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Abstract

In this thesis we explore the possibility of creating continuous-
variable quantum systems that are capable of supporting universal
quantum computation. We begin by examining the measurement-based
model, which employs sequences of measurements on highly entangled
resource states, known as a cluster states. We suggest a method for
the construction of Gaussian cluster states based on ensembles of atoms
and quantum non-demolition interactions. We then go on to expand
our model to allow for the inclusion of light modes as part of the clus-
ter. This yields a new class of states, the composite cluster states.
This leads us to propose a new architecture for the measurement-based
model that uses these composite clusters to increase resource efficiency
and reduce computational errors.

The second part of this thesis concerns topological quantum com-
putation. In states exhibiting topological degrees of freedom, quantum
information can be stored as a non-local property of the physical sys-
tem and manipulated by braiding quasiparticles known as anyons. Here
we show how these ideas can be extended to continuous variables. We
establish a continuous variable analogue of the Kitaev toric code, show
that excitations correspond to continuous versions of Abelian anyons
and investigate their behaviour under the condition of finite squeezing
of the resource state.

Finally, we expand our continuous variable topological model to
include non-abelian excitations by constructing superpositions of CV
toric code anyons. We derive the fusion and braiding behaviour of
these non-abelian excitations and find that they correspond to a CV
analog of Ising anyons. Using these resources, we go on to suggest
a computational scheme that encodes qubits within the fusion spaces
of the CV Ising anyons and derive one- and two-qubit quantum gates
operations that are implemented in a topological manner.
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Chapter 1

Introduction

Undoubtedly one the greatest innovations of the 20th century was the es-
tablishment of information theory and the subsequent development of the
computer. This breakthrough has changed every facet of our day to day lives,
everything from near instantaneous world wide communication to accurate
simulation of complex phenomena. However, it is well known that computa-
tion in its present form is rapidly approaching a fundamental limit, known
as Moore’s law, which predicts that number of transistors on an integrated
circuit will double every eighteen months. As new state of the art technolo-
gies are developed transistors are fast approaching a sufficiently small scale
that quantum effects will interfere with their operation. However, ever the
optimists, physicists, instead of seeing this as a major hurdle to progress,
have seized on these potential issues and turned them to an advantage.
This has led to the development of Quantum Computation (QC). Originally
pioneered in the 1980s by Richard Feynmann [1] and David Deutsch [2]
quantum computation has advanced rapidly along two main paths, which
on casual inspection appear to have quite different objectives.

The first attempts to include quantum effects into computation by gener-
alizing the Church Turing principle - the central idea in classical information
science. This has led to the advent of a new field, quantum information the-
ory, which as one of its primary aims, seeks to understand the effect of quan-
tum mechanics on computation and the information processing capacity of
quantum states [3]. As this field has advanced, it has led to many develop-
ments in our understanding of fundamental physics, generalizing concepts
such as Shannon entropy and recently has led to the investigation of new
classes of non-classical correlations [4, 5, 6]. The study of quantum informa-
tion can be split further into two sub fields corresponding to systems that
exhibit either discrete or continuous spectra. Discrete quantum information
has been the basis for most of the fundamental advances in quantum com-
putation as it provides a direct generalization of classical binary information
theory to the quantum setting. However, discrete systems are not always
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the most natural way to visualize quantum phenomena, particularly those
which are continuously parameterized such as the position and momentum
of a massive particle or the orthogonal components of macroscopic atomic
spin [7]. These continuous variable (CV) systems are described by canonical
conjugated coordinates x and p which are spanned by an infinite dimensional
Hilbert spaces and thus contain a much richer mathematical structure than
their discrete counterparts. The study of quantum information in these CV
systems has recently emerged in parallel with the more traditional discrete
systems though the two regimes are conceptually quite different. This has
led to the development of protocols that make use of CV states to perform
certain quantum tasks such as quantum teleportation [9, 10], quantum cryp-
tography [11, 12] and importantly for this thesis, a CV version of quantum
computation [13].

The second course in the study of quantum computation is based on
the potential for simulating quantum mechanical systems for the purpose
of studying fundamental physics. The simulation of quantum systems is
generally computationally intractable for classical computers when consid-
ering any system with a large number of degrees of freedom. This has led
to a branch of study that focuses on finding suitable physical systems that
would support universal quantum computation. That is, we want to find or
construct systems that will allow us to store a quantum state, apply arbi-
trary unitary operations and read out the result of our manipulations via a
measurement. The traditional picture of a quantum computer is provided
by the quantum circuit model. In this model input states are loaded into
the physical system, processed by a sequence of quantum gates that enact
the required unitary operation and finally the outcomes are measured and
displayed when the computation is completed. There are many potential
candidates that could support quantum computation, ranging from optical
systems [14, 15, 16, 19] to NMR [17, 79] and in particular, condensed matter
systems such as superconducting systems [20] or quantum dots [21]. While
in principle each of these systems would be capable of supporting univer-
sal computation, it is yet unclear which will provide the best way forward
for an experimental realization of a fully scalable quantum computer. This
uncertainty has arisen due to the extremely high demands we must make
on the candidate states. Not only do these states have to provide sufficient,
stable resources to produce large-scale computers, they must also have the
ability to protect the information stored within them from errors. The main
cause of error in discrete variable computation is known as decoherence. De-
coherence prevents us from observing quantum phenomena at large scales,
however, since a quantum computer relies on such quantum phenomena for
its operation, we must find methods to shield any quantum information
stored within the systems from these effects. In principle, we could just to-
tally isolate the quantum computer from its environment, however this can
never be perfect and usually becomes harder as the computational system
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increases in size and complexity. In the CV regime the main perpetrator of
error comes from the lack of perfect resource states. It is usually assumed
in CV protocols, that we can create perfect eigenstates of the position or
momentum operators. Such states are idealized versions of real states and
are highly unphysical since they require infinite squeezing of the canoni-
cal variables and hence infinite energy to create. Nevertheless, infinitely
squeezed states are useful concepts in theory due to their simple mathemat-
ical representation. In realistic scenarios, CV states are actually represented
as some quasi-probability distribution in phase-space. The most common
CV states that feature in continuous-variable protocols are those that are
represented by a Gaussian probability distributions. These are known as
the Gaussian states and much effort has been expended in understanding
their properties as they are relatively easy to realize experimentally. When
we allow the use of such physical, Gaussian states in our continuous-variable
theory of quantum computation, we find that our computational protocols
are exposed to a new type of error not seen in the discrete case. The source
of this is due to the lack of infinite squeezing which means the states are
not localized in phase-space and any computational process is subject to
some intrinsic imprecision that leads to errors that can propagate through
the system, ruining the computation. Of course both the discrete and con-
tinuous regimes are subject to errors due to losses and detection limitations
and any realistic quantum computer will have to take these into account
as well. Advances in the study of such limitations have culminated in a
new field known as quantum error correction (QEC). Initially, QEC took
its inspiration from classical error correction models by adding redundancy
into the storage of the quantum information. Such redundant codes tolerate
errors up to some finite error rate which allows quantum computation to be
performed fault-tolerantly [22, 23]. While QEC has advanced well beyond
the simple redundancy codes for both discrete and CV systems [24, 25, 9]
it remains an open problem to create physical states that have sufficient
intrinsic protection against error to make use of them.

The main themes of this thesis are computational universality and fault
tolerance. We seek to construct theoretical models for systems that will
support universal quantum computation while protecting the information
encoded within them. In particular, we investigate how such models can
be generated in continuous variable systems. This leads us to examine al-
ternatives to the circuit model such as Measurement-Based Quantum Com-
putation (MBQC), where instead of processing states through a sequence
of gates, unitary operations are carried out by successive measurements on
a universal resource state, known as a cluster state. Cluster states are a
class of multi-partite entangled graphs states that act as a computational
substrate, upon which computational processes can be implemented. Such
measurement-based schemes have been shown to be universal in both the
discrete and CV regimes [26, 27, 28]. One of the main tasks in this field is
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the design of protocols to generate cluster states in a manner that is practi-
cal and scalable. Even within just the CV regime there are many proposals
for the generation of CV cluster states including linear optical construc-
tions [29], methods involving optical parametric oscillators (OPO) [28, 31]
and single quantum non-demolition schemes [32, 33]. These proposals are
all based on optical resources but it is also possible to build cluster states
from ensembles of polarized atoms [34, 35, 36] which can act as quantum
memories, allowing short term information storage within the cluster states.
However, as with circuit model constructions, cluster state computation is
still inherently prone to issues associated with finite squeezing and we must
look to other systems to provide a fundamental solution to the problem
of errors correction and fault tolerance. For inspiration, we look to a re-
cent development in discrete computational systems - Topological Quantum
Computation (TQC) [140, 182]. TQC is a revolutionary idea that seeks to
store quantum information in non-local degrees of freedom that have intrin-
sic protection from local errors. In the ideal case such systems would not
require any further error correction and computational processes could be
implemented with arbitrary precision.

Just like previous quantum computational proposals, one of the primary
tasks here is to find suitable physical states with which to perform TQC
protocols. It has long been known that certain condensed matter systems
in two spatial dimensions such as the states at certain filling fractions in
the Fractional Quantum Hall Effect (FQHE), exhibit topological degrees of
freedom [186, 187]. These manifest themselves as quasiparticle excitations
known as anyons. Anyons are exotic particles that do not obey Bose or
Fermi statistics, but something in between. They can be divided into two
main classes, abelian and non-abelian which can be distinguished by their
fusion rules and braiding statistics. Simply put, braiding anyons evolves the
multiparticle state by some unitary. In the case of abelian anyons this evo-
lution just results in extra phase factors while braiding non-abelian anyons
acts on the state by some higher dimensional unitary operator. This braid-
ing behaviour has led to the suggestion that systems containing certain
classes of non-abelian anyon can be used as a resource for quantum compu-
tation. Since the information is stored in these non-local degrees of freedom
and quantum gates are enacted topologically via braiding, such systems are
topologically protected from effects such as decoherence. However, access-
ing these states within a condensed matter setting has proved very difficult
experimentally, which has led to proposals for the construction of artifi-
cial topological states. The first such artificial system that has been shown
to exhibit anyonic excitations, is a spin lattice model proposed by Kitaev
[140, 174], known as the toric code. The simplest version of the toric code
only yields abelian statistics and is hence insufficient for universal quantum
computation but it can serve as a topological quantum memory [38, 203].
However, in certain coupling regimes it is possible for the Kitaev models to
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yield more useful non-abelian anyon types [205], some of which have been
shown to provide universal gate sets through topological operations alone.
A further recent development has been the generalization of these ideas to
continuous variables [179]. In this model it has been shown that a CV analog
of the toric code that supports abelian anyons can be generated. Like their
discrete counterparts, these CV anyons produce phase rotations upon braid-
ing which alone are insufficient for universal computation. However, as a
proof of principle scheme, the CV toric code states have a significant advan-
tage over the discrete versions as they are constructed from experimentally
viable Gaussian resources and linear optics.

The outline of this thesis is as follows. We begin in Chapter 2 by intro-
ducing the continuous-variable formalism that we will be using throughout.
This begins with a brief review of the quantization of the electromagnetic
field as an example to aid the understanding of the key concepts that under-
pin continuous quantum systems. This leads us to a description of phase-
space and quasi-probability distributions as a useful method to represent
quantum states. With these general ideas in place, we specialize to the set
of Gaussian states. The theory of Gaussian quantum states is very advanced
and we state a few of the main results that we will use later in our work. In
particular, we introduce the covariance matrix formalism which is a partic-
ularly convenient method to manipulate Gaussian states without having to
resort to working with density matrices of infinite order. Our introduction
to CV states concludes with some statements about CV entanglement. We
give some relevant measures of bipartite entanglement that we will be using
in later chapters.

In Chapter 3 we review the theory of quantum computation and univer-
sality. This begins with a discussion of quantum computation over qubits.
This theory is well known so we keep it deliberately brief. The main re-
sult of this section is the construction of a set of universal quantum gates
that we use to test to universality of our computational systems. We then
explore the ideas behind continuous-variable computation. First, we give a
definition of CV quantum computation before going on to identify suitable
computational bases. Finally, we state the basic CV quantum gates and
make some statements about universality in CV computation.

In Chapter 4 we present the first of the original results of this the-
sis. This begins with a discussion on cluster states, the resource states for
Measurement-Based Quantum Computation (MBQC). We then specialize to
continuous-variable cluster states and their use as computational resources.
This leads us to examine specific physical systems where cluster states can
be created, namely ensembles of neutral atoms. We go on to describe these
ensembles and the interactions that we can enact between them. This brings
us to the main results of this chapter. We derive protocols for the genera-
tion of small clusters state from atomic ensembles and show that this scheme
can be generalized to construct cluster states of arbitrary size and shape.
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We then go on to show how this method can be modified to include CV
light modes as part of the the state to create composite cluster states. We
investigate the entanglement properties of the composite cluster state and
discuss how to expand to the multimode case. Our last section deals with
an intrinsic problem of quantum computation over Gaussian cluster states,
that of exponential decay of localizable entanglement leading to computa-
tional errors. We present an alternative architecture for MBQC based on
our composite cluster states that seeks to lessen the effect of entanglement
decay via improved resource efficiency.

In Chapter 5 we introduce our work on Topological Quantum Compu-
tation (TQC). This begins with a general introduction to the theory behind
the emergence of anyons within topological systems. We then look at the
requirements that an anyon model must satisfy to be considered complete
before reviewing the main aspects of the discrete toric code model. We then
turn to the key result of this chapter, the generalization of the toric code to
the continuous-variable regime. We show that CV analogs of abelian anyons
can be created, fused and braided to produce evolutions of the underlying
state. We then investigate the properties of the CV Kitaev ground state
under finite squeezing and the new anyon dynamics that emerge. Our next
section deals with the question of universal CV quantum computation on
these CV anyonic states. We derive protocols that make use of the topo-
logical properties of the state but find the topological gate operations are
insufficient to form a universal set. We expand our gate set to included
non-topological operations and show that a complete set of CV quantum
gates can be performed on the CV anyons. Finally we discuss the fault
tolerance of this topological model against finite squeezing and the effect on
topological gate operations.

In Chapter 6 we expand on the CV topological model and suggest a
scheme to include non-abelian excitations. We begin our analysis by re-
viewing the theory of non-abelian anyons, we define the relevant topological
spaces and derive consistency conditions for general non-abelian models.
We then show how the CV toric code can be enhanced to yield anyons with
non-abelian statistics. We examine the braiding and fusion rules for these
new excitations before making a simplification that allows us to identify
our model as a CV version of the Ising anyon model. With this in mind
we develop a computational model for qubits that only requires topological
operations alone to enact a set of qubit quantum gates.

Finally, in Chapter 7 we gather our conclusions, present some open ques-
tions and give future direction for research.
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Chapter 2

The continuous variable
formalism

In this preliminary chapter we review the formalism that underlies the struc-
ture of states in the continuous-variable (CV) regime. Such states are the
main theme of this thesis and so here we provide the relevant definitions and
formulae that we shall come to rely on in later chapters. We begin by intro-
ducing a phase-space description and the corresponding quasi-probability
distributions. We then restrict our interest to Gaussian states which allows
us to introduce the symplectic formalism as an elegant method for calculat-
ing the effect of Gaussian maps on CV states. For further reading on these
topics the interested reader is referred to [41, 42, 43, 44, 45, 46, 47].

In many ways continuous variables are a natural description of physi-
cal states. The canonical examples of continuous-variable systems are the
quadratures of the electromagnetic (EM) field, however other well known
examples rely on continuous parameters. These include the position and
momentum of massive particles, the collective spin of an ensemble of polar-
ized atoms and many others. This general description is possible because
CV systems are described by two canonical degrees of freedom, q̂ and p̂,
which correspond to observables. These observables must satisfy the canon-
ical commutation relations.

[q̂, p̂] = i1. (2.1)

This commutation relation implies that the underlying Hilbert space cannot
be finite dimensional. One can see this if we apply the trace on Eq.(2.1), then
applying finite dimensional operator algebra the LHS gives tr(q̂p̂)−tr(p̂q̂) =
0 while the RHS = idim(H). Where dim(H) is the dimension of the finite
Hilbert space. This contradiction leads us to conclude that we cannot apply
finite dimensional algebras to such systems. Also in the physical situations
given above, there is no bound on the values that q̂ and p̂ can take. Then q̂
and p̂ possess a continuous spectra and act in an infinite dimensional Hilbert
space.
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These canonical operators only describe a single mode but we can ex-
tend the commutation relation to include multiple modes by ordering the
operators in canonical pairs as R̂T = (q̂1, p̂1, q̂1, p̂2, ..., q̂N , p̂N ). Then we can
restate the commutation relation as

[R̂i, R̂j ] = i1(ΩN )ij , (2.2)

where i, j = 1, 2, ..., 2N and ΩN =
⊕N

µ=1 Ω accounts for all modes. We call
Ω the symplectic matrix which fulfills the conditions 〈η|Ω|ζ〉 = −〈ζ|Ω|η〉
∀ η, ζ ∈ R2N and 〈η|Ω|ζ〉 = 0 ⇒ ζ = 0. The symplectic matrix has the
standard form

Ω =
(

0 1
−1 0

)
. (2.3)

The canonical commutation relations can also be expressed though the
annihilation and creation operators âµ and â†µ, which obey standard bosonic
commutation relations

[âµ, â†ν ] = δµν , [âµ, âν ] = [â†µ, â
†
ν ] = 0, (2.4)

µ, ν = 1, 2, ..., N . The commutation relations (2.2) are related to the bosonic
commutation relations by a unitary transformation

U =
1√
2

(
1N i1N
1N −i1N

)
, (2.5)

such that
Ôi = UijR̂j , (2.6)

where ÔT = (â1, â2, ..., âN , â
†
1, â
†
2, ..., â

†
N ). This connection to the creation

and annihilation operators is particularly convenient when working with
examples such as the electromagnetic field. In the following we will use
the EM field as our physical example to relate these abstract concepts to
something concrete. We will begin our discussion by briefly reviewing the
quantization of the EM field and show how this connects with the canonical
commutation relations and bosonic commutation relations.

2.1 Quantization of the electromagnetic field

The canonical method for the quantization of electromagnetic fields is well
known, here we just state the main steps of the method. For a more in
depth analysis, the reader is referred to the standard texts in quantum optics
[48, 49, 50, 51, 52, 53]. The classical picture of electromagnetism is defined
through two fields, the electric field, E(r, t) and the magnetic field B(r, t).
The first step in quantization is to replace these fields by their quantum
equivalents. Then the fields become operators corresponding to observables
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and are written Ê(r, t) and B̂(r, t). This is accomplished by imposing the
Coulomb gauge, ∇.A(r, t) = 0, and solving the vacuum wave equation,

∇2A(r, t) =
1
c2

∂2A(r, t)
∂t2

(2.7)

under periodic boundary conditions. We can write the general solution of
Eq. (2.7) as a Fourier decomposition over plane waves,

A(r, t) =
1√
ε0V

∑
k

2∑
s=1

eks(akseik.r−iωt + a∗kse
−ik.r+iωt). (2.8)

Where eks are the unit polarization vectors. Each mode is labeled by a
wave-vector k and polarization s. The wave-vectors are discrete due to the
periodic boundary conditions that we imposed. These boundary conditions
imply the field is constrained to an imaginary cube of volume V .

The quantization proceeds by replacing the coefficients aks and a∗ks with
the bosonic creation and annihilation operators âks and â†ks, which we de-
fined above (Eq.(2.4)). Then the quantized vacuum solution becomes

Â(r, t) =
√

~
2ε0V

∑
k,s

eks(âkseik.r−iωt + â†kse
−ik.r+iωt) (2.9)

then the field observables are obtained via the vector potential by calculating
∇× Â and Ê = −∂tÂ. We then obtain the Hamiltonian of the field, which
turns out to be

Ĥ =
1
2

∫
d3r(ε0Ê

2
+ µ−1

0 B̂
2
) =

∑
ks

~ωk(â†ksâks + 1/2). (2.10)

However, we note that the right hand side of Eq.(2.10) is a sum of quantum
harmonic oscillator Hamiltonians. This observation allows us to interpret
the quantized EM field as an infinite set of independent oscillators, which is a
particularly convenient result as we can understand the properties of the EM
field by studying the quantum mechanical formalism for these oscillators.

For each oscillatory mode we can find a corresponding Hilbert space [54].
Since each mode is labeled by a wavenumber k and polarization s they each
have a state space Hks. Then entire state space has the following structure:

H =
⊗
k

Hk1 ⊗Hk2, (2.11)

for s = {1, 2}.
The eigenstates of the Hamiltonian define the Hilbert space associated

with each mode. These are known as the Fock or photon number states,
defined as

n̂|n〉 = â†â|n〉 = n|n〉. (2.12)
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The Fock states correspond to some energy of the oscillator labeled by the
number n. Here, the field operators Ê(r, t) and B̂(r, t) are responsible for
creating and annihilating their associated quanta. This follows from the
action of the creation and annihilation operators on Fock states,

â|n〉 =
√
n|n− 1〉, â†|n〉 =

√
n+ 1|n+ 1〉, (2.13)

the operators â and â† lower and raise the photon number by one respec-
tively. Then the |n〉 states describe a field composed of n photons each with
an energy of E = ~ω(n + 1/2). We can represent the absence of photons,
the vacuum state as |0〉 with the property â|0〉 = 0. Note however that even
the vacuum has an energy contribution, E0 = ~ω/2, known as the zero point
energy.

We can populate the vacuum to obtain excited states |n〉 by application
of the creation operator

(â†)n√
n!
|0〉 = |n〉, (2.14)

The Fock states form a complete set so that

∞∑
n=0

|n〉〈n| = 1 (2.15)

that is, they span the whole Hilbert space of the electromagnetic oscillator.
Additionally, the Fock states are orthonormal

〈n|n′〉 = δnn′ , (2.16)

because they are eigenstates of the Hermitian operator n̂. The Fock states
form a very convenient orthonormal Hilbert-space basis in quantum optics
known as the Fock basis.

2.1.1 Quadrature states

As we will see in the next section, the most convenient representation of
quantum states is through a quantum phase-space. This is intimately related
to the canonical position and momentum observables of each field mode.
These observables are known as the quadratures of the field and are defined
through the creation and annihilation operators as

Q̂ks =

√
~

2ωk
(âks(t) + â†ks(t)), P̂ks = i

√
~ωk

2
(â†ks(t)− âks(t)). (2.17)

These operators satisfy the usual commutation relation

[Q̂ks(t), P̂k’s(t)] = i~δkk’δss′ . (2.18)
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These operators can be interpreted as the Fourier components of the elec-
tromagnetic field observables rather than the position and momentum of the
underlying excitations. This can be shown explicitly by considering a single
field mode (with constant polarization),

Ê(r, t) = iE0(âei(k.r−ωt) + â†e−i(k.r+ωt)). (2.19)

Now defining the dimensionless quadratures as

q̂ =
√
ω

~
Q̂, p̂ =

1√
~ω

P̂ , (2.20)

and substituting the relation â = 1/
√

2(q̂ + ip̂) we find

Ê(r, t) = E0

√
2(q̂ sin(k.r− ωt)− p̂ cos(k.r− ωt)). (2.21)

Then in this optical example, q̂ and p̂ represent the in-phase and out of phase
components of the electric field amplitude of the spatial-temporal mode.
From the bosonic commutation relations it is easy to check that q̂ and p̂
are canonically conjugate observables, [q̂, p̂] = i~. Then these operators
are of the same form as those general position and momentum operators in
Eq.(2.1). In this case q̂ and p̂ can be regarded as the position and momentum
of the EM oscillator. They do not have a real space representation but they
do have a meaning in the phase-space spanned by the complex vibrational
amplitude â [52].

The quadrature operators have eigenstates |q〉 and |p〉, these satisfy

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉. (2.22)

The eigenstates are orthogonal, 〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p − p′) and
complete ∫ ∞

−∞
|q〉〈q|dq =

∫ ∞
−∞
|p〉〈p|dp = 1. (2.23)

Furthermore, the position and momentum states are mutually related to
each other via the Fourier transform

|q〉 =
1√
2π

∫ ∞
−∞

e−iqp|p〉dp,

|p〉 =
1√
2π

∫ ∞
−∞

eiqp|q〉dq, (2.24)

2.2 Phase-space

The phase-space formulation of quantum mechanics can often provide useful
physical insights. It offers a variety of advantages since it only requires that

11



we deal with constant number equations instead of operators. This remark-
able feature arises from the fact that we can map the infinite dimensional
complex Hilbert space, which can be mathematically cumbersome to the
relatively simple linear algebra structure of the finite-dimensional real phase
space. Here we extend this map and show how to characterize states and
operations.

2.2.1 Phase-space description

We can rigorously define phase space as follows. In the classical setting
we may describe a system of N canonical degrees of freedom by a 2N -
dimensional real vector space V ∼= R2N . Together with the symplectic form it
defines a symplectic real vector space - the phase-space P ∼= R2N . The phase-
space is naturally equipped with a complex structure and can be identified
with a complex Hilbert spaceHP ∼= CN . The connection between the Hilbert
space and the phase space is given by

〈η|ζ〉 = 〈Ωη|ζ〉Ω + i〈η|ζ〉Ω. (2.25)

where the LHS is the scalar product in HP and the subscript Ω is the
symplectic scalar product in P. Notice that η = (q, p) ∈ P while η =
q + ip ∈ HP such that any orthonormal basis in HP leads to a canonical
basis P.

2.3 Probability distribution functions

Working within quantum phase-space can be conceptually challenging, but
we can find an intuitive understanding of the evolution of quantum states by
examining the phase-space probability distributions. The most widely used
is the Wigner distribution function though it is not defined uniquely for a
given quantum state. In fact, several distribution functions with different
properties, can be defined e.g., the normal ordered P -function, anti-normal
Q-function or the generalized anti-normal Husimi function could be more
convenient descriptions depending on the problem being considered. Here
we will not be interested in the details of all the probability distributions,
we will give a brief summary of just the totally symmetric, Weyl ordered
Wigner distribution which will be relevant for later discussions. Our analysis
is kept very brief as we do not directly use probability distributions to solve
any problems encountered in this thesis but they do provide nice visual
representations of the physical processes.

It should be kept in mind that since the joint probability distributions at
fixed position q̂ and momentum p̂ are not allowed by Heisenberg uncertainty,
the quantum phase-space distribution functions should just be considered
mathematical tools. Further, the joint probabilities can be negative and
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so one deals with quasi-probability distributions. However, as long as they
give a correct description of physical observables we regard their use as
acceptable.

2.3.1 States and probability functions

We motivate the description of CV states by probability distributions by
recalling that the density operator, ρ̂, defines a quantum states if it satisfies

tr[ρ̂] = 1, ρ̂ ≥ 0, and ρ̂† = ρ̂. (2.26)

Such operators belong to a bounded linear operator Hilbert space and we say
a state is pure if ρ̂ = |ψ〉〈ψ|. In CV systems, the density operator formalism
is rather inconvenient since the state |ψ〉 will form density matrices with
infinite order.

Probability distributions such as the Wigner function give a complete
description of CV states without having to keep track of infinite dimensional
Hilbert spaces. Given a state ρ̂ corresponding to a single mode, the Wigner
function is defined as

Wρ(q, p) =
1
π

∫
dxe−2ipx〈q + x|ρ̂|q − x〉. (2.27)

This transformation is called the Weyl-Fourier transform and tells us how
to move between density operators and distribution functions. Sometimes
it is easier to compute the characteristic function

χρ(ζ, η) = tr{ρ̂D̂(ζ,η)}. (2.28)

Where D̂(ζ,η) is the Weyl operator1 that acts as a displacement in phase
space. The distributions (2.27) and (2.28) are equivalent in that they both
describe the quantum state. They are related through the symplectic-Fourier
transform

Wρ(q, p) =
1

(2π)2

∫
dζ

∫
dη χρ(ζ, η)e−iζp+iηq, (2.29)

χρ(ζ, η) =
∫
dq

∫
dpWρ(q, p)eiζp−iηq (2.30)

The Weyl-Fourier transformation is invertible and it provides a way to re-
cover the density operator from both distribution functions

ρ̂ =
1

2π

∫
dq

∫
dp

∫
dζ

∫
dη Wρ(q, p)e−iζp+iηq Ŵ(ζ,η)

=
1

2π

∫
dζ

∫
dη χρ(ζ, η)D̂(ζ,η). (2.31)

1The Weyl displacement operator is defined as D̂ζ = eiζ
T .Ω.R̂ for ζT = (ζ1, ζ2, ..., ζ2N ) ∈

R
2N
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The Wigner function can be generalized for dynamical systems by in-
cluding time as a phase-space coordinate. Let us give some properties that
the time dependent Wigner function must satisfy in order to represent a
quantum state:

• Quasidistribution. It is a real-valued quasi-distribution because it ad-
mits negative values.

• T-symmetry It has time symmetry

t→ −t⇔W(q, p, t)→W(q,−p,−t) (2.32)

• X-symmetry. It has spatial symmetry

q → −q ⇔W(q, p, t)→W(−q,−p, t) (2.33)

• Translation invariant.

q → q − a⇔W(q, p, t)→W(q + a, p, t) (2.34)

• T-evolution. The equation of motion of each point in phase-space is
classical in the absence of forces.

dρ̂

dt
= i[ρ̂, H]⇔ ∂W(q, p, t)

∂t
= − p

m

∂W(q, p, t)
∂q

(2.35)

• Bounded. The function is bounded

|W(q, p)| ≤ 1
π

(2.36)

For pure states this leads to

|W(q, p)|2 =
1
π2

∣∣∣∣∫ dxe−2ipxψ∗(q − x)ψ(q + x)
∣∣∣∣2

≤ 1
π2

∫
dx
∣∣eipxψ(q − x)

∣∣2 ∫ dx
∣∣e−ipxψ(q + x)

∣∣2 =
1
π2

(2.37)

• Normalized. The function is normalized∫
dq

∫
dpW(q, p) = 1, (2.38)

• Quantum marginal distributions. It possesses well behaved marginal
distributions

W̄(q) =
∫
dpW(q, p) = 〈q|ρ̂|q〉 ≥ 0, (2.39)

W̄(p) =
∫
dq W(q, p) = 〈p|ρ̂|p〉 ≥ 0, (2.40)
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• Orthonormal. Orthonormality is preserved∣∣∣∣∫ dqψ∗(q)φ(q)
∣∣∣∣2 = 2π

∫
dq

∫
dpWψ(q, p)Wφ(q, p). (2.41)

As a corollary of this we note that if the distributions are equal, ψ = φ
we find

∫
dq
∫
dpW2(q, p) = 1/2π for all pure states which excludes

classical distributions such asW(q, p) = δ(q−q0)δ(p−p0). If the states
are orthogonal, then

∫
dq
∫
dpWψ(q, p)Wφ(q, p) = 0 which confirms

that the Wigner function cannot be positive everywhere.

• Completeness. The set of functions Wnm(q, p) forms a complete or-
thonormal set. Let

Wnm(q, p) =
1
π

∫
dx e−2ipxψ∗n(q − x)ψm(q + x), (2.42)

then as long as ψn(q) form a complete set,

2
∫
dq

∫
dpW∗nm(q, p)Wn′m′(q, p) =

1
2π
δnn′δmm′ , (2.43)

There are several reasons to employ the Wigner function description of quan-
tum states. The Wigner functions allow for a convenient visualization of
some state ρ̂ in terms of a distribution in phase-space with canonical coor-
dinates (q, p). Then just by examining the Wigner function corresponding
to a state we can easily read off the quadrature amplitudes with their quan-
tum fluctuations, we can say whether a state is Gaussian or non-Gaussian
and see if a state exhibits interference effects. Wigner functions also give
an intuitive description of how classical a state may be. This arises due the
fact that the Wigner function can give negative values for allowed quantum
states. This negativity of the Wigner function gives us a way to quantify
the non-classicality of a state. For example, highly non-classical states such
as Fock states or Schrodinger cat states show Wigner functions with a high
degree of negativity.

The Wigner function allows the calculation of expectation values by
using the trace rule [52]:

Tr(ρ̂Â) = 2π
∫ ∞
−∞

dqdp Wρ(q, p)WA(q, p), (2.44)

This equation would also be the rule for predicting expectations in classical
statistical physics, the Wigner function Wρ(q, p) plays the role of a classical
phase-space density, whereas WA(q, p) appears as the physical quantity that
is averaged with respect to Wρ(q, p).
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The Wigner function can be extended to a field of N modes We can
write the function for the N mode field state ρ̂ as,

W (q1, p1, ..., qN , pN ) =
1

(2π)N

∫ ∞
−∞

...

∫ ∞
−∞

N∏
j=1

dxje
ipjxj

× 〈q1 − x1, ..., qN − xN |ρ̂|q1 + x1, ..., qN + xN 〉
(2.45)

Later we will see how for Gaussian states we can write this N mode Wigner
function in a compact and convenient form using covariance matrices. Now
that we have established the phase-space description of quantum systems, we
now examine specific examples of the various types of states and operations
that will be relevant throughout this thesis.

2.4 Gaussian States: Properties and Operations

In this section, we will review the main definitions and results for Gaussian
states which are a subset of the continuous-variable states. We will also
introduce definitions and criteria for entanglement between Gaussian states
that will be used to characterize scalability of computational models later
in this thesis. We define the set of Gaussian states as those states with
Gaussian characteristic functions and quasi-probability distributions on the
multi-mode quantum phase space.

2.5 Covariance matrices and symplectic operations

Gaussian functions are mathematically completely defined by their first and
second moments. Hence it follows that any Gaussian state ρ̂ is characterized
by the first and second moments of the quadrature field operators. We
denote the first moments by

R̄ = (〈R̂1〉, 〈R̂2〉, ..., 〈R̂N 〉, 〈R̂n〉) (2.46)

and the second moments by the covariance matrix (CM) σ of elements

σij = 〈R̂iR̂j + R̂jR̂i〉 − 2〈R̂i〉〈R̂j〉 (2.47)

First moments can be arbitrarily adjusted by local unitary operations, which
are merely displacements in phase space. These can be performed by ap-
plying single-mode displacement operators to the Gaussian function corre-
sponding to each single mode. From the phase-space picture we developed
above it is obvious that such operations leave the structure of the Gaus-
sian state invariant and hence any information contained within states are
unaffected by first-moment evolutions.
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We can incorporate covariance matrices into the phase-space picture
through the Wigner function, which can be written,

W (R) =
e−(R−d)σ−1(R−d)T

πN
√

Det(σ)
(2.48)

where R is the real phase-space vector (q1, p1, ..., qN , pN ) and d is the dis-
placement vector. This allows a complete description of an arbitrary Gaus-
sian state with just a 2N × 2N covariance matrix σ. Then the CM can be
used to denote the second moments of the Gaussian state or the state itself.
In the formalism of statistical mechanics, the CM elements are the two-point
truncated correlation functions between the 2N canonical continuous vari-
ables. We note that the entries of the CM can be expressed as energies by
multiplying them by the quantity ~ωk, where ωk is the frequency of each
mode k, in such a way that Tr(σ) is related to the mean energy of the state,
i.e. the average of the non-interacting Hamiltonian. This mean energy is
generally unbounded in CV systems.

As the real CM contains the complete locally-invariant information on
a Gaussian state, there are constraints that must be obeyed for σ to rep-
resent a CV Gaussian state. These constraints reflect the requirements of
positive-semidefiniteness of the associated density matrix ρ. These condi-
tions, together with the canonical commutation relations imply

σ + iΩ ≥ 0, (2.49)

This is the only necessary and sufficient constraint that σ has to fulfill to be
the CM corresponding to a physical Gaussian state [66, 67]. More generally,
this is a necessary condition for the CM of any non-Gaussian CV state.
Note however, that non-Gaussian states cannot be fully characterized by
the covariance matrix alone since in principle they contain moments of any
order.

It is often useful to decompose a given CM into its separate subsystems.
For example, we can write the CM σ for an N -mode Gaussian state in terms
of two by two submatrices as

σ1,...,N =


σ1 C1,2 ... C1,N

CT1,2 ... ... ...

... ... ... CN−1,N

CT1,N ... CTN−1,N σN

 (2.50)

Each diagonal block σk is the local CM corresponding to the reduced state
of mode k, for all k = 1, ..., N . The off-diagonal matrices Ci,j encode the
classical and quantum correlations between the subsystems i and j. The
matrices Ci,j are zero for product states.

The advantage of the CM formalism is the ease with which Gaussian
states can be represented and operated upon. In the following we present
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some examples of well known Gaussian states with their covariance matrix
representation. We begin with single-mode states, these are characterized
by (2 × 2) CMs. All the pure one-mode Gaussian states can be obtained
from the vacuum by appropriate displacements, rotations and squeezing
operations on the vacuum state. We list the states below

• (Vacuum state): This is characterized by the action of the annihilation
operator, â|0〉 = 0. This has CM and displacement vector,

σ0 =
(

1 0
0 1

)
, d0 =

(
0
0

)
. (2.51)

Vacuum states exhibit the lowest quantum fluctuations in both quadra-
ture distributions. In this sense they are the minimum uncertainty
states over both quadratures.

• (Pure coherent states): Coherent states are eigenstates of the annihila-
tion operator, â|α〉 = α|α〉. To discuss coherent states we introduce the
displacement operator D̂(α) = exp(αâ†−α∗â) and α = 1/

√
2(q0+ip0).

This is a unitary operation and as its name suggests this D̂(α) induces
a displacement on the amplitude â by an amount α,

D̂†(α)âD̂(α) = â+ α. (2.52)

Coherent states can then be interpreted as displaced vacuums, |α〉 =
D̂(α)|0〉, in the CM picture this takes the form

σD(α) =
(

1 0
0 1

)
,

dD(α) =
(
q0

p0

)
. (2.53)

• (Pure squeezed states): As we noted above, minimum uncertainty in
both quadratures is achieved in the vacuum and coherent states. How-
ever it is possible to reduce the variance in one of the quadratures at
the expense of the conjugate variable. We parameterize the deviation
of the variances from their vacuum values by a real number r called
the squeezing parameter,

∆2q =
1
2
e−2r, ∆2p =

1
2
e2r. (2.54)

This still satisfies the Heisenberg uncertainty relation since ∆q∆p =
1/2 but we have the freedom to modify the variances by adjusting the
value of r. Squeezing is achieved via a unitary operation known as the
squeezing operator :

Û sq(r) = exp
[r

2
(â2 − â†2)

]
. (2.55)
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Applying this to |0〉 we obtain the squeezed vacuum state, |r〉 =
Û sq(r)|0〉, which has CM and displacement

σUsq(r) = Ŝ(r)σ0Ŝ
T (r) =

(
e−2r 0

0 e2r

)
,

dUsq(r) = SS(r)d0 + sS(r) =
(

0
0

)
. (2.56)

We also consider multi-mode states, an important example of a two mode
Gaussian state is the two mode squeezed state, |ψsq〉i,j = Û sqi,j(r)(|0〉i ⊗ |0〉j),
the two-mode squeezing operator is

Û sqi,j(r) = exp
[
−r

2
(â†i â

†
j − âiâj)

]
(2.57)

In the limit of infinite squeezing this state approaches the ideal Einstein-
Podolsky-Rosen (EPR) state [55], which is the simultaneous eigenstate of
total momentum and relative position of the two subsystems, which then
share perfect entanglement. We will be discussing the EPR state in more
detail in a later section. A two-mode squeezed state with squeezing factor
r can be described by the covariance matrix

σsqi,j(r) =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (2.58)

We note that the CM of N -mode coherent states, including the vacuum
is just the 2N × 2N identity matrix. Now that we have found covariance
matrix representations of the relevant states we now turn to the question
of how to effect unitary transformations on these states in the symplectic
picture.

2.5.1 Symplectic operations - The continuous-variable tool-
box

Transformations of a Gaussian state that preserve their Gaussian charac-
ter are known as Gaussian operations. These are completely positive maps
that can be implemented by application of Gaussian unitary operators with
homodyne measurements. Homodyne and heterodyne detection are funda-
mental Gaussian operations, as they allow for measurement of the canonical
coordinates. Here we will concentrate on the symplectic operations which are
the set of canonical transformations S that preserve the canonical commu-
tation relations. That is, if we transform our canonical operators R̂S = S.R̂,
then Eq.(2.2) is fulfilled. In an equivalent way, we can define symplectic
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transformations as maps that preserve the symplectic scalar product and
therefore

ST .Ω.S = Ω. (2.59)

The set of real 2N × 2N matrices S satisfying the above condition form a
group known as the symplectic group, Sp(2N,R). To construct the affine
symplectic group we just need to add the phase-space translations s that
transform R̂S = S.R̂ + s and whose group generators are Ĝ

(0)
i = ΩijR̂j .

We find the remaining group generators of the representation of Sp(2N,R)
which physically correspond to the Hamiltonians that perform the sym-
plectic transformations on the states. These generators are of the form
Ĝij = 1

2{R̂i, R̂j}, which corresponds to hermitian Hamiltonians of quadratic
order in the canonical operators. When rewriting them in terms of cre-
ation/annihilation operators we can divide the generators into two groups.
The passive generators (compact)

Ĝ(1)
µν =

i

2
(â†µâν − â†ν âµ), Ĝ(2)

µν =
i

2
(â†µâν + â†ν âµ), (2.60)

and active generators (non-compact)

Ĝ(3)
µν =

i

2
(â†µâ

†
ν − âν âµ), Ĝ(4)

µν =
i

2
(â†µâ

†
ν + âν âµ). (2.61)

The passive generators commute with all number operators n̂µ = â†µâµ, and
so they preserve the total number. In our example of the electromagnetic
field, the passive operations are those that preserve the total number of
photons. Passive transformations can be implemented in the optical scenario
by beam-splitters, phase-shifts and mirrors. In fact, these components can
only ever implement Hamiltonians constructed from linear combinations of
the compact generators. The non-compact generators correspond to higher
order Hamiltonians, usually performed through interactions with non-linear
media. Then to perform all the Gaussian unitaries Uλ = eiλ.Ĝ we require
physical systems that allow us to implement both compact and non-compact
generators.

To act on the states in the CM picture we must find the symplectic
matrix corresponding to the required operation and apply it in the manner
of Eq.(2.59). This is a particularly convenient and compact method when
considering states composed of multiple modes as we shall see below with
the aid of some simple examples. We begin with the single-mode operations.

Single-mode operations

We can generate any single-mode Gaussian transformation from just three
basic operations. The first is the phase-shift operator Ûθ = eiθâ

†â, this is a
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passive operator with corresponding symplectic operation in phase-space is

S(θ) =
(

cos θ sin θ
− sin θ cos θ

)
. (2.62)

The second is also passive and corresponds to phase-space translations de-
scribed by the unitary Ûα = eαâ

†−α∗â. This has symplectic form

sD(α) =
(
q0

p0

)
. (2.63)

where α = 1√
2
(q0 + ip0) is the amplitude of the displacement.

Our remaining operation is the single-mode squeezer which belongs to
the non-compact set of generators and hence is an active transformation.
The squeezing operator, (2.55), has symplectic representation

S(r) =
(
e−r 0
0 er

)
. (2.64)

The action of the squeezing operator is to reduce the variance of uncertainty
in one canonical variable at the expense of increasing the uncertainty in
another. For example, it squeezes position while stretches (anti-squeezes)
the momentum by the same factor in such a way that the volume of the
state in phase-space is kept constant. When the squeezing parameter r is
positive we call it a q-squeezer. Analogously p-squeezers occur for negative
r.

Mulitmode operations

Multimode systems are described on a tensorial Hilbert space structure.
The total Hilbert space is given by the tensor product of the subsystems,
H =

⊗N
k=1Hk. The structure of the covariance matrices for mulitmode

systems is represented as a direct sum,
⊕

, of each party’s associated CM.
The clear advantage of this feature when working with Gaussian states is
that we can fully describe a state by finite dimensional N ×N matrices plus
an N × 1 vector instead of its corresponding infinite dimensional density
matrix. Additionally, the dimensionality of phase-space increases at a slower
rate as dimensions are summed instead of multiplied.

A simple example of a multi-mode operation is the basic two-mode,
ideal, phase-free, beam-splitter, with action ÛBS = eθ(âiâ

†
j−â

†
i âj)/2 on modes

i and j. A beam-splitter with transmittivity τ corresponds to a rotation of
θ = arccos

√
τ in phase space (θ = π/4 is a balanced 50:50 beam-splitter)

and has symplectic form

SBSi,j (τ) =


√
τ 0

√
1− τ 0

0
√
τ 0

√
1− τ√

1− τ 0 −
√
τ 0

0
√

1− τ 0 −
√
τ

 (2.65)
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We also have the two-mode squeezing operator,

U(r) = er(â
†
1â
†
2−â1â2), (2.66)

which corresponds to the symplectic transformation

STMSSi,j (r) =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 (2.67)

where the matrix is understood to act on the modes i and j. Then the two
mode squeezed state is obtained from the vacuum (represented by the 4× 4
identity matrix) as σsqi,j(r) = Si,j(r)1STi,j(r).

A useful feature of Gaussian states is that their reduced states are again
Gaussian. Say we have a bipartite Gaussian state ρ̂ with covariance matrix
σ composed of N = NA +NB modes. Any bipartite Gaussian state can be
written in a block structure as

σ =
(
σA σC
σTC σB

)
, (2.68)

where A = AT (= σA) and B = BT (= σB) are block matrices of dimension
NA and NB respectively, corresponding to the two subsystems, C correspond
to correlations between A and B. Tracing out the NB modes corresponds
to the reduced state ρ̂ = trB ρ̂ with covariance matrix σA obtained by the
upper left NA ×NA block, similarly we can trace out A to find σB.

A typical operation that reduces a Gaussian state is Homodyne detec-
tion. Homodyning realizes a projective measurement of one quadrature
operator, say x̂, with associated POVM |x〉〈x|. Later, we shall be using
homodyne measurements to construct quantum states so here we explicitly
show how to implement a homodyne measurement on a given CM σ.

We start with a Gaussian state γ of N -modes. As we saw above, this
can be divided into NA ×NB modes as

σ =
(
σA σC
σTC σB

)
, (2.69)

with zero displacement vector. Then a homodyne measurement of x̂ on
subsystem B can be described by a Gaussian operator ρ̂x with covariance
matrix

Γx = lim
r→∞


cosh r1NA sinh rθNA 0
sinh rθNA cosh r1NA 0

0 0
(

1/r 0
0 r

)
1NB

 . (2.70)
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and displacement vector

∆T
x = (0, 0, ..., x, x, ...) (2.71)

Then measuring the x-component of the last NB modes corresponding to
B, and obtaining the result (x1, x2, ..., xNB ), system A will be left with
covariance matrix

σ′A = σA − σTC(XσBX)−1σC (2.72)

and displacement
d′A = σTC(XσBX)−1d′B, (2.73)

where d′B = (x1, 0, x2, 0, ..., xNB , 0), the inverse is the Moore-Penrose pseudo
inverse and X is the diagonal projector with entries diag(1, 0, 1, 0, ..., ).

Heterodyne measurement, whose POVM corresponds to 1
π |α〉〈α|, and in

general all POVMs of the form |γ, d〉〈γ, d|, can be achieved with homodyne
measurement using ancillary systems and beam-splitters.

2.5.2 Symplectic Eigenvalues

Another symplectic transformation is that which realizes the decomposition
of a Gaussian state into normal modes. The Williamson theorem [57] guar-
antees that the CM of an N -mode Gaussian state can always be written in
the so-called Williamson normal, or diagonal form

σ = ST νS (2.74)

where S ∈ Sp(2N,R) and ν is the CM

ν =
N⊕
k=1

(
νk 0
0 νk

)
(2.75)

corresponding to a tensor product state with a diagonal density matrix ρ⊗

given by

ρ⊗ =
⊗
k

2
νk + 1

∞∑
n=0

(νk − 1
νk + 1

)
|n〉k〈n|. (2.76)

where |n〉k denotes the number state of order n in the Fock space. In the
Williamson form, each mode with frequency ωk is a Gaussian state in ther-
mal equilibrium at a temperature Tk, characterized by an average number
of thermal photons n̄k which obeys Bose-Einstein statistics

n̄k =
νk − 1

2
=

1

exp
(

~ωk
kBTk

)
− 1

. (2.77)

The νk’s form the symplectic spectrum of the CM σ, and are invariant un-
der the action of global symplectic transformations on the matrix σ. The
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symplectic eigenvalues can be computed as the orthogonal eigenvalues of
the matrix |iΩσ| [58] and are thus determined by N invariants of the char-
acteristic polynomial of the CM [59] (whose invariance is a consequence
of Det S = 1, ∀S ∈ Sp(2N,R), which once computed in the Williamson
diagonal form reads

Det σ =
N∏
k=1

ν2
k . (2.78)

To summarize, in general, symplectic transformations in phase space are
generated by exponentiation of matrices written as JΩ, where J is anti-
symmetric. Note that the generators can be symmetric or antisymmetric.
Operations such as SBSi,j (τ), generated by antisymmetric operators are or-
thogonal and, acting by congruence on the CM σ, preserve the value of
Tr[σ]. The Tr[σ] is interpreted as the contribution to the average Hamil-
tonian H =

∑
â†kâk from the second moments of the state. The operations

that preserve Tr[σ] are said to be passive and they belong to a compact
subgroup of Sp(2N,R). On the other hand, operations such as STMSSi,j (r),
generated by symmetric operations, are not orthogonal and do not pre-
serve Tr[σ]. They then belong to a non-compact subgroup of Sp(2N,R).
This mathematical difference between squeezers and phase-space rotations
account for the difference between active (energy consuming) and passive
(energy preserving) optical transformations [56].

2.6 Entanglement in Continuous-Variable systems

In the following we will give an introduction to the concept of entanglement
in the context of CV systems and Gaussian states in particular. Entan-
glement is widely regarded as one of the fundamental aspects of quantum
theory. Originating from the superposition principle and non-factorizability,
this is a purely quantum effect. Further, entanglement is the key ingredi-
ent in the realization of quantum information protocols, which can perform
processes that are impossible in a classical setting. Due to its importance
in quantum information processes, many methods for identifying systems
that contain entanglement and quantifying the degree of correlation be-
tween different parties have been proposed. Here we discuss the concept of
continuous-variable entanglement. We go on to give a formal definition and
give some simple criteria and measures for bipartite entanglement.

Though entanglement has been extensively studied in the discrete vari-
able regime, the original formulation by Einstein, Podolsky and Rosen (EPR)
was actually for two-particle states, correlated in their position and mo-
menta. To illustrate the main concepts we review an example of a simple
CV entangled state [41]. Consider the position wave function ψ(x1, x2) =
Cδ(x1−x2−u) with a vanishing normalization constant C. The correspond-

24



ing quantum state is then∫
dx1dx2ψ(x1, x2)|x1, x2〉 ∝

∫
|x, x− u〉, (2.79)

which implies that the position and momenta are perfectly correlated since
x1−x2 = u and p1 +p2 = 0. Note that while this state cannot be physically
realized, it remains a useful example as it can be thought of as the limiting
case of a properly normalized state where the positions and momenta are
correlated to some finite extent. An example of finitely correlated states are
the two-mode squeezed vacuums [52],

ψ(x1, x2) =

√
2
π

exp[−e−2r(x1 + x2)2/2− e2r(x1 − x2)2/2],

ψ̄(p1, p2) =

√
2
π

exp[−e−2r(p1 − p2)2/2− e2r(p1 − p2)2/2], (2.80)

which approaches Cδ(x1 − x2) and Cδ(p1 + p2) respectively in the limit of
infinite squeezing, r → ∞. We can write down the corresponding Wigner
function [60, 61]:

W (R) =
4
π2

exp{−e−2r[(x1 +x2)2 +(p1−p2)2]−e2r[(x1−x2)2 +(p1 +p2)2]},
(2.81)

whereR = (x1, p1, x2, p2). This Wigner function approaches Cδ(x1−x2)δ(p1+
p2) in the limit of infinite squeezing, corresponding to the perfectly corre-
lated and maximally entangled EPR state. We can calculate the marginal
distributions for the two positions by integrating over the momenta or the
distributions for the momenta by integrating over the positions. This yields,∫

dp1dp2W (R) = |ψ(x1, x2)|2 =
2
π

exp[−e−2r(x1 + x2)2 − e2r(x1 − x2)2],

(2.82)∫
dx1dx2W (R) = |ψ̄(p1, p2)|2 =

2
π

exp[−e−2r(p1 − p2)2 − e2r(p1 + p2)2],

(2.83)
Though having well defined relative position and total momentum for large
squeezing, the two modes of the two-mode squeezed vacuum state exhibit
increasing uncertainties in their individual positions and momenta as the
squeezing grows. In fact, tracing our either mode of the Wigner function we
obtain a thermal state∫

dx1dp1W (R) =
2

π(1 + 2n̄)
exp

(
−2(x2

2 + p2
2)

1 + 2n̄

)
, (2.84)

with mean photon number n̄ = sinh2 r. We may also write the two-mode
squeezed state in the Fock basis by applying the two-mode squeeze operator,
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Eq.(2.66) to two vacuum modes,

Û sqij (r)|00〉 = er(â
†
i â
†
j−âiâj)|00〉

= etanh(r)â†i â
†
j

(
1

cosh(r)

)â†i â†j+âiâj+1

e− tanh(r)âiâj |00〉,

=
√

1− λ
∞∑
n=0

λn/2|n〉|n〉, (2.85)

where λ = tanh2(r). The form of Eq.(2.85) shows us that the modes of
the two-mode squeezed vacuum are correlated in photon number and phase.
The two-mode squeezed vacuum is the quantum optical representative for
bipartite continuous-variable entanglement. We now expand our discussion
to more general states and define CV entanglement rigorously. Later we will
be introducing entangled states composed of multiple modes but for now we
limit our discussion to just two systems.

2.6.1 Bipartite entanglement

A general two-party quantum state is separable if its total density operator
is a mixture (a convex sum) of product states [62],

ρ̂12 =
∑
i

ηiρ̂i,1 ⊗ ρ̂i,2. (2.86)

Otherwise, it is inseparable. A convenient method to test inseparability is
given by the Peres criterion [63]. For a separable state such as in Eq.(2.86),
transposition of either density matrix yields another allowed, non-negative
density operator with unit trace,

ρ̂′12 =
∑
i

ηiρ̂
T
i,1 ⊗ ρ̂i,2, (2.87)

since ρ̂Ti,1 = ρ̂∗i,1 is a legitimate density matrix. This allows us to state a key
result for general bipartite states:

NPPT Peres criterion: Given a bipartite state ρ̂, if it has non-positive
partial transpose (ρ̂Ti,1 � 0⇒ ρ̂Ti,2 � 0), then ρ̂ is entangled.

Hence a single negative eigenvalue of the partially transposed density
matrix is a sufficient condition for inseparability. In general, for states of
arbitrary dimension we have an equivalent condition [64],

NPPT Horodecki criterion: In C2⊗C2 and C2⊗C3 given a bipartite
state ρ̂, it is entangled iff it has non-positive partial transpose (ρ̂TA � 0 ⇒
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ρ̂TB � 0).

The Horodecki criterion is only sufficient for inseparability. Similarly, for
arbitrary mixed states, the occurrence of violations of inequalities imposed
by local realism is also only a sufficient, but not necessary condition for
inseparability [62].

For continuous-variable states, the Peres criterion still hold and the
Horodecki criterion is true as long as the state is composed of 1×N modes.
In particular for Gaussian states, time reversal is easy to implement on the
CM level by performing the symplectic transformation

P =
(

1 0
0 −1

)
. (2.88)

So we can rewrite the Horodecki criterion for Gaussian states [147].

NPPT Simon criterion: For 1×N modes given a bipartite Gaussian
state σ, it is entangled iff it has non-positive partial transpose (PAσP TA+iΩ �
0⇒ PBσP

T
B + iΩ � 0).

We can also quantify the degree of entanglement present in a bipartite
system. For this we define measures of entanglement. The simplest measure,
defined for pure states is the Entropy of Entanglement :

ES(ρ̂) = S(ρ̂A) = −tr(ρ̂A log2 ρ̂A), (2.89)

where S(ρ̂) is the von Neumann Entropy of a state ρ̂ and ρ̂A is the density
matrix for subsystem A. For any CV state this reduces to

ES(ρ̂) = −
∞∑
i=1

λ2
i log2 λ

2
i , (2.90)

while for Gaussian states we can state this in terms of the symplectic eigen-
values νi,

ES(γ) = −
NA∑
i=1

[
(νi + 1)

2
log2

(νi + 1)
2

− (νi − 1)
2

log2

(νi − 1)
2

]
, (2.91)

The entropy of entanglement is a unique measure of entanglement for pure
states. It depends only on the Schmidt coefficients and not on the choice of
basis, therefore is invariant under local unitary operations.

More generally, for mixed states we define another measure known as
Logarithmic negativity [68]:

EN (ρ̂) = log2 ||ρ̂TA ||1 (2.92)

27



where ||.||1 is the trace norm. For any CV state it can be written in terms
of the negative elements of the partial transpose as

EN (ρ̂) = log2

[
1 + 2

∞∑
i=1

|min(λ̃i, 0)|

]
. (2.93)

For Gaussian states, we can state this in terms of the symplectic eigenvalues
of the partial transpose

EN (σ) = −
N∑
i=1

log2[min(ν̃i, 0)]. (2.94)

The negativity N(ρ̂) is a computable measure of entanglement for mixed
states. It quantifies the violation of the NPPT criterion, i.e., how much the
partial transposition of a density matrix fails to be positive. It is invariant
under local unitaries and for Gaussian states reads

N(σ) =
1
2

[
N∏
i=1

1
min(ν̃i, 1)

− 1

]
. (2.95)

This concludes our review of the continuous-variable formalism. As we
will discover in the following chapters, this description of physical states
presented gives us an intuitive picture that allows us to perform calculations
on states characterized by Gaussian probability distributions with relative
ease. As we noted earlier, such states have many uses in the field of quantum
information but here we are mainly interested in their use for quantum
computation. However, it is not readily obvious how such states could define
a computational basis or how we would design quantum gates operations to
manipulate information stored within the states. This is the subject of our
next chapter.
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Chapter 3

The two sides of Quantum
computation

A classical computer can be simply visualized as a series of logical gates
that takes an input signal, applies some function, dependent on the type
and order of the gates, and outputs some desired result. The outcomes of
the logical process are then displayed by some means for the user to inter-
pret. Similarly, the most intuitive way to understand quantum computation
is to imagine a sequence of quantum logic gates, connected by some quan-
tum wires that convey information between them. Once the sequence of
gates have outputted the result, a measurement is performed which col-
lapses the quantum state to give a classical outcome which could then be
interpreted by our user. This is usually referred to as the circuit model of
quantum computation. The circuit model, while conceptually simple has
proven to be quite difficult to realize directly in practice. This has led to
the development of many alternatives, [69, 26, 152] that while theoretically
more complex, may provide an avenue to realize quantum computation in an
experimental setting. Such innovative computational constructs have also
greatly increased our understanding of the fundamental theory of quantum
computation and more generally quantum information. We also note that
despite how involved our computational schemes may become, they must
alway be simulatable by the standard circuit model and vice versa in or-
der to be considered a proper model for quantum computation. This useful
property allows us to decompose any quantum computational model into a
sequence of quantum logic gates. Such a representation is often useful when
dealing with abstract computational encodings where the logical operations
on the stored information can be extremely abstruse.

There currently exist two main paradigms within quantum computation.
The first considered here is the traditional approach, where information is
stored in discrete d-dimensional systems as objects known as qudits. The
most commonly used version of the qudit is the two dimensional qubit. The
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second approach is based on the continuous-variable states of the previous
chapter where quantum information is stored within the canonical position
and momenta of a given CV system. The finite-dimensional version is con-
ceptually most like the familiar classical computation so we will begin our
discussion there.

3.1 Quantum computation over qubits

In discrete-variable quantum computing, we usually store information in
the form of a two-dimensional object known as a qubit. This state can be
interpreted in the following way, say our system can acquire two values,
|0〉 and |1〉, of course classically, the state of the system must assume one of
these values at a given time. In quantum mechanics however, we are allowed
to construct linear superpositions of state and so we define a qubit to be

|ψ〉 = α|0〉+ β|1〉 (3.1)

where |α|2 + |β|2 = 1. While the simplest realization of qubits could just be
a two-level system in a quantum dot or some other discrete system, these
states are extremely fragile since they can be collapsed by interaction with
the environment in a process known as decoherence. Much theoretical and
experimental work has been carried out to create systems containing stable
qubits that are insensitive to decoherence and yet can be manipulated for
quantum computational purposes. The literature on this subject is exten-
sive, I refer the reader to [73, 74, 75, 76, 77, 78, 79] and references therein for
further reading. We shall be seeing later that quantum information generally
and qubits in particular can be stored in rather abstract spaces such as the
topological spaces of certain states. In general the qubit model just requires
a two-dimensional state space and some method to mediate transitions be-
tween the two states. Below we list the basic transformations that can
be implemented on our qubit states. These transformations correspond to
quantum logic gates, the logical operations go beyond the standard boolean
logic of classical computation and allow for the creation of superposition and
even entangled states.

For our discussion here we will describe our quantum gates in the cir-
cuit model. This is particularly convenient as it admits a simple pictorial
description. An example is given in Fig.(3.1). The horizontal lines repre-
sent quantum wires that transfer qubits around the circuit, by convention,
the progress is from left to right. Note that these denote progress through
time, not space so quantum operations are not constrained to be spatially
separated.

The actual processing of the qubits is performed by a sequence of quan-
tum gates. We split the set of gates into two types; those that act on a
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Figure 3.1:

single qubit and those that enact interaction between qubits, which we re-
fer to as controlled gates. The quantum gates represent unitary operations
transforming the state of one or two qubits.

Single-qubit gates

Here we list the single-qubit gates of interest to us in this thesis. We begin
with the simple qubit rotations about the X, Y and Z axes. These are given
by

X(θ) = e−iθX/2, Y (θ) = e−iθY/2, Z(θ) = e−iθZ/2 (3.2)

where X, Y and Z are the Pauli matrices σx, σy and σz respectively and
hence we refer to these as the Pauli gates. The most commonly used are the
X and Z rotations.

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
. (3.3)

These have the following effect on the computational basis

X : |ψ〉 = |0〉+ |1〉 → |1〉+ |0〉, Z : |ψ〉 = |0〉+ |1〉 → |1〉 − |0〉 (3.4)

Then the Pauli X corresponds to a bit flip and the Pauli Z is a phase
rotation between the states. The Z gate can be generalized to yield arbitrary
rotations with the R(θ) gate, with matrix representation

R(θ) =
(

1 0
0 eiθ

)
(3.5)

The evolution on the computational basis is

R(θ) : |ψ〉 = |0〉+ |1〉 → |0〉+ eiθ|1〉, (3.6)

then the R(θ) operation induces a phase change by some arbitrary angle θ.
The R(θ) gate has two important special cases; the phase gate, S and the T
gate

S =
(

1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
. (3.7)
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Another common single-qubit gate we will make use of is the Hadamard
gate H. This is represented as

H =
1√
2

(
1 1
1 −1

)
, (3.8)

This unitary represents a acts to change the computational basis. The
Hadamard gate takes the input |0〉 and outputs 1√

2
(|0〉 + |1〉) and input-

ing |1〉 gives 1√
2
(|0〉 − |1〉).

Two-qubit gates

In general a controlled unitary operation is one of the form

C(U) =


1 0 0 0
0 1 0 0
0 0 σ11 σ12

0 0 σ21 σ22

 (3.9)

where the lower right 2×2 matrix is one the Pauli matrices σx, σy or σz. Due
to this we sometimes refer to these gates as ’controlled-X’, ’controlled-Y ’ or
’controlled-Z’. Perhaps the most common two qubit gate is the controlled-
X which is usually referred to as the controlled-NOT gate. The two qubits
involved are labeled the control and target. The state of the target qubit
is dependent on the state of the control. The representation is now a 4× 4
matrix, the first and second rows correspond to the control qubit while third
and fourth are the target.

C(X) ≡ CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.10)

In the computational basis the action of the CNOT gate is given by

CNOT : |x, y〉 → |x, y ⊕ x〉, (3.11)

where ⊕ is addition modulo 2. That is, if the control is set to 1 the target
bit is flipped, otherwise it is unchanged.

The other two-qubit gate we will consider is the controlled-Z.

C(Z) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.12)
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This acts similarly to the CNOT but instead of performing control dependent
bit flips on the target, it performs a π rotation on the target qubit. In the
computational basis this is represented as

C(Z) : |x, y〉 → (−1)xy|x, y〉 (3.13)

More generally we have the CPHASE gate:

C(Z) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 (3.14)

Which performs general rotations on the target. In order to construct ef-
ficient computational systems, we want to find a minimal set of quantum
gates that can perform any unitary evolution on a set of input qubits. Such
sets of gate are known as universal gate sets which, if we have access to,
allow for universal quantum computation.

3.1.1 Universality in the qubit model

Universal quantum computers represent the ideal in the field of quantum
computation as such devices would be able to implement any desired quan-
tum algorithm. The definition of a universal quantum computer may be
stated as follows: A system that applies quantum gates, which correspond
to local operations, that effects only a few variables at a time which, by
repeated application of such local operations can effect any unitary trans-
formation over a finite number of those variables to any desired degree of
precision [70, 71].

A set of gates is said to be universal for quantum computation if any
unitary operation may be approximated to arbitrary accuracy by a quantum
circuit involving only those gates [22, 80]. There are many equivalent set of
quantum gates that are universal. The standard universal set for qubits is

H, S, CNOT and T (3.15)

That is, the combination of the complete set of single qubit gates plus the
CNOT is universal for quantum computation. It is important to note that
this set is not unique and in fact is usually quite difficult to implement due
to the T gate. There are however other two-qubit gates which can be used
to form a universal set, most notably the C(Z) gate. Then an equivalent
universal set is

H, R(θ), and C(Z). (3.16)

We can see this is equivalent since (3.16) can generate the standard set
(3.15). This is easily demonstrated since the application of H to the target
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qubit before and after the C(Z) yields the CNOT gate [82]. This concludes
our discussion on discrete-variable quantum computation. For further read-
ing and proofs see [22, 23, 81]. Now we turn to the question of quantum
computation over continuous-variables. We shall see that though the con-
cept is quite different, we can draw some parallels in terms of gate operations
with the qubit model.

3.2 Quantum computation over continuous-variables

The idea for extending quantum computation to the continuous variable
regime was originally proposed by Lloyd and Braunstein [13], furthermore,
they showed that universal QC over CV can be achieved with a finite number
of quantum gates. In the CV approach, the continuous degrees of freedom
can be used directly, as we will see in the computational scheme of Chapter
5. Alternatively we can encode finite-dimensional systems within the con-
tinuous modes as in the GKP proposal [87]. We will be using a variation on
this idea in Chapter 6 to encode qubits into CV resources. We first consider
the necessary and sufficient conditions for constructing a universal quantum
computer using continuous variables.

3.2.1 Universality in the CV model

To define an arbitrary unitary transformation over even a single continuous
variable requires an infinite number of parameters. Such a transformation
cannot typically be approximated by any finite number of quantum opera-
tions. This would seem to imply that quantum computation over continuous
variables is difficult or even impossible to define let alone achieve in a realistic
physical setting. However, it is still possible to define a notion of universal
computation over continuous variables for some subclasses of transforma-
tions, namely those that correspond to Hamiltonians that are polynomial
functions of the operators over the continuous variables. With this in mind,
we can define our notion of universality:

Definition 1. A set of continuous quantum operations is termed universal
for a particular set of transformations if one can by a finite number of appli-
cations of the operations approach arbitrarily closely to any transformation
in the set.

Let us now construct a set of Hamiltonians that allow for universal QC
under this definition. Consider a single continuous variable corresponding to
dimensionless operator q̂, with conjugate variable p̂ satisfying [q̂, p̂] = i. The
simplest Hamiltonians that we must apply are just ±q̂ and ±p̂. The action
of these in the Heisenberg picture gives a time evolution for an operator Â
given by

Â(t) = eiHtA(0)e−iHt, (3.17)
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Then performing the Hamiltonian q̂ for a time t enacts the transformations
q̂ → q̂, p̂→ p̂+ t

2 , similarly applying p̂ gives p̂→ p̂, q̂ → q̂+ t
2 . The effect of

these Hamiltonians is to shift the conjugate variables by a constant. These
Hamiltonians are very limited, to find more interesting behaviour we require
higher orders in q̂ and p̂. The lemma below gives us a method by which to
find all the possible allowed Hamiltonians.

Lemma 3.2.1. The only Hamiltonians it is possible to construct are those
in the algebra generated from the original set by commutation.

Let us apply this result to find a useful set of Hamiltonians. First,
just performing displacement operations ±q̂ and ±p̂ for short periods of
time allows for the construction of any Hamiltonian of the form aq̂ + bp̂ +
c. However, this only yields linear transformations. For the purposes of
universal computation this is clearly insufficient and we have to postulate
higher order Hamiltonians. To that end, assume we can apply,

H1 = q̂2 + p̂2. (3.18)

Applying this Hamiltonian for time t makes the transformation

q̂ → cos tq̂ − sin tp̂,
p̂→ cos tp̂+ sin tq̂ (3.19)

In our electromagnetic field example, such an operation corresponds to a
phase shift. The commutation relations between H1, q̂ and p̂ imply that
the addition of H1 allows Hamiltonians of the form aH1 + bq̂ + cp̂+ d to be
generated.

We can also assume another type of quadratic Hamiltonian H2 defined
by

H2 = q̂p̂+ p̂q̂. (3.20)

This has quite a different effect on the canonical variables. H2 gives the
transformations

q̂ → etq̂,

p̂→ e−tp̂. (3.21)

We recognize this as the squeezing operation, stretching q̂ while squeezing
p̂. We find the commutation relation between H1 and H2 is

[H1, H2] = 2i(q̂2 − p̂2) (3.22)

which gives us a further form of quadratic operation. In fact, the algebra
generated from q̂, p̂, H1 and H2 by commutation, allows the construction of
any Hamiltonian that is quadratic in q̂ and p̂ though importantly, none of
higher order.
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To find higher order Hamiltonians, we require non-linear effects. One
example is the Kerr Hamiltonian

HK = (q̂2 + p̂2)2. (3.23)

In our optical scenario, this would correspond to a χ(3) non-linear process.
This Hamiltonian has the useful property that commuting it with a poly-
nomial in q̂ and p̂ increases its order. One can see this by evaluating the
commutators,

[HK , q̂] = −2i(q̂2p̂+ p̂3) + lower order terms,

[HK , p̂] = −2i(q̂p̂2 + q̂3) + lower order terms,

[q̂, [HK , H2]] = −8p̂3 + lower order terms,

[p̂, [HK , H2]] = 8q̂3 + lower order terms, (3.24)

we can see that the algebra that we generate with the addition of H2 includes
all third order polynomials in q̂ and p̂. With these operations, we can prove
the following:

Theorem 3.2.2. The algebra generated from commutation of the Hamilto-
nians q̂, p̂, H1, H2 is sufficient to construct Hamiltonians of arbitrary order
in q̂ and p̂.

Proof. Suppose we can construct a polynomial of order M consisting of any
specific term

q̂M−np̂n, (3.25)

for M ≥ n. Since we may create any quadratic Hermitian Hamiltonian and
since

[q̂2, q̂M−np̂n] = i
n

2
q̂(M−n+1)p̂n−1 + lower order terms,

[p̂2, q̂M−np̂n] = −iM + n

2
q̂(M−n−1)p̂n+1 + lower order terms (3.26)

then we see that we can create all polynomials of order M .

A useful extension to this that we will be using extensively later it that
by commutation of q̂3 and p̂3 with monomials of order M we can construct
any monomial of order M + 1. Since any polynomial of order M + 1 can be
constructed from monomials of order M + 1 and lower by applying linear
operations and a single non-linear operation a finite number of times one
can construct polynomials of arbitrary order in q̂ and p̂ to any desired degree
of accuracy. Then the use of the Kerr Hamiltonian was not essential, we
can use any Hamiltonian that is higher than quadratic order. In particular,
commutation of q̂, p̂, H1, H2 and a Hamiltonian of order three (or higher)
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allows for the construction of arbitrary Hermitian polynomials of any order
in q̂ and p̂.

To summarize, we have seen that simple linear operations, together with
a single non-linear operation, allow one to construct a arbitrary polynomial
Hamiltonian transformations on a single quantum variable. We will be using
this result to form the universal set of gates for CV computation, but first
we have to consider the case where we allow different modes to interact.

Suppose we have multiple variables, {q̂i, p̂i}, on which, the operations
described above can be performed. Now we allow the variables to interact.
Let us assume we can apply the interaction Hamiltonian ±Bij defined by

Bij = (p̂iq̂j − q̂ip̂j). (3.27)

By restating this Hamiltonian in terms of creation/annihilation operators
we recognize this as the beam-splitter interaction. A more complicated
interaction can be enacted by simply performing appropriate single mode
operations on modes i and j. The Hamiltonian affects the following trans-
formation

Âi → cos tÂi + sin tÂj ,

Âj → cos tÂj − sin tÂi (3.28)

where Âi = {q̂i, p̂i} and Âj = {q̂j , p̂j}. By repeatedly taking commutators
of Bij with polynomials in q̂i and p̂j , for different i, then it is possible to
build up arbitrary Hermitian polynomials in {q̂i, p̂i}.

Then we can conclude that simple linear operations on continuous vari-
ables, together with any nonlinear operation and some interaction between
different variables suffice to enact arbitrary Hamiltonians to a given degree
of accuracy. This concludes our discussion on the requirements for a univer-
sal CV quantum computer. Now we can look at the specific encodings and
gate operations that perform these Hamiltonians.

3.3 Encoding information in CV systems

The basic unit of quantum information in continuous variables is known as a
qumode, which correspond physically to the quadrature states of the CV sys-
tem. Then this is a system described by an infinite-dimensional Hilbert space
spanned by a continuum of orthogonal states labeled |s〉q, where s ∈ R. We
define the conjugate basis states over the conjugate canonical variable|s〉p.
Then both bases satisfy the standard orthogonality conditions associated
with the quadrature states,

q〈r|s〉q = δ(r − s), p〈r|s〉p = δ(r − s), (3.29)
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and the bases are related by a Fourier transform:

|s〉p = F |s〉q =
1

2π

∫ ∞
−∞

dreirs|r〉q,

|s〉q = F †|s〉p =
1

2π

∫ ∞
−∞

dre−irs|r〉p (3.30)

These relations define the first of our CV operators, the unitary operator
F . From the definition of our quadrature states, Eq.2.22, applying p̂ gen-
erates positive position translations while, −q̂ is the generator for positive
momentum translations. We can write an arbitrary position and momentum
eigenstates as

|s〉q = X(s)|0〉q, |s〉p = Z(s)|0〉p, (3.31)

where the translation operators are given by X(s) = e−isp̂ and Z(s) =
eisx̂ producing displacements in the computational and conjugate spaces
respectively. These operators generate the Heisenberg-Weyl (HW) group of
phase space displacements. An arbitrary pure quantum state |φ〉 of a CV
system may be decomposed as a superposition of either |s〉q or |s〉p.

A qumode is a minimum uncertainty state if the product of the quadra-
ture deviations ∆q̂ and ∆p̂ satisfies

∆q̂∆p̂ =
1
2

(3.32)

The ground state |0〉 is defined by â|0〉 = 0 is of particular interest. It repre-
sents a Gaussian superposition centered about 0 in either the computational
or conjugate basis,

|0〉 =
1

π1/4

∫
ds e−s

2/2|s〉q =
1

π1/4

∫
ds e−s

2/2|s〉p. (3.33)

The vacuum state is a specific example of the Gaussian states that we de-
scribed in the previous Chapter 2. The vacuum state is often used in com-
putational protocols as the initial state of the physical resources.

3.4 Continuous variable quantum gates

Having derived the necessary set of Hamiltonians for our CV computer, we
state the corresponding CV quantum gates. As with the qubit case, we only
require a finite set of theses gates to implement universal operations. These
gates may be thought of as a CV analog of the Pauli gates which perform
bit-flips, phase-flips or a combinations of these. The CV equivalent of the
Pauli operators are the Heisenberg-Weyl operators

X(s) = e−isp̂, Z(t) = eitq̂, (3.34)
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for s, t ∈ R. These operators are non-commutative and obey

X(s)Z(t) = e−istZ(t)X(s) (3.35)

On the computational basis these act as

X(t)|s〉 = |s+ t〉, Z(t)|s〉 = eist|s〉. (3.36)

The Fourier transform F is the CV analogue of the Hadamard transforma-
tion. It is defined as

F = eiπ(q̂2+p̂2)/2 (3.37)

its action on the Pauli operators is

F : X(s)→ Z(s)

Z(t)→ X(t)−1. (3.38)

The phase-gate P (η) is the squeezing operation defined by

P (η) = eiηq̂
2

(3.39)

with action on the Pauli operators

P (η) : X(s)→ eiηq̂
2
X(s)Z(ηs),

Z(s)→ Z(s), (3.40)

which is the analogue of the discrete variable phase gate. Finally, we require
multi-mode operation. We choose the SUM gate which is the CV analogue
of the CNOT. This provides the basis interaction between CV modes i and
j and is defined by

SUMij = e−iq̂i⊗p̂j . (3.41)

The action of this two-mode gate on the Pauli operators is given by

SUMij :Xi(s)⊗ 1j → Xi(s)⊗Xj(s),
Zi(t)⊗ 1j → Zi(t)⊗ 1j ,

1i ⊗Xj(s)→ 1i ⊗Xj(s),

1i ⊗ Zj(t)→ Zi(t)−1 ⊗ Zj(t) (3.42)

This gate describes a quantum non-demolition interaction since there is no
back-action on the control state due to the target.

These CV operations are sufficient to simulate all possible quadratic
Hermitian Hamiltonians as we saw from our proof above. However, by the
Gottesman-Knill theorem for CV computation [106] these on there own do
not provide any speedup over classical computation. In order to gain an
advantage over classical simulation one must include a gate described by a
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Hamiltonian of higher than quadratic order. Transformations generated by
these Hamiltonians do not preserve linear structure of the generators and
are much harder to deal with mathematically. In particular, higher order
operations are not Gaussian maps and so when dealing with such operators
is it no longer sufficient to apply our symplectic description of states as the
function may acquire higher order moments.

3.5 Summary of CV computational operations

Here we have derived a set of quantum gates that are universal for CV
quantum computation. Further, from the CV Gottesman-Knill theorem, it
is possible to show that a universal gate set provides a speed up over classical
computation. The set of CV gates that we use later in this thesis to test the
universality of certain computational systems is

X(s), Z(t), P (η), F, SUM and V (γ), (3.43)

where V (γ) = eiγq̂
3

is known as the cubic phase gate. This is the nonlinear
element that allows us to generate higher order Hamiltonians. In terms
of the Gaussian transformations from the previous chapter, we note that
all but the V (γ) gate are Gaussian operations and are fully represented by
modification of the second moments of the Gaussian states. However the
cubic gate, which is required for universality cannot be decomposed into
Gaussian transformations, this is a non-Gaussian element and cannot be
represented by just transforming first and second moments of the Gaussian
states. Such gates have proved difficult to enact in practice, however there
have been various proposals put forward [83, 84].
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Chapter 4

Continuous-variable cluster
states

In this chapter we present the first of our alternatives to the standard circuit
model of quantum computation, known as the Measurement-Based model
of Quantum Computation (MBQC). Within this quantum computational
paradigm all basic dynamical operations are performed by making measure-
ments on a specially prepared multi-partite entangled state. Remarkably,
the measurement-based scheme can simulate arbitrary quantum dynamics,
including unitary dynamics. Here we focus on a class of measurement-based
models proposed by Raussendorf and Briegel [89], the so-called cluster state
model or one-way quantum computer. The cluster state model has a re-
markably rich structure which differs substantially from the conventional
unitary model of quantum computing. The differences have led to new in-
sights into computational complexity [90], and to dramatic simplifications
in experimental proposals for quantum computation [103, 92].

In the following we give a brief overview of the formalism of the measurement-
based model. We begin by defining the special classes of entangled states
that form the substrate for the one-way model. We extend out treatment to
include finitely squeezed or Gaussian states and show how these Gaussian
states can be modified through unitary operations and measurements. This
leads us to the main subject of this Chapter, the generation of Gaussian
cluster states from optical and atomic components. To accomplish this we
derive certain interactions that allow atomic and light modes to couple to-
gether. Having established a set of interactions, we give explicit protocols
for the generation of several types of atomic/light cluster. We go on to ex-
amine a fundamental barrier to the MBQC model over continuous-variables
and suggest an alternative architecture for cluster state computing based on
the resources that we have developed.
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4.1 Cluster States

The measurement-based model relies on the creation of cluster states, which
act as a universal substrate with quantum information encoded virtually
within them. Though originally based on qubits, the cluster model has been
generalized to higher dimensional discrete-variable systems (qudits) [93] as
well as to continuous-variables [94]. The term cluster state, refers to a family
of quantum states defined by mathematical graphs. That is, for some graph
G on n vertices we can define an associated n-mode cluster state Then each
vertex of the graph corresponds to a quantum system, and then applying a
graph dependent preparation procedure to the quantum modes we generate
entanglement between the modes. The correlations due to entanglement
are represented by the edges of the graph, see Fig. (4.1). For a general
introduction to the mathematical formalism of graphs see [95].

The original cluster state construction, based on qubits is defined on
an undirected, unweighted graph G = (V,E), having no self loops are con-
structed as follows. For each vertex of G, we initialize a qubit in the state
|+〉 = (|0〉 + |1〉)/

√
2. For every edge in G linking two vertices, we apply a

C(Z) gate to the two corresponding qubits. Any unitary operation can be
implemented on a tailor-made graph state using an appropriate sequence of
single-qubit measurements.

However, dealing with the state function directly is rather cumbersome
due to the large number of modes involved. Then rather than dealing with
the states directly we turn to the stabilizer formalism [96]. Stabilizers pro-
vide an efficient way to represent any graph state. We say a state |φ〉 is
stabilized by an operator K if it is an eigenstate of K with unit eigenvalue,
that is K|φ〉 = |φ〉. It turns out that the set of stabilizers form an Abelian
group under operator multiplication and if such a set exists for a given state,
then we call that state a stabilizer state. The generators of the stabilizer
group can then be used to uniquely define the state they stabilize. The
stabilizers for qubit graph states are well known [89]. Given that |φ〉 is an
n-qubit graph state with associated graph G = (V,E), it is stabilized by

Ki = Xi

∏
j∈N(i)

Zj (4.1)

where N(i) denotes the set of indices that define the set of vertices that
neighbor vi, i.e., N(i) = {j|(vj , vi) ∈ E}. The operators X and Z are the
usual Pauli operators for qubits.

4.1.1 Continuous-Variable Graph States

In analogy to the qubit clusters, continuous-variable graph states can be
used as resources for universal CV quantum computation [94]. In order to
describe these states we introduce the nullifier formalism which is a variation
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Figure 4.1: A representation of a nine-qubit cluster state. The qubits (blue
circles) are entangled (black lines) to form a large multi-partite resources
state. The cluster state is defined by its stabilizer operators. Node i is
stabilized by Ki = XiZ1Z2Z3Z4.

on the CV stabilizers [29, 97]. These allow us to see how to compute how
CV graph states transform under quadrature measurements.

To generalize to CV graph states we effectively replace elements of qubit
cluster-state computation with their CV analogues: |+〉 becomes |0〉p. The
measurements that we make on the CV cluster are of p̂ and x̂ 1. We can also
perform the CZ = eix̂ix̂j gate, which entangles nodes i and j in analogy with
the C(Z) gate. As before each CV graph can be described by a graph G =
(V,E), where the set of vertices V corresponds to the individual qumodes,
and the edge set E determines which qumodes interact via the CZ operation.
At the moment we consider only unweighted graphs (or equivalently, graphs
where the edges weights are all +1).

4.1.2 Continuous-variable stabilizers and nullifiers

We can carry our analogy further by defining the stabilizer formalism for
CV systems. This can be used to specify any CV graph state completely
[100]. A zero-momentum eigenstate |0〉p is stabilized by X(s) for all s, since
it is a +1-eigenstate of those operators. This holds even though X(s), being
non-Hermitian, is not an observable. Mathematically, if K stabilizes |φ〉,
then UKU † stabilizes U |φ〉. This observation, together with the relation

eix̂1x̂2 p̂1e
−ix̂1x̂2 = p̂1 − x̂2, (4.2)

1For the remainder of this thesis we make the switch q̂ → x̂ for our position operator.
This is to remain consistent with publications and make a separation between introductory
material and new work.
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which gives us the effect of applying a CZ gate on some mode of the graph.
Applying this to the next connected mode yields,

eix̂1x̂3eix̂1x̂2 p̂1e
−ix̂1x̂2e−ix̂1x̂3 = p̂1 − x̂2 − x̂3. (4.3)

Continuing in this manner we see how to write the stabilizers for an arbitrary
CV graph state |φ〉 on n qumodes with graph G:

Ki(s) = Xi(s)
∏

j∈N(i)

Zj(s), i = 1, ..., n (4.4)

for all s ∈ R and N(i) is as above.
This group of CV stabilizers is described by its Lie algebra, the space of

operators H such that H|φ〉 = 0. We refer to any element of this algebra
as a nullifier of |φ〉 and the entire algebra as the nullifier space of |φ〉. The
nullifier space of an n-qumode graph state |φ〉 with graph G = (V,E) is an
n-dimensional vector space spanned by the following Hermitian operators:

Hi = p̂i −
∑
j∈N(i)

x̂j , i = 1, ..., n. (4.5)

That is, any linear superposition H =
∑

i ciHi satisfies H|φ〉 = 0. Note
that [Hi, Hj ] = 0 for all (i, j). This definition of the nullifiers relies on the
creation of zero-momentum eigenstates, i.e., infinite squeezing of the initial
resource states is required. Later, we will expand this definition to include
non-ideal clusters that are created from Gaussian states.

We can compactly state the nullifiers of a cluster state in terms of the
adjacency matrix, A, of the underlying graph [99].

(p̂−Ax̂)|φ〉. (4.6)

Where p̂ and x̂ are vectors of the momenta and positions of all the qumodes
of the graphs. The entries of the adjacency matrix correspond to interactions
between between modes. For unweighted graphs all the entries are either 0,
which indicates no entanglement between modes, or 1 which corresponds to
a edge between a pair of qumodes.

4.2 Quantum computation on CV graph states

Here we will show how the CV graph states we defined above can be used to
perform measurement-based CV quantum computation. It is known that for
any given CV unitary U , and any given input |φ〉, there exists an appropriate
graph state such that by entangling the graph state locally with |φ〉 and
applying an appropriated sequence of single-mode measurements U |φ〉 is
computed [29].
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To implement any unitary operation on k qumodes, we apply the fol-
lowing algorithm. First, introduce a graph G. We designate k vertices of G
as input vertices, and another set as output. Call these sets Vin and Vout.
Note that the input/output sets may overlap. Then the following algorithm
computes U |φ〉:

• The qumodes corresponding to the vertices in Vin encode the input
state |φ〉, while the qumodes corresponding to the other vertices are
each initialized in the state |0〉p.

• For each edge (vj , vk) ∈ E, apply CZ = eix̂j x̂k between vertices j and
k. Since all CZ operations commute, their order does not matter.

• Measure each vertex vi for all vi /∈ Vout in a basis of the form Mi =
e−ifi(x̂)p̂eifi(x̂), where fi(x̂) is in general, a polynomial of x̂. The exact
form of each fi is dictated by the unitary we wish to implement and the
result of measurements on prior modes. Without loss of generality, we
can label the vertices such that they are measured in numerical order.

• The remaining unmeasured qumodes encode U |φ〉, modulo known single-
mode rotations and translations.

This algorithm may be implemented by using an appropriate graph state
as a resource. This algorithm is universal, that is, given an appropriate
graph G and the ability to designate Vin, Vout ⊆ V , such that the algorithm
implements U .

4.2.1 Quantum gates

We consider how each of the CV quantum gates may be implemented via
measurements on CV cluster states. Note that s ∈ R throughout our anal-
ysis.

Gaussian operations

Quadrature displacements: These are implemented by measuring p̂sx̂ =
p+s which is equivalent to measuring p̂ and adding on some s that we want
to displace it by. There is no dependence on previous measurements since
p̂s(x̂+m) is also equal to p̂+ s and so no adaption is required.
Shears: Shears, given by eisx̂

2
correspond to measurements in the basis

p̂sx̂2/2 = p̂ + sx̂. In this case adaptation for previous measurements is re-
quired. The new measurement basis is of the form p̂s(x̂+m)2/2 = p̂+sx̂+ms,
which differs from the original basis only by a measurement-dependent con-
stant. This can be accounted for trivially by measuring in the original basis
and adding ms to the result.
Fourier transform: The Fourier transform F is obtained for free simply
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through the Gaussian correction applied with each measurement (see Ap-
pendix).
Controlled phase gate: The controlled phase is almost trivially performed
since any two vertex graph is connected by a CZ operation so we just label
the nodes as both input and output and no measurement is required.

Non-Gaussian Operations

As we showed in the previous chapter, the only non-Gaussian operation we
require for universality is the cubic phase gate. Any higher order unitary
may be implemented by the cubic phase in combination with the Gaussian
gates.
Cubic phase: The cubic phase gate, eisx̂

3
, may be performed on the cluster

by measuring in the basis p̂sx̂3/3 = p̂ + sx̂2. This gate has the effect of
changing the physical basis to p̂s(x̂+m)3/3 = p̂ + sx̂2 + 2

3msx̂ + 1
3m

2s due
to the presence of the non-commuting m dependent term 2msx̂/3. This
difference requires physically changing the basis of measurement. A general
CV computation will require adaptive measurements for the non-Gaussian
part of the computation. As to what these measurements correspond to
depends greatly on the physical context.

4.3 Gaussian CV cluster states

Until now we have only considered cluster states with perfect correlations.
That is, we have assumed the presence of momentum eigenstates to con-
struct our states which are highly unphysical, requiring infinite squeezing
and hence infinite energy to produce. However, all is not lost. The graph
representation of a Gaussian pure state defined above yields a natural way
to extend the graph representation of ideal CV cluster state to their finitely
squeezed Gaussian approximants.

Here we examine the construction of CV clusters in detail with an aim
to relaxing the infinite squeezing condition. To accomplish this we have to
find a set of stabilizers and nullifiers for finite squeezed Gaussian clusters
[99].

4.3.1 Stabilizers for Gaussian pure states

To find the stabilizer operators for the finitely squeezed canonical CV cluster
states we must first find the stabilizer of the vacuum state |0〉 of a qumode
âk. Then from this we may find the stabilizer for the momentum squeezed
vacuum and then construct the cluster state stabilizer by entangling the
momentum eigenstates with a set of CZ gates.
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Then for the operators x̂ and p̂, where â = 1√
2
(x̂ + ip̂), we have the

vacuum stabilizer,

|0〉 = exp(αâk)|0〉 = exp
[
α√
2

(x̂k + ip̂k)
]
|0〉. (4.7)

We can find the stabilizer for a single-mode squeezed state by applying
the squeezing operator, Ŝ(rk) = exp[ i2rk(x̂kp̂k + p̂kx̂k)], with a squeezing
parameter rk > 0, to the vacuum state. The stabilizer equation can be
written as

Ŝ(rk)|0〉 = Ŝ(rk) exp
[
α√
2

(x̂k + ip̂k)
]
Ŝ†(rk)Ŝ(rk)|0〉

= exp
[
α√
2

(e+2rk x̂k + ie−2rk p̂k)
]
Ŝ(rk)|0〉 (4.8)

We can also find the momentum squeezed state, Ŝ(−rk),

Ŝ(−rk)|0〉 = Ŝ(−rk) exp
[
α√
2

(x̂k + ip̂k)
]
Ŝ†(−rk)Ŝ(−rk)|0〉

= exp
[
α√
2

(e−2rk x̂k + ie+2rk p̂k)
]
Ŝ(−rk)|0〉 (4.9)

Note that the exponential terms can be rewritten as phase-space displace-
ments, X(s) = e−isp̂ and Z(s) = eisx̂.

Ŝ(−rk)|0〉 = exp
(
−1

4
α2

)
Xk

(
− α√

2
e+2rk

)
Zk

(
−i α√

2
e−2rk

)
, (4.10)

Now define α = −
√

2e−2rks such that the momentum squeezed stabilizer
becomes

exp
(

1
2
e−2rks2

)
Xk(s)Zk(ie−2rks). (4.11)

Of course in the limit of infinite p̂-squeezing (rk → ∞), this approaches
Xk(s). This stabilizes the infinite squeezed eigenstate |0〉pk , withXk(s)|0〉pk =
|0〉pk , for all s ∈ R as expected.

Now we can construct a CV cluster state in the usual way, that is,
applying CZ gates between pairs of modes, indicated by CklZ between nodes
k and l. The N stabilizers of the initial N momentum-squeezed modes,
Eq.(4.11), with k = 1, 2, ..., N , are then transformed for each interaction
with neighbour l as

exp
(

1
2
e−2rks2

)
CklZ Xk(s)C

kl†
Z CklZ Zk(ie

−2rks)Ckl†Z

= exp
(

1
2
e−2rks2

)
Xk(s)Zl(s)Zk(ie−2rks). (4.12)
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Eventually, collecting all these interactions, we obtain the N new stabilizers

exp
(
−1

2
e−2rks2

)
Xk(s)Zk(ie−2rks)

∏
l∈N(k)

Zl(s), (4.13)

where N(k) is the set of neighbours of k. In the limit of infinite squeezing,
we get back the well known, ideal CV cluster state stabilizers for unweighted
graphs. However, this time, the stabilizers represent an approximate cluster
state. The nullifiers are found by taking the log of the stabilizers:

exp
(
−1

2
e−2rks2

)
Xk(s)Zk(ie−2rks)

∏
l∈N(k)

Zl(s)

= exp
(
−1

2
e−2rks2

)
exp[−is(p̂k − ie−2rk x̂k)] exp

(
1
2
e−2rks2

) ∏
l∈N(k)

exp(isx̂l)

= exp

[
−is

(
p̂− ie−2rk x̂k −

∑
l

x̂l

)]
, (4.14)

for all k = 1, 2, ..., N and for all s ∈ R. The nullifiers are therefore

p̂k − ie−2rk x̂k −
∑

l∈N(k)

x̂l, ∀k. (4.15)

The corresponds to the complex nullifier

(p̂− Zx̂)|ψZ〉 = 0 (4.16)

with complex adjacency matrix Z having imaginary diagonal entries ie−2rk

and the remaining entries begin either 0 or 1 depending of the particular CV
cluster state with unweighted edges. These diagonal elements correspond to
complex weighted self-loops at each vertex of the graph. This result now
allows us to deal with Gaussian cluster states in much the same way as their
ideal counterparts, except now we have to keep track of the imaginary part
corresponding to the self-loop.

4.3.2 Transformation Rules

In this section we will derive the rules for updating a graph after a quadrature
measurement is made which will be of key importance in Chapters 5 and 6
to create ground states with topological properties. We will be making use
of the ideal and the Gaussian clusters so we must be clear how to perform
transformations for both cases.

The first thing when considering quadrature measurements is to define
the nullifier that corresponds to the measurement outcome. This is the new
nullifier that the post-measurement state must satisfy due to the projection
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onto the measurement basis. Next we choose an appropriate invertible ma-
trix M such that the entries in the new (ideal) nullifier vector Mp̂−MV x̂
are such that only one of them fails to commute with the nullifier corre-
sponding to the new measurement. This new nullifier vector also uniquely
defines the pre-measurement state (since M is invertible), but because only
one of the entries fails to commute with the measurement nullifier, all the
remaining ones will also be nullifiers for the post-measurement state as well.
The one that fails to commute is therefore discarded and replaced by the
measurement nullifier to form the post-measurement nullifier vector [29].

All this still holds for complex nullifiers. For x-measurements on a mode
j with outcome sj means that the new state has xj−sj as one of the nullifiers.
However, since we are neglecting displacements, the post-measurement state
will instead have xj as the measurement nullifier. The usual nullifier for a
Gaussian graph Z is p−Zx, from which we can see that all nullifiers commute
with xj except the jth one.

The measurement of x̂ on an ideal CV cluster state corresponds to dele-
tion of the measured node from the cluster, along with all of its links, see
Fig.(4.2(a)). The effect is the same on Gaussian graphs and can be seen
in the nullifier formalism in that all references to pj are gone, and linear
combinations of the post-measurement nullifiers can be used to delete all
references to xj , as well. As an action on the adjacency matrix Z, this
corresponds to deleting its jth row and column.

Figure 4.2: (a) A projective measurement of x̂ on some node of the cluster
state (Red) removes that node and all connections to it. (b) A projective
measurement of p̂ on some node of the cluster state removes that node but
leaves the entanglement between the new nearest neighbours intact.

Measuring in p deletes the corresponding node but preserves the links
between neighbouring nodes, up to local phase shifts (Fig.(4.2(b))). Due
to the phase shifts, the resulting state is often impossible to represent as
an ideal CV cluster state graph, but we can do it easily for approximate
CV cluster states as a two step process: (1) perform an inverse Fourier
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transform on the node to be measured. (2) Perform a x-measurement as
described above, thereby deleting it and its links from the graph. This is
not equivalent in total to a simple disconnection, however, because the phase
shift generates additional connections in the neighbourhood of the measured
node before the node is disconnected. This is the mechanism by which the
links after a p-measurement are preserved even when the node is deleted.

4.4 Construction of continuous variable cluster states

In the following we present the main results of this chapter. We will show
first how to generate Gaussian cluster states composed of ensembles of
atoms, where each ensemble represents a qumode of the state. We then
investigate how to include light modes to our atomic clusters to form com-
posite clusters. These composite states lead us to consider an alternative
architecture for MBQC that can reduce experimental overheads and errors
due to entanglement loss.

There are many known protocols for the construction of Gaussian clus-
ters. These mainly focus on optical clusters, where each qumode is a light
pulse that is described by some continuous parameter. Such schemes in-
clude, the linear optical construction [27], the single optical parametric os-
cillator (OPO) method [31] and single quantum non-demolition (QND)-gate
schemes [32, 33]. These are experimentally advantageous as they are deter-
ministic, unlike the discrete variable counterparts which rely on nondeter-
ministic interactions and postselection, [103, 104, 105]. However, as with
any CV system, these protocols suffer the usual problems such as the lack
of infinitely squeezed resources leading to finite squeezing errors.

Here our analysis will follow the canonical generation method discussed
above. In this method the cluster states are created from single-mode squeez-
ers and controlled-Z (CZ) gates [94]. The controlled-Z is an example of a
QND interaction and, for optical modes, can be implemented using beam-
splitters and inline or offline squeezers [106, 107, 108]. This method, while
experimentally challenging is achievable with current technology [109].

CV cluster states can be built, not only from optical modes but also from
ensembles of polarized atoms where each ensemble is a different CV mode
[110, 111, 35, 36]. The ensembles are entangled by performing interactions
with off-resonant linearly polarized light, which, on the classical level, per-
forms a Faraday rotation. The rotated light then serves as a carrier to encode
information in each of the ensembles and homodyne measurements are per-
formed to complete the protocol and project the state of the ensembles into
the desired entangled state. We will begin by deriving this interaction and
noting its behaviour on both a classical and quantum level. First though,
we have to examine the physical systems involved in our interaction.
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4.5 Quantum variables for Atoms and Light

In this section we introduce the quantum variables for light and atoms and
describe an off-resonant dipole atom-light interaction which is applicable
to such transitions as the 6S1/2 ground state to the excited 6P3/2 state in
cesium. We use collective spin operators for atoms and Stokes operators
for light as a convenient way to describe the interaction. The interaction
has been investigated semi-classically in [138] and the quantum mechanical
interaction Hamiltonian was derived for spin 1/2 systems in [130]. The
interaction Hamiltonian for the realistic F = 4 system taking the complete
level structure into account was derived in [114]. Here we will briefly review
the interaction from both a classical and quantum perspective. We will
then present the general effective Hamiltonian which describes the dynamics
of the ground state spin and the polarization of the light. From this we
derive the equations of motion for the light and atomic operators. We will
find that the spin component along the direction of light propagation is
mapped to the light without being perturbed by the interaction. This is
known as a Quantum-Non-Demolition (QND) measurement, we increase
our knowledge of a particular spin component, which amounts to squeezing
the probability distribution of that variable. Finally, we rescale the atomic
and light variables to obtain a common mathematical framework for the
description of the systems. These canonical variables will be relied upon
throughout the following discussion regarding the construction of cluster
states.

4.5.1 Atomic Spin Operators

For the atomic quantum variables we are concerned with the total angular
momentum F. It is normal to restrict to one hyperfine level, which for cesium
is F = 4 2. We denote by ĵk,i the total angular momentum for a single atom
and J denotes the collective angular momentum for the entire ensemble.
This is defined by

J =
Nat∑
i=1

ĵk,i, k = x, y, z. (4.17)

Where Nat is the number of atoms in the choses hyperfine level. In a typical
experiment [113], the number of atoms is of the order 1012. This implies
that the eigenvalues of this operator are sufficiently close together close com-
pared with the length of the spin vector that we can regard the Ĵy and Ĵx
components of spin as continuous-variable operators. We assume the atoms
are all polarized along the x-axis, which defines our axis of quantization.
Then, fluctuations in the Ĵx component of collective spin are kept extremely

2This is for experimental convenience since the hyperfine splitting is large compared
to the resolution of typical laser systems
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small relative to the strong coherent excitation and we can just treat Ĵx as
a classical quantity, Ĵx ≈ 〈Ĵx〉 ≡ ~Jx = ~NatomF . This state is known as
a Coherent Spin State (CSS). The orthogonal components of spin are un-
affected by the x-polarization and quantum fluctuations around their mean
value remain relatively large. Via the commutation relation the Heisenberg
uncertainty relation sets a lower bound for the quantum fluctuations

[Ĵy, Ĵz] = iJx (4.18)

which in turn leads to

Var(Ĵz).Var(Ĵy) ≥
J2
x

4
(4.19)

Here Var(Ĵk) = 〈Ĵ2
k 〉 − 〈Ĵk〉2 is the width of the probability distribution

for the operator Ĵk. It has been shown that Ĵz and Ĵy have a Gaussian
distribution with zero mean [115].

4.5.2 Polarization states of light

Since light pulses will be both meditating interactions between atomic en-
sembles and will be included in clusters states are qumodes, we require a
description that puts the light modes on the same footing as the atomic
modes. Upon interaction with the atomic ensembles, it turns out that the
polarization of the light is the relevant quantum variable. The polarization
state is well described by the Stokes operators. Consider a pulse of light, or
collection of photons, traveling along the z-direction then the Stokes opera-
tors read,

Ŝx =
1
2

(n̂ph(x)− n̂ph(y)) =
1
2

(â†xâx − â†yây),

Ŝy =
1
2

(n̂ph(+45)− n̂ph(−45)) =
1
2

(â†xây + â†yâx),

Ŝz =
1
2

(n̂ph(σ+)− n̂ph(σ−)) =
i

2
(â†xây − â†yâx), (4.20)

where n̂ph is the number of photons with x-polarization, and so on. This
form of the Stokes operators are dimensionless; they just count photons. As
with the atomic modes defined above, we assume a strong polarization in
along the x-direction. The polarization along y is much weaker. Then the
x-mode operators âx and â†x can be regarded as classical quantities.

The Stokes operators satisfy angular momentum commutation relations,

[Ŝy, Ŝz] = iSx (4.21)

which leads to the uncertainty relation

Var(Ŝy)Var(Ŝz) ≥
S2
x

4
(4.22)
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Similarly to the atomic ensembles, the polarization in the y and z directions
are Gaussian distributed. This observation justifies our use of the symplectic
formalism used later to calculate the effects on interactions between the
polarized light and atomic ensembles.

4.5.3 Interaction: Semi-classical picture

We now turn to the question of how the interaction between the atomic
ensembles and light modes affects the spin and polarization properties. The
full multi-level interaction Hamiltonian has been derived in [130]. For a
conceptual understanding of the interaction it is only necessary to consider
the semi-classical case. Then we treat the light as a classical off-resonant
field propagating through a polarizable medium with a strong incident mag-
netic field. This field is assumed sufficiently strong to exceed the spin orbit
interaction, this ensures that we work in Paschen-Back regime. The light
experiences a phase shift because of the index of refraction of the dispersive
medium. Light linearly polarized along the x-axis can be linearly decom-
posed as

â+ =
1√
2

(âx + iây), â− =
1√
2

(âx − iây). (4.23)

With the z-axis as quantization axis this light will drive ∆m = 1 and ∆m =
−1 transitions respectively. For a dispersive interaction with a two level

Figure 4.3: Two level Faraday interaction. Green lines denote transitions
between hyperfine levels m = ±1/2 and m′ = ±1/2 , orange dotted lines
correspond to emission. We have detuning ∆, atomic transition frequency
ωat and light frequency ωL.

system. Fig. (4.3). This means that the σ+ component will acquire a phase
shift δ+ = δ0N− proportional to the population in m = −1/2, N− and
correspondingly the σ− component acquires a phase δ− = δ0N+. Then a
rearrangement of Eq.(4.23) gives the effect of this phase shift on the linear
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polarization

ax =
1√
2

(a− − a+) = eiδ0(N++N−)/2 cos(δ0(N− −N+))

ay =
i√
2

(a− + a+) = eiδ0(N++N−)/2 sin(δ0(N− −N+)) (4.24)

where we took ax = 1, ay = 0, a+ = −1/
√

2 and a− = 1/
√

2. Then
passing the light through a dispersive medium acts in the light by rotating
its polarization by an angle proportional to the population difference in the
two ground state levels. We note that apart from a factor of 1/2 this is just
Ĵz. This effect is known as a Faraday rotation. However, there is no effect on
the value of Ĵz as the spin is not rotated by the light. Then sending linearly
polarized light through our atomic sample and subsequently measuring the
polarization rotation implements a measurement of Ĵz without altering its
value. This process can then be considered a QND measurement of the
atomic spin and has been used in experiments to produce entanglement
between atomic samples [113].

4.5.4 Interaction: Quantum Picture

Under the semi-classical picture we don’t gain much intuition as to the effect
on the interacting light field. In order to find the back-action effects on the
light, we must apply the full quantum treatment. We consider a propagat-
ing beam of light coupled off-resonantly to a transition in the atomic sample
(e.g. 6S1/2,F=4 → 6P3/2,F ′=3,4,5 transitions in cesium). Neglecting absorp-
tion effects and adiabatically eliminating the optically excited states, an
effective Hamiltonian describing the light interacting with only the ground
state degrees of freedom is obtained [114, 116, 117].

Heff
int =

−~cγ
8A∆

λ2

2π

∫ L

0
(a0.φ̂(z, t) + a1.Ŝz(z, t)ĵz(z, t)

+ a2[φ̂(z, t)ĵ2
z (z, t)− Ŝ−(z, t)ĵ2

+(z, t)− Ŝ+(z, t)ĵ2
−(z, t)])ρAdz. (4.25)

we have assumed a one-dimensional theory for the light which is sufficient
for a beam cross section A that is much larger that the squared wavelength
λ2. The spin operators ĵz(z, t) are dimensionless and refer to single atoms at
position z and time t. The integration runs over the entire sample of length
L with atomic density ρ. The factor γ is the natural FWHM line width of
the optical transition and ∆ is the detuning [115].

The operators φ̂(z, t) are the photon flux per unit length, Ŝ+ = Ŝx+iŜy =
−â†+â− and Ŝ− = Ŝx− iŜy = −â†−â+ are the raising and lowering operators
converting σ+ photons into σ− photons and vice versa. Similarly, ĵ± = ĵx±ĵy
are the raising and lowering operators for the spin. The parameters a0, a1
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and a2 are given by

a0 =
1
4

(
1

1−∆35/∆
+

7
1−∆45/∆

+ 8
)
→ 4,

a1 =
1

120

(
− 35

1−∆35/∆
− 21

1−∆45/∆
+ 176

)
→ 1,

a2 =
1

240

(
5

1−∆35/∆
− 21

1−∆45/∆
+ 16

)
→ 0, (4.26)

where the limits are the behaviour for very large values of detuning. Now
let us examine each of the terms of the Hamiltonian, the first, containing
a0 is a Stark shift to all the atoms independent of the internal state but
proportional to the photon density φ̂(z, t). The a1 term rotates the Stokes
vector S and the spin vector J around the z-axis, which is the Faraday
rotation mentioned above. The a2 term contains higher order couplings
between the light and atoms, however, since a2 tends to zero for sufficiently
large detunings we can usually neglect this term entirely.

Each of these terms conserve the z-projection of the total angular mo-
mentum of light and atoms, e.g. Ŝ−ĵ

2
+ term can change a σ+ photon in

to a σ− photon, which changes the angular momentum of the light along
z by −2~. The atoms in turn receive 2~ due to the spin raising operator
ĵ2
+. The total angular momentum along the z-axis must remain invariant

since the physical system is axially symmetric around the direction of light
propagation which we choose to be the z-axis.

The a1 term is of most relevance to us. This term represents the QND
interaction which as we saw above is the basis interaction for the creation of
cluster states. From now on we neglect the higher order terms by assuming a
large detuning and note the a0 term just produces global phase shifts which
can be ignored. Under this simplification we may derive the dynamics due
to the interaction.

4.6 Atom/Light Coupling

From the Hamiltonian (4.25) we can derive the equations of motion for the
light/atom interaction. For this we apply the Heisenberg equation

∂ĵi
∂t

= − i
~

[ĵi, H] (4.27)

and the Maxwell-Bloch equations(
∂

∂t
+ c

∂

∂z

)
Ŝi(z, t) = − i

~
[Ŝi(z, t), H] (4.28)

However, we can neglect the the ∂/∂t term by ignoring dynamics on the
time scale L/c. So the speed of light across the atomic sample is effectively
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infinite which amounts to ignoring retardation effects in the interaction.
Then taking only the a1 term from the Hamiltonian, we find

∂ĵx(z, t)
∂t

=
cγ

8A∆
λ2

2π
a1Ŝz(z, t)ĵy(z, t),

∂ĵy(z, t)
∂t

= − cγ

8A∆
λ2

2π
a1Ŝz(z, t)ĵx(z, t),

∂ĵz(z, t)
∂t

= 0, (4.29)

and

∂Ŝx(z, t)
∂z

=
γρ

8∆
λ2

2π
a1Ŝy(z, t)ĵz(z, t),

∂Ŝy(z, t)
∂z

= − γρ
8∆

λ2

2π
a1Ŝx(z, t)ĵz(z, t),

∂Ŝz(z, t)
∂z

= 0. (4.30)

From Eq.(4.29) and Eq.(4.30) we conclude that the effect of this interaction
is to rotate the spin around the z-axis by an amount proportional to Ŝz,
while the Stokes vectors rotate about z by an amount proportional to ĵz.

We can assume that in practice the rotations are small and so has little
effect on the x-direction of spin or polarization. Then we can ignore the
first lines of (4.29) and (4.30). Further, given the QND structure of the
remaining equations, we can sum over the individual atomic spins and obtain
the equations for the collective spin variables which in continuous notation
is given by Ĵi(t) =

∫ L
0 ĵi(z, t)ρAdz. For the light operators we just take

the input and output parts only by defining Ŝini (t) = cŜi(z = 0, t) and
Souti (t) = cŜi(z = L, t). The factor c changes the normalization to units
of photons per unit time instead of per unit length. Then integrating Eqs.
(4.29,4.30) gives us

Ŝ′y(t) = Ŝy(t) + aSxĴz(t),

Ŝ′z(t) = Ŝz(t),

Ĵ ′y(t) = Ĵy(t) + aJxŜz(t),

Ĵ ′z(t) = Ĵz(t), (4.31)

where

a = − γ

8A∆
λ2

2π
a1. (4.32)

The apostrophe denoted the state of the atomic spin and light polarization
after the interaction. This form is now very convenient from the point of
view of a QND interaction since for large interaction strengths the aSxĴz(t)
is much larger than Ŝy(t) and hence a measurement on Ŝ′y amounts to a
QND measurement of the atomic spin Ĵz.
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4.6.1 Canonical Operators

We have seen in the preceding sections that the light and atoms share a
very similar mathematical structure since they both obey angular momen-
tum commutation relations. This is convenient for our purposes as it allows
us to treat the spin and polarization in a similar manner. We have also
prepared the two systems such that one of the quantum variables is reduced
to a classical number so that both systems are described by two continuous-
variables. To bring both systems to canonical operator form we apply the
Holstein-Primakoff approximation [139] to rescale the two remaining quan-
tum variables of each system with the classical third component. Physically,
this approximation assumes the the disc of uncertainty associated to the spin
system is sufficiently small compared to the length of the spin vector. Then
the space in the vicinity of the uncertainty disc is essentially flat and we can
transform form a three dimensional theory to a two dimensional one. For
the atomic spin variables rescaling these orthogonal components fulfills the
canonical commutation relations, [Ĵy/

√
~Jx, Ĵz/

√
~Jx] = i~. In this canoni-

cal form, we can identify these variables as the “position” and “momentum”
of the system defined in the following way

x̂A =
Ĵy√
~Jx

, p̂A =
Ĵz√
~Jx

, (4.33)

Similar to the atomic case, the approximation Ŝx ≈ 〈Ŝx〉 ≡ Nph~/2. The
orthogonal components Ŝy and Ŝz are rescaled to fulfill the commutation
relation [Ŝy/

√
~Sx, Ŝz/

√
~Sx] = i~. Once again we make a connection with

the canonical position and momenta,

x̂L =
Ŝy√
~Sx

, p̂L =
Ŝz√
~Sx

. (4.34)

From now on we will now only refer to the canonical operators x̂ and p̂
instead of collective spins and polarizations. In the canonical notation our
equations of motion for the atom/light interaction (4.31) become

x̂outL = x̂inL − κp̂inA
p̂outL = p̂inL

x̂outA = x̂inA − κp̂inL
p̂outA = p̂inA (4.35)

The parameter describing the strength of the light/atom interaction is given
by κ = a

√
JxSxT . In the next section we expand this set of equations to

include the possibility of off axis interactions.
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4.6.2 Interaction: Angular Dependence

Let us assume that a light beam propagates in the Y Z plane and passes
through a single ensemble at an angle α with respect to the z-direction.
Then the atom-light interaction can be approximated by the effective QND
Hamiltonian [114],

Heff (α) =
κ

T
p̂L(p̂A cosα+ x̂A sinα), (4.36)

where κ is the coupling constant. Again, applying the Heisenberg equa-
tion for the atoms and the Maxwell-Bloch equation (neglecting retardation)
for the light. The variables characterizing the composite system transform
according to the following rules:

x̂outA = x̂inA − κp̂inL cosα,

p̂outA = p̂inA + κp̂inL sinα,

x̂outL = x̂inL − κ(p̂inA cosα+ x̂inA sinα),

p̂outL = p̂inL . (4.37)

These are straightforwardly generalized to the case in which a single light
beam propagates through many atomic ensembles, impinging on the ith

sample at an angle αi. This set of equations are the basis for the schemes
that we discuss in the remainder of this chapter. Note that with the angular
dependence included, we have greater control over the specific interaction
that can be performed just be choosing the angle at which the light impinges
on the atomic sample relative to the polarization axis (x-axis).

4.7 Generation of atomic cluster states

In this section we will use our atomic ensembles with the interactions de-
scribed above to design protocols for the generation of atomic cluster states.
In these states each atomic ensemble, described by the orthogonal spin op-
erators Ĵz and Ĵy, serve as qumodes which correspond to the vertices of
the underlying graph. We recall that the canonical method for constructing
cluster states is to entangle zero-momentum eigenmodes via the CZ oper-
ation. Conveniently, the CZ is an example of a QND interaction, which is
optically implemented with a beam-splitter. Here however it is possible to
realize such entangling operations with the Faraday effect described in the
previous section. Our method can be thought of as an extension to the work
of [113, 114, 115], where it was shown that macroscopic spin states of two
atomic ensembles can be entangled via the Faraday interaction.

In the following, we regard the light pulses as information carriers. Un-
der interaction with an ensemble their rotated polarization retains the col-
lective spin information of the ensemble. This spin information can then
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be deposited on another ensemble by a further QND interaction. Since the
ensembles share information their spins become correlated and the states
are entangled. Recall however, that for cluster states, the correlations must
satisfy a set of constraints known as the nullifier conditions. We proceed
by calculating the effects on the state nullifiers, this allows us to read off
instantly when a given evolution yields a cluster state.

4.7.1 Atomic cluster: Nullifier Formalism

Recall the cluster state nullifier conditions,

p̂k −
∑

j∈N(k)

x̂j → 0, i = 1, ..., n, (4.38)

this set relates the position and momentum combinations of adjacent modes,
N(k), for each mode k. We can construct an n-mode cluster state by ar-
ranging a sequence of interaction such that the nullifier set, Eq.(4.38), is
satisfied.

Let us first establish some notation. We denote by x̂Ak and p̂Ak the
canonical position and momentum of the kth atomic ensemble respectively.
The interacting light pulses are denoted by x̂i,j and p̂i,j , where these are
the quadratures for the jth interacting light mode. We will be using two
special cases of the interaction Hamiltonian (4.36). The first, H1 = κp̂ix̂A,
corresponds to an angle of α = π/2, and so the light impinges on the atomic
ensemble at 90 degrees to the polarization axis. This Hamiltonian has the
following effect on the position and momentum quadrature of the light and
atoms.

x̂outA = x̂inA

p̂outA = p̂inA − κp̂inL
x̂outi = x̂ini + κx̂inA

p̂outi = p̂ini (4.39)

The second Hamiltonian H2 = κx̂Ax̂i, generated by performing a Fourier
transform on the light to make the change, p̂i → x̂i. The evolutions associ-
ated with this Hamiltonian are

x̂outA = x̂inA

p̂outA = p̂inA − κx̂i
x̂outi = x̂ini

p̂outi = p̂ini − κx̂A (4.40)

The task is now to construct the appropriate nullifier combinations in each
of the atomic ensembles through the use of these interactions. Once com-
pleted the outgoing light pulses can be measured. Assuming the pulses
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have interacted using the correct Hamiltonian and in the particular order
required the light pulses will contain the atomic spin information from the
ensembles. Measuring the light is therefore a QND measurement of the spin
quadrature combinations of the ensembles. This reduces the variance in
these quadratures (ideally to zero) and the cluster state is generated.

In general the procedure for an n-mode cluster state is as follows:

• First assume we have some ensemble Ak ∈ n. We want to entangle
this with neighbours Aj1 , Aj2 , ..., Ajp ∈ N(k).

• We must choose the configuration of the cluster state. i.e. Linear,
square, etc. This give us the form for the nullifier conditions.

• An interaction pulse ik is sent through ensemble j1. This interacts via
H1 and the polarization is rotated proportional to x̂Aj1 .

• The pulse ik then interacts with j2 via H1. This rotates the polariza-
tion of the interaction pulse again, so the total change is proportional
to x̂Aj1 + x̂Aj2 .

• The pulse continues to through all the atomic mode, N(k), so the total
effect on the interaction pulse is a rotation proportional to x̂Aj1 +x̂Aj2 +
x̂Aj3 + ...+ x̂Ajp =

∑
p x̂Ajp . Then this pulse contains spin information

from all the adjacent modes.

• This information is encoded onto ensemble Ak by interacting it with
ik mediated by H2. Then the atomic spin information is deposited
onto ensemble Ak. This has the effect of rotating the collective spin of
Ak proportional to the polarization of the interaction pulse i.e. p̂Ak →
p̂Ak −

∑
p x̂Ajp .

• Repeat these steps for allA ∈ n to encode the quadrature combinations
onto all the ensembles that compose the cluster state.

• The protocol is completed by performing a homodyne measurement
on the outgoing interaction light pulse. This corresponds to a QND
measurement of the required spin quadrature combinations. This min-
imizes the variance of the nullifier and the state is entangled.

We note that this procedure is not perfect, every interaction between a light
pulse and atomic ensemble has an associated back-action that performs an
extra spin rotation. We will discuss this further next when we consider an
examples of this procedure.

4.7.2 Example: Four-node linear cluster

Here we consider the four-node linear cluster or quantum wire, Fig.(4.4).
These are used in computational processes to move information around the
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cluster and under appropriate measurements can implement single mode
unitaries on the state. We will use our general procedure outlined above
to generate a four-node linear atomic cluster state. That is, we entangle
four atomic ensembles A1, ..., A4, each one corresponding to a vertex of the
associated graph. Then we find the required nullifier correlations, from the
general nullifier condition, (4.38).

p̂A1 − x̂A2 → 0, p̂A2 − x̂A1 − x̂A3 → 0,
p̂A3 − x̂A2 − x̂A4 → 0, p̂A4 − x̂A3 → 0. (4.41)

Figure 4.4: A four-node linear cluster state, composed of four atomic en-
sembles A1, ..., A4

Then we proceed as follows. (a) Our first step is to assemble the required
quadrature combinations on ensemble 1. A light pulse i1 is passed through
ensemble 2, interacting via H1. Note that since we use multiple interactions,
we denote by apostrophes the outcomes of single interactions. When a
particular mode has completed its part in the sequence it is labeled out.
The quantum variables following the first interaction are

p̂′i1 = p̂ini1 ,

x̂′i1 = x̂i1 + κx̂A2 ,

p̂′A2
= p̂inA2

− κp̂i1 ,
x̂′A2

= x̂A2 . (4.42)

We note that the light mode has picked up atomic spin information on its
x̂-quadrature. This spin information is then encoded onto ensemble 2 via
the H2 interaction:

p̂outi1 = p̂ini1 − κx̂A1 ,

x̂outi1 = x̂i1 + κx̂inA2
,

p̂′A1
= [p̂inA1

− κ2x̂inA2
]− κx̂i1 ,

x̂′A1
= x̂inA1

. (4.43)
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(b) For ensemble 2, interaction i2 is passed through first ensemble 3 then
ensemble 1 interacting via H1. This yields

p̂′i2 = p̂i2 ,

x̂′′i2 = x̂i2 + κ(x̂inA3
+ x̂inA1

),

p̂′A3
= p̂inA3

− κp̂i2 ,
x̂′A3

= x̂inA3
,

p̂′A1
= [p̂inA1

− κ2x̂A2 ]− κ(x̂i1 + x̂i2),

x̂′A1
= x̂inA1

. (4.44)

Then coupling i2 to ensemble 2 yields

p̂outi2 = p̂i2 − κx̂inA2
,

x̂outi2 = x̂i2 + κ(x̂inA3
+ x̂inA1

),

p̂outA2
= [p̂inA2

− κ2(x̂inA3
+ x̂inA1

)]− κ(p̂i1 + x̂i2),

x̂outA2
= x̂inA2

. (4.45)

Giving us the correct condition on atomic mode 2. (c) Ensemble 3 requires
information from ensembles 2 and 4 which we obtain through interaction
pulse i3:

p̂′i3 = p̂i3 ,

x̂′′i3 = x̂i3 + κ(x̂inA2
+ x̂inA4

),

p̂′A4
= p̂inA4

− κp̂i3 , x̂′A4
= x̂inA4

,

p̂′A2
= [p̂inA2

− κ2(x̂A3 + x̂A1 ]− κ(p̂i1 + x̂i2 + p̂i3),

x̂′A2
= x̂inA2

. (4.46)

Then encoding onto ensemble 3, (H2), we find

p̂outi3 = p̂i3 − κx̂inA3
,

x̂outi3 = x̂i3 + κ(x̂inA2
+ x̂inA4

),

p̂outA3
= [p̂inA3

− κ2(x̂inA4
+ x̂inA2

)]− κ(p̂i2 + x̂i3),

x̂outA3
= x̂inA3

. (4.47)

(d) Finally, to encode onto ensemble 4, we use interaction pulse i4. We
collect spin information from ensemble 3:

p̂′i4 = p̂i4 ,

x̂′i4 = x̂i4 + κx̂inA3
,

p̂′A3
= [p̂inA3

− κ2(x̂inA4
+ x̂inA2

)]− κ(p̂i2 + x̂i3 + p̂i4),

x̂′A3
= x̂inA3

(4.48)
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Then interacting with ensemble 4 via H2,

p̂outi4 = p̂i4 ,

x̂outi4 = x̂i4 + κx̂inA3
,

p̂outA4
= [p̂A4 − κ2x̂inA3

]− κ(p̂i3 + x̂i4)

x̂outA4
= x̂inA4

. (4.49)

In summary, the quadrature combinations that are assembled on the atomic
modes are of the form

p̂outA1
= [p̂inA1

− κ2x̂inA2
]−N1,

p̂outA2
= [p̂inA2

− κ2(x̂inA1
+ x̂inA3

)]−N2,

p̂outA3
= [p̂inA3

− κ2(x̂inA2
+ x̂inA4

)]−N3,

p̂outA4
= [p̂inA4

− κ2x̂inA3
]−N4. (4.50)

Where N1, ..., N4 are the back-action terms from the QND interactions. We
see that this procedure has given the correct quadrature combinations, up to
the back-action terms. Then measuring the outgoing light modes completes
the protocol and the linear cluster is generated.

4.7.3 Example: Four-node square cluster

Square cluster states form the basis for two-mode quantum gates. The four-
node square cluster is the smallest unit of a large array that can be used to
perform multi-mode operations. We find that the nullifiers for a four-mode
square cluster can be written as:

p̂A1 − x̂A2 − x̂A3 → 0, p̂A2 − x̂A1 − x̂A4 → 0,
p̂A3 − x̂A1 − x̂A4 → 0, p̂A4 − x̂A2 − x̂A3 → 0. (4.51)

To entangle the ensembles we use light pulses labeled, i1, ..., i4. We make use
of our QND Hamiltonians H1 and H2 to mediate the interaction between the
ensembles and light pulses. The protocol to generate atomic cluster states is
depicted in Fig.(4.5). (a) Spin information is picked up from A2 and A3 by
pulse i1 via the interaction H1. This pulse encodes the information onto A1

through the interaction H2. (b) Spin information is picked up from A1 and
A4 by pulse i2 via the interaction H1. This pulse encodes the information
onto A2 through the interaction H2. (c) Spin information is picked up
from A1 and A4 by pulse i3 via the interaction H1. This pulse encodes the
information onto A3 through the interaction H2. (d) Spin information is
picked up from A2 and A3 by pulse i4 via the interaction H1. This pulse
encodes the information onto A4 through the interaction H2. When this
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Figure 4.5: A four-node square cluster state, composed of four atomic en-
sembles A1, ..., A4

procedure is completed, the ensembles have quadrature combinations:

p̂outA1
= p̂A1 − κ2x̂A2 − κ2x̂A3 − κN1, x̂outA1

= x̂A1 ,

p̂outA2
= p̂A2 − κ2x̂A4 − κ2x̂A1 − κN2, x̂outA2

= x̂A2 ,

p̂outA3
= p̂A3 − κ2x̂A4 − κ2x̂A1 − κN3, x̂outA3

= x̂A3 ,

p̂outA4
= p̂A4 − κ2x̂A2 − κ2x̂A3 − κN4, x̂outA4

= x̂A4 ,

(4.52)

where N1 = x̂i1 + p̂i2 + p̂i3 , N2 = x̂i2 + p̂i1 + p̂i4 , N3 = x̂i3 + p̂i1 + p̂i4 and
N4 = x̂i4 + p̂i2 + p̂i3 are the back-action terms due to the QND interactions
with the interaction pulses. Then for κ = 1 the remaining terms are exactly
the nullifier relations, (4.73), for the four-mode square cluster state. To
complete the protocol, homodyne measurements are made on the outgoing
interaction pulses which project the ensembles into the required state.

While the examples we have given here are only four-modes, it is simple
to add an arbitrary number of nodes by performing the protocol again on
any mode in the state. This is a convenient observation, since we can add
more resources to our state at any time. However we see that the number of
noise terms increase with every node added. These noise terms disturb the
correlations between ensembles by introducing extra fluctuations in the spin
variables. In a sufficiently big cluster this added uncertainty in the spins
can destroy the entanglement and render the state useless for quantum com-
putational purposes. In large clusters, we can minimize these fluctuations
through careful control of the interaction strength κ and ensuring that the
polarization magnitudes of the interaction pulses themselves are relatively
small compared to the spin magnitudes. We can draw an analogy with the
optical generation of cluster states. There, the back-action terms that de-
stroy entanglement are due to the lack of infinite squeezing. Here, while
the atomic ensembles are not directly squeezed, it is the lack of squeezing
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Figure 4.6: Atomic cluster state generation protocol (HD - Homodyne de-
tection): (a) Light pulse i1 interacts with ensembles A2 and A3, picks up
atomic spin information which is encoded onto A1. (b) Light pulse i2 in-
teracts with ensembles A1 and A4, picks up atomic spin information which
is encoded onto A2. (c) Light pulse i3 interacts with ensembles A1 and A4,
picks up atomic spin information which is encoded onto A3. (d) Light pulse
i4 interacts with ensembles A2 and A3, picks up atomic spin information
which is encoded onto A4. The interaction pulses are homodyne measured
once these steps have been completed to form the cluster state.
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available for the interaction pulses that contributes to the noise. It seems
that even in these atomic systems we cannot get away from this fundamental
problem. In the following sections we show that while we cannot beat the
fundamental limits due to finite squeezing in general, we may design more
efficient states that are less prone to error build up than in the standard
MBQC method.

4.8 Composite cluster states

In the preceding sections we have shown how to make arbitrary atomic
cluster states using our QND measurements. Here we generalize this idea
and ask the question: Is it possible to include a light mode as one of the
nodes of a cluster state? Then light would not just mediate the interactions,
it could be used as a computational resource along side the atomic ensembles.
Such a state, which we term a composite cluster state, since it is composed
of both atomic and optical elements, is simple to generate using linear optics
and the ordinary QND interaction studied above.

We begin with the simplest case; the two mode composite cluster com-
posed from one atomic ensemble and one optical mode to demonstrate the
principle. Then the general cluster state nullifiers reduce to just two condi-
tions on the quantum variables,

p̂A − x̂L → 0, p̂L − x̂A → 0 (4.53)

where the subscript A refers to the atomic ensemble and L is the light
mode. Unlike standard two-mode entangled states, the two-mode cluster
state mixes the position and momentum quadratures of different nodes. As
above, we make use of light modes ik to carry information to each node
forming the cluster. However, to include a light mode as part of the cluster
we require a method of transferring polarization information from light to
light. This can be accomplished using a beam-splitter interaction which we
discuss now.

4.8.1 Beam-splitters as QND interactions

It was shown in, [106], that beam-splitters and single mode squeezers can be
used for approximate QND interactions between light modes under certain
conditions.

This is based on the Bloch Messiah reduction theorem. The idea that
an arbitrarily complicated combination of interactions, such as linear multi-
port inferometers, squeezers, down converters etc, that are all described by
a quadratic Hamiltonian, may be decomposed into two linear multi-port
unitary transformations and single-mode squeezers.

As a first step, we note that any optical system that is modeled by
linear Bogoliubov transforms can be decomposed into linear and non-linear
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components. Linear optical components have Bogoliubov transformations
given by

b̂j =
∑
k

Ujkâk, (4.54)

where U is an arbitrary unitary matrix and there is no mixing of the mode
annihilation and creation operators. Any such unitary can be constructed
from linear optical components. In contrast, non-linear optical components,
such as squeezers, down converters etc, produce linear mixing of the creation
and annihilation operators. There is a decomposition theorem that splits
up any operation into linear and non-linear parts.

Theorem 4.8.1. (Bloch-Messiah Reduction)
For a general linear unitary Bogoliubov transformation (LUBO) of the form

b̂j =
∑
k

(Ajkâk +Bjkâ
†
k) + βj (4.55)

where âj, b̂j are bosonic annihilation operators, the matrices A and B may
be decomposed into a pair of unitary matrices U and V and a pair of non-
negative diagonal matrices AD and BD satisfying

A2
D = B2

D + 1 (4.56)

with 1 being the identity matrix, by

A = UADV
†, B = UBDV

T . (4.57)

We apply the Bloch-Messiah reduction to QND coupling between a pair
of optical quadrature-phase amplitudes. The Bogoliubov transformations
corresponding to the QND interaction can be written as

b̂1 = â1 −
1
2
â2 +

1
2
â†2

b̂2 =
1
2
â1 + â2 +

1
2
â†1 (4.58)

According to the Block Messiah theorem, we can find matrices A and B
that affect these Bogoliubov transforms. These can be decomposed to,

A =
(

sin θ −i cos θ
cos θ i sin θ

)( √
5

2 0
0

√
5

2

)(
cos θ −i sin θ
sin θ i cos θ

)†
(4.59)

B =
(

sin θ −i cos θ
cos θ i sin θ

)(
1
2 0
0 1

2

)(
cos θ −i sin θ
sin θ i cos θ

)T
(4.60)

where θ = 1
2 sin−1(2/

√
5). These matrices describe a pair of squeezers with

squeezing parameters of r = ln[(1 +
√

5)/2] (corresponding to ≈ 4.18dB)
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and a pair of unequal unbalanced beam-splitters with energy transmission
coefficients of 27.65% and 72.36%. This can be improved by noting that
the singular value eigenvalues in (4.59) and (4.60) are degenerate and so
the decomposition is not unique. Then a simpler contruction, using 50:50
beamsplitters is given by

U =
(

ieiθ ie−iθ

−eiθ e−iθ

)
, V =

(
−e−iθ eiθ

−ie−iθ −ieiθ
)

(4.61)

with θ as above. Hence we can achieve a coupling between light mode
corresponding to the QND interaction Hamiltonian HBS = κx̂ix̂j using a
beam-splitter, followed by two single-mode squeezers followed by another
beam-splitter. This was further simplified in [27] where it was shown that
the same coupling can be engineered with just one pair of squeezers and one
beam-splitter acting on vacuum modes. We use this result in the following
protocols to allow light modes to be added to our atomic cluster states.

4.8.2 Two-node composite cluster state protocol: Nullifier
formalism

Using the interaction pulses we can assemble the quadrature combinations
(4.53) in the following way. We pass our first interaction pulse, i1 though the
atomic ensemble (see Fig.4.7(a)). By careful choice of the angle at which
the light impinges on the atomic sample we can couple the light and the
atoms via the QND Hamiltonian H = κx̂Ap̂i1 . The interaction pulse picks
up an atomic quadrature term in its position variable, x̂′i1 = x̂ini1 + κx̂inA .
Then the interaction pulse is combined with the cluster light mode, L, on
a beam-splitter with effective interaction, H = x̂Lx̂i1 . This modifies the
quadratures of the light mode by rotating p̂L to p̂′L = [p̂inL − κx̂inA ] − x̂ini1 .
Our second interaction pulse i2 is first passed through the beam-splitter
with light mode L (Fig.4.7(b)). The quadrature action on i2 is a rotation
of p̂i2 , p̂′i2 = p̂ini2 − x̂L with the associated back-action on the light mode.
Interaction of the pulse with the atomic ensemble via H = κx̂Ap̂i2 results in
the output p̂outA = [p̂inA − κx̂L]− κ(p̂i2 − x̂i1). Note that the momenta of the
light and atomic modes now have the correct form as given by (4.53) for the
quadrature combinations for a two mode cluster state plus the expected noise
terms. To complete the protocol, the outgoing interaction pulses undergo
homodyne measurements which project the composite system into a cluster
state.

4.8.3 Two-node composite cluster state protocol: Symplec-
tic description

In this simple two-mode case we can gain insight into the entanglement
properties of the system by constructing the covariance matrix of the final
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Figure 4.7: Schematic description of the creation of a two mode composite
cluster state. Light modes can be combined with atomic ensembles to form
the cluster states by enacting a QND interaction with squeezers and beam-
splitters. (a) The first interaction encodes atomic quadratures onto the light
mode L. (b) The second interaction encodes light quadratures onto the
atomic ensemble A. These interactions are required to fulfill the nullifier
condition of Eq. (4.53). Reprinted figure with permission from D. F. Milne
and N. V. Korolkova,Phys. Rev. A 85, 032310. Copyright (2012) by the
American Physical Society.

quantum state. We have already established that the collective spin of the
atomic ensembles and the polarization of the light have probability distri-
bution that are Gaussian in nature. This allows us to fully describe the
initial states with covariance matrices. Also, since QND interactions are bi-
linear couplings between Stokes operators and collective spin they preserve
the Gaussian character of the initial states. Then we can represent QND
interactions as symplectic operations on the initial CM. Furthermore, the
beam-splitter interactions that we use to include light modes in the cluster
also yield a description in terms of Gaussian operations.

In general, to perform QND and beam-splitter interactions, we choose a
covariance matrix of the form,

σ =
(

A C
CT B

)
(4.62)

where the sub-matrix A corresponds to those modes that are nodes of the
cluster, B are the light modes responsible for mediating the interactions
between the nodes within the cluster states and C is the correlations between
them. In this construction it is easy to read off the states of the individual
modes as well as the interactions at each stage of the protocol.

Our QND interaction are represented by symplectic matrices, S. Recall,
these act on the covariance matrix as

σout = STσinS. (4.63)

We also require the ability to perform homodyne measurements of the x̂L
quadrature of the outgoing interaction pulses. We discussed in Chapter 2
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how this can be performed in the CM formalism. We state the formula again
here for convenience,

A′ = A− C(XBX)−1CT , (4.64)

assuming an initial displacement of zero. The measurement yields an out-
come zL which displaces the state by,

dA = C(XBX)−1(zL, 0), (4.65)

We assume the initial state of the composite system is given by the
covariance matrix for the atoms, light and interaction pulses, σin = 1A2 ⊕
1L2 ⊕ 1

i1
2 ⊕ 1

i2
2 , where the 2× 2 identity matrices stand for single modes.

As described in our protocol above, we begin by passing i1 through the
atomic ensemble and then combine it with the cluster light mode via a
beam-splitter. The symplectic matrix for this operation is given by

Sint1 =



1 0 0 0 κ 0 0 0
0 1 0 0 0 0 0 0
0 κ 1 0 0 −1 0 0
0 0 0 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 κ 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (4.66)

The second round of interactions with i2, is given by the symplectic matrix

Sint2 =



1 0 0 −κ 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 1 0 0
0 κ 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (4.67)

Then the resulting state is described by the transformation σout = STint2S
T
int1

σinSint1Sint2
which gives

σout =



3κ2 + 1 0 0 −κ 2κ 0 2κ 0
0 1 κ 0 0 −κ 0 −κ
0 κ κ2 + 3 0 0 −(κ2 + 1) 0 −(κ2 + 1)
−κ 0 0 1 −1 0 −1 0
2κ 0 0 −1 2 0 1 0
0 −κ −(κ2 + 1) 0 0 κ2 + 1 0 κ2

2κ 0 0 −1 1 0 2 0
0 −κ −(κ2 + 1) 0 0 κ2 0 κ2 + 1


.

(4.68)
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However, entanglement between the light mode and atomic ensemble is not
produced until the interaction pulses are measured. We perform a homodyne
measurement on the outgoing pulses i1 and i2 in the x-basis with results z1

and z2 to project into the final state described by the CM

σfin = σA − σC(XσBX)−1σC
T

(4.69)

where σA is the upper left 4 × 4 matrix corresponding to the atomic and
light modes, σB is the lower right 4 matrix representing the interaction pulses
and σC and σC

T
are the off diagonal matrices with entries corresponding

to the correlations between the light mode, the atomic ensemble and the
interaction pulses. The final covariance matrix for the two-mode composite
state is given by

σfin =


1 + κ2

3 −2
3κ(1 + κ2) −8κ2

3 −κ− 2
3κ(1 + κ2)

−2
3κ(1 + κ2) 1 + 2

3κ(1 + κ2)2 κ− 2
3κ(1 + κ2) 2

3κ(1 + κ2)2

−8κ2

3 κ− 2
3κ(1 + κ2) 3− 5κ2

3 −2
3κ(1 + κ2)

−κ− 2
3κ(1 + κ2) 2

3κ(1 + κ2)2 −2
3κ(1 + κ2) 1 + 2

3(1 + κ2)2


(4.70)

The final state is independent of the measurement outcomes, but they are
present in the displacement vector.

4.9 Verification of Entanglement

On completion of the protocol, an analysis of the correlations induced be-
tween the atomic ensemble and light can be performed. Through the CM
formalism we have complete access to all the information we need to verify
entanglement. Since the full CM is available we can apply separability tests
to the state. In this case we apply the positive partial transpose (PPT)
test [121, 123, 124] which we introduced in chapter 2. Recall,, in phase
space, any N mode Gaussian state can be transformed by symplectic oper-
ations in its Williamson diagonal form ν [125], such that σ = ST νS, with
ν = diag{ν1, ν1, ..., νn, νN}. The set {νi} of all positive-defined eigenvalues
of |iΩσ| constitutes the symplectic spectrum of σ, the elements of which are
the symplectic eigenvalues which must fulfill the conditions νi > 1 to en-
sure the positivity of the density matrix associated with σ. The symplectic
eigenvalues, νi, are determined by N symplectic invariants associated with
the characteristic polynomial of the matrix |iΩσ|. In order to say something
about entanglement, we recall that the CM’s PPT is a necessary and suffi-
cient condition for separability of all Gaussian states [126, 127]. If {νi} is
the symplectic spectrum of the partially transposed CM σ̃, then a (1 +N)-
mode Gaussian state with CM σ is separable if and only if ν̃i ≥ 1 ∀i. If
the partially time reversed CM does not fulfill the positivity condition, the
corresponding state is entangled. We compute symplectic eigenvalues for
the partially transposed CM σ̃fin as follows.
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We partially transpose the matrix σfin. That is we apply the transfor-
mation σ̃fin = ATσfinA, where the matrix A is

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (4.71)

This produces the time reversal (momentum sign change) that we require
on the second mode. Then we find |iΩσ̃fin|. This give us the matrix

−2
3 iκ(1 + κ2) i(1 + 2

3(1 + κ2)2) i(κ− 2
3(1 + κ2)) −i2

3(1 + κ2)2

−i(1 + κ2

3 ) 2
3 iκ(1 + κ2) 8iκ2

3 −i(κ+ 2
3(1 + κ2))

i(κ+ 2
3κ(1 + κ2)) −2

3 i(1 + κ2)2 2
3 iκ(1 + κ2) i(1 + 2

3(1 + κ2)2)
8iκ2

3 i(2
3κ(1 + κ2)− κ) i(5κ2

3 − 3 −2
3 iκ(1 + κ2)

 .

(4.72)
We can now compute the eigenvalues of this matrix. We find that for a
realistic interaction strength κ = 0.8 the smallest eigenvalue of |iΩσ̃fin| is
ν̃ = 0.63. Since this is less than one, the positivity condition is violated and
the state must be entangled, confirming our nullifier analysis above.

4.10 Multi-mode composite cluster states

Here we extend our analysis to the multi-partite case. In general, composite
clusters can be composed of m atomic modes with n light modes. We shall
call these (m,n)-composite cluster states. Here we give the protocol for a
(4, 1) cluster, which will become the basic unit for the computational scheme
in the next section.

Our protocol for the (4, 1)-composite cluster proceeds as follows. We
construct a four-mode square cluster state from atomic ensembles labeled
Ai (Fig.4.5), where i = 1, ..., 4 [110]. We include a light mode to form the
composite state by entangling it with one of the atomic modes in the cluster.
The (4, 1)-composite cluster, has nullifier relations

p̂A1 − x̂A2 − x̂A3 → 0, p̂A2 − x̂A1 − x̂A4 → 0,
p̂A3 − x̂A1 − x̂A4 → 0, p̂A4 − x̂A2 − x̂A3 − x̂L → 0

p̂L − x̂A4 → 0. (4.73)

We entangle a light mode L with ensemble A4 (Fig.4.8). Following the
four-mode atomic cluster protocol, the light mode is coupled to the existing
atomic cluster with interaction pulses i5 and i6. The nullifiers of the atomic
modes A1, A2 and A3 are unaffected but the quadrature combinations for
A4 are now

p̂outA4
= p̂A4 − κ2x̂A2 − κ2x̂A3 − κ2x̂L − κN ′4, (4.74)
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where N ′4 = x̂i4 + p̂i2 + p̂i3 + p̂i5 + p̂i6 is the new back-action term. The light
mode quadratures have transformed as

p̂outL = p̂L − κ2x̂A4 − κNL, (4.75)

and NL = x̂i5 + x̂i6 . Note that the back-action terms, Ni, are composed of
quadratures of the interaction light modes only. The interaction modes are
momentum-squeezed and interact weakly with the ensembles so their back-
action can be neglected (see also the related experiment [113] where this
has been verified). We observe that we have a complete set of quadrature
combinations that satisfies the composite cluster nullifier conditions (4.73).
Finally, homodyne measuring i5 and i6 completes the protocol. We note that
this protocol can be simply extended to creating general (m,n)-composite
clusters of arbitrary shape. Further QND interactions can be used to add
atomic ensembles and it is always possible to add a light mode to an atomic
mode through the beam-splitter interaction. However adding extra nodes
always results in extra back-action terms, Ni.

Figure 4.8: To add a light mode to the atomic cluster to form the (4, 1)-
composite cluster pulses i5 and i6 interact with ensemble A4 and the light
mode L via a beam-splitter and are subsequently measured.

4.11 Limitations of CV cluster states

Here we will outline a fundamental problem with MBQC over CV cluster
states. It can be shown that no matter what Gaussian local measurements
are performed on systems distributed on a general graph, transport and pro-
cessing of quantum information is not possible beyond a certain influence
region, except for exponentially suppressed corrections. This result holds
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even if non-Gaussian measurements are available. This result can be de-
rived through the use of the Gaussian projected entangled pairs (GPEPS)
formalism [112].

4.11.1 Gaussian PEPS

Projected entangled pair-states (PEPS) are a convenient class of quantum
states that describe the ground states of local many-body Hamiltonians.
They can be considered as a generalization of matrix product states (MPS)
from one dimensional state to arbitrary graphs. PEPS forms a much richer
class of states than MPS since they can be used to represent critical systems
and systems with topological quantum order. Indeed it has been conjectured
that all ground states of gapped local Hamiltonians in higher dimensions
can be faithfully represented by PEPS [131]. PEPS are states defined over
arbitrary graphs G = (V,E) where quantum systems of local dimension d
are placed at each vertex. The PEPS are then constructed by assigning
to each edge e ∈ E an entangled state

∑D
i=1 |ii〉, note at this point these

represent maximal entanglement. Then each vertex v ∈ V with degree k is
associated with k virtual D-dimensional systems. The final step is to apply
a map

A(v) : CD ⊗ CD ⊗ ...⊗ CD → C
d, (4.76)

which takes k D-dimensional systems to a single d-dimensional system. This
single space now represents the physical system and A(v) is known as the
PEPS projector. It is parameterized by tensors A(v)

i defined by

A(v) =
d∑
i=1

D∑
j1,...,jk=1

A
(v)
i,j |i〉〈j1, ..., jk| (4.77)

where A(v)
i is a tensor with k indices. Then we can write the PEPS as

|ψ〉 =
d∑

i1,...,in=1

C[{A(v)
iv
}v]|i1, ..., in〉, (4.78)

where C is means the contraction of all tensors A(v)
i according to the edges

of the graph.
These ideas can be generalized to CV systems, where each system is

infinite dimensional [132]. If these systems are represented by Gaussian
probability distributions we can specialize to Gaussian PEPS (GPEPS).
Now we relax the condition of perfectly entangled pairs, instead the bonds
we consider are two-mode squeezed states. For GPEPS on general graphs
G = (V,E), the vertices V represent physical systems and E the connections
between them. In any such graph d(., .) is the natural graph-theoretical
distance between two vertices.
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When a particular vertex has N adjacent bonds, the CV equivalent of
projection map A(v), is a Gaussian operation of the form

V : H⊗N → H. (4.79)

This operation can alway be made trace preserving [133, 134]. We refer to
this operation as a Gaussian PEPS projection. This can alway be performed
by mixing single-mode squeezed states on a suitably tuned beam-splitter.

We now look at some concepts that we will need to prove the limit on
transport in CV graph states. First we consider a useful measure of the
entanglement in graph states.

4.11.2 Localizable entanglement

The localizable entanglement between two sites A and B of the graph G =
(V,E) is defined by the maximal entanglement obtainable on average when
performing projective measurements at all sites but A and B [135]. When
we require both the initial state and the measurements to be Gaussian, the
situation simplifies as the entanglement properties do not depend on the
measurement outcomes. Thus, we do not need to average but only find the
best measurement strategy. Then we measure the entanglement with the
logarithmic negativity, which, we recall from Chapter 2 can be defined as

E(ρ) = log ||ρTA ||1, (4.80)

where TA denotes the partial transpose with respect to subsystem A and ||.||1
is the trace norm. Here we only allow for Gaussian local measurements, in
which case Eq.(4.80) coincides with quantity known as Gaussian localizable
entanglement, denoted EG. It is possible to expand this definition for more
general measurements by taking fixed subspaces SA and SB in the Hilbert
spaces associated with site A and B that are entangled by means of some
local but not necessarily Gaussian measurements. In this case we refer to the
subspace localizable entanglement, ES . Both concepts relate to the transport
in measurement-based quantum computing.

4.11.3 One-dimensional chain

Our first statement on entanglement on GPEPS serves concerns just one-
dimensional chains. We do not allow for multiple bonds in the construction
of the chain. Then we can state the following [112],

Theorem 4.11.1. (Exponential decay of Gaussian localizable entanglement
in a 1D chain). Let G be a one-dimensional GPEPS and A and B two sites.
Then

EG(A,B) ≤ c1e
−d(A,B)/ξ1 (4.81)

where c1, ξ1 > 0 are constants. The best performance is reachable by passive
optics and homodyning only.

75



In [112] it was shown that the consequence of this theorem is the impos-
sibility of building a one-dimensional quantum repeater relying on Gaussian
states, if only local measurements and no distillation steps are used. This
is the case even if the information encoded into the GPEPS is in the form
of qubits. For our schemes, it also follows that we cannot build large scale
one-dimensional cluster states without incurring large errors in a given com-
putation. Or put another way, it is not possible to create a perfect quantum
wire with just Gaussian operations.

4.11.4 General graphs

We can go further and ask how theorem 4.11.1 changes when we consider
graphs of arbitrary dimension.

Theorem 4.11.2. (Exponential decay of Gaussian localizable entanglement
of GPEPS on general graphs). Consider a GPEPS on general graphs with
finite dimension and let A and B be two vertices of this graph. Then there
exist constants c2, ξ2 > 0 such that

EG(A,B) ≤ c2e
−d(A,B)/ξ2 , (4.82)

So it turns out that considering graphs in higher dimensions does noth-
ing to improve the degree of entanglement loss. While this exponential loss
of entanglement may seem the worst case scenario, it is still possible to cre-
ate cluster states and perform computational processes since for any finite
distance d(A,B) and required entanglement E(A,B) there exists a finite
minimal squeezing λmin which allows an arbitrary task to be performed.
This result is important when considering quantum computation over CV
cluster states using Gaussian operations to process that states. Essentially,
this theorem implies that any quantum computational task must be re-
stricted to small scale cluster implementations or we must have access to
non-Gaussian resource states.

4.12 A new architecture

The decrease in localizable entanglement with increasing cluster size when
only Gaussian operations are available places a limit on the size of useful
cluster states, i.e. those that have sufficient entanglement available to per-
form processes below the computational error threshold. The MBQC model
we described earlier in this chapter traditionally relies on creating large clus-
ters on which the entire computation can be performed and read out. Here
we seek to address this difficulty in the practical implementation of cluster
state computation. We propose to split up large clusters into smaller build-
ing blocks or qubricks which are composed of an atomic cluster state, acting
as a quantum processor, and a light mode that allows for communication to
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other qubricks (Fig.4.9). A similar suggestion to increase the efficiency of
generating qubit cluster states based on ancillia light modes was made in
[137]. In our scheme, many atomic cluster states, labeled (C1, ..., CN ), are

Figure 4.9: A basic qubrick composed of a four-mode atomic cluster state
plus a light mode to create a composite cluster. Reprinted figure with per-
mission from D. F. Milne and N. V. Korolkova,Phys. Rev. A 85, 032310.
Copyright (2012) by the American Physical Society.

created. Each of these act as a small quantum processor which performs
some unitary operation Ûi on an input state. Each processor Ci, shares no
entanglement with any other in the array. We keep the number of nodes
in each atomic cluster small, say four nodes each (Fig.4.5), which is mini-
mum sufficient for any two-mode controlled quantum gate. By limiting the
size of the cluster states, the decay of entanglement within each processor
is kept to a minimum. To allow communication between the processors,
we entangle an ancillary light mode L with the output node in the atomic
cluster to form a qubrick which is a (4, 1)-composite cluster. The light mode
of the qubrick can then be used to convey the output of the process per-
formed on the atomic cluster contained in the brick to the next in the array
(Fig.4.10). Given sufficient resources, the state can be processed in parallel
using strings of qubricks. The total output from each of the strings can
then be combined to give the final output. In more detail, a typical process
would proceed as follows. A state |ψini〉, is loaded onto the first cluster C1.
Adaptive measurements are then applied to the atomic ensembles to process
the state with outcome |ψ′〉 = Û1|ψini〉. A light mode L1, is added to C1 to
form the qubrick and the state is transferred to L1 by a further measure-
ment (Fig.4.11). Since the cluster and its associated entanglement has been
destroyed in the measurement process the light pulse is free to carry the in-
formation to the next qubrick, without inadvertently entangling the atomic
clusters belonging to different bricks. Another measurement transfers the
state onto the first node of the atomic cluster, C2 and a gate operation is
performed by a new sequence of measurements yielding Û2|ψ′〉. A light mode
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Figure 4.10: The qubricks interact by matching up their output light modes
with the input of another qubrick. A state can be loaded onto the first
brick at time t1, the state is processed through adaptive measurements and
the output encodes onto the light mode. The qubrick at t1 having been
measured no longer contributes to the state. The light pulse is connected
with the next in the sequence of qubrick processes t2 and the process is
repeated. This operation can be run in parallel with other sequences of
qubricks and the final state is given by their combined outputs. Reprinted
figure with permission from D. F. Milne and N. V. Korolkova,Phys. Rev. A
85, 032310. Copyright (2012) by the American Physical Society.

Figure 4.11: Each cluster Ci is kept separate and only communicate through
light pulses Li. The state to be computed is loaded onto C1, which undergos
a sequence of adaptive measurements. A composite cluster is formed to
transfer the state to a light mode which is carried to the next cluster in the
process. Each cluster acts on the state by some unitary Ûi and the final
state is given by Û |ψ〉. Reprinted figure with permission from D. F. Milne
and N. V. Korolkova,Phys. Rev. A 85, 032310. Copyright (2012) by the
American Physical Society.
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L2, is added to C2 to form a new qubrick and it carries the processed state
is to the next cluster. Since each cluster applies some unitary transforma-
tion Ûi to the state, this process can be repeated until the desired output if
achieved and the state is given by Û |ψ〉 = Ûi ⊗ Ûi−1 ⊗ ...⊗ Û2 ⊗ Û1|ψ〉.

It is important to note that we do not claim that this procedure out-
performs the error rate of large cluster arrays in general. What the qubrick
scheme does guarantee, is that the loss of entanglement and therefore the
errors accumulated in each quantum gate are constant. Then the errors that
propagate through the computation are just proportional to the number of
qubricks used. This is in contrast to the large cluster state in which the
entanglement decays exponentially with the size of the cluster and hence
errors accumulate rather quickly as the cluster size increases. Note however,
that the error rate of particular geometries of large scale cluster states ac-
tually outperform the qubrick scheme i.e., for a 16-node square cluster. In
this case the entanglement scales as Ce−6, where C is some constant. If we
assume the error rate increases proportional to the degradation of entangle-
ment then the errors scale as ae6 where a is some constant that depends
on the particular system in question. In the qubrick setting, to replicate
this state exactly, we require four qubricks and the cumulative error then
scales as ae8, which is significantly worse. Here we do not propose that
the qubricks mimic the large scale states exactly (since they can never beat
the fundamental limit anyway). In this scheme, each qubrick and hence
each quantum gate is initialized individually and only when it is required
(Fig.(4.10)). These gates are then directly coupled to the light pulse carry-
ing the output from previous processes. This scheme removes the need for
nodes serving as quantum wires to convey information around the cluster
and eliminates any redundant nodes. In doing so we suppress the exponen-
tial losses due to entanglement decay and hence reduce the error rate.

Furthermore, this method can be simplified to just one qubrick, if we
loop the output from the brick back to the input in a similar manner to
that proposed in [25]. In this scheme, the output from the first computation
again gives |ψ′〉 = Û1|ψ〉. The atomic cluster is re-generated and the light
mode is fed back into the input node where a different series of adaptive
measurements is performed. This gives Û2|ψ′〉 which is processed again until
the desired unitary is enacted. This scheme eliminates the parallel element
but it vastly decreases the number of resources required while maintaining
a constant error rate. In this case the error depends on the number of times
the state is reused. This type of scheme could form the basis of a proof
of principle demonstration of CV cluster state computation with atomic
ensembles since it is achievable with currently available technology.
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Chapter 5

Topological quantum
computation over continuous
variables

We now leave behind the measurement-based model for QC and for the re-
mainder of this thesis we focus on a relatively new paradigm in quantum
information. That of topological quantum computation (TQC). Since its in-
ception, this field has grown very rapidly, not just for its intrinsic value as a
theoretical work but also due to its potential for practical implementations of
quantum computation [140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151]. The interested reader is referred to the literature for a more complete
introduction to TQC, [152, 153]. In the following we will present a new
model of quantum computation based on these ideas related to topology.
Like previous proposals our scheme stores and manipulates information in
topological degrees of freedom rather than in localized systems such as elec-
tron or nuclear spin [154, 155], or photon polarization [156]. In the ideal case,
storing quantum information in these non-local degrees of freedom protects
the information from local errors. Of course in practice this alone still does
not give us perfect error protection. In reality a system Hamiltonian can be
perturbed by external effects. This may lead to non-zero tunneling ampli-
tudes between orthogonal ground states and depending on the encoding of
the quantum information within the ground state these pertubations may
lead to errors in the stored data and on any quantum processes performed
on the system. However, within topological systems it has been shown that
the errors induced by these events scale by factors of only e−αl, where l is
the length scale of the system. This represents a significant improvement
over traditional methods of QC as long as l is ensured to be fairly large.
As with any quantum computational model we want to design a physical
system capable of storing quantum information sufficiently accurately such
that normal quantum error correction (QEC) can be successfully applied.
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Systems that exhibit non-local properties are hoped to be the basis for such
models.

Although in this thesis we focus in the creation of topological states from
lattices composed of optical elements, such states have been known to occur
in a condensed matter setting through collective electronic systems as in the
Fractional Quantum Hall Effect (FQHE) [158, 159] and 2D cuprate super-
conductors above Tc [160, 161]. For a comprehensive review of the FQHE
see [193, 163]. There has been much study into the connection between the
FQHE and quantum computation. It has been shown that the ground state
of the ν = 1/3 electron liquid on the torus is 3-fold degenerate. This follows
from the fact that excitations in this system are abelian anyons which have
the property that moving one anyonic excitation around another multiplies
the state vector by a phase factor eiθ (for ν = 1/3, θ = 2π/3). We will
be discussing anyons in some depth in later section. For now however it is
sufficient to understand that the process of creating a particle-antiparticle
pair, moving one of the particles around the torus and annihilating it speci-
fies a unitary operation on the ground state. By moving the particle in two
different directions one obtains two different unitary operators A1 and A2

with the commutation relation A1A2A
−1
1 A−1

2 = eiθ, implying a ground state
degeneracy. This argument is very robust and only requires the existence of
an energy gap or, equivalently, finite correlation length l0. The degeneracy
is lifted only by spontaneously tunneling of virtual excitations around the
torus. The resulting energy splitting scales as e−l/l0 , where l is the size of
the system. Interaction with the environment does not change this conclu-
sion, although thermal noise can create actual excitation pairs rather than
virtual ones.

Both the ground state degeneracy on the torus and the existence of
anyons are manifestations of the topological properties of the ν = 1/3 liquid
itself. Anyons can be regarded as topological defects similar to Abrikosov
vortices (a vortex of super-current in a type II super-conductor) but without
any local order parameter. The presence of one particle enclosed by a loop
can be detected by holonomy - moving another particle around the loop.

The most powerful and flexible way of storing quantum information in
topological systems is based on non-abelian anyons. These will be the sub-
ject of chapter 6 but we will briefly introduce the concept here. They are
believed to occur naturally in the ν = 5/2 and ν = 12/5 FQHE states [152].
Within the 5/2 state there exist charge 1/4 anyonic particles as well as some
other excitations. The quantum state of the system with 2n particles with
charge 1/4 on the plane is 2n−1 degenerate. The degeneracy is gradually
lifted as two particles come close to each other. More precisely, the 2n−1

dimensional Hilbert space Hn splits into two 2n−2 dimensional subspaces.
These subspaces correspond to two different types of charge 1/2 particles
which can result from fusion of charge 1/4 particles. This splitting allows for
the possibility to store qubits in the Hilbert spaces corresponding to these
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fusions. i.e. the two different outcomes correspond to either a |1〉 or a |0〉.
Thus observing the fusion outcome can be equivalent to measuring a qubit
and hence a measurement on the Hilbert space Hn. This model supports
adaptive quantum computation where surfaces of high genus are included
in the theory.

In the following we will construct a system that support continuous-
variable analogues of anyons and develop a topological computational model.
First we discuss the emergence and properties of anyons in some depth.
We keep this discussion quite general since at this point we don’t restrict
ourselves to a particular physical scenario.

5.1 The emergence and behaviour of anyonic sys-
tems

Anyons can be considered as particles which obey more general statistical
rules than those found in the usual Fermi-Dirac or Bose-Einstein statis-
tics. Due to this, the term fractional statistics is often used in connection
with anyons [164]. There exist two main approaches to describe anyonic be-
haviour. The first incorporates fractional statistics through fictitious Chern-
Simons gauge fields [165, 166, 167] which transmute the statistics into the
particular topological interactions. The second makes use of the quantum
symmetries as described by Hopf algebras [140, 168, 169, 170, 171], which of-
fer a unified description of the particle properties. Both approaches capture
the same physics, but the latter approach is more useful when considering
quantum computation as it provides more insight into the topological spaces
that are used to encode quantum information. Here we will not directly re-
quire either theory, for our purposes it will be sufficient to derive anyonic
properties from physical considerations. However, it should be possible to
describe the system presented here in the Hopf algebra language thanks to
work that has been done on generalizing the Hopf algebra construction from
finite groups to Lie groups [172, 173].

To illustrate the defining property of anyons, consider the symmetry
properties of an N -particle system of varying spatial dimension. Under the
action of SN , the permutation group of N particles, the Hamiltonian of the
system remains invariant, but the eigenstates |ψj〉 are transformed according
to an irreducible representation. Denote by ψj(1, 2, ..., N) = 〈1, 2, ..., N |ψj〉
the N -particle wave function and let U(θ) be an operator implementing
a particular permutation θ. The action of this operator is given by the
transformation,

U(θ)ψj(1, 2, ..., N) =
∑
k

ψk(θ(1), θ(2), ..., θ(N))Pkj(θ), (5.1)

where Pkj are the matrices representing the permutation θ. In most quantum
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mechanical systems the Fermi-Dirac and Bose-Einstein statistics are suffi-
cient to describe the symmetry properties of the wave function. However
these two cases are merely the one-dimensional representations of the per-
mutation group. In particular these are the trivial representation P (θ) =
1 which corresponds to Bose statistics and the alternating representation
P (θ) = (−1)|θ|, with |θ| the number of interchanges in θ corresponding to
fermions.

Anyons are also described by irreducible representations of the permuta-
tion group but they have different forms from those for bosons and fermions.
These representations appear when one reduces the number of spatial dimen-
sions. The symmetry group to which the permutation θ belongs, depends
on the the structure of the fundamental group π1(MD

N ) where MD
N is the

D-dimensional configuration space for N -particles. From physical considera-
tions, we note that MD

N is not simply connected (otherwise indistinguishable
particles would be allowed to coincide) and thus the fundamental group is
non-trivial. The most interesting effect from our perspective is the depen-
dence of the the first homotopy group on the spatial dimension. Of most
importance here is the two dimensional case. For D = 2 the fundamental
group is known to be isomorphic to the N -string braid group,

π1(M2
N ) ∼= BN (5.2)

whereas for D ≥ 3 it is isomorphic to the permutation group of N -objects,
π1(MD

N ) ∼= SN . The one-dimensional irreducible representations of SN are
just the trivial and alternating representations. On an interesting note,
clearly this group does have higher-dimensional irreducible representations,
but the statistics that they would represent have not been observed in na-
ture. Physically, we can put this difference down to the different ways of
braiding in varying spatial dimensions. In (3+1)D or higher, any closed loop
around an object can be pulled over and contracted to the trivial loop, Fig.
(5.1). Hence in higher dimensions we should never see any statistics other
than those corresponding one-dimensional representations i.e., to bosons and
fermions since those are the only cases that a complete loop results in the
identity operation on the wave-function.

In the (2 + 1)D case we are restricted to the plane and closed loops no
longer have the freedom to be lifted over objects, Fig.(5.4). These loops can
then be said to be topologically non-trivial since they cannot be reduced
to points. Since the loops are non-trivial we are not restricted to only per-
forming identity operations on the state. We can see this by considering the
following. The spin statistics of the exchange of particles can be represented
through their wavefunctions as

ψ(~r1, ~r2) = eiθψ(~r2, ~r1), (5.3)

We consider our particle exchange as a rotation of one of the particles around
the other. The center of mass of the system is just ~R = (~r1 + ~r2)/2. Then
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Figure 5.1: In (3+1)D we can always contract any loop that braids two
particles to the trivial loop. Then only boson and fermion statistics can be
observed in three spatial dimensions.

~r = ~r1 − ~r2 is the relative coordinate and for point-like particles we have
||~r|| 6= 0. This allows us to visualize the particle exchange on the surface of a
sphere in two or three dimensions, with ||~r|| = const the radius of the sphere.
In 3D we can draw three closed trajectories. These are shown in Fig.5.2.
The first case, Fig. 5.2(a), shows a trivial loop where the particles are

Figure 5.2: Closed trajectories in 3D. (a) no exchange, θ = 0. (b) Single
exchange, cannot be deformed to a point. (c) Double exchange, trajectory
can be shrunk to a point.

not exchanged and the trajectory may be shrunk to a point which implies
that θ = 0. In 5.2(b), there is an exchange, but the path may not be
contracted. Finally in 5.2(c) we have the double exchange but this may
also be contracted. Since cases (a) and (b) are equivalent we see that the
following must hold

(eiθ)2 = e0 = 1⇐⇒ eiθ = ±1 (5.4)

This ties in nicely with our discussion above since we see now that this can
only occur for θ = 0, π which correspond to bosons and fermions. The
2D situation is different, now we restricted to a circle. Now in the last case
Fig.5.3(c) we cannot deform the double exchange to a point and so in general

1 6= eiθ 6= (eiθ)2 6= ... 6= (eiθ)n, (5.5)
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and we observe that the phase θ can take any value in R. It is referred to as
the statistics parameter and is connected to the particle spin by s = θ/2π.
This opens up the possibility for more exotic particles statistics since we may

Figure 5.3: Closed trajectories in 2D. (a) no exchange. (b) Single exchange.
(c) Double change but now this path cannot be shrunk to a point so eiθ 6=
(eiθ)2.

now have P (θ) = eiθ or even higher dimensional representations represented
by unitary matrices acting on the state. Then we arrive at the conclusion

Figure 5.4: When restricted to two spatial dimensions, braids cannot re-
duced to trivial loops and so braiding particles can result in unitary evolu-
tions of the wavefunction.

that anyonic behaviour only manifests in two spatial dimensions and the
symmetry properties of the N -anyon wave-function are described by the
braid group BN .

The braid group is a non-abelian group of infinite order [157]. It is gen-
erated by n−1 elements τ1, ..., τn−1, where τi establishes a counterclockwise
interchange of the particles i and i+ 1. These generators are subject to the
relations

τiτi+1τi = τi+1τiτi+1 i = 1, ..., n
τiτj = τjτi |i− j| ≥ 2, (5.6)

which can be represented graphically as in Fig. (5.5) and (5.6). In fact,
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Figure 5.5: Pictorial representation of the first generator relation (5.6).
Time is the vertical axis.

Figure 5.6: Pictorial representation of the second braid relation.

the permutation group SN ruling the particle exchanges in three or more
dimensions is given by the same set of generators with relations (5.6) and
the additional relations τ2

i = e for all i ∈ 1, ..., n − 1. These last relations
are absent for π1(MD

N ) ∼= BN , since in the plane a counterclockwise particle
interchange τi ceases to be homotopic to the clockwise interchange τ−1

i .
If the wave function transforms in some one-dimensional irreducible rep-

resentation of BN , one talks of abelian anyons. Wave-functions transforming
in some higher dimensional irreducible representation are said to describe
non-abelian anyons.

5.2 Requirements of anyon models

We have found that a model of anyons is a theory of particles on a two-
dimensional surface. However the peculiar statistics of the anyons can be
interpreted as a kind of interaction which is topological in nature. This
is where we can make a connection with the Aharonov-Bohm effect tak-
ing place between magnetic flux and electric charge. Under this analogy,
the representations carried by the quasiparticles can take the meaning of
charge and flux and we have convenient illustration of anyons as charged
topological excitations confined to the plane. This intuitive picture is useful
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when considering anyonic behaviour and it holds regardless of the physical
scenario in which the anyons arise. In some cases the flux-charge analogy
is an accurate physical description, since in some superconductor systems
the fluxes are magnetic vortices carrying quantized magnetic flux and the
charges are condensates of the matter fields carrying some quantized elec-
tric charge as a collective property. In other cases, including those that will
be discussed here, the quasiparticles may manifest themselves are collective
excitations bearing no direct correspondence to the elementary magnetic of
electric charge. The topological interactions still exist as if the quasipar-
ticles were carrying some flux and charge, but these are to be regarded as
fictitious properties having nothing to do with ordinary electromagnetism.
Through the connection to the Ahanarov-Bohm effect we can assign to each
particle a locally conserved charge. We also assume the theory has a mass
gap, so there are no long range interactions between particles mediated by
massless particles.

Based on this analogy we can construct general anyon models, these
must have the following defining properties:

• A list of particle types. The types are labels that specify the possible
values of the conserved charge that a particle can carry

• Rules for fusing and splitting, which specify the possible values of the
charge that can be obtained when two particles of known charge are
combined together and the possible ways in which the charge carried
by a single particle can be split into parts.

• Rules for Braiding, which specify what happens when two particles are
exchanged (or when one particle is rotated by 2π).

We now focus on specific topolgocial models. We begin with the abelian
toric code. This is a topological surface code with a particularly simple
and completely solvable Hamiltonian. Excitations on the surface turn out
to correspond to abelian anyons. We briefly review the main features and
dynamics of this model in the next section before going on to generalize the
idea to the continuous-variable regime.

5.3 The Kitaev Model

The toric code is an exactly solvable spin 1/2 model on a square lattice (more
generally, we can extend the model from a square lattice to any planar graph)
[140, 174, 175]. It exhibits a ground state degeneracy of 4g when embedded
on a surface of genus g and a quasiparticle spectrum with both bosonic and
fermionic sectors. We consider a square lattice, possibly embedded into a
nontrivial surface such as a torus, with spins on the edges of the lattice.
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This system has the Hamiltonian

H = −Jc
∑
v

Av − Jm
∑
f

Bf (5.7)

where Av is defined for each vertex v as

Av =
∏

j∈star(v)

Xj (5.8)

and the plaquette operator acts on the four spins surrounding a face

Bf =
∏

j∈∂(f)

Zj , (5.9)

∂(f) are the qubits forming the boundary of a plaquette. The operators
X and Z denote the standard Pauli matrices σx and σz, respectively, The
reason for using the X and Z notation will become clear in the next section
when we make a connection to continuous-variable phase-space operators.
The Pauli operators form the stabilizers Av and Bf . In the square lattice,
Fig. (5.7), each term of the Hamiltonian H represents four body interactions
of local qubits. Clearly, the Av all commute with one another, as do the Bf .
Less obvious is the commutation

AvBf = BfAv (5.10)

because any given vertex and face share an even number of edges (either
none or two) and therefore the minus signs arising from the commutation
of X and Z on those edges cancel. Since all of the terms commute, it is
straightforward to find the ground state |ψ〉 of the Hamiltonian H. We will

Figure 5.7: The Kitaev toric code on a square lattice. This has two stabi-
lizer conditions Av and Bf defining stars (yellow crosses) and plaqettes (red
squares) respectively.
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solve H working in the Z basis. Define classical variables sj = ±1 to label
the Z basis states. For each classical spin configuration {s}, we can define
the plaquette flux

wf (s) =
∏
j∈∂f

sj (5.11)

If wf = −1, we say there is a vortex on face f.

5.3.1 Ground states

To find the ground states |ψ〉 of H, we minimize the energy. This in turn
requires us to maximize the energy of the Av and Bf terms. The plaquette
terms provide the condition

Bf |ψ〉 = |ψ〉 (5.12)

which only holds if and only if

|ψ〉 =
∑

wf (s)=1 ∀f

cs|s〉 (5.13)

That is, the ground state contains no vortices. The group of vertex operators
act on the configurations s by flipping spins. Thus, the vertex conditions

Av|ψ〉 = |ψ〉 (5.14)

can only happen if the constants cs are equal for each orbit of the action
of the vertex operators, otherwise we would obtain violations of the ground
state when acting on different vertices. This requirement uniquely deter-
mines the ground state.

On the torus, we can define conserved numbers given by the function

wl(s) =
∏
j∈l

sj , l = l1, l2 (5.15)

where l1 and l2 are two independent non-trivial cycles on the square lattice
wrapping the torus. Any given vertex will overlap with a loop l in either zero
or two edges and therefore Av preserves wl. Since there are two independent
loops on the torus, each of which can have wl = ±1, there is a four-fold
degenerate ground state:

|ψ〉 =
∑

wp(s)=1 ∀f

cwl1wl2 |s〉. (5.16)
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5.3.2 Excitations of the toric code

The excitations of the toric code come in two varieties: the electric charges
and magnetic vortices, similar to those of a Z2 gauge theory. To find electric
charges, we define the operator

W
(e)
l =

∏
j∈l

Zj (5.17)

where l is a path in the lattice going from s1 to s2. This operator clearly
commutes with the plaquette operators Bf and with all vertex operators Av
except for at the end points s1 and s2, where only one edge overlaps between
the vertex and the path and we have

W
(e)
l Av1 = −Av1W

(e)
l . (5.18)

Therefore the state
|ψv1,v2〉 = W

(e)
l |ψ0〉, (5.19)

where |ψ0〉 is the planar ground state, is an eigenstate of the Hamiltonian
with excitations (charges) at v1 and v2 that each cost energy 2Je to create
relative to the ground state.

An analogous construction will find the magnetic vortices. For this we
define the dual path operator

W
(m)
l∗ =

∏
j∈l∗

Xj (5.20)

where the path l∗ lies in the dual lattice and goes from f1 to f2. In this case,
the vertices Av all commute with W

(m)
l∗ , as do all the plaquette operators

Bf except the two at the end points of l∗, which anticommute. Thus the
W

(m)
l∗ operator creates a pair of magnetic vortices on the plaquettes f1 and

f2 at an energy of 2Jm each.

5.3.3 Abelian statistics and superselection sectors in toric
code

Here we discuss what happens when we exchange two particles on the toric
code. To ensure that particle statistics are well-defined, we assume there are
no long-range interactions and the phase is gapped. Since path operators
of the same type commute with one another, braiding particles of the same
type will only act trivially on the ground state. Through these mutual
statistics we infer that particles of the same type are bosons with respect
to each other. However, we find nontrivial statistics when the two different
particle types interact with each other. To calculate the mutual statistics,
consider taking a charge e around a vortex m.
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Let |ψm〉 be some state containing a magnetic vortex at f1. Under the
full braiding operation,

|ψm,1〉′ →

∏
j∈l

Zj

 |ψm,1〉 =

 ∏
p inside l

Bf

 |ψm,1〉 (5.21)

where the second equality is a Stoke’s theorem like result relating the product
around a loop to the product of the internal loops. Since

Bf1|ψm,1〉 = −|ψm,1〉 (5.22)

for the plaquette f1 containing the vortex, we have that

|ψm,1〉 → −|ψm,1〉 (5.23)

This is represented diagramatcially in Fig.(5.8). Going further, using the

Figure 5.8: The braiding of e and m excitations is equivalent to aquiring a
phase of -1.

bosonic self statistics equations, Fig. (5.9), we can derive the nontrivial
corollary that composite e − m particles are fermions, Fig.(5.10). We are
now in a position to characterize all the particle types in the toric code.
Each corresponds to a superselection sector, which is a representation of the
local operator algebra. To avoid multiple counting of particle types we say
that two particles (or composite objects) are of the same type, that is a ∝ b
if a can be transformed into b by some operator acting in a finite region.
For example, in the toric code, two e-type particles are equivalent to having
no particles at all if acted upon with an appropriate, geometrically bounded
electric path operator. Recalling our notation above, this is equivalent to to
the relation

e× e = 1 (5.24)
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Figure 5.9: Particles of the same type are bosons with respect to each other
as they have bosonic mutual statistics.

Figure 5.10: Composite particles composed of e- and m-types have fermionic
statistics.
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which represents the fusion rule of two e-particles which are equivalent to
the vacuum sector 1. In the toric code, there are four superselection sectors

1, e, m and ε = e×m (5.25)

with the fusion rules

e× e = 1 e×m = ε

m×m = 1 e× ε = m

ε× ε = 1 m× ε = e (5.26)

At this point we have a complete set of anyons that we can initialize and
move around a lattice. We have found that they have interesting mutual
statistics that cause phase changes of -1 on the wavefunction under braiding.
However the toric code in the form presented here, while useful as a quan-
tum memory, has limited use for quantum computation as the excitations
produced are Abelian and hence cannot perform general unitary evolutions
of the Hilbert space. This completes our introduction to the toric code.
Much work has been done that goes far beyond what has been discussed
here and we refer the reader to [175, 176, 177] and references therein for
further information and recent developments.

Having understood this discrete model, we seek to generalize the Kitaev
code to the continuous-variable regime. In the following sections we will
discover that we can formulate a CV equivalent of anyons and furthermore,
we can use them to perform CV quantum computation. First however we
must construct the ground state for our anyonic excitations.

5.4 Continuous-Variable toric codes

There exist many proposals to realize the discrete-variable Kitaev toric code
and hence abelian anyon statistics. In order to generate a CV analogue of
the Kitaev state, we employ CV cluster states and seek to create the CV
toric code dynamically via projective measurements. This is a particularly
convenient method since the extension from discrete to CV cluster states
is well understood. A similar procedure for qubits was proposed in [178].
In the following we will show how a CV toric code is produced from a CV
cluster state, will then examine the excitations on the code and find that
they constitute a CV equivalent to abelian anyons [179].

5.5 Generation of anyonic ground states from CV
graph states

First we recall the basic principles of CV cluster states from our previous
chapter. In the ideal case, CV cluster states are prepared from a collection
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of N zero-momentum eigenstates, written |0〉⊗Np , where the p-subscripted
kets satisfy p̂|s〉p = s|s〉p. These states are entangled via a collection of
controlled-Z operations, denoted CZ = exp(igx̂i ⊗ x̂j), where g ∈ R is the
strength of the interactions (we will assume g = 1 throughout). Labeling
the nodes of the graph in some arbitrary order, we can define a symmetric
adjacency matrix A = AT whose (j, k)th entry Ajk is equal to the weight
of the edge linking node j to node k (with no edge corresponding to a
weight 0). Note in the ideal case the diagonal entries are all zero since we
do not allow for self loops in the graph [99]. The collection of controlled-Z
operations used to make the CV cluster state are then a function of the
graph adjacency matrix A, denoted CZ [A]. The CV cluster state with the
graph A is then

|ψA〉 = CZ [A]|0〉⊗Np

=
N∏

j,k=1

exp
(
i

2
Ajkx̂j x̂k

)
|0〉⊗Np

= exp
(
i

2
x̂TAx̂

)
|0〉⊗Np , (5.27)

where x̂ = (x̂1, ..., x̂N )T is a column vector of position operators. Ideal CV
cluster states in the unphysical limit of infinite squeezing satisfy a set of
nullifier relations, which can be written as

(p̂−Ax̂)|ψA〉 = 0, (5.28)

where p̂ = (p̂1, ..., p̂N )T is a column vector of momentum operators. This
represents N independent equations, one for each component of the vector
(p̂−Ax̂), which are the nullifiers for |ψA〉, because that state is a simulta-
neous zero-eigenstate of them. The nullifiers are written explicitly as

ĝa = (p̂a −
∑
b∈Na

x̂b)→ 0, ∀a ∈ G, (5.29)

where the modes a ∈ G correspond to the vertices of the graph ofN modes
and the modes b ∈ Na are the nearest neighbours of mode a. We saw previ-
ously that this corresponds to the stabilizer operator Ga(ξ) = exp(−iξĝa) =
Xa(ξ)

∏
b∈Na Zb(ξ).

To construct the CV Kitaev code from a CV cluster state, we follow the
following protocol:

• Single-mode measurements in the position basis are performed on
qumodes that are to be designated to define faces (plaquettes).

• Single-mode measurements in the momentum basis are performed on
qumodes that will become vertices.
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• All the remaining modes undergo a Fourier transform, F .

Let us demonstrate this with an example. We start with a nine-mode square
cluster state as shown in Fig(5.11). To form the Kitaev lattice, we make
X-basis measurements on the corner modes, labeled {a, b, c, d} and a Z-
basis measurement on the middle mode, call if e. The remaining modes are
labeled {1, 2, 3, 4} in clockwise order. It is the numbered modes that will
remain after the procedure and will form the CV Kitaev lattice. This state

Figure 5.11: Nine-mode square CV cluster state. Blue nodes are unmeasured
and will form the CV Kitaev lattice. Green nodes are measured in the X-
basis and orange in the Z-basis.

has nullifier conditions

p̂a − x̂1 − x̂2 → 0, p̂b − x̂3 − x̂2 → 0,
p̂c − x̂1 − x̂4 → 0, p̂d − x̂3 − x̂4 → 0, (5.30)

for the mode to be measured in the position basis.

p̂e − x̂1 − x̂2 − x̂3 − x̂4 → 0, (5.31)

for the modes measured in the momentum basis and

p̂1 − x̂a − x̂e − x̂c → 0, p̂2 − x̂a − x̂b − x̂e → 0,
p̂3 − x̂b − x̂e − x̂d → 0, p̂4 − x̂c − x̂d − x̂e → 0, (5.32)

are the unmeasured modes. Performing the measurements on the modes con-
verts the measured quantity to some classical number, so for i = a, b, c, d, e
we have x̂i → Xi and p̂i → Pi but leaves the unmeasured modes untouched.
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This leaves us with

p̂1 −Xa −Xc − x̂e
p̂2 −Xa −Xb − x̂e
p̂3 −Xb −Xd − x̂e
p̂4 −Xc −Xd − x̂e

(5.33)

and
Pe − x̂1 − x̂2 − x̂3 − x̂4. (5.34)

What remains to do is find a new basis for the remaining modes. We can
find this by taking combinations of the nullifiers and ensuring that they
commute.

p̂1 − p̂2 = Xc −Xd

p̂2 − p̂3 = Xa −Xd

p̂3 − p̂4 = Xb −Xc

p̂4 − p̂1 = Xa −Xa, (5.35)

and (5.34) give commuting stabilizers (there are others such as p̂1 − p̂3 and
p̂2 − p̂4 but these are redundant and infers that this construction is not
unique). Since each of the nullifiers (5.35) are just equal to some classical
number their variance tends to zero (assuming an ideal measurement) and
hence they also stabilize the state. As a final step we take the Fourier
transform on the remaining modes to give

x̂1 − x̂2 → 0, x̂2 − x̂3 → 0
x̂3 − x̂4 → 0, x̂4 − x̂1 → 0. (5.36)

We associate each of these with a face of the lattice (although in our toy
nine-mode example we have only two modes to define each face instead of
four). Our vertex is defined by the node e, which under Fourier transform
gives the nullifier

p̂1 + p̂2 + p̂3 + p̂4 → 0. (5.37)

Then we have the new graph state shown in Fig.(5.12). This state has only
four remaining modes, but it defines a vertex v at its center and four faces
f . This example is easily expanded to the general case. By iterating the
above procedure for larger square CV clusters, we see that we just get more
vertices and faces but the form of the nullifiers is unchanged. The new state
created from an arbitrary sized square CV cluster is described by a set of
correlations of the form

âs = (p̂s,1+p̂s,2+p̂s,3+p̂s,4)→ 0, b̂f = (x̂f,1−x̂f,2+x̂f,3−x̂f,4)→ 0, (5.38)
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Figure 5.12: The four-mode CV Kitaev lattice generated from the nine-mode
CV cluster state. Nodes 1 and 2 form face f1, 2 and 3 form face f2, 3 and
4 form face f3 and 4 and 1 form face f4. We have single vertex v (yellow).

where s and f label star and plaquettes, respectively, and the indices 1, .., 4
of the position and momentum operators denote those modes located at
a common star or at the boundary of a common plaquette. We can then
associate new stabilizer operators that describe this state,

As(ξ) = exp(−iξâs) =
∏

j∈star(s)

Xs,j(ξ),

Bf (η) = exp(−iηb̂f ) =
∏

j∈∂(f)

Zf,j((−1)jη), (5.39)

with ξ, η ∈ R. Comparing with Eq.(5.8,5.9), we see that these CV stabilizers
are completely analogous to the stabilizers for the first Kitaev model on a
two-dimensional spin 1/2 lattice. It is easy to show that these new stabilizer
operators commute since they always meet at either two or zero points of
the graph and so the phases cancel. Then we say the new ground state
corresponds to an anyonic ground state with

As(ξ)|ψ〉 = |ψ〉
Bf (ξ)|ψ〉 = |ψ〉 (5.40)

for all stars s and plaquettes f , in the limit of infinite squeezing.
This section has given us some remarkable results. It seems that we can

create a surface code that is a CV analog of the Kitaev lattice and since
this is a CV protocol this state can be built from Gaussian resources and
linear optics, a far simpler task experimentally than arranging four-body
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interactions between single spins. Mathematically the difference amounts
to replacing the Pauli-X and Z operators with CV Weyl-displacement op-
erators. In our next section we push this analogy further and examine the
excitations that can be produced on the surface of the code. In the discrete
case, we showed that excitations correspond to defects in the code with the
property that when braided around each other produce phase changes of
−1.

5.6 CV Anyon creation, fusion and braiding

We create excitations by applying Xj(s) and Zj(t) displacement operators
to some mode, j, of the ground state. Then the excited states differ from
the ground states, |ψ〉, in their stabilizer operators. For the vertex stabilizer
As(ξ) we have

As(ξ)[Zj(s)]|ψ〉 = e−iξâseisx̂j |ψ〉
= eξs[âs,x̂j ]Zj(s)As(ξ)|ψ〉
= e−iξsZj(s)|ψ〉, (5.41)

∀ξ ∈ R. Then the stabilizer As(ξ) no longer satisfies the ground-state con-
dition âs = 0. Now it reads âs = s. Note that applying Xj(t) to the vertex
operator has no effect on the stabilizers since it commutes with As(ξ). This
displacement on mode j causes a stabilizer violation on the two neighbouring
vertices.

Applying Xj(t) to the ground-state defined by Bf (η) gives

Bf (η)[Xj(t)|ψ〉] = eiηb̂f e−itp̂j |ψ〉

= e−ηt[b̂f ,p̂j ]Xj(t)Bf (η)|ψ〉
= e±iηtXj(t)|ψ〉, (5.42)

∀η ∈ R. Now the ground-state condition b̂f = 0 for the stabilizer Bf (η)
has been violated. The excited state corresponds to a nullifier violation of
b̂f ± t. How do we interpret these continuous excitations? Comparing to
discrete QEC we can say we have merely induced errors or holes in the CV
surface code. So by applying a displacement to a mode j, an error is induced
in either the neighbouring vertices or plaquettes which can be corrected by
guiding the two holes around closed loops until they meet up and cancel each
other out. Then this lattice can be thought of as another error correcting
code for CV states.

A more interesting interpretation for the purposes of quantum compu-
tation is that the excitations are a continuous-variable analog of anyons,
produced by applying Z and X operators on the ground state. Specifically,
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Figure 5.13: Anyon creation on CV Kitaev lattice: Blue lattice nodes are
the physical modes. (a) Momentum-translation operator induces two e-type
anyons on adjacent vertices v. (b) and (c) Position-translation operator
creates two m-type anyons on adjacent plaquettes f . (Yellow nodes have
been acted upon by a displacement operator

the position-translation operator applied to some mode of the lattice creates
a pair of m-type anyons on adjacent plaquettes, given by

|m((−1)dt)〉 = X(t)|ψ〉 (5.43)

(d ∈ {1, 2}), where d = 1 means the relevant mode lies on the vertical edges,
and d = 2 refers to the horizontal edges). An e-type pair of anyons is created
on adjacent vertices of the lattice by applying the momentum-translation
operator

|e(s)〉 = Z(s)|ψ〉. (5.44)

We represent this in Fig. (5.14). Using this interpretation, we can go beyond
merely correcting errors and use our CV Kitaev code to perform quantum
computation. First however, we have to confirm that these excitations ex-
hibit anyonic behaviour. We can check this by examining their fusion and
braiding rules.

5.6.1 Fusion and braiding

To compute the fusion rules we consider the effect when two anyons are
combined at a common star or face. Here our anyons are just momentum or
position displacements so combining them just amounts to the sum of the
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displacements. So for two star anyons created by displacements Z(v) and
Z(u), the fusion gives

|e(v)〉 × |e(u)〉 = [Z(v)|ψ〉]× [Z(u)|ψ〉]
= [Z(v)× Z(u)]|ψ〉
= [eivp̂eiup̂]|ψ〉
= [ei(u+v)p̂]|ψ〉
= Z(u+ v)|ψ〉
= e(u+ v) (5.45)

Similarly, fusing plaquette anyons created by position displacements X(u)
and X(v) gives,

|m(v)〉 × |m(u)〉 = [X(v)|ψ〉]× [X(u)|ψ〉]
= [X(v)×X(u)]|ψ〉
= [e−ivx̂e−iux̂]|ψ〉
= [e−i(u+v)x̂]|ψ〉
= X(u+ v)|ψ〉
= m(u+ v) (5.46)

Note that zero displacements |e(0)〉 = X(0)|ψ〉 = |ψ〉 and |m(0)〉 = Z(0)|ψ〉 =
|ψ〉 corresponds to the vacuum anyon. These have no effect on the ground
state and we can see from (5.45) and (5.46) that fusing the vacumm anyon
with anyon other type has no effect on the state. One might ask what the
result of fusing an e- with an m-type would give. However, in this model it
is not possible to directly fuse these two since they exist as different types
of displacement in phase-space.

The CV anyon fusion rules can be summarized as

e(s)× e(t) = e(s+ t) m(s)×m(t) = m(s+ t)
e(0) = m(0) = 1, 1× e(s) = e(s), 1×m(s) = m(s) (5.47)

Then we clearly have an abelian anyon model since the anyons can only ever
fuse to give one result. However, we get a more complicated fusion behaviour
compared to the discrete toric code. Recall in the discrete case, e- and m-
types are always antiparticles of themselves and so e×e = 1 and m×m = 1.
Here this is not true in general, now fusing anyon of the same type results
in another of that type, characterized by a new continuous parameter. We
note that it is always possible to retrieve the discrete anyon behaviour by
choosing our displacements such that we fuse particles to antiparticles i.e.,
e(s)× e(−s) = 1.

To complete our anyon model we have to establish braiding rules. By
application of a sequence of X and Z operators we can construct loops in on
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the surface code. Just as in the discrete case the anyons behave as bosons
with respect to particles of the same type, that is braiding e around and e
has no effect on the state. This can be shown by creating an e-type on mode
i, |ψini〉 = Zi(s)|ψ〉 and braiding another e by successive application of Z(t)
around a closed loop:

|ψfin〉 = Z1(t)Z2(t)Z3(t)Z4(t)|ψini〉
= Zi(s)[Z1(t)Z2(t)Z3(t)Z4(t)|ψ〉]
= |ψini〉. (5.48)

Since all the Z operators commute. The mutual statistics between different
types give a more interesting behaviour. For example, consider an initial
state |ψini〉 = Zi(s)|ψ〉 = |e(s)〉. If an anyon of type m is at a neighbouring
plaquette, it can be moved around e along a path generated by successive
application of X(t) on the four modes of the star. The final state is

|ψfin〉 = X1(t)X2(t)X3(t)X4(t)|ψini〉
= e−istZi(s)[X1(t)X2(t)X3(t)X4(t)|ψ〉]
= e−ist|ψini〉. (5.49)

The phase factor is known as the topological phase factor, which reveals the

Figure 5.14: Braiding an m- around and e-type is performed by a sequence
of X operators on the modes forming a closed loop around the e anyon.

presence of enclosed anyons. Again we compare to the discrete case where
braiding only results in a phase of −1, here we have much more freedom
in the phase we can acquire since we choose the initial displacements on
the ground state. The phase factors constitute an abelian representation
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of the braid group. The relation described by Eq.(5.49) can be obtained
for different paths of the loop. For example, the loop 1-2-5-6-7-4 of m-type
anyons Fig. (5.14), which corresponds to the application of

X1(t)X2(t)X5(−t)X6(−t)X7(−t)X4(t) =[X1(t)X2(t)X3(t)X4(t)]
× [X3(−t)X5(−t)X6(−t)X7(−t)],

(5.50)

involving two star operators, gives the same result for the topological phase
in Eq.(5.49). This topological character reveals the potential robustness of
operations with CV anyons and their use as a resource for fault-tolerant
quantum computation.

5.7 Physical States - Finite Squeezing

So far, we have only considered the generation of anyonic statistics on an
infinitely squeezed ground state. However, this state is highly unphysical.
Here we extend our model to include finite squeezing of the initial state and
calculate the effects on the braiding operations [180].

To this end, we must construct our CV Kitaev lattice again but this
time we no longer assume that the modes are prepared in the unphysical
momentum eigenstates, instead we allow the modes to be Gaussian states.
In chapter 4 we described a method to extend the graph representations
from ideal (infinitely squeezed) CV cluster states to their finitely squeezed
Gaussian approximations. It was shown that the nullifier formalism for
CV cluster states can be extended to general Gaussian pure states using
the simple replacement of the CV cluster state graph A with the Gaussian
graph Z, so that (p̂ − Zq̂)|φZ〉 = 0 with the new non-Hermitian nullifiers
defined as

gk = p̂k − ie−2rk x̂k −
∑
l∈Nk

x̂l, ∀k. (5.51)

Then the adjacency matrix Z for a Gaussian pure state is a complex matrix
with imaginary diagonal entries, ie−2rk , corresponding to self-loops on the
modes, and the remaining entries either 0 or 1 depending on the particular
CV cluster state.

Then our protocol proceeds as before, we start with an N -mode square
cluster state defined by the nullifier (5.51), measure out every second mode in
the X or Z basis in the same pattern described for the ideal cluster. Finally
we apply a Fourier transform to each mode which generates the finitely
squeezed Kitaev lattice Fig.(5.15). As and example, we derive the Gaussian
Kitaev nullifiers from a nine-mode square cluster state. The unmeasured
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Figure 5.15: Measurement pattern for construction of CV Gaussian Kitaev
state from CV Gaussian cluster state. Node e (yellow) is measured in the
momentum basis, nodes a, b, c, d (green) are measured in the position basis.
The self loops of the graph represent the finite squeezing with squeezing
parameter rk.

mode nullifiers are

p̂1 − ie−2r1 x̂1 − x̂a − x̂e − x̂c → 0, p̂2 − ie−2r2 x̂2 − x̂a − x̂b − x̂e → 0,

p̂3 − ie−2r3 x̂3 − x̂b − x̂e − x̂d → 0, p̂4 − ie−2r4 x̂4 − x̂c − x̂d − x̂e → 0,
(5.52)

The cluster state nullifiers for the modes to be measured in the X basis are

p̂a − ie−2ra x̂a − x̂1 − x̂2 → 0, p̂b − ie−2rb x̂b − x̂3 − x̂2 → 0,

p̂c − ie−2rc x̂c − x̂1 − x̂4 → 0, p̂d − ie−2rd x̂d − x̂3 − x̂4 → 0, (5.53)

Finally the mode measured in the Z basis has nullifier

p̂e − ie−2re x̂e − x̂1 − x̂2 − x̂3 − x̂4 (5.54)

Performing X-measurements on modes a, b, c, d leaves us with

p̂1 − ie−2r1 x̂1 −Xa −Xc − x̂e,
p̂2 − ie−2r2 x̂2 −Xa −Xb − x̂e,
p̂3 − ie−2r3 x̂3 −Xb −Xd − x̂e,
p̂4 − ie−2r4 x̂4 −Xc −Xd − x̂e, (5.55)

and the Z measurement gives

Pe − ie−2re x̂e − x̂1 − x̂2 − x̂3 − x̂4 (5.56)
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Then taking combinations of the remaining nullifiers, we find

p̂1−ie−2r1 x̂1 − p̂2 + ie−2r2 x̂2 = Xc −Xb,

p̂2−ie−2r2 x̂2 − p̂3 + ie−2r3 x̂3 = Xa −Xd,

p̂3−ie−2r3 x̂3 − p̂4 − ie−2r4 x̂2 = Xb −Xc,

p̂4−ie−2r4 x̂4 − p̂1 − ie−2r1 x̂2 = Xa −Xd. (5.57)

Then the nullifiers that define the four plaquettes read

(p̂1 − ie−2r1 x̂1)− (p̂2 − ie−2r2 x̂2)→ 0,

(p̂2 − ie−2r2 x̂2)− (p̂3 − ie−2r3 x̂3)→ 0,

(p̂3 − ie−2r3 x̂3)− (p̂4 − ie−2r4 x̂4)→ 0,

(p̂1 − ie−2r1 x̂1)− (p̂4 − ie−2r4 x̂4)→ 0. (5.58)

The star nullifier is given by

x̂1 + x̂2 + x̂3 + x̂4 → 0. (5.59)

Then we perform the Fourier transform on the remaining modes which leaves
us with ,

b̂′1 = (x̂1 − ie−2r1 p̂1)− (x̂2 − ie−2r2 p̂2),

b̂′2 = (x̂2 − ie−2r2 p̂2)− (x̂3 − ie−2r3 p̂3),

b̂′3 = (x̂3 − ie−2r3 p̂3)− (x̂4 − ie−2r4 p̂4),

b̂′4 = (x̂1 − ie−2r1 p̂1)− (x̂4 − ie−2r4 p̂4), (5.60)

which define the four plaquettes and

â′s = [p̂1 + p̂2 + p̂3 + p̂4], (5.61)

which defines the star Fig.(5.16), where (’) indicates that this is the finitely
squeezed nullifier. As with the infinite squeezed case, each nullifier â′s defines
a star and b̂′f a plaquette. The general nullifiers are given by

â′s = (p̂s,1 + p̂s,2 + p̂s,3 + p̂s,4) = 0 (5.62)

b̂′f = (x̂s,1 − x̂s,2 + x̂s,3 − x̂s,4)

− ie−2r1 p̂f,1 + ie−2r2 p̂f,2 − ie−2r3 p̂f,3 + ie−2r4 p̂f,4 = 0, (5.63)

where s and f label the stars and plaquettes, respectively, and ∂f denotes the
boundary of a face. Comparing with the nullifiers in the infinitely squeezed
limit,

â′s = âs = (p̂s,1 + p̂s,2 + p̂s,3 + p̂s,4) = 0 (5.64)
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Figure 5.16: The Gaussian approximant of the CV Kitaev state with vertex
v and plaquettes f . Self loop of the nodes represent finite squeezing with
squeezing parameter rk.

for the stars and

b̂′f = b̂f − ie−2r1 p̂f,1 + ie−2r2 p̂f,2 − ie−2r3 p̂f,3 + ie−2r4 p̂f,4 = 0, (5.65)

we observe that finite squeezing introduces extra imaginary terms to the
plaquette nullifiers. The stabilizers corresponding to these complex nullifiers
are

A′s(ξ) = e−iξâ
′
s =

∏
j∈star(s)

Xs,j(ξ), (5.66)

B′f (η) = e−iηb̂
′
f =

∏
j∈∂(f)

Zf,j((−1)jη) exp[η(−1)je−2rj (η + p̂j)]. (5.67)

These operators correspond to the Kitaev model with an extra complex
terms, but note that these reduce exactly to the Kitaev stabilizers as the
squeezing parameter r → ∞. These new stabilizers still commute and so
the new state |φ〉 corresponds to the anyonic ground state with

A′s(ξ)|φ〉 = |φ〉, B′f (η)|φ〉 = |φ〉. (5.68)

In order to see the effects of finite squeezing, we apply the unphysical sta-
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bilizers to the physical ground state,

Bf (η)|φ〉 = exp[−iηb̂f ]|φ〉

= exp

η 4∑
j=1

(−1)j+1e−2rj (p̂j + η)


× exp

−η 4∑
j=1

(−1)j+1e−2rj (p̂j + η)

 exp[−iηb̂f ]|φ〉

= exp

−η 4∑
j=1

(−1)j+1e−2rj (p̂j + η)

B′f (η)|φ〉

= exp

−η 4∑
j=1

(−1)j+1e−2rj (p̂j + η)

 |φ〉, (5.69)

where we dropped the subscripts f of the momentum operators for sim-
plicity. We observe that finite squeezing of the ground state violates the
unphysical stabilizer conditions by an imaginary phase, ∼ iη2, and by imag-
inary position shifts, ∼ iη. Having derived the form of our finitely squeezed
CV lattice, we now turn to anyonic excitations and basic braiding opera-
tions.

5.8 Anyonic creation and braiding on finitely squeezed
lattice

By applying single-mode operations to the ground state, we can examine the
excitations above the physical ground state. The effects of finite squeezing
on the creation of anyonic excitations are revealed when we calculate the
violation of the finitely squeezed nullifiers due to the application of Xi(t)
and Zi(t) on some mode of the physical ground state defined by

A′s(ξ)|φ〉 = e−iξâ
′
s |φ〉 = |φ〉, (5.70)

B′f (η)|φ〉 = e−iηb̂
′
f |φ〉 = |φ〉. (5.71)

Note that now, due to the non-Hermiticity of the physical nullifiers, their
violations through anyonic excitations may in general be complex. An exci-
tation of the vertex ground state due to Zj(t) corresponds to

A′s(ξ)[Zj(t)|φ〉] = e−iξâ
′
seitx̂j |φ〉, (5.72)
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but â′s = âs, as the finite squeezing has no effect on the vertex nullifier.
Hence,

A′s(ξ)[Zj(t)|φ〉] = e−iξâseitx̂j |φ〉
= eξt[âs,x̂j ]Zj(t)As(ξ)|φ〉
= e−iξtZj(t)A′s(ξ)|φ〉
= e−iξt[Zj(t)|φ〉]. (5.73)

Just as in the infinitely squeezed case, this yields a stabilizer violation of t.
The Zj(t) applied to the plaquette stabilizers gives

B′f (η)[Zj(t)|φ〉] = e−iηb̂
′
f eitx̂j |φ〉

= eηt[b̂
′
f ,x̂j ]Zj(t)B′f (η)|φ〉

= eηt[−ie
−2rj p̂f,j ,x̂j ][Zj(t)|φ〉]

= e−ηte
−2rj [Zj(t)|φ〉], (5.74)

This differs from the infinitely squeezed case (where we had no violation
at all), with an imaginary nullifier violation of ite−2rj . This time physical
anyons may appear as complex violations of the ground-state stabilizers.
Applying Xj(t) to the ground state yields,

A′s(ξ)[Xj(t)|φ〉] = e−iξâ
′
se−itp̂j |φ〉

= e−iξâse−itp̂j |φ〉
= Xj(t)A′s(ξ)|φ〉
= [Xj(t)|φ〉], (5.75)

so no stabilizer violation occurs. Finally, the plaquette stabilizer gives

B′f (η)[Xj(t)|φ〉] = e−iηb̂
′
f e−itp̂j |φ〉

= e−ηt[b̂
′
f ,p̂j ]Xj(t)B′f (η)|φ〉

= e−ηt[b̂f ,p̂j ]Xj(t)B′f (η)|φ〉
= e±iηt[Xj(t)|φ〉], (5.76)

which corresponds to a violation of ±t.
In summary, finite squeezing gives us a violation of the plaquette ground

state stabilizer due to the action of Z(t), whereas it did not exhibit violations
in the infinitely squeezed case. The vertex stabilizers are unaffected and
yield violations of the same form as in the infinitely squeezed case. This
seems to imply that any topological operations carried out on e anyons are
topologically are invariant to the degree of squeezing. The anyons are now
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represented in general by complex violations. These may then said to be
new types of excitations produced through finite squeezing which we call
complex anyons.

The effects on the braiding procedure and hence gate operations are
determined by generating vertex and plaquette anyons and guiding them
around each other in closed loops.

|φfin〉 = [Z1(−t)Z2(t)Z3(−t)Z4(t)]|φini〉
= [Z1(−t)Z2(t)Z3(−t)Z4(t)]Xk(s)|φ〉. (5.77)

Commuting through to enact the braid yields

|φfin〉 = exp[ist]Xk(s)[Z1(−t)Z2(t)Z3(−t)Z4(t)]|φ〉

= exp[ist]Xk(s) exp

−t 4∑
j=1

(−1)j+1e−2rj (p̂j + t)

B′f (t)|φ〉. (5.78)

Using our definition of the ground state, B′f (t)|φ〉 = |φ〉, we obtain

|φfin〉 = exp[ist]Xk(s) exp

−t∑
j

(−1)j+1e−2rj (p̂j + t)

 |φ〉
= exp[ist] exp

−t∑
j

(−1)j+1e−2rj (p̂j + t)

 |φini〉. (5.79)

We can express the term proportional to t as an imaginary displacement,

|φfin〉 = exp[ist] exp

−t2∑
j

(−1)j+1e−2rj

∏
j

Xj

(
−it(−1)j+1e−2rj

)
|φini〉.

(5.80)
As in the infinitely squeezed case, we observe a phase change of eist, but this
time, for finite squeezing, we have an extra imaginary displacement and a
term proportional to t2 (corresponding to an extra imaginary phase, similar
to what we had before for the ground-state plaquette stabilizers with finite
squeezing). We may call the combination of these terms the topological
factor for the braiding of finitely squeezed anyons, and we note that this
factor would not be obtained if the initial states were unexcited. We can
absorb the complex displacement into the definition of the ground state
such that the nullifier b̂f is no longer zero, but has an imaginary violation
b̂f = it

∑
j(−1)j+1e−2rj . Then b̂f = s + it

∑
j(−1)j+1e−2rj = s′ is the

nullifier corresponding to a finitely squeezedm-anyon. The topological phase
produced when braided with an e-type anyon is then

exp[is′t] = exp[i(s+ it
∑
j

(−1)j+1e−2rj )t]. (5.81)
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This is one of the central results of this chapter, extending the simple (infinite
squeezing) factor eist of [179] to the realistic case of finite squeezing. Similar
to the infinitely squeezed case, the state can acquire any phase, but now the
phase is modified by extra factors.

Having completed our anyon model, we now turn to the question of the
computational power of the CV toric code. In the following we propose a
computational model in which CV quantum information is encoded into the
anyonic states. We begin by establishing a computational basis and deriving
quantum gate operations that can be performed on these anyons.

5.9 Quantum computation with CV abelian anyons

In this section we will derive protocols to enact a universal set quantum
gates using CV abelian anyons. Our first step is to define a computational
basis. The natural basis is in terms of pairs of anyons that are created by
a single displacement on some mode of the CV lattice. This gives us two
bases depending on the initial displacement. We label the bases |r〉v/f on
vertices, v and plaquettes, f , with r ∈ R, which are defined as

|r〉v = |e(r)〉v1 |e(−r)〉v2 ,

|r〉f = |m(r)〉f1 |m(−r)〉f2 . (5.82)

These define the logical basis that our gate operations will act on. We begin
our discussion of quantum computational operations with those gates that
form the Clifford group.

5.10 Clifford Gates

The Clifford group operations are achieved using both topological and non-
topological means. We recall the set {Z(s), F, P (η), CZ ; s, η ∈ R} generates
the Clifford group, where P (η) = exp[i(η/2)x̂2] is a CV squeezing gate, F =
exp[iπ/4(x̂2 + p̂2)] is the Fourier Transform operator, and CZ = exp(igx̂i ⊗
x̂j) is the controlled-Z gate, as defined before. Transformations within the
Clifford group correspond to Gaussian transformations mapping Gaussian
states onto Gaussian states. We see below that the topological operations
available to CV abelian anyons are not sufficient to generate the entire group
and we will require non-topological operations to complete the set.

5.10.1 Topological Operations

Our first topological operations are quadrature displacements, Z(s) = eisx̂.
Phase-space displacements are achieved through the creation and fusion of
anyons. It is easy to see that creation of an anyon results in a displacement
away from the ground state. For non-trivial displacements we fuse anyons
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of the same type, created by displacements on modes i and j. The anyon
on site j can then be moved to site i to implement fusion,

|e(s)〉 × |e(t)〉 = Zi(s)|ψ〉 × Zj(t)|ψ〉
= [Z(s)× Z(t)]i|ψ〉
= ei(s+t)x̂i |ψ〉. (5.83)

To act our quadrature displacement on the computational basis we must
ensure that both anyons in the produced pair are fused with its counterpart.
Hence the effect of our displacement on the computational basis is

|r + s〉v = |e(r + s)〉v1 |e(−(r + s))〉v2 . (5.84)

The change in the computational basis for the m-type anyons follows simi-
larly. We can extend this to the two mode SUM gate, Fig. (5.17), which is
a controlled displacement CX = e−ix̂i⊗p̂j , i.e., |x〉1|y〉2 → |x〉1|x + y〉2. We
affect the SUM gate by fusing one of the anyons from the first mode with an
anyon from the second mode. This results in a displacement of the second
mode dependent on the state of the first:

|s〉1|t〉2 = (|e(s)〉|e(−s)〉)1(|e(−t)〉|e(t)〉)2

→ |e(−s)〉1|e(s+ t)〉2
= | − s〉1|s+ t〉2, (5.85)

where we treat the second anyon of mode two as a spectator anyon that will
be annihilated at the end of the computation and the control is left in the
original state (up to a sign change). We can also perform a controlled-Z gate,

Figure 5.17: The two mode SUM gate. Reprinted figure with permission
from D. F. Milne, N. V. Korolkova and P. van Loock,Phys. Rev. A 85,
052325. Copyright (2012) by the American Physical Society.

Fig. (5.18), which acts on the computational basis as |x〉1|y〉2 → |x〉1eiφ|y〉2.
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This time we affect this transformation by braiding the anyons. For example
to perform a controlled displacement in the conjugate basis on an m-type
anyon we braid an e-type anyon around it. From equation (5.49), we see
that the state picks up a phase dependent on the anyonic states. Hence,

Figure 5.18: The two-mode phase gate. Braiding e- around an m-type
induces a phase rotation of e−ist on the state. Reprinted figure with per-
mission from D. F. Milne, N. V. Korolkova and P. van Loock,Phys. Rev. A
85, 052325. Copyright (2012) by the American Physical Society.

we have found that the controlled shift operation CX , eix̂ip̂j , corresponds
to partial fusions of e-type anyon pairs, while the controlled shift operation
CZ , eix̂ix̂j , corresponds to partial braiding between e- and m-type anyon
pairs. Similarly, we note that the operations eip̂ip̂j and eip̂ix̂j are achieved
by partial braiding between m and e-type anyon pairs and partial fusion of
m-anyon pairs, respectively.

5.10.2 Non-Topological Operations

Above we saw how we can implement single mode displacements, displace-
ments in the conjugate basis and two-mode controlled displacement gates.
Now we go beyond simple first-moment Gaussian operations and consider
the manipulation of second moments. In particular, we seek to complete the
set of Clifford gates by the inclusion of a squeezer and a Fourier transform.
The squeezing operation compresses the position quadrature by a factor
η while stretching the conjugate quadrature by 1/η. We cannot directly
squeeze our anyons since the only action we can take on the anyons is fusion
and braiding. Instead, we squeeze on some mode i of the ground state,

|ψ̃〉 = Pi(η)|ψ〉. (5.86)
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Then creating an anyon on this squeezed ground state mode and commuting
through gives us

Zi(s)|ψ̃〉 = Zi(s)Pi(η)|ψ〉
= Pi(η)ei2ηsx̂iZi(s)|ψ〉. (5.87)

We find that squeezing the ground state is equivalent to squeezing the anyon
with an additional phase space displacement. This squeezing operation com-
bined with a measurement in the X basis can be used to implement a Fourier
transform F . The action of F is to switch between the position and mo-
mentum bases, i.e., F |x〉x = |x〉p. This corresponds to a generalization of
the Hadamard gate for qubits. To perform F on our anyons, we begin by
preparing a zero-momentum squeezed ground state |0〉p. We proved above
that up to a displacement, any squeezer on the ground state acts on the any-
onic excitations in the same way. Hence we can produce zero-momentum
anyons. For example, consider an m-type anyon in the computational basis
|ψ′〉 = X(s)

∫
dtf(t)|t〉x. We fuse this anyon with the momentum squeezed

anyon:

SUM[|ψ′〉 × |0〉p] = SUM[X(s)|ψ〉 × |0〉p]

= SUM
[∫

dtf(t)X(s)|t〉x|0〉p
]

=
∫
dtf(t)|t+ s〉x|t+ s〉p. (5.88)

Then, performing a measurement of p̂ with outcome m on the mode corre-
sponding to the first anyon collapses this to∫

dtf(t)ei(t+s)m|s+ t〉p = X(m)F |ψ′〉. (5.89)

We see that the effect of this procedure is to apply a Fourier transform
modulo a known quadrature displacement. This completes our set of Clifford
gates, and so with appropriate non-topological operations we can apply any
Gaussian transformation. As stated above, Gaussian transformations are
not sufficient for universal QC and we address the question of universality
in the next section.

5.11 Non-Clifford gates and universality

For our abelian anyon computational scheme, we require either a non-
Gaussian gate or a non-Gaussian resource. In a similar fashion to our
squeezing operation, we apply a cubic phase, V (γ) = eiγx̂

3
, γ ∈ R, to some

mode i of the ground state. Then we commute V (γ) through the X and Z
operators to find the effect on the anyons:

|ψc〉 = Vi(γ)|ψ〉. (5.90)
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Now applying X and Z operators to create e- and m-type anyons and com-
muting the cubic phase gate through we find

Xi(s)Zi(t)|ψc〉 = Xi(s)Zi(t)Vi(γ)|ψ〉

= Vi(γ)e−i(sp̂i−tx̂i+3γsx̂2
i )Xi(s)Zi(t)|ψ〉. (5.91)

Hence we find that applying a cubic phase to the ground state is equivalent
to applying the cubic phase to the anyons with extra displacements and
squeezing operations. This produces non-Gaussian anyons that can then be
used to obtain a universal gate set.

5.12 Classification of operations

To conclude our discussion, we attempt to provide a classification of our gate
operations. We found that robust topological operations correspond to con-
trolled or uncontrolled WH gates. Non-robust, non-topological Clifford op-
erations correspond to symplectic operations. Non-robust, non-topological,
non-Clifford operations correspond to non-WH, non-symplectic operations.
This is summed in this table:

Topological non-Topological
uncontrolled WH (X, Z) uncontrolled non-WH (P , F )
controlled WH (CZ) controlled non-WH (Two-mode P )
- non-Clifford (V (γ))

In group theoretical terms, all operations that are not elements of the nor-
malizer of the WH group (Clifford group) cannot be topologically realized
using abelian anyons. Of those operations that are elements of the nor-
malizer of WH, only the elements of the normal subgroup of the Clifford
group can be topologically realized using abelian anyons; those Clifford el-
ements that are not elements of the normal subgroup cannot be realized
topologically using abelian anyons 1.

5.13 Effect of finite squeezing on quantum gates

We have assumed in this computational scheme that we are using the infin-
tely squeezed CV Kitaev lattice. We may also ask what effect there is on
the gate operations if we use the finite squeezed (physical) lattice.

It appears that finite squeezing has no effects on topological operations
since the displacements and dampings are taken into account through the
definition of the ground state and they depend on the known squeezing

1Note that in standard CV encoding, the Cx and Cz gates are symplectic operations
involving squeezers and beam splitters. In the abelian-anyon encoding, however, they
would only result in controlled shifts.
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rj available at each qumode. As a result, topological operations on CV
abelian anyons would be protected from errors due to finite squeezing of the
initial ground state. If this was indeed true, this result would be a signifi-
cant extension of that of Ref. [179]. There it was argued that in the case
of finite squeezing, excited (anyonic) states can be experimentally distin-
guished from the ground state and, similarly, the effects of braiding loops
can still be detected, provided the corresponding phase-space displacements
are sufficiently large. In our treatment, such a requirement is unnecessary.
Using the complex-nullifier formalism, we find that any finite-squeezing ef-
fects on the 1st-moment-shifts can be absorbed into the definition of the
excited states as well as into the topological phases. Note also that these
re-defined WH frames would always depend on the explicit values of the cor-
responding anyonic excitations and anyon-braidings [i.e., the t-dependencies
in Eqs. (5.72-5.81)]. However, an important question here is whether this
apparent fault tolerance against finite squeezing has any measurable effect.
In particular, compared to Ref. [202] (see Eq.(4) and Fig.(2)), can we make
the interferometric verification of the topological phase more robust against
finite squeezing. That scheme relies on converting the topological phases to
phase-space displacement. These displacements are then measured through
homodyne measurement however in doing this we lose the benefit we gain
from the topological protection. To recover the protection would require
us to measure in the complex nullifier basis - clearly impossible - so finite
squeezing remains a potential source of error even in these topological CV
systems.

If a measurement scheme were devised that made use of this apparent
fault tolerance, then all those gates shown to be implementable in a topo-
logical fashion would be robust against finite squeezing errors. Nonetheless,
non-topological operations such as the Fourier transform do pick up ex-
tra errors due to finite squeezing since they rely on the ability to create
zero-momentum eigenstates. In fact, all these non-topological gates include
2nd-or higher-moment manipulations which will be affected by the finite
squeezing of the initial graph states. These operations would then require
CV error correction protocols, to ensure the gates operate below the error
threshold. Similarly, of course, the entanglement of the ground and excited
states, becoming manifest through non-classical 2nd-moment correlations,
does depend on the finite squeezing of the initial states.

So, mathematically at least, we have derived a nice result, that of finite
squeezing protection. We are still hindered by the fact that only WH gates
can be performed fault tolerantly. In our next chapter we suggest a new
strategy that enables us to use the intrinsic protection available to us but
over a universal set of quantum gates. For this we have to enter the realm
of non-Abelian CV anyons.
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Chapter 6

Topological quantum
computation with
non-abelian
continuous-variable anyons

The work of our previous chapter has shown that it is possible to construct
fractional mutual statistics between continuous-variable excitations on the
surface of specially designed ground states. However, the simple CV exci-
tations that we produced correspond to abelian anyons which have limited
computational power. This is in perfect analogy with discrete models, where
the simplest incarnation of the toric code is unable to support universal
quantum operations through topological means alone. Though some sug-
gestions have been made to augment abelian models with non-topological
operations [181], they are not ideal since they open the system up to local
errors. The solution then is to use non-abelian states. It has been shown
that certain classes of non-abelian anyons can perform universal quantum
computation through just braiding alone [182, 183]. Such concepts lead us
to investigate an extension of our scheme of the CV anyon model to a non-
abelian CV model and consider its use for universal quantum computation.
In the following we postulate new types of excitation, derive their fusion
and braiding rules and present a computational model that stores qubits
within the CV resources. Before we delve into the details of the CV model,
we first briefly review the properties of general non-abelian anyon models
[157, 164, 182].

115



6.1 Non-abelian anyons

As we discussed in the previous chapter, an anyon model must satisfy a
minimum set of requirements. First, we must have clearly defined list of
particle types, with at least one of the particles corresponding to the vac-
uum (or no particle). The various particle types correspond to irreducible
representations, Πa, of the underlying group, known as the quantum double,
D(H), of the residual symmetry group H. The particle types must be closed
under composition, that is, if we combine two or more particles we must get
another representation of D(H). Then one could think of the tensor product
of different representations Πa ⊗ Πb as describing the transformation prop-
erties of a two-particle system. The possible outcomes of the fusion of two
particles are determined by the decomposition of Πa ⊗ Πb into irreducible
representations, provided by the Clebsch-Gordon series,

Πa ⊗Πb =
⊕
c

N c
abΠc. (6.1)

We have already observed examples of these compositions or fusions in our
abelian models. There, in analogy with other abelian models, we found that
combining our excitations always resulted in a single outcome but this need
not be the case in general. Since the fusion of two anyons could generate
multiple particle types we must establish fusion rules to determine which
particle types c may be produced for a given composition of particles a and
b. We refer to the outcomes c as the fusion channels. The general fusion
rules (6.1), are more simply written

a× b =
∑
c

N c
abc (6.2)

where each N c
ab is a non-negative integer and the sum is over the complete

set of labels denoting the different particle types. Note that a, b and c are
labels, not vector spaces; the product on the left hand side is not a tensor
product and the sum on the right hand side is not a direct sum. Rather,
the fusion rules can be regarded as an abstract relation on the label set that
maps the ordered triple (a, b; c) to N c

ab. This relation is both commutative
and associative

a× b = b× a⇔ N c
ab = N c

ba,

(a× b)× d = a× (b× d)⇔
∑
x

Nx
abN

c
xd =

∑
x

N c
axN

x
bd. (6.3)

By inverting Eq.(6.2), we specify the possible ways for the charge c to split
into two parts with charges a and b. If N c

ab = 0, then the charge c cannot
be obtained when we combine a and b. If N c

ab = 1, then c is obtained in a
unique way and if N c

ab > 1, then c can be obtained in N c
ab distinguishable

ways.
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The distinguishable ways that anyons can arise from fusion forms an
orthonormal basis of a Hilbert space, V c

ab. We call V c
ab a fusion space and

the states it contains fusion states. The basis elements for V c
ab may be

denoted
{|ab; c, µ〉µ=1,2,...,Nc

ab
}. (6.4)

There is a dual vector space V ab
c describing the states that arise when charge

c splits into charges a and b given by

{〈ab; c, µ|µ=1,2,...,Nc
ab
}. (6.5)

The spaces V c
ab are mutually orthogonal, so the fusion basis elements satisfy

〈ab; c′µ′|ab; cµ〉 = δc
′
c δ

µ′
µ , (6.6)

The structure of the fusion spaces is given by the direct sum over all the
subspaces indexed by the possible fusion outcomes c.

Vab =
⊕
c

V c
ab, dim(Vab) =

∑
c

N c
ab. (6.7)

The completeness of the fusion basis can be expressed as∑
c,µ

|ab; cµ〉〈ab; c′µ′| = Iab, (6.8)

where Iab is the projector onto the space Vab. Then each order of fusion
corresponds to a different basis within this space. The fusion space of anyons
is a collective non-local property, it cannot be influenced by local operations
on any single anyon. It is this property that hints towards fusion spaces as
a robust medium to store quantum information.

In the language of fusion spaces, an anyon model is called non-abelian if

dim(Vab) =
∑
c

N c
ab ≥ 2 (6.9)

for at least some pair of labels ab, otherwise the model is abelian. In an
abelian model, such as we discussed in Chapter 5, any two particles fuse in
a unique way, in contrast to the non-abelian case where there can be multiple
possible fusion paths. Then non-abelian anyons have a Hilbert space of two
or more dimensions spanned by the distinguishable states.

Our next requirement states that a given anyon model must include rules
for operations acting on the fusion space. These operations are known as
the F - and R-moves. F and R are unitary operators and in general have
a matrix representation. The F -moves serve to switch between the fusion
bases of any three anyons a, b and c. This is represented in Fig. (6.1(a)).
More explicitly, when three particles a, b and c are fused to give d, there are
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two ways to decompose the topological Hilbert space in terms of the fusion
spaces of particle pairs,

V d
abc
∼=
⊕
c

V e
ab ⊗ V d

ec
∼=
⊕
e′

V d
ae′ ⊗ V e′

bc (6.10)

This decomposition allows us to write the two orthonormal bases for V d
abc,

|(ab)c; d, eµν〉 ≡ |ab; eµ〉 ⊗ |ec; dν〉
|a(bc); d, e′µ′ν ′〉 ≡ |ae′; dν ′〉 ⊗ |bc; e′µ′〉 (6.11)

The F -matrices give the relation between these equivalent bases,

|(ab)c; d, eµν〉 =
∑
e′

|a(bc); d, e′µ′ν ′〉(F dabc)e
′µ′ν′
eµν (6.12)

The R-matrices correspond to braiding of the anyons. They act as a maps

Figure 6.1: (a) The F -matrix switches between equivalent fusion bases, with
intermediate fusion products e and e′. (b) The R-matrix swaps the position
of particles.

on the fusion space of two anyons a and b at some well defined locations to
the space where the particles have undergone an exchange. The map can be
written as

R : V c
ba → V c

ab. (6.13)

If we choose the bases {|ba; c, µ〉} and {|ab; c, µ′〉} for these two spaces, R
can be expressed as the unitary matrix

R : |ba; c, µ〉 →
∑
µ′

|ab; c, µ′〉(Rcab)µ
′
µ . (6.14)
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Note that R may have a nontrivial action on the fusion states which we
represent in Fig. (6.1(b)).

The monodromy operator

R2 : V c
ab → V c

ab (6.15)

is an isomorphism from V c
ab to itself, representing the effect of winding a

counterclockwise around b. The eigenvalues of the monodromy operators
are determined by the topological spins of the particles,

(Rcab)
2 = ei(θc−θa−θb). (6.16)

The F and R matrices are constrained by certain consistency conditions.
These conditions arise due to the isomorphisms connecting the alternative
fusion spaces. They are known as the pentagon and hexagon equations
[184]. The pentagon equation imposes consistency on changes between fu-
sion bases. We derive it by considering the fusion of four particles, this can
be represented by the fusion space V e

abcd =
⊕

x∈f(ab),y∈f(xc) V
x
ab ⊗ V

y
xc ⊗ V e

yd.
This is not unique of course but this choice is known as the standard basis
and is represented in the left most fusion diagram in Fig.(6.2). There are
multiple ways to fuse these particles, each of these is a fusion basis and they
are related to each other through the F -matrices. Applying an F -matrix to
a particular basis to change to the next is referred to as an F -move. There
are two F -move sequences as depicted in Fig.(6.2). The moves along the
top of the digram are given by⊕

x∈f(ab),

y∈f(xc)

V x
ab ⊗ V y

xc ⊗ V e
yd

F excd→
⊕

x∈f(ab),

y∈f(cd)

V x
ab ⊗ V e

xy′ ⊗ V
y′

cd

F e
aby′→

⊕
x′∈f(by′),
y′∈f(cd)

V e
ax′ ⊗ V x′

by′ ⊗ V
y′

cd . (6.17)

where f(ij) denotes the outcomes from the fusion of particles i and j. The
moves along the bottom are⊕

x∈f(ab),

y∈f(xc)

V x
ab ⊗ V y

xc ⊗ V e
yd

F yabc→
⊕

x′∈f(bc),

y∈f(ax′)

V y
ax′ ⊗ V

x′
bc ⊗ V e

yd

F e
ax′d→

⊕
x′∈f(bc),

y′∈f(x′d)

V e
ay′ ⊗ V x′

bc ⊗ V
y′

x′d

F y
′

bcd→
⊕

x′′∈f(cd),

y′∈f(bx′′)

V e
ay′ ⊗ V

y′

bx′′ ⊗ V
x′′
cd . (6.18)

Since the decompositions yield the same result, the F -moves along the top
have to be equal to those along the bottom and hence must satisfy∑

y′∈f(cd),

x′∈f(by′)

(F eaby)
x′
x (F excd)

y′
y =

∑
x′∈f(bc),

y′∈f(x′d),x′′∈f(cd)

(F ybcd)
x′′
x′ (F

e
ax′d)

y′
y (F yabc)

x′
x . (6.19)
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This is the pentagon equation, we have suppressed the fusion state indices
µ, ν, ... for brevity. The hexagon equation is similar, but this time we con-

Figure 6.2: The fusion bases related by the F moves obey a consistency
condition known as the pentagon equation, that requires the moves along
the top to be equal to those along the bottom.

sider the fusion of just three particles and include the possibility that the
particles may be interchanged through braiding. This is known as an R-
move. Across the top of the diagram, Fig. (6.3), the two bases are related
by the moves FRF while across the bottom by the moves RFR. Perform-
ing a similar fusion basis decomposition as above and comparing the F - and
R-moves yields the hexagon equation∑

x′∈f(ac)

Rx
′
ac(F

d
bac)

x′
x R

x
ab =

∑
x′∈f(bc),

x′′∈f(ca)

(F dbca)
x′′
x′ R

d
ax′(F

d
abc)

x′
x . (6.20)

It is known, due to the MacLane coherence theorem [185], that there are no
further consistency conditions and thus solutions to (6.19) and (6.20) define
viable anyon models.

We now apply these ideas by briefly reviewing a well studied non-abelian
anyon model that will turn out to be significant for the CV non-abelian
model that we propose later in this Chapter.

6.2 The Ising anyon model

One of the best understood schemes that employs non-abelian braid statis-
tics is that of the lowest energy excitations of the fractional quantum Hall
effect (FQHE) at filling factor ν = 5/2 [186, 187]. Extensive analytical and
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Figure 6.3: Pictorial representation of the hexagon equation. The move
FRF across the top must equal the RFR move along the bottom.

numerical studies have been carried out on this state, [188, 189, 190, 191],
which has led to the conclusion that the excitations, also known as Ising
anyons are in the universality class of the Moore-Read Pfaffin state [192].
The main advantage of the the FQH state at ν = 5/2 in a quantum com-
putational setting is its relative stability compared to other non-abelian
FQH states. This stability is a result of the Ising model having the largest
bulk energy gap of any of the non-abelian models, ensuring that random
excitations are less likely to interfere with quantum operations on the non-
abelian anyons. On the other hand it has been shown that the quasiparticle
braid matrices of the Moore-Read Pfaffin states are not sufficient for univer-
sal quantum computation because the braid group representation over the
Ising model correlation functions is finite [193, 194, 195]. However, using
these particles, it is possible to generate the set of Clifford gates which play
a central role in quantum error correction [196].

Recently it has been shown that excitations of this type can also be arti-
ficially generated in lattice models [140, 174, 197, 198]. Systems of particular
relevance to us here are spin lattices with Hamiltonians that exhibit abelian
or non-abelian behaviour for different coupling regimes. An example of such
a system is the Honeycomb lattice model, a hexagonal spin lattice model
that features frustration of its ground state [199, 200, 201].

The Ising model has three distinct particle types, which we call 1, σ and
ψ. The fusion rules are

σ × σ = 1+ ψ, σ × ψ = σ,

ψ × ψ = 1, 1× x = x, (6.21)
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for x = 1, ψ, σ. The defining characteristic of this model is the non-unique
fusion of the σ anyons which implies that the fusion spaces have dimension
greater than one. We can demonstrate this by creating four of the σ particles
from the vacuum and fusing them. To obey conservation the four particles
must eventually fuse back to the vacuum, 1. However, due to the non-unique
fusion rule for σ anyons there are two ways to achieve this i.e., If we first
split the four particles into pairs that fuse to the vacuum the four particle
fusion results in the vacuum. Alternatively both could fuse to a ψ, then
fusing both ψs we arrive at the vacuum again. Note that these are the only
possibilities that conservation allows since otherwise we would be left with
an extra ψ. This defines a two dimensional space associated with the fusion
and hence the fusion matrix for σ fusion will be two-dimensional and this
fusion defines the only non-trivial F matrix given by

F σσσσ =
1√
2

(
1 1
1 −1

)
. (6.22)

We also require braiding rules, given by theR-matrices. The one-dimensional
R matrices are

Rψψ
1

= −1, (Rσψσ )2 = −1 (6.23)

Then the ψ particles have antisymmetric behaviour under braiding, due to
this they are often referred to as the fermions of the Ising model. Since we
have a two-dimensional fusion space we require a non-trivial braid matrix.
The braid matrices acting on the two dimensional space can be written,

R1 =
(

1 0
0 i

)
, R2 =

eiπ/4√
2

(
1 −i
−i 1

)
, (6.24)

in the basis {1, ψ}.
Due to topological degeneracy in the Ising model, it is possible to re-

alize n-qubits by 2n + 2 Ising anyons. The states of the Ising anyons are
represented by conformal field theory (CFT) correlation functions which be-
long to one of two inequivalent spinor representations of the covering group
Spin(2n + 2) of the rotation group SO(2n + 2). Unfortunately, the set of
matrices (6.24), that can be obtained from braiding Ising anyons only gener-
ates members of the Clifford group of quantum gates. While important, the
Clifford group by itself is insufficient for universal quantum computation.
Further, it has been shown that not all Clifford gates, such as embeddings
of the two-qubit SWAP, can be realized by braiding three or more Ising
qubits [194].

6.3 A continuous-variable non-Abelian anyon model

Now we present the main result of this chapter. We show how we may
extend the CV toric code [202] to include non-abelian anyons. To specify
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this model we follow our usual prescription of identifying the particle types,
with the fusion and braiding rules. We recall our results from the chapter
5, the ground state that we defined to generate abelian excitations. There
is was shown that applying simple displacements onto this CV analog of the
Kitaev state produced continuous-variable abelian anyons. Here we seek
to generate non-abelian statistics from this ground state. There have been
several previous proposals to produce non-abelian statistics from abelian
models in discrete theories [203, 204, 205]. Such ideas have led us to consider
whether this is possible in the CV regime.

6.3.1 Particle types

The ground state that we defined in Chapter 5 gives rise to anyonic ex-
citations when acted upon by CV displacement operators. The resulting
excitations form the particle spectrum for the CV toric code. We label the
particle types {1, e(s),m(s), ε(s, t)} where ε(s, t) = e(s)×m(t) is the result of
fusing e- and m-types and 1 is the vacuum particle which corresponds to the
absence of an excitation. Then fusing particles is equivalent to summing the
value of the displacements, i.e., e(s)×e(t) = e(s+t), m(s)×m(t) = m(s+t).
These fusions are unique and so the fusion spaces are one-dimensional and
all the fusion matrices are trivial. The monodromies of the CV toric parti-
cles are more interesting. We showed that braiding e- and m-type anyons
results in phase rotations dependent on the displacements that produced
the particles. Since the fusion spaces are one-dimensional so are the braid
matrices, these are written(

R
e(s)e(t)
e(s+t)

)2
= 1,

(
R
m(s)m(t)
m(s+t)

)2
= 1 and

(
R
e(s)m(t)
ε(s,t)

)2
= e−ist. (6.25)

While the state space of the CV anyons is infinite (which we made use of in
our CV computation model), they only have a one-dimensional fusion space.
Then these fusion spaces are unsuitable from a quantum information point
of view as we cannot store multiple states within them. In order to produce
a useful anyon model for storing and manipulating quantum information
we must find a way to increase the fusion space dimension and so turn our
abelian model to a non-abelian one.

To achieve this we postulate the existence of excitations {1, ψ(s, t), σ(s, t)}
and associate the toric anyon with these in the following way:

1 = {1}, ψ(s, t) = {ε(s, t)}, σ = {e(s),m(t)}. (6.26)

The vacuum and ε sectors correspond one to one with what we shall call the
vacuum and ψ sectors of our new anyon model. The σ-type is a superposition
m- and e-anyons.

To devise the fusion rules for these new anyons we decompose back into
CV toric anyons. Clearly fusing any of the anyon types with the vacuum
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has no effect. However, fusing ψ-anyons, ψ1(s, t) and ψ2(u, v) we find

|ψ1(s, t)ψ2(u, v)〉 = |e(s)m(t)× e(u)m(v)〉
= |e(s+ u)m(t+ v)〉
= |ψ(s+ u, t+ v)〉. (6.27)

Another ψ anyon emerges, parameterized by displacements that are just the
sum of the contributing CV toric anyons. Since this fusion only ever results
in a unique outcome, the ψ anyons are considered to be abelian.

The fusion of two σ types yields an interesting and potentially useful
behaviour. We create pairs of σs at sites 1 and 2 on the lattice. These are
defined by σ1 = {e(s),m(t)} and σ2 = {e(u),m(v)}. Fusing yields multiple
outcomes:

|σ1σ2〉 = a|e(s)e(u)〉+ b|m(t)m(v)〉,
|σ1σ2〉 = a|e(s)m(t)〉+ b|e(u)m(v)〉,
|σ1σ2〉 = a|e(s)m(v)〉+ b|e(u)m(t)〉. (6.28)

Each outcome has a multiplicity of two. We have three possible fusion spaces
from the fusion of the σ particles which can be labeled

V (e+m)
σσ

∼= V ψ1
σσ
∼= V ψ2

σσ , (6.29)

respectively and the continuous parameters are suppressed for brevity. We
neglect the second and third fusion possibilities and just consider the first
case. Then we can state that the fusion of σs gives

|σ1σ2; j〉 =
1√
2

[
|e1(s)e2(u)〉+ j|m1(t)m2(v)〉

]
. (6.30)

This state is depicted in Fig.(6.4). and represents what we will refer to as a

Figure 6.4: The σ anyon string, composed of a superposition of e and m-type
toric anyons.

σ-string. It has a non-local term j that be altered by braiding but cannot
be determined by a local measurement of the endpoints. We can produce
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many such strings on our lattice, defined over pairs of lattice sites. It seems
initially that there are no restrictions on the value of the displacements we
can apply to the underlying lattice to produce these strings. However, in
following we find this is not the case. For our CV scheme to be considered
a proper anyon model we show that the CV parameters s, u, t and v must
satisfy certain constraints.

6.3.2 Consistency of the model

To investigate the behaviour and consistency of this model we consider
the fusion of three σ strings generated at different locations on the lat-
tice Fig.(6.5). By decomposing the strings into toric particle we can write
our three strings as,

|σ1σ2; j〉 =
1√
2

[
|e1(s)e2(u)〉+ |m1(t)m2(v)〉

]
, (6.31)

|σ3σ4; j〉 =
1√
2

[
|e3(p)e4(r)〉+ |m3(q)m4(w)〉

]
, (6.32)

|σ5σ6; j〉 =
1√
2

[
|e5(g)e6(h)〉+ |m5(k)m6(n)〉

]
, (6.33)

Each of these are parameterized by different initial displacements. We con-
sider fusing in the two bases shown in Fig.(6.5). In the left basis (a) we have
the fusion (|σ1σ2; j〉|σ3σ4; j〉)|σ5σ6; j〉 corresponding to the decomposition⊕

y V
y
σ12σ34σ56

∼=
⊕

x,y V
x
σ12σ34

⊗V y
xσ56 where x ∈ {(e+m), ψ} and y ∈ {σ, ψ}.

Fusing the left two strings yields

|σ1σ2; j〉 × |σ3σ4; j〉 =
1
2

[
|e1(s)e2(u)e3(p)e4(r)〉

+|m1(t)m2(v)m3(q)m4(w)〉
+j|e1(s)e2(u)m3(q)m4(w)〉

+j|m1(t)m2(v)e3(p)e4(r)〉
]
. (6.34)

The first and second terms in this fusion are just e- and m-types which
can be regarded collectively as a single outcome. The third and fourth
terms are abelian anyons which we call ψ1 = |e1(s)e2(u)m3(q)m4(w)〉 and
ψ2 = |m1(t)m2(v)e3(p)e4(r)〉. We regard these anyons as distinguishable
since under braiding they yield different phases. This fusion is summarized
as

σ12 × σ34 = (e+m) + ψ1 + ψ2, (6.35)

where σik abbreviates |σiσk; j〉. This fusion has multiple outcomes and
so σ-strings are non-abelian anyons. We now fuse our remaining σ-string,
|σ5σ6; j〉, to the outcomes of Eq.(6.34) to give σ12 × σ34 × σ56.
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• (e+m) outcome:(
|σ1σ2; j〉|σ3σ4; j〉

)
|σ5σ6; j〉 =

1
2

[
|e1(s)e2(u)e3(p)e4(r)e5(g)e6(h)〉

+j|m1(t)m2(v)m3(q)m4(w)m5(k)m6(n)〉
+|m1(t)m2(v)m3(q)m4(w)e5(g)e6(h)〉

+j|e1(s)e2(u)e3(p)e4(r)m5(k)m6(n)〉
]
.

(6.36)

Note that the first two terms are form another σ-string while the third
and fourth are another two abelian anyon which we label ψ3 and ψ4.

• ψ1 outcome:(
|σ1σ2; j〉 × |σ3σ4; j〉

)
|σ5σ6; j〉 =

1√
2

[
|m1(t)m2(v)e3(p)e4(r)m5(k)m6(n)〉

+j|m1(t)m2(v)e3(p)e4(r)e5(g)e6(h)〉
]
.

(6.37)

Which are another pair of ψ particles that we name ψ5 and ψ6.

• ψ2 outcome:(
|σ1σ2; j〉 × |σ3σ4; j〉

)
|σ5σ6; j〉 =

1√
2

[
|e1(s)e2(u)m3(q)m4(w)m5(k)m6(n)〉

+j|e1(s)e2(u)m3(q)m4(w)e5(g)e6(h)〉
]
.

(6.38)

We label these outcomes ψ7 and ψ8.

Then the fusion of three σ-strings in the left fusion basis can be summarized
as

σ12 × σ34 × σ56 = σ + ψ3 + ψ4 + ψ5 + ψ6 + ψ7 + ψ8, (6.39)

Now we consider fusion in the right hand basis Fig.(6.5(b)) with decompo-
sition

⊕
y′ V

y′
σ12σ34σ56

∼=
⊕

x′,y′ V
y′

σ12x′
⊗ V x′

σ34σ56
where x′ ∈ {(e + m), ψ} and

y′ ∈ {σ, ψ′}. We begin by fusing σ34 with σ56,

|σ3σ4; j〉|σ5σ6; j〉 =
1
2

[
|e3(p)e4(r)e5(g)e6(h)〉

+ |m3(q)m4(w)m5(k)m6(n)〉
+ j|e3(p)e4(r)m5(k)m6(n)〉

+ j|m3(q)m4(w)e5(g)e6(h)〉
]
. (6.40)

As before we have three outcomes, (e+m)′ and two abelian anyons, ψ′1 and
ψ′2. Then the results of fusing σ12 to the result of Eq.(6.40) are given by:
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Figure 6.5: (a) The left fusion basis: The left and center σ-strings fuse
to x ∈ {(e + m), ψ1, ψ2}. These fuse to the right σ-string to give y ∈
{σ, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8} (b) The right fusion basis: The right and center
σ-strings fuse to x ∈ {(e + m)′, ψ′1, ψ

′
2}. These fuse to the left σ-string to

give y′ ∈ {σ, ψ′3, ψ′4, ψ′5, ψ′6, ψ′7, ψ′8}. In general ψi 6= ψ′i and hence y 6= y′ so
we conclude that the model is not in general associative.

• (e+m)′ outcome:

|σ1σ2; j〉
(
|σ3σ4; j〉|σ5σ6; j〉

)
=

1
2

[
|e1(s)e2(u)e3(p)e4(r)e5(g)e6(h)〉

+ j|m1(t)m2(v)m3(q)m4(w)m5(k)m6(n)〉
+ |e1(s)e2(u)m3(q)m4(w)m5(k)m6(n)〉

+ j|m1(t)m2(v)e3(p)e4(r)e5(g)e6(h)〉
]
.

(6.41)

Similar to the case above we find the (e + m)-channel gives a σ and
two abelian anyons ψ′3 and ψ′4.

• ψ′1 outcome:

|σ1σ2; j〉
(
|σ3σ4; j〉|σ5σ6; j〉

)
=

1√
2

[
|m3(q)m4(w)e5(g)e6(h)m1(t)m2(v)〉

+ j|m3(q)m4(w)e5(g)e6(h)e1(s)e2(u)〉
]
.

(6.42)

Giving particles that we call ψ′5 and ψ′6.
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• ψ′2 outcome:

|σ1σ2; j〉
(
|σ3σ4; j〉|σ5σ6; j〉

)
=

1√
2

[
|e3(p)e4(r)m5(k)m6(n)m1(t)m2(v)〉

+ j|e1(s)e2(u)e3(p)e4(r)m5(k)m6(n)〉
]
.

(6.43)

Giving particles that we call ψ′7 and ψ′8.

However upon examining these fusion outcomes we see that the non-abelian
anyons ψi and ψ′i, i ∈ {3, ...8}, are not equal and hence this model is not
associative under braiding as demanded by Eq.(6.3). Then the excitations
in the form Eq.(6.30), do not form a proper anyon model. We can restore
associativity by restricting our allowed anyonic states. In particular if we en-
sure that the initial displacements s = g = p and t = q = k then the abelian
anyons produced in the right and left bases become equivalent. Stated an-
other way, these conditions require us to only consider the fusion of identical
σ-strings which we write as

|σiσk; j〉 =
1√
2

[
|ei(s)ek(u)〉+ j|mi(t)mk(v)〉

]
. (6.44)

Then we may only apply identical initial displacements to create our σ-
strings from the CV toric lattice for the particles to constitute a valid anyon
model. In the following we continue our analysis by examining the fusion
rules under the identical particle restriction.

6.3.3 Fusion of identical particles

Here we will establish the fusion rules for the CV non-abelian anyons as-
suming that the σ-strings are identical and of the form in Eq.(6.44). Then
we expand the fusions to the many particle case and construct the pentagon
equation for the model.

We begin with the simple two string fusion σ12 × σ34:

|σ1σ2; j〉|σ3σ4; j〉 =
1
2

[
|e1(s)e2(u)e3(s)e4(u)〉+ |m1(t)m2(v)m3(t)m4(v)〉

+ j|e1(s)e2(u)m3(t)m4(v)〉+ j|m1(t)m2(v)e3(s)e4(u)〉
]
.

(6.45)

We collect the first and second terms together. This gives us a new par-
ticle that is distinguishable from the σ-string since it does not contain the
non-local parameter j. We call this outcome (e + m), defined by |(e +
m)〉 = (|e1(s)e2(u)e3(s)e4(u)〉 + |m1(t)m2(v)m3(t)m4(v)〉)/

√
2, the remain-

ing terms are abelian anyons. Note that these anyons have identical be-
haviour under braiding and hence we define ψ0 = (|e1(s)e2(u)m3(t)m4(v)〉+
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|m1(t)m2(v)e3(s)e4(u)〉)/
√

2. The fusion of the (e+m)-particle at sites (1,2)
and (3,4) with a σ-string at (5,6) yields

|(e+m)〉|σ5σ6; j〉 =
1
2

[
|e1(s)e2(u)e3(s)e4(u)e5(s)e6(u)〉

+ j|m1(t)m2(v)m3(t)m4(v)m5(t)m6(v)〉
+ |m1(t)m2(v)m3(t)m4(v)e5(s)e6(u)〉

+ j|e1(s)e2(u)e3(s)e4(u)m5(t)m6(v)〉
]
. (6.46)

The first and second terms form another σ-string, we label the remaining
terms ψ1. Then our two string fusion rules are of the form

σ × σ = (e+m) + ψ0, σ × (e+m) = σ + ψ1, ψ1 × σ = ψ2 + ψ3, (6.47)

where 1, 2.3... label abelian anyons that are distinguishable from each other
through braiding. These fusion rules clearly indicate that the under this
identical particle condition the σ-strings are non-abelian anyons. From the
fusion rules, (6.47), we can construct the multi-particle fusions,

σ × σ × σ = σ + ψ1 + ψ2, (6.48)

σ × σ × σ × σ = (e+m) + ψ3 + 2ψ4 + 2ψ5, (6.49)

It is clear that if we continue fusing σ-strings, we will generate further
ψi anyons. Each of these anyons implements abelian phase changes un-
der braiding but the value of the phase is arbitrary and will vary with the
addition of more σ-strings. We now simplify our fusion rules by grouping
all the ψi into a single term, simply labeled ψ since in our CV schemes we
distinguish particle based on the type of braiding behaviour they exhibit
rather than the specific phase changes they produce. Then our fusion rules
for the identical CV non-abelian anyons are

σ × σ = (e+m) + ψ, σ × (e+m) = σ + ψ,

σ × ψ = ψ, ψ × ψ = ψ, (6.50)

with multi-particle fusion rules given as

σ × σ × σ = σ + 2ψ, (6.51)

σ × σ × σ × σ = (e+m) + 5ψ. (6.52)

From these we identify the non-trivial fusion space, V ψ
σσσ, with dimension

Nψ
σσσ = 2. It is this non-trivial space that makes such models potential

candidates for storing quantum information. In particular, within this two-
dimensional fusion space we could, in principle store a qubit and in general
for N c

ab = d it is possible to store d-dimensional qudits. Unitary operations
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can then be carried out on the states contained in the fusion spaces through
basis changes and braiding. To find how braiding acts on the fusion basis
we must construct the F - and R- moves of our anyon model as solutions of
the pentagon (6.19) and hexagon (6.20) equations.

By considering the decomposition of the fusion space V ψ
σσσ into

V ψ
σσσ
∼=

⊕
x∈{(e+m),ψ},
y∈{σ,ψ}

V x
σσ ⊗ V y

xσ ⊗ V ψ
yσ, (6.53)

and considering the two ways (6.17) and (6.18) to implement the transfor-
mation ⊕

x∈{(e+m),ψ},
y∈{σ,ψ}

V x
σσ ⊗ V y

xσ ⊗ V ψ
yσ →

⊕
y′∈{(e+m),ψ},
x′∈{σ,ψ}

V ψ
σx′ ⊗ V

x′
σy′ ⊗ V y′

σσ (6.54)

we can derive the pentagon equation∑
y′,y

(Fψσσy)
x′
x (Fψxσσ)y

′
y =

∑
x′,y′,x′′

(F y
′

σσσ)x
′′
x (Fψσx′σ)y

′
y (F yσσσ)x

′
x . (6.55)

However, this equation has multiple non-trivial fusion matrices and it is not
obvious how it can be solved, especially in light of the complex braiding
behaviour which will yield different phases depending on the number of σ-
string fusions. The complexity of the fusion bases and the associated F - and
R-moves do not yield an intuitive method to establish a good computational
model as it is not clear how to efficiently store and manipulate quantum
information within these states. However there is a further simplification
we can make to reduce the complexity of the fusion and braiding behaviour
and find useful fusion bases to act as computational spaces.

6.4 Continuous-variable Ising anyon model

In this section we finalize our anyon model by placing further constraints
on the states of the excitations. With these constraints in place we rederive
our fusion rules and calculate the braid matrices. We find that the fusion
rules and in particular the non-trivial F -moves are similar to those of the
Ising anyon model which motivates us to call our σ-strings CV Ising anyons.
We find however that the braiding for these restricted σ-strings, yield braid
matrices that correspond to general phase rotations. This property leads
us to consider a quantum computational model using the σ-strings as the
computational resource.

By examining the fusion rules of our general model Eq.(6.50), we see
that a sensible restriction is to ensure that the allowed states for our σ
strings are those composed of particle and antiparticles, located at the ends
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of the strings. This is a natural assumption motivated by the fact that the
CV toric anyons are naturally produced in particle/antiparticle pairs on the
lattice. Our string is then defined by endpoints that are combinations of
σa = {e(s),m(t)} and σb = {e(−s),m(−t)} and so our CV Ising σ string is
written:

|σiσk; j〉 =
1√
2

[
|ei(s)ek(−s)〉+ j|mi(t)mk(−t)〉

]
. (6.56)

We proceed as before, we begin with the two string fusion and derive a set
of fusion rules. We then find the multi-particle fusion outcomes and find
the solutions to the pentagon equation before considering the braiding rules
which completes our model.

The first fusion we consider is between a pair of σ-strings located at sites
(1,2) and (3,4):

|σ1σ2; j〉|σ3σ4; j〉 =
1
2

[
|e(0)e(0)〉+ |m(0)m(0)〉+ j|m1(t)m2(−t)e3(s)e4(−s)〉

+ j|e1(s)e2(−s)m3(t)m4(−t)〉
]
. (6.57)

Here it is assumed that the endpoint of the first string at site 1 fuses with
the endpoint of the other string at site 4, of course this leaves the end-
point at site 2 to fuse with 3, Fig.6.6. This ensures that particles always
fuse to antiparticles so the first and second terms correspond to the vac-
uum channel, defined as 1 = |11,412,3〉 = (|e(0)e(0)〉+ |m(0)m(0)〉)/

√
2 and

we have an abelian anyon ψ = |ψ1,4ψ2,3〉 = (|m1(t)m2(−t)e3(s)e4(−s)〉 +
|e1(s)e2(−s)m3(t)m4(−t)〉)/

√
2. We find the result of the fusion σ × ψ for

Figure 6.6: When fusing σ-strings, we assume that the particle ends of
the string, at sites 1 and 3 always fuse the antiparticle ends, at 2 and 4.
This ensures that the fusion always has some probability of resulting in the
vacuum.
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a σ-string at lattice sites 5 and 6. This gives,

|σ5σ6; j〉|ψ1,4ψ2,3〉 =
1
2

[
|m1(t)m2(−t)〉+ j|e3(s)e4(−s)〉

+ |e1(s)e2(−s)〉+ j|m3(t)m4(−t)〉
]
. (6.58)

Which is a pair of σ-strings. Finally, we can always ensure that the fusion
ψ × ψ always yields the vacuum since all the abelian anyons are identical
and contain the appropriate antiparticles to cancel out. Then our fusion
rules are summarized as

σ × σ = 1+ ψ, σ × ψ = σ

ψ × ψ = 1, 1× x = x, (6.59)

where x ∈ {1, ψ, σ}. We find the many particle fusions are

σ × σ × σ = 2.σ (6.60)

σ × σ × σ × σ = 2.1+ 2.ψ (6.61)

Then one can read off the smallest non-trivial fusion spaces

V σ
σσσ ⇔ Nσ

σσσ = 2, (6.62)

V 1

σσσσ ⇔ N1

σσσσ = 2, (6.63)

V ψ
σσσσ ⇔ Nψ

σσσσ = 2, (6.64)

We anticipate that the fusion basis, (6.63), that belongs the vacuum chan-
nel is the most convenient choice for our computational space as the space
is two-dimensional. This lends itself naturally to the storage of quantum
information as qubits. This basis can be decomposed into the left standard
basis as

V 1

σσσσ
∼= V σ

σσσ
∼=

⊕
x∈{1,ψ}

V x
σσ ⊗ V σ

xσ ⊗ V 1

σσ (6.65)

This decomposition is related to the right standard basis through a sequence
of F -moves, Fig.(6.7). Along the top of the diagram this transformation is
given by ⊕

x∈{1,ψ}

V x
σσ ⊗ V σ

xσ ⊗ V 1

σσ

F 1

xσσ→
⊕

x,y′∈{1,ψ}

V x
σσ ⊗ V 1

xy′ ⊗ V y′
σσ

F 1

σσy′→
⊕

y′∈{1,ψ}

V 1

σσ ⊗ V σ
σy′ ⊗ V y′

σσ. (6.66)
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The moves along the bottom are⊕
x∈{1,ψ}

V 1

σσ ⊗ V σ
xσ ⊗ V 1

σσ

F yσσσ→
⊕

x′∈{1,ψ}

V σ
x′σ ⊗ V x′

σσ ⊗ V 1

σσ

F 1

σx′σ→
⊕

x′∈{1,ψ}

V 1

σσ ⊗ V x′
σσ ⊗ V σ

x′σ

Fσσσσ→
⊕

x′′∈{1,ψ}

V 1

σσ ⊗ V σ
σx′′ ⊗ V x′′

σσ . (6.67)

Then the pentagon equation reads

Figure 6.7: Diagrammatic representation of the pentagon equation for the
CV non-abelian anyons assuming particle/antiparticle pairs.

∑
y′∈{1,ψ}

(F 1

σσy′)
σ
x(F 1

xσσ)y
′
σ =

∑
x,x′∈{1,ψ}

(F σσσσ)y
′
x (F 1

σx′σ)σσ(F σσσσ)x
′
x . (6.68)

This equation states that there are seven possible F -moves. However, only
F σσσσ acts on a non-trivial fusion space. The others only act on one-dimensional
spaces and are hence just equal to some constant. Further, we recall that
the F -moves must be unitary so the trivial moves are in general complex
constants with unit norm. This implies that these moves produce global
phase shifts and can be arbitrarily set to unity,

F 1

σσy′ = F 1

xσσ = F 1

σx′σ = 1 (6.69)
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The F -move of interest is F σσσσ as it acts on a two-dimensional space. It is
represented as a 2× 2 unitary matrix,

F σσσσ =
(
F11 F1ψ
Fψ1 Fψψ

)
(6.70)

To satisfy unitarity the matrix components must satisfy the constraints

|F11|2 + |F1ψ|2 = 1, |Fψ1|2 + |Fψψ|2 = 1,
F11(Fψ1)∗ + F1ψ(Fψψ)∗ = 0. (6.71)

Simplifying the pentagon equation (6.68) using (6.69) and (6.71) we find the
components are the solution to the polynomial equations

F11(F11 + F1ψ) + F1ψ(Fψ1 + Fψψ) = 1, (6.72)

and
Fψ1(F11 + F1ψ) + Fψψ(Fψ1 + Fψψ) = 1. (6.73)

These equations admit solutions of the form

±
(

1 0
0 1

)
, ±

(
1 0
0 −1

)
, ±

(
0 eiθ

e−iθ 0

)
, ± 1√

2

(
1 eiθ

e−iθ −1

)
,

(6.74)
where θ ∈ [0, 2π] is an arbitrary parameter. The first three merely redefine
the basis up to some global phase and are hence somewhat trivial. The
last matrix is of more interest. Setting the phase θ = 0 we find that the
non-trivial F -move in the vacuum fusion basis is

F σσσσ =
1√
2

(
1 1
1 −1

)
, (6.75)

which is identical to the non-trivial matrix fusion matrix from the Ising
anyon model Eq.(6.22). This feature is what leads us to identify our CV
non-abelian anyon model as a continuous-variable analog of the Ising model.
Having made this connection we now turn to the question of braiding. We
can use the Ising model as a guide which in general has a non-trivial braid
matrix of the form

R =
(
R1

σσ 0
0 Rψσσ

)
(6.76)

where Ryσσ, for y ∈ {1, ψ}, is the phase due to braiding σ-strings and fusing
to y. We can find these R-move elements by examining the decomposition
of the σ-string fusion into CV toric anyons and examining the phases that
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occur when we braid the endpoints.

|σ1σ2; j〉|σ3σ4; j〉 =
1
2

[
|11,412,3〉+ jeist|e1(s)e2(−s)m3(t)m4(−t)〉

+ jeist|m1(t)m2(−t)e3(s)e4(−s)〉
]

=
1
2

[
|11,412,3〉+ eist

(
|e1(s)e2(−s)m3(t)m4(−t)〉

+ |m1(t)m2(−t)e3(s)e4(−s)〉
)]
. (6.77)

The braiding in the vacuum channel give no phase change while the ψ chan-
nel gives eist. Then the braid matrix elements areR1

σσ = 1 and (Rψσσ)2 = eist.
Then the R-moves for the CV Ising model are

R =
(

1 0
0 eist/2

)
(6.78)

Once again, comparing to the Ising model, this braid rule is far more general
since we can arbitrarily set the value of the phase obtained under braiding
by adjusting the initial displacements s and t.

The fact that the relevant fusion spaces are two-dimensional and the
convenient form of the fusion and braid matrices suggests that the CV Ising
model will be a useful candidate for quantum computation. In the next
section we define a computational basis and discuss the various quantum
gate operations that we can enact through braiding.

6.5 Quantum computation with CV Ising anyons

From our analysis we have determined that the vacuum fusion space V 1

σσσσ

is an ideal candidate for our computational space. Then the computational
space for a single qubit may be written

C2 ≡ V 1

σσσσ
∼=

⊕
x∈{1,ψ}

V x
σσ ⊗ V σ

xσ ⊗ V 1

σσ (6.79)

It follows that the computational basis is identified with

|i〉 ≡ |σσσσ; 1, i〉 ∼= |σσ;xi〉|xi, σ, σ〉, i = 0, 1. (6.80)

where xi ∈ {1, ψ}. Consequently the n-qubit computational space is defined
as

C ≡ (V 1

σσσσ)⊗n (6.81)

which corresponds to the fusion space carried by M σ-strings for some M .
This basis C is given by the tensor product of the computational basis states.
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From our decomposition Eq.(6.79), an n-qubit basis |i1〉|i2〉...|in〉 ∈ C can
be expressed in the left standard basis of the fusion space as

|i1〉|i2〉...|in〉 = |σσσσ; 1, i1〉|σσσσ;1, i2〉...|σσσσ;1, in〉,
= |σσ;xi1〉|xi1σ;σ〉|σσ;xi2〉|xi2σ;σ〉...|σσ;xin〉|xinσ;σ〉.

(6.82)

Quantum gate operations are carried out within this space through the F -
andR-moves derived above. Our model contains only one non-trivial F move
Eq.(6.75). We recall from Chapter 3 that this matrix has an interpretation
in terms of quantum computation, this is the Hadamard transform. This is
a particularly important gate operation that is one of the basic requirements
for universal quantum computation over qubits.

We also found that the CV Ising model has the non-trivial R-moves
Eq.(6.78). The R matrices form a representation of the Braid group on two
strands (B2). In order to find a full representation of BN , we require a
second generator which is given in the fusion spaces by an R2 move. This
is constructed by the matrix product

R2 ≡ F−1RF = − 1√
2

(
−1 −1
−1 1

)(
1 0
0 eist

)(
1 1
1 −1

)
, (6.83)

which gives our second braid group generator

R2 =
1
2

(
1 + eist/2 1− eist/2
1− eist/2 1 + eist/2

)
. (6.84)

From this braiding and fusion behaviour we find a set of quantum gates
that can be performed over the computational space. We begin by examining
gates on single qubits before expanding on these ideas to derive a two-qubit
operation.

6.5.1 Single-bit gates

The single-qubit gates that we would like to perform are the Pauli Z or
phase gate, the Pauli X and Hadamard H. The Pauli operations perform
rotations on the Bloch sphere while the Hadamard gate performs a change
of basis.

• (Pauli Z): We perform a phase rotation in the Z basis through apply-
ing R-moves (6.78) on our computational basis, Fig.6.8(a). Note that
the rotations that we can apply depend only on the value of the anyonic
displacements, s and t, so we can perform arbitrary Z rotations on sin-
gle qubits. This result goes beyond the discrete Ising model where the
phase rotations are restricted to certain non-computationally universal
values.
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• (Hadamard H): The Hadamard’s effect on the computational basis is
given by Eq.(3.8). We see that this is exactly the same as the F -move
that we found above Eq.(6.75). Then the Hadamard gate is performed
by merely changing the fusion basis.

• (Pauli X): To enact the Pauli X we note that

(R2)2 =
1
2

(
1 + eist 1− eist
1− eist 1 + eist

)
(6.85)

Now let st = π. We see then that Eq.(6.85) reduces to

(R2)2 =
(

0 1
1 0

)
= X (6.86)

Under this condition we get the desired bit flip however, we could
pick any X rotation since we control the phase through the initial
displacements. This gives us X = (R2)2.

Our model allow for general rotations on the Bloch sphere on both the X
and Z axes. This goes beyond the discrete Ising model where only cer-
tain rotations are allowed. Since we can perform arbitrary rotations on the
qubits, our scheme allows for the implementation of non-Clifford gates such
as the T gate (see chapter 3). To complete our model, we require that the
qubits are able to interact. For this we construct a two-qubit gate.

Figure 6.8: (a) A single qubit Z rotation is achieved by braiding the end-
points of string within a qubit. (b) The two-qubit controlled Z is performed
by braiding the endpoints of the control qubit around those of the target.

6.5.2 Two-qubit gate

As we have shown that we can induce general single-bit rotations on our
qubits through braiding so it is natural to choose the controlled-phase gate,
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CZ as a suitable two-qubit gate. We construct two qubits, each composed
of two σ strings, we define the control qubit C on sites 1,2,3 and 4 as

C = |σ1, σ2; j〉|σ3, σ4; j〉 =
1
2
|11,412,3〉+ j|ψ(s,−t)1,4ψ(−s, t)2,3〉. (6.87)

The target T is defined similarly on sites 5,6,7 and 8 as

T = |σ5, σ6; j〉|σ7, σ8; j〉 =
1
2
|15,816,7〉+ j|ψ(s,−t)5,8ψ(−s, t)6,7〉. (6.88)

Then we examine the effect of braiding the anyons at {1, 4} around those at
{5, 8}.

• (|00〉): In this case, both C and T are in the vacuum channel and so
braiding has no effect.

• (|01〉): C is in the vacuum channel so braiding has no effect on the
target.

• (|10〉): Similarly, braiding the ψ of the target about the vacuum has
no effect.

• (|11〉): Now both are in the ψ channel and under braiding we acquire
a phase of eist. However we note there is a back-action on the control
anyons. This can be corrected by braiding ψ1,3 with ψ2,4 after the
controlled operation is completed. This removes the unwanted phase
and leaves an effect only on the target.

Thus we can perform a controlled-Z gate through braiding, this is depicted
in Fig.6.8(b). Note that we put the restriction that the qubit have identical
CV parameters s and t. This allows us to correct the extra phase acquired
on the control during braiding.

6.6 Discussion

It seems that the CV non-abelian model is extremely powerful as a com-
putational resource. Our qubits are stored in a non-local state that cannot
be altered through local operations at the endpoints of the anyon string.
Through braiding alone we are able to perform arbitrary single- and two-
qubit rotations. Further, we can also perform Hadamard transformations
by changing the fusion basis. This leaves us with some important questions.

The first natural question concerns the origin of the computational com-
plexity, after all the operations we apply are basically just displacements
which only generate first order shifts and by themselves are usually insuffi-
cient to implement universal computation. Then the answer must lie in the
anyonic states themselves. These states are superpositions in phase space
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and are thus highly non-Gaussian. This may provide a clue to the compu-
tational power as we can draw a parallel to the GKP proposal, [87], where
it was shown that qubits could be stored within CV resources but they re-
quired non-Gaussian operations to implement a universal gate set. It is yet
unclear if the non-Gaussianity is the root of mystery but we hope to provide
an answer in future works.

The second question relates to the fault tolerance of the topological op-
erations. Since this scheme is based on the same lattice as the abelian anyon
of Chapter 5 we run into the familiar problems of finite squeezing. This will
cause fluctuations in the magnitudes of the displacements and hence in the
values of the anyon continuous parameter. These fluctuations ensure that we
cannot produce perfect particle-antiparticle pairs and hence when fusing σ
pairs we can never guarantee that one of our fusion channels corresponds to
the vacuum. Then any braiding operations with this noisy ’vacuum’ channel
will produce small unwanted phase shifts on the stored qubit.

This appears to be the price we pay for our protected qubits. We require
very large squeezing to implement accurate gates or we have to include
error correcting protocols before each braid which significantly increases the
complexity for a physical realization.
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Chapter 7

Conclusions

This thesis was concerned with the construction of alternative quantum com-
putational models from continuous-variable resources. We focused on two
main quantum computational paradigms: the measurement-based model
and topological quantum computation. We showed that it is possible to
create states that support universal quantum computation for both of these
models from Gaussian resources. As Gaussian states are readily available in
an experimental setting it is hoped that these CV protocols may be used as
the fundamental building blocks for a scalable quantum computer.

7.1 Main results

The first set of results presented in this thesis dealt with the generation of
Gaussian cluster states for use in the CV measurement-based model. In
particular, we derived protocols to construct CV cluster states from en-
sembles of neutral atoms via entangling quantum non-demolition (QND)
operations mediated by sequences of light pulses. We gave examples of how
to construct small cluster states and showed that our protocol can be used
to create cluster states of arbitrary shape and size. Such states can serve
not only as useful computational resources but also as short term quantum
memories. We showed that the upper limit on the number of nodes that
can be included in these states is limited by Gaussian noise that the states
accumulate during the preparation process.

In our next section we extended our construction to include light modes
as part of the cluster states. This lead to a new type of state that we have
called composite cluster states. We gave an explicit construction for small
composite clusters that makes use of QND measurements in conjunction
with linear optics. We investigated the properties of these states using the
symplectic formalism and found values for the atom/light coupling constants
that yield suitably entangled states. However, we found that these states
are still plagued with the intrinsic problems of noise and finite squeezing.
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To combat this we suggested a new architecture for the measurement-based
model that seeks to reduce the number of resources and increase the effi-
ciency of computational processes. This scheme relies on the construction
of small composite cluster states called qubricks. Each qubrick takes the
place of a single quantum gate and arrays of them can be assembled in
a circuit model like fashion to simulate any particular computational pro-
cess. This scheme represents an improvement over the traditional MBQC
method that relies on creating large scale clusters and deleting nodes. Our
protocol removes the need for redundant nodes and hence keeps the rate of
entanglement decay and rate of error accumulation constant.

In Chapter 5 we moved beyond the measurement-bases model to inves-
tigate the topological model of quantum computation. We showed how a
continuous-variable analog of Kitaev’s toric code may be prepared from a
square CV cluster state. We then described the excitations on the lattice
which turned out to a CV version of abelian anyons due to their non-trivial
mutual statistics. However, this scheme is based on perfect resources states
and is thus highly unphysical.

We then extended our analysis to include finite squeezing effects on the
ground state. Then the qumodes of the underlying state are Gaussian modes
with non-zero quantum fluctuations. We derived the excitation spectrum
and found that the excitations on this physical ground state correspond to
Gaussian anyon states. We showed that these physical anyons are math-
ematically represented by complex stabilizer violations. We analysed the
braiding behaviour of the Gaussian anyons in some detail and found that
the phases gained under braiding retain their path independence which is
vital for any possibility of using such states in a fault tolerant quantum
computational setting.

The CV anyon model, while similar in some respects, differs from the
discrete models in two important ways. First, the phases produced from
braiding are of the form e−ist. Hence the phases are just proportional to
the magnitude of the initial displacements on the ground state and can be
chosen arbitrarily. The other major difference to note is the lack of a finite
energy gap. This means that a displacement of any magnitude will result in
an anyonic excitation and then any small fluctuation of the lattice Gaussian
states about their mean will produce small magnitude anyons. This leads
us to examine the fault tolerance of the topological operations against finite
squeezing. We showed that the braiding operations and hence the topolog-
ical quantum gates do appear to have an associated fault-tolerance since
in the finite squeezing regime the phases merely pick up extra terms pro-
portional to the squeezing parameter. These extra terms disappear as the
squeezing tends to infinity. However, we were unable to find a measurement
scheme that takes full advantage of this fault-tolerance. Despite the lack of
protection from finite squeezing errors, the CV Gaussian anyons retain the
property that their braiding behaviour is independent of the path they take
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when moving on the lattice.
We then went on to show that the abelian anyons are a useful resource for

continuous-variable quantum computation. We have described the quantum
gates that can be achieved by topological operations alone and found this
did not form a sufficiently powerful gate set. By including offline squeezing,
measurements, and cubic phase gates, we have shown that the computational
power can be increased significantly. These additional resources provide a
universal gate set for the CV anyons. It has therefore been possible for us
to give a classification of the topological operations available to CV abelian
anyons. We have shown that braiding and fusion only account for controlled
and uncontrolled WH gates, non-topological operations are essential to com-
plete the Clifford group, and a further non-Gaussian element is required to
achieve universality.

Then we conclude that even with an improved measurement scheme
that takes advantage of the mathematical fault tolerance, we cannot create
a fully protected gate set, since some gates require non-topological opera-
tions. Nonetheless, we have been able to identify those operations which are
theoretically protected.

Unsatisfied with the computational limits of the CV abelian anyon model
our next chapter investigated the possibility of creating CV non-abelian
anyon. We showed that the CV toric code can simulate non-abelian statis-
tics if we allow for the creation of anyonic superpositions. We derived the
fusion and braiding rules for this new model but it was not instantly obvious
how they would be useful in a quantum computational setting. To reduce
the complexity of the fusion and braid rules we placed a restriction on the
allowed superposition states. We then derived the new fusion and braiding
rules and found that under this restriction the properties of our CV anyons
are similar to those of well known Ising anyons.

We then moved on to test the computational potential of the CV non-
abelian anyons. It was shown that qubits can be stored in the fusion spaces
of our anyons and that these qubits are well protected from decoherence as
they cannot be affected by any local operations on the underlying lattice. We
then investigated quantum gate operations that can be achieved by braiding
the anyons. We found that this CV model is substantially more powerful
than the standard Ising model as braiding alone allows for arbitrary qubit
rotations. We established a set of single- and two-qubit gates. However, the
increased flexibility of the braiding operations comes as at price. Namely,
as with the abelian model, the effect of finite squeezing remains a difficult
hurdle to overcome.
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7.2 Future work and concluding remarks

In the introduction we alluded to the many possible roads ahead for the
study and implementation of quantum computation. In this thesis we have
added to the ever growing list of options but work is still required to take
them from theoretical possibility to experimental reality. Here we present
some suggestions for future work that would aid our understanding of the
physical systems and computational models that we have discussed.

With current technology the creation of CV cluster states from atomic
ensembles, while difficult, is a real possibility and could already be used for
standard MBQC. Further, extending such schemes to the creation of small
composite cluster states would open the door for the alternative architec-
tures suggested here. As a first step the experimental factors for a proof
of principle demonstration should be calculated. Then the remaining major
theoretical works are to design protocols that implement specific quantum
processes. Such protocols will reduce the experimental overheads and with
the availability of increasingly sophisticated technology could form the basis
of a scalable network of quantum processors.

In terms of theoretical work, our topological models are still far from
well understood. In subsequent works it would be interesting to examine
the CV anyon models on more fundamental grounds. While we can show
that anyonic excitations occur in these lattice models there must be some
underlying Hopf algebra structure that may yield more insight into the origin
of our unusual statistics. Such algebras may rely on continuous groups,
rather than the small finite groups of the traditional anyon models. This
presents us with an interesting theoretical complication as continuous group
are notoriously harder to work with.

On a more practical note, we are currently testing the fault tolerance
of the CV non-abelian model against the effects of finite squeezing and
amplitude damping. These calculation will hopefully give some ideas as to
the viability of the scheme as a realistic competitor in the arena of quantum
computation.
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