

Universidade de Aveiro
2015

Departamento de
Eletrónica, Telecomunicações e Informática

Vedran

Semenski

Plataforma ABAC para Aplicações da IoT Baseada na
Norma OASIS XACML

An ABAC Framework for IoT Applications Based on
the OASIS XACML Standard

University of Aveiro

2015.

Department of Electronics, Telecommunications

and Informatics

Vedran

Semenski

Plataforma ABAC para Aplicações da IoT Baseada
na Norma OASIS XACML

An ABAC Framework for IoT Applications Based on
the OASIS XACML Standard

 This thesis is submitted to the University of Aveiro and Faculty of Electrical
Engineering and Computing, University of Zagreb for compliance with the
requirements for the degree of Master of Science in Computing, performed
under the supervision of Prof. Dr. Óscar Pereira, Professor on the Department
of Electronics, Telecommunications and Informatics of the University of Aveiro
and MSc Ricardo Azevedo, from PT – Inovação e Sistemas.

I dedicate this work to my loving parents without whom, this would never
have been possible.

The committee / O júri

President / Presidente Prof. Dr. André Ventura da Cruz Marnoto Zúquete,
Professor Auxiliar da Universidade de Aveiro

Examiner / Arguente Prof. Dr. Miguel Filipe Leitão Pardal,
Professor Auxiliar da Universidade de Lisboa

Supervisor / Orientador Prof. Dr. Óscar Mortágua Pereira
Professor Auxiliar da Universidade de Aveiro

acknowledgements

I take this chance to extend my thanks to all the people who helped and
supported me through my studies and during this work.
To my supervisors, Prof. Dr. Óscar Pereira and MSc Ricardo Azevedo,
for giving me clear guidance and help when it was needed.
To my professors from the courses I took while studying on FER,
University of Zagreb, and the last year on DETI, University of Aveiro, for
providing me with the opportunity to learn.
Lastly, I especially want to thank my family for their support and
encouragement during the years of my studies.

palavras-chave

Access Control, ABAC, XACML, IoT, Big Data, NoSQL, XML, JSON,

SMARTIE, Smart City, M2M, Information Security

resumo

A IoT (Internet of Things) é uma área que apresenta grande potencial
mas embora muitos dos seus problemas já terem soluções satisfatórias,
a segurança permanece um pouco esquecida, mantendo-se um como
questão ainda por resolver. Um dos aspectos da segurança que ainda
não foi endereçado é o controlo de acessos. O controlo de acesso é
uma forma de reforçar a segurança que envolve avaliar os pedidos de
acesso a recursos e negar o acesso caso este não seja autorizado,
garantindo assim a segurança no acesso a recursos críticos ou
vulneráveis. O controlo de Acesso é um termo lato, existindo diversos
modelos ou paradigmas possíveis, dos quais os mais significativos
são: IBAC (Identity Based Access Control), RBAC (Role Based Access
Control) and ABAC (Attribute Based Access Control). Neste trabalho
será usado o ABAC, já que oferece uma maior flexibilidade
comparativamente a IBAC e RBAC. Além disso, devido à sua natureza
adaptativa o ABAC tem maior longevidade e menor necessidade de
manutenção. A OASIS (Organization for the Advancement of Structured
Information Standards) desenvolveu a norma XACML (eXtensible
Access Control Markup Language) para escrita/definição de políticas de
acesso e pedidos de acesso, e de avaliação de pedidos sobre
conjuntos de políticas com o propósito de reforçar o controlo de acesso
sobre recursos. O XACML foi definido com a intenção de que os
pedidos e as políticas fossem de fácil leitura para os humanos,
garantindo, porém, uma estrutura bem definida que permita uma
avaliação precisa. A norma XACML usa ABAC. Este trabalho tem o
objetivo de criar uma plataforma de segurança que utilize os padrões
ABAC e XACML que possa ser usado por outros sistemas, reforçando o
controlo de acesso sobre recursos que careçam de proteção, e
garantindo acesso apenas a sujeitos autorizadas. Vai também
possibilitar a definição fina ou granular de regras e pedidos permitindo
uma avaliação com maior precisão e um maior grau de segurança. Os
casos de uso principais são grandes aplicações IoT, como aplicações
Smart City, que inclui monitorização inteligente de tráfego, consumo de
energia e outros recursos públicos, monitorização pessoal de saúde,
etc. Estas aplicações lidam com grandes quantidades de informação
(Big Data) que é confidencial e/ou pessoal. Existe um número
significativo de soluções NoSQL (Not Only SQL) para resolver o
problema do volume de dados, mas a segurança é ainda uma questão
por resolver. Este trabalho vai usar duas bases de dados NoSQL: uma
base de dados key-value (Redis) para armazenamento de políticas e
uma base de dados wide-column (Cassandra) para armazenamento de
informação de sensores e informação de atributos adicionais durante os
testes.

keywords

Access Control, ABAC, XACML, IoT, Big Data, NoSQL, XML, JSON,
SMARTIE, Smart City, M2M, Information Security

abstract

IoT (Internet of Things) is an area which offers great opportunities and
although a lot of issues already have satisfactory solutions, security has
remained somewhat unaddressed and remains to be a big issue.
Among the security aspects, we emphasize access control. Access
Control is a way of enforcing security that involves evaluating requests
for accessing resources and denies access if it is unauthorised,
therefore providing security for vulnerable resources. Access Control is
a broad term that consists of several methodologies of which the most
significant are: IBAC (Identity Based Access Control), RBAC (Role
Based Access Control) and ABAC (Attribute Based Access Control). In
this work ABAC will be used as it offers the most flexibility compared to
IBAC and RBAC. Also, because of ABAC's adaptive nature, it offers
longevity and lower maintenance requirements. OASIS (Organization for
the Advancement of Structured Information Standards) developed the
XACML (eXtensible Access Control Markup Language) standard for
writing/defining requests and policies and the evaluation of the requests
over sets of policies for the purpose of enforcing access control over
resources. It is defined so the requests and policies are readable by
humans but also have a well defined structure allowing for precise
evaluation. The standard uses ABAC. This work aims to create a
security framework that utilizes ABAC and the XACML standard so that
it can be used by other systems and enforce access control over
resources that need to be protected by allowing access only to
authorised subjects. It will also allow for fine grained defining of rules
and requests for more precise evaluation and therefore a greater level
of security. The primary use-case scenarios are large IoT applications
such as Smart City applications including: smart traffic monitoring,
energy and utility consumption, personal healthcare monitoring, etc.
These applications deal with large quantities (Big Data) of confidential
and/or personal data. A number of NoSQL (Not Only SQL) solutions
exist for solving the problem of volume but security is still an issue. This
work will use two NoSQL databases. A key-value database (Redis) for
the storing of policies and a wide-column database (Cassandra) for
storing sensor data and additional attribute data during testing.

University of Aveiro, Department of Electronics, Telecommunications and Informatics I

P a g e | I

Table of content
Table of content ... I

List of Acronyms .. IV

List of figures ... VI

List of tables .. VII

1 Introduction ... 1

1.1 Dissertation description text ... 2

1.2 Problem formulation/description .. 3

1.3 Proposed solution ... 4

1.4 Development environment and technologies used ... 5

1.5 Dissertation structure .. 6

2 State of the art ... 7

2.1 Access Control ... 7

2.1.1 Types of access control .. 8

2.1.2 OASIS and the XACML standard .. 13

2.2 The Internet of Things (IoT) .. 19

2.3 Machine to Machine communication (M2M) .. 22

2.4 Big Data ... 24

2.5 NoSQL Databases .. 26

2.5.1 Types of NoSQL databases .. 28

2.5.2 Current state of NoSQL technologies .. 30

2.5.3 Security issues in NoSQL .. 39

2.5.4 Performance studies and comparisons ... 40

2.5.5 NoSQL systems - summary .. 43

3 Background ... 45

3.1 Smart Cities .. 45

3.1.1 SMARTIE .. 46

3.1.2 Other Smart City projects ... 49

II Table of content

II | P a g e

3.2 Related work .. 49

4 Solution description .. 53

4.1 Design choices and general architecture .. 53

4.1.1 Design choices and technologies used ... 53

4.1.2 Solution architecture .. 55

4.2 Description of components ... 61

4.2.1 Packages and dependencies .. 61

4.2.2 Components .. 62

4.3 Integration scenarios .. 70

4.3.1 Integrated solution .. 71

4.3.2 Using the solution as a service ... 72

4.3.3 Comparison .. 72

4.3.4 Scalability, Distribution, Security Issues and threats ... 73

4.3.5 Solving issues and securing connections .. 75

4.4 Development process ... 77

4.5 Potential improvements .. 78

5 Proof of concept .. 81

5.1 Testing .. 81

5.1.1 Local integration scenario testing... 82

5.1.2 Integration as a service scenario testing ... 84

5.1.3 Test results ... 86

5.2 Integration with SMARTIE .. 86

5.2.1 Current state and issues .. 86

5.2.2 Proposed implementation ... 87

5.3 Integrating with SCoT (Smart Cloud of Things) .. 88

5.3.1 Current state and issues .. 89

5.3.2 Integration of the developed security component .. 89

6 Conclusion .. 93

University of Aveiro, Department of Electronics, Telecommunications and Informatics III

P a g e | III

6.1 Final remarks .. 93

6.2 Future work .. 94

7 References ... 97

IV List of Acronyms

IV | P a g e

List of Acronyms
ABAC Attribute-Based Access Control

ACID Atomicity, Consistency, Isolation and Durability

API Application Program Interface

BASE Basically Available, Soft State and Eventually Consistent

BSON Binary JSON

CQL Cassandra Query Language / Cypher Query Language

CRUD Create, Read, Update, Delete

DAC Discretionary Access Control

DoS Denial of Service

DBMS Database Management System

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IDE Integrated Development Environment

IBAC Identity Based Access Control

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

JDBC Java Database Connectivity

JSON JavaScript Object Notation

LRU Least Recently Used

M2M Machine to machine

MAC Mandatory Access Control

NFC Near Field Communication

NoSQL Not Only SQL

OASIS Organization for the Advancement of Structured Information Standards

University of Aveiro, Department of Electronics, Telecommunications and Informatics V

P a g e | V

OLAP Online Analytical Processing

OLTP Online transaction processing

OWASP Open Web Application Security Project

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PII Personal Identifiable Information

PRP Policy Retrieval Point

RBAC Role Based Access Control

REST Representational State Transfer

RDBMS Relational Database Management System

RFID Radio-Frequency Identification

SCoT Smart Cloud of Things

SMARTIE Smart City

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

W3C World Wide Web Consortium

UDAF User-Defined Aggregate Functions

UDF User-Defined Functions

UDTF User-Defined Table Functions

UWB Ultra-Wide Band

XML eXtensible Markup Language

XACML eXtensible Access Control Markup Language

YARN Yet Another Resource Negotiator

VI List of figures

VI | P a g e

List of figures
Figure 1. High - level overview of the architecture ... 4

Figure 2. Example of a XACML policy ... 15

Figure 3. Example of a XACML request in the JSON format ... 16

Figure 4. Architecture proposed by the OASIS XACML standard (OASIS, 2013) 17

Figure 5. A High level reference architecture for IoT(Prasant Misra, 2015) 21

Figure 6. The 5 Vs of Big Data .. 24

Figure 7. Hadoop HDFS Architecture .. 32

Figure 8. Read latency across all workloads (Corporation, 2013) ... 41

Figure 9. Insert latency across all workloads (Corporation, 2013) .. 42

Figure 10. Update latency across all workloads (Corporation, 2013) .. 42

Figure 11. Scan latency across all workloads (Corporation, 2013) .. 42

Figure 12. Fundamental components of a Smart City(Pardo, 2011) .. 45

Figure 13. Architecture of the initial proposed solution .. 57

Figure 14. Architecture of the final solution .. 60

Figure 15. Package dependencies diagram .. 61

Figure 16. Class diagram of the PEPs .. 63

Figure 17. Cassandra database schema for storing sensor data .. 64

Figure 18. Redis schema for storing policies ... 64

Figure 19. Cassandra database schema for storing attribute data ... 65

Figure 20. Class diagram for the Data Managers ... 66

Figure 21. Class diagram of the developed PIPs .. 68

Figure 22. PDP Workflow .. 69

Figure 23. Integrated solution scenario schema ... 71

Figure 24. Schema of using the solution as a service ... 72

Figure 25. Architecture with marked SSL/TLS connections ... 76

Figure 26. SCoT architecture with the developed security component integrated 90

University of Aveiro, Department of Electronics, Telecommunications and Informatics VII

P a g e | VII

List of tables
Table 1. DAC example: file ownership relation table with permissions (left), resulting matrix with

allowed actions for every user(right) ... 8

Table 2. Example of MAC permission matrix for READ/WRITE operations 9

Table 3. RBAC example: table containing users and their assigned roles (left), table containing list

of permitted actions for each role (right).. 10

Table 4. ABAC attributes example: table containing subjects attributes (left), table containing

environment attributes (right) ... 12

Table 5. CAP theorem diagram .. 27

Table 6. Comparative analysis of sharding security in various NoSQL databases(Anam Zahid,

2014) .. 40

Table 7. Qualitative test results of the local integration scenario ... 82

Table 8. Performance test results of the local integration scenario .. 83

Table 9. Qualitative test results of the "Using the solution as a service" integration scenario 84

Table 10. Performance test results "Using the solution as a service" integration scenario 85

University of Aveiro, Department of Electronics, Telecommunications and Informatics 1

P a g e | 1

1 Introduction
 Advancements in sensor technology and development tendencies are one of the main

factors that gave birth and pushed advancements in IoT (The Internet of Things). IoT offers great

opportunity for possible applications that could and are changing everyday life. This, however,

comes with many problems and challenges. M2M (Machine to Machine) is a broad area that deals

with connection and communication issues between constrained devices and because of the

importance in sensor networks it is essential to IoT. Considering the vast amounts of

data/information being generated by sensor networks, storage and processing issues fall in the area

of Big Data. Big Data is a term that refers to storing, processing, accessing and managing large sets

of data that are unstructured or semi-structured. NoSQL (Not only SQL) database systems address

some of the challenges with Big Data. Along with the initial and core implementation problems

regarding connection, communication, storage and processing of information, which already have a

number of advancements and usable developments, security is an issue that needs to be addressed

in order to make the technology safe and will be the focus of this dissertation.

 Security systems are often overlooked in growing and fast developing areas. It often comes

as the last issue addressed when a new technology is being developed. Still, it is a necessary

component and is needed for building systems working in a "real world" environment, without

compromising safety and confidential information.

 Smart City projects are one of the biggest and most significant implementation scenarios in

IoT. Applications include smart traffic control, energy consumption monitoring and management,

health monitoring and others. Data used by these applications is usually generated by sensor

networks, people's smart phones or other systems and services like healthcare and education.

Therefore, the information used is often private or confidential and a security breach or

unavailability of these services and systems can have significant consequences. The control over

actuators, sensors and data can be misused if access is given to unauthorised subjects. Because of

these facts, they must offer greater levels of security and need to implement long term and flexible

solutions. These problems therefore need to be addressed for the solutions to work in a safe and

secure manner. Among the security concerns we emphasize access control.

 Access Control is a broad term and represents a way of securing/limiting access to

resources so that only authorised subjects have access to. Depending on the implementation,

resources can anything from data to actions or services.

 This dissertation will address that problem and propose a solution utilizing Attribute Based

Access Control (ABAC), the OASIS (Organization for the Advancement of Structured Information

2 Introduction

2 | P a g e

Standards) XACML (eXtensible Access Control Markup Language) standard. It will utilize one

NoSQL(Not only SQL) database (Redis) for storing policies and another one (Cassandra) for

storing resources, in this case sensor data. The functionality of a PDP (Policy Decision Point)

engine and configurable PIP (Policy Information Point) engine will be used from the AT&T

XACML implementation(AT&T, 2014) open source project. The use-cases that will be considered

as the target systems for integration are IoT applications in general and SMARTIE (Smart City) as

a more specific use-case. SMARTIE is a smart city project founded by the EU with PT – Inovação

e Sistemas as one of the partners.

 Section 1 is divided as follows: subsection 1.1 contains the official short description text

along with the objectives, subsection 1.2 will present the problem addressed by this work, in

subsection 1.3 a short description of the proposed solution will be given, subsection 1.4 will list the

basic technologies and development environment used and subsection 1.5 will present the structure

of this dissertation.

1.1 Dissertation	description	text	

 SMARTIE (http://www.smartie-project.eu/index.html) is a European project where PT –

Inovação e Sistemas is one of the partners. The project is aimed at creating a framework to collect

and share large volumes of heterogeneous sensor information (Big Data) to be used in smart city

applications. In order to protect sensitive data, a security component is necessary to manage

authentication and authorization which will be based on the XACML standard. The original

XACML standard is based on XML but in SMARTIE, JSON will also be used because it is easier

to read and requires less space than the XML format.

Objectives:	

 This dissertation is focused on the main activity of developing a security framework based

on ABAC and the OASIS XACML standard.

To achieve this goal, the following tasks have to be done:

 Becoming familiar with SMARTIE;

 Becoming familiar with IoT;

 Becoming familiar with ABAC models and particularly with XACML;

 Becoming familiar with NoSQL databases (Big Data);

 Selecting a NoSQL database to be used to store the collected sensor data;

 Selecting a database to store the security policies to be enforced;

 Making a conceptual, logical and physical models for both databases;

University of Aveiro, Department of Electronics, Telecommunications and Informatics 3

P a g e | 3

 Developing a security framework based on XACML.

All the work is to be developed at Instituto de Telecomunicações facilities in Aveiro.

1.2 Problem	formulation/description	

 SMARTIE is a Smart City project founded by the European Union and PT – Inovação e

Sistemas is one of the partners contributing to the development of the project. The goal of the

project is to create a framework for utilizing sensor networks, storing, processing and managing of

data and to provide a platform for creating Smart City applications.

 The notion of storage and processing of large amounts of data needs to be addressed with

the utilisation of NoSQL databases and related systems. Other than that, security of data is the

focus of this work. Because the data that will be used in these applications will often be personal or

confidential, a security framework is needed to provide protection.

 Access Control is one way of dealing with this. Role Based or Identity Based Access

Control is the way access control is commonly enforced. The relation between roles and sets of

allowed actions over resources is intuitive, but a common issue is the explosion of the number of

roles (Xin Jin, 2012) and the difficulty of the managing aspect for maintaining that type of system.

Also, there is the issue of somewhat limited possibilities on defining conditions and actions over

resources. Because of this, they do not offer much flexibility without considerable modifications or

integrating complex automated processes in the implementations.

 The OASIS's XACML standard utilizing Attribute Based Access Control (ABAC) will be

explored and utilized in the security component. OASIS is a non-profit consortium that produces

open standards in the areas of security along with other areas. It defined the XACML standard for

creating requests, policies and their evaluation in the purpose of managing access to resources.

Although the initial version of the standard was based on XML, a JSON variant was also created

and SMARTIE will utilize that variant. This dissertation therefore also focuses on the JSON

variant. The JSON variant is more memory efficient and easier to read by humans in raw text

format. The XACML version 3.0 standard has been available since January 2013 but a complete

and flexible implementation of it has still not been made open source or available in other ways.

 This dissertation will explore the areas of IoT, M2M (Machine to machine), Big Data,

NoSQL, Access Control and XACML. The goals can therefore be defined as: becoming familiar in

the mentioned areas, utilizing a NoSQL database for storing sensor data, creation of a security

framework for enforcing access control that utilizes the OASIS XACML standard and the

accompanying NoSQL database for storing policies. SMARTIE is an implementation scenario that

4 Introduction

4 | P a g e

needs to be considered in the development and testing of the solution but of course should not be

limited to that use-case.

1.3 Proposed	solution	

 The proposed solution utilizes a modified version of the architecture from the XACML

standard (OASIS, 2013) described in subsection 2.1.2, and two proposed general methods for

implementation/integration with other systems which is described in subsection 4.3. Because of the

properties inherited from ABAC and XACML, it offers great flexibility for a number of possible

use-cases, although the primary ones for this work will be IoT applications. The implementation

and final solution are explained in more detail later in the document, in section 4. Utilizing this

solution to enforce access control in other systems is done by: implementing a PEP (Policy

Enforcement Point) component, using a PAP (Policy Administration Point) Web Application for

creating and uploading of XACML policies, and creating XACML requests. The enforcement is

done by sending requests to the PEP, which then forwards them for evaluation. The system then

returns the evaluation result and executes the action in the case of a positive result. If the result is

negative, the request is terminated. The solution does not implement any advanced actions and

obligations defined by the XACML standard (OASIS, 2013), it differentiates request results as

positive and negative and acts as described earlier in this subsection.

Figure 1. High - level overview of the architecture

University of Aveiro, Department of Electronics, Telecommunications and Informatics 5

P a g e | 5

 A high-level overview diagram of the proposed solution can be seen in Figure 1. It shows

how the solution will be integrated to enforce access control and how will it be used by

users/system administrators. The framework offers a simple and fast way of integrating access

control in an existing application by providing two main points of interaction. A policy

administration point (PAP) that is used for managing (uploading and deleting) policies and an

enforcement point that needs to be placed at the point where the user wants to enforce access

control. Because the system uses ABAC and XACML, it is very flexible and allows for having

complex rules by defining policies around attributes of the subject, resource and environment.

Compared to systems using RBAC, this needs less management because there is no need for

updating roles after certain changes happen with subjects, resources or environmental conditions

(example: day of the week). As a result, the target system is less prone to security faults over time.

From the perspective of a target system using this solution to enforce access control, the most

difficult and critical part is having well and correctly defined XACML policies and requests. The

policies have to correctly represent the rules and conditions that are being enforced and the

XACML requests need to accurately representation actual requests (example: fetching data from

databases or using a services).

 The solution has two intended ways of being used by other systems. The first possibility is

putting and running the whole solution on the same place where the enforcement of access control

needs to be, meaning locally. Compared to the second possibility, this one offers greater security,

performance, configuration options and overall control. On the other hand, it needs to be

configured, and at a minimum, it needs to provide a database for storing policies. The second

possibility would be using the solution as a REST service and communicating with it through a

secured connection. This is an easier and faster way of utilizing the solution because less

configuration is needed. The integration scenarios and specifics of the solution will be explained in

section 4.

1.4 Development	environment	and	technologies	used	

 The solution was developed mainly using JAVA and Eclipse Luna IDE (Integrated

Development Environment), version 4.4.2. Components from an open source project (AT&T

XACML 3.0 implementation (AT&T, 2014)) were used for the XACML functionality it provides,

along with two NoSQL databases (Cassandra1 and Redis2) and their Java clients. Additionally

1 Apache Cassandra. [Online], Available at: http://cassandra.apache.org/ ,[Accessed 16 February
2015].
2 Redis official website. [Online], Available at: http://redis.io/, [Accessed 20 February 2015]

6 Introduction

6 | P a g e

MySQL3 with XAMPP4 and PostgreSQL5 databases were used for initial testing purposes. The

Axiomatics Alfa6 plug-in for Eclipse was used to help create policies in the initial stages of

development. Jersey7 and JAX-RS8 libraries were used for creating the REST service and clients.

Lastly Maven9 was used for solving dependencies, building and exporting issues when having

multiple projects in Eclipse IDE.

1.5 Dissertation	structure	

 The structure of this dissertation is organized as follows: Section 2 presents the current

State of the Art along with a critical overview, Section 3 presents background fields and related

work, Section 4 contains the description of the proposed and developed solution, Section 5 presents

test results in various test scenarios, proof of concept and discussion for the integration in

SMARTIE, Section 6 contains the final conclusion and presents potential future work.

3 MySQL homepage. [Online], Available at: https://www.mysql.com/, [Accessed March 2015]
4 XAMPP. [Online] Available at: https://www.apachefriends.org/index.html, [Accessed March
2015].
5 PostgreSQL. [Online], Available at: http://www.postgresql.org/, [Accessed March 2015].
6 Axiomatics ALFA home. [Online], Available at:
http://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-
apis/192-axiomatics-language-for-authorization-alfa.html, [Accessed February 2015].
7 Jersey homepage. [Online], Available at: https://jersey.java.net/, [Accessed March 2015].
8 JAVAX-RS. [Online], Available at: https://jax-rs-spec.java.net/, [Accessed February 2015].
9 Maven homepage. [Online], Available at: https://maven.apache.org/, [Accessed March 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 7

P a g e | 7

2 State of the art
 This section will present areas related to the work done in this dissertation. The overviews

contain brief descriptions, analysis of the current state and work related to those areas along with a

future oriented perspective. Firstly, in subsection 2.1, Access Control will be presented. The

subsection contains descriptions of the most relevant methodologies. It will explain the significance

of each one, along with giving a brief comparison. Lastly, the OASIS XACML standard will be

presented with the architecture proposed in the standard, as well as examples of a policy in XML

and request in JSON format. Subsection 2.2 contains a description of IoT (Internet of Things)

which is a broad term and is significant for this work as the main use cases targeted by this solution

are IoT applications. Subsection 2.3 will briefly explain M2M (Machine to Machine) because of its

importance to sensor networks and therefore IoT. Subsection 2.4 will present the concept of Big

Data and its relevance to IoT. Subsection 2.5 will present NoSQL (Not only SQL) as a concept,

present a list of the currently most relevant NoSQL databases, covering each type, and present a

performance and characteristics comparison overview with figures taken from other sources.

2.1 Access	Control	

 Access Control is a general term that can be described as a way of securely granting,

limiting or denying access to resources therefore protecting the resources from potentially

malicious parties (Vimercati, 2001). In this section, five of the most significant methodologies of

enforcing access control will be described. A general overview, comparison and evaluation will be

given and some available solutions will be explored and evaluated. Before continuing, some key

terms need to be explained as they will be used throughout this work:

1. Subject - this is a term used for the entity that is trying to access a certain resource. This

can be a person, but it can also be a process, machine or any other computer system trying

to access a resource;

2. Resource/Object - these two terms will both be used and they represent anything that

access control is being enforced upon. This means that a resource can be data from a

database, access to an application, service, access to sensors, actuators, facility (room,

building), actions over resources, etc. This wide definition is needed because of the wide

variety of use-cases;

3. Request - this is a term that represents the subject's request for a resource. Along with a

raw format of a request it can be formatted in some way (example: document, file, string)

and only represent an actual "physical" request (example: requests for data from a

database);

8 State of the art

8 | P a g e

4. Policy - this term represents one or more rules that the access control system is enforcing

when evaluating of a request. This can also be formatted in a document or can be

represented "physically" (example: checking the conditions manually before request

execution) in the actual implementation.

 Access control is a security technique that enforces security over resources by limiting

access to them. The access is given only to authorised subjects which can be people or other

systems, depending on the implementation. A typical workflow with access control would consist

of: receiving a request for a certain resource, evaluating the request against one or more policies,

and allowing or denying the request depending on the evaluation result. The systems enforcing

access control must have an architecture to facilitate enforcement of access control, an evaluation

methodology and well defined policies for evaluating the requests. The significance, complexity

and size of these policies, of course, varies from implementation to implementation and can depend

heavily on the business layer of the system that is integrating access control.

2.1.1 Types	of	access	control	

 In this section, some of the most important and significant types of access control will be

presented. Examples will be shown and a comparisons will be given while presenting each type of

Access Control.

DAC	 (Discretionary	 Access	 Control)	 and	MAC	 (Mandatory	 Access	

Control)	

 DAC (Discretionary Access Control) is a type of access control that enforces an evaluation

criteria (or policy) that mainly restricts access to the resource owner or group, along with all

control over that resource including granting access to other subjects(Sylvia Osborn, 2000)(Xin

Jin, 2012). It is commonly done automatically or indirectly. The users/resource owners, have

control over the access to the resource. An example would be operating systems. Users that create

files have ownership over them and can limit access to themselves or allow access to other users.

DAC is often compared to the MAC.

File Owner Permission for others User\File X Y Z

X Adam Read Adam Read,Write Read,Write None

Y Barry Read,Write Barry Read Read,Write None

Z Charley None Charley Read Read,Write Read,Write

Table 1. DAC example: file ownership relation table with permissions (left), resulting matrix with
allowed actions for every user(right)

University of Aveiro, Department of Electronics, Telecommunications and Informatics 9

P a g e | 9

 Table 1 contains tables which could be used for managing access to files and actions over

those files. The users that are owners (and usually creators) of the files have total authority over the

files and can change the permissions for other users over those files. This means that the owner can

grant or remove Read or Write permissions to any other user. If users try to execute actions over

files for which they do not have a permission, their requests will be denied. The table on the left,

contains the column permission for others which can be edited only by the owner. The table on the

right shows the resulting set of allowed actions for all users over all of the files used in this

example.

 MAC (Mandatory Access Control) on the other hand is a type of access control where an

external entity (usually an administrator) decides on granting or denying access to resources. This

means that individual subjects cannot change the policies and grant access rights to itself or other

subjects (Sylvia Osborn, 2000)(Xin Jin, 2012)(Osborn, 1997). An example would be database

management systems. They allow access to resources depending on the permissions users have.

The system administrator has the ownership over all resources and power to grant or remove

permissions over them. The objects/resources are often divided into multiple categories according

to the level of security or importance they fall into. This categorisation is often organized as a

hierarchy. The categories could for example be: Critical, Semi-critical and Non-critical. A

simplified version would be Private and Public. Furthermore, the subjects would have credentials

that would reflect the type of actions they can execute. These credentials are therefore permissions

and the administrator can modify these along with changing the category an object/resource is

assigned to.

Object\Subject read and write
security category levels LOW,LOW LOW, HIGH HIGH, LOW HIGH, HIGH

LOW, LOW Allow, Allow Allow, Allow Allow, Allow Allow, Allow

LOW, HIGH Allow, Deny Allow, Allow Allow, Deny Allow, Allow

HIGH, LOW Deny, Allow Deny, Allow Allow, Allow Allow, Allow

HIGH, HIGH Deny, Deny Deny, Allow Allow, Deny Allow, Allow

Table 2. Example of MAC permission matrix for READ/WRITE operations

 In Table 2 an example matrix for MAC can be seen. The HIGH and LOW values represent

the example security category levels for the objects and subjects for Read and Write operations. In

this example it can be seen that objects can execute operations only if the level of that operation is

equal or higher than the level specified for the Object. This allows for the administrator to make

individual changes for certain resources or types of subjects but also to make global changes at one

point that can affect all.

 	

10 State of the art

10 | P a g e

IBAC	(Identity	Based	Access	Control)	

 IBAC (Identity Based Access Control) is based on giving access to a resource depending

on a users identity. An example of an IBAC implementation would be having a list of authorised

users and denying access to every unlisted and therefore unauthorised user. Implementations often

become RBAC because identities become grouped, the groups then have different permissions or

can access different resources and therefore they can be viewed as roles(Vincent C. Hu, 2014).

IBAC can be very fine grained as it can have different permissions defined for every user. In that

case, it has the downside of being very hard to manage and maintain without having an advanced

and complex management system. This also means that they are not very flexible. Most adequate

implementations would be as in the example mentioned before, or password (authentication card,

fingerprint...) based authentication systems that limit access to a resource which could be an

account, secure room, traffic service etc (Rui TU, 2009).

RBAC	(Role	Based	Access	Control)	

 RBAC (Role Based Access Control) is an access control system where users are assigned

to groups (or roles), which have permissions for accessing resources. An administration entity has

power over changing access policies for resources. This solution is one of the most popular because

of the simplicity of the implementation, intuitive way of working, good flexibility and intuitive

administration. Different roles have different levels of authority. Depending on the implementation,

the roles can be organized in a hierarchy tree or a simple independent list of roles or

groups(Vincent C. Hu, 2014)(Ed Coyne, 2013). Almost every website system has a RBAC system

implemented limiting access to information, changing and adding data, etc. Users are typically

divided into groups with different levels of access depending on the type of user (buyer, seller,

visitor...) and administrators are divided into different levels and areas (administrator, moderator)

for efficient maintaining of the system. A problem that occurs with RBAC it that a large number of

roles create a hard system to administer and maintain. An administrator needs to have deep

understanding of all the roles and subjects assigned to these roles to successfully maintain the

system.

UsedID Role Role Permissions

1 Admin Admin C, R, U, D

2 User User C, R, U

3 User Visitor R

4 User

5 User

6 User

Table 3. RBAC example: table containing users and their assigned roles (left), table containing list of
permitted actions for each role (right)

University of Aveiro, Department of Electronics, Telecommunications and Informatics 11

P a g e | 11

 Table 3 shows an example of the possible types of roles that can be found in a simple web

site scenario. In the right table the C, R, U and D are taken from the CRUD (Create, Read, Update,

Delete) acronym, often used in web site terminology. It shows that a user with the role Admin can

execute all of the possible actions meaning he has authority over all of the content available on the

web site. The User role does not have a permission for executing a DELETE action. This means

that any DELETE action that is shown to the user e.g. "delete trash" or "delete image" has to either

be authorised by the administrator or the resource that is being deleted just becomes hidden, and is

never deleted. Still, the User role can CREATE and UPDATE content. The User role is adequate

for registered users. The Visitor role has only READ permissions, therefore it can only view content

and not create new content. The Visitor role is adequate for all unregistered visitors to a website

allowing them to view but not to create or change content before they register or sign in. The Table

3 (left) shows a simple list of 6 registered users, of which one is the administrator. Visitors are not

registered user so they do not appear in this table.

ABAC	(Attribute	Based	Access	Control)	

 ABAC (Attribute Based Access Control) is a type of access control that evaluates requests

against policies according to attribute values(Torsten Priebe, 2006). Attributes are typically divided

into three categories:

1. subject - subject/user attributes (examples: age, postal code, IP address...);

2. object - resource attributes (examples: type, value, age...);

3. environment (examples: day of the week, hour of the day...).

 These attributes therefore contain data from the subject trying to access the resource, data

from the resource that is being accessed and environmental data which represent current conditions.

When a request is being evaluated, the decision is made according to these values and

conditions/rules defined in policies. Policies are commonly defined in policy files and contain rules

and conditions for evaluation. An example policy would be restricting people under the legal age

limit to apply for a driving licence. The evaluation would require getting the subjects age (or date

of birth) and the legal age limit which would be an environmental attribute. Only after getting these

attributes, comparing them and confirming that the subject is over the age limit, the request can be

allowed. Policies can, of course, also work on a deny principle and define conditions/rules that

would deny access to certain resources. Keeping close to the previous example, one with a deny

principle would be defining a policy that would deny access to driving a car (by blocking the car's

accelerator pedal) if it is detected that a person has a high alcohol level. Policies therefore contain

rules and conditions that have to be defined and met for a decision to be made after comparing all

the attributes needed for evaluation.

12 State of the art

12 | P a g e

id name date of birth Action age limit

1 Person1 1.1.1980. get driving licence 18

2 Person2 1.1.2000. Vote 18

Table 4. ABAC attributes example: table containing subjects attributes (left), table containing
environment attributes (right)

 Table 4 shows an example described before. If the current year is 2015., which can also be

an environmental attribute, Person1 can both vote and get a driving licence, but Person2 cannot. A

policy contains that specific rule or a set of rules with conditions that define when access can be

given or denied. Another example would be a policy that states that a user can add or change data

related only to accounts that they created and are therefore owners of. This policy would therefore

stop any unwanted changing of accounts from other users as access would not be allowed.

 RBAC can be viewed as a subset of ABAC because an ABAC system that has policies

relying on a single attribute containing the subject's role would be equivalent to a RBAC

system(Bernard Stepien, 2011). ABAC can therefore be made compliant and integrated in the place

of any RBAC system, offering more flexibility and easier use of more complex conditions and

rules(Ed Coyne, 2013)(Vincent C. Hu, 2014). Examples like the one shown in Table 3 can also

work with ABAC simply by evaluating everything based on the attribute that contains a subjects

role. The scope of ABAC is therefore larger than RBAC and IBAC, and developing a system

utilizing ABAC is typically more difficult. Another issue is that the policies that contain the

conditions are not as intuitive as RBAC, and because of this are more complex for an administrator

to understand. The maintaining of large RBAC systems usually requires a large amount of "hands

on" modifications and monitoring or a very complex and well-built system to change and update

roles automatically. If a user's attributes change or environmental conditions change, a pure RBAC

system is not flexible to adopt automatically. Although ABAC can be more complex to build, the

benefit is that it is much more flexible than RBAC. ABAC policies can specifically define which

actions are allowed on which resources depending on the users, resources and environmental

attributes. For instance, if a user becomes older than the legal age limit, they can automatically

have additional access granted without changing the users role. Subjects can also have a role

attribute to mainly function as a RBAC system, and have policies with attributes as additional

access control options that can be put in place just by adding a policy. ABAC has its place in

systems that require a long term solution, complex policies and low maintenance over the policies.

 	

University of Aveiro, Department of Electronics, Telecommunications and Informatics 13

P a g e | 13

2.1.2 OASIS	and	the	XACML	standard	

 OASIS is a non-profit consortium that produces open standards in the areas of security,

IoT, cloud computing, energy, content technologies, emergency management, and other areas. It

has more than 5,000 participants representing over 600 organizations and individual members in

more than 65 countries. The goal of OASIS is to provide standards that offer efficient and open

solutions for common problems in the areas mentioned before, drive development and building of

standardized open source solutions that can easily be used by many, therefore accelerating

innovation and development in general10.

 XACML (eXtensible Access Control Markup Language) is a declarative access control

policy language implemented in XML and created by OASIS. It defines a way to evaluate requests

for resources according to rules defined in policies. Put simply, it is a thought out and standardized

solution for implementing access control in software applications(Dan Lin, 2013)(Alex X. Liu,

2011). It provides a common ground regarding terminology and workflow between multiple

vendors, building implementations of access control using XACML and interoperability between

the implementations (Kathi Fisler, 2005,)(Markus Lorch, 2003). It is primarily based on and

intended for ABAC but can also be used for RBAC, as RBAC can logically be viewed as a subset

of ABAC as explained earlier in this document (OASIS, 2013)11. Along with the XML version

there is also a profile utilizing JSON. That profile utilizes the latest 3.0 version of XACML and, as

stated in the official document of the JSON profile (OASIS, 2014), it is equivalent to the standard

XML. Requests and responses can be translated in either direction (and back) without any loss of

information and equivalent requests result in equivalent responses.

 XML (Extensible Markup Language) is a markup language that is used to format data in

such a way that it can be readable by both humans and machines. It is defined by a set of rules for

encoding, documents by the W3C's XML 1.0 Specification. Although the focus of XML's design is

on documents, it can be and is used for storing various kinds of structured data12.

 JSON (JavaScript Object Notation) is a lightweight data-interchange format. Similarly to

XML, it is readable by both humans and machines. Although it was built around JavaScript, it is

completely language independent, and it is ideal for mapping information stored in objects (on

10 OASIS official wabsite. [Online], Available at: https://www.oasis-open.org/org, [Accessed 20
March 2015].
11 XACML wikipedia. [Online], Available at: http://en.wikipedia.org/wiki/XACML, [Accessed 20
March 2015].
12 XML wikipedia. [Online], Available at: http://en.wikipedia.org/wiki/XML, [Accessed 20 March
2015].

14 State of the art

14 | P a g e

object oriented languages) or structures, therefore it is best suited for exchanging data between

languages13.

 With adding security features to the system, performance if often an issue as big overheads

can make the system unusable. This means that the security component being integrated into a

system needs to be optimised and performance issues need to be taken care of. The authors of

(Miguel L. Pardal, 2012) show that overhead with using XACML can very significant. This,

depends of the complexity and size of policies, requests and attributes being fetched and used for

evaluation. On the other hands, they state that regardless of the large overheads in some cases, the

benefits are still significant enough that XACML is being widely adopted.

13 JSON org. [Online], Available at: http://json.org/, [Accessed 20 March 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 15

P a g e | 15

 Figure 2. Example of a XACML policy

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
PolicyId="smartiedissertation:accesscontrol:policy1" Version="1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:first-applicable">
 <Description>Policy for driving</Description>
 <Target>
 <AnyOf>
 <AllOf>
 <Match
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">drive</AttributeValue>
 <AttributeDesignator
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" MustBePresent="true"/>
 </Match>
 </AllOf>
 </AnyOf>
 </Target>
 <Rule RuleId="smartie_dissertation:accesscontrol:policy1:rule1"
Effect="Permit">
 <Description>PERMIT - People over the age limit (18) to
drive.</Description>
 <Target/>
 <Condition>
 <VariableReference VariableId="13245612653148"/>
 </Condition>
 </Rule>
 <VariableDefinition VariableId="13245612653148">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-
greater-than-or-equal">
 <Description>The person accessing is over the age
limit</Description>
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-and-only">
 <AttributeDesignator
Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:age"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="false"/>
 </Apply>
<!-- <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#integer">18</AttributeValue> -->
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:function:integer-one-and-only">
 <AttributeDesignator
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:environment"
AttributeId="urn:oasis:names:tc:xacml:1.0:environment:age-limit"
DataType="http://www.w3.org/2001/XMLSchema#integer" MustBePresent="false"/>
 </Apply>
 </Apply>
 </VariableDefinition>
 <Rule RuleId="smartie:dissertation:accesscontrol:policy:rule:default"
Effect="Deny">
 <Description>DENY - default.</Description>
 <Target/>
 </Rule>
</Policy>

16 State of the art

16 | P a g e

 In Figure 2 an example of a XACML policy can be viewed. Simply explained, this policy

manages access to a resource that is an action, in this case a "drive" action. The target (defined in

inside the Target) therefore are all requests that ask for access for the "drive" action. The policy

contains a rule (stated in the Rule, Condition and finally in the VariableDefinition with the

VariableId="13245612653148" part) which states that, if a subject's age subject:age needs to be

greater or equal than the environmental variable environment:age‐limit. The default result of the

evaluation of this policy is Deny and is allowed only if all of the conditions are met. The

MustBePresent="false" values in the environment:age‐limit and subject:age means that that if

the original request does not contain these values,o the PDP can contact a PIP to fetch them.

{
 "Request" : {
 "AccessSubject" : {
 "Attribute" : [
 {
 "Value" : 25,
 "DataType" : "integer",
 "AttributeId" : "urn:oasis:names:tc:xacml:1.0:subject:age"
 },
 {
 "Value" : "SubjectName",
 "AttributeId" : "urn:oasis:names:tc:xacml:1.0:subject:name"
 }
]
 },
 "Action" : {
 "Attribute" :
 {
 "Value" : "drive",
 "AttributeId" : "urn:oasis:names:tc:xacml:1.0:action:action‐id"
 }
 },
 "Resource" : {
 "Attribute" : [
 {
 "Value" : "Porto",
 "AttributeId" : "urn:oasis:names:tc:xacml:1.0:resource:resource‐id"
 }
]
 }
 }
}

Figure 3. Example of a XACML request in the JSON format

 In Figure 3 an example of a request in JOSN format can be seen. The JSON format of

XACML is somewhat easier to read and is less cluttered than the original XML variant. This

request simply states that it wants to execute the action drive on a resource with the id Porto. If

the age limit is lower or equal to 25, this request will pass and will be allowed.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 17

P a g e | 17

Figure 4. Architecture proposed by the OASIS XACML standard (OASIS, 2013)

 Figure 4 shows the architecture proposed in the OASIS XACML standard. The

components are as follows:

 PEP (Policy Enforcement point) - component that performs access control by performing

the decision provided by the response. This may also mean fulfilling obligations that come

in the response;

 PDP (Policy Decision Point) - this component is responsible for evaluating the request

against a policy. It contains all the functionality to make the evaluation and produce a

response;

 PIP (Policy Information point) - This component is responsible for retrieving attributes.

The attributes are split into three types: subject, environment and resource attributes;

18 State of the art

18 | P a g e

 PAP (Policy Administration Point) - the policy administration point contains the

functionality required for managing policies. Typically this means adding and removing

policies;

 Context Handler - this entity controls the workflow of the system. It communicates with

the PEP, PDP, PIP and resource;

 access requester - entity that is requesting a resource;

 obligations service - service that executes any obligations after the evaluation is complete.

Obligations are directives given by the PDP to the PEP on what has to be done before

and/or after access is given to the subject. These obligations are decided upon by the PDP

while evaluating requests against policies;

 resource - entity containing one or more resources and resource attributes that the access

requester is trying to access;

 subjects - entity containing subject attributes. Typically the subject attributes are attributes

of the access requester.

 environment - entity containing one or more environmental attributes.

One other component that should be mentioned as it was part of the architecture in version 1.0 of

the standard and will be relevant for the work described later in this dissertation is the PRP.

 PRP (Policy Retrieval Point) - component used for retrieving of policies. In version 1.0 it is

used to provide the PDP with policies unlike in version 3.0, as shown in Figure 4, which

uses the PAP for that purpose

The removal of a PRP from the new architecture and having that functionality integrated in to the

PAP could bring issues. As the PAP has functionalities to change or delete a policy and is included

in the workflow of requests evaluation, a possibility of policy modifications or deletion exists while

receiving requests for evaluation. By having the PRP included in the workflow of evaluation and

removing the PAP from the workflow, this is no longer an issue. Because of this, the final solution

has an architecture that is different and will be addressed in section 4.

 One significant beneficial characteristic that is a result of this architecture and workflow is

that the initial request that originates from the access requester does not need to contain all of the

attributes needed for evaluation. It therefore does not need to be aware of possible services and

other entities that need to be contacted by the PIP for getting additional attributes. This also means

that there is no need to rely on the entity requesting access to include all required attributes

correctly. From an implementation perspective this should result in a system that is easier to

integrate. Also, this means that it is more secure as the PIP is an internal component and can be

trusted more than an entity requesting access.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 19

P a g e | 19

2.2 The	Internet	of	Things	(IoT)	

 In this subsection the current state of IoT will be presented. The main areas that will be

briefly presented and analyzed are: current state and overview, general concerns, recent work and

studies, technologies used, implementation examples and expected future developments.

 The IoT is a recent paradigm in the area of networks and communication that has had a lot

of growth and new developments in recent years(Angelo Cenedese, 2014)(Du Jiang,

2010)(Jayavardhana Gubbi, 2013.)(Andrea Zanella, 2014). Although there are many definitions of

the IoT (Lu Tan, 2010)(Angelo P. Castellani, 2010) and the somewhat changing and branching

nature of the development trends in this area, the basic and simplified idea of this concept is that

nowadays everyday objects can be equipped with cheap microcontrollers, sensors, means of

connecting to one another and the Internet (Lu Tan, 2010)(Angelo P. Castellani, 2010). The devices

can generally be divided into two categories: sensors and actuators, meaning that their purpose is to

provide and share data or some kind of readings or to receive commands and react/complete

actions accordingly. The overall implementation of this could be utilized in a number of

applications including: home automation, industrial automation, medical aids, mobile health care,

elderly assistance, intelligent energy management and smart grids, automotive, traffic management

and many others (Luigi Atzori, 2014)(Luigi Atzori, 2010)(Andrea Zanella, 2014)(Angelo P.

Castellani, 2011). All of these offer beneficial and significant impact on almost all areas of

everyday life and have potential for providing advancements in research areas unrelated to

networking and computer science. The definition of IoT is not exact as the authors of (Luigi Atzori,

2010) wrote. They explain that the two main views that come from the name "Internet of Things"

and an additional one that is a result from recent tendencies in IoT developments. One vision views

the concept from a network perspective concentrating on communication and connection problems

while the other is oriented on the "Things" or object perspective concentrating on sensor

technologies, new communication technologies like RFID and integration into other devices in a

seamless and affordable way. The third view, which the authors defined as a "Semantic oriented

vision" is concentrated more on the use, implementation and processing of data.

 A number of challenges are in the way of successfully building and utilizing the IoT(Luigi

Atzori, 2010)(Luigi Atzori, 2014). Scalability is one of the obvious challenges(Luigi Atzori, 2010).

Any kind of IoT application that requires a large number of devices commonly face problems with

response time, memory, processing and energy constraints. Other challenges include security

issues. The data being generated by sensor networks is huge and could over saturate the network, it

could be personal and as such has to be protected from unwanted access. Attacks by hackers,

malicious software, viruses and other sources can also disturb the flow and integrity of

20 State of the art

20 | P a g e

data/information. The authors of (Qi Jing, 2014))(Hui Suo, 2012)(S. Sicari, 2014)(Prasant Misra,

2015) describe and stress the importance of security for a widely acceptable solution. They divided

IoT into 3(Qi Jing, 2014)) or 4(Hui Suo, 2012)(Prasant Misra, 2015) layers and define security

requirements for every layer providing the current state of technologies used in these areas. They

stress the need for a uniformed and standardised open architecture and solution. Solutions for many

of these problems are already conceptually known (Andrea Zanella, 2014)(Angelo P. Castellani,

2011)(Luigi Atzori, 2010)(Qi Jing, 2014))(Hui Suo, 2012)(S. Sicari, 2014) and are in some

examples implemented (Angelo Cenedese, 2014)(Sachin Babar, 2011)(Razzak, 2012) but the lack

of an open and standardized solution is certainly an issue that would prove to be beneficial if/when

created.

 Technological advancements in various sensor modules and cheap and energy efficient

microcontrollers along with recent communication technologies like RFID and network protocols

are the main factors that enabled the fast development and spreading of the IoT (W. Colitti, 2011).

Because of these advancements, the concept became a reality and is gaining importance. As the

means of connection and communication are open and utilize a number of technologies (e.g.,

RFID, WiFi, 4G, IEEE 802.15.x)(S. Sicari, 2014), the growing number of networks and devices

bring up more issues with security, data integrity and scalability. Standardisation of some aspects

regarding communications and security enforcement could solve many of these problems but

brings with itself the issue of wide acceptance and implementation.

 A more future oriented view and analysis is provided by (Prasant Misra, 2015)(Michele

Zorzi, 2010). It describes a more human centric rather than thing centric future of the IoT. Devices

being linked to people and monitoring their state and condition. Others are used for monitoring or

controlling things in the environment but always in close relation to human needs and/or wants. It

describes a need for IoT applications to provide better quality of service and seamless integration

into areas of life. The more relevant and faster growing application domains are: Environmental

Monitoring, Smart Retail, Smart Agriculture, Smart Energy and Power Grids and Smart

Healthcare.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 21

P a g e | 21

Figure 5. A High level reference architecture for IoT(Prasant Misra, 2015)

 The architecture proposed is separated into 4 layers and the application, which utilizes the

lower layers for the purpose of providing a service. The layers are stacked one on top of another

and organized in this order and a diagram is shown in Figure 5:

1. Things - containing devices or elements that are data generators and/or consumers of

information. The devices could range from small and unintelligent embedded systems to

complex devices or virtual entities. The communication would be done over different

communication technologies and a wide variety of protocols;

2. Network - this layer contains functionality and means of managing a sensor network.

Discovery of new devices, maintenance, scalability, universal abstractions of the Inputs

and Outputs. Additionally it contains a general abstraction for the upper and lower layers

and enabling plug-n-play like use, using already known models like push/pull or

publish/subscribe models;

3. Data Management - it is defined as "Big-Little" Data Management referring to the data

usually generated by sensor networks meaning that the data generated by for instance

temperature sensors is small in individual reading size and large considering a large

number of sensors over a period of time. This layer is responsible for categorizing and

aggregating data retrieved from the Network layer in order for it to be used and/or by the

22 State of the art

22 | P a g e

Analytics layer. Data generated by sensors is often slow changing (Prasant Misra, 2015) so

this fact should be taken advantage of for more efficient data storage:

4. Analytics - this layer mines/retrieves data from the Data Management layer and performs

data processing and analysis depending on the type of data and end user of the result. It

provides the applications (which would be located on top) with useful data and

information for subsequent use.

 There are lot of commercial implementations of IoT on a smaller scale which are mainly

focused on personal use in home energy consumption(Sean Dieter Tebje Kelly, 2013)(Baoan Li,

2011), health monitoring(Byung Mun Lee, 2014)(Sara Amendola, 2014) and environment

monitoring applications(Sean Dieter Tebje Kelly, 2013). These usually utilize custom solutions

along with custom hardware (regarding the sensor devices). Introducing standards that would be

accepted and the creation of publicly available frameworks that utilize those standards would be

very beneficial and would ease further developments. The lack of said standards and frameworks

mean that during initial developments of applications, many of them face the same problems and

implement a custom solution. This leads to incompatibility issues and stand in the way of a truly

global IoT. The surveys and proposals given in (S. Sicari, 2014)(Qi Jing, 2014)) give a good

overview of the current situation in IoT and a give proposals for a more uniformed future research

and developments.

2.3 Machine	to	Machine	communication	(M2M)	

 This section will provide a brief overview of the current state, issues and a future

developments in M2M (Machine to machine). M2M refers to the technologies used for

communication between devices. It is a broad term that can sometimes be used for terms like

"Machine to Mobile" and "Man to Machine" which mainly refer to the implementation in a more

precise manner. It is also commonly regarded in the context of IoT because it is essential part if

IoT. IoT concentrates more on a higher overview considering network problems and viewing object

in a more general way, while M2M deals more with one-to-one communication between devices

and the functioning of devices regarding one another, less regarding the overview from a network

perspective14.

The motivation behind M2M comes as stated in (Min Chen, 2014) and can be shown using three

observations:

1) a networked machine is more valuable than an isolated one;

14 Wikipedia M2M. [Online], Available at: http://en.wikipedia.org/wiki/Machine_to_machine,
[Accessed 16 February 2015.].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 23

P a g e | 23

2) when multiple machines are effectively interconnected, more autonomous and intelligent

applications can be generated;

3) smart and ubiquitous services can be enabled by machine-type devices intelligently

communicating with other devices at anytime and anywhere.

M2M systems are mainly used in the areas of personal health monitoring and smart homes/smart

houses (Min Chen, 2014) (Xiao Nie, 2013)(David S. Watson, 2004). M2M communication can be

achieved with a number of technologies but the most significant and most promising ones are

wireless technologies. In (Min Chen, 2014) the main technologies that are mentioned and reviewed

are: Zigbee, Bluetooth, UWB, IEEE 802.15.6, Wi-Fi, HomeRF, 60GHz transmission and Visible

light communications(Dominique Guinard, 2010). They offer easy integration of devices and many

options for developing application. Trends in M2M as mentioned in (Min Chen, 2014) suggest an

exponential growth in the number of M2M-enabled devices. From 50 million in 2008 and over 200

million in 2014, it is expected to grow up to 50 x 109 in 2020. Along with communication and

integration challenges, security is one of the more important areas that need to be dealt with

regarding M2M.

The architecture of M2M systems can generally be divided into 3 layers:

1) Terminal layer - contains the access gateway, M2M nodes, M2M enabled devices;

2) Network layer - responsible for transmitting data between the other two layers;

3) Application layer - contains the application that utilizes the M2M system.

 Security issues in M2M systems are similar to ones found in providing security and privacy

in communication over other networks. Additional, problems that are more specific to M2M occur

in the Terminal layer. Devices could potentially be easily accessible to attackers. This means that

they could be tampered with or be controlled by attackers and false data could be injected

threatening the overall performance of the M2M system and application. This was, of course, only

one simple example of a potential attack scenario among many other possible ones.

 M2M systems in the IoT context provide the means to build applications that can further

the developments in many scientific areas along with bettering personal quality of life. Solving

security issues and the general standardisation of undefined aspects in communication, as well as

the development of quality and publicly availably solutions are the future steps that will enable the

wide commercial use of these technologies.

24 State of the art

24 | P a g e

2.4 Big	Data	

 Storing, processing, accessing and managing vast amounts of complex or unstructured data

all fall in the term Big Data. Although the term refers only to a large amount of data, the challenges

that come with handling, using and processing of it also come hand in hand with this term. Same as

M2M, Big Data is often referred to, together with IoT as IoT applications typically generate and

need to process a large amount of data(Min Chen, 2014). These challenges are addressed by Big

Data.

 Big data is often described with the 4 or 5 Vs of Big Data (depending on different sources)

as can be seen in the works of (Roshni Bajpayee, 2015)(Rajendra Kumar Shukla, 2015) and in

Figure 6.

Figure 6. The 5 Vs of Big Data15

 Volume - refers to the amount of information or data that is being generated and needs to

be handled. Because of the sheer amount or type (data without a defined structure),

traditional systems (referring to RDBMS) do not offer appropriate solutions, so different

methods need to be taken into account. The authors of (Roshni Bajpayee, 2015) predict that

the size of the data being generated to reach the range from terabytes to petabytes;

 Variety - refers to the data's structure. It can vary from a traditional sense of well-

structured and predictable data, to semi-structured, unstructured and/or changing data,

coming from a variety of resources like Documents, email, Web Pages, Sensor Networks,

Social Media etc;

15 Google Images. [Online], Available at: http://1.bp.blogspot.com/-
4sM6wRgPBUA/T9FiKnMhNFI/AAAAAAAAACc/bOO8PGQ0rDs/s1600/BigData+-
+V5+Lens.JPG, [Accessed 17 February 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 25

P a g e | 25

 Velocity - refers to the rate of data flow. This is quite an open definition encompassing

both the rate of data coming from different sources, but also rate of data flow in general;

 Variability - refers to the inconsistence of data flow in general. This is an issue that is hard

to deal with and is best understood when thinking of the usage of social networking;

 Value -refers to the fact that a user can run certain queries against the data stored and then,

get important results from the filtered data obtained, and rank it according to the

dimensions.

 Complexity - The authors of (Roshni Bajpayee, 2015) also added Complexity to this as an

important and sometimes forgotten aspect referring to the complexity of linking, matching,

cleansing and transforming of data which is coming from various sources.

 The authors of (Min Chen, 2014)(Alexandros Labrinidis, 2012)(Surajit Chaudhuri, 2011)

discuss and present the challenges of Big Data. The main challenges can be listed as follows:

 Data representation - data has to be represented in a way that can be meaningful for

computer analysis and user interpretation. It also has to be efficient and should retain as

much information as possible so the data does not lose value. It effects the structure,

granularity, organisation, accessibility, etc. Different data representation is suited for

different types of data;

 Redundancy reduction and data compression - datasets typically contain a high percentage

of redundant data. This redundancy diminishes performance and requires more resources

(memory and processing power). For example: most sensor networks generate highly

redundant data. The data either changes slowly or in increments. The data can therefore be

compressed and filtered. The changing from one increment to another can be used as a

relevant event and stored;

 Data life cycle management - although systems that can support large quantities of data

already exist, their limits can be breached by some applications. This means that some data

has to be archived. As the relevance of data in most use-cases, it is dependent on how old

the data is, a mechanism determining the importance of data needs to be put in place to

determine what can be archived;

 Analytical mechanism - data needs to be analyzed in a limited timeframe. The amount of

data is often huge and the data is often distributed over several clusters of machines.

Distributing the data smartly and taking advantage of caching and in memory databases

are being used for improving performance (Min Chen, 2014);

 Data confidentiality - data that is stored can be confidential therefore security measures

need to be taken before either raw data or analysis results are delivered to a third party;

26 State of the art

26 | P a g e

 Energy management - increasing volumes and the need for more storage, data

transmission and processing power require growing energy needs. This is an mainly an

economic issue that could slow down fat and large scale developments;

 Expendability and scalability - systems need to support long term storage needs and

increasingly more complex datasets. This has to be achieved without losing performance;

 Cooperation - this refers to the cooperation with scientists, researchers and experts from a

variety of field to harvest the maximum potential of Big Data. A comprehensive data

network architecture could aid in many different fields of research.

 Along with fundamental challenges in Big Data, regarding functional issues, security has to

be taken into account if implementations are to be realized. The biggest security challenge in Big

Data is as identified in (Lafuente, 2015) is the protection of user's privacy. Vast amounts of

personal identifiable information (PII) that are stored in unstructured databases (NoSQL), which

means that the location of all information is not always known unambiguously and even direct

access is somewhat abstracted. Leaving everything as is and without applying security measures

such as Access Control leaves things open for abuse.

 Big data has had significant breakthroughs in the form of NoSQL database management

and processing systems these will be looked in more detail in subsection 2.5.

2.5 NoSQL	Databases	

 NoSQL, or otherwise known as "Not only SQL", refers to databases or data management

systems which are designed to handle data management problems where conventional RDBMS

solutions cannot cope for various reasons(Ken Ka-Yin Lee, 2013)(Roshni Bajpayee, 2015). These

problems are usually related to: handling large amounts of unstructured or semi-structured data and

processing it, high number of operations, specific types of operations or needs. Commonly, NoSQL

systems are designed for large scale data storage and parallel processing over a large number of

servers. Some systems provide APIs that support SQL or SQL-like languages and convert them

into native non-SQL languages and use mechanisms different to ones in RDBMS (Relational

Database Management System) systems. RDBMS systems usually have ACID (Atomicity,

Consistency, Isolation, Durability) characteristics.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 27

P a g e | 27

ACID characteristics stand for:

 Atomicity - ensures that a transaction and all of its actions and consequences will execute

either in its entirety or fail. This therefore means that transactions cannot be split or

executed partially;

 Consistency - ensures that a database has to be in a valid state before and after a transaction

executes, but it does not ensure the correctness of the transaction.

 Isolation - ensures that the result of executing transactions concurrently, is equal to the

result when executing the same transactions serially. This also needs to persist even in the

case of transactions failing;

 Durability -this ensures that for every transaction that has been committed, the results of it

will still persist, even in the case of a system failure. For example: crashes, errors, power

outages, etc.

 BASE (Basically Available, Soft-state, Eventually consistent) characteristics, on the other

hand do not force or guarantee consistency. It is somewhat an optimistic view and accepts that the

database is "eventually consistent". These loose characteristics can be beneficial for replication and

partition characteristics, therefore it is suited for massively distributed systems.

 Because RDBMS systems provide the ability to handle large amounts of data it usually

comes at the price of fully ACID (Atomicity, Consistency, Isolation, Durability) characteristics.

This can be explained by the CAP (strong Consistency, high Availability, Partition tolerance)

theorem which can be seen in more detail in (A B M Moniruzzaman, 2013), and because of this

most systems can be described as BASE.

Table 5. CAP theorem diagram

28 State of the art

28 | P a g e

 The CAP diagram, also known as "Brewer's theorem", describes the relation between

Consistency, Availability and Partition tolerance characteristics. It shows that it is impossible to

have all of the characteristics without significantly sacrificing one. Table 5 shows this and also

gives examples of databases management systems and where they fall into. RDBMS systems are

not appropriate for Big Data applications because of the lack of partition tolerance. NoSQL

typically have partition tolerance but then differ from one another regarding Availability and

Consistency characteristics.

 A new trend in database technologies development is NewSQL(Katarina Grolinger, 2013).

This is a new paradigm that is a middle-ground between RDBMSs and NoSQL systems. The basic

approach is building a RDBMS that can scale as a NoSQL database therefore having the best

characteristics of both. The goal is to have database management system with16: SQL as a primary

interface, ACID support for transactions, non-locking concurrency control, high per-node

performance and scalability that is equal of better compared to NoSQL systems. Although there are

already some open source solutions available and it is definitely a trend, it is still in its early stages

so NewSQL may be more significant in the near future. Some of the most significant NewSQL

databases are (Glushkov, 2015)(Katarina Grolinger, 2013): VoltDB, Clusterix, NuoDB, TokuDB

and ScalaDB.

2.5.1 Types	of	NoSQL	databases	

NoSQL databases can be classified in four basic categories as done in (A B M Moniruzzaman,

2013).

1. Key-Value stores;

2. Document databases (or stores);

3. Wide-Column (or Column-Family) stores;

4. Graph databases.

Key‐Value	stores		

 These storage systems are organized in simple, standalone tables, most similarly to "hash

tables". The items stored in tables are key-value pairs where the key is an alpha-numeric identifier

and the value is one or a set of values associated with that identifier. As the organisation of a table

is a "hash table" the limitation that is presents is that they are usually only "exact match" type of

16 Glushkov, I., 2015. http://www.slideshare.net/. [Online]
Available at: http://www.slideshare.net/IvanGlushkov/newsql-overview
[Accessed June 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 29

P a g e | 29

queries or allowing while "<,>" type of operations can be executed with a significant reduction in

speed. On the other hand, read operations are very fast, as to be expected from a hash table data set.

Because the keys can also be viewed as the addresses of the value wanted to be retrieved, even data

from the same table can be distributed over several locations so these storage systems possess

linear characteristics regarding scalability. Data is typically partitioned horizontally, meaning that

sets of rows can be separated and distributed over many locations. Availability is typically high and

achieved trough data replication.

Document	databases		

 Document based storage systems, as their name implies, are designed to store data in

documents. They use standard data exchange formats such as XML, JSON or BSON (Binary

JSON) to store the data in documents and they can distribute these documents over multiple

locations. These are considered to be semi-structured databases because the storage format or

storage data structure can be loosely defined. Single columns or single data entries can house

hundreds of values and the number or type of values stored can vary from row to row. These are

good for storing and managing big collections of documents containing significant amounts of data

like text documents, emails, XML documents or objects containing large amounts of values and

data. Along with that they are also convenient for storing sparse data collections because of their

semi-structured data structure. This means that the usual filling out with null values (that is

traditionally done in RDBMS) is not necessary and means that the overall amount of space used is

correlated to the amount of data stored inside the database. These solutions offer great scalability,

unlike key-value based stores allow multiple "< >" types of comparators and both keys and values

are fully searchable.

 MapReduce is a term commonly used for operations that are used for processing and

generating large data sets with a parallel, distributed algorithm on a cluster. Although document

databases can offer MapReduce17 features they tend to have slow response times to queries. This

reason for this is because fetching data with multiple set parameters for values means reading and

parsing data from whole raw documents, which are typically heavy operations (e.g. they require a

lot of processing).

 	

17 MongoDB HomePage. [Online], Available at: http://www.mongodb.org/, [Accessed 7 February

2015].

30 State of the art

30 | P a g e

Wide‐Column	Stores	

 Wide-Column (or Column-Family) stores are somewhat in between document based and

key-value based storage systems. Unlike key-value, wide-column databases store and process data

according to columns(Min Chen, 2014). They have a structure similar to a key-value structure but

allow multiple values and require at least one identifier column which fills the role of a primary

key. They can form multiple indexes upon other values and allow "equal type" comparisons over

the value attributes. Because of the similarity to key-value based systems they share the same faults

regarding "< >" types of operations. Both columns and rows can be segmented therefore wide-

column based databases have good scalability characteristics. Additionally, both the rows and

columns can be expanded allowing for storage of data with inconsistent structure (e.g. unstructured

or semi-structured data). Reading and writing operations are fast so they are specially suited for

MapReduce operations and parallel processing of large amounts of data which is their main

purpose and use.

Graph	Databases		

 Graph databases, by basic concept are relational databases but still are very different from

typical RDBMS'. The relations themselves can be considered as more important because these are

used when we mainly need to store data regarding the relationships and dependencies between

objects rather than information about the objects themselves. Unlike other NoSQL database types,

which support BASE properties, graph databases typically support fully ACID transactions. They

store data similar to object-oriented databases as they use objects as network nodes that have

relationships (edges) and properties or object attributes stored as key-value pairs. The relationships

can also have different attributes or properties attached to them. Because of the emphasis on

relations between objects or nodes, they are suited for storing and visualizing data regarding

graphs, networks etc.

2.5.2 Current	state	of	NoSQL	technologies	

 This section contains an overview of the current "popular choices" in NoSQL data storage

and management systems, a brief comparison given from results provided by outside sources and

general conclusion.

Hadoop	

 Hadoop is an important platform for NoSQL as many of the most popular NoSQL

databases are built on top of it(Min Chen, 2014)(Roshni Bajpayee, 2015) (Rajendra Kumar Shukla,

2015). Because of this, many of these solutions are compatible with one another and therefore offer

University of Aveiro, Department of Electronics, Telecommunications and Informatics 31

P a g e | 31

a large and very powerful ecosystem of databases and data processing solutions. Hadoop is an

Apache project and was created as a platform for developing open-source software for solving

scalability and processing problems in the context of large quantities of data. Hadoop is mainly a

file storage system that is designed to reliably store large amounts of data, distributed over large

clusters, and to stream data to those who need it with high speed and efficiently. The work from

(Konstantin Shvachko, 2010) mentioned that in 2010, Yahoo! used it to manage 25 petabytes of

data. The platform has a large developer community and many open projects and because of that it

is one of the biggest and fastest evolving platforms. On the Hadoop website it is stated that "The

Apache Hadoop project develops open-source software for reliable, scalable, distributed

computing". It is also stated that it is essentially a framework that allows distributed processing

across clusters of computers, it is designed for scalability and can easily be scaled from one server

to thousands of machines, it handles failures on the application layer and as a result provides a

highly-available service on top of clusters, regardless of individual failures on machines inside the

cluster.

These are the projects main modules as stated on its official webpage18:

 Hadoop Common: The common utilities that support the other Hadoop modules;

 Hadoop Distributed File System (HDFS™): A distributed file system that provides high-

throughput access to application data;

 Hadoop YARN (Yet Another Resource Negotiator): A framework for job scheduling and

cluster resource management;

 Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.

18 Apache Hadoop. [Online], Available at: http://hadoop.apache.org/, [Accessed 7 February 2015].

32 State of the art

32 | P a g e

Figure 7. Hadoop HDFS Architecture19

 Figure 7 shows the architecture of an HDFS cluster. It is a master/slave architecture and

consist of a single NameNode and a number of DataNodes. Both are pieces of software designed to

run on commodity machines which typically run a Linux operating system. The NameNode is a

master server responsible for managing the namespace and regulates access to files by clients. It

determines mapping options for the DataNodes and it can execute file system namespace

operations. DataNodes are responsible for managing data storage attached to the nodes they are

running on. They perform actions over blocks and are responsible for serving read and write

operations for the systems clients. The system is greatly simplified because of the existence of a

single NameNode that manages the namespace it can contain all the metadata for that namespace.

 Hadoop MapReduce is a software framework that allows for writing applications which

need to parallel process large amounts of data in large clusters. The amount of data can be multi-

terabyte data-sets and it can be processed on thousands of nodes. On Hadoop MapReduce the nodes

responsible for computing a set of data are typically the same node where the data is located

making the execution much simpler and faster(Ghemawat, 2008). A MapReduce job usually splits

the input data-set into independent chunks which are processed by the map tasks in a completely

parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce

tasks. Typically both the input and the output of the job are stored in a file-system. The framework

19 Apache Hadoop HDFS. [Online], Available at: http://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html, [Accessed 6 February 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 33

P a g e | 33

takes care of scheduling tasks, monitoring them and re-executes the failed tasks20. The user making

MapReduce jobs typically specifies the map and reduce functions and the underlying systems

parallelizes the process across the nodes in an efficient manner. The framework handles failures

and re-executes failed tasks and coordinates operations for efficient network communication, disk

and processing usage.

 The Hadoop ecosystem of open source projects is built in a way that allows easy porting

and migrating between different storage solutions and also data processing solutions(Sandhya

Narayan, 2012). Therefore a project that is being developed over Hadoop has a bigger value/feature

set, than the value/feature set of that single solution. Many additional options are available because

of the ecosystem that it is a part of. These therefore add to the value and possible number of

implementations. Also, as most Apache projects, it has a large development community so updates

and improvements are frequent.

Apache	HBase	

 Apache HBase is one of the projects built on top of Hadoop, more specifically the HDFS.

It falls in the wide-column family of NoSQL database systems and is a distributed database system.

As stated on the official pages21 it is more a "Data Store" than a "Data Base" because it lacks many

of the features you find in an RDBMS, such as typed columns, secondary indexes, triggers, and

advanced query languages, etc. The way it is built allows it to have linear scalability characteristics.

Also, because it is a part of the Hadoop ecosystem of open source projects, it is very modular as the

data stored can be used by other data processing systems. It can also be migrated to other solution

if there is a need for it.

20 Apache Hadoop MapReduce. [Online], Available at:
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html, [Accessed 7 February 2015].
21 Apache Hbase. [Online], Available at: http://hbase.apache.org/book.html, [Accessed 15 February
2015].

34 State of the art

34 | P a g e

Most notable HBase features, as stated on the official website22, are:

 Strongly consistent reads/writes: HBase is not an "eventually consistent" DataStore. This

makes it very suitable for tasks such as high-speed counter aggregation.

 Automatic sharding: HBase tables are distributed on the cluster via regions, and regions are

automatically split and re-distributed as your data grows.

 Automatic RegionServer failover

 Hadoop/HDFS Integration: HBase supports HDFS out of the box as its distributed file

system.

 MapReduce: HBase supports massively parallelized processing via MapReduce for using

HBase as both source and sink.

 Java Client API: HBase supports an easy to use Java API for programmatic access.

 Thrift/REST API: HBase also supports Thrift and REST for non-Java front-ends.

 Block Cache and Bloom Filters: HBase supports a Block Cache and Bloom Filters for high

volume query optimization.

 Operational Management: HBase provides build-in web-pages for operational insight as

well as JMX metrics.

As HBase is built on top of HDFS it provides additional functionalities. As HDFS is a general

purpose file distribution system, it has its limitations regarding usability ("from a developers

perspective"). HBase stores data inside a tables and rows. This is familiar to anyone who worked

with standard RDBMSs although this is almost the only similarity.

Apache	Hive	

 Hive is also one of the open source projects developed on top of Hadoop. It is mainly a

distributed data warehouse system. The list of organisations using Hive as stated on the official

website23 include: eBay, Facebook, LinkedIn, Spotify, Taobao, Tencent, and Yahoo!. As an open

source project, Hive has a strong technical development community working with a widely located

and diverse users and organizations. Hive was originally designed as a translation layer on top of

Hadoop MapReduce. As a query language it has its own variant called HiveQL (Hive query

language) that will be familiar to anyone already familiar with SQL. It also allows for easy use of

22 Apache Hbase. [Online], Available at: http://hbase.apache.org/book.html, [Accessed 15 February
2015].
23 Apache Hive. [Online], Available at: https://cwiki.apache.org/confluence/display/Hive/Home,
[Accessed 7 February 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 35

P a g e | 35

the MapReduce framework for more complex analysis and it can be extended with custom scalar,

aggregation and table functions (UDFs, UDAFs and UDTFs). It does not offer real time queries or

row-level updates, and as such, is best suited for batch style jobs (over large sets of data). As stated

on the official website the main advantages of Hive are24:

 scalability (scale out with more machines added dynamically to the Hadoop cluster);

 extensibility (with MapReduce framework and UDF/UDAF/UDTF);

 fault-tolerance;

 loose-coupling with its input formats.

Apache	Spark	

 Spark is also an Apache open source project since 2010. It is a fast processing engine that

has some advances over the standard Hadoop MapReduce jobs. It utilizes in-memory processing

and data caching for faster performance compared to MapReduce. The official site states25 that it is

100x faster in memory and 10x faster on disk than MapReduce. It is designed to access data from

other Apache Hadoop projects like HDFS, Cassandra and HBase and to perform both batch

processing (similar to MapReduce) and new workloads like streaming, interactive queries, and

machine learning. As an example of the large development community and overall development

efforts regarding this project, from the period of January 5th 2014. to January 5th 2015., it had 6906

commits and 419 contributors26 making it the most (or one of the most) active among Apache and

Big Data open source projects in general. It supports a variety of popular development languages

including Java, Python and Scala. This project therefore is already a great solution for many large

data processing applications and has great promise for future developments.

Apache	Cassandra	

 Apache Cassandra is again an Apache open source project in the Hadoop "ecosystem" of

projects. It is mainly a data warehouse and it falls in the row-oriented wide-column family of

NoSQL database systems. Same as other projects it has support from other systems in the Hadoop

"ecosystem" as the data from Cassandra can be used by, for instance Spark, and processed. Porting,

migrating from other sources should also be easy. It is suited for storing large amounts of data as it

also has linear characteristics regarding scalability. Main benefit of using Cassandra is a SQL like

query language called CQL ("Cassandra Query Language") and functionalities like column indexes

24 Apache Hive. [Online], Available at: https://cwiki.apache.org/confluence/display/Hive/Home,
[Accessed 7 February 2015].
25 Apache Spark. [Online], Available at: http://spark.apache.org/, [Accessed 7 February 2015].
26 Apache Spark summary. [Online], Available at: https://www.openhub.net/p/apache-spark,
[Accessed 16 February 2015.].

36 State of the art

36 | P a g e

allowing more efficient storage and data manipulations depending on the structure defined by the

user. Cassandra is very suitable for environments such as storing sensor data as it is scalable and

has proven fault-tolerance on commodity hardware or cloud infrastructure27. The distribution of

data across nodes is primarily organized according to the value of the primary key. Data which has

the same value of the primary key will be located on the same node allowing fast reads. This also

means that related data can easily be controlled and stored in one node, therefore allowing for fast

access for data processing if needed.

MongoDB	

 MongoDB is one of the most popular choices in the document based NoSQL family of

database systems. It stores data in a JSON like format called BSON in documents and because of

this is very well suited for object mapping and storing unstructured data. BSON types are a

superset of JSON types as it contains some types like date or a byte array types and the format is

optimized for storage and scan speeds. Storing data in MongoDB consists of defining objects with

attributes that contain data and unlike other NoSQL systems like most wide-column solutions, it

does not suffer the problem of knowing the structure beforehand. The structure can be changed at

any point and as long as the implementation (the application using MongoDB) can cope with this,

problems should not occur. Another good point of MongoDB is that it is well suited for use on a

large variety of machines, not necessary on high performance ones. A disadvantage on using

MongoDB is that it is somewhat slow regarding reading and modifying the data compared to, for

instance, wide-column solutions. Its main purpose or use-case is to be used in implementations

where the data structure/schema is frequently changing and/or unknown at the beginning(Min

Chen, 2014)(Roshni Bajpayee, 2015).

Some of the most significant features/characteristics of MongoDB28:

 Indexing - primary and secondary indexes are available. The benefits of indexing are the

same as those found in traditional RDBMSs;

 Advanced queries - MongoDB supports range search, field search, regular expressions and

other functionalities commonly lacking in other scalable NoSQL systems;

 Replication - making replicas increases the availability of data. replicas can either have a

primary or a secondary role similar to a master-slave methodology;

27 Apache Cassandra. [Online], Available at: http://cassandra.apache.org/, [Accessed 16 February
2015].
28 MongoDB HomePage. [Online], Available at: http://www.mongodb.org/, [Accessed 7 February
2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 37

P a g e | 37

 Load balancing and fault tolerant - using sharding based on user defined shard keys, data

collections are split into ranges and distributed. The user chooses a shard key, which

determines how the data in a collection will be distributed. This can be run over multiple

machines and the shards are also replicated and therefore providing fault tolerance;

 File storage - as MongoDB is a document-based NoSQL distributed database system it can

also be used as a distributed file storage system. This functionality is called GridFS and it

is included in MongoDB;

 Aggregation - MapReduce jobs can be used for aggregation purposes. For instance

achieving the usual GROUP BY functionality from SQL in RDBMSs;

Neo4j	

 Noe4j is currently one of most popular from the graph-based NoSQL family of database

systems. It mostly adequate for applications where relations between entities are the focus of

implementation. It is used by a lot of companies29, it is supported on many platforms and

frameworks so easy integration of Neo4j in almost any application in need of a graph database

should be easy. This is maybe the biggest benefit of Neo4j over other possible products along with

the large set of functionalities and ecosystem of tools and libraries.

Neo4j most significant features30:

 It has a SQL like query language called CQL ("Cypher Query Language") making it

familiar to users already familiar with SQL;

 It follows Property Graph Data Model

 Advanced features like: Indexing, UNIQUE constraints, transactions, ACID compliant

 It uses Native graph on disk storage with Native GPE(Graph Processing Engine)

 It supports exporting of query data to JSON and XML format

 Support for many platforms, languages, simple to use APIs...

 High-speed traversals in the node space

The disadvantages of Neo4j are mostly regarding selling strategies, expenses, the lack of features in

the free "Community" version and issues with dual licenses. Regarding technical disadvantages

29 Neo4j official. [Online], Available at: http://neo4j.com/, [Accessed 18 February 2015].
30 Tutorialspoint Neo4j. [Online], Available at:
http://www.tutorialspoint.com/neo4j/neo4j_features_advantages.htm, [Accessed 18 February
2015].

38 State of the art

38 | P a g e

there are not many. Although sources31 indicate that Neo4j does not scale on write operations

because its replication works on a Master/Slave principle, the official site states32 that, from version

2.2, it has Massive write scalability, supporting a new bulk import utility at a rate of 1M

records/second. Capacity is stated to support graphs with tens of billions of nodes and relationships.

OrientDB	

 OrientDB is a newer NoSQL system (since 2012). This data management system is a

mixture of document-based and graph-based NoSQL families. It stores data similar to document-

based systems like MongoDB and combines it with the relations found in graph databases like

Neo4j. On the official site of OrientDB33 they have direct comparisons to MongoDB and Neo4j and

state clear advantages in comparison to both alternatives. it combines advantages from both graph

and document based solutions solving most of the problems by adding relations and fast traversal

over relations to classic document-based solution and flexibility, scalability and sharding to a

graph-based solutions. Therefore this solution has much promises and can be applied to a wide

variety of implementation problems and seems like a perfect blend between MongoDB and Neo4j

and a good alternative to both of those and traditional RDBMSs.

Most significant features include34:

 Combines the features from document and graph based systems

 OrientDB SQL - supports SQL with some extensions for handling trees and graphs

 Multi-Master Replication - sharding, fault tolerance, availability, scalability...

 ACID Compliance - fully ACID transactions across distributed data storage system

 Community Edition is free - free even for commercial use and contains all of the most

significant features as the Enterprise edition accept customer support, backups, profiling

and similar features

Redis	

 Redis is a key-value based NoSQL data store. Unlike other solutions it stores data directly

in memory and uses the disk's storage only for persistence, so reading and writing is extremely fast

but storage space is limited to memory. It has master-slave replication and can support any number

31 OrientDB official site. [Online], Available at: http://www.orientechnologies.com/orientdb/,
[Accessed 18 February 2015].
32 Neo4j official. [Online], Available at: http://neo4j.com/, [Accessed 18 February 2015].
33 OrientDB official site. [Online], Available at: http://www.orientechnologies.com/orientdb/,
[Accessed 18 February 2015].
34 OrientDB official site. [Online], Available at: http://www.orientechnologies.com/orientdb/,
[Accessed 18 February 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 39

P a g e | 39

of slaves35. One of the more significant advantages over other systems is the supported rich set of

data types including: strings, lists, sets, hash tables, sorted sets and others.

Other features that are stated on the official website include36:

 Transactions

 Pub/Sub

 Lua scripting

 Keys with a limited time-to-live

 LRU (least recently used) eviction of keys

 Automatic failover

Redis is a simple to integrate solution not only for specific implementation situations and use-cases

but can be viewed as a way to speed up fetching and modifying small frequently used parts of data.

Problems regarding the storage and usage of data can usually be separated into 2 categories. In one

category there would be a large quantity of data that is rarely queried or data that needs to be

processed and the other, small quantity of data that needs to be queried almost always before other

queries are to be executed like for instance authentication information.

2.5.3 Security	issues	in	NoSQL	

 NoSQL databases solve many functional problems that conventional RDBMSs have

providing greater scalability, flexibility allowing applications to better scale-out and/or utilize

different kinds of data. The distribution of data is commonly done by utilizing sharding

mechanisms and the usual RDBMS ACID properties are exchanged for BASE properties. this, of

course does not apply to graph-based NoSQL database systems because they support transactions

with full ACID properties. While this provides good and usable features and characteristics mainly

utilized for scalability, it brings to the surface a lot of security issues that need to be dealt with.

 The authors of (Anam Zahid, 2014)(Priya P. Sharma, 2014) (Lior Okman, 2011) analyzed

a few of the most popular NoSQL choices and made security analysis' of them. They evaluated

security features that they use and mention features that are still lacking. Areas that were looked at

can be divided into: authentication, access control, data encryption, secure configurations and

auditing. The database systems that were analyzed include: MongoDB, CouchDB, Redis, Hadoop,

HBase, Cassandra, Redis and Couchbase Server. Although every single one implements some

features, all of them lack a complete set of security features. MongoDB seems to have the strongest

35 Redis website FAQ. [Online], Available at: http://redis.io/topics/faq, [Accessed 20 February
2015].
36 Redis official website. [Online], Available at: http://redis.io/, [Accessed 20 February 2015].

40 State of the art

40 | P a g e

security feature list and Redis has almost no security features. It is easy to see that the main focus

of these solutions is performance, leaving security issues to be solved on the application and

maintained and configured by system administrators. Table 6 shows the result of research done by

(Anam Zahid, 2014).

Table 6. Comparative analysis of sharding security in various NoSQL databases(Anam Zahid, 2014)

2.5.4 Performance	studies	and	comparisons	

 Comparisons and performance evaluations given by the authors of (A B M Moniruzzaman,

2013)(Bogdan George Tudorica, 2011)(Rajendra Kumar Shukla, 2015)(Enrico Barbierato, 2014)

(Corporation, 2013) give a good picture of the current state and capabilities of the most used

NoSQL database systems. It has to be noted that the NoSQL databases taken into account were

mainly either document or wide column based and these are the best suited for storing and handling

large amounts of data. The performance test included measuring latency in scenarios with different

ratios of read/write/update operations. Compared to RDBMSs the results indicate that NoSQL

systems have greater capacity and can cope with more operations which is to be expected. After a

certain number of operations, latency in RDBMS increased significantly (exponentially) while in

NoSQL systems suffered little. Results indicate similar performance inside the different NoSQL

paradigm families. MongoDB (document-based) was shown to be somewhat slower than Cassandra

or HBase (wide-column based) with bigger workloads which is to be expected because of the

differences between their storage systems and functionalities they offer.

 The performance evaluation given by (Corporation, 2013) can be seen in Figure 8, Figure

9, Figure 10, and Figure 11. This, along with the information found in other sources mentioned

before in this subsection, was the basis behind choosing the databases for this solution. That

decision is shown in subsection 4.1.1.

The following workloads were included in the benchmark (Corporation, 2013):

1. Read-mostly workload: 95% read to 5% update ratio;

University of Aveiro, Department of Electronics, Telecommunications and Informatics 41

P a g e | 41

2. Read/write combination: 50% read to 50% update ratio;

3. Write-mostly workload: 99% update to 1% read;

4. Read/scan combination: 47% read, 47% scan, 6% update;

5. Read/write combination with scans: 25% read, 25% scan, 25% update, 25% insert;

6. Read latest workload: 95% read to 5% insert;

7. Read-modify-write: 50% read to 50% read-modify-write.

Figure 8. Read latency across all workloads(Corporation, 2013)

 Figure 8 shows the read latency over a variety of workloads. It Shows that all three

perform well and the latency does not increase significantly (linearly or exponentially) with

partitioning but remain stable. Compared to HBase and MongoDB, Cassandra has less latency and

seems to be most stable.

42 State of the art

42 | P a g e

Figure 9. Insert latency across all workloads(Corporation, 2013)

 Figure 9 shows the insert (e.g. write) characteristics across a number of shards and a

variety of workloads. MongoDB has a noticeable increase of latency while HBase and Cassandra

have very stable write times. Cassandra again performs slightly better that HBase.

Figure 10. Update latency across all workloads(Corporation, 2013)

 Figure 10 shows the update characteristics. MongoDB has a noticeable increase of latency

while HBase and Cassandra have very stable latency times. Cassandra again performs slightly

better that HBase. These results are very similar to the ones from Figure 9 which is to be expected

as write and update operations are closely related in the sense that data has to be overwritten with

new data.

Figure 11. Scan latency across all workloads(Corporation, 2013)

University of Aveiro, Department of Electronics, Telecommunications and Informatics 43

P a g e | 43

 Figure 11 shows the scan characteristics of the databases. MongoDB has a noticeable

increase decrease while HBase and Cassandra have very stable latency times. Cassandra again

performs slightly better that HBase and both perform better than MongoDB.

2.5.5 NoSQL	systems	‐	summary	

 NoSQL systems provide solutions in the areas of IoT and Big Data. Same as in other areas,

the interest of large Internet companies such as Google, Amazon and Facebook pushed

developments, and because of this there a lot of good solutions available. NoSQL solves problems

that conventional RDBMS cannot cope with or are not flexible enough or adapted for. Evaluations

regarding data storage, handling and additional features of these solutions suggest that security is

still an issue and may be the next significant improvement. Along with this new combined

solutions similar to the document-graph mixed solution OrientDB utilizes could be the next step in

NoSQL. Performance evaluations (regarding reads, writes, updates...) indicate that improvements

are always needed and welcomed but are at a level that is satisfying for most needs. This means

that the choice of the database system that is going to be used in an application should not be done

from a performance perspective, but from a more general and data type oriented perspective along

with evaluating the ecosystem that the main solution is a part of. More significant improvements

could come in the area of data processing and analysis. The Apache Hadoop ecosystem of open

source projects is currently the most fertile ground for improvements in this area.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 45

P a g e | 45

3 Background
 This section presents the context in which this work is being done, related work and other

achievements that are closely related to this work. In subsection 3.1 Smart Cities will be presented

as a concept and some examples will be given along with presenting SMARTIE which most

relevant to this work. Subsection 3.2 will present related work in the area of XACML evaluation

engines and XACML related projects.

3.1 Smart	Cities	

 As mentioned in (Pardo, 2011), the term smart city is widely used, often outside of the

computer science context but rather in a more social and cultural context. Definitions therefore

vary and many exist, but the final aim is to make a better use of the public resources, increasing the

quality of the services offered to the citizens, while reducing the operational costs of the public

administrations (Taylor Sheltona, 2015). The context that is regarded to in this work is as an IoT

application scenario. We will define it as:

"A city utilizing an infrastructure of sensor networks and services to collect and utilize the

generated data for the main purpose of improving efficiency and managing of the city, e.g.: traffic,

energy and utilities, healthcare, public safety, education etc.".

 IoT, Big Data and security are therefore areas essential to smart cities. They are one of the

applications that offer great promise in the improvement of everyday life and because of the

infrastructure, could also help in scientific research.

Figure 12. Fundamental components of a Smart City(Pardo, 2011)

46 Background

46 | P a g e

 In Figure 12 the fundamental components of a Smart City as defined by (Pardo, 2011) can

be seen. This is a general and "outside" view rather than a technological one. It describes the

factors that are needed for a Smart City to exist. These are three factors: Technology, Human and

Institution. The Technology factor represents all of the technologies needed for a city to become

"smart". On a minimum, they would need to include a physical infrastructure (sensor networks,

servers for data storage and processing) and a software component for utilizing it(Milind Naphade,

2011). As the smart city is cantered mainly around benefits for the city's citizens, the human

element is essential. The degree of acceptance has to be high for the concept to work, and therefore,

the functionality has to compliment the needs of the citizens. It also needs to ensure safety of

personal and confidential information. The institutional component incorporates the regulations and

planning that has to take place. The government and regulatory bodies need to be fully included to

utilize this technology as efficiently as possible. This kind of large scale projects need plans for

growth, regulations and managing solutions which all need to be governed by the city's authorities.

Bureaucracy issues could delay projects like these for a significant period, therefore these issues

need to be dealt with in a timely and efficient manner.

 Smart cities are very promising projects as they offer improvements to everyday lives for

their citizens, more efficient management of resources, infrastructure for scientific research and

others, all with a lower maintenance overhead than before. As they are large scale applications,

they have many issues and challenges to overcome. After they become a reality and are proved to

work, adaptation to other areas will come easy, so cities and their citizens are not the only ones that

could benefit (Pardo, 2011). Some of the most beneficial aspects would be: smart traffic control,

smart energy consumption and monitoring, environment monitoring, healthcare monitoring, etc.

3.1.1 SMARTIE	

 SMARTIE (Smart City) is a European project with the goal of solving security, privacy

and trust issues in IoT, in a Smart City implementation. Partners include companies, universities

and cities from Germany, Portugal, Serbia, Spain and the UK. As stated on the official website37

the project officially started on September 1st 2013., and is scheduled to end on August 31st 2016.

It has a total budged of 4,862,363 € with the contribution from EU in the amount of 3,286,144 €.

Vision		

 SMARTIE is aimed at creating a distributed framework to share large volumes of

heterogeneous information to be used in smart-city applications, enabling end-to-end security and

37 SMARTIE Homepage. [Online], Available at: http://www.smartie-project.eu/project.html,
[Accessed 20 February 2015.].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 47

P a g e | 47

trust in information delivery for decision-making purposes following data owner’s privacy

requirement. Benefits of having a secure, trusted and easy to use IoT system for Smart Cities will

prove beneficial to citizens, enterprises and the City's Administration. Maintinance of cities

services will be reduced and it will be easier for the City's Administration to gather accurate

information about the City's services, systems and citizens while still protecting private and

confidential information. In SMARTIE, privacy and trust are considered a key prerequisite for

citizens to participate in Smart City activities and services. SMARTIE aims at developing a

framework for Smart Cities, with the potential to improve life of their citizens enormously.

Enterprises can benefit from the securely provided information. They can optimize their business

processes and deal with peak demands introduced by the dynamics of the Smart City. Furthermore,

they can offer more tailored solutions for their customers based on the status of the Smart City.

Main	goals	

The goals that are stated on the official website38 are:

 Understanding requirements for data and application security and creating a policy-enabled

framework supporting data sharing across applications;

 Developing new technologies that establish trust and security in the perception layer and

network layer;

 Develop new technologies for trusted information creation and secure storage for the

information service layer;

 Develop new technologies for information retrieval and processing guided by access

control policies in the application layer;

 Demonstrate the project results in real use cases.

Key	Challenges		

The idea of the IoT brings new challenges regarding security and in consequence also for privacy,

trust and reliability. The major issues are:

 Many devices are no longer protected by well-known mechanisms such as firewalls and

can be attacked via the wireless channel directly. In addition devices can be stolen and

analysed by attackers to reveal their key material.

38 SMARTIE Homepage. [Online], Available at: http://www.smartie-project.eu/project.html,
[Accessed 20 February 2015.].

48 Background

48 | P a g e

 Combining data from different sources is the other major issue since there is no trust

relationship between data providers and data consumers at least not from the very

beginning.

 Secure exchange of data is required between IoT devices and consumers of their

information

Expected	Impact	

 The expected impact of this project, as are stated on the official website, is summarized in

the following list:

 The SMARTIE IoT platform will allow the virtualization of the functionalities of

discovery, secure information access, processing and privacy-aware distribution between

the consumer and producer of the data generated by the smart objects.

 It will demonstrate the applicability in scenarios linked to the green behaviour and

sustainability of smart cities like efficient transport/mobility and energy management.

 SMARTIE will facilitate new companies for developing and providing services over its

IoT infrastructure/platform.

 SMARTIE allows heterogeneous and multiple source of data to interact in reliable and

secure manner providing third parties developers in Europe to enter the Smart Cities area

and in that way increase the share of the IoT market.

Use	Cases	

SMARTIEs current use-cases with their specific aspects, as stated on the official website, are:

1. Frankfurt/Oder (GER)

 Traffic management with the possibility to influence real traffic;

 Focus on authentication, trust, data security and interoperability.

2. Murcia (ES)

 Monitoring energy efficiency in the campus;

 Users can interact with the system to improve energy efficiency.

3. Belgrade (RS)

 Provide smart transportation using location of busses and travellers;

 Focus on data security and privacy using developed access rights and policies.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 49

P a g e | 49

3.1.2 Other	Smart	City	projects	

 There are a number of smart city projects that exist and are currently taking place (Angelo

Cenedese, 2014)(Andrea Zanella, 2014)(Milind Naphade, 2011). Most are still in somewhat early

stages and need to be fully built and proven to move from a research projects on universities to

larger scale projects. Some aspects of Smart Cities are already visible in areas as traffic.

Monitoring has become common and things like traffic sensors connected to a centralized systems

have existed for some years. These systems maybe would not fall in the category of "Smart" but

aim towards the same goals as smart cities. A fully developed smart city solution would improve

on these significantly and would need less maintenance.

 Padova is one of the more significant IoT smart city pilot application that were done in

recent years (Angelo Cenedese, 2014). From the published work a general architecture can be seen

that contains the sensor database, connections to the sensors for collecting data, an interfaces for

direct sensor access and a web front-end interface. It was tested using lights sensors placed on a

road from which the number of passing cars could be gathered and simple traffic monitoring could

be realised. It is stated that it was built with expansion in mind so the progress from this project

could prove to be significant in this area.

 As mentioned, there are a other smart city projects currently being developed but unlike

SMARTIE most are focused on specific aspects and specific test scenarios and rarely grow bigger

after they are complete. SMARTIE is a solution for smart cities that unlike other efforts is being

developed with security concerns and standardisation in mind. The fact that it is founded by the

European Union gives even more significance to the project because if successful, it will surely be

utilized in many European cities. This is a crucial part because the involvement of the EU means

faster solving of any bureaucracy or other non technical issues along with possibly more funding in

case of the project's success. Along with having the focus on solving this problem for cities today,

the project also focuses on utilizing standards, stimulating innovation and producing improvements

and developments in the area of IoT. This is an important fact as practically, it means easier

adaptation to different cities and their needs.

3.2 Related	work		

 This section will present some projects, implementations, products that are related and

relevant to the work done in this dissertation. A brief overview and explanation will be given along

with a critical opinion for every one of these. These were a result of research done while doing this

work and is possible that it's is not complete or completely accurate. Other significant solutions

therefore could exist but did not come up during the research process.

50 Background

50 | P a g e

Axiomatics		

 Axiomatics is a Stockholm, Sweden based company that is currently leading in the area of

implementations utilizing ABAC and XACM. They do not offer open source solutions and have a

somewhat complicated business structure for getting the products. They have a several

implementations developed for specific solutions for filtering data in some relational databases,

enforcing access control when to manage access to multiple applications and some others and a

useful Eclipse IDE plug-in for easier creation of policies. The low point that was established while

researching this company is that the products are not easy and straightforward to get to. On the

other hand they often organize educational webinars for showing some uses and benefits of using

ABAC. Their products unfortunately do not seem to be aimed at large scale IoT implementations as

they do not mention those possibilities and the products aim at specific problems. On their site it is

stated that they have a wide customer base, a number of offices across the US and have the goal to

provide more ABAC solutions. Their products are focused on certain implementations mentioned

before and unfortunately not a lot of information can be found on their official website39, at least

not regarding the core engine they are using for access control and technical details about their

solutions. In any case this company offers great promise as it is focused purely on dynamic access

control utilizing ABAC and the OASIS XACML standard(OASIS, 2013). 	

Balana	

 Balana is an XACML implementation. It is an engine that supports the latest version of the

standard and it essentially provides the functionality of the PDP and other core functionalities40. It

is based on Sun's XACML implementation that will be addressed after Balana. Balana is a good

engine that can also be expanded and it is used by lot of systems. It solves the most difficult and

time consuming part of implementing a system utilizing XACML which is the PDP or more

specifically the evaluation part. It is an open source solution under the standard Apache licence. It

was considered for using as a starting point instead of the AT&T project but was not because it

does not support the JSON profile of the standard (OASIS, 2014).

Sun's	XACML	Implementation	

 From what the research indicates this is one of the earlier implementations of XACML and

is also an open source solution under a standard Apache licence(Fatih Turkmen, 2008). It was

39 Axiomatics ALFA home. [Online], Available at:
http://www.axiomatics.com/solutions/products/authorization-for-applications/developer-tools-and-
apis/192-axiomatics-language-for-authorization-alfa.html, [Accessed Fevruary 2015].
40 WSO2 Balana Implementation GitHub project. [Online], Available at:
https://github.com/wso2/balana, [Accessed 20 May 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 51

P a g e | 51

developed in Sun Microsystems Laboratories which is a part of Sun Microsystems, Inc. The official

website41 does not offer a lot of information but reveals that the last update was in 2006. This could

mean many things but it is not wrong to conclude that further development will not occur. As

Balana was based on this implementations and many other systems use Balana, its development

will continue but probably inside other solutions that use one of these.

AT&T	XACML	implementation	

 This is an open source project (AT&T, 2014) available on GitHub, which implements

XACML. From the content of the project it can be concluded that the aim of it is to develop a

complete XACML implementation, supporting the JSON variant along with the REST profile

(OASIS, 2014). This solution is not a complete implementation but offers a good base for further

development and expansion. The documentation for this project is also lacking and is a big issue

for anyone trying to use it but as it is the only solution that states support for the JSON variant of

the XACML standard it was chosen as a base project for development. The design choices and

reasoning is explained in more detail in subsection 4.1. This project has a partial implementation of

all the features of XACML and has a large base of tests that verify which implemented components

work correctly. This means that certain, more complicated conditions and combining algorithms

will not be possible but it provides a good base for expansion.

 This implementation consists of several projects covering different functionalities:

 XACML - contains base functionalities, base classes and interfaces. It contains the

interfaces for PIP, PEP, PDP and PAP engines. Additionally it contains functionality for

configuration and it is done through an xacml.properties file located in the base folder of

the project. It is used by all of the other projects that have more specific functionalities

implemented;

 XACML-PDP - contains all the functionality needed for the PDP to evaluate request. This

includes calling PIPs and asking for requests. Not all logical and comparison operations are

implemented (example: "<, >, <=,>=" comparisons between date/time type data types);

 XACML-PAP-ADMIN - contains functionality for the PAP;

 XACML-REST - contains common functionality used by the PAP-REST and PDP-REST

projects. The functionality is regarding the REST service;

 XACML-PDP-REST - provides a REST service interface for the PDP;

 XACML-PAP-REST - provides a REST service interface for the PAP;

41 2006. Sun's XACML Implementation. [Online], Available at: http://sunxacml.sourceforge.net/
[Accessed 20 May 2015].

52 Background

52 | P a g e

 XACML-TEST - contains a library of tests which verify the functionality of some

components. The tests are mainly regarding the PDP and base XACML project and do not

test the PAP or REST services.

 As this project is a work in progress it does not include extensive documentation nor a

straightforward method of running or using the functionalities that it provides. Many parts therefore

are not finished and do not work. After considerable effort was taken to run and test all of the parts

of this projects it was concluded that the XACML-PAP-ADMIN, XACML-REST, XACML-PDP-

RES and the XACML-PAP-REST components either do not work or require significant effort and

extensive knowledge of the project to utilize. The XACML and XACML-PDP, and the

functionality they provide on the other hand were tested and proven to work. The XACML-PDP

supports most, but not all of the evaluation functions defined in the XACML standard(OASIS,

2013). An example would be "<, >, <=,>=" comparisons between date/time type data types.

Although these are not currently supported, implementing these additional components should not

take much effort because the project is well structured and classes with implementations of other

working functions can be viewed as references or starting points.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 53

P a g e | 53

4 Solution description
 This section will describe in detail the work that has been done along with a short

description of the development process.

 In subsection 4.1 the solutions architecture and workflow is explained along with design

choices and technologies used, subsection 4.2 gives a description of every major component,

subsection 4.3 presents the proposed implementation scenarios, subsection 4.4 will give a brief

overview of development process and subsection 4.5 will present a critical overview and potential

improvements.

4.1 Design	choices	and	general	architecture	

 After extensive research and regarding the technologies currently available shown in

sections 2 and 3, a number of design choices were made and an architecture was made. This

subsection will describe the reasoning behind the decisions that were made.

 The developed solution was made to be a general solution, in a sense that is can be used in

scenarios other than IoT use-cases but, as the main focus is on IoT scenarios, and more precisely

SMARTIE, the basic limitations and requirements reflect that. The limitations that were taken into

account come directly from the current state of the SMARTIE project (March 2015.) which means

that all or most of the use-case scenarios will be fulfilled with the overall solution being simplified,

making the delivery more realistic (taking in account the time constraints/deadlines for this work).

This is valid because it will still provide a proof of concept and in that case the limited functionality

means limited evaluation possibilities like range searches. All of the major components are still

present including all the communication and major functionality. Of course, the solution allows for

easy upgrading and expanding of functionality therefore making it possible to have a full

implementation of the XACML standard.

4.1.1 Design	choices	and	technologies	used	

 This subsection will name the technologies used and present the reasoning behind choosing

them.

Databases	

 The NoSQL databases that were selected are: Cassandra for storing sensor data and Redis

for storing policies. The reason for choosing NoSQL instead of RDBMS alternatives is because

NoSQL was determined as a better suited solution for storing sensor data and policies. For storing

vast amounts of sensor data, scalability is needed and compared to RDBMSs, there are NoSQL

54 Solution description

54 | P a g e

systems that are scale much better. In subsection 2.5.4, it is shown that there are NoSQL database

management systems that can scale linearly.

 The requirements for the database used for storing sensor data are: capacity to store vast

amounts of data, scalability, distribution, fast read times, possibility of utilizing data processing

functionality. For the database used for storing policies, the requirements include: fast read times,

scalability and distribution, possibility of storing policies (either document or text format). On the

other hand, it does not have to have a large capacity because the number of policies is not huge and

therefore does not require a large capacity.

 Cassandra was chosen because of its good balance between scalability (A B M

Moniruzzaman, 2013)(Enrico Barbierato, 2014)(Corporation, 2013) and response time

characteristics and Redis for its speed of fetching data42. These choices were made after significant

research was done on the performance characteristics of these databases compared to other options,

which can be seen in Section 2.5. Cassandra proved to be the most appropriate solution for storing

data and Redis for the storing of policies. Cassandra also offers compatibility with other Hadoop

systems because it is also a part of the Hadoop eco-system. This could prove to be very beneficial

because of the data processing options and possible migration to other systems, if the need for that

ever comes up.

 The Cassandra NoSQL database used in the solution is used just for testing as it is an

appropriate storage solution for sensor data but does not necessarily have to be used when using

this developed solution as described in subsections 4.2.1 and 4.3. Cassandra is also used for storing

attribute data. This is also done mainly for testing purposes regarding the PIP.

 Compared to Cassandra, Redis is a smaller and simpler solution which stores data in

memory, as a result of which the response is so fast. The drawback is the limited space for storage

which is not of a great concern because the space required for storing policies is not large.

 Data Manager modules are placed in front of both databases to control the communication

and management of the databases. These managers therefore are the only entities that control and

survey all the interaction with the databases, they limit the type of actions that can be executed and

therefore prevent unwanted actions like deleting and/or emptying tables.

XACML	base	project	

 The access control framework utilizes some functionality provided by the AT&T project

(AT&T, 2014) and uses some of its functionalities to make the developed solution work. A

42 Redis official website. [Online], Available at: http://redis.io/, [Accessed 20 February 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 55

P a g e | 55

description of the AT&T project by components is given in subsection 3.2. The project was used

mainly for its PDP engine, interfaces for the PIPs and configuration functionality. The PDP engine

has the evaluation functionality built in along with asking PIPs for attributes while evaluating. The

implementation required implementing that basic engine by extending the base class, initializing

the PDP and making all the necessary configurations. Functionality of processing the policies and

returning the result was built separately from the base project. The PIPs were built by

implementing basic interfaces. Fetching of attributes and returning them to the PDP was added, the

communication regarding which attributes are needed and which can be provided was also built.

The configurations functionality was used to control the list of PIPs used, classes for the major

components and other configurations.

4.1.2 Solution	architecture	

 The architecture used is based on the one described in the standard's specification (OASIS,

2013) and instead of having all of the functionality specified in the standard, a subset of simpler

functionalities was implemented. Although the architecture is based on the architecture defined in

the standard it was modified. The reasoning behind modifying the architecture will be explained in

this subsection.

 While developing a security component based on the OASIS XACML standard a number

of issues were identified. These issues were related to the architecture proposed in the standard and

security of connections between components and external services.

Removal	of	PRP	

Comparing the reference XACML architecture to the one proposed in the OASIS XACML

standard v3.0 (OASIS, 2013). It can be seen that in addition to new components, the PRP has been

merged with the PAP. Put differently, the functionality of the PRP has been added to the PAP,

therefore the PAP is used for retrieving policies.

An issue with removing the PRP and integrating its functionality in the PAP is that the PDP has

access to other functionality of the PAP that is outside the scope of what would be in a PRP. This

means it can potentially add, remove or modify policies. This, of course, is an issue as the PDP

should not be allowed to do those actions. Separating the PRP from the PAP will remove any

possibility of the PDP to misuse the PAP. Additionally, as the PAP is and entry point for system

administrators, separation of the PAP means that that workflow is also completely separated from

the normal workflow of evaluating policies. This completely removes the system administrator

from the rest of the system. This was mainly done from an object oriented design perspective, and

keeping within those principles. The principles in question are SOLID (Single responsibility, Open-

56 Solution description

56 | P a g e

closed, Liskov substitution, Interface segregation and Dependency inversion) and the one that this

decision is closest to is the Single responsibility principle and applying it to a component rather

than just a single class. The PRP then has a single purpose, and even for the engineer that is

implementing or modifying this software, the chance of misuse is significantly less. As a result, the

PAP is therefore an entity onto itself and is just an entry point for an administrator to manage

policies. Also compliant with the Single responsibility principle.

Differences	 between	 the	 defined	 OASIS	 XACML	 architecture	 and	

the	architecture	of	the	developed	solution	

 Looking at the architecture from an implementation perspective, other issues come up.

Reviewing the functionality of the PEP, it can be defined as a simple component that needs to act

accordingly to the response that comes from the PDP. This meant that it needs to fulfil all

obligations and pass the request in case of a positive or terminate the request in case of a negative

response.

 The connection between the Context Handler and the resource is an issue because all

information that the PDP needs for evaluation has to be formed as attributes. The fetching of

information therefore should be through the PIP because the PIP is responsible for providing

additional attributes. Removing that connection, the role of the Context Handler (form an

implementation perspective) becomes a trivial "middle man" in between the PDP's communication

with PIP and PEP. The role that the Context Handler still can assume the initialisation/manager

role, handling all aspects that other components are not responsible for handling. This would

mainly mean taking care of the initialisation and possibly handling multiple instances.

 By removing the Context Handler from the PDP-PIP connection but still leaving it in

between the PEP and PDP allows it to have some management functionality. These would include

initialisation and configuration, managing multiple instances for a parallel execution scenario and

leave it open for expansion if needed.

 Further, it does not contain the Obligation Service component, as can be seen in subsection

2.1.2. That component was dismissed as it is not essential for the basic functionality and it is not

required for the targeted IoT implementations.

Initial	modified	architecture	

 In the next part an initial proposed architecture will be shown and described and after that

the final architecture will be shown and described as well.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 57

P a g e | 57

Figure 13. Architecture of the initial proposed solution

 In Figure 13., a more detailed architecture of the initial proposed solution can be seen. This

architecture is almost the same as the proposed one in the OASIS standard (OASIS, 2013). The

PEP is the point where the enforcement happens. It forwards the request to the Context Handler

which handles the basic workflow. It is intended to be simple as possible, and all of the

configuration, workflow managing and evaluation are done in the Context Handler and PDP. The

PIP is intended to be flexible in a way that it allows the connection to external services for fetching

attribute information. This means that the initial request provided to the PEP does not need to

contain all the information (attribute values) and therefore the access to those services that provide

attribute data can be limited only to trusted services like this one and not to users/subjects.

 While developing this solution, a number of problems emerged. The architecture was

therefore modified. The main issue was the updating of the resource attributes, storing them on a

separate system, the security issues regarding that connection and the synchronisation of data

between the systems. Another issue is the connection between the context handler and the PRP. As

a request is received the Context Handler has to get the policies and deliver them to the PDP. As it

is just a "middle man" in this case, it is better for it to be connected directly to the PDP. Another

58 Solution description

58 | P a g e

issue is connection between the context handler and the PIP. The Context Handler could in this

case could work in three ways:

1. Go through a list of policies, see if there are any attributes that are missing and fetch them

from the PIP and deliver the modified request to the PDP for evaluation;

2. Fill the request "blindly" with every attribute that it can get with the attributes already

contained in the request and deliver the modified request to the PDP for evaluation;

3. Wait for the PDP to ask for the attributes while it is evaluating, fetch the attributes from the

PIP and deliver them to the PDP.

 The 1st possibility is somewhat inefficient. The Context Handler has to have functionality

for searching and parsing policies and requests, and while doing that it will go through all the

policies and all fill the request with everything that it would need for all of the policies. The request

could potentially become too large and it would require significant time to parse trough everything

and fetch, thus degrading performance. Also, this functionality is already built into the PDP as is

does that while evaluating the requests.

 The 2nd possibility is requires a simpler functionality as it does not require it to parse

through all of the requests but it fills every request with all possible attributes all the time. This

would later be used by the PDP and it will slow down the evaluation process. Additionally, if there

is a PIP that has to fetch attributes from another outside source through a service and the process of

fetching the attributes takes significant time, that additional time will be added to the evaluation

time. This will happen for every request evaluation therefore diminishing performance.

 The 3rd way is equal to the one defined in the standard. This method is efficient as the PDP

will ask for attributes only when it needs to and the Context Handler will deliver them to it. The

problem in this scenario is that the Context Handler is still the "middle man" and just forwards

requests and responses without having any additional functionality.

Architecture	of	the	final	solution	

 After some work was done, a final architecture was settled upon with slight modification to

the one initially proposed, and as a result, has slightly deviated from to the architecture proposed in

the XACML standard (OASIS, 2013).

 Another issue that was identified is the division of attributes by type. This is regarding the

division of attributes in categories as: environment, subject and resource. This is a good way of

dividing them when viewing the problem from a logical and functional standpoint. Looking it from

a PIP implementation perspective, the difference between attributes are not in the information they

represent but the type of source they have to fetch it from. From the perspective of the PIP, it is not

University of Aveiro, Department of Electronics, Telecommunications and Informatics 59

P a g e | 59

important if the PIP is fetching resource, subject or environment data if it is all coming from the

same source or the way of fetching method is the same. For example: if a person is a registered user

on a website and wants to change some data on its user profile e.g. telephone number. The resource

that the user is trying to access and change and the attributes of that resource come from the same

source as the subject attributes. The methodology of fetching those attributes is also the same. The

differentiation of these is therefore pointless from an implementation or PIP functionality

perspective. As another example, the environment attributes can easily come from different sources

and have much different methodologies for acquiring those attributes. Simple time based

environmental attributes can be generated by the system and looked up at the time of evaluation.

They do not need any kind of storage or external connections. On the other hand fetching attributes

like: legal age limits, tax rates, currency conversion rates etc., is much more different and could

involve external connections and special procedures.

 Because of this the differentiation of connections for the PIP by attribute type is pointless

and a differentiation by source or methodology of acquiring is much more appropriate. The PIP

therefore can be split into many PIPs depending on the way the attributes are acquired and the

source. A simple example would be having three PIPs organized as:

 Generated Attributes PIP - responsible for fetching all attributes that can be generated

locally without the need to contact any database or external service;

 Local Attributes PIP - responsible for fetching attributes that are located on local

databases or can be fetched from other local services;

 External Attributes PIP - responsible for fetching attributes by contacting external

services. These would, for example, be REST services.

 The PIPs also need to know which attributes they can acquire and which attributes, if any,

are needed to fetch those attributes. The PIPs can be organized in a group and the PDP can than go

through the group asking which attributes they can provide and which are needed. When it finds a

match, it requests the attributes and the evaluation continues. Along with dividing the functionality

of the PIP by functionality as opposed to type of attributes, this means that the PIPs are modular as

one or several can easily be removed or added to the list.

60 Solution description

60 | P a g e

Figure 14. Architecture of the final solution

 After identifying issues with the OASIS XACML architecture and making the initial

changes that can be seen in Figure 13, a final architecture was made. Tests of a security component

implementing were done and are presented in subsection 5.1. The final architecture can be seen in

Figure 14. The changes do not change the "outside" view of the system but are more of an internal

change and more refined solution. The connections to the PIP and PRP are moved from the Context

Handler to the PDP so it can fetch policies and all of the attribute information as it needs, while

evaluating policies. The PIP is not a single entity but rather a list of PIPs that all have the same

interface, and all fulfil the same purpose of fetching attributes. Because some attributes are located

on different locations and need to be fetched using different services they need to implement

different means of fetching that information. This allows for easy expansion of the PIP

functionality and better configuration options. This architecture therefore deals with the issues

University of Aveiro, Department of Electronics, Telecommunications and Informatics 61

P a g e | 61

identified in the initial one. The Context Handler maintains only an initialisation and configuration

role rather that handling the workflow and being the "middle man". This was established as being

more efficient and was adopted because of that. The PDP now fetches the policies and additional

attributes directly from the PRP and list of PIPs, only when it needs to.

4.2 Description	of	components	

 In this section a functional description of the developed solutions will be described along

with some implementation details and database schemas that were used. The components that will

be described can be seen in Figure 14. that shows the architecture of the final solution.

4.2.1 Packages	and	dependencies	

 This section will describe the dependencies between the several parts of the developed

solution.

Figure 15. Package dependencies diagram

 In Figure 15. the dependencies between the several parts can be seen. The different colours

used in the diagram represent the different levels of "importance" as not all parts are always

required:

 Green - components are a critical part of the system and need to be included for the system

to work even in a basic scenarios;

 Blue - components are needed when using the solution as a REST service;

 Grey - components may or may not be needed dependant on the needs of the target

system. This mainly revolves around the type of resources used and attributes needed.

62 Solution description

62 | P a g e

One component that is missing is a basic "Helper" component because it is used, in one way or

another, by all of the other ones.

The component listed are:

1. Helper - this component contains generic classes used by all other components. It contains:

generic singleton and factory classes, functionality used for logging, basic and generic

REST client implementation, abstract database manager class and factory, list of constants

used, class containing useful list of functions like hashing, parsing and others;

2. AT&T - this is an open source project that was used for its functionality which can be

described in detail in subsection 3.2. The main functionality used was the PDP engine, PIP

interfaces so it can be used by the PDP engine and the configuration functionality. Details

can be seen in subsection 4.1.1;

3. AccessControl - this contains the main functionality of this solution. It contains the PDP,

PEPs, PIPs, PRP, PAP, Context Handler and others.

4. PolicyDB, SensorDB and AttributeDB - these contain the database managers and the java

clients for the database they are using. The PolicyDB is in green as it is essential for the

final solution, as policies need to be stored somewhere. The other two are not necessarily

needed but are likely and meant to be utilized also. All three contain similar functionalities

and in general are very similar;

5. REST Service - this component utilizes the Access Control to evaluate requests it receives.

It is a simple REST service implementation. It is marked in blue because its use depends

on what type of integration is being utilized as described in subsection 4.3;

6. PAP Web App - this component serves the purpose of providing the administrator with an

interface over which he/she can manage the policies used. It contains a web app with all of

the standard classes and other files found.

This package layout was made so that the functionalities can be utilized by other systems and were

separated into different projects simulating how they would be separated onto different machines.

4.2.2 Components	

PEP	(Policy	Enforcement	Point)	

 The PEP is the point where (as the name states) access control is enforced. This means that

this point needs to be located in the system that wants to enforce access control at the exact place

inside the workflow where access control is needed. It therefore needs to be robust enough to

ensure correct execution and flexible to be implemented on various types of systems. Because of

this and reasons explained in Section 4.3 the PEP can be used in multiple ways. It can be

University of Aveiro, Department of Electronics, Telecommunications and Informatics 63

P a g e | 63

implemented by providing it with only a XACML request and depending on the response given act

appropriately. This way the system that is implementing the PEP decides what the resulting action

will be after the evaluation is finished. The other way is to along with the request, provide the PEP

with an object that implements a defined interface IResourceFetcher.

Figure 16. Class diagram of the PEPs

 In Figure 16. the class diagram for the PEPs can be seen. The IResourceFetcher is used

to ensure that the object provided has methods available for both the positive and negative results

of the requests evaluation. With this, the PEP executes the execute() in case the evaluation result

is positive and executes terminate() in case of a negative result. The purpose of this is to

remove the decision making part from the system that implements the PEP and have it already built

in and working. In the case of specific scenarios, the other method of simply getting the evaluation

result is also available. The RESTPEP and LocalPEP should never both be available for use by

another system and the intent is to have only one PEP available for implementation/integration but

they do not collide in functionality. This is explained more in Section 4.3.

Databases	

 Cassandra and Redis were chosen for the databases. Cassandra was chosen because it is

well suited for storing sensor data and Redis because of its simple implementation and fast

response. These choices were explained in more detail in subsection 4.1.

 In the Cassandra database a single table was used for storing sensor data. It has a simple

schema with basic fields for storing simple sensor data. The use of this database is strictly for initial

64 Solution description

64 | P a g e

testing purposes and that is the reason behind the simple schema. Other scenarios involve using

other databases or resources.

Figure 17. Cassandra database schema for storing sensor data

 Figure 17. shows the schema made to store sensor data. The value of the readings is stored

in the value column. The location is integrated as a frozen which means as a separate, custom

structure that contains both coordinates and address values. Any of these values can be empty

making it flexible. As the focus of this work is not on analysing data, the values used are not of real

concern making this schema is good for storing generic sensor data for testing purposes. The

INDEX is made of the type column because comparison tests regarding attribute values were

mainly made on this value.

Figure 18. Redis schema for storing policies

 Figure 18. shows the structure used for storing policies on the Redis database. The

structure is a simple hash map with a policyID as a key and the actual policy in string format

stored as the value. The policyID is a SHA-1 hash value of the actual policy. This almost

removes the possibility of collisions happening, unless the policies are exactly the same. It also

adds the ability to get the value of the key from the policy itself. As Redis stores data in memory

the response is fast. As the number of policies should not be large, the limitation of storing data in

memory should not be a problem. In the case of memory problems, Redis provides some options

with storing both on disk and in memory or the solution could be migrated to another NoSQL

database like CouchDB which has slower response but also less memory limitations.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 65

P a g e | 65

Figure 19. Cassandra database schema for storing attribute data

 Cassandra is also used for storing attribute data as seen in Figure 19. The tables are

constructed to mirror the fields needed when fetching attribute data while evaluating requests

against policies. The fields are therefore named the same as the ones from XACML policies:

Category, AttributeId and DataType. All columns are of the type string because it is the

simplest, and most convenient way of storing attribute data and the testing of the PIP's

functionality. The tables for storing resource and subject attribute data have an additional id

column because many subjects and resources could have the same type of data but would originate

from different resources/subjects. The environment is considered as being a single entity and the

distinction between values is done mainly with the name. These attribute tables could have been

merged because they differ between each other in the category column, but because of the logical

difference when considering ABAC and XACML, they were separated.

Database	Managers	

 Database manager are entities that are placed in front of database clients. Both Cassandra

and Redis have Java clients that were used for working with the databases. The database managers

serve the purpose of configuring the database, schemas and limiting the possible actions to

acceptable ones like adding and retrieving data. The PolicyDBManager and

AttributeDBManager allow for the deletion and modification of data while the

SensorDBManager does not support those actions.

66 Solution description

66 | P a g e

Figure 20. Class diagram for the Data Managers

 The class diagram shown in Figure 20. shows that the DBManagerFactory holds

instances of objects that extend the abstract class DataManager. This has been done to enable the

use of DataManagers in a singleton fashion without having the same functionality copied to

everyone. It also allows for some functionality to be added on top of the whole group and the

execution to be controlled from one place (DBManagerFactory). This structure does not

guarantee that there will only exist one instance of the objects, since a public constructor has to

exist but as the intent is to get instances through the Factory, that can be neglected.

PRP	(Policy	Retrieval	Point)	

 The PRP is a simple entity that is responsible for fetching policies and delivering them to

the PDP for evaluating requests. The PRP uses the PolicyDBManager for this purpose. It is called

through a single static function that returns the policies in a list. The PRP was realized in a simple

manner but it leaves room for extending the functionality. For instance policy filtering according to

the request's attributes.

PIPs	(Policy	Information	Points)	

 The PIP is not implemented as a single point but as a list of many PIPs. This is convenient

because of the many possible ways that the PIP can fetch attributes and different places from which

the PIP has to fetch attributes. This allows for modular adding and removing of PIPs depending on

the particular implementation.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 67

P a g e | 67

 There are 3 main PIPs that were made and used in this solution. The

SmartieLocalEnvironmentPIPEngine used to fetch local environmental attributes. These are basic

time related attributes (current date, current time...) that were taken from and defined as stated in

the OASIS XACML standard (OASIS, 2013) These are attributes that can be generated locally

without the need to connect to a service or fetching from a database. This is the simples PIP to

implement because it does not require to extract any attributes from the request. The

SmartieExternalEnvironmentPIPEngine is used for fetching resource attribute from the database

that contains sensor data and for fetching attributes (external, resource and subject) from a database

that has attribute data stored. This is used to simulate fetching data from a source other than the one

containing the resource and although the actual database is the same (Cassandra) the database

manager is different and the data is stored in different tables under different keyspaces so it is

effectively a different source. This could have been split into two separate PIPs but as the

functionality for both are similar, they were combined into one single PIP. Finally the

RestAtributePIPEngine is used for fetching attribute data from a REST service. This simulates

fetching data from external sources. Naturally, this list has to be configured/modified or expanded

for it to be used by other systems as these are built for testing purposes. All of these can be seen in

a class diagram in Figure 21. The abstract SmartiePIPEngine class is extended from the PIP

ConfigurableEngine interface provided by AT&T project (AT&T, 2014) and contains functionality

common to the children classes that extend it.. The implementation of the ConfigurableEngine

allowed for easier utilisation of the PDP's functionality.

 These PIPs cover all the scenarios for generating attributes, fetching them from a database

with direct access and fetching attributes from outside services (via REST service). These therefore

provide sufficient functionality for testing but can also easily be adopted to work in other scenarios.

The list can also be expanded and provide connection options over different technologies, to

different services, etc.

68 Solution description

68 | P a g e

Figure 21. Class diagram of the developed PIPs

University of Aveiro, Department of Electronics, Telecommunications and Informatics 69

P a g e | 69

PDP	(Policy	Decision	Point)	

 The PDP is the most crucial and complicated component needed for a XACML ABAC

access control implementation. The purpose of the PDP is to evaluate requests using policies and

returning a response which contains the decision of the evaluation. The rules defined in the

standard (OASIS, 2013) are extensive and use many operations allowing the policies to be well

defined and flexible. This, of course, makes the implementation more complex. The evaluation of

policies was taken from the AT&T (AT&T, 2014) project and an implementation was built to suit

the purposes of this solution. The building of the PDP required making configuration, connecting

the PRP to get the policies and building the workflow used for evaluating against a set of policies.

The basic workflow of the PDP consists of the following:

1. Receive request;

2. Fetch policies from PRP;

3. For every policy ;

3.1. Begin evaluation;

3.2. If attribute is missing for evaluation;

3.2.1. fetch needed attributes from list of PIPs;

3.3. evaluate request;

3.4. store result;

4. If a positive response exists;

4.1. Return that response and positive result;

5. If Every result is negative;

5.1. If there was a valid response (a policy applied for the request);

5.1.1. Return that response and negative result;

5.2. Else;

5.2.1. Return empty response and negative result;

Figure 22. PDP Workflow

 As seen in the workflow in Figure 22. the PDP is set to allow the execution of the request if

there is at least one policy that gives it permission. The workflow was built in this manner as it

simplifies the process and policies that have to be made for a system.

 The policies therefore have to be written with this workflow in mind. All policies should

deny permission by default and allow only if the conditions are met. This was made as it

accommodates most scenarios and reduces the complexity of using the solution.

70 Solution description

70 | P a g e

Request	Parser	

 The Request Parser is an entity that checks the validity of the request sent to the PEP and

converts the request from the raw string format into a Request object so it can be used by the

solution. It also recognizes if the request is in JSON or XML format so the system supports the use

of both.

PAP	(Policy	Administration	Point)	

 The PAP is and entity that is used to manage the policies used. It has functionality for

adding, removing and modifying policies. To access the PAP a simple web application is used as

an interface on which the administrator can manage the policies used. The access to the

administrator functionality is enforced by the system itself. A PEP is implemented and is called

whenever a policy is trying to be removed, added, or modified. XACML policies were written and

placed on the system before the PAP functionality was added and can also be managed by the PAP

the same way as any other policy. This therefore brings the functionality of the system "full circle"

as it can be said that it is an Access Control framework which enforces Access Control on itself.

4.3 Integration	scenarios		

 This section will describe two possible ways that the solution is predicted to be utilized in

order to enforce access control in a target system. It will also provide a critical overview by

presenting security issues and threats, and proposing solutions for solving those issues. These

scenarios have some common characteristics and requirements but also differ in the benefits they

offer and issues that need to be dealt with. The scenarios that are shown are not the only

possibilities but were determined to be the best ones as explained in subsections 4.3.4 and 4.3.5. A

discussion regarding scalability and possible distribution over more machines, along with other

issues will be given later in this subsection.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 71

P a g e | 71

4.3.1 Integrated	solution	

Figure 23. Integrated solution scenario schema

 In Figure 23. the schema of the "Integrated solution" scenario can be seen. It is the first of

two integration scenarios and it requires that the target system has a Redis database running and

available to be used by the Access Control component. As the solution is completely integrated in

the target system, it allows the solution to be configured very precisely for the target system. The

implementation of the PEP is done by providing it with a request and an object responsible for

fetching the resource. This removes the responsibility of decision making process from other

entities and is a "clean way" of enforcing access control compared to relying on the target system

to make the correct decision depending on the evaluation result. Other that providing and

configuring the Redis database for storing policies additional configurations depend on the needs of

the target system as these additional components are not strictly necessary as explained in

subsection 4.2. If the system requires fetching of attribute data from external sources e.g.: subject

attributes for an internal or external data source a PIP needs to be configured to connect to that

system and fetch the required data. The same applies to fetching resource data from a database

containing resource data. As connections to outside sources and connections made directly to the

resource for getting resource attributes are a security issue, these matters have to be dealt with. This

matter will be analyzed in more detail later in this Section. The administration entry point is a

simple Web App that offers functionality for managing the policies. Also, the access to this

functionality is secured and managed by using the same PEP as the Access Control system enforces

access control over itself.

72 Solution description

72 | P a g e

4.3.2 Using	the	solution	as	a	service	

Figure 24. Schema of using the solution as a service

 Figure 24. shows the architecture of the second integration scenario. The main difference

between this one and the first one is that the Access Control system is not integrated into the Target

System, but is now being called from outside through a REST service. For basic use this scenario

requires minimal configuration and unlike the first one, it does not require a Redis database for

storing policies. In this scenario the Access Control Service is therefore, totally detached from the

Target system meaning that the responsibility of running and maintaining the service is removed

from the Target system, and is mostly diverted to the entity providing the service. This makes

integration simpler and is the main benefit over the first integration scenario.

 The PEP that is integrated has the same interface and provides the same functionality. If it

needs to fetch attributes from external sources, those PIPs need to be implemented and integrated in

the Access Control service beforehand and configured to connect to the correct services in a secure

manner. Unlike the first scenario if the Access Control needs to fetch resource attributes the Target

System needs to provide an end point (connection for a REST service) that provides a method for

fetching resource attributes.

4.3.3 Comparison	

 The integration scenarios share some characteristic and differ in others. The main

difference is in the fact that the first one is a locally integrated solution while the other is using the

University of Aveiro, Department of Electronics, Telecommunications and Informatics 73

P a g e | 73

Access Control as an outside service. This difference means that the first scenario is more secure

but relies on the target system. It can be configured and modified to more precisely accommodate

more specific uses, but requires to have a Redis database and cannot be used in the same way by

multiple systems if they are distributed on multiple machines/locations. This scenario therefore is

suited for closed systems that do not require connections to outside services making it more secure.

The second scenario is simpler to integrate for a simple and basic use. It relies on the outside

Access Control system to deliver the decision which therefore has limitations regarding

configurations/modifications but can be monitored and updated easily and it removes a lot of the

responsibility from the target system. It also requires an implementation of a REST service that

provides resource attribute data. The second scenario therefore comes with the more security issues

regarding all the external connections that eventually need to be solved and are going to be

addressed in the next part of this Section.

4.3.4 Scalability,	Distribution,	Security	Issues	and	threats	

 In this subsection issues are identified that were discovered while developing this security

component and from lack of specifications in certain areas of the OASIS XACML

standard(OASIS, 2013). These issues are addressed and solutions are proposed in subsection 4.3.5.

 Communication between components and the distribution of components on several

machines is not defined in the standard(OASIS, 2013)(Daniel Díaz-López, 2015). Without

enforcing some security measures this leaves thing open to security issues with Confidentiality of

access requests and authorization decisions. It is important to put appropriate safeguards in place to

protect decision requests and authorization decisions from several attacks. There are several attacks

that could be possible. Examples include(Keleta, 2005)(Daniel Díaz-López, 2015): unauthorized

disclosure, message replay, message insertion, message deletion and modification. Considering a

simple scenario in a XACML-based security component or system, the PEP sends an XACML

request to the PDP(Keleta, 2005). The standard does not define any mechanism which would

ensure that messages were not changed during communication or that the sender and receiver are

indeed the ones they represent to be. Without any that connection is not safe from attacks. For

example, if an malicious party manages to gain access to the communication channel between the

PDP and the PEP, that party would be able to intercept requests and results. This means that it

could monitor, modify or even fake requests and responses. Effectively this means that it could

potentially gain control over all decisions made and therefore control who gets access to resource.

This means that it could monitor the traffic and gain insight into what is happening and collecting

information that is potentially confidential. This unauthorized disclosure of information causes a

compromise to the privacy of the users and the system itself.

74 Solution description

74 | P a g e

 Disclosure of information such as the requestor’s identity in the decision request has a huge

impact to the privacy of the users in the system. Appropriate safeguards should be adequately put

into force to prevent the communication channel between the PDP and the PEP from being

intercepted by unauthorised malicious third parties. In addition the storage mechanism for policies

has to be protected against any unwanted connections. Connections need to be limited only to other

components that need to access the policies (PRP, PAP).

 These integration scenarios propose two different methods of integration but they also

reveal some issues, mainly regarding security. As the purpose of this solution is to provide the

means to enforce access control and therefore security, these issues must be dealt with if the

solution is to be used. The main issues are regarding the way external attribute data is fetched. This

is achieved through an open REST connection/service which is insecure as the client cannot be

certain it is communicating to the right service, the service does not know if it is responding and

sending data to the right client and also, there is no guarantee that the message was not tampered

with. The connections that are of concern are the connection to external services providing data in

both scenarios, and the connection between the PEP and Access Control Service, and the one

between the Access Control Service and the Attribute providing service located on the Target

System. These connections need to be secured in order for the system to be secure.

 A simple and effective way of securing these connections and solving these issues is by

implementing the REST services over a HTTPS connection e.g. SSL(Secure Sockets

Layer)/TLS(Transport Layer Security). Using this method provides the authentication to both

parties involved in the communication and protects the privacy and integrity of the data being

exchanged between them. This would be sufficient to solve these issues because the Server and

Clients could trust they are communicating with one another and that the messages are not being

tampered with.

 Other options like OAuth 2 and OpenID Connect can be used on-top of TLS and provide

additional benefits when considering connection with other systems but this work will not go into a

detailed analysis of those options nor TLS. The benefits include delegation of the evaluation

process and utilizing the tokens used by OAuth and Open ID Connect when connecting to other

systems and , for example, fetching attribute data.

 The last issue is related to fetching resource attribute data in both scenarios. Although this

is not necessary a security issue it has to be mentioned as it is a potential point of access through

which sensitive data could be fetched. This point should be different than the one used normally to

access resources and it should limit the access only to parts and data that are really needed for the

evaluation of policies and avoid fetching large quantities of data and sensitive data. Of course,

University of Aveiro, Department of Electronics, Telecommunications and Informatics 75

P a g e | 75

depending on the policies used sensitive data has to be accessed for evaluation purposes, and the

PDP (and therefore the PEP) will not return any additional data so it is not a true security issue.

This is why the issue is not necessarily a security issue but has to be addressed with caution.

4.3.5 Solving	issues	and	securing	connections	

 This subrection addresses the issues that were identified in subsection 4.3.4.

 Regarding distribution and grouping of components, the components that should be

grouped are: PDP, Context Handler, PRP and PIPs. These components are the essential

components needed for evaluating the requests. Separation of these components would not bring

any benefits, instead it would bring only connection issues and possibly diminished performance.

The PIPs can be connected to external services and fetch attributes from outside the system but

should not be separated. Additionally, connection points to outside components should also be

added to this group. These would include components like web interfaces for the PAP, REST

service components and any other component over which the communication with the access

control service is done. Although this group is not an essential part to the evaluation process they

are endpoints that revolve around the database containing policies. Keeping these together with the

rest of the group means keeping communication between components simple, fast and safe without

the need of implementing additional safety measures. The PEP needs to be on the machine that is

integrating access control.

 This method of grouping these components brings up issues regarding scalability.

Normally a distributed system scales much better that a non-distributed system and if the

components cannot be separated it is hard to have a distributed system. The solution to this would

revolve around the replication capabilities of the Redis database used to store policies. The

database can be replicated on multiple machines and multiple instances of the solution can run on

all of those machines. This would then scale as needed (Daniel Díaz-López, 2015). For this to work

with the REST service an additional component would be needed. It would have functionality for

handling multiple instances and delegating the workload efficiently. This of course does not have

to rely on the Redis database and can be exchanged for another storage solution if a better one is

found. Because this can be viewed as a service for evaluating requests against policies, it is

therefore a single "black box".

 Along with scalability, the parallelisation of the process is an issue that has to be

considered. This can be achieved using the same principle as before. Having multiple instances of a

PDP and providing each one with a subset of policies and running everything parallel is an easy

and straightforward way to deal with the parallelisation issue. Long evaluation times in the case of

76 Solution description

76 | P a g e

a large set of policies can therefore be split in a fraction of the time by dividing the work and

aggregating the result at the end.

 Some of the issues with connections were identified in the work of (Keleta, 2005). Their

solution was to have a centralized entity that would connect to every component over TLS and

distribute a token and encrypt messages. This would ensure that the message is unmodified and that

the request comes from a authorised and verified source. Because of the grouping of components

this is somewhat unnecessary and because of the encrypting it can present unwanted overhead.

Figure 25. Architecture with marked SSL/TLS connections

 The issues in the internal communication between the PDP, Context Handler, PRP and

PIPs are no longer an issue if those components are grouped together. The remaining connections

that present an issue are the connection between the PEP and the Context Handler and between the

PIPs and external sources (including the resource when fetching resource attributes). The problems

with these connections are regarding message integrity and validity of both sides. As these

communications are most likely be over some kind of internet connection (for example, over a

REST service) the technology to secure them already exist and are proven to work well. A simple

and effective way of securing these connections and solving these issues is over a HTTPS

connection (SSL/TLS)(Daniel Díaz-López, 2015)(Keleta, 2005). Using this method provides the

University of Aveiro, Department of Electronics, Telecommunications and Informatics 77

P a g e | 77

authentication to both parties involved in the communication and protects the privacy and integrity

of the data being exchanged between them. This would be sufficient to solve these issues because

the Server and Clients could trust they are communicating with one another and that the messages

are not being tampered with.

 Figure 25 shows the architecture, distribution of components and has the SSL/TLS

connections marked where they are required to be for a secure system.

 Other options like OAuth 2 and OpenID Connect can be used on-top of TLS and provide

additional benefits when considering connection with other systems but this work will not go into a

detailed analysis of those options nor TLS as those technologies are already familiar and known

solution for these types of problems. The additional benefits include delegation of the evaluation

process and utilizing the tokens used by OAuth and Open ID Connect when connecting to other

systems and , for example, fetching attribute data.

 The solutions presented for external connection issues were not implemented in the final

solution and are only presented as a proposed solution. The final developed solution therefore does

not support SSL/TLS connections over developed REST services and clients.

4.4 Development	process		

 This section will briefly describe the development process used while developing this

solution. The process followed the methodology of building a basic and simplified version of the

systems core early, and incrementally expand, test and refactor the existing solution until a fully

functioning solution is reached. In the early stages of development the requirements for potential

systems like SMARTIE were taken into account and as a result the solution's scope was

determined. The resulting scope allowed for the solution to implement a subset of functionalities

mentioned in the OASIS XACML standard, but allow for the solution to be expanded.

 The solution was developed in several stages. In the initial stages the basic architecture was

made and the databases were configured. The Database Managers were made to provide easier,

additional control and limit the possible interactions with the databases. The databases were tested

and an initial schema was setup for testing purposes.

 After that, the development of the Access Control framework began. As development of a

PDP "from scratch" was unrealistic in the timeframe intended for this work, a number of base

projects were considered. After some consideration the AT&T git hub project (AT&T, 2014) was

selected as a base project from which some core functionality was used. As the project was in a

"beta" state, it lacked documentation and made the implementation, and especially the

78 Solution description

78 | P a g e

configuration, very difficult. Because testing proved that some core functionality was working and

because there were not better options available at the time, this project was chosen. The main

functionality utilized was the evaluation functionality of the PDP and parsing functionality for the

verifying requests and policies.

 After the project was tested, the basic architecture of the solution was made and the

development of components began. The first component that was built was the PDP. After an

initial implementation was made and tested, a PRP and basic PEP were built. At this point, a list of

basic request and policies were made. This list was used as a base, which was later expanded in

order to test other components like the PIPs and different evaluation operations. Basic PIPs were

made and connected to the existing components. After this was complete, a working prototype with

all of the essential components, except the PAP, was made. The PAP was the last component made

as it is not essential for testing purposes, as the focus of the work was on having a framework

which would evaluate requests and policies and not for building policies and requests.

 After running tests locally, confirming that the system is working correctly and giving

correct responses, the next stage involved the creation of a REST service and running tests from

other systems. The main test that will be presented was done at this stage. The last component built

was the PAP Web Application for managing policies. The last stages of development included

refactoring and improving the solution, expanding the list of PIPs, expanding the PDPs evaluation

functionality and integrating and testing with other systems. The results of the testing are shown in

section 5.

4.5 Potential	improvements	

 At the end of subsection 4.3 a number of issues were raised regarding connections in the

system. The developed solution at that point contained open and therefore unsecure connections to

the REST services. These connections are a primary area of concern and have to be solved by

implementing secure connections as explained in the same subsection 4.3.

 Another area that would need improvement is the list of possible logical operations

available to the PDP. The current versions does not support some operations with certain data

types. For example: more-equal and less-equal operations are not available for date/time data types.

This list is not complicated to expand as it consists of extending the list of classes providing that

functionality already available in the same way as they were implemented.

 The system also does not provide the possibility for multiple connections as it crashes in

the case of multiple simultaneous requests. This could be solved by running multiple instances of

components and/or having a buffer for requests. Scalability and parallelisation of the evaluation

University of Aveiro, Department of Electronics, Telecommunications and Informatics 79

P a g e | 79

process is discussed in subsections 4.3.4, 4.3.5 . Improvements would require running multiple

instances of the system or multiple components of the PDP and having additional components

handling and delegating the workflow efficiently. This would make the solution scalable and make

the evaluation process run in parallel.

 The last improvement would be to provide the functionality for having multiple clients

using the same service and distinguishing the policy lists used for everyone. This also applies for

the PAP interface. This way of using the system could bring issues with the Redis database and its

memory limitations. This issue could be solved by hosting the service on machines with sufficient

memory and/or having a different way of storing policies. The closest replacement in that case

would be CouchDB. Performance issues with scaling should not occur as all of the internal

components can run as multiple instances and replication characteristics of Redis are sufficient.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 81

P a g e | 81

5 Proof of concept
 This section will describe the test scenarios that were created to test the system and the test

results will be presented. Along with that a description of a possible integration in SMARTIE and

SCoT (smart cloud of things) will be given.

 IoT applications are the systems that this solution was developed for. The solution can be

integrated and used by other applications but IoT applications, and more specifically SMARTIE,

will be considered as the main target system.

5.1 Testing	

 In this subsection the test Scenarios will be described and test results will be shown and

explained. The tests were designed to test the functionality, validate that the system is working as

intended and to test the performance characteristics. Also, both integration scenarios that are

described in subsection 4.3 were used to verify that they work and to make a performance

comparison. The tests for the second integration scenario ("Integration as a service scenario") were

done with by making calls from a SMARTIE component and using requests and policies already

used by the system. This was done to verify that the solution and the integration scenario are

working as intended when utilized by another system and also because SMARTIE was the primary

targeted use case scenario. A brief description of the component is given in subsection 5.2.

 Two types of tests were performed on every test scenario. The first was a qualitative test

running a variety of requests. The goal of this test was the verification of functionality, or to put

more precisely, verifying that the system is behaving as expected and returning the expected

responses. The requests vary in the complexity and also on the PIPs that their evaluation requires.

Some do not require fetching additional attribute data while others require attribute data from

multiple sources so all aspects and components of the developed solution were tested . The second

test was a performance type of test and it consisted of repeating requests many times, some with a

positive and some with a negative response. The response time was timed and because the

responses were repeated, it was possible to extract a reliable result. It also has to be noted that the

developed solution does not incorporate any type of caching so the repetition of the requests did not

result in inaccurate results. It also has to be noted that performance was not a primary issue or

concern while developing this solution, therefore improving performance could be possible. The

request that were used for testing are named with the expected result added as a suffix. This means

that a request with the suffix "_permit" or "_allow" has the expected result TRUE and a request

with the "_deny" has the expected result FALSE.

82 Proof of concept

82 | P a g e

 The last thing that has to be mentioned is that these tests did not include testing of the PAP

Web Application/interface and PAP component. This is because the PAP is not part of the

request/policy evaluation and the test over those parts were done manually by interacting with the

PAP Web Application.

 After these tests, additional tests were made while integrating the developed solution in

SCoT. As these tests were not timed and were done for the purpose of verifying that the integration

works, these tests and their results are not included in subsections 5.1.2 and 5.1.3 This is explained

in more detail in subsection 5.3.

 The machine used for running local tests and for running/hosting the solution as a service

is a HP proBook 4530s with a 8,00 GB of RAM, Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz

2.50 GHz processor package, running the Windows 7, 64bit operating system.

5.1.1 Local	integration	scenario	testing		

 This scenario tested the local integration variant of the developed solution. From a

performance perspective this is of course an ideal scenario so the results should reflect this.

Name Expected result Result

1 request1_Permit.json TRUE TRUE

2 request1_Deny.json FALSE FALSE

3 request2_Permit.json TRUE TRUE

4 request2_Deny.json FALSE FALSE

5 request3_Permit.json TRUE TRUE

6 request3_Deny.xml FALSE FALSE

7 request4_Deny.xml FALSE FALSE

8 request5_Deny.xml FALSE FALSE

9 request6_Allow.xml TRUE TRUE

10 request7_Allow.xml TRUE TRUE

Success Percentage 100%

Table 7. Qualitative test results of the local integration scenario

 Table 7 shows the results of the qualitative test in the "integrated solution" integration

scenario described in subsection 4.3.1. This was done in a local environment. This means that the

requests were created and sent for evaluation on the same machine on which the evaluation was

done.

 Table 8 shows the results of the performance test done in the same environment and with

the same integration scenario as the previous one, shown by Table 7. The results of these tests will

be discussed in subsection 5.1.3.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 83

P a g e | 83

Table 8. Performance test results of the local integration scenario

Name Expected result Result Response time (ms)

1 request_permit.xml TRUE TRUE 60

2 request_permit.xml TRUE TRUE 41

3 request_permit.xml TRUE TRUE 52

4 request_permit.xml TRUE TRUE 39

5 request_permit.xml TRUE TRUE 40

6 request_permit.xml TRUE TRUE 39

7 request_permit.xml TRUE TRUE 47

8 request_permit.xml TRUE TRUE 35

9 request_permit.xml TRUE TRUE 29

10 request_permit.xml TRUE TRUE 30

11 request_permit.xml TRUE TRUE 33

12 request_permit.xml TRUE TRUE 28

13 request_permit.xml TRUE TRUE 27

14 request_permit.xml TRUE TRUE 28

15 request_permit.xml TRUE TRUE 28

16 request_permit.xml TRUE TRUE 32

17 request_permit.xml TRUE TRUE 35

18 request_permit.xml TRUE TRUE 34

19 request_permit.xml TRUE TRUE 35

20 request_permit.xml TRUE TRUE 40

21 request_deny.xml FALSE FALSE 34

22 request_deny.xml FALSE FALSE 29

23 request_deny.xml FALSE FALSE 32

24 request_deny.xml FALSE FALSE 24

25 request_deny.xml FALSE FALSE 28

26 request_deny.xml FALSE FALSE 30

27 request_deny.xml FALSE FALSE 27

28 request_deny.xml FALSE FALSE 31

29 request_deny.xml FALSE FALSE 29

30 request_deny.xml FALSE FALSE 28

31 request_deny.xml FALSE FALSE 28

32 request_deny.xml FALSE FALSE 27

33 request_deny.xml FALSE FALSE 30

34 request_deny.xml FALSE FALSE 26

35 request_deny.xml FALSE FALSE 28

36 request_deny.xml FALSE FALSE 35

37 request_deny.xml FALSE FALSE 33

38 request_deny.xml FALSE FALSE 34

39 request_deny.xml FALSE FALSE 43

40 request_deny.xml FALSE FALSE 43

 Average: 33,775

84 Proof of concept

84 | P a g e

5.1.2 Integration	as	a	service	scenario	testing	

 This scenario tested the "Using the solution as a service" integration scenario. The

connection was done over a local network so the client and server machine had a direct connection.

This scenario therefore does not take into account latency and other issues which would occur with

a more realistic connection scenario.

Name Expected result Result

1 request1_Permit.xml TRUE TRUE

2 request1_Deny.xml FALSE FALSE

3 request2_Permit.xml TRUE TRUE

4 request2_Deny.xml FALSE FALSE

5 request3_Permit.xml TRUE TRUE

6 request3_Deny.xml FALSE FALSE

7 request4_Permit.xml TRUE TRUE

8 request4_Deny.xml FALSE FALSE

9 request5_Permit.xml TRUE TRUE

10 request5_Deny.xml FALSE FALSE

11 request6_Permit.xml TRUE TRUE

12 request6_Deny.xml FALSE FALSE

13 request7_Permit.xml TRUE TRUE

14 request7_Deny.xml FALSE FALSE

15 request8_Permit.xml TRUE TRUE

16 request8_Deny.xml FALSE FALSE

17 request9_Permit.xml TRUE TRUE

18 request9_Deny.xml FALSE FALSE

19 request10_Permit.xml TRUE TRUE

20 request10_Deny.xml FALSE FALSE

Success Percentage 100%

Table 9. Qualitative test results of the "Using the solution as a service" integration scenario

 Table 9 shows the results of the qualitative test in the "Using the solution as a service"

integration scenario described in subsection 4.3.2 The evaluation was done on the same machine as

in the tests shown in subsection 5.1.1, but the requests were created on a separate machine and sent

via a REST call.

 Table 9 shows the results of the performance test done in the same environment and with

the same integration scenario as the previous one, shown by Table 9. The results of these tests will

be discussed in subsection 5.1.3.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 85

P a g e | 85

Table 10. Performance test results "Using the solution as a service" integration scenario

Name Expected result Result Response time (ms)

1 request_permit.xml TRUE TRUE 55

2 request_permit.xml TRUE TRUE 58

3 request_permit.xml TRUE TRUE 72

4 request_permit.xml TRUE TRUE 99

5 request_permit.xml TRUE TRUE 80

6 request_permit.xml TRUE TRUE 79

7 request_permit.xml TRUE TRUE 86

8 request_permit.xml TRUE TRUE 102

9 request_permit.xml TRUE TRUE 127

10 request_permit.xml TRUE TRUE 85

11 request_permit.xml TRUE TRUE 118

12 request_permit.xml TRUE TRUE 75

13 request_permit.xml TRUE TRUE 83

14 request_permit.xml TRUE TRUE 132

15 request_permit.xml TRUE TRUE 121

16 request_permit.xml TRUE TRUE 73

17 request_permit.xml TRUE TRUE 57

18 request_permit.xml TRUE TRUE 58

19 request_permit.xml TRUE TRUE 72

20 request_permit.xml TRUE TRUE 59

21 request_deny.xml FALSE FALSE 50

22 request_deny.xml FALSE FALSE 46

23 request_deny.xml FALSE FALSE 50

24 request_deny.xml FALSE FALSE 75

25 request_deny.xml FALSE FALSE 49

26 request_deny.xml FALSE FALSE 48

27 request_deny.xml FALSE FALSE 57

28 request_deny.xml FALSE FALSE 51

29 request_deny.xml FALSE FALSE 39

30 request_deny.xml FALSE FALSE 47

31 request_deny.xml FALSE FALSE 59

32 request_deny.xml FALSE FALSE 60

33 request_deny.xml FALSE FALSE 48

34 request_deny.xml FALSE FALSE 58

35 request_deny.xml FALSE FALSE 56

36 request_deny.xml FALSE FALSE 43

37 request_deny.xml FALSE FALSE 48

38 request_deny.xml FALSE FALSE 47

39 request_deny.xml FALSE FALSE 65

40 request_deny.xml FALSE FALSE 47

 Average: 68,35

86 Proof of concept

86 | P a g e

5.1.3 Test	results	

 The qualitative tests in both scenarios show that the system performs as predicted. These

also validate that the fetching of additional data worked. It can be concluded that the PIPs and all of

the other components are working as intended, of course, from a functional perspective.

 The performance tests show that the second scenario has double the response times

compared to the first one, which is to be expected because of the overhead a REST service scenario

introduces. This difference in response time should increase in situations where the machines are

further away from each other, with high network traffic and other network related problems.

 These tests showed that the developed solution performed as intended from a functional

perspective and satisfactory from a performance perspective, meaning that the overhead for the

response times is acceptable for integrating in other systems. The tests that were done by making

calls from the SMARTIE component were also a "proof of concept" test as the primary targeted

system was SMARTIE. As the test show, the solution performed as predicted using requests and

policies from the target system.

5.2 Integration	with	SMARTIE	

 This section will give a general overview of SMARTIE and the SmartData platform from

the information that was available. In Section 5.2.1 a brief description will be given of the state of

the project during initial stages of doing this dissertation and Section 5.2.2 will give a critical

overview and propose solutions that would improve upon the current implementation.

5.2.1 Current	state	and	issues	

 SmartData is a platform that is being developed as a subsystem inside the SMARTIE

project and it is responsible for storing sensor data and enforcing access control over the data and

sensors. The system is being developed with scalability in mind and offers important functionality

to SMARTIE. As the solutions for the problems this project faces are not readily available, and the

final solution is meant to be used in systems used by many other systems and applications, using

private and confidential data. Because of this, the system needs to provide a high level of security

and availability.

 In the current state, SmartData enforces access control for fetching data by encrypting data

and allowing it to be decrypted only by users that have permission to access it. This is done by

using a combination of IBAC and RBAC. The policies that contain the information on which users

can access the data are stored together with the data itself ("sticky policies"). This means that all

University of Aveiro, Department of Electronics, Telecommunications and Informatics 87

P a g e | 87

data needs to be fetched in order to evaluate the policy on it. This has a drawback in case of

requests that result in denying access. If one user or a set of users send requests for a large quantity

of data, for which they do not have access to, all of that data needs to be fetched, policies need to

be extracted and evaluation has to be done on every set of data. This is a big performance overhead

as these operations require significant time, so cumulatively it could be an opening for a DoS

(Denial of Service) type of attack. This attack is just an example and is maybe not the only one that

is possible.

 Another issue is flexibility. In the case of changing access policies for old data, it requires

fetching all the data for which the access policy needs to be changed and updating of the policies

attached to it. In the case of having a large policies, they contribute to a significant piece in the

actual data being stored bringing unwanted overhead to the system. The current system is not

flexible enough to expand the functionality so it supports updating of policies. As this kind of use is

not predicted and is not a requirement, the system is still secure because the data will not be

decrypted unless the subject wanting to access the data has permission to do so. This system in its

current state therefore satisfies the current needs but is not flexible enough to accommodate

significant changes.

 The publishing of data is done with a publish/subscribe type of workflow. Although this

type of solution is appropriate for this type of scenario, it is somewhat limited on the type of

conditions that can be integrated in the evaluation process. This comes back to the administration

and system modifications usually required to accommodate complex conditions, decision making

and also managing and updating of roles and other data depending on changes that take place with

time.

 Although the system is somewhat limited with flexibility and could have issues regarding

overheads with administration, the planned product covers all of the requirements needed for it to

function in the intended implementation.

5.2.2 Proposed	implementation	

 As stated in Section 5.2.1, the solution developed for SMARTIE offers a good solution but

has some potential problems, mainly regarding flexibility. This section will propose solutions for

these issues by integrating the solution developed in this work.

 A solution for the first issue mentioned (fetching encrypted data, "sticky policies") would

be removing policies from the data and storing them in the policy database used by the solution

developed in this work. The policies would need to be rewritten to have more descriptive and

generic rules instead of regarding specific data. This would offer greater flexibility and because the

88 Proof of concept

88 | P a g e

policies could be managed on a single point, it would remove the need to always fetch data while

evaluating policies. It would also mean that one policy could be responsible for more sets of data

reducing the number of evaluations required to access large sets of data. The last benefit would be

reducing the amount of data needed to be stored because the policies would be stored on a different

database and also because there would not be the need of making many copies of the same types of

policies but having one instead.

 Another solution for this issue would be simply putting a PEP on a place in the workflow

that is before the current enforcement point. That would mean a place just before the data together

with the policies are fetched. These policies would have a more global scope while the "sticky

policies" would have a more individual scope, centred around the data they are attached to. This

however means managing of two systems, which can be a significant drawback.

 The performance tests shown in subsection 5.1.2 were done using policies and requests that

are used by the current "sticky policies" solution and REST calls were made from that exact

SMARTIE component. This means that the integration scenario by using the solution as a service

was tested on this component. As the SMARTIE project is not fully developed and not in

production, it was not a "real world" test but it tested the integration scenarios and showed that the

system worked as predicted.

 The second proposal would be aimed to improve the current publish/subscribe solution for

publishing of data. By integrating the solution developed for this work into the current one it would

gain the flexibility for having more elaborate conditions and also reduce the amount of

management needed to make the system more secure in the long term. These integrations could be

done with either integration scenarios described in Section 4.3 but because there is a possibility of

sharing some policies, attribute sources and other functionality the second scenario would be easier

to integrate and would offer an overall better solution.

5.3 Integrating	with	SCoT	(Smart	Cloud	of	Things)	

 This section contains a brief overview of the SCoT (Smart Cloud of Things) platform,

presents the issues that were identified and proposes a solution for those issues. This section will

not go into detail about the architecture of SCoT, its functionalities and components, because it is

not relevant or important to this work. Additionally, the fact that the architecture of the target

system (in this case SCoT) can be looked at as an unknown factor is proof that the developed

solution is flexible and can be used by a variety of target systems. This section will be focused on

the issues discovered regarding access control, proposing a solution and describing the integration

process and tests.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 89

P a g e | 89

 SCoT is a platform used mainly for research purposes at the Instituto de Telecomunicações

facilities in Aveiro. It is in still in its development stages and is a test bed for using sensors,

networks, building applications on top and providing data to services.

5.3.1 Current	state	and	issues	

 SCoT currently implements access control by giving access keys to subjects that want to

access the data bus. Together with those keys, complex regular expressions are generated which are

then used to check if the provided key can read from a device of publish data as a device. These

regular expressions are hard to read and are unintuitive. This means that maintenance is not easy

and security faults could pass unnoticed by the system's administrator. Another issue is flexibility.

As the regular expression currently only check if the key has read/write permissions over the

requested device, this is equivalent to a simple XACML policy. Changing the functionality and

implementing different rules of evaluation or policies is not trivial therefore the system is not

flexible. Distributing of keys, registering of users and devices is currently done manually. As well

as being automated, this process has to be made secure.

5.3.2 Integration	of	the	developed	security	component	

 Integrating the developed security component and using it as a REST service was the

implementation scenario that was used, as it required the least effort, provided quick results and

almost no modifications in SCoT.

 As can be seen in Figure 26 the PEP was integrated in the Device Management component.

This component was suited to nest the PEP inside it because it is already used to evaluate requests.

As it is built in Python, a library needed to be made that mirrored the one containing the RESTPEP

and described in subsection 4.2. After the component, policies and a template for a JSON XACML

requests were made the last step was to configure a RESTPIP to connect to SCoT and fetch

additional resource and subject attributes. The integration was straightforward and tests were made

to verify that the system is performing as predicted.

 The policies that were made do not cover all of the rules and types of requests that are

currently required to run on the system but 2 main ones were made. The first one being: a subject

that is also the owner of a device can always perform read and write operations; and the second one

being: a subject can perform read operations if it is not the owner of the device only when it

provides a key for reading from that particular device. Other policies would include giving all

permissions to a subject that is an administrator and verifying if a device can be registered but they

weren't implemented as the goal was to provide a proof of concept.

90 Proof of concept

90 | P a g e

Figure 26. SCoT architecture with the developed security component integrated

 An important thing to note about this integration is that the system needed to provide the

PEP with a request with minimum data. This data included only a key, requested action ("read" or

"write") and a device path (string with defined path for device structured similar to a URL link).

The Access Control Service fetched all additional attributes (permissions, device owner, key owner,

etc.) by itself over a RESTPIP. Although, in this case, the connection for fetching additional

attributes was done back to SCoT over a REST service, if there was a need for it, attributes could

have been fetched from other external services. From the perspective of the Access Control Service

SCoT is an external system/service and therefore this proves that the developed solution can easily

be integrated into systems other than SMARTIE and is therefore not limited to one use-case.

 This integration shows that the developed solution is easy to integrate as the coding

modifications were minimal. The major benefits for using the developed solution are: flexibility

and lower maintenance. Additional policies can be added without going through code or shutting

University of Aveiro, Department of Electronics, Telecommunications and Informatics 91

P a g e | 91

the system or service down. By adding additional rest connections and/or PIPs, more complex

policies can be written and complex rules and extensive rules can be enforced.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 93

P a g e | 93

6 Conclusion
 This Section will give a brief overview and final remarks on the work that has been done

and give thoughts and direction for future work.

6.1 Final	remarks	

 Companies such as Google, Facebook, Amazon but also other organisation like in the EU

in case of SMARTIE, are investing a lot of time, effort and money in solving the challenges

regarding IoT, Big Data, Access Control and Security in all of these areas. These areas are

currently on the forefront of technological advancements and together with some other fields like

AI (Artificial Intelligence) are considered areas that will bring the next push of advancements in

technology in general. Security is an often an overlooked area but still needs to be addressed in

order to make the systems safe to use. Projects like SMARTIE offer great potential for applications

that could significantly improve people's lives and security of personal information and critical

systems is vital to making those real.

 The solution that has been developed, although obviously not at production level is a proof

of concept and demonstration of utilizing ABAC and the XACML standard in a IoT scenario

environment, demonstrating many benefits compared to other systems including: ease of

integration, flexibility, low maintenance, etc. Along with IoT scenarios, the applications that it

could be utilized in are numerous. Just naming one example, with web applications and the

OWASP (Open Web Application Security Project) top ten list of security issues, ABAC effectively

solves half of them43. Therefore, a standardised and simple to use solution could solve these issues

with ease and minimal modification having significant impact on the level of security offered by

basic services and applications.

 The other benefit of utilizing ABAC and XACML is also longevity. Because of the

flexibility offered by the diversity of policies that can be written and enforced, and the open nature

of the actual resources, security could be enforced over virtually anything from data, applications,

services to sensors, actuators, locations... This open nature is probably the most significant

contributor to the possible impact ABAC can offer. The solution developed in this work, as

research indicates and unlike other solutions, implemented all of the major components defined in

the OASIS XACML standard (OASIS, 2013). It was tested in various scenarios and offers two

43 Nair, S., 2015. Getting OWASP Top 10 Right with Dynamic Authorization. [Online]
Available at: http://developers.axiomatics.com/blog/index/entry/getting-owasp-top-10-right-with-
dynamic-authorization.html
[Accessed 22 February 2015].

94 Conclusion

94 | P a g e

ways of integration, and both are straightforward and simple to do. Although this solution is a

"proof of concept" and not a final production piece of software, as the tests demonstrate, it can be

used in the case of simpler scenarios and can be expanded for more demanding ones.

 The ABAC methodology together with the XACML standard, has great potential and

offers great benefits with very little to no downsides, one of which is complexity of developing a

solution supporting the standard. This was addressed in this work by providing it as a service

easing the migration to ABAC and XACML. A finalized open source implementation that

implements every aspect of the standard along with connectivity options with many types of

services, would offer great benefits for many implementations, not only IoT applications as

mentioned before. After building and having a secure system, verifying that it works correctly and

predictably, the potential failure point is no longer directly a point in the system but the interfaces

that system administrator and people implementing the solution have to use. The system's security

relies primarily on correctly defined policies, making requests that correctly mirror the true

requests and integration that is done correctly.

 The human aspect of enforcing security is often overlooked as it is assumed that that aspect

will work correctly. ABAC and XACML addressed this indirectly as the implementation should

provide a solution that needs less maintenance together with policy and request writing formats that

are readable and understandable for humans, and all together offer significant improvements

compared to current systems. The focus of future improvements therefore may shift from

developing new systems from a system perspective but more to a usability, maintenance and

human perspective in general which will be addressed in section 6.2.

6.2 Future	work	

 The solution needs some improvements to make it usable for "real world" environments.

Securing all of the connections for the REST services by utilizing TLS/SSL and either oAuth or

OpenID Connect as explained in the end of Section 4.3. would be the first step in the first phase of

improvements. Expanding the list of classes that provide the functionality for evaluation operations

would be a secondary goal for improvements along with optimisations and adding the ability for

handling multiple simultaneous calls in the service integration scenario.

 After functionality and performance are expanded and improved, the focus of future work

should be on the PAP. After the system is tested and it is confirmed that the system is working as

intended, both from a functional and performance perspective, the only significant points of

improvement are the PAP along with the interface for creation policies and a request parser

component that would automatically mirror a variety of requests into JSON or XML formats of

University of Aveiro, Department of Electronics, Telecommunications and Informatics 95

P a g e | 95

XACML requests. For example, the creation of requests from regular java code calls, url requests

or others still have to be manually converted into standardised XACML requests. This requires a

lot of effort, mainly because it requires the person implementing the solution to learn the standard

and therefore making a possibility of incorrect request definitions more likely. This therefore

makes the system dependant on the fact that a somewhat complex implementation is done

correctly.

 An additional component that could prove to be beneficial and make integration for target

system much easier is a request building component. The problem of creating XACML request that

mirror "physical" request for data of services is still an issue. The purpose of the component would

therefore be mirroring these requests in XACML requests. One significant issue for developing this

kind of component would be supporting multiple technologies and types of requests. This is not

addressed in the OASIS XACML standard (OASIS, 2013) but the work done in (Antonia

Bertolino, 2012) could prove to be useful for solving this issue. and work in this area has been

done. It presents a methodology for automatic request generation for testing policies and

discovering faults.

 The improvement of the PAP interface has the same problems and as the whole security of

a correctly implemented system relies on correctly defined set of policies, a complex interface will

indirectly result in a less secure system. Axiomatics has some breakthroughs in this area as its

Eclipse plug-in ALFA provides a much simpler and easier way of writing XACML policies. The

next step beyond their plug-in would be a completely graphical interface that would be aimed more

towards people that do not necessarily need to have an in depth knowledge of XACML or ABAC.

As a satisfactory system is created and becomes available for easy and wide spread implementation

the focus of future developments may shift to the human aspect of maintaining and integrating

security systems, since even a perfect security system cannot work if it is used incorrectly. Because

of this future systems could move towards removing the need for administration altogether and

provide security to resources in a totally automated way.

University of Aveiro, Department of Electronics, Telecommunications and Informatics 97

P a g e | 97

7 References
A B M Moniruzzaman, S. A. H., 2013. NoSQL Database: New Era of Databases for Big data

Analytics - Classification, Characteristics and Comparison. International Journal of Database

Theory and Application.

Alex X. Liu, F. C. J. H. a. T. X., 2011. Designing Fast and Scalable XACML Policy Evaluation

Engines. IEEE Transactions on Computers (Volume:60 , Issue: 12), December, pp. 1802-1817.

Alexandros Labrinidis, H. V. J., 2012. Challenges and Opportunities with Big Data. Proceedings of

the VLDB Endowment, Volume 5 Issue 12, August, pp. 2032-2033 .

Anam Zahid, R. M. M. A. S., 2014. Security of Sharded NoSQL Databases:. s.l., s.n.

Andrea Zanella, N. B. A. C. V. M. Z., 2014. Internet of Things for Smart Cities. [Online]

Available at: http://eprints.networks.imdea.org/id/eprint/740

[Accessed 12 February 2015].

Angelo Cenedese, A. Z. L. V. M. Z., 2014. Padova Smart City: An urban Internet of Things

experimentation. A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE

15th International Symposium, 19 June, pp. 1 - 6.

Angelo P. Castellani, M. G. N. B. M. R. M. Z., 2011. Web Services for the Internet of Things

through CoAP and EXI. IEEE International Conference on Communications Workshops (ICC),

June, pp. 1-6.

Angelo P. Castellani, N. B. P. C. M. R. Z. S. M. Z., 2010. Architecture and protocols for the

Internet of Things: A case study. Pervasive Computing and Communications Workshops

(PERCOM Workshops), 2010 8th IEEE , March , pp. 678 - 683.

Antonia Bertolino, S. D. F. L. E. M., 2012. Automatic XACML Requests Generation for Policy

Testing. IEEE Fifth International Conference on Software Testing, Verification and Validation, pp.

842 - 849.

AT&T, 2014. AT&T XACML 3.0 Implementation. [Online]

Available at: https://github.com/att/XACML

[Accessed February 2015].

Baoan Li, J. Y., 2011. Research and Application on the Smart Home Based on Component

Technologies and Internet of Things. Procedia Engineering, Volume 15, p. 2087–2092.

98 <References

98 | P a g e

Bernard Stepien, S. M. A. F., 2011. Advantages of a non-technical XACML notation in role-based

models. Security and Trust (PST), 2011 Ninth Annual International Conference on Privacy, July,

pp. 193 - 200.

Bogdan George Tudorica, C. B., 2011. A comparison between several NoSQL databases with

comments and notes. 10th Roedunet International Conference (RoEduNet), June, pp. 1-5.

Byung Mun Lee, J. O., 2014. Intelligent Healthcare Service by using Collaborations between IoT

Personal Health Devices. International Journal of Bio-Science and Bio-Technology Vol.6, No.1 ,

pp. 155-164.

Corporation, D., 2013. Benchmarking Top NoSQL Databases, A Performance Comparison for

Architects and IT Managers, s.l.: s.n.

Dan Lin, P. R. R. F. E. B. F. I. a. J. L., 2013. A Similarity Measure for Comparing XACML

Policies. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO.

9,, September, pp. 1946 - 1959.

Daniel Díaz-López, G. D.-T. F. G.-M. G. M.-P., 2015. Managing XACML systems in distributed

environments through Meta-Policies. Computers & Security, Volume 48, February, p. 92–115.

David S. Watson, M. A. P. O. S. N. M. L. t. H., 2004. Machine to Machine (M2M) Technology in

Demand Responsive Commercial Buildings. Pacific Grove, CA, s.n.

Dominique Guinard, V. T. E. W., 2010. A resource oriented architecture for the Web of Things.

Internet of Things (IOT), November, pp. 1-8.

Du Jiang, C. S., 2010. A Study of Information Security for M2M of lOT. s.l., s.n.

Ed Coyne, T. R. W., 2013. ABAC and RBAC: Scalable, Flexible, and Auditable Access

Management. IEEE C omputer Societ y, IT Pro, pp. 14-16.

Enrico Barbierato, M. G. M. I., 2014. Performance evaluation of NoSQL big-data applications

using multi-formalism models. Future Generation Computer Systems 37, p. 345–353.

Fatih Turkmen, B. C., 2008 . Performance Evaluation of XACML PDP Implementations. SWS '08

Proceedings of the 2008 ACM workshop on Secure web services, pp. 37-44 .

Ghemawat, J. D. a. S., 2008. MapReduce: simplified data processing on large clusters.

Communications of the ACM - 50th anniversary issue: 1958 - 2008, January, pp. 107-113 .

Glushkov, I., 2015. http://www.slideshare.net/. [Online]

Available at: http://www.slideshare.net/IvanGlushkov/newsql-overview

[Accessed June 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 99

P a g e | 99

Hanson, Y. H. A. C. A. G. G. H. E. N., 2014 . Major Technical Advancements in Apache Hive.

New York, NY, USA, s.n.

Hui Suo, J. W. C. Z. J. L., 2012. Security in the Internet of Things: A Review. s.l., s.n.

Jayavardhana Gubbi, R. B. S. M. M. P., 2013.. Internet of Things (IoT): A vision, architectural

elements, and future directions. Future Generation Computer Systems 29, 24 February, p. 1645–

1660.

Jiafu Wan, M. C. F. X. D. L. a. K. Z., 2013. From Machine-to-Machine Communications towards

Cyber-Physical Systems. Computer Science and Information Systems Vol. 10, No. 3, June, p. 1105–

1128.

Katarina Grolinger, W. A. H. A. T. M. A. C., 2013. Data management in cloud environments:

NoSQL and NewSQL data stores. Grolinger et al. Journal of Cloud Computing: Advances, Systems

and Applications.

Kathi Fisler, S. K. L. A. M. M. C. T., 2005,. Verification and Change-Impact Analysis. ICSE '05

Proceedings of the 27th international conference on Software engineering, May, pp. 196-205.

Keleta, Y., 2005. Proposing a Secure XACML architecture ensuring privacy and trust.

http://www.researchgate.net/profile/Hs_Venter/publication/228849158_Proposing_a_Secure_XAC

ML_architecture_ensuring_privacy_and_trust/links/00463521dd0113e496000000.pdf.

Ken Ka-Yin Lee, W.-C. T. K.-S. C., 2013. Alternatives to relational database: Comparison of

NoSQL and XML approaches for clinical data storage. computer methods and programs in

biomedicine 110, p. 99–109.

Konstantin Shvachko, H. K. S. R. R. C., 2010. The Hadoop Distributed File System. Mass Storage

Systems and Technologies (MSST), 3 May, pp. 1 - 10.

Lafuente, G., 2015. The big data security challenge. Network Security, January.

Lindqvist, H., 2006. Mandatory Access Control. s.l.:Ume˚a University, Department of Computing

Science.

Lior Okman, N. G.-O. Y. G. E. G. J. A., 2011. Security Issues in NoSQL Databases. International

Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11, pp. 541-547.

Lu Tan, N. W., 2010. Future Internet: The Internet of Things. s.l., s.n.

Luigi Atzori, A. I. G. M., 2010. The Internet of Things: A survey. Computer Networks 54, 14 June,

p. 2787–2805.

100 <References

100 | P a g e

Luigi Atzori, A. I. G. M., 2014. From “Smart Objects” to “Social Objects”: The Next Evolutionary

Step of the Internet of Things. IEEE Communications Magazine, January, pp. 97-105.

Markus Lorch, S. P. R. L. D. K. S. S., 2003. First Experiences Using XACML for Access Control

in Distributed Systems. Proceeding XMLSEC '03 Proceedings of the 2003 ACM workshop on XML

security, pp. 25-37.

Matei Zaharia, M. C. M. J. F. S. S. I. S., 2010. Spark: Cluster Computing with Working Sets.

Michele Zorzi, A. G. S. L. A. B., 2010. FROM TODAY’S INTRANET OF THINGS TO A

FUTURE INTERNET OF THINGS:A WIRELESS- AND MOBILITY-RELATED VIEW. IEEE

Wireless Communications, December, pp. 1536-1284.

Milind Naphade, G. B. C. H. J. P. a. R. M., 2011. Smarter Cities and Their Innovation Challenges.

IEEE, Computer (Volume:44 , Issue: 6), June, pp. 32 - 39.

Min Chen, S. M. I. J. W. M. I. S. G. M. I. X. L. M. I. a. V. C. L. F. I., 2014. A Survey of Recent

Developments in Home M2M Networks. IEEE COMMUNICATIONS SURVEYS & TUTORIALS,

VOL. 16, NO. 1, pp. 98-114.

Min Chen, S. M. Y. L., 2014. Big Data: A Survey. Mobile Netw Applications Volume 19, Issue 2,

p. 171–209.

Nair, S., 2015. Getting OWASP Top 10 Right with Dynamic Authorization. [Online]

Available at: http://developers.axiomatics.com/blog/index/entry/getting-owasp-top-10-right-with-

dynamic-authorization.html

[Accessed 22 February 2015].

OASIS, 2013. eXtensible Access Control Markup Language (XACML) Version 3.0. [Online]

Available at: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[Accessed 4 November 2014].

OASIS, 2014. JSON Profile of XACML 3.0 Version 1.0. [Online]

Available at: http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/csprd03/xacml-json-http-v1.0-

csprd03.pdf

[Accessed 11 February 2015].

OASIS, 2014. OASIS REST. [Online]

Available at: http://docs.oasis-open.org/xacml/xacml-rest/v1.0/cs02/xacml-rest-v1.0-cs02.pdf

[Accessed 12 March 2015].

University of Aveiro, Department of Electronics, Telecommunications and Informatics 101

P a g e | 101

Osborn, S., 1997. Mandatory Access Control and Role-Based Access Control Revisited.

Proceeding RBAC '97 Proceedings of the second ACM workshop on Role-based access control, pp.

31-40 .

Pardo, T. N. &. T. A., 2011. Conceptualizing Smart City with Dimensions of Technology, People,

and Institutions. The Proceedings of the 12th Annual International Conference on Digital

Government Research, June, pp. 282-291.

Prasant Misra, Y. S. J. W., 2015. Towards a Practical Architecture for the Next Generation

Internet of Things. [Online]

Available at: http://arxiv.org/pdf/1502.00797v1.pdf

[Accessed 10 Februry 2015].

Priya P. Sharma, C. P. N., 2014. Securing Big Data Hadoop: A Review of Security, Issues, Threats

and Solution. International Journal of Computer Science and Information Technologies, Vol. 5 (2),

pp. 2126-2131.

Qi Jing, A. V. V. J. W. J. L. D. Q., 2014). Security of the Internet of Things: perspectives and

challenges. Wireless Netw, 17 June, p. 20:2481–2501.

Rajendra Kumar Shukla, P. P. V. K., 2015. Big Data Frameworks: At a Glance. International

Journal of Innovations & Advancement in Computer Science, IJIACS, Volume 4, Issue 1, January,

p. 2347 – 8616.

Razzak, F., 2012. Spamming the Internet of Things: A Possibility and its probable Solution.

Procedia Computer Science 10, p. 658–665.

Roshni Bajpayee, S. P. S. V. K., 2015. Big Data: A Brief investigation on NoSQL Databases.

International Journal of Innovations & Advancement in Computer Science, IJIACS, Volume 4,

Issue 1, January, p. 2347 – 8616.

Rui TU, J. S. R. K., 2009. An Identifier-Based Network Access Control Mechanism Based on

Locator/Identifier Split. Int. J. Communications, Network and System Sciences, 12 July, pp. 641-

644.

S. Sicari, A. R. L. G. A. C.-P., 2014. Security, privacy and trust in Internet of Things: The road

ahead. Computer Networks 76, 15 July, p. 146–164.

Sachin Babar, A. S. N. P. J. S. R. P., 2011. Proposed Embedded Security Framework for Internet of

Things (IoT). 2011 2nd International Conference on Wireless Communication, Vehicular

Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless

VITAE), , March, pp. 1-5.

102 <References

102 | P a g e

Sandhya Narayan, S. B. A. D., 2012. Hadoop Acceleration in an OpenFlow-based cluster. s.l., s.n.

Sara Amendola, R. L. S. M. C. O. a. G. M., 2014. RFID Technology for IoT-Based Personal

Healthcare in Smart Spaces. IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 2, April, pp.

144-152.

Sean Dieter Tebje Kelly, N. K. S. a. S. C. M., 2013. Towards the Implementation of IoT for

Environmental Condition Monitoring in Homes. IEEE SENSORS JOURNAL, VOL. 13, NO. 10,

October, pp. 3846-3853.

Surajit Chaudhuri, U. D. V. N., 2011. An overview of business intelligence technology.

Communications of the ACM, Volume 54 Issue 8, August, pp. 88-98 .

Sylvia Osborn, R. S. Q. M., 2000 . Configuring role-based access control to enforce mandatory and

discretionary access control policies. ACM Transactions on Information and System Security

(TISSEC), May, pp. 85-106.

Taylor Sheltona, M. A., 2015. The ‘actually existing smart city’. Cambridge Journal of Regions,

Economy and Society, Volume 8, Issue 1, p. 13–25.

Torsten Priebe, W. D. N. K., 2006. Supporting Attribute-based Access Control with Ontologies.

Proceedings of the First International Conference on Availability, Reliability and Security

(ARES’06), April, pp. 0-7695-2567-9.

Vimercati, P. S. a. S. d. C. d., 2001. Access Control: Policies, Models, and Mechanisms.

Foundations of Security Analysis and Design, volume 2171, p. 137–196.

Vincent C. Hu, D. F. A. S. K. S. R. M. K. S., 2014. Guide to Attribute Based Access Control

(ABAC) Definition and Considerations. NIST Special Publication 800-162, January.

W. Colitti, K. S. N. D. C. B. B. a. V. D., 2011 . REST Enabled Wireless Sensor Networks for

Seamless Integration with Web Applications. Eighth IEEE International Conference on Mobile Ad-

Hoc and Sensor Systems, October, pp. 867 - 872.

Xiao Nie, X. Z., 2013. M2M Security Threat and Security Mechanism Research. s.l., s.n.

Xin Jin, R. K. R. S., 2012. A Unified Attribute-Based Access Control Model Covering DAC, MAC

and RBAC. Data and Applications Security and Privacy XXVI, pp. 41-55.

Xin Jin, R. S. a. R. K., 2012. RABAC : Role-Centric Attribute-Based Access Control. Lecture

Notes in Computer Science Volume 7531, pp. 84-96.

