
1	
	

Built-up area and land cover extraction  
using high resolution Pleiades Satellite Imagery for Midrand, in Gauteng Province, South Africa 

 
E Fundisia and W Musakwab 

 
a Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, South Africa- 

fundisye@icloud.com 
b Department of Town and Regional Planning, University of Johannesburg, Doornfontein, Doornfontein, Johannesburg, 

South Africa -wmusakwa@uj.ac.za 
 

Commission IV, WG IV/3 
 
 
Key Words	land cover, built-up, urban, Pleiades, earth observation, South Africa 
 
Abstract: 
 
Urban areas, particularly in developing countries face immense challenges such as climate change, poverty, lack of resources 
poor land use management systems, and week environmental management practices. Mitigating against these challenges is 
often hampered by lack of data on urban expansion, urban footprint and land cover. To support the recently adopted new 
urban agenda 2030 there is need for the provision of information to support decision making in the urban areas. Earth 
observation has been identified as a tool to foster sustainable urban planning and smarter cities as recognized by the new 
urban agenda, because it is a solution to unavailability of data. Accordingly, this study uses high resolution EO data Pleiades 
satellite imagery to map and document land cover for the rapidly expanding area of Midrand in Johannesburg, South Africa. 
An unsupervised land cover classification of the Pleiades satellite imagery was carried out using ENVI software, whereas 
NDVI was derived using ArcGIS software. The land cover had an accuracy of 85% that is highly adequate to document the 
land cover in Midrand. The results are useful because it provides a highly accurate land cover and NDVI datasets at localised 
spatial scale that can be used to support land use management strategies within Midrand and the City of Johannesburg South 
Africa. 
 

	

1 INTRODUCTION 

 
Urban areas are places that provide their residents with a 
relatively high quality of life in terms of housing, 
services, employment and consumption (Pfeffer et al, 
2010). Land use modification taking place urban areas 
transforms the natural landscape significantly, and forms 
new habitats and ecosystems that are different from the 
natural set up (Robinson, 2006). Expansion of the 
economic base such as, higher per capita income and an 
increase in number of working persons creates demand 
for new buildings, infrastructure and housing (Paek, 
2006). Such expansion in response to the continued 
increase need of land utilisation triggered by population 
agglomeration and societal needs encourages many 
developers to rapidly construct new houses and 
infrastructure (Bhatta, 2010). Urban growth in African 
cities is often coupled with rising poverty, whose nature 
is not adequately captured by a simple urban-rural 
dichotomy (Coulter et al, 2016). In the face of rapid 
urbanisation African cities often lack the data and 
capacity to document the rapid urban change. Use is 
often made of field-based monitoring or urban change, 
which is considered accurate, it is generally inefficient, 
expensive and time consuming for assessment of areas 
with a large spatial extent.  
 
Earth observation (EO) techniques in contrast, provide 
information in a short period of time and allow for 
analysis of data over complex landscapes at a relatively 
low cost (Coulter et al, 2016). Urban mapping 
increasingly relies on the use of EO through the 
development of objective, automated and replicable 
methodologies for the identification of human-induced 

land covers(Musakwa and Van Niekerk, 2013). The 
physical characteristics of urban places generate spatial 
and spectral signatures that are readily captured through  
 
EO data. EO and Geographic Information Systems (GIS) 
have the potential to provide accurate information 
regarding land use and land cover changes (Musakwa 
and Van Niekerk, 2015). Urban land cover mapping and 
analysis can be facilitated through the use and 
interpretation of multispectral EO data (Lilles and and 
Kiefer, 1994). There is therefore the need to utilize a 
better resolution remote sensing to represent localised 
variabilities. The study aimed to investigate the 
contribution of high spatial resolution multispectral 
Pleiades images in land cover mapping. The objective of 
this paper was to investigate the effect of spatial 
resolution of EO data on discrimination of built up area 
and other land cover. This study therefore provides an 
important indication on the performance of high spatial 
resolution Pleiades data for the separation of built up 
area and different land cover. 
 

2 STUDY AREA 

Midrand is a located in the Johannesburg metropolitan, 
Gauteng Province, South Africa (Figure 1). It is one of 
the industrial hubs of Johannesburg, and strategically 
situated between Johannesburg and Pretoria. This node is 
built up around all major highways including the N1, M1 
North and South highways and it is dominated 
information communications technology and services 
industries. Midrand normally receives 537 mm of rainfall 
per year, with most rainfall falling during the summer 
period. The lowest rainfall (0) is usually received in June 
and the highest (101 mm) in January. Daily maximum 
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temperatures for Midrand range from 17.2°C in June to 
26.8°C in January. The region is the coldest during July 
when the temperature drops to 1.1°C on average during 
the night.  
 

 
 
Figure 1: Location of Midrand, Gauteng province, South Africa 

	

3 METHODOLOGY 

3.1 Data description 
Pleiades data for May 2015 that covers a section of 
Midrand and stretches to Fourways was utilised for 
conducting land cover classification. The Pleiades 
satellite imagery provides orthorectified colour data at 
very high spatial resolution. The satellite is capable of 
acquiring high spatial resolution stereo imagery in just 
one pass. The Pleiades satellite features four spectral 
bands (blue, green, red, and infrared (IR)), as well as 
image location accuracy of 3 meters without ground 
control points (Table 1). Image location accuracy can be 
improved even further up to an exceptional 1 meter by 
the use of ground control points (GCPs). 
 
 

Bands* Spatial 
Resolution (m) 

Wavelength 
(micrometres) 

Blue  4.6 430-550 

Green  4.6 490-610 

Red 4.6 600-720 

Near- Infrared 4.6 750-950 

Table 1: Pleiades bands and specifications 

Two hundred samples where distributed in the study area 
(Figure 2). The sample design was established using the 
random point creation tool in ArcGIS. This allowed for 
sufficient representation of land cover classes used in the 
localised study area. Each member of the determined 
land cover classes had an equal chance of being selected 
as part of the sample. It should be noted that this design 
removes any bias from the selection procedure and 
resulted in equal representative of samples.  

3.2 Land cover classification 
ENVI software was used to conduct the pixel-based 
classification of the Pleiades imagery. The overall goal 
of image classification procedure is to automatically 
categorise all pixels in an image into discrete land cover 
classes or themes (Lillesand et al, 2008; Newman et al, 
2011). A number of classification techniques are 
available to the remote sensing community; these 
include, among others, supervised (Winston, 1975), 
unsupervised (Tou and Gonzalez, 1974), artificial neural 
networks (McClellan et al, 1989), support vector 
machines (Cortes and Vapnik, 1995) and random forest 
(Breiman, 2001). Specifically, a combination of Iterative 
Self Organizing Data Analysis Technique (ISODATA) 
and unsupervised classification approach were used to 
classify the multispectral images. The algorithm 
separates all cells into distinct user-specified groups in 
the multidimensional space of the input bands (Im and 
Jensen, 2005). This classification approach was adopted 
for this study, because it allows spectral clusters to be 
identified with a high degree of objectivity. In addition, 
the method does not require in-depth, prior knowledge 
about the land cover types present in the area. This 
allows setting a fairly large number of classes that can 
subsequently be reduced to fewer classes depending on 
the variability present in the area of interest (Lillesand et 
al, 2008).  

The land cover type that each point falls on was recorded 
from the Google earth imagery. These land cover types 
were approximated according to Thompson (1996) that 
standardised land cover types for the purpose of 
interpreting remotely sensed data. The standard 
classification system was modified by merging 
structurally similar land cover types so as to suit the land 
cover types of the study area (Table 2). Twenty-four 
classes were created initially and subsequently reduced 
to four classes (woodland, grassland, impervious surface 
and water) by merging structurally similar land cover 
types through interpretations. The land cover types used 
by Thompson (1996) and merged in this study are 
presented in (Table 2).  

 
Land cover class Class definition  

Woodland Forest plantations, 
Woodland, Thicket 
Bush land, Scrub forest, Shrub land 

Grassland Unimproved grassland 
Improved grassland 

Impervious Surface Bare rock/ Soil, Built up land 

Bare land Degraded land, Soil 

Water Water 

Table 2: Land cover classes defined for the study area 

Woodland refers to land cover type with low density of 
woody vegetation; forest plantations that are 
systematically planted and man managed tree resources; 
thicket that covers woody, self-supporting plants 
growing under natural conditions; while scrub forest 
refers to intermediate vegetation between forest and 
thicket; bush land is similar to thicket, but characterised 
by open canopy cover. Unimproved grassland refers to 
indigenous grass species growing under natural 
conditions while improved grassland denotes planted 

16%	8%	20%	
3%	8%	11%	10%	12%	6%	6%	

Park	 Rosebank	 Sandton	

Marlboro	 Midrand	 Centurion	

Pretoria	 Har7ield	 Rhodesfield	

OR	Tambo	
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grassland either indigenous or exotic species growing 
under man-managed conditions. Bare rock/soil includes 
natural areas of exposed soil with little vegetation 
whereas degraded soil includes permanent or seasonal 
man-induced areas of low vegetation cover. Built up land 
cover areas include settlement areas and man-made 
structures therein. Note that this was not included in the 
bare land class of Thompson (1996); it was however 
included for this study since it has spectral properties 
similar to impervious surfaces. Water bodies refer to 
areas of generally open water; either natural or man-
made water bodies or this was classified under water. 

Different band combinations such as false colour 
combination (infrared, red and green) and natural colour 
combination (red, green and blue) were used as 
references in the interpretation process of the classified 
data. This is a standard remote sensing method used in 
interpretation of land cover classes, and was used in 
different studies (e.g. Adia, 2008; Campbell and Wynne, 
2011; Mirik and Ansley, 2012; and Nguyen et al, 2015). 
This approach was adopted to visualise point features 
and its surrounding features, for a more convincing 
interpretation of land cover classes. 

3.3 Deriving Normalized Difference Vegetation 
Index (NDVI 

ArcGIS software was used to derive the NDVI from the 
bands in the Pleiades imagery. The raster calculator tool 
in ArcGIS was used to derive the NDVI. After 
calculation the index was reclassified so that it acquired 
values of between 1 to 10. The index uses the principle 
that healthy vegetation absorbs most of the visible light 
that strikes it, and reflects a large portion of the near-
infrared light (Rouse et al, 1973). In contrast, unhealthy 
or sparse vegetation reflects more visible light and less 
near-infrared light. 

Impervious surfaces on the other hand reflect fairly 
equally in both the red and infrared portion of the 
electromagnetic spectrum (Holme et al, 1987). Hence 
impervious surfaces had values closer to one while 
grassland and woodland hand values closer to 10.  

3.4 Accuracy assessment 
The study made use of Google earth high spatial 
resolution imagery in order to validate the accuracy of 
the classification. This is a standard procedure, which is 
used for land cover mapping (Benza et al, 2016; Qi et al, 
2016; Hu et al, 2013; Gong et al, 2013). The imagery 
used was for the same year with Pleiades satellite 
imagery (May 2015) in order to relate reference data and 
the classification. All accuracies were assessed using the 
total number of points, which were established (Figure 
2). An error matrix, which is a standard classification 
assessment method, was used to evaluate each classified 
product (Congalton and Green, 2009). The method uses 
statistics such as overall accuracy, producer’s accuracy, 
user’s accuracy and kappa coefficients to determine the 
quality of classified data (Table 3) (Story and Congalton, 
1986). 

Table 3 shows that the overall accuracy assessment is 85 
%, which shows that the results are reliable. Such high 
accuracies are necessary if the results are to be used to 
make decisions in urban planning 

Table 3: Accuracy assessment 

 

Figure 2: Illustration of sample distribution of accuracy 
assessment points in the study area 
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4 RESULTS AND DISCUSSION 

4.1 Accuracy of land cover classification 
Accuracies of classification derived from Pleiades image 
are presented in (Table 3). The overall classification 
accuracy was 85.5% and the Kappa Co-efficient was 
0.77. Grassland had the highest user’s accuracy followed 
by bare land, woodland, impervious surface and then 
water with the lowest user’s accuracy. Producer’s 
accuracy showed that grassland was highest followed by 
impervious surface, bare land, woodland and then water 
class with the lowest producer’s accuracy. The 
classification results presented show that the majority of 
the study area was covered in grassland with 54% of the 
study area (Figure 3. This was followed by bare land 
with the coverage of 18% of the study area. Impervious 
surface had a total coverage of 12 % of the study area, 
followed by woodland with 10%. Water had the lowest 
coverage with 4% of the study area. Impervious area 
spatial distribution shows that it is formed in clusters 
around the study area. Moreover it is mostly found in the 
middle of the study area and South East part of the study 
area. The woodland class is mostly distributed on the 
middle part of the study area.	 Impervious surface had a 
total coverage of 12 % of the study area, followed by 
woodland with 10%. Water had the lowest coverage with 
4% of the study area. In addition, grassland is spatially 
distributed across the entire study area.	

	
Figure 3: Land cover classes 

 
Figure 4 shows sketches of areas extracted from the high 
spatial resolution Pleiades data and the corresponding 
area from the classified image (Figure 5. A closer look at 
the classified image (Figure 4a) shows an area where 
there was water class. This was correctly captured as 
water from the corresponding image (Figure 5a). Figure 
5b shows that building shadows where incorrectly 
classified as water class, relating to Figure 4b. Figure 4c 
shows high-resolution extract representing building 
roofs. It should be noted that this area was incorrectly 
classified as grassland (Figure 5c). In addition there are 
some areas where woodland classification has been 
underestimated and the classification being confused as 
grassland. Most importantly water class is largely 
confused with both woodland as well as the shadows of 
the buildings (Figures 4 and 5).  
 
 

	
Figure 4: Selected extracts from high spatial resolution Pleiades 
data: (a) area showing water; (b) area showing shadows of 
buildings; (c) area showing roof of a building 
 
 

	
Figure 5: Corresponding classifications derived from figure 3 of 
the high spatial resolution Pleiades image (a) area showing 
water; (b) area showing shadows of buildings; (c) area showing 
roof of a building 
 
4.2 Discussion 
 
The study intended to investigate the effect of spatial 
resolution of remotely sensed data on discrimination of 
built up area and other land cover classes. The overall 
classification accuracy was 85%, which is acceptable. 
Both producer’s and user’s accuracy for grassland class 
presented higher individual classification accuracies of 
96% and 94% accordingly (Table 3). These higher 
accuracies can be due to the performance of high spatial 
resolution of the dataset used in the study.	High spatial 
resolution imagery enables clear representation of 
features resulting in more accurate image classification 
(Johnson et al, 2013). This is consistent with various 
studies, which used other high spatial-resolution imagery 
to map land cover classes in an urban environment (Li 
and Sha, 2014; Johnson, 2013; Hussain and Shan, 2016). 
Mancino et al (2013) assessed land cover change using 
Landsat imagery and NDVI. 200 random sample points 
were established in the study area. Although the study 
achieved a relatively high accuracy (92%), course spatial 
resolution of the imagery used might have affected 
classification accuracy due to mixed pixel problem. 
There is room for improvement on land cover 
assessments utilising high spatial resolution data in 
combination with large (dense) sample sizes to avoid 
generic classification of land cover which contributes to 
inaccuracies. However water class achieved the lowest 
individual accuracies (producer’s 23% and user’s 43%). 
The classification product showed both high error of 
omission and error of commission (Table 3). A closer 
look at the classification product shows that shadows of 
the buildings are misrepresented as water class, which 
could have affected the overall classification accuracy. 

(a)	

(b) 

(c)	

(a) 

(b)	

(c) 
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Reflectance characteristics of individual land cover 
classes show significant variation, and spectral properties 
are less suitable for land cover identification (Chen et al, 
2009). Shadows reduce the spectral values of the objects 
or even total loss of spectral information (Lu et al, 2010), 
thus influencing the land-cover classification as water. 
This high spectral variation makes classification much 
more difficult than might otherwise be anticipated. In 
addition to that water class is also confused with 
woodland class, where woodland classes were 
misrepresented as water. Accordingly, the NDVI utility 
was utilised in order to discriminate between vegetation 
and other classes. The extract from the study area shows 
that NDVI performed better where there was confusion 
between woodland and water (Figure 6).  
 

	
Figure 6: Illustration of NDVI derived classification for the 
study area 
	

The classification provides a mechanisms where land 
cover and land uses can be described in urban areas in 
urban areas, particularly in developing countries where 
such data is often unavailable (Musakwa & Niekerk, 
2013) The classification is therefore a means of 
providing up-up-to-date information on land cover and 
land use that municipalities often do not posses. Pleiades 
with its high resolution is therefore a good source to 
derive land cover classification in urban areas, which 
often require high accuracies.  

 

5 CONCLUSION 

 
The study investigated the use of Pleiades imagery in 
land cover imagery. The resultant classification revealed 
a high overall accuracy of 85%. However due to spectral 
reflectance water and woodland classes had the lowest 
accuracies. The NDVI was derived as a solution to 
remedy the remedy the low accuracies. Pleiades land 
cover classification demonstrated that it is a useful 
source of land cover classification to derive the urban 
landscape in South Africa. However the low accuracies 
obtained from water and woodland classes need to be 
resolved if the data is to be more usable.  
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