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Abstract. We investigate steady states of a quasilinear first order
hyperbolic partial integro-differential equation. The model describes

the evolution of a hierarchical structured population with distributed

states at birth. Hierarchical size-structured models describe the dy-
namics of populations when individuals experience size-specific envi-

ronment. This is the case for example in a population where individ-

uals exhibit cannibalistic behavior and the chance to become prey (or
to attack) depends on the individual’s size. The other distinctive fea-

ture of the model is that individuals are recruited into the population

at arbitrary size. This amounts to an infinite rank integral operator
describing the recruitment process. First we establish conditions for

the existence of a positive steady state of the model. Our method
uses a fixed point result of nonlinear maps in conical shells of Banach

spaces. Then we study stability properties of steady states for the

special case of a separable growth rate using results from the theory
of positive operators on Banach lattices.

1. Introduction

Classic population models often assume that individuals experience
scramble competition. This means that all individuals in the population
have equal chances in the competition for resources such as food, light,
space etc., see e.g. [9, 18, 23, 24, 27]. In many species, however, competi-
tion for resources that determine individual mortality and fertility is based
on some hierarchy in the population which is related to individuals size or
to any other variable that characterizes physiological structure. Significant
amount of interest has been paid to understand the dynamics of popula-
tions that exhibit contest competition. Structured population models are a
useful tool to study intra-specific contest competition. Both (time-)discrete
(see e.g. [20, 21]) and continuous (see e.g. [1, 2, 6, 7, 8, 14, 15]) models have
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been formulated and analysed to this end. Most of the nonlinear models
in the literature incorporate environmental feedback through some form of
density dependence in the vital rates. Our goal in this paper is to carry
out a qualitative analysis of a continuous model which incorporates quite
general nonlinearities.

We study the following quasilinear partial integro-differential equation

∂

∂t
p(s, t) +

∂

∂s
(γ(s, P (t))p(s, t)) = −µ(s,E(s, p))p(s, t)

+
∫ m

0

β(s, y, E(y, p))p(y, t) dy, (1.1)

γ(0, P (t))p(0, t) = 0, (1.2)

E(s, p) = α

∫ s

0

w(r)p(r, t) dr +
∫ m

s

w(r)p(r, t) dr, (1.3)

P (t) =
∫ m

0

κ(s)p(s, t) ds, (1.4)

with the initial condition

p(s, 0) = p0(s).

This model describes the long term dynamics of a population of a suffi-
ciently large size living in a closed habitat. The function p = p(s, t) denotes
the density of individuals of size (or other developmental stage) s at time t.
It is assumed that individuals may have different sizes at birth and there-
fore β(s, y, · ) denotes the rate at which individuals of size y “produce”
individuals of size s. Hence the non-local integral term in Equation (1.1)
represents the recruitment of individuals into the population. γ denotes the
size-specific growth rate, while µ stands for the mortality rate. We assume
that individual growth is also regulated by a weighted population size P ,
for example due to competition. Mortality however, depends on the size-
specific environment E, for example due to cannibalism. The parameter
α is related to the strength of the hierarchy in the population. We note
that if α = 1 our model reduces to the scramble competition model that in
the special case κ ≡ w ≡ 1 was considered in [12]. We make the following
general assumptions on the model ingredients

µ ∈ C1([0,m]× [0,∞)), β ∈ C1([0,m]× [0,m]× [0,∞)),

γ ∈ C2([0,m]× [0,∞)), w, κ ∈ L∞(0,m),
β, α, w, µ ≥ 0, γ, κ > 0.

(1.5)
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Notice that we make no requirement that β(s, y, E(y, p)) = 0 if y < s
although this seems natural from a biological point of view. In the remark-
able paper [7], Calsina and Saldaña studied well-posedness of a very general
size-structured model with distributed states at birth. They established
global existence and uniqueness of solutions using results from the theory
of nonlinear evolution equations. Model (1.1)-(1.4) is a special case of the
general model treated in [7], however, in [7] qualitative questions were not
addressed. In contrast to [7], our paper focuses on the existence and local
asymptotic stability of equilibrium solutions of system (1.1)-(1.4) with par-
ticular regards to the effects of the distributed states at birth (previously
we addressed simpler models without hierarchical structure in [12, 14, 15]).
Earlier, in [19] Henson and Cushing studied continuous age-structured hier-
archical models. They compared models with scramble versus contest com-
petition for a limited resource. In particular the equilibrium levels for the
two modes of competition were analyzed. Crucially however, the models in
[19] incorporate vital rates that do not depend explicitly on the structuring
variable.

In Section 2, we will establish conditions for the existence of positive
steady states of our model. The question of the existence of non-trivial
steady states is difficult mainly for two reasons. Firstly, due to hierarchy in
the population related to individual size, individual mortality and fertility
depend on the size specific environment E. This environmental feedback
yields an infinite dimensional nonlinearity in the model equations, in con-
trast to Gurtin-MacCamy type models [18], where the vital rates depend
on a weighted total population size, or on a finite number of such variables.
Secondly, as individuals may be recruited into the population at all possible
sizes, a recruitment operator of infinite rank arises. This means that the
steady state equation cannot be solved explicitly. In [12] we overcame this
issue for a simpler model where the model ingredients only depended on the
total population size by using results from the spectral theory of positive
operators. Unfortunately this approach cannot be extended to the model
considered here. Therefore we devise a different approach, based on fixed
point results for nonlinear maps in conical shells of a Banach space, see
[4, 10]. This approach was used before to treat age-structured models (also
with diffusion), see [24, 26], where every individual enters the population at
a single state, namely at age zero. The method is based on the construction
of an appropriate nonlinear map that requires the implicit solution of the
steady state equation. However, the solution of the steady state equation of
our model is not available. Therefore we need to construct an appropriate
sequence of recruitment processes of finite rank for which we can solve the
corresponding steady state problems. Then we show that the steady states
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constructed from the fixed points of the sequence of the nonlinear maps,
have actually a convergent subsequence and we show that the limit point is
actually a steady state of the original problem (1.1)-(1.4).

In Section 3 we focus on the asymptotic behavior of the model. A positive
quasicontraction semigroup describes the evolution of solutions of the sys-
tem linearized at an equilibrium solution. We establish a regularity property
of the governing linear semigroup in Proposition 3.7 that allows in principle
to address stability questions of positive equilibrium solutions of (1.1)-(1.4).
However, even the point spectrum of the linearized semigroup generator
cannot be characterized explicitly via zeros of an associated characteristic
function. This is because the eigenvalue equation cannot be solved explic-
itly due to the infinite dimensional nonlinearity in the original model and
the very general recruitment process. We will overcome this issue by using
compact positive perturbations of the semigroup generator and rank one
perturbations of the general recruitment term. This allows us to arrive at
stability/instability conditions for the steady states of our model.

2. Existence of positive equilibrium solutions

In this section we will discuss the existence of steady states of model
(1.1)-(1.4). We define the nonlinear operator

Ψ : W 1,1(0,m) → L1(0,m)

by

Ψ(q) =
∂

∂s
(γ(s,Q)q(s)) + µ(s,E(s, q))q(s)−

∫ m

0

β(s, y, E(y, q))q(y) dy,

(2.6)
where

Q =
∫ m

0

κ(s)q(s) ds.

It is clear that p∗ ∈ W 1,1(0,m) is a steady state of (1.1)-(1.4) if and only if
Ψ(p∗) = 0 and p∗(0) = 0.

Our aim here is to apply a fixed point result, see e.g. Theorem 12.3 in
[4] or Theorem A in [24]. Its proof uses the Leray-Schauder degree theory
for compact perturbations of the identity in infinite dimensional Banach
spaces.

Theorem 2.1. Let (X , || · ||X ) be a Banach space, K ⊂ X a closed convex
cone and Kr = K∩Br(0), where Br(0) denotes the ball of radius r centered
at the origin. Let Φ : Kr → K continuous such that Φ(Kr) is relatively
compact. Assume that

(1) Φx 6= λx for all ||x||X = r, λ > 1.
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(2) There exists a ρ ∈ (0, r) and k ∈ K \ {0} such that

x− Φx 6= λk for all ||x||X = ρ, λ > 0.

Then Φ has at least one fixed point x∗ in the shell

Sρ,r = {x ∈ K : ρ ≤ ||x||X ≤ r}.

2.1. The case of a separable fertility function. First we show in Theo-
rem 2.2 that for a finite rank fertility process the problem admits a positive
steady state under biologically meaningful conditions on the model ingredi-
ents. Later we treat the general case in Theorem 2.3.

Theorem 2.2. Assume that

β(s, y, E(y)) =
l∑

j=1

βj(s)β̄j(y, E(y)) (2.7)

with continuous functions β, β̄ and there exists a j ∈ {1, ..., l} such that∫ m

0

β̄j(s, 0)Fj(s,0, 0) ds > 1, (2.8)

where 0 is the zero function and

Fj(s,E(s), P ) =
∫ s

0

exp
{
−
∫ s

x

µ(r, E(r)) + γs(r, P )
γ(r, P )

dr

}
βj(x)

γ(x, P )
dx.

Let F be a bounded and measurable function that satisfies

F (s,H(s), P ) ≥ Fj(s,H(s), P )

for all j, s ∈ [0,m], H ∈ L1
+(0,m) and P > 0, and c be a constant such that

κ(s) ≥ c
l∑

k=1

β̄k(s,H(s)). (2.9)

Suppose that there exists an R > 0 such that for all (H,P ) ∈ L1
+(0,m)×R+

with ||H||L1 + P > R we have∫ m

0

κ(s)F (s,H(s), P ) ds ≤ c. (2.10)

Then the model (1.1)-(1.4) admits a positive steady state p∗.

Proof.
Let X = L1(0,m)⊕ l1 with norm || · ||X = || · ||L1+|| · ||l1 . We will use the

notation x = (H,P), where H ∈ L1(0,m) and P ∈ l1 or x = (H,P 0,P′)
where P 0 is just the first component of P and P′ = (P 1, P 2, . . . ). We
consider elements of Rn to be in l1 by the trivial embedding. We denote
by K =

(
L1(0,m)⊕ l1

)
+

the positive cone of X which is closed and convex
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and denote Kr = K ∩ Br(0), where r has yet to be chosen. Without loss
of generality we may assume that the indices have been assigned such that
condition (2.8) holds for j = 1.

We note that for a fertility function β of the form (2.7) the non-trivial
time independent solution of model (1.1)-(1.4) can be found (if it exists) as

p∗(s) =
l∑

j=1

P j
∗Fj(s,E∗(s), P 0

∗ ), (2.11)

where

P j
∗ =

∫ m

0

β̄j(s,E∗(s))p∗(s) ds, j ∈ {1, . . . , l},

E∗(s) = α

∫ s

0

w(r)p∗(r) dr +
∫ m

s

w(r)p∗(r) dr,

P 0
∗ =

∫ m

0

κ(s)p∗(s) ds.

(2.12)

We define a nonlinear map Φl : Kr → K by Φl =
(
Φl

1,Φ
l
2

)
, where

Φl
1(H,P)(s)

=
l∑

j=1

P j

(
α

∫ s

0

w(r)Fj(r, H(r), P 0) dr +
∫ m

s

w(r)Fj(r, H(r), P 0) dr

)
,

Φl
2(H,P) =

 l∑
j=1

P j

∫ m

0

κ(s)Fj(s,H(s), P 0) ds,

l∑
j=1

P j

∫ m

0

β̄1(s,H(s))Fj(s,H(s), P 0) ds, . . . ,

l∑
j=1

P j

∫ m

0

β̄l(s,H(s))Fj(s,H(s), P 0) ds, 0, . . .

 .

Although at this moment we consider only a single fertility function β
(namely the finite sum of separable functions from equation (2.7)), we use
the superscript notation Φl in anticipation of a sequence of such maps that
we shall employ in the proof of Theorem 2.3 below. Note that Φl

1(H,P) ≥ 0
and since

(Φl
1)
′(H,P)(s) =

l∑
j=1

P j(α− 1)w(s)Fj(s,H(s), P 0),
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also Φl
1(H,P) ∈ W 1,1(0,m). Likewise Φl

2(H,P) ≥ 0 and the nonzero entries
of Φl

2(H,P) are in Rl+1
+ . Thus Φ maps indeed into K and has a relatively

compact image. It can be seen that (E∗,P∗) ∈ Kr is a fixed point of the
nonlinear map Φl if and only if the function p∗ defined via equations (2.11)-
(2.12) is a steady state of problem (1.1)-(1.4).

Assume now that for (H,P 0,P′) ∈ Kr such that

||(H,P 0,P′)||X = ||H||L1 + P 0 + ||P′||l1 = r

and for some λ > 1 we have

Φl(H,P 0,P′) = λ(H,P 0,P′),

that is
Φl

1(H,P 0,P′) = λH, Φl
2(H,P 0,P′) = λ(P 0,P′). (2.13)

The second equation in (2.13) can be written as

λP 0 =
l∑

j=1

P j

∫ m

0

κ(s)Fj(s,H(s), P 0) ds, (2.14)

λP 1 =
l∑

j=1

P j

∫ m

0

β̄1(s,H(s))Fj(s,H(s), P 0) ds, (2.15)

. . .

λP l =
l∑

j=1

P j

∫ m

0

β̄l(s,H(s))Fj(s,H(s), P 0) ds. (2.16)

It follows from equations (2.13)-(2.16) that we may assume that P j 6= 0 for
j = 0, 1, 2, . . . , l.

From equations (2.15)-(2.16) we obtain

λ||P′||l1 =
l∑

k=1

l∑
j=1

P j

∫ m

0

β̄k(s,H(s))Fj(s,H(s), P 0) ds. (2.17)

Combining equations (2.14) and (2.17) we obtain

||P′||l1 = P 0


l∑

j=1

Pj

∫ m

0

l∑
k=1

β̄k(s,H(s))Fj(s,H(s), P 0) ds

l∑
j=1

Pj

∫ m

0

κ(s)Fj(s,H(s), P 0) ds

 .

This, combined with inequality (2.9) implies that

c ||P′||l1 ≤ P 0. (2.18)
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However, by choosing r = ||H||L1 + P 0 + ||P′||l1 ≥ ||H||L1 + P 0 > R
sufficiently large and using condition (2.10), we have from equation (2.14)

P 0 <
l∑

j=1

P j

∫ m

0

κ(s)Fj(s,H(s), P 0) ds

≤ ||P′||l1
∫ m

0

κ(s)F (s,H(s), P 0) ds ≤ c||P′||l1 ≤ P 0,

a contradiction. Thus condition (1) of Theorem 2.1 is established.
Let us now define k = (0, (1, . . . , 1, 0, . . . )) ∈ K \ {0} with l + 1 entries

1 and assume that for some λ > 0 and ρ > 0 we have for all (H,P) with
||(H,P)||X = ρ

(H,P)− Φl(H,P) = λ k,

that is
H − Φl

1(H,P) = 0, P− Φl
2(H,P) = (λ, . . . , λ).

The latter equation can be written as

(I−B(H,P 0)) ·P = (λ, . . . , λ), (2.19)

where the (l + 1)× (l + 1) matrix B has elements B00 = 0 and

Bii =
∫ m

0

β̄i(s,H(s))Fi(s,H(s), P 0) ds for i = 1, . . . , l.

It follows from condition (2.8) and the continuity of β̄1 and F1 that B11 > 1
for all ||(H,P 0)|| = ρ for some small enough value ρ > 0. This renders the
left hand side of (2.19) negative and yields a contradiction. Condition (2)
of Theorem 2.1 is established and the proof is now completed. �

2.2. General fertility function. Every fertility function β of the required
regularity C1 (in all its arguments, see (1.5)) can be written as a limit of
partial sums of separable functions

βl(s, y, E(y)) =
l∑

k=1

βl
k(s)β̄l

k(y, E(y)), (2.20)

with
lim
l→∞

||β( · , · , E( · ))− βl( · , · , E( · ))||L∞([0,m]2) = 0

for every E ∈ L1(0,m). Do we have this uniformly in E? This can be
achieved by partitioning the interval [0,m] into l subintervals by yl

k = k m
l ,

k = 0, . . . , l and setting

βl
k+1(s) = β(s, yl

k, E(yl
k)) and β̄l

k+1(y, E(y)) = χ[yl
k−1,yl

k](y)
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for k = 1, . . . , l where χ[yl
k−1,yl

k] denotes the indicator function of the respec-
tive interval. Then the partial sums converge in the supremum norm as the
number of subintervals increases to infinity and there is a uniform bound of
the derivatives in the s-direction

||βk||C1([0,m]) ≤ M (2.21)

for all k, uniformly for arbitrary E ∈ L1. The latter is because of the
boundedness of all derivatives of β.

Theorem 2.3. Assume that for fixed model ingredients µ, γ, β and κ there
exists a bounded and measurable function b that satisfies

b(s) ≥ β(s, y, E) for every s, y ∈ [0,m] and E ∈ L1
+(0,m) (2.22)

and there exists a R > 0 such that for ||H||L1 + P 0 > R we have∫ m

0

κ(s)Fb(s,H(s), P 0) ds ≤ c, (2.23)

where

Fb(s,H(s), P 0) =
∫ s

0

exp
{
−
∫ s

x

µ(r, H(r)) + γs(r, P 0)
γ(r, P 0)

dr

}
b(x)

γ(x, P 0)
dx,

and c satisfies
κ(s) ≥ c b(s), (2.24)

for every s ∈ [0,m]. Moreover assume that there exists a separable under-
estimator of the fertility,

0 ≤ β1(s)β̄1(y, E(y)) ≤ β(s, y, E(y)) (2.25)

for every s, y ∈ [0,m], E ∈ L1
+(0,m) such that β̄1 together with F1 satisfies∫ m

0

β̄1(s,0)F1(s,0, 0) ds > 1. (2.26)

Then model (1.1)-(1.4) admits a positive steady state p∗ ∈ W 1,1(0,m).

Proof. We begin by replacing β(s, y, E(y)) by

β(s, y, E(y))− β1(s)β̄1(y, E(y)) ≥ 0

from condition (2.25) and then decompose this remainder as indicated in
equation (2.20). We also note that the decomposition of the βl functions
in (2.20) can be achieved in the way that there is a common first term for
every l, i.e. we may write β1(s)β̄1(y, E(y)) = βl

1(s)β̄
l
1(y, E(y)) for every l.

This gives a sequence of finite rank approximations

βl(s, y, E(y)) = β1(s)β̄1(y, E(y)) +
l∑

k=2

βl
k(s)β̄l

k(y, E(y)).
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Thus, by Theorem 2.2, every Φl corresponding to a finite rank approximant
βl has a fixed point (El

∗,P
l
∗) in the common shell

Sρ,r = {x ∈ K : ρ ≤ ||x||X ≤ r}.

Indeed, due to the uniform bound from inequalities (2.22) and (2.23), the
outer radius r can be chosen uniformly. The common lower radius ρ can
be guaranteed since all approximants βl begin with a common first term
for which condition (2.8) from Theorem 2.2 holds. By the additional gain
in regularity due to Φl

1, we have that El
∗ ∈ W 1,1(0,m). By straightforward

calculation,

F ′j(s,E
l
∗(s),P

l
∗)

=
βj(s)

γ(s, P 0,l
∗ )

+
µ(s,El

∗(s)) + γs(s, P
0,l
∗ )

γ(s, P 0,l
∗ )∫ s

0

exp

{
−
∫ s

x

µ(r, El
∗(r)) + γs(r, P

0,l
∗ )

γ(r, P 0,l
∗ )

dr

}
βj(x)

γ(x, P 0,l
∗ )

dx,

=
βj(s)

γ(s, P 0,l
∗ )

+
µ(s,El

∗(s)) + γs(s, P
0,l
∗ )

γ(s, P 0,l
∗ )

Fj(s,El
∗(s),P

l
∗),

F ′′j (s,El
∗(s),P

l
∗)

=
β′j(s)γ(s, P 0,l

∗ )− βj(s)γs(s, P
0,l
∗ )

γ2(s, P 0,l
∗ )

+
γ(s, P 0,l

∗ )(µs(s,El
∗(s)) + µE(s,El

∗(s))(E
l
∗)
′(s) + γss(s, P

0,l
∗ ))− γs(s, P

0,l
∗ )(µ(s,El

∗(s)) + γs(s, P
0,l
∗ ))

γ2(s, P 0,l
∗ )

· Fj(s,El
∗(s),P

l
∗)

+
µ(s,El

∗(s)) + γs(s, P
0,l
∗ )

γ(s, P 0,l
∗ )

F ′j(s,E
l
∗(s),P

l
∗)

This shows that Fj( · , El
∗( · ),Pl

∗) ∈ W 2,1(0,m) for all l and j = 1, . . . , l,
and moreover, that this family is uniformly bounded. For every l the fixed
point yields a steady state of the approximate problem by

pl
∗(s) =

l∑
j=1

P j,l
∗ Fj(s,El

∗(s), P
0,l
∗ ).

Since pl
∗ is a linear combination of elements in W 2,1(0,m), it is itself in

W 2,1(0,m). The uniform bound on the derivatives in (2.21) implies that
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||pl
∗||W 2,1 =

∣∣∣∣pl
∗
∣∣∣∣

L1 +
∣∣∣∣∣∣∣∣d pl

∗
ds

∣∣∣∣∣∣∣∣
L1

+
∣∣∣∣∣∣∣∣d2 pl

∗
ds2

∣∣∣∣∣∣∣∣
L1

≤ M̃ for all l ∈ N.

This means that
{
pl
∗
}∞

l=1
is a bounded set in W 2,1(0,m) which is compactly

embedded in W 1,1(0,m) (see e.g. Theorem 6.2 in [3]). Therefore the se-
quence pl

∗ has a convergent subsequence, again denoted by pl
∗, with limit

point p∗ in W 1,1(0,m). This p∗ is the natural candidate for a positive steady
state of model (1.1)-(1.4). Next we show that

lim
l→∞

∣∣∣∣Ψ(pl
∗)
∣∣∣∣

L1 = 0,

where Ψ is the nonlinear operator defined in (2.6). Let Ψl denote the non-
linear operator corresponding to the partial sum fertility function βl. Then∣∣∣∣Ψ(pl

∗)−Ψl(pl
∗)
∣∣∣∣

L1

≤
∫ m

0

∣∣∣∣∫ m

0

[
β(s, y, El

∗(y))− βl(s, y, El
∗(y))

]
pl
∗(y) dy

∣∣∣∣ ds

≤
∫ m

0

∣∣∣∣[β(s, · , El
∗( · ))− βl(s, · , El

∗( · ))
]
pl
∗( · )

∣∣∣∣ ds

≤ ||pl
∗||L1

∫ m

0

∣∣∣∣β(s, · , El
∗( · ))− βl(s, · , El

∗( · ))
∣∣∣∣

L∞
ds

≤ K
∣∣∣∣β( · , · , El

∗( · ))− βl( · , · , El
∗( · ))

∣∣∣∣
L∞

,

for some positive constant K. Finally we have

||Ψ(p∗)||L1 =
∣∣∣∣∣∣∣∣Ψ( lim

l→∞
pl
∗

)∣∣∣∣∣∣∣∣
L1

=
∣∣∣∣∣∣∣∣ liml→∞

Ψ
(
pl
∗
)∣∣∣∣∣∣∣∣

L1

= lim
l→∞

∣∣∣∣Ψ (pl
∗
)∣∣∣∣

L1 = 0,

where the second equality follows from the continuity of the operator Ψ.
Thus p∗ is the desired steady state. �

Remark 2.4 We note that conditions (2.22)-(2.26) are natural and biolog-
ically relevant. They are similar to the ones obtained in [24] for the existence
of a positive steady state of a nonlinear age-structured model. For our model
the introduction of a net reproduction function (which will be an operator)
will be somewhat cumbersome and biologically less straightforward, see the
next section. However, it is still shown that conditions (2.22)-(2.26) require
that the growth rate of the population is larger than one close to the zero
steady state while the growth rate of the population is small (definitely less
than 1) for large population sizes.
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3. Asymptotic behavior

In this section we will investigate the asymptotic behavior of solutions.
Our approach is based on a formal linearization around a steady state so-
lution and on a careful spectral analysis of the linearized operator. More
precisely, our goal is to establish conditions which guarantee that the growth
bound ω0 of the linearized semigroup is negative, respectively positive. We
note however, that the Principle of Linearized Stability has so far only been
established for semilinear models, see e.g. [18, 24, 27], but not for general
quasilinear equations, such as the one we treat in this paper. Therefore,
for the remainder of the paper, we make the additional assumption of a
separable growth rate

γ(s, P ) = γ1(s)γ2(P ). (3.27)

This is plausible from the biological point of view, as the growth rate is
modulated by the total weighted population, equally for individuals of all
sizes. Then the quasilinear problem (1.1) can be written in the form

dp

dt
= g(p)Ap + F (p), p(0) = p0, (3.28)

where

g(p) := γ2(P ) = γ2

(∫ m

0

κ(s)p(s, t) ds

)
, Ap =

∂

∂s
(γ1p) ,

and the recruitment and mortality terms in equation (1.1) are incorporated
in the nonlinear operator F . Grabosch and Heijmans in [17] introduce the
transformation

τp(t) =
∫ t

0

g(p(s)) ds

and define
q(τ) = p(tp(τ)), for τ ≥ 0,

where tp is the inverse function of τp. It is then verified that the so defined
function q satisfies the semilinear equation

dq

dτ
= Aq(τ) + B(q(τ)), q(0) = p0, (3.29)

with the same initial value and nonlinear operator B(q) = F (q)/g(q). This
requires that g is a continuous, strictly positive and bounded function, as is
guaranteed by our assumptions (1.5). In [17], Grabosch and Heijmans show
that

(1) solutions of problems (3.28) and (3.29) are in one-to-one correspon-
dence with each other [17, Theorem 3.4],

(2) problems (3.28) and (3.29) have the same equilibrium solutions, and
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(3) an equilibrium solution of (3.28) is stable if and only if it is stable
for (3.29) [17, Theorem 5.1].

In what follows, we make the assumption (3.27), but keep the notation
γ(s, P ) to avoid unnecessarily complicated expressions. Partial derivatives
are denoted by γs, γP etc.

We will see later that the growth bound of linearized semigroup can be
completely characterized by the spectrum of its generator. However, as we
noted before, the main difficulty is that the eigenvalues of the linearized
semigroup generator and therefore the spectral bound cannot be characte-
rized directly via eigenvalues, in the general case.

3.1. Linearization around steady states. Given a stationary (time in-
dependent) solution p∗ of system (1.1)-(1.4), we introduce the perturbation
u = u(s, t) of p by making the ansatz p = u + p∗ and we substitute this
into equations (1.1)-(1.4). Then we are using Taylor series expansions of
the vital rates of the following form

f(x,E) = f(x, E∗) + fE(x,E∗)(E − E∗) + “higher order terms”,

to arrive at

ut(s, t) +
(
(γ(s, P∗) + γP (s, P∗)U(t)) (u(s, t) + p∗(s))

)
s

= −
(
µ(s,E(s, p∗)) + µE(s,E(s, p∗))E(s, u)

)
(u(s, t) + p∗(s))

+
∫ m

0

(
β(s, y, E(y, p∗)) + βE(s, y, E(y, p∗))E(y, u)

)
(u(y, t) + p∗(y)) dy,

(3.30)
where we have defined

U(t) =
∫ m

0

κ(s)u(s, t) ds.

Next we omit the nonlinear terms in equation (3.30) to arrive at the lin-
earized problem

ut(s, t) + γ(s, P∗)us(s, t) + γs(s, P∗)u(s, t) + γPs(s, P∗)p∗(s)U(t)

+ γP (s, P∗)p′∗(s)U(t)

= −µ(s,E(s, p∗))u(s, t)− µE(s,E(s, p∗))p∗(s)E(s, u)

+
∫ m

0

(
β(s, y, E(y, p∗))u(y, t) + βE(s, y, E(y, p∗))p∗(y)E(y, u)

)
dy,

(3.31)
with the boundary condition

γ(0, P∗)u(0, t) = 0. (3.32)
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Equations (3.31)–(3.32) are accompanied by the initial condition

u(s, 0) = u0(s). (3.33)

Next, we cast the linearized system (3.31)-(3.33) in the form of an abstract
Cauchy problem on the state space L1(0,m) as follows.

d

dt
u = (A+ B + C +D + F) u, u(s, 0) = u0(s),

where

Au =− γ(·, P∗) us with Dom(A) =
{
u ∈ W 1,1(0,m) |u(s = 0) = 0

}
,

(3.34)

Bu =− (γs(·, P∗) + µ(·, E(·, p∗)))u, (3.35)

Cu =− (γPs(·, P∗)p∗(·) + γP (·, P∗)p′∗(·))
∫ m

0

κ(y)u(y) dy

=− ρ∗(·)
∫ m

0

κ(y)u(y) dy, (3.36)

Du =− µE(·, E(·, p∗))p∗(·)E(·, u), (3.37)

Fu =
∫ m

0

β(·, y, E(y, p∗))u(y) dy +
∫ m

0

βE(·, y, E(y, p∗))p∗(y)E(y, u) dy.

(3.38)

Proposition 3.5. The operator A+ B + C +D + F generates a strongly
continuous quasicontractive semigroup {T (t)}t≥0 of bounded linear opera-
tors on L1(0,m), which is positive if the operator C +D + F is positive.

We omit the proof of the above proposition as it can be established
following similar results in [12, 14, 15, 16].

3.2. Stability results for positive equilibria. In this section we estab-
lish linear stability/instability results for a general steady state p∗. We will
treat the extinction steady state in the next subsection in detail. The main
difficulty is that, in general, the point spectrum of the semigroup generator
cannot be characterized via zeros of an associated characteristic function.
We will overcome this problem by using positive perturbation arguments.

Theorem 3.6. Assume that∫ m

0

κ(s)
∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x,E(x, p∗))
γ(x, P∗)

dx

}
ρ∗(y)

γ(y, P∗)
dy ds < −1.

(3.39)
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Furthermore assume that

ρ∗(s) ≤ 0, s ∈ [0,m] and ∃ ε > 0 such that ρ∗(s) 6= 0 for a.e. s ∈ [0, ε],
(3.40)

µE(s,E(s, p∗)) ≤ 0, βE(s, y, E(y, p∗)) ≥ 0, y, s ∈ [0,m]. (3.41)

Then the steady state p∗ of model (1.1)-(1.4) is linearly unstable.

Proof. First we note that A+ B + C generates a positive, irreducible and
eventually compact semigroup if conditions (3.40) hold true. Eventual com-
pactness is easily shown, see Proposition 3.7. To establish irreducibility we
consider the resolvent equation

R(λ,A+ B + C)h = u, h ∈ X+.

The solution is obtained as:

u(s) =
∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x,E(x, p∗)) + λ

γ(x, P∗)
dx

}
h(y)

γ(y, P∗)
dy

− U

∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x,E(x, p∗)) + λ

γ(x, P∗)
dx

}
ρ∗(y)

γ(y, P∗)
dy,

(3.42)

where

U =
∫ m

0

κ(s)u(s) ds

=

∫m

0
κ(s)

∫ s

0
exp

{
−
∫ s

y
γs(x,P∗)+µ(x,E(x,p∗))+λ

γ(x,P∗)
dx
}

h(y)
γ(y,P∗)

dy ds

1 +
∫m

0
κ(s)

∫ s

0
exp

{
−
∫ s

y
γs(x,P∗)+µ(x,E(x,p∗))+λ

γ(x,P∗)
dx
}

ρ∗(y)
γ(y,P∗)

dy ds
.

(3.43)

The second equality is obtained from (3.42) by multiplying by κ and inte-
grating from 0 to m. Hence for λ large enough U > 0 and u � 0 follows
from condition (3.40). The irreducibility and eventual compactness of the
semigroup imply that the spectrum σ(A+ B + C) is not empty, see e.g. Th.
3.7 in Sect. C-III in [5], hence the spectrum σ(A+ B + C) contains at least
one eigenvalue. Next we find the solution of the eigenvalue equation

(A+ B + C)u = λu

as

u(s) = −U

∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x, E(x, p∗)) + λ

γ(x, P∗)
dx

}
ρ∗(y)

γ(y, P∗)
dy.

(3.44)
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Next we multiply the solution (3.44) by κ and integrate over [0,m] to obtain

U = −U

∫ m

0

κ(s)∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x,E(x, p∗)) + λ

γ(x, P∗)
dx

}
ρ∗(y)

γ(y, P∗)
dy ds.

We note that, if U = 0 then equation (3.44) shows that u(s) ≡ 0, hence
we have a non-trivial eigenvector if and only if U 6= 0 and λ satisfies the
following characteristic equation

1 = K(λ) def=∫ m

0

κ(s)

×
∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x,E(x, p∗)) + λ

γ(x, P∗)
dx

}
ρ∗(y)

γ(y, P∗)
dy ds.

(3.45)
It is easily shown that

lim
λ→+∞

K(λ) = 0,

therefore it follows from the assumption K(0) > 1 (3.39), on the grounds of
the Intermediate Value Theorem, that equation (3.45) has a positive (real)
solution. Hence we have

0 < s(A+ B + C),

where s(A+ B + C) stands for the spectral bound of the operatorA+ B + C.
The operators D and F are positive if conditions (3.41) hold true. We have
for the spectral bound (see e.g. Corollary VI.1.11 in [11])

0 < s(A+ B + C) ≤ s(A+ B + C +D + F)

Since the growth bound of the semigroup is bounded below by the spectral
bound of its generator, the proof is completed. �

We note that the instability conditions (3.41) imply that mortality is a
non-increasing function of the environment and fertility is a non-decreasing
function of the environment.

Next we establish conditions which guarantee that the equilibrium so-
lution p∗ is linearly asymptotically stable. To this end we establish first
that the spectrum of the semigroup generator A+ B + C +D + F consists
of eigenvalues only and that the spectral mapping theorem holds true. Then
the growth bound of the semigroup equals the spectral bound of its gene-
rator. These follow however from the following result (see e.g. Corollary
IV.3.12 in [11]).



STEADY STATES IN HIERARCHICAL POPULATIONS 17

Proposition 3.7. The semigroup {T (t)}t≥0 generated by the operator
A+ B + C +D + F is eventually compact.

Proof. We only sketch the proof here since analogous results for simpler
problems can be found in [12, 14, 15, 16]. Due to the zero flux bound-
ary condition and the finite maximal size, the operator A+ B generates a
nilpotent semigroup. The biological interpretation is that in the absence of
recruitment the population dies out independently of the initial condition.
C is a bounded linear operator of rank one, hence it is compact. It only re-
mains to establish that the bounded linear integral operators D and F are
compact. These however, can be deduced using the Fréchet-Kolmogorov
compactness criterion (see e.g. Chapter X in [28]) from the regularity as-
sumptions we made on the model ingredients, see the proof of Theorem 12
in [12] for more details. �

The previous result guarantees that stability is determined by the lead-
ing eigenvalue of the semigroup generator A+ B + C +D + F , unless the
spectrum is empty. In that case one further needs to establish positivity of
the semigroup which guarantees that the growth bound coincides with the
spectral bound, which by definition equals minus infinity. However, as we
noted before, the eigenvalue equation

(A+ B + C +D + F − λI) u = 0, u(s = 0) = 0,

cannot be solved explicitly. This is due to the infinite dimensional nonline-
arity in the original problem and to the very general recruitment term.

Compact perturbations do not change the essential spectrum of the semi-
group generator. Therefore our approach to establish stability is to find a
positive compact perturbation of the generator for which we can charac-
terize the point spectrum via zeros of an associated characteristic function.
To this end, for a separable fertility function β, we introduce the following
operators on L1(0,m),

Du = −µE(·, E(·, p∗))p∗(·)
∫ m

0

w(r)u(r) dr,

F2u = β1(·)
∫ m

0

β2E
(y, E(y, p∗))p∗(y) dy

∫ m

0

w(r)u(r) dr.

Theorem 3.8. Assume that there exists a function

β̃(s, y, E(y, p∗)) = β1(s)β2(y, E(y, p∗))

such that

β(s, y, E(y, p∗)) ≤ β̃(s, y, E(y, p∗)), s, y ∈ [0,m]. (3.46)
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Furthermore assume that the following conditions hold true

µE(s,E(s, p∗)) ≤ 0, β̃E(s, y, E(y, p∗))) ≥ 0, s, y ∈ [0,m], (3.47)

γPs(s, P∗)p∗(s) + γP (s, P∗)p′∗(s) ≤ 0, s ∈ [0,m], (3.48)

and the characteristic function Kβ̃(λ) given by equation (3.54) correspond-

ing to β̃ and to the modified operators D and F2 does not have a zero with
non-negative real part. Then the stationary solution p∗ is linearly asymp-
totically stable.

Proof. We obtain the solution of the eigenvalue equation(
A+ B + C +D + F1 + F2 − λI

)
u = 0, (3.49)

as

u(s) =U1

∫ s

0

fλ
0 (s, y)f1(y) dy

+ U2

∫ s

0

fλ
0 (s, y)f2(y) dy + U3

∫ s

0

fλ
0 (s, y)f3(y) dy,

(3.50)

where

U1 =
∫ m

0

κ(s)u(s) ds, U2 =
∫ m

0

w(s)u(s) ds,

U3 =
∫ m

0

β2(s,E(s, p∗))u(s) ds,

fλ
0 (s, y) = exp

{
−
∫ s

y

γs(x, P∗) + µ(x, E(x, p∗)) + λ

γ(x, P∗)
dx

}
,

f1(y) =
−γPs(y, P∗)p∗(y)− γP (y, P∗)p′∗(y)

γ(y, P∗)
, f3(y) =

β1(y)
γ(y, P∗)

,

f2(y) =
β1(y)

∫m

0
β2(x,E(x, p∗))p∗(x) dx− µE(y, E(y, p∗))p∗(y)

γ(y, P∗)
.

We multiply equation (3.50) by κ, w and by β2 and integrate from 0 to m,
respectively to obtain

U1(1 + a11(λ)) + U2a12(λ) + U3a33(λ) = 0, (3.51)

U1a21(λ) + U2(a22(λ) + 1) + U3a23(λ) = 0, (3.52)

U1a31(λ) + U2a32(λ) + U3(a33(λ) + 1) = 0, (3.53)
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where for i = 1, 2, 3,

a1i(λ) =
∫ m

0

κ(s)
∫ s

0

fλ
0 (s, y)fi(y) dy ds,

a2i(λ) =
∫ m

0

w(s)
∫ s

0

fλ
0 (s, y)fi(y) dy ds,

a3i(λ) =
∫ m

0

β2(s,E(s, p∗))
∫ s

0

fλ
0 (s, y)fi(y) dy ds.

If λ ∈ σ(A+ B + C+D+F1+F2) then the eigenvalue equation (3.49) admits
a non-trivial solution u hence there exists a non-zero vector (U1, U2, U3)
which solves equations (3.51)-(3.53). To the contrary, if (U1, U2, U3) is a
non-zero solution of equations (3.51)-(3.53) for some λ ∈ C then (3.50)
yields a non-trivial solution u. This is because the only scenario for u to
vanish would yield

−U1

∫ s

0

fλ
0 (s, y)f1(y) dy = U2

∫ s

0

fλ
0 (s, y)f2(y) dy

+ U3

∫ s

0

fλ
0 (s, y)f3(y) dy,

for every s ∈ [0,m]. This however, together with conditions (3.47)-(3.48)
would yield U1 = U2 = U3 = 0, a contradiction. Thus λ ∈ C is an eigenvalue
ofA+ B + C+D+F1+F2 if and only if it satisfies the characteristic equation

Kβ̃ (λ) def= det

 1 + a11(λ) a12(λ) a13(λ)
a21(λ) 1 + a22(λ) a23(λ)
a31(λ) a32(λ) 1 + a33(λ)

 = 0. (3.54)

Next we observe that conditions (3.47)-(3.48) guarantee that both C, D and
F are positive operators. Therefore we conclude that A+ B + C +D + F
is a generator of a positive semigroup. Moreover, the operators (D − D),

(F β̃
1 −F

β
1 ) and (F β̃

2 −F
β
2 ) are all positive and bounded. We have

s(A+ B + C +D + F) = s
(
A+ B + C +D + Fβ

1 + Fβ
2

)
≤ s

(
A+ B + C +D + Fβ

1 + Fβ
2 +D −D + F β̃

1 −F
β
1 + F β̃

2 −F
β
2

)
= s

(
A+ B + C +D + F β̃

1 + F β̃

2

)
< 0,

and the proof is completed. �

Example 3.9 The crucial assumption of the previous theorem is that the
characteristic function Kβ̃ does not have a root with non-negative real part.
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Here we only present an example when this condition may be easily verified.
In particular, let us assume that

κ ≡ c1, w ≡ c2, β2 ≡ c3

for some constants c1, c2, c3 > 0. In this special case the characteristic
equation Kβ̃(λ) = 0 takes the simple form

1 =
∫ m

0

∫ s

0

fλ
0 (s, y)

(
c1f1(y) + c2f2(y) + c3f3(y)

)
dy ds.

Therefore there exists a unique dominant real eigenvalue, which is negative,
if ∫ m

0

∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x, E(x, p∗))
γ(x, P∗)

dx

}
×

(
β1(y)

(
c3 + c2

∫m

0
β2(s,E(s, p∗))p∗(s) ds

)
γ(y, P∗)

−c2µE(y, E(y, p∗)) + c1γPs(y, P∗)p∗(y) + c1γP (y, P∗)
γ(y, P∗)

)
dy ds

< 1.

The latter condition may be easily verified for fixed model ingredients.

3.3. The extinction equilibrium. In this subsection we establish a sim-
ple criterion for the stability/instability of the trivial steady state p∗ ≡ 0.
The stability of the trivial steady state is important from the biological
point of view, as it can answer the question for example if a species can be
introduced successfully into (or can invade) a new habitat. In case of the
trivial steady state the eigenvalue problem can be written as

(A+ B + Fβ − λI) u = 0, u(s = 0) = 0, (3.55)

where λ ∈ C, the operators A and B are defined via (3.34)-(3.35) with
p∗ ≡ 0 (and P∗ = 0) and

Fβu =
∫ m

0

β( · , y,0)u(y) dy.

We recall that in case of simpler scramble competition models the so called
net reproduction function played a crucial role in the stability analysis of
equilibrium solutions, see e.g. [13]. In particular, we managed to relate our
stability results to a biologically meaningful model ingredient, namely the
net reproduction rate. In case of hierarchical contest competition models
this is less straightforward as we have seen. Nevertheless at least for a
separable fertility function

β(s, y, E(y, ·)) = β1(s)β2(y, E(y, ·)),
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we may define a net reproduction functional

R : L1
+(0,m) → R

of the standing population p as

R(p)

=
∫ m

0

∫ s

0

exp
{
−
∫ s

y

γs(x, P ) + µ(x,E(x, p))
γ(x, P )

dx

}
β1(y)β2(s,E(s, p))

γ(y, P )
dy ds,

=
∫ m

0

β2(s,E(s, p))
γ(s, P )

∫ s

0

β1(y) exp
{
−
∫ s

y

µ(x, E(x, p))
γ(x, P )

dx

}
dy ds,

where P is the weighted population according to (1.4). The value of the
functional R is the expected number of offspring to be produced by an
individual in her lifetime. Individuals of size y are produced at a rate β1

and need to survive from size y to size s to reproduce. We also note that
R(p∗) = 1 is a necessary condition for the existence of a positive steady
state p∗ of our model. It is however not a sufficient condition in contrast to
scramble competition models, i.e. when density dependence is incorporated
via finite dimensional nonlinearities in the vital rates.

Proposition 3.10. Assume that there exists a function βl such that

βl(s, y) = βl
1(s)β

l
2(y) ≤ β(s, y,0)

and Rβl(0) > 1 (where Rβl stands for the net reproduction functional corre-
sponding to the fertility function βl). Then the trivial steady state is linearly
unstable. On the other hand if there exists a function βu with

βu(s, y) = βu
1 (s)βu

2 (y) ≥ β(s, y,0)

and Rβu(0) < 1, then the trivial steady state is linearly stable.

Proof. The eigenvalue equation (3.55) has a nontrivial solution if and only
if λ satisfies the characteristic equation

1 = Kl(λ) def=∫ m

0

βl
2(s)

×
∫ s

0

exp
{
−
∫ s

y

γs(x, P∗) + µ(x, E(x, p∗)) + λ

γ(x, P∗)
dx

}
βl

1(y)
γ(y, P∗)

dy ds.

(3.56)
It can be shown that lim

λ→+∞
Kl(λ) = 0. Therefore, if Rβl(0) > 1 holds true,

then the characteristic equation (3.56) admits a positive solution λ. Since
A+ B + Fβl generates a positive semigroup, and the operator Fβ − Fβl is
positive we have 0 < s(A+ B + Fβl) ≤ s(A+ B + Fβ) and the instability
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part follows. Similarly, if Rβu(0) < 1 holds true, then the characteristic
equation 1 = Ku(λ) does not have a solution with non-negative real part.
Therefore on the grounds of Proposition 3.7. we have

s(A+ B + Fβ + Fβu −Fβ) ≤ s(A+ B + Fβu) < 0,

and the stability part follows. �

4. Concluding remarks

Hierarchical structured population models are important from the appli-
cation point of view as they describe the evolution of populations in which
individuals are experiencing size-specific environment. This is the case for
example in a tree population or in a cannibalistic population. They pose a
greater mathematical challenge though than scramble competition models.
In the recent papers [14, 15] we started to investigate the asymptotic behav-
ior of hierarchical structured partial differential equation models with one
state at birth. Nevertheless, the question of the existence of positive equi-
librium solutions for hierarchical models remained an open question up to
our knowledge. In this work we formulated biologically relevant conditions
for the existence of positive steady states of a very general model.

In the second part we focused on the stability of equilibria. As we have
also seen earlier in [14, 15], the main difficulty to establish easily verifi-
able stability/instability conditions for positive steady states of hierarchical
structured population models is that the point spectrum of the semigroup
generator cannot be characterized explicitly via zeros of an associated char-
acteristic function. In [14, 15] we devised a dissipativity calculation to show
that the linearized semigroup has negative growth bound, and therefore
the steady state is stable. The stability conditions we obtained in that way,
though, were extremely restrictive. Therefore in this work we devised a new
approach to establish stability by using results from the theory of compact
and positive operators.

The separability assumption made in (3.27) is only required for the result
of Grabosch and Heijmans [17] to be applicable, and not to prove any of the
results concerning the linearized semigroup T (t). A Principle of Linearized
Stability for fully nonlinear (quasilinear) hyperbolic equations remains a
problem for future investigations. We also refer [22, 25, 27] for related
results. This needs a bit polishing.
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