
Cognitive Radio DAB MAC Protocol Performance
using a CR Specific Simulator and Software

Defined Radio
Coert J. Loubser

Dept. of Electrical and Electronic Engineering Science
University of Johannesburg
Johannesburg, South Africa

coertl@openserve.co.za

Theo G. Swart
Dept. of Electrical and Electronic Engineering Science

University of Johannesburg
Johannesburg, South Africa

tgswart@uj.ac.za

Abstract—With the constant advances in wireless technology,
radio spectrum has become a very scarce resource. Cognitive
Radio (CR) has emerged as a viable way to deal with our
inefficient use of the radio spectrum by utilizing unused spectrum
holes or white spaces, as they are referred to. Using Software
Defined Radio (SDR) we are able to realize CRs and their
unique properties. Most of the research that has been done
on CR protocols has been based on analytical assessments and
simulations using non-CR specific network simulators. In this
paper we code and compare two existing CR specific Medium
Access Control (MAC) protocols using a CR specific simulator.
We then prototype the chosen protocols using the Universal
Software Radio Peripheral (USRP). This allows us to see how
close the simulated performance results come to those actually
achieved in a real prototype.

Index Terms—Cognitive radio, MAC protocols, software de-
fined radio

I. INTRODUCTION

We are a data-hungry generation and with the requirement
of more data, comes the requirement of more bandwidth.
Worldwide, frequency regulators have statically defined spec-
trum usage to users. This means that fixed usage of frequency
spectrum are allocated to entities, enabling them to have
exclusive usage of certain frequency bands and channels. This
static spectrum allocation policy has worked well in the past,
but with a constant increase in bandwidth requirements we are
running out of free radio spectrum. According to the Federal
Communications Commission (FCC), the assigned spectrum
usage varies between 15% and 85% of full capacity in certain
geographical regions [1].

This has led researchers to try and find a viable a way to
better utilize our scarce spectrum resource. Cognitive Radio
(CR) has emerged as a possible solution. With CR we are able
to utilize unused spectrum holes either by sensing them as they
occur or by having prior knowledge through a database [2].
Once these unused frequency channels are detected, CRs are
able to allow Secondary Users (SUs) to use these spectrum

This work is based on research supported in part by the National Research
Foundation of South Africa (UID 77596).

gaps without detrimentally affecting license-paying Primary
Users (PUs) that occupy the current channels [3].

By using Software Defined Radio (SDR) we are able to real-
ize the above mentioned functions of CRs. An SDR is a radio
in which all or at least some of the physical layer properties
and functions that are normally controlled electronically are
instead controlled through software. Before SDR, radios were
all hardware based. This limited radios to operating within a
set frequency range and only have support for certain protocols
and waveform standards [4].

As with any radio, a CR’s operation is bound to certain
protocols. Most of the issues concerning CRs can be dealt
with on the Physical (PHY) and Medium Access Control
(MAC) layers of the typical communications protocol. CR
protocols have undergone some extensive research in recent
years, especially with regard to the MAC layer [3].

In this paper we code and compare the performance of two
existing CR MAC protocols using a CR specific simulator. The
two protocols are then prototyped using three USRP SDRs to
see how close the prototyped results come to the simulations.
Section II covers some related previous work. Section III
covers an overview of the chosen CR MAC protocols. In
Section IV we discuss the workings of the CR specific
simulator and SDR development toolkit. We then explain how
the two protocols were coded on it and show the performance
results achieved. We also compare the results achieved in the
simulated environment to that achieved in the prototyped one
and see how close the results come to one another. This is
critical in validating the accuracy of the simulation platform
and prototyped environment performance results.

II. RELATED WORK

In [5] the authors show how to configure a cognitive engine
using GNU Radio [6] and USRP1 [7]. They then consider a
Cognitive Radio Network (CRN) consisting of a PU and two
SUs to show how their configuration setup works both for the
PHY and MAC layer operations.

Latency analyses utilizing GNU Radio were performed on
USRP1, USRP2 and USRP E100 in [8]. The sources of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/95456074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


latency in these hardware platforms were identified and studied
analytically and through experiments.

The authors in [9] utilized the USRP1 to set up an ex-
perimental CRN consisting of two PUs and two SUs to
demonstrate the effects of dynamic spectrum allocation on
legacy systems and coexistence of PUs and SUs. Their focus
was on spectrum sensing and coexistence of PUs and SUs.

The authors in [10] reported their experience on using two
different software frameworks for SDR design of PHY-MAC
layers. GNU Radio and Click [11] were used. They also
discuss functionalities that they believe should be offloaded
to an SDR device.

In [12] and [13] the authors all used NS-2 [14] to perform
simulations on their proposed CR MAC protocols. All of these
simulations were, however, designed from scratch in NS-2.

A simple Aloha transmit and acknowledge MAC protocol
was implemented by the researchers in [15]. This example of
implementation explains the operation of MAC layer protocols
in Iris [16] as well as simple USRP implementation using Iris.

The authors in [17] propose a CSMA MAC protocol for
SDR radios. Their idea is to introduce SDR researchers to
MAC layer design. The MAC protocol operates on a host-
based PC. The spectrum-sensing model has the capability to
be modified or exchanged without the need to modify the MAC
layer component.

III. CR MAC PROTOCOLS CONSIDERED

CR MAC protocols can be categorized into two main
groups, namely: Direct Access Based (DAB) and Dynamic
Spectrum Allocation (DSA). With DAB CR MAC protocols,
each sender and receiver combination has its own goal that it
aims to achieve and therefore does not pay regard to overall
network optimization. DSA CR MAC protocols, on the other
hand, try to optimize the overall network. Because of this,
these protocols use more complex algorithms than DAB CR
MAC protocols [18].

Our research focused exclusively on DAB CR MAC proto-
cols since we are only trying to test the user and implemen-
tation experience of the CR specific simulator. In comparing
only these protocols we will have set a good basis for future
CR MAC protocol research, such as the more complex DSA
CR MAC protocols using it. The CR MAC protocols we
selected are: Opportunistic Spectrum Access MAC (OSA-
MAC) and Opportunistic Multi-Channel MAC (OMC-MAC).
We encourage the reader to further read references [19] and
[20] for specifics on the operation of OSA-MAC and OMC-
MAC, as we will only give a brief overview of their operations.
Figs. 1 and 2 show the basic time frames of OSA-MAC
and OMC-MAC respectively, for reference to our simulations
and prototyping. Both protocols are contention-based DAB
CR MAC protocols. They both operate in three phases in a
set beacon period with periodic beacon transmissions on a
common control channel, to allow the synchronization of SUs.
Beacon transmissions follow the conventional IEEE 802.11
Distributed Coordination Function (DCF) mode.

Beacon Beacon Interval

ATIM Window

ATIM RTS DATA ACK

CTSATIM-ACK

Control
Channel

Channel 1

Channel L

Backoff

Sensing

Phase
I

Phase
II

Phase
III

RTS DATA ACK

CTS

RTS DATA ACK

CTS

... ...

· · · · · ·

Fig. 1. OSA-MAC time frame [19]

Receive on Ch 4

Transmit on Ch 4

Receive on Ch 7

Transmit on Ch 7

A

B

C

D

E

Sensing
Phase

Contention
Phase

Data Transmission
Phase

CTS, Ch 4

NAV: Ch 7

RTS CRTS, Ch 4

CTS, Ch 7

NAV: Ch 4

NAV: Ch 4

RTS CRTS, Ch 7

NAV: Ch 4, Ch 7NAV: Ch 4

A

E

B

C

D

Fig. 2. OMC-MAC time frame [20]

In OSA-MAC, Phase 1 is used for the selection of channels
between SUs. The transmitter sends an Ad-hoc Traffic Indi-
cation Message (ATIM) packet with the chosen PU channel
embedded. On reception, the receiver responds with an ATIM-
ACK packet, agreeing on the chosen channel. Availability of
the chosen PU channel is then determined by the transmitting
SU through channel sensing in Phase 2. Phase 3 is then
used for data transmission. Transmitting SUs use random
delays to resolve contention before transmitting a Request to
Send (RTS) packet to its intended receiver. On reception the
receiver responds with a Clear to Send (CTS) packet. The
transmitter then sends a single DATA packet to which the
receiver responds with an ACK packet to indicate that the
data has been received successfully. Only a single packet is
transmitted to reduce the chance of interference with the PUs



[19].
In OMC-MAC the first phase is used for sensing. Both the

transmitting and receiving SU pair sense the allocated PU
channels for availability and keep an index of the scanned
channels. In the second phase, the transmitting SUs use
random delays to resolve contention over the common control
channel before transmitting an RTS packet to its intended
receiver which contains the desired PU channel, randomly
selected from the available scanned PU channels. On reception
of the RTS packet, the receiver will compare the chosen
channel with the list of available channels scanned by itself.
Should the chosen channel also be available in the receiver’s
list, it will agree on the channel. If not, it will choose another
available channel and respond with it included in a CTS
packet. The transmitter then sends a Confirmed-RTS (CRTS)
packet as a final confirmation. While all this is happening,
other SU pairs monitor what channel has been chosen and set
this channel as unavailable for selection. Should all channels
have been chosen before a SU pair has made a choice, they
will not transmit data for this Beacon Period (BP) and will
attempt again in the next BP. Finally, the third phase is used
for data transmission. The transmitting SU will transmit a
DATA packet to its intended receiver, upon which the receiver
will respond with an ACK packet as confirmation. This will
continue for the rest of the BP unless an ACK packet is not
received. In this case it will be assumed that a PU has become
active on the channel and data transmission for the rest of the
BP on the specific channel will end [20].

IV. SIMULATIONS, SDR IMPLEMENTATION AND
COMPARISON

A. crSimulator

crSimulator is a discrete event simulator based on OM-
NeT++ to allow simulation of CR ad-hoc networks. Users de-
sign their network topologies using OMNeT++ NED language
and C++ code for all their relevant protocols. crSimulator
provides support for all the layers of a typical protocol stack,
allowing users to code each part of the stack according to their
own needs. It works on OMNeT++ version 4.22 and above.
It can run either in Linux or Windows, although Linux offers
certain advantages [21].

Although most CR MAC simulations have been completed
in NS-2, none of these used a CR specific simulator. Using a
CR specific simulator would save a lot of time in coding future
CR MAC protocols since all the required building blocks are
already there. The only other CR specific simulator available
is the Cognitive Radio Cognitive Network Simulator (CRCN)
[22]. CRCN runs in NS-2 as an expansion package. It is only
compatible with NS-2 version 2.31. Also, it only runs under
a Linux environment. The overall user experience of CRCN
simulator in NS-2 was found complex and buggy. Also, NS-2
is no longer supported making CRCN simulator undesirable
for future use in CR MAC development. crSimulator in
OMNeT++ on the other hand was easy to use and install.
It runs on both Linux and Windows. We will therefore use
crSimulator for all our CR MAC simulations. This will also

help with the future extension of crSimulator especially with
regard to the MAC layer.

B. Iris

Iris is a free open source software radio architecture used
to build highly reconfigurable radio networks. It has formed
the basis for various cognitive radio and dynamic spectrum
access demonstrations at international conferences. It supports
runtime reconfiguration, all layers of the network stack and
provides connectivity to SDRs such as the USRP. The radio
parameters are coded using XML while the physical modules
used by the radio are coded in C++ [16].

C. Simulations

We performed simulations based on system saturation
throughput and the effect of PU arrival rate on system
throughput. Fig. 4 shows the basic network setup with one
PU and one SU flow used in both protocols. A SU flow is
the communication between a SU pair. This communication
takes place between the same two SUs for the entire duration
of the simulation. A simulation time limit of 40 s was used
and an average of 10 runs were taken. A data packet size
of 2000 bytes was used over a 2.04 Mbps channel with the
other packets having normal IEEE 802.11 sizes. For a full
list of all the parameters, including the ones used for the
implementations in the next sections, see Tables I and II.

D. Iris and USRP testbed setup

Iris was installed alongside the Universal Hardware Driver
(UHD) on Ubuntu 14.04. UHD is required to allow a USRP
to access the required drivers on the PC [8]. We used the
simple implementation of an Aloha MAC protocol coded by
the authors in [15] as a starting point for implementing both
OSA-MAC and OMC-MAC on Iris. This example showed
us how MAC layer functionality is incorporated in Iris and
provided a good base to build on. Both protocols operate using
two threads running simultaneously in a C++ environment.

TABLE I
DIFFERENCE IN OSA-MAC SIMULATION AND USRP PARAMETERS

Simulation USRP
Parameter value value Factor
aSlotTime 20 µs 20 µs
DIFS 50 µs 9 ms ×180
SIFS 10 µs 3 ms ×300
PU Sensing Duration 50 µs 10 ms ×200
Channel Switch Delay 224 µs 2 ms ×9
Beacon Period 11–32 ms 150 ms ×5–14
W 64 8 ×0.125
Data Packet Size 2000 bytes 1535 bytes ×0.76
Beacon Size 56 bytes 52 bytes ×0.92
ATIM Size 21 bytes 34 bytes ×1.62
ATIM-ACK Size 15 bytes 34 bytes ×2.27
RTS Size 20 bytes 32 bytes ×1.6
CTS Size 14 bytes 32 bytes ×2.3
ACK Size 14 bytes 32 bytes ×2.3



TABLE II
DIFFERENCE IN OMC-MAC SIMULATION AND USRP PARAMETERS

Simulation USRP
Parameter value value Factor
aSlotTime 20 µs 20 µs
DIFS 50 µs 9 ms ×180
SIFS 10 µs 4 ms ×400
PU Sensing Duration 50 µs 10 ms ×200
Channel Switch Delay 224 µs 2 ms ×9
Beacon Period 100 ms 300 ms ×3
W 64 8 ×0.125
Data Packet Size 2000 bytes 1535 bytes ×0.76
Beacon Size 56 bytes 52 bytes ×0.92
CRTS Size 14 bytes 32 bytes ×2.3
RTS Size 20 bytes 32 bytes ×1.6
CTS Size 14 bytes 32 bytes ×2.3
ACK Size 14 bytes 32 bytes ×2.3

These threads are the transmit and receive threads and we use
two due to the fact that we are operating in a half-duplex mode.
Whenever we transmit data from the transmitter we lock the
execution of the thread until an acknowledgement packet is
received from the receiver, hence the two separate threads.

Another important part of the code to take note of is
the processing functions used within Iris. These are the pro-
cessMessageFromAbove and processMessageFromBelow func-
tions. These functions are built into Iris and deals specifically
with operations between different component layers. They are
implemented whenever a new message arrives from either the
component above (i.e. application layer) or the component
below (i.e. physical layer) the MAC layer component. The
message is then passed to either the transmit or receive queue
of the two independent threads. The queues operate on a
simple first-in first-out principle.

The rest of the code is specific to the implemented protocol.
All future half-duplex CR MAC protocols can therefore use
the above code architecture and then modify the rest of the
code specific to the implemented protocol. Tuning the USRP
between the common control channel (CCC) and the PU
channels was accomplished using a custom controller in Iris.
Whenever the radio needed two switch channels, an event
was triggered from within the MAC protocol to activate the
controller responsible for the USRP frequency change. A
switch event was called for both the transmit and receive
chain even though we are operating in half-duplex mode.
The reason for this is that both transmit and receive local
oscillators operate independently. Automatic transmit-receive
logic switches in the FPGA switch between the transmit and
receive circuit as soon as transmit streaming comes to an end
[23].

The USRP N210 with the SBX daughterboard and the
VERT900 antenna were used in the experimental setup seen
in Fig. 3. We only had access to 3 USRPs, therefore our
experimental setup will be identical to the simulation scenario
in Fig. 4. This small prototyping environment still allows us to

gain understanding of the workings of CR MAC protocols in a
SDR environment on Iris and allows us to effectively compare
the results of the simulations to that of the prototyping to
see how close the two come to one another. For comparison
sake the simulation results included will also only be based
on this network scenario, although a much bigger network can
be simulated.

A gigabit Ethernet switch was used between one of the
SUs and the PU, as the Ethernet port on the host PCs did not
have gigabit Ethernet capabilities. Because we are prototyping
using a host PC, we have to account for extra delays caused by
the host PC, Ethernet cables and the gigabit Ethernet switch.
For this reason some of the protocol parameters used in the
prototyping such as the BP, DCF Interframe Space (DIFS),
Short Interframe Space (SIFS), and PU sensing duration were
larger than what was used in the simulations. For this reason
the simulations were also re-run with the same parameters
used in the SDR prototyping so that appropriate comparisons
between simulation and SDR prototyping could be made.

E. OSA-MAC Prototyping

Table I shows the parameters used in the prototyping and
how the value for each differed between the simulations and

Fig. 3. Complete USRP network setup

Fig. 4. Network setup for one secondary flow with a PU present



the implementations.
We analyzed the system saturation throughput with no PU

presence first. Table III shows the results achieved in the SDR
prototype as well as the simulation re-run. It is clear that the
throughput stayed the same for all channel cases and that
the SDR prototyping matches with what is obtained using
simulations in OMNeT++. With a difference of 1.02% between
prototyping and simulations, we have a near-perfect match
between the two.

With the PU present, we considered the 2 and 5 channel
cases and compared the results obtained from the SDR proto-
typing and the OMNeT++ simulations re-run. We varried the
PU arrival rate from 0 to 1. A PU arrival rate of 0 means it
never becomes active for the entire simulation time, while an
arrival rate of 1 means it is active all the time. Fig. 5 shows
the results achieved.

In the 2 channel case both the results showed a drop
of around 50% in overall system throughput when the PU
arrival rate reached one. This was expected since channels
are chosen at random, so there was a 50/50 chance that
the PU channel would be selected. A maximum difference
in throughput between the two results was experienced at
a PU arrival rate of 0.7, where the throughput differed by
7.4624 kbps or 13.26%. There could be various reasons for the
difference at this point. It is, however, believed that the main
factor for the difference in throughput at various PU arrival
rates between the simulated and prototyped results is that the
PU becomes active at different start times during prototyping
compared to during the simulations. The PU always became
active at the same time as the SU pair during simulations,
while the PU was left on during SDR prototyping iterations.

TABLE III
OSA-MAC SYSTEM THROUGHPUT COMPARISON WITH NO PU PRESENCE

FOR SDR PROTOTYPING AND OMNET++ SIMULATIONS

System Throughput (kbps)

1 Channel 2 Channels 5 Channels
SDR Prototype 80.77 80.31 80.37
Simulation Rerun 81.60 81.63 81.54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PU Arrival Rate

40

50

60

70

80

90

S
y
st
em

T
h
ro
u
g
h
p
u
t
(k
b
p
s)

5 Channels OMNeT++

5 Channels SDR
2 Channels OMNeT++

2 Channels SDR

Fig. 5. OSA-MAC with PU present, SDR vs. OMNeT++ results for 2 and 5
channels

Furthermore, demodulation errors could also have contributed
to the drop in throughput.

The 5 channel case showed similar results, though with
a less detrimental drop in throughput since the probability
of choosing the PU channel decreased with an increase in
channels.

F. OMC-MAC Prototyping

Table II shows the parameters used in the prototyping and
how the values for each differed between the simulations and
the implementations.

We again analyzed the system saturation throughput with
no PU presence first. Table IV shows the results achieved.

We see that the throughput decreased by around 3.37% from
the 1 channel case to the 2 and 5 channel scenarios. It was
noted that all the switching between the CC and the channels
to be scanned and transmitted on resulted in the demodulator
losing some frames, since the USRP had not switched over to
the correct frequency before transmission occurred.

With the PU present, we again considered the 2 and 5
channel cases and compared these to the results obtained
from the SDR prototyping and the OMNeT++ simulations
re-run. Fig. 6 shows the results achieved. We started the PU
transmission at random times between 0 s and 0.5 s during the
simulation re-run to ensure that we achieved the randomness
of the PU start time experienced in the SDR prototyping. We
did not do this during the prior simulations.

While we see some differences between the simulations and
SDR prototyping, they do seem very similar in many ways.
With the random start time now included in the OMNeT++
simulations we see a drop in throughput with varying PU

TABLE IV
OMC-MAC SYSTEM THROUGHPUT COMPARISON WITH NO PU PRESENCE

FOR SDR PROTOTYPING AND OMNET++ SIMULATIONS

System Throughput (kbps)

1 Channel 2 Channels 5 Channels
SDR Prototype 202.93 196.08 196.02
Simulation Rerun 202.62 202.62 202.62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
PU Arrival Rate

120

130

140

150

160

170

180

190

200

210

220

S
y
st
em

T
h
ro
u
g
h
p
u
t
(k
b
p
s)

5 Channels OMNeT++

5 Channels SDR
2 Channels OMNeT++

2 Channels SDR

Fig. 6. OMC-MAC with PU present, SDR vs. OMNeT++ results for 2 and
5 channels



arrival rates in the OMNeT++ simulation case as well. This
validated our hypothesis for the drop in throughput during
prototyping, which was not previously seen in the simulations.
The OMNeT++ simulation re-run dropped in throughput until
it hit a low of 162.83 kbps at a PU arrival rate of 0.7 (19.88%
lower than the maximum). After this point the throughput
steadily increased back to the same level it started off with
at a PU arrival rate of one. The SDR prototype had more
erratic results, showing random increases and decreases, when
the PU arrival rate was varied. This non-linear result could
have been caused by PU sensing errors made by the SU pair.
In the 5 channel case, the variable PU start time did not
affect the OMNeT++ simulation results. The SDR prototyping
still produced a small drop in throughput. However, it was
significantly lower than what was seen in the 2 channel case.
The probability of choosing the busy PU were lower, therefore
the throughput decreased less.

V. CONCLUSIONS

We have successfully programmed and tested both our CR
MAC protocols on crSimulator. We have thus showed that
CR MAC layer programming can successfully be implemented
within crSimulator in an OMNeT++ environment. Future CR
MAC research can now build on what we have done. In our
research we have only looked at DAB CR MAC protocols.
These protocols do not pay regard to overall network opti-
mization. Future work can be done to see if DSA protocols
can be coded and tested within crSimulator. These protocols
seek to optimize the overall network performance. Because of
this DSA CR MAC protocols use more complex algorithms
than DAB CR MAC protocols.

The access to only three USRP N210s during our SDR
prototyping limited our implementation to a network of one
SU pair and one PU. For this reason contention between SU
pairs was not coded in both our SDR prototyped CR MAC
protocols. Should one have access to 5 or more USRP units
in the future, contention between SU pairs can be included in
the SDR prototyping.

In our research, delays were included to simulate contention
since there would not actually be any contention with only
one SU pair. Adding code to deal with contention between
SUs will require a more advanced coding effort since we
have already seen that large delays were experienced with
the current method of channel sensing used. A new channel
sensing method will need to be developed to ensure that
sensing delays are kept to a minimum not only for contention
between SUs, but also for PU sensing.

Cognitive Radio using SDR is a very exciting and new field
of study especially with regards to sharing spectrum with PUs
in the currently statically defined frequency allocations. We
are running out of free spectrum and better ways of utilizing
unused spectrum holes need to be found to ensure that we use
our scarce spectrum resource efficiently. Using simulations and
SDR prototyping will form an important part of quantifying
future proposed CR protocols, not only with regards to the
MAC layer, but all layers of the protocol stack.

REFERENCES

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran and S. Mohanty, “NeXt
generation/dynamic spectrum access/cognitive radio wireless networks:
A survey,” Comput. Netw., vol. 50, no. 13, pp. 2127–2159, Sep. 2006.

[2] Z. Gao, H. Zhu, Y. Liu, M. Li and Z. Cao, “Location privacy in database-
driven cognitive radio networks: attacks and countermeasures,” in Proc.
IEEE INFOCOM, Turin, Italy, pp. 2751–2759, Apr. 2013.

[3] J. Marinho and E. Monteiro, “Cognitive radio: survey on communication
protocols, spectrum decision issues, and future research directions,”
Wireless Netw., vol. 18, no. 2, pp. 147–164, Feb. 2012.

[4] R. D. Raut and K. D. Kulat, “SDR design for cognitive radio,” in Proc.
Int. Conf. Modeling, Simulation and Appl. Optimization, Kuala Lumpur,
Malaysia, pp. 1–8, Apr. 2011.

[5] W. Song, “Configure cognitive radio using GNU Radio and USRP,” in
Proc. IEEE Int. Symp. Microw., Antenna, Propag. and EMC Technol.
for Wireless Commun., Beijing, China, pp. 1123–1126, Oct. 2009.

[6] GNU Radio, “GNU Radio, The free and open software radio ecosystem,”
GNU Radio, Jan. 2017. [Online]. Available: http://gnuradio.org

[7] Ettus Research, “USRP1,” Mar. 2014. [Online]. Available: https://www.
ettus.com/product/details/USRPPKG

[8] N. B. Truong, Y.-J. Suh and C. Yu, “Latency analysis in GNU
Radio/USRP-based software radio platforms,” in Proc. IEEE Military
Commun. Conf., San Diego, USA, pp. 305–310, Nov. 2013.

[9] Z. Yan, Z. Ma, H. Cao, G. Li and W. Wang, “Spectrum sensing, access
and coexistence testbed for cognitive radio using USRP,” in Proc. IEEE
Int. Conf. on Circuits and Syst. for Commun., Shanghai, China, pp. 270–
274, May 2008.

[10] R. Dhar, G. George, A. Malani and P. Steenkiste, “Supporting integrated
MAC and PHY software development for the USRP SDR,” in Proc.
IEEE Workshop Netw. Technol. for Software Defined Radio Netw.,
Reston, USA, pp. 68–77, Sep. 2006

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti and M. F. Kaashock, “The
Click modular router,” in ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[12] J. Jia and Q. Zhang, “Hardware-constrained Multi-Channel Cognitive
MAC,” in IEEE Global Telecommun. Conf., Washington DC, USA pp.
4653–4658, Nov. 2007.

[13] C. Zhang and Y. Xiao, “Performance analysis of cognitive MAC under
saturation condition using Statistical Channel Allocation,” in Proc. IEEE
Int. Conf. Signal Process., Beijing, China, pp. 1369–1372, Oct. 2012.

[14] NS-2, “The Network Simulator - ns-2,” NS-2, Jan. 2017. [Online].
Available: http://www.isi.edu/nsnam/ns/

[15] A. Puschmann, “Developing MAC Components with
Iris,” www.puschmann.net, Feb. 2013. [Online]. Available:
http://www.puschmann.net/page/

[16] P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. Ozgul,
T. W. Rondeau, J. Noguera and L. E. Doyle, “Iris: an architecture for
cognitive radio networking testbeds,” IEEE Commun. Mag., vol. 48,
no. 9, pp. 114–122, Sep. 2010.

[17] A. Puschmann, M. A. Kalil and A. Mitschele-Thiel, “A Flexible CSMA
based MAC Protocol for Software Defined Radios,” Frequenz, vol. 6,
no. 9-10, pp. 261–268, Feb. 2012.

[18] A. De Domenico, E. C. Strinati and M.-G. Di Benedetto, “A survey on
MAC strategies for cognitive radio networks,” IEEE Commun. Surveys
& Tutorials, vol. 14, no. 1, pp. 21–44, Feb. 2012.

[19] L. Le and E. Hossain, “A MAC Protocol for Opportunistic Spectrum
Access in Cognitive Radio Networks,” in IEEE Wireless Commun. Netw.
Conf., Las Vegas, NV, pp. 1426–1430, Apr. 2008.

[20] S. C. Jha, M. M. Rashid, V. K. Bhargava and C. Despins, “OMC-MAC:
An opportunistic multichannel MAC for cognitive radio networks,” in
Proc. IEEE Veh. Technol. Conf. Fall, Anchorage, USA, pp. 1–5, Sep.
2009.

[21] S. N. Khan, M. A. Kalil and A. Mitschele-Thiel, “crSimulator: A discrete
simulation model for cognitive radio ad hoc networks in OMNeT++,”
in Proc. Joint IFIP Wireless and Mobile Netw. Conf., Dubai, UAE, pp.
1–7, Apr. 2013.

[22] T. Chigan, “Cognitive Radio Cognitive Network Simulator (NS2
Based),” July 2014. [Online]. Available: http://faculty.uml.edu/Tricia
Chigan/Research/CRCN Simulator.htm# Introduction to CRCN

[23] Ettus Research, “Application Note Frontends, Sub-Device Specifi-
cations, and Antenna Port Selection,” Nov. 2015. [Online]. Avail-
able: http://www.ettus.com/content/files/kb/application note frontends
subdevices antenna ports.pdf


