
Teleo-Reactive Policies for Managing
Human-centric Pervasive Services

Srdjan Marinovic, Kevin Twidle, Naranker Dulay, and Morris Sloman
Department of Computing

Imperial College London, UK
{srdjan, k.twidle, n.dulay, m.sloman}@imperial.ac.uk

Abstract—Event-Condition-Action (ECA) policies are often
used to manage various aspects of adaptation and execution
of pervasive systems. Such policies are well suited for services
where: 1) given actions are reliably executed when they are
requested, 2) there is no priority ordering amongst multiple
available actions, and 3) execution is instantaneous with respect
to the validity of conditions under which they were initiated.
However, for a pervasive service that integrates human agents
and human activities, these assumptions do not generally hold.
Humans may misbehave by postponing the execution of certain
actions or ignoring them all together. Performing an action may
take a long time so that the action is no longer needed or
more important actions may need to be executed. Managing
such behaviours through ECA policies is complex and difficult
to implement. This paper introduces a new management policy
type, called a Teleo-Reactive policy, whose semantics are based
on continuous monitoring of the environment and prioritising
available actions. The semantics result in more flexible and
concise formulation of management policies for human-centric
pervasive services. We demonstrate how these policies can be
applied in a real-world use case scenario set in a nursing
home and describe the underlying implementation based on the
Android’s Java platform.

Index Terms—human-centric systems, pervasive services, man-
agement policies, Teleo-Reactive policies

I. INTRODUCTION

Human-centric pervasive services place a much greater
emphasis on modelling and integrating both human agents
and pervasive devices within the application. Devices such as
smartphones may prompt or remind humans to perform actions
or warn about dangers, monitor and log activities, activate
local devices to aid the user e.g. open doors or switch on lights.
However, many application such as patient healthcare[1], [2],
logistics [3], military applictions and personal human work-
flows [4], [5] require human agents to perform some aspects
of the overall service. These applications depart from classical
pervasive applications that model humans and their actions as
entities who are part of the external environment rather than
the application itself.

When modelling and integrating humans, it is tempting to
view them as managed objects, who are issued commands
to perform actions and expect them to reliably execute the
actions, as with automated components. However, humans are
fundamentally different from computers and the actions they
are asked to perform are of a different nature. For example,
humans may choose to ignore certain actions, or simply
postpone them, often for entirely valid and unanticipated

reasons. The performance of an action — the time taken,
quality of the performance, resources used, can vary widely
based on the human performing the action and the conditions
under which they perform it. Human actions require more
time than computational actions (minutes and hours instead of
seconds) so conditions governing the start of the action may
no longer be valid. Humans are not good at multi-tasking so
services need to carefully schedule human actions to ensure
that parallel actions are feasible.

Policy-based management has been successfully used in
managing distributed systems and computer networks, and this
success has been carried over to autonomous pervasive systems
such as: body-sensor networks (BSNs) [6] and unmanned
autonomous vehicles (UAVs) [7]. The management is usually
based on Event-Condition-Action (ECA) policies that issue
actions to managed objects. Hence, a possible approach to
integrate the management of humans is to carry on using ECA
policies and model humans as traditional managed agents.

In this paper we argue that ECA policies are too primitive
to use when managed agents are humans and that we need
new approaches that are better able to model and integrate
the roles of humans in pervasive services. In particular, the
main contribution of this paper is to propose and develop a
new type of management policy, called a Teleo-Reactive (TR)
policy whose semantics are based on continuous monitoring
of conditions and continuous execution of actions. The paper’s
second contribution is to introduce a TR evaluation strategy
based on observing changes rather than the polling (sampling)
approach [8]. The paper extends our earlier investigation [9]
that used TR programs to describe human-centric workflows.
We apply our approach in a small scenario and evaluate our
TR policy implementation for Android smartphones.

The rest of this paper is organised as follows. Section II
discusses the related work regarding the human management
in pervasive applications. Section III presents a use case sce-
nario. Section IV introduces the Teleo-Reactive management
policies; while Section V presents how the use case scenario
can be modelled with these policies. Section VI discusses
the differences between ECA and TR policies with respect
to scenario’s management requirements. Section VII examines
the implementation of the TR policy framework and Section
VIII looks at performance of the framework on the Android
platform. Finally, Section IX concludes the paper with an
outlook on the future work.

II. RELATED WORK

Arguably the most elaborate integration of human actions
in pervasive applications and services is found in human-
oriented pervasive workflows such as [4], [3], [10]. These
workflows specify a structured plan of activities and conditions
under which these can be started. However, they are based on
traditional workflow models and thus use a strict ordering of
tasks where humans are expected to obediently follow given
commands. Coping with unpredictable humans is attempted
through adapting the workflow structure [3], or skipping over
certain tasks [4]. But these are seen as exceptional situations
and thus more elaborate integration with action prioritisation
and long-running activities is not feasible within the confines
of traditional workflow models. A more flexible workflow
model, without a strict task ordering, was presented by Pesic
et. al [11] and Aalst et al. [12]. However, this model does
not express prioritisation between tasks nor does it cope with
reorganising the execution of running tasks.

There has been considerable interest in the use of people-
centric sensing which relies on people carrying smartphones as
a mobile sensing platform to monitor the environment, traffic
flows as well as determining the activity of the person carrying
the phone [13]. This does not integrate any form of people
management or control but the activity monitoring is similar
to that required for our approach.

Policy management, based on the Event-Condition-Action
(ECA) policy paradigm quickly emerged and established itself
as a very successful management paradigm for distributed
systems [14], [15], [16], [17]. However, humans and their
activities have peculiar characteristics, namely: 1) human
actions take minutes rather then seconds, 2) conditions during
the executions change, and 3) humans prioritise sequential
actions rather than multitask. ECA rules are not suited for
specifying long running actions where conditions and priorities
change during the action execution and agent behaviour can
be unpredictable, as discussed further in Section VI.

Some of the issues with ECA policies were recognised
by Chomicki et al. [18] which focused on addressing the
conflict resolution between the executable actions. Conflicting
actions must never be executed concurrently so priority can
be associated with actions to determine which ones will be
executed or ignored when conflicts occur. Conditions can also
be used to specify whether an event triggering an action can
be ignored. However, this work is still aimed at computer-
based distributed systems and thus all actions are considered
instantaneous. It is difficult to specify ECA rules for stopping
and restarting actions in case higher-priority ones need to
be run or to terminate long running actions if the initiation
conditions no longer hold.

This paper builds upon our initial investigation [9] on using
the Teleo-Reactive (TR) paradigm to specify adaptive human-
oriented workflows. This gave us a flexible way of supporting
long and centralised workflows that attempted to organise all
of the people’s activities within one workflow specification.
This approach does not scale for complex environments in-

volving many different people and their obligations. Thus in
this paper we focus on smaller, policy TR structures that are
distributed to people, and we find this decentralised approach
to be a much more powerful way to integrate humans within
pervasive system.

III. CASE STUDY: NURSING HOME PATIENT CARE

People and their actions are often unpredictable and it is un-
realistic to try to classify all the possible situations that might
occur in practice, particularly in environments dominated
by human-to-human interactions. More importantly, in most
workplaces, people are given responsibilities and are expected
to use their own judgement in carrying out their duties. But,
people do make mistakes and do forget, particularly when
working under pressure or heavy workloads. Building on these
observations, unexpected activities should be considered the
norm in pervasive applications. In most situations the people
that cause deviations will be non-malicious known users rather
than malicious adversaries.

To illustrate the need for policies and how they may be
formulated, we shall focus on a scenario centred around the
patient care in a nursing home in Mainkhofen, Germany. This
case study is taken from the EU sponsored Allow project1

[19].
The patients in the nursing home suffer from dementia and

require constant care and assistance with almost all of their
daily activities, such as: changing, bathing, eating and so forth.
These activities are, by their nature, centered around physical
interaction between care-givers and patients. The pervasive
system is able to monitor which activities are taking place, who
the individuals are and automatically log activities performed
by nurses relieving them of the burden of manually writing
up treatment logs. The monitoring of patients’ vitals is also
undertaken. All care-givers are equipped with a mobile device
to monitor their activities, receive alarm messages and prompt
them to perform obligations and tasks. The main goal of
the system is to help and assist the care-givers with their
daily chores as well as introduce automatic book-keeping of
treatments that patients received.

The people (roles) modelled in the case study are: nurses,
head-nurse, students and patients. The patients’ care is formu-
lated by the following statements:

1) A nurse that is assigned to a patient, executes the
treatment tasks for that patient.

2) A student is allowed to interact with a patient when the
assigned nurse is present in the same room.

3) When a patient’s vital signs indicate an abnormality, any
nurse or student is allowed to treat the patient.

As far as the nursing home is concerned, this formulation
represents an ideal norm, and as is the case with many
pervasive scenarios, it is subject to numerous deviations such
as nurses or students misunderstanding which patient they
should attend to. Sometimes a nurse will attend to a patient,
for whom she is not directly responsible, as she determines

1http://www.allow-project.eu/

something may be wrong or that the patient needs something.
Because the nursing home is not a high-level security building,
it is quite possible that visitors forget to sign in and take
their ID badges. In this case the system will treat them as
unknown people and it is important that the system can quickly
determine whether they are genuine visitors or intruders who
should not be allowed into the nursing home.

It is clear that all of these cases represent deviations
to normal behaviour/policies, and that there is a need for
appropriate responses. For example, in this paper we model
the following:

1) A student, who is assisting a patient without supervision,
should be instructed to seek approval. At the same time
the patient’s nurse should be informed and allowed to
approve the activity. If approved, the student should
be informed and allowed to proceed. If the student
continues without approval for 5 minutes the head nurse
is informed of the activity of the student.

2) When a nurse is assisting a non-assigned patient, the
head nurse should be notified and given the option to
approve the activity. If the head nurse does not approve
it, the nurse should be asked to provide a reason (through
text or voice) for undertaking the activity. If one is not
given the head nurse and the patient’s nurse should be
informed.

3) When an unknown person is detected in the ward, the
video feed from that ward is immediately streamed
to the ward nurse’s mobile device (a ward has one
assigned nurse to oversee it) and to the head-nurse’s
mobile device as well. A display in the ward shows
a message asking the unknown person to authenticate
themselves either by showing their badge or by going
to the reception to get a badge.

IV. TELEO-REACTIVE POLICIES

As it was suggested in the previous sections, the main
three requirements for managing human agents and their
activities are: 1) prioritising between available activities, 2)
monitoring conditions while the activities are being performed,
3) responding to condition changes while the activity is being
performed. This paper argues that systems based on ECA poli-
cies are not well-suited to tackle these problems and put a high
burden on the policy writer to understand and specify correct
policy specification. Furthermore, this paper proposes the use
of management policies which are based on, and inspired by,
Teleo-reactive (TR) programs [8] to tackle the human actions’
management challenges. These programs were introduced in
behavioural robotics to govern a robot’s continuous responses
to various context changes in its environment, so a robot would
reach its goal.

A. Syntax

A TR policy is written as an ordered list of condition-action
rules; where every rule consists of a condition part and an
action part (as depicted in the Figure 1). These parts are sepa-
rated by the → symbol, and a rule is ended with a mandatory

full-stop. condi is a predicate that is evaluated over the policy’s
percepts (discussed in the next subsection) and actioni is
a function (method) that the policy can invoke. Conditions
can form an expression with the logical and operator denoted
with a comma , symbol. The ¬ symbol can be used as a
shorthand for a condition returning false. Concurrent actions
are indicated by the || operator. Every policy specification has
a name, and we employ a syntactic convention of indenting
rules belonging to a policy. All policy rules are priority ordered
(high to low) according to their syntactic position in the policy
specification.

tr-policy name(Par1, .., Parn)
cond1a(V ar1), cond1b → action1(V ar1).
cond2(Par1) → action2a || action2b.
condn → actionn.

Fig. 1: Teleo-Reactive (TR) Policy

All conditions, actions and policies start with a lower-case
letter. All variables start with an upper-case letter and variables
appearing in the action part of a rule must appear in the
condition part of the same rule. A condition binds a value
to a variable so that the condition with that value evaluates to
true. Policies can be instantiated with parameters. The value
of the parameters cannot be changed while the policy is active.
A single-line comment starts with the % character.

B. Evaluation Semantics

Every TR policy is paired with the policy’s percepts — a set
of facts about the state of the system and the environment over
which policy conditions are evaluated. The runtime system
receives various events originating from the system or the
environment which can change the values of contained facts.
These changes can result in a condition becoming true and thus
causing a new higher-priority rule’s action to be executed or a
condition relating to the currently executing rule may become
false allowing a lower-prioirty rule with a true condition to
start executing its action.

The policy life cycle consists of loading a policy specifica-
tion, enabling the policy, disabling it and finally removing it.
When the policy is enabled, it is said to be active. As soon as a
policy becomes active, it is treated as an independent process,
and is evaluated according to the five rules given in the Figure
2.

It is also possible for a policy to be nested as an action of
another rule (please see Figure 6). In this case all conditions
at all levels of the TR policy hierarchy are continuously
evaluated. A called TR policy thus has no control over when
it will be terminated; any parent (calling) TR policy would
terminate it if higher-priority conditions become true. Such
hierarchical nesting of TR policies and conditions leads to
easier development of policies that are required to react
robustly to an unpredictable changing environment since outer-
level conditions take precedence over inner-level conditions.

The implicit prioritisation of TR policies frees the policy
writer from writing additional prioritisation rules and it also

1) All rule condition expressions are continuously evalu-
ated.

2) There can only be one action expression (which may
contain an action or parallel actions) running at any
time, and it is must be the one belonging to the highest
priority rule whose conditions are evaluated to true.

3) Actions are durative – they run forever.
4) As soon as the condition for the currently active rule

becomes false, its action is terminated and the action
expression for the next higher priority rule whose con-
dition is true is started. There should always be a final
rule with a true condition.

5) As soon as the condition for an higher-priority rule
becomes true, its action expression is started and the
currently running action expression is terminated.

Fig. 2: Evaluation rules for a single TR policy

provides conflict-free action execution as only one policy is
effectively executed at a time within a node. More elaborate
priority schemes can be realised through parallel and/or nested
TR policies. However, this usage can lead to conflicts where
actions have conflicting semantics (e.g. switch-on and switch-
off) or there may be conflicts between actions performed by
multiple nodes executing policies. There is other on-going
policy analysis (such as [20]) work within our group to
determine conflicts and it is not covered in this paper. It may
appear that executing only one action is too restrictive but
humans usually need to be directed in a single step-by-step
fashion rather than giving them a multi-tasking assignments.

A TR policy can be considered a priority-ordered, goal-
oriented set of steps which are sequenced by reactions to
changing conditions rather than through a fixed and rigid
workflow-like structure.

V. MANAGING THE NURSING HOME WITH TR POLICIES

This section presents five TR policies that capture the devi-
ation management for the nursing home case study. These TR
policies rely on an activity recognition system that can identify
and notify which activities a person is doing, developed within
the Allow project [19]. In the case of a nursing home these
activities come from a closed set of nursing tasks such as
washing a patient, feeding a patient, taking blood pressure,
cleaning a room etc.

The approach taken to managing deviations is as follows.
Each active participant (such as a nurse, ward, etc.) is given
a particular tailored policy. The rules of this policy are
constructed in such way that conditions reflect a particular
deviation pattern and the actions represent activities that either
the human (manual actions) or the device (issuing notifications
and alarms) ought to be doing. These actions can be considered
as having a goal to falsify the deviation’s conditions. The
rules are ordered (prioritised) based on the seriousness of a
particular deviation. Hence every TR policy, in this scenario,
has a goal to correct deviations in the order of their seriousness

and the goal can be considered reached when the policy is idle
and not running any actions.

Following the TR semantics, all actions (both human and
computer ones) are perceived as continuous. Hence both
human and computer agents ought to be doing them as long
as the deviation conditions hold. The humans are notified via
alerts and screen messages which activities they are supposed
to be doing. In theory this notification is continuous, in a sense
that it is performed as long as the activity is needed, but in
practice, notification implementation may do this by periodi-
cally reminding the user rather than generating a continuous
audible warning which would be irritating. Some activities
are impractical to stop instantaneously, for example washing a
patient. TR policies give the policy writer the ability to specify
additional rules to deal with such situations such as sending
a warning message when a user does not finish an action on
time.

To make a syntactic distinction between human actions and
the device’s ones, the human actions will be specified with a
dot expression, eg. Human.action(...). In this case Human is a
variable that uniquely identifies a person and the action is the
activity that the person ought to be doing.

tr-policy studentPolicy(Student) =
%% monitor the student, after the approval,
%% for a later review
doing(Student, Activity, Patient,Ward),
approved(Student, Activity, Patient,Ward)
→ monitor(Student, Activity, Patient, Ward).

%% if the student is persistently deviating
%% inform the head nurse
¬present(Patient.nurse,Ward),
doing(Activity,mins(5))
→ Student.stop(Activity)
|| inform(headNurse, needsSupervision(Student, Activity

, Patient,Ward)).

%% a nurse needs to be present for student’s actions
doing(Student, Activity, Patient,Ward),
¬present(Patient.nurse,Ward)
→ Student.seekApproval()
|| inform(Patient.nurse, needsSupervision(Student,

Activity, Patient, Ward)).

Fig. 3: Student Policy: manages student’s deviations and their
progression.

Figure 3 shows a student policy instantiated on a personal
mobile device (see Figure 8a). The doing(Student, Activity,
Patient, Ward) condition is true, while the student is perform-
ing an Activity. The seekApproval instructs the user to ask
for an approval and it also tells him which is the closest nurse
that can approve his activity. The student’s device may need to
perform the inform action which keeps notifying the patient’s
nurse about this deviation.

The nurse policy (Figure 4), specifies that if a nurse is
doing an unapproved activity she needs to provide a reason
for it, before dealing with a student’s violation (if one exists).
However, if a stranger is detected in the ward, the policy
dictates that such a violation is the most urgent one and it
instructs the device to show the streamed CCTV video while

tr-policy nursePolicy(Nurse) =
%% display the live video on the device
%% and have nurse go to the ward to identify
%% the stranger
strangerIn(Ward)
→ stream(Ward.videoCam)
|| Nurse.identifyStranger(Ward).

%% monitor the approved activity for a later review
doing(Nurse,Activity, Patient,Ward),
approved(Nurse,Activity, Patient,Ward)
→ monitor(Nurse, Activity).

%% prompt the nurse to give a reason for the deviation
doing(Nurse,Activity, Patient,Ward),
¬approved(Nurse,Activity, Patient,Ward)
→ Nurse.seekReason(Activity).

%% a nurse can assist only her patients otherwise
%% it is a deviation
doing(Nurse,Activity, Patient,Ward),
¬my(Nurse, Patient)
→ warn(Nurse, Activity)
|| inform(headNurse, needsApproval(Nurse, Activity,

Patient, Ward)).

%% student is deviating and needs approval
needsApproval(Student, Activity, Patient,Ward)
→ Nurse.approve(Student, Activity, Patient, Ward).

Fig. 4: Nurse Policy: manages nurse’s deviations and ap-
provals for students’ deviations.

instructing the nurse to attempt to identify the stranger. The
Figure 8b shows how the approve action could be presented
on a nurse’s mobile device.

tr-policy headNursePolicy(HeadNurse) =
strangerIn(Ward)
→ stream(Ward.videoCam)
|| HeadNurse.identifyStranger(Ward).

%% in case a head nurse needs to deal with both a
%% student’s and a nurse’s deviations, higher importance
%% is given to the nurse’s deviation
needsApproval(Nurse,Activity, Patient,Ward)
→ HeadNurse.approve(Nurse, Activity, Patient, Ward).

needsApproval(Student, Activity, Patient,Ward)
→ HeadNurse.approve(Student,Activity,Patient,Ward).

Fig. 5: Head Nurse Policy: manages approvals for nurses’ and
students’ deviations.

The headNurse policy (Figure 5) follows the same logic
as the nurse policy, except that a head nurse is permitted
to interact with all patients and thus she never causes any
deviations by herself.

A nurse can be assigned to a head nurse role based on a
fixed or an ad-hoc schedule. This assignment is not done by
the TR policy system, but by an independent role assignment
system which deploys the policies relevant to a role. When a
particular nurse assumes the head nurse role, the relevant (pre-
loaded) policies are activated. To capture this behaviour, we
use nested TR policies where, depending on a role a nurse is
supposed to play her device enforces a particular policy. This
is done via a special tr action which simply keeps a specified
TR policy instantiated while the conditions are true.

In our implementation, a nurse’s device contains both nurse
and head nurse policies and which one is enforced is governed
by the nurseRole policy (Figure 6).

tr-policy nurseRole(Nurse) =
%% while activated executes headNurse TR policy
assignedAsHeadNurse() → tr headNursePolicy(Nurse).

%% while activated executes nurse TR policy
onDuty() → tr nursePolicy(Nurse).

Fig. 6: Nurse Role Policy: switches between head nurse’s and
nurse’s policies based on the current nurse’s assignment.

VI. DISCUSSION

In order to provide a clearer contrast between ECA and TR
policies with respect to managing human agents and actions,
this section encodes the nurse policy (Figure 4) as a set
of ECA policies. The policies, shown in the Figure 7, are
described with the syntax that follows the common pattern
of ON event IF conditions are true DO actions. It is also
assumed, in tradition with the common implementations, that
the conditions are evaluated when the event is received and
corresponding actions are executed once if the conditions are
satisfied.

ON strangerIn(Ward)
DO stream(Ward.videoCam).start()
|| identifyStranger(Nurse).start()

ON strangerLeft(Ward)
DO stream(Ward.videoCam).stop()
|| identifyStranger(Nurse).stop()

ON approved(Activity,Patient,Ward,Period)
IF Patient.nurse != Nurse

& doing(Nurse, Activity, Patient, Ward)
& !strangerIn(Ward)

DO display("Approved", Activity, Period)

ON declined(Activity,Patient,Ward)
IF Patient.nurse != Nurse

& doing(Nurse, Activity, Patient, Ward)
& !strangerIn(Ward)

DO seekReason(Nurse, Activity)

ON started(Nurse, Activity, Patient, Ward)
IF Patient.nurse != Nurse
& !strangerIn(Ward)

DO alert() || inform(HeadNurse)

ON needsSupervision(Student, Activity, Patient, Ward)
IF !doing(Nurse, Activity, Patient, Ward)

& !strangerInWard(Ward)
DO approve(Student, Activity, Patient, Ward)

Fig. 7: Nurse Policy represented as a set of ECA policies.

The given policy set needs to explicitly prioritise ECA
policies by augmenting the conditions with additional checks
to make sure that no higher priority policies are applicable. In
this example most policies are applicable only if the stranger
is not present in the ward and that condition needs to be made
explicit in most of the policies.

The second explicit consideration is needed to make sure
that actions and their effects are properly terminated. In the

presented formulation, for the sake of brevity, we have only
done this for the stream and identifyStranger actions. Even if
one attempts to model these actions as threads that are simply
initiated, they still need to be explicitly killed when new ones
are started. The Nurse global variable is also included for this
policy set to hold the currently assigned nurse. This works for
one nurse, but a more complex mapping would be needed to
cope with multiple nurses.

Finally, additional rules are needed: 1) to terminate running
activities if conditions change, and 2) to automatically re-
evaluate other policies to see if any other actions are exe-
cutable. In the given example, once a stranger has left the
ward, the nurse should automatically be given the option to
approve any students’ deviations, if they have been occurring.

Such concerns and the resulting complexities, in both the
ECA specifications and implementations are the main reasons
that prompted us to investigate other policy formulations
and approaches. Our current experience, with human-centric
pervasive services, indicates that TR policies address these
problems in a more understandable and straightforward way,
and are much closer to higher level goal based specifications.

VII. IMPLEMENTATION

To validate the proposed TR policy management approach
we have developed a Java-based TR policy framework and
used it to implement the presented scenario’s policies. The
framework targets the Standard Java 1.5+ distribution (Java
SE) and Android’s Java distribution, Dalvik 1.6+. The main
reasons for supporting a mobile platform are: 1) to be able
to cater for pervasive scenarios where a dedicated centralised
infrastructure is not present, and 2) to be able to scale
to systems where there are potentially hundreds of human
agent by moving policy evaluation onto personal mobile
devices. The policy framework can be downloaded from
http://www.ponder2.net/cgi-bin/moin.cgi/TrPonder.

Our implementation of the nursing home scenario assumes
that all nurses and students have an Android smartphone,
which also contains an activity recognition module [19].
Therefore users are not required to manually input which
activities they are performing. Every Android device runs the
TR policy framework to evaluate the policies for the owner’s
role – nurse, head-nurse, student etc.. Figure 8a shows a
student’s device executing the policy’s lowest rule. Similarly,
Figure 8b shows a nurse’s device executing also the nurse
policy’s lowest rule as well.

A. Evaluating TR Policies

In the current implementation each policy is treated as a
Java thread. When started, a policy asks each rule, in turn,
if it can be run. The top-most rule to respond positively is
run in a separate thread (referred to as the action thread).
The policy’s evaluation thread then proceeds to re-evaluate the
rules continually. Each time the rules are evaluated, the top-
most rule is run. If the top-most rule is the currently running
rule then that rule is simply left alone to continue. If, however,
a higher priority rule is ready to run then the current action

(a) A student TR policy (b) A nurse TR policy

Fig. 8: The student policy is running its lowest rule since a
student is doing an unapproved activity, and the nurse policy
is prompting a nurse to approve a student’s activity while the
student is deviating.

thread is told to stop and when it stops, the newly selected
rule’s actions are run as the action thread.

The percepts are implemented as hash-based key-value
stores and every time a value is changed, the policy attached
to these percepts receives a notification.

In the described TR semantics, policies ought to continu-
ously re-evaluate their rules as if they were implemented as
an electronic circuit. Obviously, this polling approach, can be
quite costly in terms of the CPU usage. Also, sometimes it is
not desirable to immediately kill certain action threads as they
may need additional time to finish using potentially critical
resources.

For these highlighted reasons the evaluation can be con-
figured to be either continuous or discrete, and the killing of
actions can be delayed. These options are:
• Continuous – the policy repeatedly passes over its rules

executing one as necessary, polling its percepts for every
condition. The most straight-forward way to implement
the needed semantics.

• WaitForChange – this is the option for discrete evaluation
of the conditions, where the policy only re-checks the
rules when its percept’s values are changed. The change
can be introduced by other components or even low-level
ECA policies that have access to percepts. If an action
thread completes and no change is perceived then the
policy waits until one arrives.

• WaitForRule – this option tells the policy that it cannot
terminate an action and that it has to wait for it to finish

even if a higher priority rule is ready to run. The only
exception is if the policy, itself, has been told to stop then
the currently running rule will be forced to stop.

The reason for having the Continuous mode of evaluation is
to allow the policy’s conditions to query other parts of the
system directly if needed, rather than always having to go
through percepts.

When a rule has two or more concurrent actions, a corre-
sponding number of action threads are spawned. From the
policy’s point of view they are all treated as one action,
and thus if the policy is waiting for that rule to finish, it is
effectively waiting for all action threads to finish.

A rule’s action can be another TR policy. In this case the
action thread will instantiate this sub-policy and it will start
evaluating its conditions and running its actions. However,
when the original parent action thread needs to be terminated,
it will send a terminate signal to the running sub-policy, which
in turn will terminate its running action thread. Following this,
the sub-policy is terminated.

B. Implementing TR Actions

Our current implementation views policy actions as Java
methods. Once the action thread is started, it simply invokes
the action method and then it waits to be terminated. At this
point it is up to the actual method’s code to implement its
continuous running. For example the presented notification
actions simply put the message on the screen and then peri-
odically vibrate the phone to draw a user’s attention to the
screen. Hence, an action’s concrete implementation is free
to appropriately define it’s own continuous behaviour. We
experimented with running action methods in a loop inside the
action thread, but abandoned this as every action can have a
slightly different notion of what continuous means. Invoking
a method continuously made the system keep state on how
often it was called which made the actual action code quite
hard to debug and understand.

Finally, activities that humans are supposed to carry out are
most often implemented as methods that notify a user about
the activity, or offer some input method for the user to signal
that the activity is done. Based on the notification method’s
view on what continuous means, the user may be asked to do
the action again repeatedly or a certain fixed number of times.

VIII. PERFORMANCE EVALUATION

The targeted pervasive environment, for TR policies, are
mobile smartphone devices to which the policies can be
deployed and then evaluated in a distributed manner. This
implies that the TR policy environment should use minimal
device CPU time so as not to impact other, more critical,
applications and to prolong the devices battery life. Section
VI showed that the ECA approach is inherently harder to use
for managing human agents and human activities. Therefore
this section will concentrate on assessing whether TR policies
are a feasible tool for use on mobile devices rather than their
direct performance comparison with ECA rules seeing the
application domains for the two approaches are different.

TABLE I: Running 1 and 20 HeadNurse TR policy (Figure 5)

1 TR policy 20 TR policies

of Changes % of CPU Time % of CPU Time

WaitForChange

4 1.39 2.20

6 1.43 2.51

12 1.51 3.62

24 1.66 5.18

Continuous

4 21.13 81.41

6 20.92 81.51

12 20.52 81.26

24 20.69 81.52

To analyse the TR policy framework’s CPU usage on an An-
droid smartphone device (with respect to WaitForChange and
Continuous evaluation modes), we have taken the HeadNurse
TR policy (Figure 5) and varied the number of changes in
the percepts that the policy has to deal with. The changes are
scripted in such a way that at the end of a test, the policy ended
up doing the deviation handling (running an action thread) half
of the time and half of the time it ended up in an idle mode
(no action running). Note that the action thread is running a
notification action which puts up an input screen and waits for
the user feedback (as depicted in the Figure 8b). This is a very
lightweight action and thus all the Figures can be used as a
baseline for the policy frameworks usage rather than the action
implementations’ usage. These tests were run over a fixed time
period of 5 minutes. They were all run on the Google Nexus
One phone2 with the Android 2.1 update.

The table I shows the percentage of the CPU usage by the
policy framework when running 1 and 20 policies respectively,
in both evaluation modes. It is immediately clear that the
WaitForChange evaluation approach is a very economical one.
Even with the most extreme case of 20 policies dealing with
20 ∗ 24 changes, the framework occupies only around 5% of
the CPU time. On the other hand dealing with more than one
policy in the Continuous mode will quickly drain the battery
and slow other applications down. Thus this mode should only
be used with one policy per device if there is an explicit need
for it.

The previous tests highlighted the CPU usage when an
action thread was running half of the total policy evaluation
time. The table II shows the CPU usage when there is an
action thread running continually during the policy evaluation
time. We have kept the same minimal notification action so the
test is not dependent on the complexity of the actual action.
As the table shows additional cost is very small and can be
considered negligible.

During all the executed tests the policy framework’s mem-
ory usage varied between 4.5 MBs and 6MBs. The numbers
varied within these bounds with no clearly observable correla-
tion to the number of policies or the policy evaluation mode.

2http://www.google.com/phone/static/en US-nexusone tech specs.html

TABLE II: WaitForChange HeadNurse policy (Figure 5)

of Policies % of CPU Time

12 Changes

1 1.48

10 2.72

20 3.92

24 Changes

1 1.55

10 3.88

20 6.01

IX. CONCLUSION AND FUTURE WORK

Traditionally, pervasive systems have managed computer-
based agents (such as robots or sensors), and these frameworks
have been largely based on Event-Condition-Action (ECA)
policies. Current pervasive applications are attempting to in-
tegrate humans and their activities as an intrinsic part of a
pervasive service rather than treating them as an external and
independent environment. However, managing people provides
new challenges, since people are often unpredictable and may
decide to delay or postpone certain obligations. Also, they may
act proactively and perform activities that the system does not
expect them to do.

This paper has argued that traditional ECA policies are not
suitable for managing human agents and their activities. The
argument is based on the fact that capturing the management
requirements for human services with ECA policies leads to
a complicated and verbose policy specification that is tightly
bound to the underlying system implementation. Furthermore,
the policy writer has to invent his own mechanisms to deal
with continuous actions and their prioritisation. To cope with
these management requirements, this paper presents a new
management policy type called Teleo-Reactive policies which
view actions as continuous while the their activation conditions
are continuously checked. The conditions in TR policies can
be seen as goals which need to be achieved by actions so can
be considered them as a higherl level abstraction than ECA
rules.

Our current experiences with TR policies and comparisons
with similar ECA formulations lead us to conclude that the
TR approach offers a more concise and flexible formulation of
the human agents’ management requirements and its semantics
lend themselves more naturally to these formulations.

We still need to evaluate the effectiveness of the above
approach within the Allow project and the extent to which
this is accepted by users in the nursing home scenario. For
the future work, we plan to investigate additional scenarios to
better understand management patterns that the TR policies
are suitable for. We are also currently formulating a formal
model of TR policies based on Event Calculus. The goal of
this formal specification is to give a policy writer ability to
verify that certain actions will take place after a particular
narrative of changes. This formal model could be further used
to check and validate the TR implementations.

ACKNOWLEDGMENT

This research was supported by EU FP7 research grant
213339 (ALLOW).

REFERENCES

[1] J. E. Bardram and N. Norskov, “A context-aware patient safety system
for the operating room,” in UbiComp ’08: Proceedings of the 10th
international conference on Ubiquitous computing. New York, NY,
USA: ACM, 2008, pp. 272–281.

[2] J. E. Bardram and H. B. Christensen, “Pervasive computing support for
hospitals: An overview of the activity-based computing project,” IEEE
Pervasive Computing, vol. 6, no. 1, pp. 44–51, 2007.

[3] A. Marconi, M. Pistore, A. Sirbu, H. Eberle, F. Leymann, and T. Unger,
“Enabling adaptation of pervasive flows: Built-in contextual adaptation,”
in ICSOC/ServiceWave, 2009, pp. 445–454.

[4] S. Urbanski, E. Huber, M. Wieland, F. Leymann, and D. Nicklas,
“Perflows for the computers of the 21st century,” in PerCom Workshops,
2009, pp. 1–6.

[5] Y. Li and J. A. Landay, “Activity-based prototyping of ubicomp applica-
tions for long-lived, everyday human activities,” in CHI ’08: Proceeding
of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems. New York, NY, USA: ACM, 2008, pp. 1303–1312.

[6] S. L. Keoh, N. Dulay, E. Lupu, K. Twidle, A. Schaeffer-Filho, M. Slo-
man, S. Heeps, S. Strowes, and J. Sventek, “Self-managed cell: A
middleware for managing body-sensor networks,” in MobiQuitous 2007.,
Aug. 2007, pp. 1–5.

[7] E. Asmare, A. Gopalan, M. Sloman, N. Dulay, and E. Lupu, “A
policy based management architecture for mobile collaborative teams,”
in PerCom, March 2009, pp. 169–174.

[8] N. J. Nilsson, “Teleo-reactive programs for agent control,” J. Artif. Intell.
Res. (JAIR), vol. 1, pp. 139–158, 1994.

[9] S. Marinovic, K. Twidle, and N. Dulay, “Teleo-reactive workflows for
pervasive healthcare,” in PerCom Workshops, 2010.

[10] J. Han, Y. Cho, E. Kim, and J. Choi, “A ubiquitous workflow service
framework,” Computational Science and Its Applications - ICCSA 2006,
pp. 30–39, 2006.

[11] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “Declare: Full
support for loosely-structured processes,” in EDOC, 2007, pp. 287–300.

[12] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Sci-
ence - R&D, vol. 23, no. 2, pp. 99–113, 2009.

[13] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,
H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, “The rise of
people-centric sensing,” IEEE Internet Computing, vol. 12, no. 4, pp.
12–21, 2008.

[14] M. Z. Hasan, “An active temporal model for network management
databases,” in Proceedings of the fourth international symposium on
Integrated network management IV, 1995, pp. 524–535.

[15] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” Policies for Distributed Systems and Networks,
pp. 18–38, 2001.

[16] T. Koch, C. Krell, and B. Kraemer, “Policy definition language for
automated management of distributed systems,” in SMW ’96: Proceed-
ings of the 2nd IEEE International Workshop on Systems Management
(SMW’96). Washington, DC, USA: IEEE Computer Society, 1996,
p. 55.

[17] J. Lobo, R. Bhatia, and S. Naqvi, “A policy description language,” in
AAAI ’99/IAAI ’99. Menlo Park, CA, USA: American Association for
Artificial Intelligence, 1999, pp. 291–298.

[18] J. Chomicki, J. Lobo, and S. Naqvi, “Conflict resolution using logic
programming,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 15, no. 1, pp. 244–249, Jan.-Feb. 2003.

[19] “First approach to integration of context,” in ALLOW Project Deliverable
D2.2. http://www.allow-project.eu/, Nov. 2009.

[20] R. Craven, J. Lobo, J. Ma, A. Russo, E. C. Lupu, and A. K. Bandara,
“Expressive policy analysis with enhanced system dynamicity,” in ASI-
ACCS, 2009, pp. 239–250.

