn = n2ν2n
2(c2nan+nνn)

. Since δn does not depend on r, it follows

from (3.37) and (3.41), using an argument similar to Bahadur (1966), that

P (Kn ≥ νn) ≤ 4bne
−δn = λn(say),

for n > N . It follows from (3.34) and (3.36) by definitions of νn, δn and λn that

log λn
log n

→ 1

4
− c2

1

2c2

(3.42)

as n→∞. The limit in (3.42) is less than −1 if, given c2, c1 is chosen sufficiently large.

Then
∑

n λn <∞ and (3.38) holds. Hence the proof is complete. �

We are now ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1: We will prove the following Bahadur type representation

√
n {vF (p)}−1 (VFn(p)− VF (p)) =

1√
n

n∑
i=1

(p− I(Xi ∈ CF (p))) +Rn (3.43)

as n→∞, whereRn = op(1) and hence the result will follow as { 1√
n

∑n
i=1 (p− I(Xi ∈ CF (p))) , 0 <

p < 1} converges to a Brownian bridge with covariance kernel Γ(p1, p2) = p1(1−p2) where

0 < p1 ≤ p2 < 1.

Now let us fix a p, 0 < p < 1. From Lemma 3.1.4 we have

VFn(p)− VF (p) = oP

(
1

n
1
4

)
(3.44)
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Considering the Taylor series expansion of V −1
F , we get,

V −1
F (VFn(p)) = V −1

F (VF (p)) + (VFn(p)− VF (p)) {vF (p)}−1 + En

⇒ {vF (p)}−1 (VFn(p)− VF (p)) = V −1
F (VFn(p))− V −1

F (VF (p)) + En (3.45)

where En is the residual of the Taylor series expansion. En is of the form

En =
d2

dy2

(
(V −1

F (y)
) ∣∣∣∣

y=cn

(
(VFn(p)− VF (p))2

2!

)
, (3.46)

where cn is a number between VFn(p) and VF (p). From (3.44) we can say,

√
n

(
(VFn(p)− VF (p))2

2!

)
= oP (1). (3.47)

We now need to see whether

d2

dy2

(
(V −1

F (y)
) ∣∣∣∣

y=cn

is bounded. Let y = VF (p). Then dy
dp

= vF (p). We assume that v′F also exists in a

neighbourhood of p. Note that,

d

dy
V −1
F (y) =

1

vF (V −1
F (y))

.

d2

dy2
V −1
F (y) = − 1

v2
F (V −1

F (y))

d

dy
vF (V −1

F (y))

= −v
′
F (V −1

F (y))

v3
F (V −1

F (y))
(3.48)

Thus,
√
nEn = −v

′
F (V −1

F (cn))

v3
F (V −1

F (cn))

√
n

(
(VFn(p)− VF (p))2

2!

)
(3.49)

We now show that
√
nEn

a.s.−−→ 0. Since VFn(p) converges to VF (p) in probability and cn is a

sequence of numbers between them, hence cn → VF (p) in probability. Thus V −1
F (cn)→ p

in probability and hence v′F (V −1
F (cn)) is bounded in the neighbourhood of p because of

A5. Hence (3.49) combined with (3.44) proves
√
nEn

a.s.−−→ 0.
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As VFn(p) − VF (p) = oP

(
1√
n

)
by Lemma 3.1.4 and an ∼ logn√

n
as defined in (3.34),

eventually VFn(p) is in In, for all n ≥ N for large N with probability 1, where In is

defined in (3.35). Hence by Lemma 3.1.7 we can say that supx∈In
√
nGn(x) = oP (1),

which implies that

√
n(V −1

F (VFn(p)− V −1
F (VF (p)))−

√
n(p− V −1

Fn
(VF (p))) = oP (1). (3.50)

Now,

V −1
Fn

(VF (p)) =
1

n

n∑
j=1

I {Xj ∈ Smallest CFn(.) with volume ≥ VF (p)} . (3.51)

So from (3.50) and (3.51) we get

p− V −1
Fn

(VF (p)) = p− 1

n

n∑
j=1

I {Xj ∈ Smallest CFn(.) with volume ≥ VF (p)} . (3.52)

Now we have to take care of the difference between 1
n

∑n
j=1 I {Xj ∈ CF (p)} and

1
n

∑n
j=1 I {Xj ∈ Smallest CFn(.) with volume ≥ VF (p)}. From Lemma 3.1.6 we get

V −1
Fn

(VF (p))− 1
n

∑n
j=1 I(Xj ∈ CF (p)) = op(e

−n). Thus we can replace V −1
Fn

(VF (p)) in (3.52)

by 1√
n
I(Xi ∈ CF (p)). Hence we have our result. �

The construction of our rank functions RF (x) and RFn(x) are based on the trans-

formation retransformation matrix {X(α)} as discussed in Definition 2.2.1 of Chapter 2.

{X(α)} {X(α)}T is chosen in such a way that it becomes a consistent estimate of the

covariance matrix Σ. Without loss of generality, we may take Σ as the identity matrix I;

then we arrive at the forms of the rank functions as we have taken them in this section.
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3.2 The Scaling Factor vF (p)

In the previous section we have seen that {VFn , 0 < p < 1} converges to a Brownian bridge,

where vF (p) appears as a scaling factor. Clearly to find a confidence interval for VF (p),

vF (p) needs to be computed or estimated. We now state some results that give us some

idea about the form of vF (p) in some special cases. In general vF (p) may be quite hard

to obtain.

Theorem 3.2.1 Suppose X is a d-dimensional random vector with a distribution function

F , which is elliptically symmetric about θ with the scale matrix Σ. Then,

vF (p) =
dπ

d
2 |Σ| 12 rd−1

F (p)

Γ(d
2

+ 1)f(rF (p))
(3.53)

where rF (p) is the p-th quantile of the distribution of
√

(X− θ)TΣ−1(X− θ), and f is

the probability density function of
√

(X− θ)TΣ−1(X− θ).

Proof : For a d-dimensional elliptically symmetric distribution with distribution function

F ,

VF (p) =
π
d
2 |Σ| 12 rdF (p)

Γ(d
2

+ 1)
. (3.54)

Then

vF (p) =
d

dp
VF (p)

=
dπ

d
2 |Σ| 12 rd−1

F (p)

Γ(d
2

+ 1)

(
d

dp
rF (p)

)
=

dπ
d
2 |Σ| 12 rd−1

F (p)

Γ(d
2

+ 1)f(rF (p))

=
2π

d
2 |Σ| 12 rd−1

F (p)

Γ(d
2
)f(rF (p))

where f(.) is the density function of
√

(X− θ)TΣ−1(X− θ). �
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In the spherically symmetric case, Σ = Id and we have

vF (p) =
dπ

d
2 rd−1
F (p)

Γ(d
2

+ 1)f(rF (p))

=
2π

d
2 rd−1
F (p)

Γ(d
2
)f(rF (p))

Now let us consider a few special spherically and elliptically symmetric cases, the multi-

variate normal distribution, the multivariate Laplace distribution and the multivariate t

distribution.

Examples :

1. For a d-dimensional multivariate normal distribution Nd(µ,Σ) with distribution

function F ,

vF (p) =
dπ

d
2 |Σ| 12 rd−1

F (p)

Γ(d
2

+ 1)f(rF (p))
(3.55)

where r2
F (p) is the p-th quantile of a χ2

d random variable and f(.) is the density

function of
√
χ2
d where

f(x) =
1

2
d
2
−1Γ(d

2
)
xd−1exp

(
−x

2

2

)
.

Hence

vF (p) = (2π)
d
2 |Σ|

1
2 exp

(
r2
F (p)

2

)
. (3.56)

2. For a d-dimensional multivariate Laplace distribution with distribution function F ,

vF (p) is given by (3.55) where rF (p) is the p-th quantile of ||X|| and f(.) is the

density function of Γ(d, 1) where

f(x) =
xd−1exp(−x)

Γ(d)
.

Hence

vF (p) =
2π

d
2 |Σ| 12 Γ(d)

Γ
(
d
2

) exp(rF (p)).
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3. For a d-dimensional multivariate t distribution with ν degrees of freedom and dis-

tribution function F , vF (p) is given by (3.55) where r2
F (p) is the p-th quantile of

dFd,ν random variable and f(.) is the density function of
√
dFd,ν where

f(x) =
2Γ
(
d+ν

2

)
dΓ
(
d
2

)
Γ
(
ν
2

)xd−1

(
1 +

1

ν
x2

)− (d+ν)
2

.

(
d

ν

) d
2

.

Hence

vF (p) =
π
d
2 |Σ| 12 Γ

(
ν
2

)
ν
d
2

(
1 + 1

ν
r2
F (p)

) d+ν
2

Γ
(
d+ν

2

)
d
d
2
−1

.

We note here that in all of the above examples vF (p) > 0 for all 0 < p < 1 and is

bounded away from 0 for p in any compact subset of [0, 1]. Moreover in the above three

examples rF (p) and hence vF (p) is a differentiable function. This clearly indicates that

assumptions A4 and A5 hold for all of the above examples.

In the above examples we know the form of vF (p) exactly and we can just use a

consistent estimator of Σ to get a consistent estimator of vF (p). However, if the form of

f(.) is unknown, we need to estimate f(.) by some density estimation method, for example,

kernel density estimation method or spline fitting, which may affect the accuracy of our

estimation procedure. It may be noted here that the accuracy in estimation of vF (p)

affects the accuracy in estimating VF (p) by VFn(p). Especially when a nonparametric

density estimator is employed in estimating vF (p), the
√
n rate of convergence that was

established in Theorem 3.1.1 will not be achieved.
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CHAPTER 4

VISUAL TESTS BASED ON THE SCALE-SCALE
PLOTS

One of the widely used graphical method for comparing univariate distributions is the

quantile-quantile (Q-Q) plot that matches the quantiles of one distribution with the same

quantiles of the other. The Q-Q plots, which were proposed by Wilk and Gnanadesikan

(1968), are quite useful in revealing location and scale differences as well as identifying

outliers. Though there is an extensive literature on univariate Q-Q plots, see Barnett

(1976), Cook and Weisberg (1982), Cleveland (1993), Marden (2004), for some detailed

discussions and examples, there are very few proposed generalisations to the multivariate

distributions. Most of the multivariate procedures are based on dimension reduction

techniques and are used to compare some specific reference distributions, such as the

multivariate normal distribution and depend on their properties.

Healy (1968) used squared Mahalanobis distances of the observations from the sample

mean vector to assess multivariate normality. These squared distances are approximately

distributed as chi-squared random variables and a Q-Q plot can be constructed to assess

that. Andrews, Gnanadesikan, and Warner (1973) proposed Q-Q plots based on the

directions and the magnitude of the observations. The magnitudes or equivalently the

squared distances are approximately distributed as chi-squared random variables as before

and the angles obtained from the direction vectors are uniformly distributed.

There are some other multivariate Q-Q plotting techniques available in the literature,
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which are based on assessing the commonality of the shape of the marginal distribu-

tions for certain commonly used multivariate distributions. For a detailed discussion on

graphical methods for assessing multivariate distributional shape, see chapters 5 and 6 of

Gnanadesikan (1977).

In a completely different approach, Easton and McCulloch (1990) proposed a general-

isation of multivariate Q-Q plots based on matching the data with simulated observations

from the reference distribution. For a d-dimensional data set X1, . . . ,Xn, the procedure

is to find a permutation σ∗ of {1, 2, · · · , n} a d × d matrix A and a d × 1 vector b that

solves

min
A,b,σ

n∑
i=1

||Yi −AXσ(i) − b||2

where Y1, . . . ,Yn is a random sample from the reference distribution. Suppose the X∗i ’s

are the best matching of the data set to the reference sample where X∗i = A∗Xσ∗(i) + b∗.

They suggested to display the matched pairs (X∗i ,Yi) using either coordinatewise Q-Q

plots or some distance based Q-Q plots. One of the main problem in this approach is that

it cannot be used to compare two multivariate samples. Visualising co-ordinatewise Q-Q

plots can be difficult if the dimension d is large.

Singh, Tyler, Zhang and Mukherjee (2009) defined quantile scale curves to perform

visual tests. Again consider the d-dimensional random sample X1, · · · ,Xn and denote by

4i the volume of simplex formed by (d + 1) points X1, · · · ,Xd+1 for i = 1, · · · , N and

N =
(
n
d+1

)
. Then their quantile scale curve is defined as qsc(t) = 4([Nt]) for 0 ≤ t ≤ 1.

In an approach based on the spatial quantiles, Marden (1998) proposed a bivariate

Q-Q plot by drawing arrows from (bivariate) normal quantiles corresponding to bivariate

ranks of the observations to the actual values of the corresponding observations as a check

for normality. Chakraborty (2001) pointed out that Marden’s plots are not affine invari-

ant and hence might lead to erroneous inference for highly correlated data. Chakraborty

(2001) suggested a modification based on a transformation retransformation (TR) ap-
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proach to obtain a spherical transformation of the data based on which an affine in-

variant Q-Q plot can be constructed. He also proposed a version of quantile contours

{Q̂(α,p)
n (u) : ||u||q = r} for 0 < r < 1, where Q̂

(α,p)
n (u) is the u-th multivariate TR lp

quantile based on a data-driven co-ordinate system {Xj : j ∈ α}, which were affine equiv-

ariant. In a recent work Dhar, Chakraborty and Chaudhuri (2011) proposed a method

to construct a Q-Q plot for a d-dimensional multivariate dataset as a collection of d two

dimensional plots, each plot corresponding to a component of the multivariate empirical

spatial quantile of the data. They also proposed a test based on the norms of the spatial

quantiles for comparing multivariate distributions. Their proposed test statistic is related

to the arrow lengths of the arrow plots proposed by Marden (1998) described earlier.

In the rest of this chapter we explore visual tests based on our proposed scale-scale

curves. In Section 4.1 we suggest a test for the one sample case and in Section 4.2 we

suggest a test for the two sample case.

4.1 One Sample Problem

The proposed scale-scale plot can be used to check the distributional assumptions for

the multivariate data visually as an extension of the univariate quantile-quantile plot. If

F0 is the hypothesised distribution function up to a location parameter and Fn denotes

the empirical distribution function of the d dimensional multivariate data X1, . . . ,Xn, we

can construct a scale-scale plot by plotting VFn(p) against VF0(p). If the plot is close to

a straight line, then we can say that there is not enough evidence that F0 can not be

considered as the true distribution up to location and scale parameters.

For illustration, we use the Iris data in Example 1 and check for multivariate normality

of the underlying distribution of the three separate species Iris Setosa, Iris Versicolor and

Iris Virginica. This data can be found at http://archive.ics.uci.edu/ml.

Example 1. The Iris data consists of three species, namely Setosa, Versicolor and Vir-
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ginica. The dataset consists of measurements in centimetres of the variables sepal length

and width and petal length and width, respectively, for 50 flowers from each of 3 species

of Iris. We considered the sepal length and sepal width for the Setosa species, computed

the volume of the central rank region and plotted it against the volume obtained from

a standard bivariate normal distribution. From Figure 4.1(a) we can see that the Scale-

Scale plot is nearly linear, which suggests normality for the underlying distribution may

be a valid assumption. Similarly we have taken Versicolor and Virginica species and per-

formed the same calculations to get Figure 4.1(b) and (c) respectively from which we can

see that these two plot are also nearly linear. Hence we can make the same conclusion for

Versicolor and Virginica species as the case to Setosa species.

We can also construct formal tests based on the slope functional sn(p) =
VFn (p)

VF0 (p)
. Under

the null hypothesis, H0 : F = F0, sn(p) = VF (p)
VF0 (p)

is identically equal to 1 and we can use

the following result for any test statistic based on sn.

Theorem 4.1.1 Let X1,X2, · · · ,Xn be a random sample from d-dimensional distribution

F . Consider some d-dimensional distribution F0 and the slope functional sn(p) =
VFn (p)

VF0 (p)
.

Then {
√
n

(
vF (p)

VF0(p)

)−1(
sn(p)− VF (p)

VF0(p)

)
, 0 < p < 1

}
converges to a Brownian Bridge with covariance kernel

Γ(p1, p2) =


p(1− p), if p1 = p2 = p

min {p1, p2} − p1p2, if p1 6= p2

as n→∞.

Hence under H0 : F = F0,

{
√
n

(
vF0(p)

VF0(p)

)−1

(sn(p)− 1) , 0 < p < 1

}
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Figure 4.1: Scale-Scale plot for(a) Setosa Species of Iris data, (b) Versicolor Species of
Iris data (c) Virginica Species of Iris data
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converges to a Brownian Bridge with covariance kernel

Γ(p1, p2) =


p(1− p), if p1 = p2 = p

min {p1, p2} − p1p2, if p1 6= p2

as n→∞.

Proof : From Theorem 3.1.1 we have
{√

n {vF (p)}−1 (VFn(p)− VF (p)), 0 < p < 1
}

converges to a Brownian bridge. Thus from this result and from the definition of the

slope functional sn(p), we have our result by dividing the numerator and denominator by

VF0(p).

Also as under H0 : F = F0, we have VF (p) = VF0(p). Hence we have our result. �

When F0 is standard multivariate normal distribution, one can simplify the above

result to the following:

Corollary 4.1.1 Suppose F0 is a standard multivariate normal distribution function,

then under H0, {√
n

(
rF0(p)f(rF0(p))

d

)
(sn(p)− 1) , 0 < p < 1

}
converges to a Brownian Bridge as n→∞ with covariance kernel

Γ(p1, p2) =


p(1− p), if p1 = p2 = p

min {p1, p2} − p1p2, if p1 6= p2

and f(.) is the density function of
√
χ2
d and r2

F0
(p) is the p-th quantile of χ2

d distribution.

Proof : From Theorem 4.1.1, under H0 : F = F0 we have the following result:{
√
n
(
vF0 (p)

VF0 (p)

)−1

(sn(p)− 1) , 0 < p < 1

}
converges to a Brownian Bridge. We know VF (p) =

π
d
2 rdF (p)

Γ( d2+1)
. When F0 is a standard multivariate normal distribution, then from (3.55) we have

an expression for vF (p). Thus we have,
(
vF0 (p)

VF0 (p)

)−1

=
rF0 (p)f(rF0 (p))

d
and hence we have our

result. �
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One can define several statistics based on sn(p) to formally test for the distributions.

Some suggested tests are discussed in detail in the next chapter.

4.2 Two Sample Problem

We can also use the scale-scale plot to compare two multivariate samples. Suppose Fn and

Gn are the empirical distribution functions of the two independent samples, respectively.

We plot VGn(p) against VFn(p) for 0 < p < 1 to construct the scale-scale plot of the two

samples.

To illustrate, we give the scale-scale plot for Setosa species versus Virginica species,

Setosa species versus Versicolor species and for Versicolor species versus Virginica species

of Iris data in Example 2. In Example 3 we take the open and closed book data set from

Mardia, Kent and Bibby (1979) and plot scale-scale plot for open and closed book data

set. In Example 4 we consider data on Alaskan and Canadian salmons (See Table 11.2,

Johnson and Wichern (2002)).

Example 2. Here we have taken the data of sepal length and sepal width for Virginica

species of Iris data. We have computed the volume of the central rank region for the

data set and then have plotted it against the volumes of Setosa species in Figure 4.2(a)

and Versicolor species in Figure 4.2(b) respectively. In Figure 4.2(c) we have plotted the

scale-scale plot for Setosa species and Versicolor species of Iris dataset. All the three plots

of Figure 4.2 appear to be almost linear. So we can say that there is not enough evidence

against the null hypothesis that the distribution of the data set for Virginica species does

not come from different distribution family as that of the Setosa species and the Versicolor

species.

Example 3. In this example we consider a data set from Mardia, Kent and Bibby (1979).

This data set has examination marks of 88 students in an open book test and a closed

book test. The open book tests were taken on algebra and analysis and closed book tests
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Figure 4.2: (a)Scale-scale plot for the Setosa species and the Virginica species of Iris data.
(b)Scale-scale plot for the Versicolor species and the Virginica species of Iris data. (c)
Scale-Scale plot for the Setosa species and the Versicolor species of Iris data.
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were taken on mechanics and vectors. The total marks were out of 100.
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Figure 4.3: Scale-Scale plot for open and closed book examination marks

Here the number of observations is 88 and we have constructed two bivariate data sets,

one consisting of open book marks of a student and the other consisting of closed book

marks of a student. We have computed the volume of the central rank region for the two

bivariate data set and then have plotted them against each other in Figure 4.3. We can

see that the plot is nearly linear. So we can say that there is not enough evidence that

the open book marks and the closed book marks are from different distribution family.

Example 4. The measurements were taken on diameter of rings for the first-year fresh-

water growth and that for the first-year marine growth for Alaskan and Canadian salmons

(See Table 11.2, Johnson and Wichern (2002)). Sample sizes are 50 for both Alaskan-born

and Canadian born salmons. This is a nice example on classification techniques used in
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Figure 4.4: Scale-Scale plot comparing the distributions of Alaskan and Canadian
Salmons.

the literature under the assumption of multivariate normality with the same covariance

matrix. To justify, we may use our proposed scale-scale plot in Figure 4.4, which is almost

on a 45◦ line. That suggests that the data distribution for both groups of salmons is the

same elliptically symmetric distribution with the same scale matrix and possibly with a

different location vector.

We now state a theorem which can be used to construct formal tests to compare the

underlying distributions of two multivariate samples.

Theorem 4.2.1 Let us suppose that X1,X2, · · · ,Xn and Y1,Y2, · · · ,Ym are two d-

dimensional random samples with distribution functions F and G respectively, symmetric

around zero.
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Under H0 : F = G, assuming n
m+n
→ λ, for some 0 < λ < 1, as n,m→∞

{
{vF (p)}−1

(√
nm

n+m
(VFn(p)− VGm(p))

)
, 0 < p < 1

}

converges to a Brownian Bridge with covariance kernel

Γ(p1, p2) =


p(1− p), if p1 = p2 = p

min {p1, p2} − p1p2, if p1 6= p2

where Fn and Gm are corresponding empirical distribution functions.

Proof : From Theorem 3.1.1 we have,

√
n {vF (p)}−1 (VFn(p)− VF (p))⇒ N(0, p(1− p))

and
√
m {vG(p)}−1 (VGm(p)− VG(p))⇒ N(0, p(1− p)).

Let us take some constant λ, (0 < λ < 1), such that n
(n+m)

→ λ. Then m
(n+m)

→ 1 − λ,

and hence

√
n

√
m

(n+m)
{vF (p)}−1 (VFn(p)− VF (p)) ⇒ N(0, (1− λ)p(1− p)); (4.1)

√
m

√
n

(n+m)
{vG(p)}−1 (VGm(p)− VG(p)) ⇒ N(0, λp(1− p)). (4.2)

As (4.1) and (4.2) are independent and under H0 : F = G, thus we have,

√
nm

(n+m)
{vF (p)}−1 ((VFn(p)− VF (p))− (VGm(p)− VF (p))) ⇒ N(0, (1− λ+ λ)p(1− p))

⇒
√

nm

(n+m)
{vF (p)}−1 ((VFn(p)− VGm(p)) ⇒ N(0, p(1− p)).

Similarly we can show the convergence of the higher finite order sub processes to the
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appropriate multivariate normal distribution. Thus we have our result. �

Formal tests can be considered based on the above theorem, which we propose to carry

out in some future work.
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CHAPTER 5

TEST OF MULTIVARIATE NORMALITY

In statistical data analysis investigating whether the data points are from a specific dis-

tribution is a very important problem. For one dimensional data, several tests exist for

that purpose, eg. chi-square goodness of fit test, Kolmogorov-Smirnov test, Shapiro-Wilks

test, Cramer von-Mises test etc. A similar problem may also be defined in the multidi-

mensional case. For X1, · · · ,Xn n d-dimensional data points with a distribution function

F , we may wish to test whether F has a specific distribution, eg. a multivariate normal

distribution, Nd(µ,Σ) for some unknown µ and Σ. Many of the tests for multivariate

normality are extensions of the univariate normality tests (see Royston (1983), Justel, Pe-

fia, Zamar (1997), Doornik and Hansen (2008)). Quite a few of them depend on graphical

representation. For example, the line test by Hald (1952) is based on deviation of points

in a probability plot from a straight line, the ring test by Rietz (1943) and Cramer (1946)

is based on sample points distributed within elliptical rings. For more details on these

tests one can see Kowalski (1970). More recently Ghosh (1996) has proposed a graphical

test for checking normality based on the third derivative of the logarithm of the empirical

moment-generating function of observed data, where significant departure of this function

from zero is an indication of departure from normality.

For the multivariate case, Wilk and Gnanadesikan (1968) proposed to study quantile-

quantile plots of the observations considering the individual components separately while

using a common distribution for comparison. Cox and Small (1978) considered both
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coordinate dependent procedures and invariant procedures. In a coordinate dependent

procedure, linearity of regression relationships are tested. For example, in a bivariate

case if (xi1, xi2), i = 1, · · · , n, are n independent observations, then the null hypothe-

sis is that they are independent and identically distributed random variables (X1, X2)

with a bivariate normal distribution. The conditional distribution of one variable, given

the other, is checked to see whether the conditional distribution is linearly dependent

on the other variables by taking linear and quadratic combinations of the other variable

and checking whether the coefficients of the non linear terms are significant. For higher-

dimensional data they suggested a visual test based on the quantile-quantile plot of the

t-statistics of the estimates of the coefficients of the non linear terms against that of the

standard normal distribution. Koziol (1983) proposed multivariate normality tests based

on properties of radii and angles of normally distributed random vectors, and to com-

bine different procedures to achieve omnibus tests. Subsequently, Koziol (1993) looked at

quantile-quantile plots of the individual components of “smooth” skewness and kurtosis

statistics of data, plotting them against their theoretical distributions under the hypothe-

sis of multivariate normality. However, these theoretical distributions may be challenging

to obtain. In a somewhat similar approach, Liang, Pan and Yang (2004) also considered

the quantile-quantile plots of certain transformations of the multivariate data against their

theoretical distributions under the hypothesis of multivariate normality; however in this

case their proposed statistics have easily tractable standard distributions. Recently Liang

and Ng (2009) proposed a visual test to detect non-normality by performing a principal-

component analysis and then applying Royston (1993)’s test for univariate normality to

test for normality of each principal component, rejecting the hypothesis of multivariate

normality if a departure from normality is detected in any principal component direction.

They also performed a detailed literature review of presently existing graphical techniques

for detection of departure from multivariate normality, and formal tests based on such

techniques.

In the univariate case, the Kolmogorov-Smirnov test and the Cramer von-Mises test
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are perhaps the two most popular tests to check goodness of fit of a specific distribution in

general and normality in particular. We will discuss these tests in more details in Section

5.2 where we perform a power study based on these tests.

Among other notable univariate tests of normality, Shapiro and Wilk (1965) defined

a test statistic to test for normality, where the test statistic is the ratio of the square of

an appropriate linear combination of the sample order statistics to the usual symmetric

estimate of variance. Also this ratio is scale and location invariant. Malkovich and Afifi

(1973) extended the univariate test statistic of Shapiro and Wilk to test a hypothesis of

multivariate normality. This new test statistic is affine invariant. For d = 1, it reduces to

the Shapiro and Wilk’s test statistic.

Malkovich and Afifi (1973) also suggested a test method based on multivariate skew-

ness and kurtosis, which are generalised notions of univariate skewness and kurtosis. Their

proposed test statistic is affine invariant and rejects the null hypothesis of multivariate

normality for large values of measures of skewness and kurtosis. Mardia (1970) suggested

some measures of multivariate skewness β1,d and kurtosis β2,d for d-dimensional distribu-

tions and proposed a test for multivariate normality based on the sample skewness b1,d and

the sample kurtosis b2,d of a multivariate distribution. According to his proposed method,

the test of normality is performed by testing β1,d = 0 and β2,d = d(d+ 2) separately. Un-

der H0 : β1,d = 0 , 1
6
nb1,d has a χ2 distribution with d(d+ 1)(d+ 2)/6 degrees of freedom

and we reject the null hypothesis if the value of 1
6
nb1,d is large, which would imply the

presence of skewness present in the distribution. Also, under the assumption of normality

(b2,d − β2,d)/{8d(d + 2)/n} 1
2 is distributed as N(0, 1) and the null hypothesis is rejected

for large values of |(b2,d − β2,d)/{8d(d+ 2)/n} 1
2 |. Further, Mardia (1974) gave alternative

forms of these measures, which were convenient for computer programming and checking

the invariance property of these measures. Kankainen, Taskinen and Oja (2007) proposed

some tests of multinormality depending on location vectors and scatter matrices. They

defined a d-vector valued test statistic T as a location vector if it is affine equivariant and
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a d×d-matrix valued test statistic C as a scatter matrix if it was affine equivariant. In the

univariate case the Mahalanobis difference between two location vectors is used to detect

skewness. Also measures of univariate kurtosis are usually ratios of two scale measures.

A similar idea is used here to detect skewness and kurtosis using two separate location

vectors and two separate scatter matrices respectively. They defined two test statistics for

multinormality, one to detect skewness and the other to detect kurtosis. For two different

location vectors T1 and T2 and a scatter matrix C, their statistic to detect skewness, U ,

is defined as U = (T1−T2)TC−1(T1−T2). If C1 and C2 are two different scatter matrices,

then the statistic to detect kurtosis, W , is defined as W = ||C−1
1 C2 − Id||2. These two

statistic are affine invariant and it can be shown that the test construction method is a

generalised version of Mardia’s measures of skewness and kurtosis.

Ghosh and Ruymgaart (1992) proposed a test of normality based on the studentised

empirical characteristic function. The computation of their test statistic is, however,

complicated in practice and does not have a tractable asymptotic distribution beyond

d = 2.

Romeu and Ozturk (1993) divided the existing methods for testing multivariate nor-

mality into six classes and compared among themselves. Szekely and Rizzo (2005) pro-

posed a class of V-statistics to test multivariate normality where the test statistic was

affine invariant and consistent against all fixed alternatives.

In the remainder of this chapter we develop a test of multivariate normality based

on volume functionals of central rank regions, which can readily be generalised to other

distributions. We then compare our proposed test with extensions of the Kolmogorov-

Smirnov test and the Cramer-von Mises test proposed by Malkovich and Afifi (1973). In

Section 5.1, we define our test statistic as a function of the scale curve and develop the

asymptotic properties of the test statistic. In Section 5.2, we study the power of test for

different sample sizes under various alternatives and compare the power with the power of

the Kolmogorov-Smirnov test and the Cramer-von Mises test as proposed by Malkovich
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and Afifi (1973).

5.1 Test of Multivariate Normality Based on Scale

Curves

For the remainder of this chapter we consider X1,X2, · · · ,Xn ∈ Rd independent with

common distribution function F . Suppose that we want to test the null hypothesis H0 :

F ∈ F where F = {Nd(θ,Σ) : θ ∈ Rd and Σ is a d × d positive definite matrix }. Let

us assume F0 is the d-variate standard normal distribution. Then all the 5 conditions

A1, A2, A3, A4 and A5 will hold under H0. It is quite obvious that A1 is satisfied by the

multivariate normal distributions. The conditions A2 and A3 follows from Theorem 2.2.1.

The last two conditions A4 and A5 will clearly hold due to (3.56).

Let VFn(p) denote the scale curve based on the data and let VF0(p) be the scale curve

based on F0. Define the slope functional

sn(p) =
VFn(p)

VF0(p)
. (5.1)

We now state some properties of the slope functional sn(p).

Theorem 5.1.1 Let us assume that H0 is true, then the following will hold:

1. sn(p)
p−→ c0, 0 < p < 1, as n→∞ for a constant c0 > 0 independent of p.

2.
√
nVF0 (p)(sn(p)−c0)

vF (p)
converges weakly to a Brownian bridge {B(p), 0 < p < 1} as n →

∞.

Proof :

1. From Theorem 3.1.1, we have VFn(p)
p−→ VF (p) where F is the true distribution of

X1, · · · ,Xn. Now, by Theorem 2.3.1, VF (p) = c0VF0(p) whenever F ∈ F , where c0

is a constant dependent only on Σ but not on p. Hence by the definition of the slope

functional sn(p), we can say that sn(p)
p−→ c0.
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2. By Theorem 3.1.1, we have
{√

n {vF (p)}−1 (VFn(p)− VF (p)), 0 < p < 1
}

converges

to a Brownian bridge. Hence underH0,
{√

n {vF (p)}−1 (VFn(p)− VF (p)), 0 < p < 1
}

converges to a Brownian bridge. Therefore from the definition of the slope functional

sn(p), and the fact that VF (p) = c0VF0(p), we have the result. �

As a consequence, for any finite integer k independent of n, we can write

√
nΣ
− 1

2
k

((
sn

(
1

k + 1

)
, sn

(
2

k + 1

)
, · · · , sn

(
k

k + 1

))T
− c0 (1, 1, · · · , 1)T

)
(5.2)

converges in distribution to Nk(0, Ik×k), where Σk = (σ(i, j))k×k has elements

σ(i, j) =


vF0

(
i

k+1

)
× vF0

(
j

k+1

)
.
(

min(i,j)
(k+1)

− ij
(k+1)2

)
/
(
VF0(

i
k+1

).VF0(
j

k+1
)
)
, if i 6= j,

i
(k+1)

(
1− i

(k+1)

)
× v2

F0

(
i

k+1

)
/V 2

F0
( i
k+1

), if i = j.

(5.3)

By Theorem 3.1.1, any k-dimensional sub process of
√
n {VFn(p)− VF (p), 0 < p < 1},

√
n((VFn(p1), · · · , VFn(pk))−(VF (p1), · · · , VF (pk)) will converge in distribution toN(0,Σ′k),

where Σ′k = ((σ′(i, j)))k×k with

σ′(i, j) =


vF0(pi)× vF0(pj)× (min {pi, pj} − pipj) , if i 6= j,

pi (1− pi)× v2
F0

(pi) , if i = j.

(5.4)

UnderH0, we expect to have sn(p) close to a constant independent of p for all p ∈ (0, 1).

Hence to test H0 we consider a test statistic, which we will refer to as the scale test

statistic, Tn defined as follows:

Tn = logUn − Vn, (5.5)

where

Un =
1

k

k∑
i=1

sn

(
i

(k + 1)

)
(5.6)

and

Vn =
1

k

k∑
i=1

log

[
sn

(
i

(k + 1)

)]
. (5.7)
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From the definition of Un and Vn, we can say that Un ≈
∫
sndλ and Vn ≈

∫
log(sn)dλ,

for large k, where λ is the Lebesgue measure on (0, 1).

We now establish an invariance property of Tn.

Lemma 5.1.1 Tn is invariant under affine transformations of the sample X1,X2, · · · ,Xn.

Proof : Let A be a non-singular d × d matrix and b ∈ Rd. Define Yi = AXi + b for

i = 1, · · · , n. Suppose the empirical distribution of X1,X2, · · · ,Xn is Fn and that of

Y1,Y2, · · · ,Yn is Gn. Let T
(X)
n and T

(Y)
n be the versions of Tn as defined in (5.5) for the

Xis and Yis respectively. We need to show T
(X)
n = T

(Y)
n .

We have seen earlier that VGn(p) = |A|VFn(p) and hence s
(Y)
n (p) = |A|s(X)

n (p) where

s
(Y)
n (p) and s

(X)
n (p) are versions of the slope functional as defined in (5.1) for the Xis and

Yis respectively. Then

T (Y)
n = log


1
k

k∑
i=1

s(Y)
n

(
i

(k + 1)

)
(

k∏
i=1

s(Y)
n

(
i

(k + 1)

)) 1
k



= log


|A| 1

k

k∑
i=1

s(X)
n

(
i

(k + 1)

)

|A|

(
k∏
i=1

s(X)
n

(
i

(k + 1)

)) 1
k


= T (X)

n . (5.8)

Thus the lemma is proved. �

By Theorem 5.1.1,
(
sn
(

1
k+1

)
, sn
(

2
k+1

)
, · · · , sn

(
k
k+1

))
is approximately multivariate

normal under H0 for large n. Hence for the proposed test we reject H0 at level α if

Tn > cn(α), for some suitable cn(α) > 0. In the following theorem we state some properties

of Tn.
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Theorem 5.1.2 Let us assume that H0 is true. Then the following will hold:

1. Tn ≥ 0.

2. Under H0, Tn
p−→ 0.

3. nTn converges in distribution to a weighted sum of k χ2
1 random variables as n→∞.

Proof : Note that the distribution of Tn remains invariant for any F ∈ F , so without

loss of generality let us assume that F = F0.

1. The term Un is the arithmetic mean (A. M.) of sn

(
i

(k+1)

)
and Vn is the logarithm

of the geometric mean (G. M.) of sn

(
i

(k+1)

)
for i = 1, · · · , k. Thus as A.M.≥ G.M.

we have Tn ≥ 0.

2. By (5.2) we have

(
sn

(
1

k + 1

)
, sn

(
2

k + 1

)
, · · · , sn

(
k

k + 1

))T
p−→ (1, 1, · · · , 1)T .

As Tn is a continuous function of
(
sn
(

1
k+1

)
, sn
(

2
k+1

)
, · · · , sn

(
k
k+1

))T
, hence the

result follows by the continuous mapping theorem.

3. From (5.5) we can see that

Tn = log

(
1

k

k∑
i=1

sn

(
i

(k + 1)

))
− 1

k

k∑
i=1

log sn

(
i

(k + 1)

)
. (5.9)

As before we define

sni = sn

(
i

(k + 1)

)
(5.10)

and Sn = (sn1, sn2, · · · , snk)T . Also note that from Theorem 3.1.1,

E(sni) = 1 + o

(
1√
n

)
. (5.11)
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Let

f(x1, x2, · · · , xk) := log

(
1

k

k∑
i=1

xi

)
− 1

k

(
k∑
i=1

log xi

)
.

Therefore,

∂f

∂xi
=

1∑k
j=1 xj

− 1

kxi
, 1 ≤ i ≤ k;

∂2f

∂xi∂xj
=


− 1

(
∑k
l=1 xl)

2
, if i 6= j.

− 1

(
∑k
l=1 xl)

2
+ 1

kx2i
, if i = j

= − 1

(
∑k

l=1 xl)
2

+
1

kx2
i

I(i = j) (5.12)

Now, by using the Taylor series expansion up to the second term,

(f(Sn)− f(E(Sn))

≈ 5f(E(Sn)).(Sn − E(Sn)) +
1

2
(Sn − E(Sn))T 52 f(E(Sn)).(Sn − E(Sn))

(5.13)

where

5f(x) =

(
∂f(x)

∂x1

, · · · , ∂f(x)

∂xk

)T
and

52f(x) =

((
∂2f(x)

∂xi∂xj

))
.

Now

f(E(Sn)) ≈ log

(
1

k

k∑
i=1

1

)
− 1

k

k∑
i=1

log 1 = 0

up to order
√
n by (5.11). Again

5f(E(Sn)) ≈ 1

k
− 1

k
+ oP

(
1√
n

)
= oP

(
1√
n

)
by (5.11).
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Now Sn − E(Sn) = OP

(
1√
n

)
, which implies 5f(E(Sn))(Sn − E(Sn)) = oP

(
1
n

)
.

Hence
√
nTn

d−→ 0 and hence
√
nTn

p−→ 0 as
√
n(Sn − E(Sn))

d−→ Nk(0,Σk) by

Theorem 3.1.1 where Σk = (σ(i, j))k×k has elements

σ(i, j) =


vF0

(
i

k+1

)
× vF0

(
j

k+1

)
.
(

min(i,j)
(k+1)

− ij
(k+1)2

)
/
(
VF0(

i
k+1

).VF0(
j

k+1
)
)
, if i 6= j,

i
(k+1)

(
1− i

(k+1)

)
× v2

F0

(
i

k+1

)
/V 2

F0
( i
k+1

), if i = j.

(5.14)

Hence,

f(Sn) =
1

2
(Sn − E(Sn))T 52 f(E(Sn)).(Sn − E(Sn)) + oP

(
1

n

)

where

((
52f(E(Sn))

))
ij

= − 1

k2
+

1

k
I(i = j)

52f(E(Sn)) =
1

k
I − 1

k2
11T .

Thus

nTn = nf(Sn) = (
√
n(Sn − 1))T (

1

2
52 f(1))(

√
n(Sn − 1)) + oP (1).

Therefore nTn
d−→
∑k

i=1 ciχ
2
1, where ci’s are the eigen values of

1

2
Σ

1
2
k 5

2 f(1)Σ
1
2
k ≡

1

2k
Σk −

1

2k2
(Σ

1
2 1) · (Σ

1
2 1)T .

�
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5.2 Finite Sample Power: A Numerical Study

We now construct a test of multinormality based on the test statistic Tn. Instead of using

the asymptotic distribution derived in the previous section, we simulate the finite sample

null distribution of the statistic Tn and tabulate the 95 percentile in the Table 5.1. We

describe the procedure in detail in the following:

To find out the size and power of the test for testing of H0 : F ∈ the set of all d-variate

normal distributions, we need to find out the cut off values for the test statistic Tn. In

finite samples we estimate the level α cut off cn(α) by taking it to be the upper α-th

quantile of a simulated distribution of Tn.

We now provide an algorithm for obtaining cut off values for Tn to perform a goodness

of fit test for multivariate normal distribution for dimensions 2 and 3 and for sample sizes

n = 30, 50, 100 and level of significance, α = 0.05.

1. Suppose F0 is a standard multivariate normal distribution. Compute the value of

the volume functional VF0 for F0 using Example 1 and (3.54) of Chapter 3.

2. Generate n random samples X1,X2, · · · ,Xn from a multivariate standard normal

distribution and compute the corresponding volume functional VFn(pi) where pi =

i
(k+1)

, i = 1, · · · , k.

3. Compute the slope functional sn(pi) for pi = i
(k+1)

, i = 1, · · · , k using (5.1) and then

compute the test statistic Tn for each i using (5.5).

4. Repeat steps 2-3 1000 times and get 1000 values of Tn and order them.

5. Take the 95-th percentile value of the ordered Tn as our cutoff value cn(0.05).

In Table 5.1 we give the cut off values for bivariate normal distribution and trivariate

normal distributions as null distributions. The computer program we have used for sim-

ulation was written in C language. We took k = 10, in all of our simulations.
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Table 5.1: The values of cn(α) for proposed test for bivariate and trivariate standard
normal distributions as the null distributions where α = 0.05 and n = 30, 50, 100 after
1000 iterations.

Null Distribution n = 30 n = 50 n = 100
Bivariate Normal Distribution 0.099202 0.059806 0.029459
Trivariate Normal Distribution 0.112553 0.067311 0.041632

5.2.1 Power Under Mixture Normal Alternatives

We compute the power of the scale test under mixture normal alternatives for multivariate

normal distribution. Here we have considered two different sets of alternatives. At first

we use the following mixture model as our alternative,

F = (1− δ)F0 + δF1,

where F0 is a standard multivariate normal distribution and F1 is another normal distri-

bution with a different mean vector. Both F and F0 have identity matrix as the variance

matrix.

We now provide the steps required for estimating the power of the test against our

pre-specified alternative distribution, FA with location vector µ , for a sample size n:

1. Generate a random sample X1, · · · ,Xn from FA.

2. Compute the corresponding volume functional VFn(pi) for pi = i
(k+1)

, i = 1, · · · , k.

3. Compute the slope functional sn(pi) =
VFn (pi)

VF0 (pi)
for pi = i

(k+1)
, i = 1, · · · , k, using

(5.1) and then compute the test statistic Tn for each i using (5.5). Here F0 is the

standard multivariate normal distribution.

4. Repeat steps 1-4 1000 times and get 1000 values of Tn.

5. Estimate the power of the test for FA for sample size n at 5% level by the proportion

of Tns greater than the cut off value cn(0.05).
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First we vary the value of δ to explore the various degrees of departure from normal-

ity. We take δ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and calculate the powers under the respective

alternative mixture models, which are presented in Table 5.2. δ = 0.0 is the null case and

it gives us the size of the test.

Table 5.2: Power of the proposed test under mixture alternatives bivariate normal with
µ = (5, 5)T , and trivariate normal with µ = (5, 5, 5)T .

δ
Distribution 0.0 0.05 0.1 0.2 0.3 0.4 0.5

Bivariate Normal n = 30 0.044 0.140 0.182 0.119 0.213 0.507 0.636
n = 50 0.045 0.277 0.407 0.223 0.252 0.690 0.894
n = 100 0.048 0.613 0.834 0.530 0.326 0.890 0.996

Trivariate Normal n = 30 0.036 0.325 0.584 0.651 0.544 0.351 0.289
n = 50 0.053 0.428 0.762 0.813 0.598 0.373 0.359
n = 100 0.051 0.589 0.933 0.907 0.695 0.468 0.401

Next we consider another departure from normality by keeping δ fixed at 0.1 and taking

µ = r1d×1 where r = 1, 2, 3, 4, 5, 10, where we look at dimension d = 2 and 3. Table 5.3

gives the power of the proposed test for this situation for bivariate and trivariate normal

distribution. From Table 5.3 we can see that our proposed test in bivariate normal case

starts detecting a shift when r = 4 for n = 30. For n = 50 and 100, the test can detect a

shift for r = 3 or larger. In the trivariate normal distribution case our proposed test can

detect a shift when r = 2 or more.

Table 5.3: Power of the proposed test under mixture alternatives bivariate normal with
µ = (r, r)T , and trivariate normal with µ = (r, r, r)T and δ = 0.1.

r
Distribution 0.0 1.0 2.0 3.0 4.0 5.0 10.0

Bivariate Normal n = 30 0.045 0.046 0.044 0.053 0.102 0.187 0.683
n = 50 0.050 0.051 0.055 0.085 0.231 0.434 0.936
n = 100 0.048 0.056 0.067 0.210 0.566 0.841 0.997

Trivariate Normal n = 30 0.041 0.034 0.107 0.228 0.435 0.584 0.816
n = 50 0.049 0.060 0.158 0.383 0.618 0.762 0.929
n = 100 0.060 0.055 0.208 0.544 0.816 0.933 0.992
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The Kolmogorov-Smirnov test and the Cramer von-Mises test are two very common

tests to check the goodness of fit for univariate distributions (see Malkovich and Afifi

(1973)). For the univariate Kolmogorov-Smirnov test, the test statistic for the null hy-

pothesis H0 : F = F0 is ∆n = supx |Fn(x)−F0(x)|, where Fn(x) is the sample distribution

function at x. The distribution of ∆n is independent of F if F is continuous. We reject

H0 for large values of ∆n.

The Cramer-von Mises test of goodness of fit of H0 is based on the test statistic

ωn =
∫∞
−∞[Fn(x)− F0(x)]2dF0(x). The distribution of ωn does not depend on F when F

is continuous. Again we reject H0 for large values of ωn.

Table 5.4: Power of the Kolmogorov-Smirnov test statistic under mixture normal alter-
native (1 − δ)N(0, I) + δN(µ, I) for the bivariate and trivariate case respectively with
µ = (5, 5)T , and µ = (5, 5, 5)T .

δ
Distribution 0.0 0.05 0.1 0.2 0.3 0.4 0.5

Bivariate Normal n = 30 0.022 0.389 0.362 0.149 0.039 0.057 0.078
n = 50 0.051 0.806 0.631 0.139 0.172 0.574 0.799
n = 100 0.028 0.902 0.926 0.323 0.033 0.188 0.425

Trivariate Normal n = 30 0.013 0.306 0.232 0.090 0.018 0.005 0.018
n = 50 0.014 0.081 0.038 0.018 0.090 0.250 0.342
n = 100 0.043 0.977 0.912 0.280 0.041 0.070 0.126

When the Kolmogorov-Smirnov test is extended to a d-variate case, where d > 1, one

possible generalised test statistic would be supx1,··· ,xd |Fn(x1, · · · , xd) − F (x1, · · · , xd)|.

However Simpson (1951) showed that the distribution of this statistic is not the same

for all continuous F when d > 1. Malkovich and Afifi (1973) suggested another way of

extending the Kolmogorov-Smirnov test to a multidimensional case when F is normal.

They observed that when (X1,X2, · · · ,Xn) are independent samples from F0 = Nd(µ,Σ),

the d-dimensional multivariate normal distribution with mean µ and variance matrix

Σ, then (Xi − µ)TΣ−1(Xi − µ) are iid χ2
d. Based on that observation, they used a

transformation Vi = (Xi − X)TS−1(Xi − X). They developed tests based on the idea

that for a large n, the distribution of Vi’s would be close to χ2
d. Hence they used the
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Kolmogorov-Smirnov test statistic given by ∆V
n = supx |F V

n (x) − Fd(x)| where F V
n (x)

is the sample distribution function based on (V1, · · · , Vn) and Fd(x) is the distribution

function of χ2
d at x. In the same paper Malkovich and Afifi also extended the Cramer-von

Mises test statistic similarly to a test of multivariate normality by using the test statistic

ωVn =
∫∞
−∞[Fn(x)− F (x)]2dF (x).

Table 5.5: Power of the Cramer von-Mises test statistic under mixture normal alternative
(1−δ)N(0, I)+δN(µ, I) for the bivariate and trivariate case respectively with µ = (5, 5)T ,
and µ = (5, 5, 5)T .

δ
Distribution 0.0 0.05 0.1 0.2 0.3 0.4 0.5

Bivariate Normal n = 30 0.061 0.659 0.651 0.280 0.104 0.198 0.265
n = 50 0.050 0.874 0.759 0.219 0.274 0.728 0.918
n = 100 0.048 0.968 0.976 0.424 0.080 0.413 0.720

Trivariate Normal n = 30 0.050 0.576 0.507 0.223 0.045 0.026 0.040
n = 50 0.049 0.084 0.049 0.042 0.245 0.515 0.637
n = 100 0.070 0.989 0.954 0.333 0.030 0.079 0.168

Table 5.6: Power of the Kolmogorov-Smirnov test statistic under mixture normal al-
ternative 0.9N(0, I) + 0.1N(µ, I) for the bivariate and trivariate case respectively with
µ = (r, r)T , and µ = (r, r, r)T

r
Distribution 0.0 1.0 2.0 3.0 4.0 5.0 10.0

Bivariate Normal n = 30 0.034 0.042 0.060 0.155 0.262 0.418 0.687
n = 50 0.012 0.017 0.053 0.178 0.411 0.594 0.841
n = 100 0.042 0.043 0.035 0.147 0.423 0.701 0.930

Trivariate Normal n = 30 0.047 0.056 0.099 0.202 0.328 0.373 0.550
n = 50 0.025 0.031 0.028 0.082 0.155 0.231 0.435
n = 100 0.022 0.037 0.165 0.472 0.711 0.808 0.919

We present the power of our proposed test, Kolmogorov-Smirnov test and Cramer

von-Mises test in Tables 5.2, 5.4 and 5.5 respectively when the departure from normality

in the mixture model is achieved by varying the values of δ for d = 2 and d = 3. The size

of the proposed test is slightly better than the Kolmogorov-Smirnov test but not as good

as the Cramer von-Mises test. Both Kolmogorov-Smirnov and Cramer von-Mises tests
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Table 5.7: Power of the Cramer von-Mises test statistic under mixture normal alternative
0.9N(0, I) + 0.1N(µ, I) for the bivariate and trivariate case respectively with µ = (r, r)T ,
and µ = (r, r, r)T

r
Distribution 0.0 1.0 2.0 3.0 4.0 5.0 10.0

Bivariate Normal n = 30 0.051 0.057 0.087 0.201 0.332 0.528 0.785
n = 50 0.035 0.046 0.118 0.340 0.654 0.801 0.934
n = 100 0.033 0.027 0.036 0.205 0.621 0.860 0.970

Trivariate Normal n = 30 0.045 0.070 0.119 0.256 0.418 0.475 0.680
n = 50 0.036 0.047 0.059 0.149 0.299 0.407 0.627
n = 100 0.047 0.071 0.298 0.687 0.873 0.935 0.971

can detect the shift from normality better than the proposed test in the bivariate case.

In the trivariate case, the proposed test performs better than both the tests. It should be

noted that power is not an increasing function of δ. As a variant we can fix δ = 0.1 and

vary µ. As an illustration, we fix δ = 0.1 and compute the power for µ = r1d×1 where

r = 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, for dimensions d = 2 and 3. The powers and the levels

of the proposed test, Kolmogorov-Smirnov test and Cramer von-Mises test are given in

Tables 5.3, 5.6 and 5.7 respectively. The proposed test performs slightly better than

Kolmogorov-Smirnov test but not as good as Cramer- von-Mises test.

In this Section 5.2 we have presented the empirical power of our proposed test in tables

5.2 and 5.3 and compared these powers with powers obtained from Kolmogorov-Smirnov

test and Cramer von-Mises test as proposed by Malkovich and Afifi (1973) in tables 5.4,

5.5, 5.6 and 5.7. To compute the powers of the tests in tables 5.3, 5.6 and 5.7 we have

taken δ = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 keeping µ fixed to obtain the mixture alternatives.

In all those tables we can see a pattern for the power variation. One would think that

as δ increases shift from normality would increase. But actually that is not the case.

We have seen in tables 5.3, 5.6 and 5.7 that the power does not increase monotonically

as δ increases. In the power tables for a fixed µ for d = 2 the power first increases

then decreases around δ = 0.2, 0.3 and then again increases. As an illustration we have

presented the density plots for the test statistic Tn in figures 5.1, 5.2 and 5.3 for d = 2 and
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Figure 5.1: Density Plot for the Test Statistic Tn for n = 30 and d = 2. The dotted line
gives the 95-th percentile of the Tn values based on the 1000 simulated values of Tn for
δ = 0.0
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n = 30, 50, 100 respectively. In all these plots the dotted line gives the 95-th percentile

of the Tn values based on the 1000 simulated values of Tn for δ = 0.0. In Figure 5.1 we

can see that though the dotted line shifts to the left side for δ = 0.05 and δ = 0.1, it

returns at a similar place with respect to the density plot of Tn for δ = 0.05 at δ = 0.2.

Then it again shifts towards the left side of the density plot for δ = 0.3, 0.4, 0.5. In Figure

5.2 we can see that the dotted line first shifts towards the left for δ = 0.05 and δ = 0.1

but it shifts towards the right for δ = 0.2 and δ = 0.3 and again shifts towards the left

for δ = 0.4, 0.5. For n = 100 we present the density plot for Tn in Figure 5.3. Here

we can also see that the dotted line first shifts towards the left for δ = 0.05, 0.1, 0.2 but

at δ = 0.3 the dotted line shifts towards the right and again shifts towards the left for

δ = 0.4 and δ = 0.5. From the Figures 5.1, 5.2 and 5.3, it seems like the power function

obtained due to our proposed test statistic Tn is not monotonically increasing. We see

a similar phenomenon for the powers of hte Kolmogorov-Smirnov and Cramer von-Mises

tests as well. For small sample sizes, the simulation results are a bit unstable and for that

reason, we do not see any monotonicity of the power with the sample size n for different

δ. However, for a fixed δ, this monotonicity is evident from Table 5.3. We would also

like to mention that increasing the value of k in computing the test statistic Tn would

lead to a greater accuracy in the power calculations, however, due to computational time

complexity, we had to restrict k to 10 only for simulation purposes.

5.2.2 Multivariate t Alternatives

Now we compute the power of the proposed test based on Tn under alternatives of mul-

tivariate t-distributions with degrees of freedom 3, 5, 10 and 20 for d = 2 and d = 3. The

power of the proposed test is computed in the same way as described in Section 5.2.1 and

are presented in Table 5.8.

We know as the degree of freedom increases in a t distribution, it converges to a normal

distribution. From the Table 5.8 we can see that the power decreases as the degrees of

freedom of the t distribution increases. In Tables 5.9 and 5.10 we present the power of the
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Figure 5.2: Density Plot for the Test Statistic Tn for n = 50 and d = 2. The dotted line
gives the 95-th percentile of the Tn values based on the 1000 simulated values of Tn for
δ = 0.0
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Figure 5.3: Density Plot for the Test Statistic Tn for n = 100 and d = 2. The dotted line
gives the 95-th percentile of the Tn values based on the 1000 simulated values of Tn for
δ = 0.0
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Table 5.8: Power of the proposed test, under alternatives of bivariate and trivariate t with
3, 5, 10 and 20 degrees of freedom, based on 1000 iterations.

Alternative Distribution 3 df 5 df 10 df 20 df
Bivariate t n = 30 0.364 0.130 0.030 0.036

n = 50 0.610 0.225 0.052 0.040
n = 100 0.881 0.437 0.106 0.052

Trivariate t n = 30 0.613 0.314 0.106 0.061
n = 50 0.856 0.503 0.214 0.104
n = 100 0.978 0.736 0.275 0.132

test with t distribution as alternative for the Kolmogorov-Smirnov test and the Cramer

von-Mises test respectively, in the sense of Malkovich and Afifi (1973).

Table 5.9: Power of the Kolmogorov-Smirnov test under alternatives bivariate and trivari-
ate t with 3, 5, 10 and 20 degrees of freedom, based on 1000 iterations.

Alternative Distribution 3 df 5 df 10 df 20 df
Bivariate t n = 30 0.443 0.181 0.060 0.039

n = 50 0.594 0.215 0.051 0.022
n = 100 0.934 0.597 0.204 0.084

Trivariate t n = 30 0.150 0.008 0.005 0.009
n = 50 0.718 0.286 0.078 0.042
n = 100 0.985 0.707 0.212 0.080

Comparing Tables 5.8, 5.9 and 5.10 we can see that for bivariate case both of the

Kolmogorov-Smirnov and the Cramer von-Mises tests perform slightly better than the

proposed test. In the trivariate case, the proposed test performs slightly better than the

Kolmogorov-Smirnov test but not as good as the Cramer von-Mises test.

5.3 Tests for Other Multivariate Distributions

We can extend the proposed methodology for testing multivariate normality to test for

other elliptically symmetric distributions as well. To illustrate, we consider H0 : F ∈ the
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Table 5.10: Power of the Cramer von-Mises test under alternatives bivariate and trivariate
t with 3, 5, 10 and 20 degrees of freedom, based on 1000 iterations.

Alternative Distribution 3 df 5 df 10 df 20 df
Bivariate t n = 30 0.616 0.329 0.129 0.088

n = 50 0.809 0.426 0.154 0.078
n = 100 0.987 0.789 0.335 0.116

Trivariate t n = 30 0.305 0.054 0.026 0.041
n = 50 0.864 0.484 0.146 0.081
n = 100 0.995 0.841 0.329 0.126

Table 5.11: The values of cn(α) for the proposed test for bivariate and trivariate standard
Laplace distributions as the null distributions where α = 0.05 and n = 30, 50, 100 after
1000 iterations.

Null Distribution n = 30 n = 50 n = 100
Bivariate Laplace Distribution 0.107296 0.066518 0.033765
Trivariate Laplace Distribtuion 0.147575 0.106263 0.064838

set of all d-variate Laplace distributions. As before we need to compute the percentile

points of the test statistic Tn. Instead of using the asymptotic distribution we simulate

the 95-th percentile cn(0.05) for finite samples of a simulated distribution of Tn. This is

a similar method to the multivariate normal distribution case.

We use a similar algorithm for obtaining the 95-th percentile values for the test statistic

for the scale test Tn as described in Section 5.1. The 95-th percentile values for Tn are

calculated for multivariate Laplace distribution for dimensions d = 2, 3 and for sample

sizes n = 30, 50, 100 and level of significance, α = 0.05. In this case F0 is a standard

multivariate Laplace distribution, and we compute the value of the volume functional VF0

for F0 using (3.54) of Chapter 3.

In Table 5.11 we give the 95-th percentile values for bivariate and trivariate Laplace

distributions as null distributions.
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Table 5.12: Power of the proposed test under mixture alternatives bivariate Laplace with
µ = (5, 5)T , and trivariate Laplace with µ = (5, 5, 5)T .

δ
Distribution 0.0 0.05 0.1 0.2 0.3 0.4 0.5

Bivariate Laplace n = 30 0.049 0.072 0.083 0.095 0.267 0.552 0.666
n = 50 0.055 0.072 0.090 0.093 0.380 0.799 0.932
n = 100 0.054 0.095 0.139 0.125 0.581 0.967 0.999

Trivariate Laplace n = 30 0.051 0.090 0.111 0.082 0.081 0.100 0.132
n = 50 0.044 0.093 0.120 0.097 0.066 0.138 0.196
n = 100 0.055 0.144 0.170 0.091 0.074 0.225 0.390

Power Under Mixture Laplace Alternatives

We now compute the power of the proposed test under mixture alternatives for the mul-

tivariate Laplace distribution using a similar algorithm as described in Section 5.1. We

use the mixture model as our alternative, where the alternative distribution is

F = (1− δ)F0 + δF1,

where F0 is a standard multivariate Laplace distribution and F1 is another Laplace distri-

bution with a different mean vector. Both F and F0 have identity scale matrix. As before

we first vary the value of δ to explore the various degrees of departure from standard

Laplace distribution. We take δ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and calculate the powers un-

der the respective alternative mixture models which are represented in Table 5.12. δ = 0.0

is the null case and it gives us the level of the test.

From Table 5.12 we can see that the power in the bivariate case gradually increases as

the value of δ increases, that is, the degree of departure from standard Laplacian increases.

In the trivariate case we can see that the power first increases, then it decreases around

δ = 0.2, 0.3 and then it again increases.

Finally, as in the previous section, we fix δ = 0.1 and vary µ = (r, r, r)T where

r = 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 to obtain the power of the proposed test. µ = (0, 0, 0)T gives
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Table 5.13: Power of the proposed test under mixture alternatives bivariate Laplace with
µ = (r, r)T , and trivariate normal with µ = (r, r, r)T and δ = 0.1.

r
Distribution 0.0 1.0 2.0 3.0 4.0 5.0 10.0

Bivariate Laplace n = 30 0.049 0.036 0.048 0.050 0.064 0.083 0.237
n = 50 0.055 0.046 0.042 0.052 0.065 0.075 0.352
n = 100 0.054 0.047 0.057 0.056 0.066 0.142 0.720

Trivariate Laplace n = 30 0.056 0.048 0.061 0.060 0.070 0.111 0.392
n = 50 0.044 0.036 0.049 0.047 0.065 0.120 0.485
n = 100 0.055 0.044 0.033 0.062 0.089 0.170 0.721

us the size of our proposed test. From Table 5.13 we can see that in bivariate case our

proposed test can detect shift when µ = (4.0, 4.0, 4.0)T and in the trivariate case it can

detect shift from µ = (3.0, 3.0, 3.0)T .
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CHAPTER 6

A TEST OF ELLIPTICAL SYMMETRY

Elliptical symmetry is one of the best known notions of multivariate symmetry and is

well studied in the literature. There are various approaches to perform a test of elliptical

symmetry. We now briefly overview some of the more well-known works in this field.

In one of the earliest works on tests for elliptical symmetry, Beran (1979) developed

a rank-based test. Suppose X1, · · · ,Xn are independent random samples from Rd where

each Xi has density of the form |Σ|− 1
2h(Σ−1(x− θ)). Beran’s test statistic Bn for testing

H0(θ,Σ) is based on scaled residuals. For simplicity, we consider Zi = S
− 1

2
n (Xi−X). Let

Ri be the univariate ranks, divided by (n+ 1), of the distances {||Zi||} and

ui =
Zi

||Zi||
. (6.1)

Consider {ak : k ≥ 1} to be a family of functions which are orthonormal with respect to

the Lebesgue measure on [0, 1] and orthogonal to the constant function on [0, 1]. Also

consider {bm : m ≥ 1} to be a family of functions orthonormal with respect to the uniform

distribution on the unit sphere in d-dimension and orthogonal to the constant function

on the unit sphere in d-dimension. Then Beran’s test statistic Bn is

Bn =
Kn∑
k=1

Mn∑
m=1

[
n−

1
2

n∑
i=1

ak(Ri)bm(ui)

]2

,

for suitable choices of Kn, Mn, which are functions of n, increasing with n. Large values
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of Bn would lead to the rejection of H0. Properly scaled, Beran’s test statistic has an

asymptotically normal distribution depending on the rate of convergence of Kn and Mn.

Beran (1979) proposed another test statistic Un for this test, given by

Un =
∞∑
k=1

∞∑
m=1

w2
k,m

[
n−

1
2

n∑
i=1

ak(Ri)bm(ui)

]2

,

where {wk,m} are the weights such that
∑

k,mw
2
k,m < ∞ and they are independent of n.

This test is a generalisation of the Cramer-Von Mises test, but it has a complex asymptotic

distribution.

In his review of elliptically symmetric distributions Chmielewski (1981) reviewed,

among other properties of the elliptically symmetric distributions, some tests of ellip-

tical symmetry until his period.

Beran’s test statistics, as defined above, are not typically affine invariant, which is a

much desired property in a test statistic for elliptical symmetry. More recently various

tests for elliptically symmetric distributions have been developed by, among others, Li,

Fang and Zhu (1997), Koltchinskii and Sakhanenko (2000), Manzottia, Perez and Quiroz

(2002), Schott (2002) and Huffer and Park (2007), all of which satisfy this property. Also

see Zhu and Neuhaus (2003) for a test based on the empirical characteristic function.

Li, Fang and Zhu (1997) proposed some robust statistics and related plots to visually

test for spherical and elliptical symmetry. They also suggested some numerical measures

of detecting deviation from spherical or elliptical symmetry that could be used along

with their proposed plots. They defined t(Xi) =
√
d Xi·
si·

, where Xi = (Xi1, Xi2, · · · , Xid),

X i· = 1
d

∑d
j=1Xij and s2

i· = 1
d−1

∑d
j=1(Xij − X i·)

2, which are distributed independently

as t with (d-1) degrees of freedom when Xi are independent standard d-variate normals.

They argued that t(·) was a robust transformation for the class of spherically symmetric

distributions and hence suggested a plot of ordered t(Xi)’s against appropriate quantiles

of the td−1 distribution, which would be close to the 450 line through the origin when the
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distribution is spherically symmetric. For elliptically symmetric situations, they suggested

looking at standardised observations Zi’s as defined before and consider t(Zi) as their test

statistic which they claim would be close to t distribution with (d-1) degrees of freedom

for sufficiently large n.

Koltchinski and Sakhanenko (2000) proposed a general class of tests: for a function

f on Rd, they defined mf (ρ) = E(fU) where U is uniformly distributed on the sphere

of radius ρ around the origin; they took F , a class of functions closed under orthogonal

transformations and considered test statistics of the form

supf∈Fn
− 1

2

n∑
i=1

(f(Zi)−mf (|Zi|)).

The tests reject the null hypothesis of elliptical symmetry for large values of the test

statistic. However, they do not have an asymptotic distribution for their test statistic

even under the simplest situation of multivariate standard normal distribution and rely

on bootstrap-based procedures to obtain the critical values.

The test statistic Schott (2002) proposed for testing elliptical symmetry is based on

fourth moments of the scaled data. The test statistic is given by

T1 = n
[
β̂1 tr(M̂2

4∗) + β̂2 vec(Id)
TM̂2

4∗ vec(Id)−
{

3β̂1 + (m+ 2)β̂2

}
d(d+ 2)(1 + κ̂)2

]
,

where β̂1 = 1+ξ̂
24

, β̂2 = −3a
{

24(1 + ξ̂)2 + 12(d+ 4)a(1 + ξ̂)
}−1

, a = (1 + ξ̂) + (1 + κ̂)3 −

2(1 + κ̂)(1 + η̂), η = 8ψ(3)(0) − 1, ξ = 16ψ(4)(0) − 1, κ = 4ψ(2)(0) − 1, ψ being the

characteristic function. M̂4∗ is the centred and normalised fourth sample moment and κ̂,

ξ̂, η̂ are sample estimates of κ, ξ, η. See Schott (2002) for the exact expressions of these

estimates.

The basic idea of Schott’s test is to use a Wald-type test to compare the sample fourth

moments of the scaled data to the fourth moments expected for an elliptically symmetric

distribution. This procedure requires the underlying distribution to have finite moments
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up to order 8. Under this condition the test statistic T1 is asymptotically χ2
νd

with

νd = d2 +
d(d− 1)(d2 + 7d− 6)

24
− 1.

Manzottia, Perez, Quiroz (2002) proposed a test statistic based on the averages of

spherical harmonics over the projections of the scaled residual of the d-dimensional data

on the unit d-dimensional sphere. They developed a test statistic based on the uis, i =

1, · · · , n, as defined earlier in (6.1), which would be asymptotically uniformly distributed

on the d-dimensional unit sphere. If h is a spherical harmonic function, “the deviation

from non-uniformity in the direction of h” is measured by

Qn(h) =
1

n

n∑
i=1

h(ui)I
(
|Zi|2 > ρnε

)
,

where ρnε is the ε sample quantile of |Z1|2, · · · , |Zn|2. The indicator function deletes the

fraction ε of the data having the smallest radii to avoid residuals falling near the origin

“for avoiding extra assumptions” (Manzottia, Perez, Quiroz (2002)). They combined

these individual deviations to form the test statistic given by

Z2
n = n

∑
h∈Ijl

Q2
n(h),

where j ≥ 3, Ijl = ∪j≤i≤lHi, Hi iss the set of spherical harmonics in an orthonormal

basis of the d-dimensional unit sphere as obtained by Muller (1966). The asymptotic

distribution of this test statistic was shown to be (1 − ε)χ2
ν where ν is the number of

functions in Iji.

Huffer and Park (2007) developed a test statistic X2 based on Pearsons chi-square

statistic which is calculated after transforming the data into a spherical form. To compute

the test statistic X2, the space of Zi’s is divided into c spherical shells centred at the origin

with each shell containing an equal number of Zi’s. Then Rd is divided into g sectors
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coming out from the origin, congruent to an orthogonal transformation mapping: hence

Rd is divided into gc congruent sectors asymptotically expected to contain equal number

of Zi’s. The test statistic X2 is the chi-squared test statistic comparing the observed

counts in each shell with the expected frequencies. They showed that the distribution X2

converges asymptotically to a weighted linear combination of independent χ2 variables.

For the exact form of the asymptotic distribution see Huffer and Park (2007).

In this chapter, we generalise the test for multivariate normality proposed in Chapter

5 to a test of elliptical symmetry. The proposed procedure provides a graphical tool to

check for elliptical symmetry.

6.1 Non-elliptical Distributions

In the previous chapters, we have restricted our discussions of the scale-scale plots to

the elliptically symmetric distributions. We now consider the situations when the distri-

butions are not necessarily elliptical and develop a test of elliptical symmetry based on

the scale-scale curve. As illustrative examples we look into the scale-scale plots for the

bivariate gamma distribution and Tukey’s g and h distribution for different parametric

values. For more discussion on non-elliptical distributions one can see Azzalini and Dalla

Valle (1996), Azzalini and Capitanio (1999).

In Figure 6.1, we compare samples from simulated bivariate gamma distributions with

the standard bivariate normal distribution. A sample of size n = 1000 is simulated from

the bivariate gamma density

f(x1, x2) =
1

{λαΓ(α)}2
e−(x1+x2)/λ(x1x2)α−1, x1, x2 ≥ 0

for different values of α and λ, so that the mean vectors of the distributions remain the

same. For small values of α, bivariate gamma is a highly skewed distribution and their

scale-scale plot compared to the bivariate normal is a nonlinear curve with scales, VG(p),
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increasing sharply with higher values of p. However, as α increases, the scale-scale plots

become more linear and we observe that the scale-scale plot for the sample from bivariate

gamma with α = 10 and λ = 0.1 is very close to the 45◦ line, which is in line with

the distributional convergence of the gamma distribution to the normal distribution as

α→∞.
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Figure 6.1: Scale-Scale plots comparing bivariate gamma distribution with the standard
bivariate normal distribution.

Another example of non-elliptical distributions is the g and h distribution, introduced

by Tukey in 1977 (see Field, Genton (2006)). For more discussion on the univariate g and

h distribution one can see Hoaglin (1983). It is generated by a single transformation of

the standard normal, which allows for a symmetry and heavier tails. When a standard
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normal random variable Z is transformed to X = ψg,h(Z), where

ψg,h(Z) =
(egZ − 1)e

hZ2

2

g
(6.2)

with h ≥ 0, then the resulting random variable X is said to have a g and h distribution.

In the multivariate setup a random vector X ∈ Rd would have a standard multivariate g

and h distribution, where g = (g1, g2, · · · , gd)T ∈ Rd and h = (h1, h2, · · · , hd)T ∈ Rd
+, if

X = (ψg1,h1(Z1), ψg2,h2(Z2), · · · , ψgd,hd(Zd))T = ψg,h(Z) (6.3)

where Z = (Z1, Z2, · · · , Zd)T ∼ Nd(0, Id). The parameter g is responsible for the skew-

ness and the parameter h controls kurtosis of the distribution. A discussion about the

multivariate g and h distribution can be found in Field and Genton (2006).

In Figure 6.2 we are comparing the scale-scale plots of standard bivariate normal distri-

bution and bivariate g and h distributions. For our simulation we have taken g1 = g2 = g

and h1 = h2 = h. Samples of size n = 1000 are simulated from the bivariate g and h

distribution for different values of g and h. As g and h get closer to 0, the scale-scale plots

become more linear. We observe that the scale-scale plot for the sample from bivariate g

and h distribution with g = 0.1 and h = 0.1 is very close to the 45◦ line.

6.2 Test of Multivariate Elliptical Symmetry Based

on the Proposed Test Statistic

In the previous chapter we mainly discussed spherically symmetric distributions and tests

to detect multivariate normality. We now suggest a test to detect multivariate elliptically

symmetric distributions, which is based on the following idea:

Let X1, · · · ,Xn be a random sample from a distribution F with location vector µ and
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Figure 6.2: Scale-Scale plots comparing bivariate gh distribution with the standard bi-
variate normal distribution.

scale matrix Σ. Under the null hypothesis of elliptical symmetry of F ,

Ui =
Xi − µ

||Σ− 1
2 (Xi − µ)||

is uniformly distributed over the ellipsoid determined by Σ and independent of the length

of ||Σ− 1
2 (Xi − µ)|| and hence if we obtain a sample r1, · · · , rn from the χ2 distribution

with d degrees of freedom, independent of the Uis, then Yi =
√
riUis are independent

multivariate normal random variables.

Therefore, a test of multivariate normality based on the Yis should work as a test

of elliptical symmetry. One may, for example, employ the test of multivariate normality
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based on the volume functional-based test statistic Tn as defined in (5.5).

In the remainder of this section, we present two power studies for our proposed test

against the alternatives of bivariate gamma and bivariate g and h distribution for sample

sizes n = 30, 50 and 100 for various choices of parameters at a 5% level of significance.

However, before proceeding to the power study, we note that in practice one usually

does not know µ or Σ, and hence instead of the Uis it is often required to use

ui =
Xi − µ̂

||Σ̂− 1
2 (Xi − µ̂)||

based on some estimates µ̂ and Σ̂ of µ and Σ respectively. As a result the tests are

performed using

Yi =
√
riui,

for which we expect some departure of normality, especially when the sample size is small.

Hence instead of using cut off from Table 5.1 which were derived for normal Yis we need

re-estimating the cut off values by a re-sampling technique, as described below, for better

accuracy.

We now provide an algorithm for obtaining cut off values for Tn as defined in (5.5) to

perform a goodness of fit test for multivariate elliptically symmetric distributions at a

pre-specified level of significance.

1. Generate a random sample X1, · · · ,Xn from the standard multivariate normal den-

sity.

2. Estimate the location vector µ and scale matrix Σ by some method of estimation.

In our simulation we use the usual sample mean and covariance. Compute the uis,

i = 1, · · · , n.

3. Simulate an auxiliary independent sample r1, · · · , rn from the χ2 distribution with

d degrees of freedom and obtain Yi =
√
riui for i = 1, · · · , n. Compute the corre-
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Table 6.1: The values of cut off at 5% level, cn(0.05), for scale test for bivariate stan-
dard normal distributions as the null distributions where n = 30, 50, 100 based on 1000
iterations.

n = 30 n = 50 n = 100
cn(0.05) 0.071834 0.043736 0.021732
Size of the test 0.049 0.051 0.053

sponding volume functional VFn(pi) for pi = i
(k+1)

, i = 1, · · · , k.

4. Compute the slope functional sn(pi) =
VFn (pi)

VF0 (pi)
for pi = i

(k+1)
, i = 1, · · · , k, using (5.1)

and then compute the test statistic Tn for each i using (5.5). Here F0 is the standard

multivariate normal distribution and VF0(pi) can be computed using (3.54).

5. Repeat steps 1-4 1000 times and get 1000 values of Tn and order them.

6. Take the 95-th percentile value of the ordered Tn as our cut off value cn(0.05).

In Table 6.1 we give a set of cut-off values obtained using the above algorithm. The

computer program we have used for simulation was written in C language.

When we estimate the size based on 1000 simulation each and for the 5% level cut offs

in Table 6.1, for n = 30, 50, 100 we observe the estimated sizes of 0.049, 0.051 and 0.053

respectively, which seem reasonably accurate.

We are now ready to provide the steps required for estimating the power of the test

against some pre-specified alternative distribution, say FA with location vector µ and

scale matrix Σ, for a sample size n:

1. Generate a random sample X1, · · · ,Xn from FA.

2. Estimate the location vector µ and scale matrix Σ take

ui =
Xi − µ̂

||Σ̂− 1
2 (Xi − µ̂)||

.
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3. Simulate an auxiliary independent sample r1, · · · , rn from the χ2 distribution with

d degrees of freedom and obtain Yis for i = 1, · · · , n. Compute the corresponding

volume functional VFn(pi) for pi = i
(k+1)

, i = 1, · · · , k.

4. Compute the slope functional sn(pi) =
VFn (pi)

VF0 (pi)
for pi = i

(k+1)
, i = 1, · · · , k, using

(5.1) and then compute the test statistic Tn for each i using (5.5). Here F0 is the

standard multivariate normal distribution.

5. Repeat steps 1-4 1000 times and get 1000 values of Tn.

6. Estimate the power of the test for F1 for sample size n at 5% level by the proportion

of Tns greater than the cut off value cn(0.05).

Table 6.2: Power of test of elliptical symmetry under bivariate gamma alternatives based
on 1000 iterations with new cut off values.

α = 1 α = 2 α = 5 α = 10
Distribution λ = 1 λ = 0.5 λ = 0.2 λ = 0.1

Bivariate Gamma n = 30 0.080 0.049 0.054 0.056
n = 50 0.095 0.063 0.066 0.060
n = 100 0.137 0.080 0.076 0.062

In Table 6.2 we present the power of our proposed test at a 5% level of significance

against bivariate gamma alternatives for sample sizes n = 30, 50, 100, α = 1, 2, 5, 10 and

λ = 1/α. We see from the table that for n = 30 and 50, significant shift is detected only

at α = 1. For n = 100, we observe that as the value of α increases, the power of the test

decreases. This is consistent with the change in the bivariate gamma distribution with

the increasing value of α as bivariate gamma distribution converges to bivariate normal

distribution as α→∞. We can also see that at a specific value of α, the power increases

as the sample size n increases from 30 to 100. The power of our proposed test (again, at a

5% level of significance), against bivariate gh alternatives for sample sizes n = 30, 50, 100,

(g, h) = (0.1, 0.1), (0.5, 0.5), (−0.5, 0.5), (0.9, 0.5) and (−0.9, 0.5), is presented in Table

6.3. We see from the table that the power of the test is negligible for (g, h) = (0.1, 0.1) ,
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Table 6.3: Power of the test of elliptical symmetry under bivariate gh alternatives based
on 1000 iterations with new cut off values.

g = 0.1 g = 0.5 g = -0.5 g = 0.9 g = -0.9
Distribution h = 0.1 h = 0.5 h = 0.5 h = 0.5 h = 0.5

gh n = 30 0.045 0.162 0.046 0.340 0.057
n = 50 0.054 0.238 0.045 0.536 0.067
n = 100 0.059 0.476 0.056 0.846 0.066

(−0.5, 0.5) and (−0.9, 0.5) uniformly across all choices of the sample size. In the remaining

cases the power increases as the sample size n increases from 30 to 100. It may be seen

that the findings based on our proposed test statistic for relatively smaller sample sizes

are consistent with the scale-scale plots in Figure 6.2 for n = 1000.
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CHAPTER 7

OTHER APPLICATIONS

7.1 A Measure of Tail Weight

Kurtosis is a location and scale free measure of peakedness and tail weight which describes

the distribution of the probability mass “from the shoulders of a distribution into its centre

and tails” (Balanda and MacGillivary (1990)) where by “shoulders” of a distribution

one would mean the points µ ± σ (Serfling (2004)). It is sometimes also described as

“lack of shoulders”(Finucan (1964)). Some authors prefer to distinguish the concepts

of peakedness and tail weight and prefer a good measure of kurtosis to be a mixture of

measures for both, see Serfling (2004). For the univariate case, most commonly kurtosis

is defined as the ratio of the fourth central moment to the square of the second central

moment and is denoted by β2. The value of β2 for the univariate normal distribution is

3. Sometimes γ2 = β2 − 3 is also taken as a measure of kurtosis. Depending on the value

of β2, the probability distribution curves are named platykurtic (if β2 < 3), mesokurtic

(if β2 = 3) and leptokurtic (if β2 > 3) depending upon the flatness of the curves with

respect to the normal distribution curve. These names were used first by Pearson (1905)

and Dyson (1943).

Kurtosis can also be defined in terms of the quantiles. Groeneveld and Meeden (1984)

defined a quantile based kurtosis for symmetric univariate distributions. The kurtosis

defined in terms of the moment measures the dispersion of the probability mass in the
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region of the shoulders of the density function but it does not give any idea about the

shape of the distribution. The quantile based kurtosis gives information about the shape

of the distribution. Using this definition we would get a high value of kurtosis if the

probability mass gets reduced near the shoulders of the distribution.

In perhaps one of the earliest attempts to generalise the concept of kurtosis to a

multivariate situation, Mardia (1970) defined the kurtosis for a multivariate distribution

in Rd with mean µ and variance Σ as

κ = E
{[

(X− µ)TΣ−1(X− µ)
]2}

. (7.1)

Malkovitch and Affifi (1973) defined a measure of multivariate kurtosis as

β∗22 = max
c

(
E(cT (Y − E(Y))4

Var(cTY)2
− 3

)2

(7.2)

based on which they defined a test of multivariate normality for some vector c. Oja

(1983) developed a similar measure of kurtosis in d dimensions based on functions of the

volumes of d-dimensional sample simplices. Liu, Parelius and Singh (1999) discussed a

visual measure of kurtosis through data-depth-based “fan-plots”, which actually gave an

idea of heavy tailedness. Serfling (2004) discussed a spatial kurtosis functional based on

volumetric considerations, invariant of shift and orthogonal and homogeneous scale tran-

sofrmations, that generalised a quantile-based kurtosis functional proposed by Groenveld

and Meeden (1984). For some measures of multivariate measures of peakedness, one can

also see Olkin and Tong (1988) and Zuo and Serfling (2000).

Balanda and MacGillivary (1990) proposed an ordering based on quantile-based kur-

tosis, in the sense of van Zwet (1964), which was scale and location free. This ordering

involved the idea of spread function SF (u) of a distribution function F defined by:

SF (x) = F−1(0.5 + x)− F−1(0.5− x), for 0 ≤ x <
1

2
.
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This measure of spread is location invariant but not scale invariant. Hence, to develop a

measure of kurtosis, which would be scale and location free, they proposed using

tx,y(F ) =
SF (x)

SF (y)

for 0 < x < y < 1
2
. This is primarily a measure of tail weight: for a fixed y, SF (x) and

hence tx,y(F ) increase more quickly in x for more heavy-tailed distributions, and hence a

relatively steeper slope of tx,y(F ) for a fixed y is indicative of more tail weight.

Using an idea somewhat similar to Balanda and MacGillivary (1990), we can define a

measure of peakedness using the volume determined by the spatial rank regions.
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Figure 7.1: Sample Kurtosis plot for Bivariate Laplace, Bivariate t with 3 df and Bivariate
Normal Distribution with q = 0.5
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Definition 7.1.1 Suppose F is a d-dimensional distribution function. Let VF (p) denote

the volume of the central rank region CF (p), with respect to the p-th quantile of the dis-

tribution of ||RF (X)||, where 0 < p < 1. Similarly define VF (q) to be the volume of the

central rank region CF (q), with respect to the q-th quantile of the distribution of ||RF (X)||,

where 0 < q < 1. Then define,

k(p, q) =
VF (p)

VF (q)
, 0 < p < 1, 0 < q < 1. (7.3)

For a fixed q, VF (p) and hence k(p, q) increases faster in p for more heavy-tailed distri-

butions, and hence should have a relatively steeper slope compared to distributions with

less tail weight.

As an illustration, in Figure 7.1 we have plotted estimates of k(p, q), based on 1000

samples, against p, for 0 < p < 1 and q = 0.5, for the standard bivariate normal distri-

bution, the standard bivariate t distribution with 3 degrees of freedom and the standard

bivariate Laplace distribution. We choose q = 0.5 as the boundary region of CF (0.5) can

be considered as the “shoulder” separating a central region from an outlying tail region,

see Serfling (2004) for a discussion. As p moves from 0.0 to 1.0, we get an idea about

how the probability mass shifts from the shoulders to the tails: the t distribution with

3 degrees of freedom distribution has the fattest tail compared to the normal and the

Laplace distribution as is clearly demonstrated by its steepest slope beyond q = 0.5.

7.2 A Visual Test of Location

In this section, we propose a test of location as an application of the proposed scale-scale

plots following the ideas of Singh, Tyler, Zhang, and Mukherjee (2009). Let X1, · · · ,Xn

be a random sample from a d-dimensional distribution F which is symmetric about θ ∈

Rd in the sense that Xi − θ
d
= θ − Xi. We are interested to test the null hypothesis

H0 : θ = θ0 against H1 : θ 6= θ0. Note that under H0, the distributions of Xi and
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its reflection 2θ0 − Xi are identical and the scale-scale plot of the combined sample

{X1, · · · ,Xn}∪ {2θ0−X1, · · · , 2θ0−Xi} against the original data {X1, · · · ,Xn} will be

nearly a 45◦ line. However, if the null hypothesis does not hold, the scale of the combined

data will be larger and the scale-scale plot will move away from the 45◦ line. Using this

principle, we construct a test procedure as follows:

1.

Define Yi =

 Xi with probability 0.5,

2θ0 −Xi with probability 0.5,

for i = 1, · · · , n.

2. Construct a scale-scale plot of Y1, · · · ,Yn against X1, · · · ,Xn.

3. There are 2n possible samples {Y1, · · · ,Yn}. However, it is not practical to con-

struct scale-scale plots for all of them for large n. One can repeat Steps 1 and 2 for

a large number of random subsets {Y1, · · · ,Yn} and construct a band of scale-scale

plots.

4. If the 45◦ line is in the bottom 5% of the band of scale-scale plots or below the band

altogether, the null hypothesis is rejected.

For illustration, we present plots of the above test procedure in Figure 7.2 where the

data are simulated from a bivariate normal distribution of sample size n = 500 with

Σ = I and different values of the mean θ. Figure 7.2(a) is the plot under null hypothesis

H0 : θ = 0 and (b), (c) and (d) present the plots for the alternatives θ = (0.2, 0.2)T ,

(0.5, 0.5)T and (1.0, 1.0)T respectively. We see that for a small shift in location, the scale-

scale plot is not that effective in detecting the shift. However, for moderate to large shifts

of the location, this visual tool detects the shift quite effectively.

One can use different criterion to formally compute the p-values of the proposed test.

We have used the proportion of scale-scale plots in the band below the 45◦ line for some

specific values of p, for example, at p = 0.50, which is the comparison of volumes of the
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Figure 7.2: Scale-Scale plot for test of location for bivariate normal distribution for n =
500. (a) θ = (0, 0)T , (b) θ = (0.2, 0.2)T , (c) θ = (0.5, 0.5)T , (d) θ = (1.0, 1.0)T
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Table 7.1: Finite sample power at the specified values of p for n = 30 and d = 2. Number
of band is 100, simulation size is 1000 and level of significance = 5%. Powers are computed
at θ = (r, r)T for different values of r. The underlying distribution is a bivariate normal
distribution, with I2 as the scale matrix.

r p = 0.25 p = 0.50 p = 0.75
0.0 0.057 0.068 0.066
0.1 0.065 0.089 0.071
0.2 0.114 0.141 0.138
0.3 0.172 0.234 0.251
0.4 0.294 0.401 0.418
0.5 0.359 0.531 0.594
0.6 0.498 0.659 0.732
0.7 0.611 0.783 0.843
0.8 0.695 0.905 0.925
0.9 0.820 0.951 0.966
1.0 0.878 0.980 0.985

Table 7.2: Finite sample power at the specified values of p for n = 30 and d = 2.
Number of band is 100, simulation size is 1000 and level of significance = 5%. Powers
are computed at θ = (r, r)T for different values of r. The underlying distribution is a
bivariate t distribution with 3df, with scale matrix Σ = I2.

r p = 0.25 p = 0.50 p = 0.75
0.0 0.071 0.071 0.072
0.1 0.075 0.077 0.055
0.2 0.113 0.131 0.100
0.3 0.106 0.206 0.162
0.4 0.280 0.297 0.208
0.5 0.384 0.448 0.318
0.6 0.507 0.578 0.448
0.7 0.619 0.665 0.486
0.8 0.708 0.809 0.577
0.9 0.822 0.881 0.719
1.0 0.867 0.916 0.740

central rank regions containing 50% of the data. Using that criteria, we present a small

sample simulation study of the power of the test for different values of p.
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In this study we compute the power for three elliptically symmetric distributions,

bivariate normal, bivariate Laplace and bivariate t with 3 degrees of freedom with the

scale matrix Σ = I and sample size n = 30. The null hypothesis is H0 : θ = (0, 0)T and

the alternatives are θ = (r, r)T , for r = 0.1, 0.2, · · · , 1.0. The test is performed based

on 100 bands with level of significance 0.05, i.e., if 5 of reflected scale curves at p are

below the original sample scale curve at p, then we reject the null hypothesis. The size

and power of this test computed based on 1000 simulations for p = 0.25, 0.50, 0.75. We

observe that the estimated sizes are slightly higher but the powers are nevertheless quite

encouraging as they increase with r for every p. Hence instead of looking at the entire

plot we can perform the test based on one single p. Perhaps using p = 0.5 might be a

good idea as the power increases most rapidly for p = 0.5 for all three distributions.

Table 7.3: Finite sample power at the specified values of p for n = 30 and d = 2. Number
of band is 100, simulation size is 1000 and level of significance = 5%. Powers are computed
at θ = (r, r)T for different values of r. The underlying distribution is a bivariate Laplace
distribution, with I2 as the scale matrix.

r p = 0.25 p = 0.50 p = 0.75
0.0 0.053 0.069 0.057
0.1 0.070 0.069 0.070
0.2 0.090 0.104 0.071
0.3 0.167 0.136 0.111
0.4 0.248 0.216 0.165
0.5 0.281 0.280 0.229
0.6 0.418 0.408 0.316
0.7 0.506 0.521 0.379
0.8 0.584 0.595 0.438
0.9 0.689 0.690 0.559
1.0 0.772 0.772 0.618
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7.3 A Visual Test of Scale

Suppose X1, · · · ,Xn and Y1, · · · ,Yn are random samples from the same family of ellip-

tically symmetric distributions with possibly different location vectors θ and scale matrix

Σ. Then we have Yi
d
= AXi + b for some d× d matrix A and d× 1 vector b and as we

noted earlier, the scale-scale plot of such competing samples will be close to a straight line.

We would like to test H0 : |ΣX| = |ΣY| or alternatively, H0 : |A| = 1 against H1 : |A| 6= 1.

Under H0, the scale-scale plot will be very close to a 45◦ line. To construct a graphical

test, plot a band of scale-scale plots of G∗n against F ∗n , where F ∗n and G∗n are bootstrap

distributions of X1, · · · ,Xn and Y1, · · · ,Yn, respectively. Under H0, this band will lie on

both sides of the 45◦ line, whereas under H1, nearly all of it will lie above or below the 45◦

line. For illustration, we present a few plots in Figure 7.3. The data are simulated from

the bivariate Laplace distribution with mean θ = (0, 0)T and X1, · · · ,Xn have ΣX = I2.

In Figure 7.3(a), the scale matrix for Y1, · · · ,Yn is ΣY = I2 and it is 0.25I2, 2I2 and 4I2

in (b), (c) and (d) respectively. We observe that these plots detect the change in scales

quite effectively.

One may also construct formal tests based on the asymptotic distribution of the process

√
n{vF (p)}−1(sn(p)− 1), which is a standard Brownian bridge as derived in Chapter 3.
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Figure 7.3: Scale-Scale plot for test of scale for bivariate Laplace distribution for n = 500.
(a) ΣY = I2. (b) ΣY = 0.25I2. (c) ΣY = 2I2. (d) ΣY = 4I2.
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CHAPTER 8

CONCLUDING REMARKS AND FUTURE WORK

Graphical representation is sometimes very useful for understanding descriptive properties

of the data. One example of visual representation of multivariate data in two dimension is

the star plot (see Fienberg (1979)) or the radar plot. In this method the each observation

is represented as a star-shaped figure spacing out all variables at equal angles around a

circle with one ray for each variable. For a given observation, the length of each ray is

proportional to the size of that variable. For this type of plot it is difficult to visually

compare lengths of different rays, because radial distances are not easy to compare. Visual

tests are helpful for describing the underlying properties of a distribution. The most

popular plots for visual test purposes, for example the Q-Q plots and the Bag plots, are

restricted to univariate and bivariate case. Our proposed plot, on the other hand, is a

more general one. The visual test based on scale-scale plots can be extended to more than

two dimensions.

The scale-scale plot proposed here is based on a volume functional of central rank

regions. For spherically and elliptically symmetric distributions, there are nice and closed

form expressions for the theoretical volume functional. The sample version of the volume

functional VFn does not have a proper closed form expression. So to compute it we are

first computing the rank vector of the data points. Then we compute the lengths of the

rank vectors, order them and take the p-th quantile value as rFn(p) as the radius of the

rank region CFn(p). Then we generated vector us such that ||u|| = rFn(p). After that,
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we compute Q(u)s corresponding to us and using the qhull program (Barber, Dobkin

and Huhdanpaa (1996)) we compute the volume VFn of the convex hull formed by Q(u)s.

The qhull program uses a convex hull algorithm for the volume computation and this

algorithm uses virtual memory of a computer rather than actual memory. This makes the

program simpler compared with the other available convex hull algorithms and can be

used for general dimension convex hulls. For more detail one can see Barber, Dobkin and

Huhdanpaa (1996). Computing VFn(p) is a major issue here; as the dimension d and the

sample size n increases, it takes longer to compute the volume of the rank region CFn(p).

From the asymptotic properties of the volume functional, we have observed that

√
n(VFn(p)− VF (p)) scaled by vF (p) = d

dp
VF (p) obtains a limiting Brownian bridge. If we

want to construct a test for VF (p) or construct a confidence interval for VF (p) based on

VFn(p), then we need an estimate for vF (p). From Chapter 3 we can see that vF (p) is a

function of the density function of (X−θ)TΣ−1(X−θ) for elliptically symmetric distribu-

tions. Thus we may need to estimate vF (p) by some density estimation method. Using an

efficient estimate of vF (p) would lead to obtaining a better estimation of VF (p). However,

in the most general case, when the distribution may not be elliptically symmetric, the

exact form of vF (p) might not be obtainable easily and a numerical method to estimate

it directly may be required, affecting the efficiency of our proposed testing procedure.

Visual tests may not be as powerful as some more theoretical tests but they often

provide more insight to the situations. We propose in Chapter 4 that the scale-scale

plots can be used to visualise the underlying properties of a multivariate distribution in a

similar way. We give a few examples of such uses; in Example 1 by comparing a bivariate

random sample with a standard bivariate normal distribution and in Examples 2, 3, 4 by

comparing two data sets with each other. These examples show that the scale-scale plot

can be considered as a multivariate analogue of the quantile-quantile plots which are a

popular visual tool for comparing two distributions.

In Chapter 5 we have defined a slope functional sn(p) as the ratio of sample volume
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functional VFn(p) to theoretical volume functional VF (p). In that chapter we have con-

structed a test statistic Tn which is a function of the slope functional sn(p). We have also

discussed some of the asymptotic properties of Tn. A test of fit of multivariate normality

and multivariate Laplace is suggested. We have used our proposed test statistic Tn and

have computed relevant cut off values for the test statistic at 5% level of significance. The

power of the test for bivariate and trivariate variants of the normal, t and Laplace distribu-

tions has been computed. We have also compared the powers obtained from our proposed

test with the powers obtained from Kolmogorov-Smirnov test and Cramer von-Mises test

as described in Malkovich and Afifi (1973).

In Chapter 6, we have suggested a test for elliptical symmetry based on the test

statistic Tn. We performed a power study for the bivariate gamma distribution and the

bivariate g and h distribution. We have also provided asymptotic results for performing

one sample and two sample tests. We also note here that in Chapter 6 to compute the

value of the uis from the data we estimated the location vector and the scale matrix

respectively by the sample mean and the sample covariance matrix, which are quick to

compute but usually not very robust. This was done to save on computational cost

which, as mentioned earlier in this chapter, was an issue for most of our data analysis

work which required significant computing time even with relatively advanced computing

resources. In future, with improved computing resources, we hope to replace our present

estimating procedures by something more robust, eg. estimates obtained by the FAST-

MCD algorithm of Rousseeuw and Van Driessen (1999). From the examples given in the

Chapter 6 we can see that this test of elliptical symmetry can be useful for comparing

multivariate distributions. It can also be used as a test of location and scale and for

calculating the power of the tests of location. We have presented power tables for the

test of location. The power study is done on samples of size 30. For this small sample

size we obtained power values which were quite encouraging, but we also observed that

the tests were slightly anti-conservative in some cases with the estimated size of a test at

a 5% level of significance sometimes being close to 7%. The computer programs which
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we used for our computation are quite time consuming: computing the power of the test

for a sample of size 30 based on 1000 iterations taking a little over a day in a machine

with a dual-core 2.27GHz CPU with 4GB RAM. Hence, although performing a test with

a larger sample size with more simulations could have helped us to ascertain whether the

observed over-estimation of sizes are a systematic problem of these tests or just a small

sample error, at present we are unable to do so for the computing costs involved. However,

even with this problem of sizes being slightly higher, the obtained powers are shown to

increase rapidly with the location parameter for the small sample size of 30, which is very

encouraging.

It may be worth mentioning here that most of our simulation work was restricted by

the heavy computation cost and hence were somewhat limited in scope.

We have developed a test of location based on scale-scale plot and presented a detailed

power study. We have also developed a visual test for scale as well. Although similar ideas

were briefly introduced in Singh, Tyler, Zhang and Mukherjee (2009) for quantile scale

curves, no detailed discussion was provided. We provide a power study using simulations

for the visual test for location based on scale-scale plot.

8.1 Further Work and Possible Extensions

In Chapter 5 we took our test statistic Tn = logUn − Vn where Un and Vn are defined

in (5.6) and (5.7). One may think of other distance functionals based on L1 distance,∫ 1

0
|VFn(p)−VF (p)|dp or L2 distance,

∫ 1

0
(VFn(p)−VF (p))2dp (which is a Cramer von-Mises

type test statistic) or the L∞ distance, sup0<p<1 |VFn(p)−VF (p)| (which is a Kolmogorov-

Smirnov type test statistic). The asymptotics in these cases are much more difficult to

work out. Also in order to compute integrals of this type accurately, one may need to

estimate the volume function at more points which can be computationally expensive.

We hope to take a look at those in the future.
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Similarly for the two sample case also we hope to look at the Cramer von-Mises type

test statistic,
∫ 1

0
(VFn(p) − VGn(p))2dp and the Kolmogorov-Smirnov type test statistic,

sup0<p<1 |VFn(p)− VGn(p)| in the future.

While comparing the performance of our proposed test statistic Tn with existing

methodologies we choose a version of Kolmogorov-Smirnov and Cramer von-Mises test

statistic proposed by Malkovich and Afifi (1973). Many more sophisticated recent tests

for multivariate normality are available e.g. Ghosh and Ruymgaart (1992) based on the

studentised empirical function, Szekely and Rizzo (2005) based on a class of V-statistics,

Kankainen, Taskinen and Oja (2007) based on location vectors and scatter matrices to

detect skewness and kurtosis. But all of these tests are computationally intensive. There

also exist many visual tests, see Chapter 5 for some examples. However most of them are

often difficult to compute and computationally costly. With the aid of better computers

we plan to compare our test statistic with some of these tests in future.

In Chapter 6 we introduced a test of elliptical symmetry using a scale based test

statistic and performed a power study against some skew elliptic and g-h distribution

alternatives using simulation. We plan to study the behaviour of the scale curves for

skew-elliptic and g-h distributions rigorously and obtain theoretical expressions for the

power of the test we obtained using simulations.

Most of the existing tests for elliptical symmetry as described in Chapter 6 have compli-

cated expressions and either complex or non-existent asymptotic distributions, see Huffer

and Park (2007). Hence comparing our test with the existing tests is a computationally

challenging job which we plan to do in the future with better computing resources.
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