
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2016

João Filipe
Teixeira Simões

Novos Paradigmas de Controlo de Acesso a
Máquinas na Internet

New Paradigms for Access Control on Internet
Hosts

“I never dream of success. I work for it.”

— Estee Lauder

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2016

João Filipe
Teixeira Simões

Novos Paradigmas de Controlo de Acesso a
Máquinas na Internet

New Paradigms for Access Control on Internet
Hosts

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2016

João Filipe
Teixeira Simões

Novos Paradigmas de Controlo de Acesso a
Máquinas na Internet

New Paradigms for Access Control on Internet
Hosts

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quesitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação cient́ıfica do Professor
Doutor André Zúquete, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro, e do Professor
Doutor Paulo Salvador, Professor Auxiliar do Departamento de Electrónica,
Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor Rui Lúıs Andrade Aguiar
Professor Catedrático do Departamento de Electrónica, Telecomunicações e In-
formática da Universidade de Aveiro

vogais / examiners committee Professor Doutor Pedro Miguel Alves Brandão
Professor Auxiliar da Faculdade de Ciências da Universidade do Porto (Arguente)

Professor Doutor André Ventura da Cruz Marnoto Zúquete
Professor Auxiliar do Departamento de Electrónica, Telecomunicações e Informática
da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

A realização desta dissertação de mestrado marca o fim de uma importante
etapa da minha vida. É com todo o gosto que aproveito esta oportunidade
para agradecer a todos aqueles que de alguma forma contribuiram durante
este longo ciclo.
Em primeiro lugar, destaco a importância da minha faḿılia. Agradeço
aos meus pais, Carlos Jorge e Maria Manuel, por serem modelos de tra-
balho, mostrando constante apoio, preocupação e ânimo. Sem eles este
enorme passo não seria de todo posśıvel. Aos meus irmãos, Nuno, Tomás e
Gabriel, que nos momentos de maior cansaço conseguiam proporcionar-me
um genúıno e ilógico repouso. À Mariana por ter sido um incessante ponto
de suporte, conforto e alegria.
Reconheço um especial agradecimento ao meu orientador, André Zúquete,
que me possibilitou o culminar desta etapa através dos seus conhecimentos,
da sua confiança, da sua boa disposição, e da sua permanente exigência
para mais e melhor. Também ao meu co-orientador, Paulo Salvador, pela
sua sabedoria, transparência, e aptidão para o esclarecimento dos temas
adjacentes.
Por último, agradeço aos amigos pelo companheirismo, força, amizade e
confiança que depositaram em mim, e que contribuiram com muitos bons
momentos que estão guardados para o resto da vida. A todos os que me
ajudaram a ser quem sou, resta-me apenas não desiludir. Muito obrigado.

Palavras-chave Controlo de Accesso na Rede, Segurança de Serviços, Módulo da Firewall,
HMAC, Túnel Seguro

Resumo Os serviços de rede fazem uso da Internet para trocar informação com
clientes que os solicitam. Esta informação segue, naturalmente, uma rota
de redes inseguras e desconhecidas. De tal modo, não existe uma certeza
absoluta que o tráfego que flui entre os clientes e os servidores é autêntico
e é de facto originário de entidades conhecidas e leǵıtimas. Também não
existem poĺıticas claramente definidas ao ńıvel da rede, que autorizem uti-
lizadores, ao invés de máquinas, a acederem a serviços remotos.
De maneira a mitigar o acesso não autorizado a serviços de rede, duas
aproximações são frequentemente adotadas. A primeira aproximação conta
com a inserção de firewalls para proteger o fornecedor de serviços. No
entanto, a informação usada para fazer controlo de acesso é baseada nas
camadas intermédias da pilha de protocolos de rede. Isto possibilita às
firewalls controlar o acesso tendo em conta os sistemas de origem, mas
não os seus utilizadores. Por outro lado, a segunda aproximação apresenta
o conceito de controlo de acesso baseado em utilizadores. Contudo, este
mecanismo de segurança é apenas aplicado nas camadas mais altas da pilha
de protocolos, através de aplicações complexas e totalmente inconscientes
de problemas de segurança ao ńıvel do IP.
O sistema proposto combina o melhor dos dois mundos ao permitir que a
autenticação e autorização de utilizadores sejam feitas ao ńıvel da rede. A
solução implementa um novo módulo da firewall ao ńıvel do kernel para val-
idar ligações estabelecidas, através de configurações trocadas previamente
num canal seguro. Aceder a serviços remotos torna-se um processo devi-
damante controlado onde os utilizadores são reconhecidos como leǵıtimos
no lado do servidor.

Keywords Network-Level Access Control, Service Security, Firewall Module, HMAC,
Secure Tunnel

Abstract Network services make use of the Internet to exchange information with
requesting clients. This information follows a path of naturally unsecured
and unknown networks. As such, there is no certainty that traffic flowing
between clients and service providers is authentic and is actually originated
on known and legitimate entities. Also there are no clearly defined network-
level policies that authorize users, instead of hosts, to access remote services.
In order to mitigate the unauthorized access to network services, two con-
ceptual approaches are usually adopted. The first relies on the deployment
of firewalls protecting the service providers. However, information used to
perform access control is based on intermediate layers of the network proto-
col stack. This enables firewalls to control the access based on originating
physical hosts, but not on actual users. On the other hand, the second ap-
proach presents the concept of access control based on users. This security
mechanism however, is only applied too far up the protocol stack, through
heavyweight applications that are completely unaware of IP security issues.
The proposed system combines the best of both worlds by enabling au-
thentication and authorization of users at the network level. The solution
implements a new kernel-level firewall matching module to validate incom-
ing connections, according to configurations previously exchanged through a
secure tunnel. Accessing remote services becomes a duly controlled process
where accessing users are confirmed as legitimate on the server side.

Contents

Contents i

Acronyms v

List of Figures vii

List of Tables ix

List of Listings xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Organization . 3

2 Theoretical Context 5
2.1 Network Communication . 5

2.1.1 UDP . 6
2.1.2 TCP . 8
2.1.3 ICMP . 10
2.1.4 GRE . 12

2.2 Firewalls . 13
2.3 Port and Service Scanning . 17
2.4 Secure Channels . 19

2.4.1 SSH . 19
2.4.2 SSL . 20
2.4.3 IPsec . 21

2.5 Authentication Through Cryptography . 22
2.5.1 MAC . 22
2.5.2 Digital Signatures . 23

2.6 NAT . 24
2.7 Access Control . 26
2.8 Virtual Filesystems . 29

2.8.1 Procfs . 30
2.8.2 Sysfs . 30
2.8.3 Configfs . 31

i

3 Related Work 33
3.1 Controlling Port Scanning . 33

3.1.1 A TCP-Layer Name Service . 33
3.1.2 Port Knocking Mechanism . 34
3.1.3 Lightweight Concealment and Authentication 36

3.2 Exercising Access Control . 38
3.2.1 Authentication . 38

3.2.1.1 User-Based Access Control Framework 38
3.2.1.2 Challenge-Response Authentication Mechanism 39
3.2.1.3 Public Key Authentication 40
3.2.1.4 Symmetric Authentication 41

3.2.2 Authorization . 41
3.2.2.1 Access Control Lists . 41
3.2.2.2 Capability Lists . 42
3.2.2.3 Role-Based Access Control 43

4 Architecture 45
4.1 Access Information Exchange Through a Control Channel 47
4.2 Network-Level User Access Control Protocol 48
4.3 Calculation of the Security Token Using MAC 49
4.4 Authenticity and Integrity Verification . 50
4.5 Per Service, Role-Based Authorization . 50

5 Implementation 53
5.1 Structural Specifications . 53

5.1.1 NUAC Protocol . 53
5.1.2 SSH Exchanged Configuration Messages 55
5.1.3 Configfs Directory Structure . 56

5.2 Communication Between Kernel and User Space 56
5.3 Component Development . 58

5.3.1 Kernel Module . 58
5.3.2 iptables Extension . 62
5.3.3 Access Controller Application . 64
5.3.4 Access Requester Application . 66

6 Evaluation 69
6.1 Functional Testing . 69
6.2 Performance Testing . 77

7 Conclusions and Future Work 89
7.1 Conclusions . 89
7.2 Future Work . 90

Appendices 93

A Testing Environment 95

ii

B Structures 97
B.1 NUAC . 97
B.2 Kernel Module . 98
B.3 iptables Extension . 99

C Function Prototypes 101
C.1 Kernel Module . 101
C.2 iptables Extension . 102
C.3 Access Controller Application . 102
C.4 Access Requester Application . 103

Bibliography 105

iii

iv

Acronyms

ACL Access Control List
AH Authentication Header
API Application Programming Interface

CIFS Common Internet File System

DAC Discretionary Access Control
DCE Distributed Computing Environment
DDoS Distributed Denial of Service
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DOI Domain Of Interpretation
DoS Denial of Service
DRBAC Distributed Role-Based Access Control

ESP Encapsulating Security Payload

FTP File Transfer Protocol

GUI Graphical User Interface

HMAC Keyed-Hash Message Authentication Code
HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority
IBC Identity-Based Cryptography
IDS Intrusion Detection System
IP Internet Protocol
IPS Intrusion Prevention System
IPsec Internet Protocol Security
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6

LDAP Lightweight Directory Access Protocol
LRBAC Location-aware Role-Based Access Control
LTS Long-Term Support

MAC Mandatory Access Control
MAC Message Authentication Code

v

MD5 Message Digest Algorithm 5
MTU Maximum Transmission Unit

NAPT Network Address and Port Translation
NAT Network Address Translation
NFS Network File System
NIST National Institute of Standards and Technology
NUAC Network-level User Access Control

OKTCP Option-Keyed Transmission Control Protocol
OSI Open Systems Interconnection

PAT Port Address Translation
PIN Personal Identification Number
PPTP Point-to-Point Tunneling Protocol

QR Quick Response code

RADIUS Remote Authentication Dial In User Service
RAM Random Access Memory
RBAC Role-Based Access Control
RFC Request For Comments
RFID Radio-Frequency Identification
RIP Routing Information Protocol

SCP Secure Copy Protocol
SCRAM Salted Challenge Response Authentication Mechanism
SFTP Secure File Transfer Protocol
SHA1 Secure Hash Algorithm 1
SIP Session Initiation Protocol
SNMP Simple Network Management Protocol
SOCKS Socket Secure
SSH Secure Shell
SSL Secure Sockets Layer
SSTCP Spread Spectrum Transmission Control Protocol

TCP Transmission Control Protocol
TGTCP Tailgate Transmission Control Protocol
TLS Transport Layer Security
TRBAC Temporal Role-Based Access Control

UDP User Datagram Protocol

VFS Virtual File System
VoIP Voice over Internet Protocol
VPN Virtual Private Network

vi

List of Figures

2.1 TCP/IP and OSI models . 6
2.2 UDP header . 7
2.3 TCP header . 9
2.4 ICMP header . 11
2.5 GRE header . 13
2.6 Firewall in Action . 14
2.7 Network and Personal Firewalls . 15
2.8 TCP SYN Scan . 18
2.9 SSH Architecture . 20
2.10 IPsec NAT-Traversal . 22
2.11 Message Authentication Codes in Action . 23
2.12 Digital Signatures in Action . 24
2.13 NAT Overloading . 25
2.14 Access Control Flow . 27
2.15 Role-based Access Control . 29
2.16 Sysfs Top-Level Directory Structure . 31

3.1 Simple TCP Name Resolution . 34
3.2 Traditional Port Knocking . 35
3.3 SSTCP, TGTCP and OKTCP . 37
3.4 Identity-Based Access Control Framework . 38
3.5 Capability-Based Cloud Access . 43

4.1 System Architecture . 46
4.2 Control Channel Exchanged Messages . 47
4.3 NUAC Modification . 49

5.1 NUAC Trailer . 54
5.2 Configfs Directory Structure . 56
5.3 User Space/Kernel Space Communication . 57
5.4 Socket Buffer Structure . 61
5.5 Database Tables . 65

6.1 Server Packet Processing Chart . 87

A.1 Network Architecture . 96
A.2 Network Architecture with NAT . 96

vii

viii

List of Tables

5.1 Supported NUAC Hash Algorithms . 55

6.1 Server Packet Processing Statistics . 86
6.2 UDP iperf Statistics . 88
6.3 TCP iperf Statistics . 88

ix

x

List of Listings

5.1 Deployment of Kernel Module . 59
5.2 Initialization and Cleanup Functions . 59
5.3 Make Item Function . 60
5.5 Deployment of iptables Extension . 62
5.4 ICMP Validation Process . 63
5.6 iptables Shared Internal Structure . 64
5.7 Access Controller Usage . 65
5.8 Key Deployment Function . 66
5.9 NFQUEUE Interception Function . 67
5.10 TCP Client-Side Mangling . 67

A.1 Access Controller Application Deployment Script 95

B.1 Structures: NUAC in the Kernel Module . 97
B.2 Structures: NUAC in the Packet Modifier . 98
B.3 Structures: Configfs Subsystem . 98
B.4 Structures: iptables Kernel Match . 99
B.5 Structures: iptables Extension Match . 99

C.1 Function Prototypes: Configfs Subsystem . 101
C.2 Function Prototypes: iptables Kernel Match 101
C.3 Function Prototypes: iptables Extension Match 102
C.4 Function Prototypes: Access Controller Application 102
C.5 Function Prototypes: Access Requester Application 103

xi

xii

Chapter 1

Introduction

1.1 Motivation

In the digital universe, worldwide communication is achieved through the usage of the
Internet, the well-known global system of interconnected networks. This communication is
generally represented as information exchanged between entities that are physically far apart.
Most of the times, the information needs to be provided to a requesting user. A client requests
access to information which is to be delivered by a service provider in the network, commonly
known as a server.

With the growing number of cyber-attacks1, network services remain a primary target for
attackers, since they are deployed over the Internet and are visible to everyone. Port scanning
techniques [15] allow for an attacker to discover entrances to a server. These entrances come
in the form of open ports that may be exploited by attackers. Considering that there is a
database with static mappings between port numbers and services2, attackers are more easily
able to disturb the access of legitimate users to specific services. Keeping in mind that such
attacks come from unknown networks, controlling service access is therefore an increasingly
eminent security concern for service providers.

A solution that has been adopted to mitigate the unauthorized access to services is based
on the deployment of firewalls around the target systems. Yet, the information used to
perform access control is based on the network and transport layers of the OSI Reference
model. This means that any user is given access to the system solely based on the network
or transport information. This information can be easily forged by an attacker trying to
impersonate an authentic and well-intended user.

Firewall rules that use the information of the network and transport layers also become
too difficult to manage for mobile agents. For mobile servers, it rules out the possibility to
define different access policies and client availability on different networks. For mobile clients,
it becomes impractical to associate network addresses to real clients in a dynamic way.

Controlling access at such low level without additional information is therefore an evident
adversity, since it is simply based on IP addresses and service ports. This information does not
allow for an unequivocal association between a user’s identity and its host address, specially
if NAT is deployed in-between the communication endpoints. Despite dealing with a part of
the problem, the usage of a VPN essentially allows authorized users to connect to a server, it

1 http://www.digitalattackmap.com/
2 http://www.iana.org/assignments/port-numbers

1

http://www.digitalattackmap.com/
http://www.iana.org/assignments/port-numbers

does not allow for a simple filtering of users based on the services they are authorized.
As such, there is a demand for a high-level, computationally cheap and uncomplicated

security system, that permits the access control based not only on network-level information,
but also on supplementary knowledge of user identities’ profiles. The system should also
enable the early discard of unauthorized attempts and conceal itself to attackers, while pro-
viding transparent service access to authorized users. For all purposes, the system has to be
understandable by network security administrators that have no need to understand concepts
of protocols, addresses, layering, and so forth, at a deeper level. The system’s administrator
should only need to specify user permissions to given services, in order to make the system
function properly and transparently.

1.2 Contribution

Application-level security deals with authentication and authorization of users in an
application-only context, disregarding network information. A given user’s identity is ex-
clusively verified at a higher level on the TCP/IP stack, which is rather late for a penetrating
attack onto the physical system. On the other hand, firewalls tend to implement security
at the network and transport layers. They cannot, however, define the concept of users and
access permissions merely based on information present on such layers. The proposed sys-
tem combines the best of both paradigms to contribute with a solution where the concept of
authentication and authorization of users is enabled at the network level.

Practically, the main purpose of the new system is to provide a trustworthy and con-
trolled access to remote network services. This is accomplished bearing in mind several
premises that translate into objectives:

1. Administer end-to-end protection between the client and the server, regarding message
forgery;

2. Control the access onto the entire port range of the server machine;

3. Support the most widely used types of traffic;

4. Integrate, and not replace, into existing protocols of the TCP/IP stack;

5. Work with private networks as well as with the public Internet.

Concerning the security present on the interconnected public networks, it is assumed
by the proposed system that an attacker can eavesdrop, forge and inject traffic on any
direction of the information flow between the client and the server.

The new system is essentially implemented as a mechanism, parallel with a firewall, that
decides on the eligibility of a given request received at the server-side. A firewall is therefore
enriched with a module that knows how to filter traffic of different originating users, based on
configurations set by the server. In order to be authenticated and given access to a specific
service, a client must necessarily supply his credentials and then transmit traffic containing
information associated with its identity. This information is represented as non-obvious data
that stands unintelligible to eavesdroppers.

More specifically, it is possible to establish three major stages for securely accessing the
provided network services. The first step is to authenticate the client onto the remote server.
Upon a successful authentication, there is a process for data exchange where messages are

2

authenticated and subsequently verified at the server side. The final stage comprises the
client’s authorization based on both the initial authentication’s credentials and the exchanged
messages’ appendices.

The initial client authentication is granted through a well-known secure channel. The
authentication is successful if the provided identity matches a previously defined user profile
on the server. Along with the data exchange, the traffic suffers a transformation before
exiting the client’s machine, and is appended with security information. This information
is an access token that only authorized clients possess. The access control is executed at
server-side with access policies created beforehand, according to different environments. The
users are authorized the access to provided services, based on permissions that reflect the
designated administrative policies.

Given this, the system shapes a level of abstraction due to the formation of important
and concise properties. As such, it enables:

• Transparency to running applications;

• Inconspicuousness of exchanged traffic, as it appears to be natural;

• Independence of running protocols;

• Indifference on local or public networks, thus free of NAT obstacles.

Considering such properties, it should be noted that the system does not intend to replace
applicational security, it purely supplements it with additional security mechanisms and user
concepts at a lower level. Also it stands as a proof of concept solution, therefore it is applied
only to version 4 of the Internet protocol. IPv6 however, is taken into consideration for just
about the same aspects. This system is therefore considered wide and generic for current
TCP/IP stack implementations.

1.3 Organization

This dissertation is essentially organized in seven chapters, where the first corresponds to
this introduction and the last substantially describes ending conclusions and future work.

A theoretical context is presented in Chapter 2, covering fundamental concepts needed
to effectively understand the mechanisms and structures implemented by the system. The
context is mainly focused on networking and security concepts, while also briefly describing
internal system communication, precisely on user to kernel space. It should be given em-
phasis to Next-Generation Firewalls since they describe exactly what the system intends to
contribute. Most of the examined concepts are intimately associated with the impending sys-
tem, while some are strictly referenced to provide a notion of concurrent available solutions,
that can be compared with the ones implemented.

Chapter 3 encompasses several worth mentioning solutions, closely related to each of the
system’s cornerstones, specifically the concealment, authentication and authorization. The
TCP-layer name service stands as the starting point for the system’s hiding, while more
complex solutions detailed by lightweight concealment techniques are taken into further sub-
stantial consideration. Significant contributions of role-based authorization must also be
highlighted for withstanding the system’s major objectives on access control.

In Chapter 4, the architecture of the proposed solution is carefully described. The de-
scription of the architecture follows the natural flow of information on the system, so that

3

not only it may be easily understandable through well-defined steps, but the transition to the
implementation may be as intuitive as possible. The architecture also defines the conception
of a new protocol used on the traffic flowing within the system. In general, the architecture
relates the decisions made into distinct operational elements.

The actual implementation of the system is outlined in Chapter 5. There is a translation of
the architecture’s abstract constituents into concrete components that communicate between
each other. The implementation’s description results in: the specification of structures used
to correctly fulfill protocol requirements and communication mediums, and the development
of the specific components deployed on the system.

For the purpose of evaluating the implemented system, functional and performance tests
were executed. In chapter 6, these tests are thoroughly detailed of their procedure, expected
and obtained results. The results are then analyzed and compared to other transmission types
to ultimately assess the system’s behavior and efficiency.

The dissertation’s conclusions summarize the key points of this work, while also referring
some drawbacks of the devised architecture. The future work addresses the identified handi-
caps of the system and intends to complement with solutions that may be studied for future
development. Both these matters are considered and reviewed in Chapter 7.

Before the end of the dissertation, an appendices section is provided to further delve into
the implementation of the system, not only on the developed source code, but also on the
environment used for its deployment.

4

Chapter 2

Theoretical Context

Within this chapter, a context of theoretical concepts is provided in order to fully grasp
the broad extent of the proposed system. The concepts contemplate a background that covers
three preeminent areas: networking, security, and kernel-user communication. These areas
are closely associated to the proposed system’s objectives, as well as with its architectural
constituents. Some of the topics are merged together over different areas.

Regarding networking, a significant depiction of network communication and the system’s
used protocols is shown. Also, the firewall and port scanning topics are addressed for their
importance on the overall specified goals. NAT is still discussed as a potential component
present on most real networks.

In relation to security, the following sections attend mechanisms of secure channels and
cryptographic authentication methods. These topics are relevant for the decision making on
the security aspects of the system.

The access control is widely referenced to assert the different possibilities of user authen-
tication and authorization on the system. A brief explanation of some of the existing virtual
filesystems is also supplied, with emphasis to the Configfs filesystem, the one introduced in
the system.

2.1 Network Communication

Traditional communication can be simply defined as the exchange of information between
two given entities. As such, network communication inherits that definition with some nu-
ances. The information exchanged can be identified as data while the entities are generalized
into endpoints of the communication. In order to provide a correct interpretation of the
information exchanged, some rules of communication must be applied. Following the same
analogy, the set of rules can be translated into a protocol that specifies the correct way
of exchanging data. The most common way of transmitting data along the network is by
sending the message, split into relatively small chunks called packets, thereby describing a
packet-switched network.

A packet is a formatted unit of data containing a group of bits or bytes, sent on a packet-
switched network. Specifically, the contents of a packet can be divided into two kinds of
data: control information and actual data. The first part of the packet, usually known as
packet headers and trailers, provides the information needed to control the delivery of the
actual payload data through the network. Source and destination addresses are an example

5

of control information.
The data delivery is ensured by the control information present in the packet, while

the protocol guarantees that the endpoints are following the same set of rules and methods
to ensure the success of such delivery. Protocols are divided into categories representing
their main function. They can be inserted into the transport layer, in both TCP/IP model
and OSI model, since their primary task is to provide end-to-end communication. This
type of communication is generally categorized as either connection-oriented, implemented in
the Transmission Control Protocol (TCP) or connectionless, implemented in User Datagram
Protocol (UDP). This layer also establishes the concept of port that provides process-specific
transmission channels for network services. Every port number has its own instantiation in
both UDP and TCP.

Figure 2.1: TCP/IP model vs. OSI model. The OSI model provides a greater granularity of
layers comparing to the TCP/IP model.

Not only there are protocols that implement end-to-end communication at the transport
layer, but there are also some carrier protocols that are categorized as part of the Internet
layer. Such protocols carry information considering different conceptual approaches. The
Internet Control Message Protocol (ICMP) and the Generic Routing Encapsulation (GRE)
are protocols that, despite being part of the Internet layer, are also transmitted using the
Internet Protocol for information delivery.

2.1.1 UDP

User Datagram Protocol, or UDP, is one of the most important transport-layer protocols
used worldwide. Its rating is due mainly to its conceptual and practical simplicity, lightness
and fastness, and variety in applicational uses. This protocol is sometimes also referred to as
UDP/IP because it uses the Internet Protocol as the underlying protocol. UDP is a message-
oriented protocol, therefore the messages correspond to datagrams that are sent in the form
of packets. RFC 768 [44] determines the format of the packets used by UDP.

6

UDP Datagram

Like most packets, UDP packets consist of control information and data octets. UDP’s
control information is encapsulated into the UDP header (see Fig. 2.2) which comprises 4
fields, each of which is 2 bytes long, resulting in a minimum packet size of 8 bytes. The data
section may have a variable size.

The source port number field identifies the sender’s port, and is usually assumed to be
the destination port on forthcoming replies. When used, this port specifies the originating
endpoint connection used by some application on the source host. Note that this field is
optional and therefore when not used should be set to zero. The destination port follows
an analogous principle, it identifies the endpoint connection on the destination host. In
contrast to the source port, the destination port number is required, so that the packet can
be successfully delivered to network services or applications running on the destination host.

Figure 2.2: UDP header. The source port is an optional field while the destination port is
required for service distribution.

The length field maintains the total size of the entire datagram, meaning both UDP header
and payload. The minimum length is 8 bytes when there is no data on the payload and this
field only includes the size of the header. The Internet Protocol specification [46] recommends
hosts to be prepared to accept datagrams of up to 576 octets to allow a reasonable data block
size of 512 octets while the rest can be used for headers for the different underlying protocols.

Error-detection during transmission can be achieved through the checksum algorithm. The
computation method consists of simply summing up 16-bit words using one’s complement,
bearing in mind a pseudo header format comprised of fields from the IP header, the UDP
header and the data. The sum is then one’s complemented to yield the value for the checksum
field. Despite being an optional field on IPv4, it is mandatory on IPv6 and respects a slightly
different computation according to the IPv6 header [16].

UDP Features

Being a minimalist and simple protocol, based on datagram messages, UDP is classi-
fied as a connectionless protocol that does not set up a dedicated end-to-end connection for
exchanging information. The information is sent from the source to the destination host with-
out taking into account the readiness of the receiver. Specific features, that contrast with
protocols present on the same layer, can characterize UDP for its way of operation:

• Unreliability. Being the main characteristic of UDP, the message is not guaranteed to
arrive at the destination endpoint. The lack of control mechanisms such as retrans-
mission, datagram ordering, connection tracking and state maintenance, reflects the
unreliability of the protocol, allowing for less overhead during transmission;

7

• Datagrams as messages. A rapid transmission is assured due to the lightweight headers,
as well as message reading as a whole;

• Half-duplex transmission. There is no clear definite state of host-to-host connection so
the communication is generally considered unidirectional;

• Integrity verification via checksum. Transmission errors are detected in the entirety of
the UDP datagram;

• Port numbers. Permits applicational multiplexing on port-binded sockets, either on the
sending or receiving host.

• No congestion control. There is no control whatsoever of the sent packets entering the
network due to the inherited unreliability.

All the above features concede simplicity, lightness and speed to UDP, making it partic-
ularly useful for: DNS services and protocols such as SNMP, RIP and DHCP, either for its
query-like, short response transactions or unidirectional availability for broadcast and multi-
cast; and services that use real-time streaming, VoIP and online games, where loss of packets
inherent to UDP’s unreliability is not usually a fatal issue. Solutions for reliability may be
added at the application level, issuing for developers to implement them on the applications.

2.1.2 TCP

A complementary approach to UDP is the Transmission Control Protocol [47], a connection-
oriented protocol that grants end-to-end reliable inter-process communication. This protocol
provides an abstraction of the communicational service between applications and the underly-
ing network connection. Its connection-oriented designation brings the notion of data stream
communication. This method of communication is applied to both end-hosts allowing for a
bidirectional information exchange, where messages are delivered sequentially and split into
smaller units of data for each direction. The small pieces of data used in TCP are often
labeled as TCP segments which are enclosed and sent inside IP datagrams.

TCP Segment

Processes of applications are responsible for providing data streams onto the TCP. The
TCP packages the data into segments and calls the Internet Protocol to arrange the delivery
of the encapsulated segments to the correct destination host. Each TCP segment is com-
prehended by a total of 10 required fields and 1 optional extensible field, representing the
header (see Fig. 2.3), and the data section containing the payload data descendant from the
applications.

The source and destination ports are 16-bit fields that introduce the TCP segment header.
Both these fields map to endpoint sockets used by the originating host and destination host
applications, respectively. Like UDP, their main functionality is to provide correct delivery
of information to different applications running on a target host.

The sequence number and the acknowledgment number are two very important fields that
implement the basis of this protocol’s communication reliability. This is a direct consequence
of the decision of numbering the payload data at the octet level. The sequence number
corresponds to the first data octet in the segment accumulated with the number of previously

8

sent octets. The acknowledgment number specifies the next sequence number the sender
is expecting to receive while also acknowledging the receipt of all prior octets. During the
connection establishment, acknowledges are sent to accept the other end’s initial sequence
number.

The data offset field indicates where the data starts inside the segment, or another possible
interpretation, the size of the TCP header, in 32-bit words. The minimum header size is 5
words (20 bytes), corresponding to a segment with no options, and the maximum is 15 words,
allowing for up to 40 bytes of options.

Figure 2.3: TCP header. TCP flags are represented by their initial letters. The offset field
identifies the number of 32-bit words that precede the payload. The payload follows TCP
options (if present), or the urgent pointer otherwise.

The following set of fields, often called as flags, control TCP’s operation. Initially the
protocol had 6 flag bits (URG, ACK, PSH, RST, SYN, FIN) but latter two more bits were
introduced as flags [48] (CWR, ECE). The last 2 bits deal with issues related to network
congestion notification.

The window field gets its name from the amount of data octets, including the one refer-
enced by the acknowledgment number, the sender of the segment is willing to receive in his
buffer. The receive window grants the possibility of flow control, one of TCP’s features.

TCP’s checksum follows the same computational method of UDP with a similar pseudo
header format including some fields from the IPv4 header, the TCP header and the payload
data. When the communication is made through IPv6, the elements used as part of the
pseudo header change slightly and relate to the IPv6 header format accordingly.

Sometimes the data one intends to transmit is considered as urgent, for that the urgent
flag is activated and the urgent pointer field indicates the next sequence number following
the urgent data. It is to be noted that the activated urgent flag together with the urgent
pointer does not, whatsoever, translate into any additional process on the network itself. It
may, however, alter the data processing on the remote host.

Options, if present, occupy the last space of the header. A maximum of 40 bytes may be
used however, this does not reflect an exact maximum amount of options present in a TCP
segment. This is true due to two facts: options may begin on any octet boundary and may
have different sizes. This variety in option length results in the possibility of the list of options

9

ending in a non 32-bit boundary thus having TCP the need to zero-pad the remaining header
to reach the data offset value.

TCP Features

Although a complex protocol, TCP provides many important features for interactions
that need increased reliability and security. Mainly, this is achieved by having the core of
the protocol based on control over the connection. TCP is a connection-oriented protocol,
meaning that it requires previous establishment of a communication channel dedicated to
data transferring through streaming between two hosts connected by the Internet. Due to its
definition on the operational methodology, this protocol emphasizes on accurate delivery in
contrast to timely delivery. TCP is therefore characterized by the following features:

• Reliability. Each segment is assured to be received at the opposite endpoint. The
concepts of sequence and acknowledgment numbers, combined with state preservation,
answer packet duplication and disorder, while retransmission offers solution for packet
damage and loss;

• Segments as parts of the message. Despite the slowness due to the increased overhead
on TCP headers, data can be streamed and buffered while waiting to be delivered to
the application;

• Full-duplex transmission. A bidirectional information exchange is made possible through
the three-way handshake on connection establishment;

• Integrity control. Errors during transmission can be detected by a checksum algorithm;

• Port numbers. Multiplex different applications, permitting several end-to-end connec-
tions to be established on different port pairs.

Adding to the previous list, TCP also makes use and implements several mechanisms that
support two very important features:

• Flow control. The sending host knows exactly how many more bytes it can send to the
receiving host. This is possible through window advertisements according to the latter’s
buffer capacity and processing power;

• Congestion control. It uses a number of mechanisms to control the rate of data entering
the network [3], opposed to flow control that supervises rate of data entering the receiv-
ing endpoint. Congestion avoidance is the basis to achieve high network performance
[11].

TCP’s reliability is very useful for many upper layer protocols and applications such as
HTTP, SSH, file transferring protocols like FTP, and e-mail delivery. In these cases, data
must be perfectly delivered without any packet loss.

2.1.3 ICMP

The Internet Control Message Protocol, as the name implies, is a protocol for controlling
Internet communication. The control is performed based on diagnostics and reports generated

10

in response to errors occurred during IP packet processing. The reported issues are then
addressed back to the originating entity for further evaluation. ICMP is considered to be an
integral part of IP, for being a special case during the latter’s processing. ICMP messages are
encapsulated into the IP protocol, exhibiting the number 1 on the IP header’s protocol field,
and represent the vehicles for relaying such control information.

ICMP Datagram

ICMP messages follow the ordinary packet structure containing an header section and a
payload section. The 8-byte header, illustrated in Fig. 2.4, is divided into 4 bytes with a fixed
format and 4 other bytes dependent of the type and code of the ICMP packet. The size of
the payload section is variable and also depends on the kind of message.

Figure 2.4: Generic ICMP header. Depending on the type and code fields, the message
specific information varies. The payload follows the ICMP header.

The ICMP protocol comprehends several types of messages [45] for diagnosing and con-
trolling the IP communication. The type field of the header identifies each one, where the
most common are the destination unreachable messages and the echo requests and replies.
The code field is a more restrictive classification subsection for within the same type group.
For instance, on destination unreachable messages the code identifies the reason for not reach-
ing the target address. Both the type and the code fields characterize ICMP messages using
one byte each.

The checksum field enables the integrity verification over the entire ICMP message (the
IP’s checksum is exclusively applied on its header. The ICMP’s 16-bit checksum is calculated
according to the Internet checksum specified in RFC 1071 [12].

Conforming to the type and code of the ICMP messages, the remaining 4 bytes of the
header take different contents. Not only the header, but the payload section also depends
on these fields. In general, the payload of ICMP packets replicates the IP header and some
of the data of packets that failed to reach a target host. This fact enables the originator to
identify the faulting packets.

ICMP Features

The main purpose of ICMP is to report errors in the processing of IP datagrams. Such
errors occur on a given communication environment between endpoints, precisely on network
devices like routers, or in between them, on physical links. They are sent to the source IP
address of the originating packet where upper protocols are responsible for inspecting them
and act accordingly. The operational flow of ICMP is possible thanks to features particularly
designed to control IP communication:

11

• Reporting protocol. ICMP’s objective is to provide feedback about problems arisen
during communication;

• Communication control. The information present on the data section is exclusively used
for controlling and identifying the relevant problems on the communication path, unlike
transport protocols that carry application data;

• Passive identification. There are no guarantees that an IP datagram will be delivered,
ICMP simply reports faulting packets without taking any other action;

• Unreliability. ICMP messages may be lost, having no infinite recursive diagnostics of
other flawed ICMP messages;

• Integrity control. ICMP packets are verified of their integrity through well-known check-
sum algorithms.

Naturally, the ICMP protocol retains important mechanisms to error diagnosis, enabling
a further wide concept of reliability. It is used to control the communication between network
devices where failures of reachability or buffer capacity, shorter routes, and exceeded hops
are often advertised. Network administrators take advantage of this to troubleshoot potential
network issues by using utilities such as ping and traceroute.

2.1.4 GRE

Cisco Systems developed the Generic Routing Encapsulation, a protocol attempting to
be general enough to encapsulate one protocol over another. Essentially, it encapsulates an
arbitrary network layer packet into another network layer packet, ready to be routed across
networks. GRE operates as a tunnel, meaning that a virtual point-to-point connection is
established, much like a VPN. As such, traffic is allowed to travel directly between endpoints,
without any interference.

The main purpose of GRE is to enable the communication between peers, that otherwise
would not be able to do so over public networks. Therefore, all types of traffic, including
multicast and broadcast, are capable of being encapsulated using a unicast protocol, GRE.
Routing such traffic between private IP networks across public networks becomes a possi-
bility. As such, the deployment of the GRE protocol brings about some advantages worth
mentioning:

• Encasement of multiple protocols over a single supportive protocol;

• Provision of workarounds for networks with limited hops1;

• Connection of non-adjacent private networks, similarly to VPNs;

• Less resource demand than other tunneling alternatives.

In a more operational perspective, an initial packet, or payload packet, suffers an encap-
sulation by an IP header and a GRE header. The IP header, specifying a protocol type of
GRE, acts as the delivery protocol to ensure the transmission to the destination. The GRE
header identifies the payload packet as encapsulated by GRE, while also specifying its type.

1 Determined by the number of network devices separating every two networks.

12

The inner packet stays untouched after the encapsulation process. At the remote endpoint,
the packet is de-encapsulated by removing the outer IP and GRE headers. The payload
packet remains intact and is now able to proceed to further routing or be processed by any
application.

GRE Header

A GRE packet contains an header section, including the IP and GRE headers, and a
payload section with the encapsulated original packet. For this section’s purpose, only the
GRE header will be described.

The GRE header structure, defined in RFC 2784 [20], along with its possible extensions
[18], is depicted in Fig. 2.5. The header consists of 4 mandatory bytes with the possibility for
up to 12 additional bytes depending on active GRE flags.

Figure 2.5: GRE header format compliant with RFC 2890. Checksum, key and sequence
number fields presence is determined by the GRE flags.

The C, K and S letters are bit-flags that identify the presence of a checksum, a key, and
a sequence number, respectively. The key and the sequence number are extensions to the
standard GRE. The version field for regular GRE packets is set to 0, for PPTP it is set to 1.
The protocol field identifies the protocol of the encapsulated payload packet. The checksum,
if present, is calculated over the GRE header and payload. The key optional field identifies
the type of traffic and is mostly used during the de-encapsulation of packets in order to permit
their expedition to different routing paths. When existent, the sequence number is used to
grant reliability on the connection.

2.2 Firewalls

Users scattered across the Internet have no guarantee of whom they are interacting with.
To provide security from network-based threats, firewalls are placed between the users, on
personal or corporate networks, and the outside world. The term firewall comes from the
literal definition of being a fireproof wall that impedes the spread of fire. In networking, a
firewall protects a community of hosts from external incoming danger. Firewalls are therefore
barriers to protect a network of from unknown and untrusted hosts, providing a single
point of entrance by limiting network access through traffic filtering and imposing security
policies.

Firewalls are characterized by having two elemental objectives: protection by confinement
of hosts and control over host-to-host interactions. Essentially, a firewall is controlled by

13

a set of rules applied to incoming traffic. Those rules manifest the security policy of the
firewall. Protection by confinement aims to provide safety from exterior networks. Despite
the advantage of having access to important network services scattered throughout the Inter-
net, liabilities may develop by exposing vulnerabilities. The control over interactions allows
not only the creation of authorization and access policies but also content inspection and
modification.

Figure 2.6: Firewall in action. The firewall filters incoming requests based on rules. Autho-
rized requests are able to pass through the firewall into the private network.

A more pragmatic approach identifies three main properties on a firewall’s operation. The
first is that all traffic, either incoming or outgoing, must pass through the firewall, hence the
firewall is a sole point of security and failure. Secondly, according to the local security policy,
only authorized traffic may pass through. This grants the ability of access control. Lastly,
the firewall is immune to penetration meaning that, if the entrance ports are closed there is
no way to break through them, one’s best effort is to bypass them.

Initially, firewalls were simply designed to implement a perimeter defense, in other words
to guarantee interaction control between the trusted network, as a perimeter to defend, and
the other networks. They are called network or organizational firewalls. It becomes fairly
easy to model centralized security policies for such networks. However, despite the previous
advantage, it does not suit well for assuring defense in depth. For that goal, other firewalls
were designed - personal firewalls. This type of firewall does not depend on third-party
devices. It applies its own security policies disregarding the network it is connected to. These
firewalls are commonly deployed in personal computers to be transparently used by regular
cybernauts. Firewalls are also an exceptional location to implement VPNs, since they allow
the extension of the security perimeter to other networks and hosts.

Since firewalls stand in front of a network to protect, they may suffer all kinds of attacks,
especially if that network is highly valuable. Like all the attacks performed on systems, some
are less complex and might produce lesser results while more complex and time-consuming

14

attacks may even disrupt and compromise connected hosts. Port scanning, IP spoofing2 and
denial of service (DoS)3 attacks are the most common and well-known, but still remain as
real threats for current networked systems.

Figure 2.7: Network firewall (left) and personal firewall (right). A network firewall controls
access for the whole network. The personal firewall simply protects the user’s system.

There are yet more issues that firewalls struggle resolving. IP fragmentation can cause
serious DoS attacks due to fragment overlap/overrun or buffer overflow. Malicious code
injection is also possible and undetectable by firewalls running IDS systems. Encapsulation is
another severe problem where non-allowed traffic is encapsulated into another protocol, such
as GRE, which is more tolerable by firewalls. Despite the fact that most of the times the
encapsulation is used for tunneling traffic, the previous situation disrupts firewall policies.

One very known application that can be considered as a firewall is the Linux iptables.
With iptables, it is possible to manage personal firewalls or gateways according to sequences
of rules contained inside a chain. Whenever a packet reaches iptables, it passes through at
least one chain for verification and filtering. Similarly to other firewalls, iptables accom-
modates built-in NAT support and permits connection tracking. Adding those capabilities
grants iptables the classification of stateful packet filter.

According to [13, 67], firewalls can be split into packet filters, circuit gateways or applica-
tion gateways for their model of intervention, while other authors use different but analogous
designations [41].

Packet Filter

A packet filter is a simpler and earlier version of a firewall. Basically it acts at the network
layer, particularly at the IP datagram exchange level. Its sole purpose is to examine packet
header fields and decide upon the acceptance or rejection of a single packet. The configuration
of the firewall is based on sets of rules that are applied sequentially to each packet. On packet
filters, the rules specify actual values of the datagram header fields. Whenever a packet is
routed through the firewall, each rule is verified in order. When one of the rules matches the
packet, it decides whether the packet is to be accepted and allowed through, rejected with an

2 Packets with false source IP address for the purpose of identity hiding.
3 Attack seeking to disrupt resource availability.

15

error message to the originator or simply dropped. Most of the times, the rule sets end with
a default policy of rejecting all packets, which is those not expressly permitted are prohibited.

This type of filtering is often called as static filtering since it is based only on information
contained in the packet itself, it does not preserve state or notion of connection. It commonly
relies on source and destination addresses, protocols, and port numbers. Other filtering based
on the direction of the information flow, IP datagram options and ICMP packets is also
possible and contributes to increase security against attempts to discover network topologies
or obtain information which is otherwise inaccessible.

Despite some limitations, packet filters are simple and easy to configure, fast and memory
efficient, and represent the first step to provide an initial line of security to networks and
hosts.

Circuit Gateway

In contrast to packet filters, circuit gateways evolve static filtering into dynamic packet
inspection. While operating at the transport layer, they obtain information not only from
one packet but from several packets that depict a connection between hosts. A state is
maintained through the usage of variables that determines whether a given packet is starting
a new connection, is part of an existing one or does not compose any connection whatsoever.
Circuit gateways are therefore designated as stateful or connection-aware firewalls.

After authorizing and conditioning connection establishments, these firewalls act as gate-
ways that relay traffic between the endpoints of the connection. Traffic relay can either be
transparent to users or not. SOCKS [35] is an example of a non-transparent protocol used
for relaying traffic.

Although circuit gateways solve many issues of traditional packet filters only by adding
the concept of connection, they are more complex, need additional maintenance and under-
standing, and may even arise new problems such as DoS attacks on connection state tables.

Application Gateway

Application gateway firewalls operate at the application layer and may intercept and
mediate interactions from network services. Their key advantage is that they can actually
understand applications and protocols, designating them as content-aware firewalls. Content-
awareness is formally translated into deep packet inspection and modification. This means
that application gateways can control all traffic, not only interaction-wise like previous fire-
walls, but deep into the content of each exchanged packet, bearing in mind the applicational
context. Other types of firewalls need to apply security mechanisms to whole packets or whole
connections without the possibility to differentiate deeply at the content level.

Concerning the application gateways’ implementation, they are realized into a set of ap-
plications that mediate each class of traffic. The latter are called as proxies. Proxies run
specific-purpose code instead of general-purpose mechanisms that have rule sets for all pack-
ets passing through. Each proxy serves as gateway that relays traffic to hosts for its specific
network service. These mediators allow for user access control, packet inspection and modifi-
cation, detailed logging and representation of hosts, all due to the specialization for a certain
application or protocol.

The need for specialized proxies for every running standard protocol or application stands a

16

major disadvantage. Not only the previous, but the additional logic for deep packet inspection
at proxies also increases latency. Despite reasonable weaknesses, applicational filtering based
on processes is much stronger than simple per port or per address filtering. Applicational
filtering allows content analysis as well as traffic analysis and solves protocol abuse over
encapsulation.

Next-Generation Firewalls

Traditional firewalls typically include stateless or stateful packet filtering, network address
translation and VPN support. Application-level firewalls add content inspection and modifi-
cation to traditional firewalls. Next-generation firewalls [38] take the next step by assembling
every layer into a single and stronger security element. Their foundational objectives cover,
the gain of control over the applications on the trusted network, the scan of those appli-
cations, the understanding on which users are initiating the applications and why, and the
implementation of convenient control policies to prevent risks or threats.

Next-generation firewalls operate in order to; firstly, identify applications regardless of
the address, port or protocols used; secondly, enable accurate identification of users; thirdly,
provide deep visibility and control based on policies over applications; and lastly, provide
combined protection and resolve on traditional security features.

In short, next-generation firewalls integrate the previous types of firewalls into one and
add innovative identification techniques over traffic and users, high-performance, centralized
security assurance based on real-time policies, and incorporated intrusion prevention systems.

2.3 Port and Service Scanning

The conventional concept of port scanning is rather simple. It is the act of probing
a server or host, with normal or forged packets, for open ports and analyze the results.
In computer science and networking, a port is an endpoint communication bound to an
application, enabling data exchange over the Internet. A port is always associated with an
IP address of a host and the transport protocol, either UDP or TCP. Many communications
between endpoints may be established since ports are identified by numbers and may vary
between 0 and 65535. The associations between port numbers and services are currently
maintained by IANA [51, 14].

Since a port typifies an entrance and exit into or out of a computer, port scanning iden-
tifies open gateways for every kind of information, that can be either friendly or malicious.
Therefore, port scanning can serve as an ethical or non-ethical tool. Ethical hacking generally
consists on performing tests to detect security flaws or vulnerabilities on systems, presented
with given permission. In this case the vulnerabilities are detected for network administrative
purposes. With non-ethical hacking the means are basically the same but the results extend
for criminal purposes or personal gains. An analogous representation of detrimental port
scanning might be thinking of a thief looking for entrances such as open doors or windows to
perform a burglary. Fortunately, the majority of port scans are not attacks and are intended
to determine remote available services.

Port scanning is a relatively wide concept, considering it integrates two other variations
that follow similar methods but obtain slightly different results. One of the variants is net-
work scanning, or port sweep. As the name implies, several hosts on the same network are

17

scanned, usually looking for a single specific service running in a centralized way over the net-
work. Another variant is the service scan, where open ports are scanned for running services.
Contrary to network scanning, service scanning searches for all services running in a set of
ports. Most of the times, service scans are executed against a list of non-standard ports in
order to identify the services running on ephemeral ports4. One simple example is sending
a GET probe packet to recognize web servers. One last method, not entirely considered port
scanning, is the ping sweep that simply detects active hosts over the network typically making
use of ICMP packets.

The success of a port scanning operation can be distinguished by inspecting the resulting
packets. The outcome of a port scanning operation against a given port can be generalized
into one of three kinds. Foremost, the reply packet indicates that a service is running, thus
translating into an open port. Secondly, the reply packet indicates that no connection is active
or allowed, translating into a closed or denied port. Finally, the reply packet is nonexistent
implying it was blocked or the sent packet was dropped.

Figure 2.8: TCP SYN scan. The scanner sends a TCP packet with the SYN flag active to be
interpreted as an initiation of a TCP connection. The target’s response is evaluated for its
distinction, resulting in the knowledge of whether the scanned port is opened or closed.

Mainly there are two techniques for performing port scanning onto a server, by using
normal probes or stealth probes. The main difference is that normal probes disregard any
consequences resulting from the scanning, while stealth probes are used to maintain the
scanning host hidden. Non-stealth port scanning attempts tend to use TCP’s three-way
handshake mechanism and may come in several types such as TCP or SYN scanning. Stealth
port scanning favors the increased difficulty in logging certain packet interactions between
the scanner and the target, or even by applying IP spoofing. FIN, X-mas and null scanning
are examples of stealth port scanning. A very extensive review on port scanning techniques
can be found on [15]. Applications like Nmap5, Nessus6 and Foundstone7 are tools not only
for scanning but also for detection and analysis.

A broader concept, directly connected to port scanning, is stack fingerprinting, that allows
the identification of operating systems on the target machine based on the examination of
the stack of protocols revealed on its response packets [67]. Associated with port scanning,

4 Short-term use of ports in the range [49152, 65535]
5 http://www.nmap.org/
6 http://www.tenable.com/products/nessus-vulnerability-scanner
7 http://www.foundstone.com

18

http://www.nmap.org/
http://www.tenable.com/products/nessus-vulnerability-scanner
http://www.foundstone.com

attackers can combine the knowledge of services running on the target machine and its oper-
ating system to help narrow down the types of exploits. Port scanning and operating system
detection may be a strong indicator that a more serious attack may be occurring in the near
future.

2.4 Secure Channels

In the early days of the Internet, there were no real security threats. This is due to the
fact that, by that time, the Internet was more of a micro-system and the amount of users
was so scarce that nobody even considered attacking it. Consequently, the Internet Protocol
Suite was conceived disregarding security aspects. The succeeding Internet growth, after its
deployment worldwide, brought the alliance of the networking and security concepts.

Secure channels are one of many ways to employ security to information traveling along
the network. They are inherently associated to cryptography and attempt to conceal it from
eavesdroppers on an end-to-end communication. SSH, SSL and IPsec are three of the most
deployed secure channels operating in different layers of the TCP/IP protocol stack. The
following sections briefly describe each of these protocols for a wide perspective on securing
information exchange over the network.

2.4.1 SSH

Secure Shell, as commonly abbreviated to SSH, is a network protocol that establishes a
cryptographically secured connection between two parties for interacting with remote services
over unsecured networks, such as the Internet. Despite being mostly used as a remote ad-
ministration tool, SSH is more universal, and allows for secure interactions over a channel.
Remote login, remote command execution and file transfer, SFTP and SCP, may also be
employed over SSH. Mainly, SSH creates a secure connection, sometimes referred to as secure
tunnel, between a client and a server to enable a protected forwarding of network services’
traffic using cryptographic means.

Conceptually, SSH permits any TCP client-server interaction to be secured over the tun-
nel. This brings some vulnerabilities, mostly verified on organizations where security policy
restrictions are applied. Since any TCP interaction can be forwarded inside an SSH tunnel,
packet filtering on firewalls would become ineffective, therefore rendering the organization
control policies worthless.

In a more functional overview, SSH uses public-key cryptography to authenticate both the
server and the client. Although password-based authentication is also possible for client users,
key pairs tend to be used more effectively due to their increased security. A crucial problem,
however, arises from the use of public/private key pairs that is, the reaction upon getting
unknown public keys, which may be accepted as valid or discarded as fake. It is important to
verify each public key saved on the server by associating it with the identity of each subject
that is connecting to the server.

Three major layers identify themselves with the three steps SSH uses to establish a con-
nection between a client and a server [64] before sending any relevant traffic. The bottom
layer corresponds to the SSH Transport Layer Protocol [65]. In this layer, the server authen-
tication happens, typically on TCP port 22. The initial setup is made on this layer where
strong encryption and integrity protection are provided. The authentication is not based on
the user, it is based on the server host using Diffie-Hellman initial key exchange as well as

19

message authentication and hashing. While public key algorithms are used for the server
authentication, symmetric encryption is used on the session key for encrypting bulk data
transfers.

Figure 2.9: Architecture of an SSH system8. Both the server and the client possess pub-
lic/private key pairs to use on authentication. The established connection uses symmetric
session keys to encrypt traffic.

On top of the SSH Transport Layer Protocol runs the SSH User Authentication Protocol
[62] where the authentication of the user is made using either a password or public/private
key pairs. More complex authentication methods may also be used but are not guaranteed
to exist in all SSH implementations, while the password and public key are. After the client
authentication is performed, this layer provides a single authenticated tunnel to be used for
the above layer.

The top layer is the SSH Connection Layer [63]. After the connection is set, it is possible to
create several interactive sessions for login and remote command execution. Session channels
are multiplexed into a single encrypted SSH tunnel providing full-duplex communication
between the client and the server. When all the above operations are complete, the client can
initiate encrypted traffic forwarding through a secured tunnel directed to the target server.

2.4.2 SSL

Secure Sockets Layer (SSL) is a standard security technology for establishing an encrypted
channel between a server and a client. All data transmitted along this channel is assured to
be secure and confidential. Therefore, SSL is used to protect sensitive information traveling
through unsecured networks meaning that, eavesdropping, data tampering or message forgery
is completely suppressed. Most of the times, such information relates to online transactions
between web servers and browsers, involving private details of a users’ identities. Transport
Layer Security (TLS) [17] is a newer adaptation of SSL. It consists of the same security core
principles although with significant modifications.

8 http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch03_03.htm

20

http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch03_03.htm

SSL/TLS provides server authentication as well as client authentication. Despite having
the same paradigm as SSH of providing a secure session between intervening entities, SSL has
no strict notion of which users are accessing the server. SSL simply identifies both participant
classes, the clients and the server.

To be able to create a trustworthy SSL connection, a server is often required of an SSL
certificate. Only trusted certification authorities are allowed to issue new certificates to orga-
nizations or individuals, that are audited in advance, and validated of their trustworthiness
and legitimacy. SSL certificates contain the requiring entity’s information as well as the cer-
tification authority’s. When in possession of an SSL certificate, a server is guaranteed to be
authentic, allowing clients to confide their information when communicating with the server.
All the interactions related to SSL certificates are managed by public key infrastructures
(PKI) through certificate chains.

The SSL/TLS communication is handled with two sub-protocols. The Handshake protocol
performs the authentication between the server and the client and negotiates encryption
algorithms and cryptographic keys for securing data, resulting in the formation of a stateful
connection. The Record protocol ensures the connection is private and reliable by using a
symmetric shared key for the whole session duration.

In short, SSL/TLS is a protocol that provides privacy and data integrity between com-
municating applications. It is also application protocol independent as upper-layer protocols9

can layer on top of SSL/TLS transparently.

2.4.3 IPsec

The Internet Protocol by itself possesses no inherent security. IPsec [31] is an extension
to the IP protocol which supplies data security at the Internet layer. IPsec consists in a
suite of protocols that provide data authentication, integrity and confidentiality in an end-to-
end security scheme. The security is applied for the whole IP packet, including upper-level
protocols. IPsec’s main concern is to protect data while in transit, in a lower level, completely
independent and regardless of applicational contexts.

Specifically, the suite comprises two sub-protocols, the Authentication Header (AH), and
the Encapsulating Security Payload (ESP). The AH protocol implements authentication and
integrity to packets grounded on keyed message authentication codes (see Section 2.5.1).
Authentication is ensured by a secret key, while integrity results from data hashing. AH
relates both and creates an HMAC instance based on the secret key, the packet payload and
the IP header. Due to the usage of the IP header, AH conflicts with NAT mechanisms and
requests for NAT-Traversal10. The ESP protocol also utilizes the same HMAC instantiation
but exclusively using the secret key and the payload. In this case, NAT does not break its
specification, but other problems regarding the transport protocols arise and NAT-Traversal
still needs to be handled. Additionally to authentication and integrity, ESP also enables for
data confidentiality between endpoints. Confidentiality is imposed by symmetric encryption,
blocking curious middlemen from observing the transmitting data.

Both protocols operate according to specific modes desired for specific purposes. The
default tunnel mode encapsulates the original IP datagram as a whole and adds the IPsec’s
header along with a new IP header. This mode is mostly used for connection tunneling, like

9 SSL/TLS resides on the application/session layer on TCP/IP and OSI models, respectively.
10 Mechanism, generally applied to network gateways implementing NAT, that preserves end-to-end IP

connectivity.

21

Figure 2.10: NAT-Traversal on IPsec tunnel mode. An UDP header is inserted on IPsec’s
tunnel mode to assist the forwarding of the packet to the correct services.

VPNs, where the need for encryption is applied to a single network hop. On the transport
mode, only the payload of the IP datagram is controlled, being most suitable for end-to-end
communications between servicing hosts.

The cryptographic keys in IPsec are exchanged either through in-band or out-of-band
processes. The keys are exchanged through an Internet Key Exchange protocol [30] or can
be manually inserted into both ends of the communication. Security associations also have
to be exchanged for IPsec to function correctly. They relate security parameters to traffic
flows, making IPsec half-duplex. In short, IPsec creates a boundary between protected and
unprotected interfaces for a host or a network granting security over the entirety of IP packets.

2.5 Authentication Through Cryptography

Authentication may be accomplished in a variety of ways. In the cryptographic context,
symmetric and asymmetric encryption are the most widely deployed methods for protecting
important information traveling through the network. Not only they provide data authen-
tication, but also data integrity and even confidentiality. The subsequent sections relate
symmetric and asymmetric encryption to forms of message authentication, where security
tokens are used to ensure the legitimacy of message originators.

2.5.1 MAC

Message Authentication Codes (MAC) are small pieces of information that are used as a
technique to authenticate messages originated by any sender entity. In other words, MACs
are used to confirm that messages are authentic and came from the legitimate sender, and
that they have not been changed in transit, either intentionally or unintentionally. They are

22

cryptographic checksums attached to messages, for proving data authenticity and integrity.
A MAC is a security token resulting from a MAC algorithm, that takes a message and a

secret key as inputs, hence it is no different than a simple hash except that the compression of
the message uses a secret key. The used secret key is actually a symmetric key shared between
both the sender and the receiver. As such, a MAC computation uses symmetric encryption
for authenticating entities at the receiving side, where messages are verified by applying the
same calculations made by the sender.

Figure 2.11: Message authentication through the usage of MACs.

Despite similar, security requirements of MAC functions are slightly different to the hash
functions’. The security of MACs lies on the fact that it is computationally infeasible to guess
other messages’ MACs simply by evaluating past MACs, without knowing the key used during
compression. Therefore, only legitimate senders may append correct MACs to messages, since
they have the knowledge of the secret key.

Although there are several variants of MAC implementations, the keyed-hash message
authentication codes (HMAC) [33] are the ones most widely used in security systems. HMAC
is simply a recipe for turning hash functions into MACs, thus introducing randomness to
MAC computations.

In spite of having considerable advantages, MACs also present some defects. The establish-
ment of the secret key requires for a previous unsecured exchange of confidential information
between peers, the key itself. The inability to provide non-repudiation, that is to guarantee a
received message was exclusively created by the sender, also stands as a disadvantage. Even
though MACs do not warrant for data confidentiality, they do for authenticity and integrity
validation, two very important properties for establishing protected network communication
systems.

2.5.2 Digital Signatures

A digital signature is a mathematical scheme used to validate the authenticity and integrity
of messages, just like MACs. Furthermore, it also grants non-repudiation of the originating
entity, something that MACs struggle to endorse. Essentially, a valid digital signature assures
a recipient that, the message was created by a known and legitimate sender (authentication),
the sender cannot deny having sent the message (non-repudiation), and the message was not
tampered with in transit (integrity).

23

Digital signatures can generally be seen as electronic fingerprints that associate a signer
entity to the message or document it intends to transmit. For that, the signer must be ac-
knowledged with private traits that uniquely identifies him as a valid and authentic individual.
In cryptography, the previous mechanism is implemented as public-key authentication.

Public-key, or asymmetric authentication retains the existence of a pair of keys denomi-
nated as the private and public keys, where the former is meant to be securely hidden and
the latter is made available to the public network. In the context of digital signatures, the
private key is securely kept by the signer and is used for signing. Note that, for efficiency
purposes, only the message digest is signed. This recognizes that the message was created
exclusively by the signer. The message is then appended with the signature and transmitted
to the intended recipient. On the receiving end, the signer’s public key is used to verify the
signature following an identical process, ultimately verifying both signatures of their equality.
In case both signatures are equal, the recipient has reason to believe that the digital signature
is valid and the message is authentic.

Figure 2.12: Message authentication through the usage of digital signatures.

For further ensuring the trustworthiness of the public keys exchanged through the network,
certificate authorities generate digital certificates for key pairs created by entities, according
to their verified personal information. Receiving parties are then assured of the credibility of
a given public key, simply by applying their confidence in trusted certificate authorities.

2.6 NAT

Network Address Translation tries to solve the expected global IP address space exhaustion
matter by mapping what usually is an entire private IP address space into another, shorter,
public address space. NAT is implemented on devices placed along the path of communication
and acts as a default gateway for Internet edge endpoints. In practice, NAT operates on
inbound and outbound traffic at the borders of the domain space. Outgoing traffic coming
from a local host undergoes a mapping of the local host IP address, to the external IP

24

address used to preserve the future communication. Incoming traffic uses the mapping table
to associate the fake destination address with the real hidden address, in order to forward the
traffic to the local host.

The previous one-to-one and one-to-many relations, often related to the concept of static
NAT and dynamic NAT respectively, do not stand the most powerful mechanisms of network
address translation. The substantial difference through the usage of NAT rests on the pos-
sibility to sustain address reuse by mapping multiple private addresses into a single
public address (see Fig. 2.13). This is characterized as overloading or Network Address and
Port Translation (NAPT) as described in RFC 2663 [60]. On outbound traffic, IP masquerad-
ing is applied, where the real IP address is masqueraded into a substitute address used only
to identify the local network on the Internet. For external hosts, a single entry point is seen.
The privacy of the local network is preserved as external entities have no information past the
NAT device besides the connecting public IP address. Inbound traffic passes through a port
forwarding technique in which the destination port number is associated with an internal host
address. For that, the NAT device maintains associations of pairs <IP address, port number>
instead of simply the IP addresses.

Figure 2.13: NAT Overloading. Private addresses are translated into a single public address
indexed by port numbers, in order to establish a connection with the web server.

In order for the NAT mechanism [58] to work, the header fields of the IP datagrams are
modified when the translation and forwarding occurs. Since NAT mainly operates at the
network level, upper protocols such as UDP [4], TCP [28], ICMP [59] and even GRE must
consider potential connectivity obstacles. The end-to-end core principle of the Internet is
therefore lost as IP addresses are modified along the path filled with NAT devices. Not only
that, but since header fields are modified, integrity checks must be recalculated and reattached
to the modified packets, something that happens on UDP and TCP transport protocols. As
applications negotiate some of the header fields at the application level, NAT implementations
must be aware of upper layer protocols and need to conjugate with Application Level Gateways
to perform NAT traversal correctly, examples being FTP and SIP protocols. NAT further
stands in the way of IPsec tunneling mechanisms of integrity checking.

The translation methods for NAT implementations may be classified into one of four
categories. On full-cone NAT, one internal address is mapped to a single external address,
making it possible for external hosts to communicate with the internal address by connecting
to the external address. On address-restricted cone NAT the same principle applies except

25

that the external host must be contacted first for it to be able to connect to the local host.
Port-restricted cone NAT narrows the restriction down to the specified port instead of the
IP address only. On symmetric NAT each request from the same internal IP address and
port number is mapped to a unique external pair address. In real world NAT behavior, these
methods are often combined together to more specifically pertain the actual NAT traversal
method.

2.7 Access Control

Access control is a conceptually wide mechanism that exists to limit the interactivity
between any foreign user and the resources of a secured system. In this way, it prevents
injurious activity that could lead to security breaches of said system. Some basic principles
and practices are described in [56] and an extensive overview on access control is provided
in [53]. Access control grants the ability to control, restrict, monitor, and protect resource
availability, integrity and confidentiality. The foremost challenges access control faces are
the variety in types of users accessing the system and the variety of resources and their
authoritative privileges. The subjects represent the users that can perform actions on the
system and the objects represent the resources which’s access is controlled from subjects. The
access is the flow of information between subjects and objects.

For its broader definition, access control is a 4-step mechanism that includes identifica-
tion, authentication, authorization and audit. Most of the times some of these steps
become agglutinated and are performed together. On less complex systems sometimes it is
possible to merge the authentication and authorization steps while the audit may not even be
present. On composite systems the 4-step mechanism is very well defined and delimited where
each step is assured by independent processes. In a narrower definition, access control com-
prises only the access approval based on authorization policies and leaves the authentication
completely apart and independent.

The first step for controlling access to a requesting subject is the identification. While
most times being combined with authentication, identification itself consists on the process
of verifying that the identity the subject provides is bound to the entity it claims to be. It
does not however represent the actual authentication. This is accomplished through identity
proofing where the identifier of the subject must be unique.

In contrast to identification, authentication does not refer to the act of stating the subject’s
identity. Authentication, which is the second step of access control, is the process of actually
confirming that identity. For this step, not only the identity of the subject is needed but its
accessing credentials must be supplied to verify its legitimacy. Subjects may be authenticated
in several ways that generally fall into one of three categories, based on what are known as
the factors of authentication:

• Knowledge factor - represents something that the subject knows: password, PIN, challenge-
response, security question;

• Ownership factor - represents something that the subject has: ID card, access card,
hardware or software token;

• Inherence factor - represents something that the subject is: biometrics, signature, voice.

26

Typical security systems offer single-factor authentication. This type of authentication
does not offer much protection against intrusions since there is only one mechanism attack-
ers have to bypass in order to gain access. When added another authentication mechanism,
attackers must circumvent two authentication methods that are totally independent. This re-
sults in an increase of security usually performed on more complex high-level security systems.
Another factor considered nowadays is the location factor that represents where the subject
is. The abstraction of the location factor is specified in the context of computer security as
the network location of the subject, which can be a user inside a VPN or past a firewall.

Authorization is the step of access control that specifies the access rights to resources.
The authorization step assumes authentication has been successful and the requesting users
are considered legitimate. In order for the authorization process to work, two phases are
executed in order; definition of policies for authorized access, and enforcement of policies for
approving or disapproving access requests. On the first phase, the owner or administrator
defines the policies for access to the resources. The second phase happens when an incoming
request from a user is detected. The request is verified against existing policies taking into
account the requesting user and the requested resource.

Figure 2.14: Four-step access control. The subject requesting access to a resource must pass
through identification, authentication and authorization processes. Auditing is enabled as an
administrative tool to detect possible system failures.

Systems may implement access policies in the form of access control lists (ACLs) or based
on capabilities. ACLs are specified for each object. The policy for the object is then repre-
sented in a form of list that contains the subjects and their accessing rights. Since ACLs are
object-related, reviewing or revoking accesses to an object is fairly simple. Capabilities are
subject-related and suggest a complementary approach. Each subject possesses a capability
list indicating its accessing rights for every resource. In order to fully understand the previous
concepts, an analogous real life access control situation would be for a given individual trying
to access a convention. The ACLs would translate into a list, retained by a receptionist at

27

the entrance, where access is granted by name. On the other hand, the capabilities approach
would introduce tickets that the invitees would have to present. ACLs can therefore be asso-
ciated to what or who one is and, in order to change the accessing rights, the controller must
change the access list. Capabilities identify what one possesses, such as a key. This allows
the key to be exchanged between subjects.

Modern operating systems implement authorization policies as variants of the basic access
types, read, write and execute. These permissions vary according to the model that supports
the system. Generally, there are three access control models that represent the majority
of running systems. The Discretionary Access Control (DAC) and the Mandatory Access
Control (MAC) models were the first to be conceived. The third access control model is
the Role-Based Access Control which subsists on both DAC and MAC models making it
slightly more complex and powerful.

Auditing is the last step of an access control system. While sometimes being neglected, it
offers such systems the possibility to record and log every interaction, enabling the detection
and eventual prevention of security threats and intrusions, much like IDS and IPS systems
do.

Discretionary Access Control

Discretionary policies dictate the access of users to information based on the user’s iden-
tity and its authorizations for each object. The access rights and permissions are set up by
the owner or creator of the data. He is responsible for determining which users have ac-
cess to specific resources. Each request arriving at the system is checked against the user’s
authorizations and access is granted if the requested authorization is allowed by the owner.

Discretionary policies however do not have any sort of control over the intentions of the
users requesting the information. Since no mandatory actions are taken, the subject can
deliver the contents of the received information to unauthorized parties. Content distribution
over unauthorized entities stands a problem for discretionary access control.

Mandatory Access Control

Mandatory access control sustains a complementary approach of the previous method. In
this method, subjects and objects are assigned security levels. The security level of an object
reflects its information sensibility while the security level of a subject reveal the trustworthi-
ness of the subject. The dissemination of information is now based on the idea of trusted
subjects.

When requesting access to a piece of data, the subject’s clearance and the objects security
label are verified and if they match the subject is granted access. Not only the subject is
allowed to access information at the same security level of its clearance level, but it can also
access information hierarchically above or below depending on rule models such as Biba11 and
Bell-LaPadulla12. Implementations combining properties of both methods are better suitable
for security systems. A detailed overview of mandatory access control is considered by Sandhu
in [54].

11 Any user can read up and write down, data integrity is maintained.
12 Any user can read down and write up, confidentiality is maintained.

28

Role-Based Access Control

Two extremes were created by mandatory policies being too strict and discretionary poli-
cies being too tolerant. The need for a more commercial solution sits at the base of the
development of role-based access control methods that couple properties of both previous
methods.

Figure 2.15: Role-based access control. Users are assigned roles consisting of specific permis-
sions on the system.

Role-based policies rise [55] to regulate users’ access to information based on the activities
they perform on the system. The permissions to certain activities are associated to roles, and
users are assigned to the appropriate roles. This facilitates the access rights appointment.
Instead of specifying the permissions for each subject-object pair, the user is simply assigned to
a role according to its job function, responsibilities and qualifications. Users may be reassigned
from one role to another. Roles can also be granted new permissions, and permissions can be
revoked as needed. Roles stand as a group of subjects that inherit the same privileges. This
naturally reduces the need for an extensive list of user permissions.

Some properties are inherited from previous access control models. Roles can be placed
in a hierarchical structure where relations between their upper or lower siblings are present.
Roles also implement the least privilege principle where subjects are only capable of doing
exactly what they were intended to do according to their activities. Lastly, users cannot have
enough privileges to misuse the system on their own, separation of duties must exist.

2.8 Virtual Filesystems

The origin of virtual filesystems is essentially based on the demand for uncomplicated user
access to kernel information. A virtual filesystem is simply an interface that abstracts the
communication between the kernel and user applications. It can be viewed as a window or a
snapshot of the kernel’s information during runtime.

In order to exchange data between user space and kernel space, the Linux kernel provides
some useful RAM-based interfaces. The Linux development follows a paradigm of ”Every-

29

thing is a File”, as such, the communicational interface is materialized into several virtual
filesystems, where all kernel parameters and configuration values are available through virtual
files. By means of standard read and write functions, user space programs can access these
files in a transparent and bidirectional manner.

Despite offering rather similar functionalities, the different virtual filesystems are designed
for distinct purposes. The following sections identify three different approaches for user
applications to interact with the Linux kernel, the well-known Procfs, the new sucessor
Sysfs and its complementary version Configfs.

2.8.1 Procfs

Procfs [32] is one of the most dated virtual filesystems in Unix. It is a special filesystem
that gives access to information regarding each running process. The information is granted
as snapshots of the processes’ status, structured as an hierarchical file-like view according
to process ids. The Procfs filesystem is mounted on /proc, visually resembling a regular
directory. It acts as an interface to internal data structures in the kernel, to obtain runtime
system configurations. For this reason it can be regarded as a control information center for
the kernel.

The Procfs filesystem provides a method for user programs to access kernel space in-
formation. Many developers take advantage of this fact and use this virtual filesystem on
applications connecting to the kernel. In fact, many utility tools, such as lsmod and lspci,
are simply applications that read files present on /proc.

Due to its high availability and handiness to both the user applications and the kernel,
Procfs has been overrun with nonessential information becoming a dumping ground for a
whole range of system data. Not only that, but it also gained write permissions13 allowing for
unstructured definitions on the /proc directory. Procfs stands as a center for legacy system
information thanks to new implemented and active solutions.

2.8.2 Sysfs

Procfs’s deficiencies led to the development and introduction of a new virtual filesystem
on the Linux kernel, the Sysfs. Sysfs [39] is a pseudo filesystem very similar to its predecessor
when regarding its functionality. It exports information about kernel subsystems, hardware
devices and other device drivers to the user space through virtual files. The Sysfs filesystem
features a well-defined structure and strict directory hierarchy based on the internal organi-
zation of kernel data structures. The file definitions follow precise rules. Only one value per
file is allowed for representing a single configuration parameter, thus granting a higher level
of abstraction to installed drivers.

Sysfs is a bidirectional interface for representing kernel objects, their attributes, and their
relationships with each other. It can express itself as a kernel interface for exporting the
previous items via the virtual filesystem, or as a user interface to manipulate the same items
that map back to their representations as kernel objects. As such, handling configurations
for kernel structures becomes an easy task by simply reading and writing to a file present on
the /sys directory. Sysfs relies on a uniform structure with inherent guidelines for developers
to follow, making it a valuable interface when communicating between the kernel and user
applications.

13 sysctl allows manipulation of kernel configurations at runtime. In Procfs it is implemented on /proc/sys.

30

/sys/

block/

bus/

class/

devices/

firmware/

module/

power/

Figure 2.16: Top-level Sysfs directories. The directories represent the major subsystems
created at system startup. After their initialization, each one begins to discover objects
respecting its system scope.

2.8.3 Configfs

Configfs [8] is yet another RAM-based filesystem implemented by the Linux kernel. De-
spite being similar to Sysfs on a functional level, they are in fact different and complementary.
Where Sysfs is a filesystem based on the viewing and manipulation of kernel objects created
on the kernel side, Configfs is quite the opposite, a filesystem manager for doing the same
operations, but on kernel objects created by user applications.

Configfs’s operational description might induce to a violation of the core principles on
kernel-user interaction, yet this is not the case. Kernel objects are obviously created by the
kernel itself, however, the user applications are in full control of the life cycle of such objects.
This means that user-space programs create, manipulate and destroy kernel objects at will,
something that does not happen with Sysfs where the user applications can only perform
value manipulations. Object definition and syntax follow the same principles as the Sysfs
filesystem.

User applications are allowed to create configuration items14 simply by issuing a call to a
mkdir operation. The destruction of these items is conversely possible by using rmdir. Once
an item is created, its attributes become ready to be modified by simple read and write
operations in their many well-known forms. Attributes may as well be grouped together just
like in Sysfs. The items and groups are then registered into a subsystem, representing a client
module and appearing as a subdirectory under the top-level /config directory.

14 Equivalent for kernel objects in Sysfs.

31

32

Chapter 3

Related Work

On the following sections, the related work is extended into different solutions that solve
each singular system’s basic objective. It is divided into solutions for port hiding and system
concealment, and techniques for controlling user access on authentication and authorization.

3.1 Controlling Port Scanning

Concealing the system is most often a synonym to averting port scanners. This section
describes different solutions used to subvert port scanning. Although their main purpose
is port hiding, these solutions also expand on user authentication, which will be addressed
further below on this chapter.

3.1.1 A TCP-Layer Name Service

In the current days, hosts can be scanned for open ports to detect running services through
the usage of well-known applications called port scanners. This is made possible due to the
fact that ports are identified by a relatively small number. In his paper, Freire [23] proposes a
name service for TCP ports that enables them to be reached by a name instead of a number,
while still providing regular means for non-complying or legacy hosts. The transport layer
name service evolves the standard three-way handshake by integrating name resolution and
user authentication on TCP’s reliable and bidirectional communication. The solution rests
on the purpose to grant access only to well-intended users, thus it preserves the concern that
attackers can watch and intercept traffic at will. Two name resolutions models, that annul
port scanning techniques by identifying ports via naming, were suggested.

The Simple Name Resolution Model handles no user authentication or authorization. It
merely provides name resolution over the TCP’s connection establishment process. When
the server receives a SYN segment with a port name, the name service resolves it into a port
number and the association is sent back to the client in the SYN+ACK segment. Thereafter
only port numbers are used to maintain the connection. The port name is sent on the payload
with a TCP option identifying the use of port names.

The Enhanced Name Resolution Model expands name resolution onto external logic pro-
cessors called Domain of Interpretation Resolvers which keep closely integrated with the TCP
protocol. Association registry, validation on the client side and revalidation on server side are
the primary functions of DOI Resolvers, called asynchronously during the three-way hand-

33

Figure 3.1: Simple TCP name resolution. The standard three-way handshake is extended to
support port names.

shake. This extended model grants secure access via pre-shared keys between endpoints.
Diffie-Hellman key distribution is also part of the data exchanged during the connection
establishment.

3.1.2 Port Knocking Mechanism

Port knocking is a mechanism that uses connection attempts on a set of predetermined
closed ports to implement network level access to services. Only credible users that generate
a correct authentication sequence may automatically and transparently provoke a dynamic
action over the accessed host or network. Generally, port knocking takes place on client-server
models where a port knocking daemon stands at the server end intercepting and logging
received packets. After a correct sequence of ports originated by a client, the daemon allows
it to connect to the wanted service port or execute a remote command. Martin Krzywinski
was considered to have formally pioneered the port knocking mechanism [34].

Connection attempts may be in the form of UDP or TCP SYN packets carrying the authen-
tication information. A later version [49] using ICMP packets for port knocking sequences
was identified as conceivable and implemented shortly after. The authentication information
is comprehended on the packets headers where the IP address, the destination port number,
the time and checksum fields are used to encode the knock sequence in order to dynamically
modify firewall rules according to the client’s IP address, requested service and duration. A
deviation of port knocking, single packet authorization [49] combines all the authentication
information on the payload of a single packet, maximizing throughput and efficiency, while
also adding supplementary security features.

The vital purpose of port knocking is to prevent an attacker from scanning the secure host
for open and potentially exploitable ports. Port knocking is a stealthy authentication mech-
anism since all the ports are closed until a correct sequence of connection attempts appears
while discarding all the incorrect ones. Due to the fact that port knocking introduces random
port numbers as correct sequences, sequential and targeted port scanning tools become inef-
fective. Nevertheless, traditional port knocking is presented with several security flaws that
can be abused by ambitious attackers [37]. NAT-knocking describes the situation where two
clients behind the same NAT share the public address, therefore it becomes impossible for

34

a port knocking system to differentiate them, allowing for one of the clients to be a poten-
tial attacker. DoS and DDoS attacks against memory buffers that support each connection
attempt are also possible. Replay attacks also represent a major issue for conventional port
knocking.

Figure 3.2: Port knocking mechanism1. Four-step process in which the client is permitted to
access a port running the desired application, only if it provides the correct knock sequence.

Several subsequent implementations were created to solve most of port knocking’s weak-
nesses. In [2] the authors overview such implementations and present their advantages and
disadvantages while also giving a new solution. It is based on source port sequences. In-
stead of producing a sequence of packets destined to specific ports on the remote host, the
originating user sends a sequence of packets to a single remote port where the source ports
are used as the information for authentication. Each user is individualized for his distinct
source port sequence and he is verified against a white-list of users. This article alleges to
solve port scanning since it is impossible to associate traffic of newly opened connections to a
previous sequence of packets. Therefore, an attacker cannot infer on the life cycle of a given
service preventing replay attacks. Source NAT deployment, however, disrupts this system’s
implementation.

1 http://www.portknocking.org/

35

http://www.portknocking.org/

An early implementation described in [5] uses a challenge-response method to authen-
ticate users alternatively to one-time passwords due to time constraints and simplicity. It
characterizes itself as a lightweight NAT-aware solution that focuses on solving disordered
packets and replay attacks. Note that the replay in this case is solved using encryption which
is much more effective. The authentication can be mutual or unilateral only. An innate side
effect of the challenge-response method is that the port knocking system exposes its existence
to attackers.

A relatively recent implementation [1] proposed a more complex and heavyweight approach
that includes steganography2 and mutual authentication to the port knocking system. The
authentication information is handed over on the payload of the packets in the form of an
image. After the image processing, a mutual authentication occurs using key encryption
that will eventually open the required port or execute a remote command. DoS-knocking and
replay attacks are inhibited thanks to built-in intrusion detection and encryption, respectively.

3.1.3 Lightweight Concealment and Authentication

Attacks on a network connected system depend mostly on the information collected from
such system. The information is naturally collected through specifically designed probes in-
jected on the network or simply through the observation of network traffic between hosts.
Existing techniques to protect network connected machines tend to rely on packet filter fire-
walls, that filter unwanted traffic at a very low level disregarding application-level exploits,
or application-level security, that usually perform heavy cryptographic calculations enabling
other types of attacks such as DoS attacks. Another possible solution to this problem stands
on the lightweight concealment of the ports used to provide network services to authenticated
users from the unauthorized attackers.

In a work [6] published by Intel, the authors argue that there is a need for computation-
ally cheap and simple security mechanisms that allow the early abandonment of the majority
of unauthorized attempts. It also claims that services should be hidden while providing
no response whatsoever to subvert unauthorized port scanning. Generally, the paper pro-
poses a lightweight authenticated one-way signaling mechanism that augments the function
of stronger authentication mechanisms like IPsec, SSL, SSH, and more. Comprehensively, it
identifies three main properties:

• Services should be hidden, meaning that the end hosts should be considered as stealth
devices that are invisible to other devices except for authorized entities;

• Access credentials should be easy to validate, yet difficult to falsify, meaning that invalid
credentials should be discarded in order for the service to remain concealed;

• Application security mechanisms should not cease to exist as they are still used to
provide true end-to-end authentication between services.

In a more practical manner, the paper describes three variations (see Fig. 3.3) of the same
basic idea which are implemented at the endpoints. The implementations are intended for
TCP but the authors allege that the same mechanisms can be analogously extended to UDP.

SSTCP, or Spread Spectrum TCP, makes use of several TCP SYN segments to send an
authentication key from the client to the server. The key is modulated and encoded on a

2 Technique used for concealing a file within a file.

36

TCP header field in each SYN segment transmitted. There are two viable options that may
resist end-to-end communication disrupters, which are the destination port number and the
initial sequence number. For SSTCP, the destination port number was chosen since the initial
sequence number may be altered by proxies. When a client tries to start a TCP connection,
before the three-way handshake, the SYN segments encoding the key are sent to the server.
This resembles the port knocking mechanism. Once the server decodes and obtains the key
from the received packets, the key is verified and the client is authenticated. The normal
three-way handshake process may begin on the next packet sent by the client. A noticeable
handicap is that the key must be previously shared between both parties.

In TGTCP, or Tailgate TCP, authentication is made on a single packet transmitted from
the client to the server containing a hashed key alongside other authentication parameters
used to inhibit replay attacks. Such parameters are: the current time, the client identifier,
the source public IP address, the destination address and port number, and a hash of all the
previous parameters concatenated with the shared key. This packet must be followed closely
by the initial three-way handshake packet due to the fact that, once the key is verified as
legitimate, the server’s firewall opens the corresponding port for a very short period of time,
typically two seconds. Only within that timespan the attempts for the client to initiate a
TCP connection are allowed. This solution stands imperfect for its time related constraints,
bearing in mind the tendency of network delays over the Internet.

Figure 3.3: SSTCP, TGTCP and OKTCP authentication mechanisms.

The last implementation proposed is OKTCP, or Option-Keyed TCP, where the authenti-
cation parameters are included on the actual three-way handshake packet. The authentication
parameters correspond to the same used in the Tailgate TCP and are encoded as an IP or
TCP option field. The drawback of this approach resides on the relatively small limited size
of the option to encode the shared key.

These approaches present various benefits on lightweight authentication and network ser-
vice security. There is a reduced opportunity for attacks since exploits are less likely to occur
on endpoints that do not appear to exist. There is also a reduction in vulnerability to attacks
since the attacker must bypass these new mechanisms. The rejection of attackers is turned
into a lesser computational cost due to the lightweight verifications, which stands a major
benefit.

37

3.2 Exercising Access Control

As stated, access control typically comprises four fundamental steps: identification, au-
thentication, authorization, and audit. Identification and authentication are frequently em-
ployed together on security systems. In light of this fact, the solutions described are com-
bined simply into an authentication section. Authorization is generally implemented as a
standalone mechanism, independent of authentication. The authorization section focuses on
solutions that use the different methods for authorizing users, completely assuming the au-
thentication process to be handled previously by separate mechanisms. For the purpose of
this dissertation, audit solutions are not discussed.

It should be noted that there are several other solutions for both authentication and
authorization but only these were mentioned, since they are potentially interesting to the
proposed system.

3.2.1 Authentication

3.2.1.1 User-Based Access Control Framework

Packet filter firewalls essentially inspect the header of IP packets and decide upon their
acceptance or rejection through the firewall. It is a simple mechanism that provides a first
level of access control based on host information. IP packets however cannot be considered
trustworthy solely based on the host’s information, namely the IP address. Packet filters do
not provide any type of security based on actual users’ information meaning that, impersonat-
ing hosts becomes relatively easy for moderately motivated attackers performing IP spoofing
techniques.

In this solution [68], a framework for enforcing user-based access control over packet filter
firewalls is described. The framework intends to prevent unauthenticated traffic to reach a
protected host by adding extra information to packets, the originating user’s identity. This
enables the packet filter to survey filtering rules based on user identity. The strategy used
sits on the single sign-on3 concept layered at the network level.

Figure 3.4: High-level protocol for enforcing identity-based access control.

User authentication is set up based on a set of credentials that identify the originator of a
3 Access control mechanism where a user generally accesses several systems by only logging in once.

38

packet. Whenever a packet is received at the server-side firewall it is checked for an identity
mark. If not present, the server sends back an error indicating that the user must first
authenticate himself to an Identity Provider trusted by the server. After the user has proven
his identity to the identity provider, he then uses the received authentication token to register
himself on the server. At this moment, whenever an identity marked packet is received at the
firewall, attached with an access authenticator that includes the user’s identity, the firewall
checks if the packet truly originates from the user by verifying cached registrations and allows
it to pass through to the server. The access authenticator marking uses a new 24-byte IP
header option that may potentially create coexistence problems. This whole process grants
the ability to enforce access control policies on the firewall, not only per packet but with a
user identity associated with it.

3.2.1.2 Challenge-Response Authentication Mechanism

The challenge-response authentication is a mechanism familiar to everyone as it is a broad
and universal concept employed worldwide, not only in computer security but also in every
other subject where authentication is inherently present. By definition, challenge-response
mechanisms are applied where verification of a given entity is needed when trying to access
something that is controlled or supervised by another entity. The controlling party presents a
question - challenge - at which the accessing party needs to provide a valid answer - response -
to be authenticated. The simplest application of a challenge-response mechanism is ordinarily
known as password authentication. The challenger asks for a secret that the responder must
supply correctly in order to be successfully authenticated and granted access to the protected
resource.

Regarding computer security in depth, this authentication method becomes an increas-
ingly more complex matter thanks to the advance in network communications and Internet
in general. Automated scripting machines for eavesdropping and attacking traffic are almost
always accompanying every network connection. Despite the simple method above being im-
plemented in some systems, it does not grant any security value, making the systems attend
severe security issues. Therefore, challenge-response mechanisms have very different meth-
ods of implementation, where the most commonly used in communicational security are the
cryptographic techniques.

Fernandez and Warrier [22] describe a composite pattern to achieve secure remote au-
thentication and authorization for distributed systems based on two patterns, proxy server
and role-based access control. When a requiring user wants to access protected information
a certain flow of steps representing the pattern is observed:

• The authenticating user makes a request for a network service through a proxy server
representing a single entry point;

• The request is routed and forwarded to the remote server containing the needed au-
thentication information;

• The remote server responds to the client by sending an access-challenge back, passing
through the proxy;

• The client calculates a response for the challenge and sends it to the proxy that again
mediates the traffic and forwards it;

39

• If the response matches the expected answer for the challenge, the remote server replies
back granting access to the client, which is, as of this moment, authenticated.

After the authentication process, the user is still not allowed to access the protected re-
source. An authorization operation must follow through. The client requesting for a specific
resource is authorized based on the role he possesses at the remote server. If such a role grants
permission of the given client accessing the requested resource then, the remote server ac-
knowledges this information back to the client along with the effective access to the protected
resource.

While the challenge-response authentication mechanism is enforced on many known proto-
cols: RADIUS, SCRAM, LDAP, SSH and more; it is also used for its security capabilities on
systems and in general applications. In this article [61], the authors implemented an authen-
tication solution based on the optical perception of cameras. It uses OpenID single sign-on
for enabling authentication over several network services using the same user authentication
information. The user trying to access a web page is presented with a challenge in the form
of a QR code. The user captures the QR code and a response is calculated in the same form.
The server verifies the correctness of the response using a secret key, previously shared with
the user. The challenge-response paradigm is invoked in this solution as a fast, simple and
secure authentication mechanism that uses encryption.

3.2.1.3 Public Key Authentication

Asymmetric cryptography grants integrity, authenticity and confidentiality. Public key,
or asymmetric, cryptography gets its name from the conceptual aspects behind it. It uses
a pair of different keys identified as the public and the private key. Evidently, the public
key is intended to be distributed along potential communicators while the private key must
be kept hidden and protected only accessible by the owner. Mainly there are two possible
ways of exchanging messages between entities. Either the receiver’s public key is used for
encryption ensuring only he can decrypt the message using his own private key, or the message
is encrypted using the issuer’s private key convincing the receiver of the message’s originator.
The strength of a public-key cryptosystem lies solely on the security and protection of the
private key, given that the generation of the key pair withstands a high degree of difficulty
on the discovery of the private key using the public key.

One of the main problems relating access control and public key authentication is the
association between public keys and identities. A remote user authentication scheme [66] is
presented in order to attend the issue. The proposed scheme is based on ElGamal signature
scheme and provides mutual authentication as well as an increase in performance and resolve
on a handful of attacks in relation to previous implementations.

The solution uses two factor authentication and comprehends three operational phases,
registration, login and authentication. During the registration phase the user provides his
identifier as well as the chosen password. The system uses the ElGamal signature scheme
to personalize a smart card with secure information to the user. Manifestly the two factor
authentication dwells on the smartcard and the password. On the login phase, the user must
present the smart card to a card reader along with the identifier and the password. The
smart card then computes verification values to be used on the next phase according to a
time interval. On the last phase, the authentication is made by verifying the parameters
received by the smart card while processing time validations. If the final comparisons of
computed values match, then the user is successfully authenticated.

40

3.2.1.4 Symmetric Authentication

Symmetric authentication was developed relatively early on the computer security subject.
It is a simple and easy to setup method of proving one’s identity onto a system. Basically,
the symmetric authentication uses one key used for both encryption and decryption, hence
the symmetric characteristic. In practice, the key represents a shared secret between two
or more parties that is used to create a private connection for information exchange. The
primary defect of the symmetric cryptography mechanism is present exactly on the previous
statement, the common secret is shared with multiple entities. An initial solution to this
problem stands in assigning multiple shared secret key pairs per pair of devices, although the
secret is still needed to be shared with two different entities to accomplish a communication.

Comparing to the public key authentication method, despite the symmetric authentica-
tion being lightweight, with less computational overhead, whereas its counterpart uses more
memory and keys, it suffers from the key distribution problem. In order to guarantee a com-
mon secret between two entities it must not travel the communication channel on clear text.
Symmetric key authentication suggests two methods for distributing the secret, either in-band
or out-of-band. In-band means the secret is shared or deployed between parties using a sys-
tem running a key distribution protocol. Out-of-band methods implicitly acquiesce keys to be
shared previously, outside of the communication channel. Symmetric cryptography authenti-
cation methods are widely used on RFID [21] and are mostly associated to challenge-response
authentication mechanisms (see Section 3.2.1.2).

Nguyen in his paper [40] discusses an application of the identity-based cryptography, Ibcp
as a method of authentication between network devices. The new method proposes two
functional aspects, the IBC key distribution and the authentication protocol. Concerning
the key distribution, a pair-wise shared key is generated by using a public key - the user’s
identity - and the private key - delivered by a private key generator. The authentication
between devices uses the pair-wise key derived from the remote user’s identity, and the local
user’s private key, it does not need the remote user’s private key to calculate the pair-wise
key. This is done by using the system’s global secret to create the local user private key,
and afterwards a function that combines the private key with the remote user’s identity to
create the symmetric key used for subsequent communications. After the previous process is
concluded and the participating entities share a common secret, the authentication protocol
exchanges challenge-response messages to verify the validity of each device’s secret key. Not
only, this solution enables for mutual authentication, it also allows for chaining authentication
between devices, translating into an efficient and simple to deploy symmetric authentication
protocol.

3.2.2 Authorization

3.2.2.1 Access Control Lists

Access control lists specify the permissions of users onto a resource or object. This means
that each ACL contains entries that define the subjects to access the object and their allowed
operations upon the object. For that matter, in a computer filesystem, ACLs are usually
described in the form of ”User X can read file Y” while on computer networks, ACLs tend
to be shaped as ”Traffic from host X is allowed onto service Y”. Entries are therefore logical
statements that can be combined to achieve more complex aggregated permissions. Since
each entry on an ACL of an object possesses the permissions of a subject, ACLs grow pro-

41

portionately to each subject on the system reckoning scalability as a possible issue. Although
ACLs are relatively easy to construct and deploy, for larger systems with numerous users
they become difficult to manage and understand, also sometimes resulting in redundancy or
inconsistency.

SiRiUS, as defined in [25], is a secure filesystem layered on top of existing filesystems
such as NFS and CIFS. It assumes that the network storage is untrusted and provides, not
only its own cryptographic access control, but also end-to-end security for remote requests.
Regarding the access control, SiRiUS appends each file with a permission file that contains
the file’s ACL. Each entry on the ACL consists on the encryption of the file’s encryption key
using the public key of the permitted user. SiRiUS does not scale well for a very large number
of users.

Distributed computing environments idealized some solutions for ACLs weaknesses. Scal-
ability and reliability are major prepositions of DCE that may reduce server bottleneck on a
client-server operation model. This paper [10] presents basic knowledge of distributed systems
by illustrating an architecture of the functionalities of DCE components. DCE represents a
software technology for setting up and managing data exchange in a distributed system. Users
are allowed to access data at remote servers unaware of its location. Access control is assured
by a security service module that implements authentication, authorization and encryption.
Past the authentication using a private key encryption approach, a remote procedure call is
checked for the proper user authorization accesses on a local ACL. Encryption can then be
applied to the data exchanged on the communication channel for complete privacy.

3.2.2.2 Capability Lists

A capability list opposes the paradigm used for access control lists. While an ACL is
related to objects, a capability list identifies the permissions and operations a subject has or
can perform. A capability list is often translated into a key or a token given to a specific
legitimate user. The key extends the capability of the subject onto the remote system’s
resources. As such, a capability can be passed to other entities. This presents advantages
and disadvantages on the system’s security. When concerning delegation, capability sharing
might enable some ease and flexibility if there is a chain of trust between the interacting
users. Capabilities are protected from modification of accessing rights but in this case, the
capability might be shared with unauthorized entities for malicious intents that do not need
to manipulate the authorized user’s permissions.

Many systems are conferred with access control mechanisms based on capabilities. One
interesting proposition is described in this paper [36]. This model, based on a former capa-
bility system [26], presents an integrated approach of authentication and access control for
IoT devices that protects from man-in-the-middle, replay and DoS attacks. A capability is
implemented as a data structure containing the unique device identifier and the access rights.
The devices interact by requesting communications with each other using the capabilities. If
the capabilities match after verification, the request is acknowledged and a communication
initiates.

Capability-based access control can also be applied to distributed systems. This solution
[43] extends an architecture of multiple domains that cooperate to build a publish-subscribe
system. The access control is made both at an intra-domain and inter-domain level. The
coordinating domain invites other domains to join the system, acting as a delegation authority
to other domains. Access policies for resources are distributed to authorized access control

42

managers that later propagate to domain clients.

Figure 3.5: Secure access to a cloud service provider. Users request data access and the owner
replies with security credentials to be used. The users then access the cloud storage with the
same credentials.

In [29], existing solutions for data encryption over cloud computing are boosted through
the usage of capability-based access control mechanisms (see Fig. 3.5). The proposed scheme
combines access control based on capabilities, with cryptography. The user must first send a
register request to the data owner, for accessing the data file with the required access rights.
After proper validation and delivery of the accessing credentials to the user, he can request
for the actual data existent at the cloud service provider. The data owner sends the file
encrypted with credentials, shared only with the user, to the cloud service provider to ensure
confidentiality and integrity, along with the capability list. The service provider validates
requesting users against the capability list and finally sends them the file.

3.2.2.3 Role-Based Access Control

Restricting access to authorized users through the use of role-based access control, RBAC,
is widely accepted as a best practice. Role-based authorization methods stand a reference
for worldwide organizations, such as [57] and [52]. This is due to the simplicity of config-
uration and administration management of roles affected to users and permissions, which
are attractive to organizational environments. The properties of RBAC also remain ideal
for organizations; the principle of least privilege ensures users are given only the privileges
they are required to perform their job, maximizing the roles concept; the separation of du-
ties protects systems from frauds by disallowing a single user having complete control over a
transaction; and the delegation of privileges enables role inheritance along a hierarchical chain
of command. On organizations, even though permissions associated to roles rarely change,
the assignment of roles to users happens frequently.

There are several models defining role-based access control but all of them describe similar
basic structural prepositions. Not only there are multiple models, there are also various
extensions to primitive models, such as DRBAC [24], TRBAC [9] and LRBAC [50].

A role-based access control model for large-scale web environments was devised in [42]. It
presents two different approaches of architectures, called as user-pull and server-pull. Tech-

43

nologies such as cookies, X.509, SSL and LDAP are integrated with the different architectures
in order to provide compatibility with known web technologies. The user-pull architecture
centralizes the user as the most active entity where all interactions are initiated from the
client to the server.

One of the implementations over a user-pull architecture uses secure cookies designed
especially for the purpose. On the first step, the user authenticates himself to a role server
where he receives his role cookies concealed over encryption. The user then presents the same
cookies to the web server, where the correctness and integrity are verified. If everything is
successful, the user is given access according to the permissions specified by the web server. In
this implementation, RBAC is granted through authentication, confidentiality and integrity
of the secure cookies along with asymmetric cryptography.

A more interesting approach serves the server-pull architecture. On this method, the role
server is personified as an LDAP server where the roles are stored. Oppositely to the previous
architecture, on the server-pull the web server is the entity responsible for requesting the
authorization permissions of the user. Any requesting subject needs first to authenticate onto
the web server. After successful authentication, the server seeks through the LDAP protocol
the role of the accessing user. The role is then matched to an entry in the associations list
where associations between roles and permissions abide. The web server acknowledges the
requesting access by granting the verified permissions to the user that may at this moment
access the web server’s resources.

The user-pull and the server-pull architectures are compared for their evident properties.
Although the performance and the reusability of accessing tokens can be highly appreciated
in the user-pull architecture, the server-pull counterpart retains increased user convenience
and role freshness, the latter being an important property on the access control subject while
still preventing attacks of reusability.

44

Chapter 4

Architecture

According to the stated global objectives, the preeminent plan for the suggested solution
is to control access to a remote network host and its services. Obviously, this is a very broad
conception. In a more pragmatic view, the overall strategy is to enable the access control at
lower layers of the network protocol stack, based on known users’ profiles and their accessing
security proof. For that objective, the architecture of the project is narrowed down to simpler
and modular segments of operations, that specifically intend to resolve each of the small-
scope associated obstacles. The architecture is thereby branched into three major operational
constituents, illustrated in Fig. 4.1:
• An access controlling application that manages all configurations for authorized

clients;

• An access requesting application that communicates with the access controller to
further establish its own security tokens, used for proofing traffic at the remote server;

• A matching mechanism that verifies the tokens on received packets, respecting the
configurations of the access controlling application.

Since the portrayed scenario prompts for a client-server model, where a client application
intends to access a service provided by a remote server host, the access requesting and access
controlling applications are respectively associated and instantiated by the client and server
hosts. The access controller must guarantee, without any doubt, that the requesting client
possesses the proper requirements for accessing the server. For that, the access controller
delivers specific credentials to the client, so that it can use them to authenticate all of its
forthcoming traffic, within a session. The access credentials include a key, an identification
number, an algorithm designation, and a role. The identification number is used to establish
an association with the user, while the role is used to associate the user with the requested
permissions, on a RBAC model. The key and the algorithm are used to apply simple trans-
formations to all the client’s outgoing traffic. The transformations are sent in the form of
appended security tokens, capable of being verified unequivocally of their origin at the
server side. From a more specific point of view, there is the need to:
• Create a session with a connecting client, where future traffic is properly controlled of

its access into the server;

• Distribute access credentials to the client, in a secure way, to ensure that the traffic
belongs to the correct source;

45

• Admit different user authentication schemes.

Admitting the previous statements as important goals, relevant to provide a legitimate
and trustworthy access to network services, it is crucial to establish a secure control channel
based on the SSH protocol. SSH is a natural choice as it maps to the stated goals, perfectly
matching the architecture. SSH is therefore capable of establishing a secure session with a
client, in which the access is limited to the time scope of the session.

Ultimately, a mechanism to verify the security tokens on the server side is needed. Such
matching mechanism operates at the server’s firewall - the traffic’s sole entrance point on the
server host, where access control is ideally exercised. The firewall is regulated by the access
controller where all credentials and permissions are specified. The matching mechanism uses
both the credentials and permissions to authorize ingress traffic from a client host to access the
server host, and additionally reach the requested service. As such, there is a clear distinction
on authentication of traffic entering the server host, and authorization of traffic that is
later relayed to the appropriate service. Both these concepts will be detailed on subsequent
sections.

Figure 4.1: Overall system architecture. A control channel is established between the client
and server hosts to exchange access credentials. Data packets destined to the server are
intercepted and modified by the packet modifier. Such packets are relayed to the server
applications if they succeed to pass the authentication and authorization mechanisms. This
entire process is only applied on the client→server flow.

Regarding the information coming from client applications, a well-defined path is followed
for accommodating a generic traffic flow. An SSH session is started along with the server,
and the access credentials are securely exchanged. The entire process for accessing a remote
network service is initiated. Whenever a packet destined to the server tries to make its
way out of the client’s host to the network, it is intercepted by the packet modifier. The
packet modifier then uses the session key and the algorithm to build the packet’s security
token before sending it through the network. The server host inspects the received packet in
accordance with the set up credentials and permissions. The packet, if matched to any of the
active user↔permission associations, is validated and sent to the target service concluding its
operational flow.

46

On a side note, NAT, despite not being directly associated with the solution at hands, must
be considered. This is due to the likeliness of the system being implemented across private
and public networks. Therefore, NAT is treated as a component external to the architecture,
being merely presented and discussed as an addition to a working proof of concept.

In the following sections, all aforementioned mechanisms will be scrutinized as composite
parts of a broad architecture, according to the natural data flow on the system.

4.1 Access Information Exchange Through a Control Channel

Authenticated and authorized access to network services is the main concern for the
proposed system. By reasoning over this goal, it is natural to consider that information
regarding the access control has to be securely exchanged between a service provider and a
client. The information has to be used between the participants to apply verifications for
controlling access to services. A secure channel must be established in order to guarantee
the confidentiality of the exchanged information. Otherwise, any individual could use such
crucial knowledge in its own advantage. This architecture relies on the exchange of access
information, relevant to the client and the server, through an SSH control channel.

Respecting the usage of SSH, it is possible to relate and identify differences to coexisting
solutions such as SSL/TLS and IPsec. SSL/TLS is very often compared to SSH for its
remarkably similar concepts on data security, however there are two slight discrepancies that
influenced the preference for SSH. SSL/TLS is commonly used to provide security on access
to public servers as it uses public-key certificates and public-key infrastructures to validate
server hosts and clients. SSH is much more flexible in this matter, where clients users and
specific server hosts use pre-shared public keys to establish a secure connection. One other
advantage of SSH is that it has a native user authentication layer whereas SSL/TLS simply
authenticates two connecting endpoints. The IPsec also suffers from the latter disadvantage
while also standing a problem for environments where NAT is deployed.

1. SSH Authentication

Figure 4.2: Exchanged messages after a successful SSH authentication. The access controlling
application sends the credentials to be used by the client and the access requester responds
with the desired role that will affect the set of services available during the session.

47

The information exchanged is essentially constituted by two parts. The first happens
after a successful SSH authentication, when the access controller presents the credentials
to be used by the access requester. The second part takes place after the first, when the
access requester responds to the access controller with the role that will take effect during the
accessing session. In the first message, server→client, a confidential session key is conveyed
along with an algorithm designation, to be used by the client for authenticating further
packets. Additionally, an identifier is supplied simply to differentiate between clients. Also a
list of roles is delivered, representing all the user’s permissions for accessing services on the
server host. In this step, the configuration of packets with security tokens is enabled on
the client side. The second message, client→server, carries the role decision of the accessing
user, to clearly distinguish his active access permissions on the server. In this step, the
configuration of the user’s accesses to services is made. After the access controller
received the desired role, all its permissions are set as active. All these values are saved on
a database cache and deployed into the access controlling mechanisms, recognizing the client
as belonging to an active session.

As of this moment, the server is expecting client originated incoming packets to possess
correctly configured security tokens, as well as a new layer specification clearly identifying the
usage of this process. Using this method, it is possible to verify and ensure that the server
is actually communicating with the supposed client. An attacker, having no access to the
information exchanged through the control channel, has no way of forging valid packets.

4.2 Network-Level User Access Control Protocol

The Network-level User Access Control protocol (NUAC) was specially devised for
this dissertation in order to aid the solution’s implementation. It was conceived considering
that there was a need to ensure that the messages exchanged from the client to the server,
through the data channel, belong to a legitimate originating entity. Considering that such
entity is legitimate, the server perceives it is communicating with an authorized user. Not
only it had to withstand both authentication and authorization concepts, but also present a
light increase on transmission overhead. This protocol was designed to be similar, yet simpler
and more capable, than the AH mode of IPsec. By contrasting with AH, NUAC does not
modify the original IP header. Instead, it slightly adjusts the payload data. Also, not only
it grants packet authentication but also indirect authorization to services. The authorization
concept can also be compared to a generic Kerberos system, where users are authorized based
on exchanged service tickets and authenticators. However, the usage of Kerberos implies that
services must be Kerberized, whereas using the the NUAC protocol, this concept is completely
transparent to services.

Whenever a client sends packets requesting access to a service, the server must know
exactly who is the user responsible for those packets, and whether he is legitimate and au-
thenticated. Only then, the packets are admitted entrance to the server host. The NUAC
protocol is used to guarantee exactly that. The access controller informs the access requester
that every packet should be appended a security token before being sent. Such security
token has to be a computed with the provided client-specific security key and the packet data
being transmitted.

Observing the underlying transport protocols usually explored by distributed applications,
UDP, TCP or another, it is impossible to create a valid and trustworthy notion of session that

48

Payload
IP

Header

ICMP or
Transport
Header

Security
Token

NUAC
Trailer

Payload
IP

Header

ICMP or
Transport
Header

Original
Packet

NUAC
Modification

Figure 4.3: NUAC Modification. Both the security token and the NUAC trailer are appended
to the original packet during packet modification.

would apply to all. In fact, the general idea is to maintain these protocols’ modes of operation,
not to add a session concept or change an existing one. For that, the security tokens have
to be encapsulated in such a way that they do not change how the current TCP/IP stack
operates. Also, due to NAT modifications on packet headers’ routing information, the security
tokens could only be placed inside the packet’s payload, without increasing the complexity
of including external mechanisms for NAT traversal. The fact that some routers over the
Internet remove IP header options [27] also contributed for this decision.

In summary, NUAC plays a role for authentication at the network level while being
an integrated solution, where coexisting protocols preserve their normal way of functioning,
completely unaware of the NUAC protocol.

4.3 Calculation of the Security Token Using MAC

The NUAC protocol specification assumes the existence of security tokens imperative to
guarantee a successful future packet authentication and authorization. It also determines that
those security tokens must be transformations of the client’s session key and the packet data,
so that the client has a way of legitimizing his packets. A security token is therefore produced
by using the session key provided by the server host, the same one it uses for verifying arriving
packets, as input of a MAC function.

The decision on the usage of the MAC calculation lies on the advantages over both simple
hashes and digital signatures. Hashes per se merely account for integrity checks, meaning that
no session key would be used and packets could easily be forged, since there is no shared secret
between the genuine producer and the verifier. Digital signatures, besides providing message
integrity, also prove authentication and non-repudiation as inherent properties. Digital signa-
tures, however, are more time consuming (both in the generation and in the verification) and
take more memory space, thanks to the asymmetric cryptography. Therefore, the decision
for using MAC was the most reasonable since it remains as complete, regarding the required
objectives of the system, yet simpler, than digital signatures.

Each packet on its outbound course is captured by the packet modifier, where the MAC is
calculated. These packets undergo packet mangling, consisting in the insertion of a security
token calculated by the MAC function, followed by the NUAC trailer. The MAC calculation
takes as input the session key and the algorithm, and involves the entire payload that tailgates
the network/transport layer, without modifying it. The transformed packets are finally sent
to the network for validation at the server-side.

49

4.4 Authenticity and Integrity Verification

The authenticity and integrity verification is applied in this system as a first checkpoint
for traffic destined to the server. Both these verifications come together as one since they
are intimately related and are performed at the same stage. This checkpoint guarantees that
all crossing packets are successfully authenticated and associated to a legitimate originating
user.

In order to carry out the verifications, a packet filtering firewall matching mechanism
is created and made responsible. Whenever a packet coming from the network reaches the
firewall, it passes through a specified set of matching rules. Eventually, on a legitimate packet,
a rule will match and the verifications for integrity and authenticity will initiate.

The integrity check is applied simply to detect malformed packets. This means that
packets containing wrong NUAC parameters or calculated checksums, or even containing
no security tokens, fail to succeed this check. It should be noted that the usual integrity
verification of the other protocols is already present and executed before the NUAC integrity
check.

The authenticity verification basically checks whether each packet’s security token is a
correct MAC for the session key and algorithm previously conveyed to the specific originating
user. After the successful verification process, the packet is stripped of all NUAC related
fields and the existing checksums are recalculated.

Abnormal or incorrect packets that fail either the integrity or the authenticity verification
are immediately dropped, thanks to the global strategy regarding the early discard of incorrect
packets. Therefore, attackers’ packets are discarded right in the beginning of the entire
process, in order to prevent against DoS attacks and port scanning mechanisms. Attackers
also fail when trying to introduce forged packets on the network since they need to append
packets with valid NUAC parameters, using the client’s securely exchanged key, in order to
create a valid packet.

The mentioned verifications lie as a materialization of the first real barrier for control-
ling access on every ingress packet. This barrier can simply be interpreted as the packet
authentication.

4.5 Per Service, Role-Based Authorization

One of the overall objectives of the system is to enable an access control to network services,
adjustable to each system user. The authorization must then be based on activities the users
are entitled to perform onto the system. In role-based access control, the users are precisely
associated to their job functions and qualifications. This means that users have a role to play
when accessing the server host’s network services. Roles translate the users’ permissions on
the system, allowing them to access services according to their role. Role-based authorization
accurately represents the hierarchical view of any company or organization according to job
positions and inherent responsibilities for accessing resources. This system implements the
RBAC0 model specified in [55]. On a side note, despite the usage of roles having several
advantages over concurrent solutions, it can be replaced with other authorization mechanism.

On the system, permissions are defined at the application level and configured beforehand
by the server’s administrator. Users are also registered on the access controller, identified by
a username. Having the role’s permissions and the users set up, the latter can be assigned one

50

or several different roles. All the configurations are rendered into a database for persistence
and subsequent lookup purposes. The database may also lie as a form of generic component
for retrieving access rights, which for instance can be easily switched to an LDAP server.

After a user authenticates himself through SSH, his roles are fetched from the database
and are shipped back. The user is then allowed to select one role from the received list. Given
the role chosen by the user, the role’s associated permissions are retrieved from the database.
Such permissions are assembled and activated as packet filtering rules used by the firewall
matching mechanism.

At this time, it is in place what is considered to be the second barrier of user-based access
control, enabling the server host to enforce on packets the concept of packet authorization.

Incoming packets must first pass through the first authentication barrier. If such packets
manage to cross it, then they are considered authenticated and are forwarded to the second
barrier. On the packet authorization barrier, the permissions of all users with an active session
are defined in the firewall. Packets reaching this barrier are distributed to each user’s barrier
of permissions according to the identification present on the NUAC trailer. The packets follow
the firewall’s sequential set of rules until they match the intended service. Evidently, the set
of rules for each user is distinct unless users are assigned exactly to the same roles, in which
case they shall have the same access rights.

Packets effectively enter the system and are sent to the applications only after being
dispatched by the firewall. Attackers have no way of passing through packet authentication,
therefore there is no real security issue during the authorization process.

51

52

Chapter 5

Implementation

The system’s implementation is the evident translation of the architectural elements into
materialized components. In this chapter, a comprehensive description of the system’s com-
ponents is provided. In the first place, essential structures, that are used to facilitate the
communication between the components, are defined. The access controller’s internal com-
munication is further expanded since it is a quite sophisticated matter. Finally, the actual
components’ implementation is detailed, dividing itself into four major sections: the kernel
module, the iptables extension, the access controller application, and the access requester
application.

The implementation was accomplished on Linux Kernel 3.19.0 and tested on both kernel
3.19.0 and 4.4.0. The system was delineated to be a standalone package due to its simplicity
regarding the deployment and usability.

5.1 Structural Specifications

Some structures were defined beforehand since they embrace the vast majority of the
solution. The Network-level User Access Control protocol is the primary and most widely
present piece, used for authenticating information passing through the components that di-
rectly interact with the data channel. In relation to the initial SSH-contained configuration
messages, these follow specific structures, that need to be defined for an accurate and appro-
priate communication. These structures are portrayed in the SSH Exchanged Configuration
Messages section. Pertaining to the kernel and user space intercommunication, the Configfs
Virtual File System is structured as an interface of directories that adopts a pattern relative
to the different possibilities of user space applications.

These structures will be rigorously detailed in the following sections.

5.1.1 NUAC Protocol

The NUAC protocol is defined as a structure for transmitting security tokens between
the client and the server. It is encapsulated inside packets’ payloads, trailing their original
contents. The security tokens correspond to outputs of MAC implementations that use the
unmodified packet payloads as input. The MAC calculation also involves a previously dis-
tributed key, which in this thesis’ case is exchanged through the SSH configuration messages
(see Section 5.1.2). In order to grant MAC the property of being a pseudo-random function,

53

it is used with the HMAC algorithm. Therefore, not only it stands unforgeable under chosen-
message attacks, it also possesses a greater collision resistance. As such, the algorithm to use
as the underlying cryptographic hash function is also supplied to the MAC function.

In relation to the defined structure, the NUAC protocol consists of a trailer and a data
section. The trailer portion is 4-bytes long and contains four mandatory fields (see Fig. 5.1).
The data may have a variable size, up to a maximum amount of 256 bytes. The NUAC format
is specified as follows:

Identification
[2 bytes] Allows for user identification at the client or server end. Its 16 bits, enable
the establishment of 65535 possible concurrent clients interacting with the server.
Primarily used for identifying the user associated with the current packet. If this field
is set to 0, no client identification is used.

Algorithm
[4 bits] Up to 15 different HMAC algorithms may be used. If this field is set to 0, no
algorithm is used, therefore no security token should be present.

Reserved
[4 bits] For future use. Should be set to 0.

Length
[1 byte] Indicates the length of the security token in bytes. Allows for a security token
with a maximum size of 256 bytes.

Security Token
[0 - 256 bytes] Output of a given MAC function. This field intends to provide security
at the network layer. This field is optional and if not set, the Algorithm and Length
fields should be set to 0.

Figure 5.1: NUAC Trailer.

This specification brings about some notes that should be considered. The most evident
note is that the data section must precede the NUAC trailer. This is due to the fact that
the trailer has to be interpreted first, in order to identify the length of the security token to
retrieve from the packet’s payload. Secondly, the 4-bit Algorithm field grants the possibility
of specifying current well-implemented hash algorithms for the HMAC construction, as well
as eventually new algorithms that can output tokens of size up to 2048 bits. On a third note,
in the case of different output sizes of the same hash function, only the Length field should
be altered while the algorithm stays the same. Lastly, in terms of this thesis, since it stands
as a proof of concept, the NUAC protocol was defined simply with three options, out of the
complete set1, regarding the Algorithm field. These options are depicted in Table 5.1.

1 https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions#Parameters

54

https://en.wikipedia.org/wiki/Comparison_of_cryptographic_hash_functions#Parameters

Code Algorithm Description
0 NOP No Operation
1 MD5 Message Digest 5
2 SHA1 Secure Hash Algorithm 1

Table 5.1: Hash algorithms supported by the NUAC protocol.

5.1.2 SSH Exchanged Configuration Messages

The configuration messages exchanged between the client and the server follow specific
delineated structures. These configurations are encapsulated in SSH messages in order to
experience secure communication through cryptographic encryption. SSH’s server and client
authentications are extensively described in [65] and [62] respectively, therefore will not be
addressed.

Following a successful client↔server authentication, the configuration protocol begins.
The first message is originated by the access controlling application. On the overall vision
of the configuration protocol, this message represents the access controller delivering
the configurations and requesting the session role, to be used by the access requester
on future service access. The access requesting application responds with a second message
represented as the access requester responding with the session role. All the exchanged
configurations are synthesized in the following list:

• Identification - id - Associates a client to an active SSH session. Randomly generated
integer from a pool of available client IDs. For the first client the pool set is [1, 65535].

• Algorithm - algo - HMAC algorithm specified by the server administrator.

• Active Session Key - active sess key - Session key to be used for the active SSH
session. Created anew every 5 consecutive minutes of an active SSH session.

• Roles - perm roles - List of permitted roles for the requesting user. These are estab-
lished previously on the access controller’s database.

• Active Role - active role - Role to take effect on the whole duration of the client↔server
session.

The designated configurations are stored into a database and are implemented as different
types on the system. The identification number and the algorithm are evidently identified by
their number representation. The active session key is implemented as a string of 32 random
bytes, in its hex representation, suitable for cryptographic use. All the roles are represented
as strings and are exchanged as such. The configurations are sent using Python dictionary
structures.

The client ID is created whenever a client establishes a session with the server. Once
the session is terminated, the client ID number is cleared and made available on the pool of
client IDs. The client’s ID stays active for the whole duration of the session, even if it passes
the 5-minute timeout. The active session key, however, is recreated at the 5-minute mark to
guarantee a reasonable freshness of the system’s security capability. Also, the decision on the
length of the session key is based on the recommendation by NIST to use key lengths greater
than 112 bits, when generating or verifying HMACs (chapter 10 in [7]).

55

5.1.3 Configfs Directory Structure

Configfs is a component implemented on the kernel as a virtual filesystem. It provides an
easily comprehensible interface for the access manager to place its information destined to the
firewall module, operating on kernel space. The configuration information is then structured
into a directory tree on the virtual filesystem.

In order to be used, Configfs must be compiled with the Linux kernel source code. Since it
is not mounted by default, it as to be mounted on the /config directory to be accessed. The
access controller may, at this time, place client’s session keys onto the filesystem, according to
a defined directory structure. The directory structure is illustrated on Fig. 5.2 as an example.

The root node is represented by the /config directory. The kernel module initializes a
child node by its name, xt hash. Thereafter each active client gets a directory created by
the access controlling application as children of the module directory. The clients’ keys are
inserted and represented as attributes in the virtual filesystem, respecting each client’s folder.

/config/

xt hash/

1441/

sessionKey

26546/

sessionKey

7853/

sessionKey
...

...

Figure 5.2: One example of the Configfs filesystem having three active clients recognized by
identification numbers. Inside each client’s directory the active session key is stored. The last
ellipsis represents external modules possibly using Configfs.

5.2 Communication Between Kernel and User Space

The defined architecture assumes components to dwell either on the user or kernel space.
Due to this approach, the forms of communication between displaced components are not as
trivial. In this system, communicating components between the kernel and user space rely on
the transformation of high-level configurations, existent on the access manager, into low-
level ones. This layer conversion is required for the kernel module, as it is the one that uses
such configurations to perform calculations, and eventually give access to incoming traffic.

The transformation is unidirectional and necessarily takes on one of two possible paths
(see Fig. 5.3). On the first possibility, the configurations are converted into rules with different
options, that are placed on the iptables extension. The extension then relays the options to
the kernel module, internally and transparently. The second possibility relies on the config-
urations being placed on the virtual filesystem Configfs, where the kernel module has direct
access. Configfs is implemented exclusively on kernel space while providing an interface to

56

user space applications. Both paths are used by this system for different purposes. However,
since the communication inside the iptables is transparent for the access manager, only the
Configfs kernel →user communication is considered.

Figure 5.3: Communication between user space and kernel space. The access manager com-
municates with iptables to set up the acess rules. It also deploys the keys directly to the
kernel, into the Configfs filesystem. The kernel module reads from both sources.

Regarding the virtual filesystem decision, Configfs is the only available option for imple-
menting this system’s kernel space→user space communication. On both Procfs and Sysfs
the readable and writable attributes are created by the kernel. This means that the access
manager could not specify different clients with different algorithms as they connect to the
server. The virtual filesystem would be filled with all possible clients even if no client is
connected, which becomes completely unnecessary and inefficient for a RAM-based filesys-
tem. On the other hand, the attributes for Configfs are created by user space applications
as configurations for the kernel. This way, only connected clients are given an entry on the
virtual filesystem.

Configfs also possesses other advantages on the server’s visual communication. By placing
key configurations in the virtual filesystem, irrelevant information is diverted to files. Keys
do not have to be exposed on the iptables listing, rendering it as unreadable for the server
administrator. In fact, the keys are available on the database of the access controller and
should be consulted in such place.

57

5.3 Component Development

The devised system, in relation to the practical implementation, was designed to comprise
four essential components that communicate between one another. Each single component
implements different operations according to their main utility for the overall working pipeline.
The different elements are written in C or Python code, depending on whether they are
implemented at kernel or user space, respectively.

The Kernel Module stands the most fundamental unit and is the only one developed for
the kernel. It was designed as such in order to be efficiently fast, and generic in relation
to its main purpose. A point of contact between the system’s administrator and the kernel
module was developed as an iptables Extension. This extension operates on user space,
directly attached to the iptables firewall application, enabling the transmission of optional
parameters to kernel space. The Access Controller Application lies in a more central and
precursory position, controlling all access to the server. It was developed on user space in order
to guarantee an easily understandable and deployable component by the server administrator.
Finally, the Access Requester Application’s sole purposes are to request access to the remote
server and perform packet mangling at the applicational level. It opposes the server-side
kernel module that operates on the network layer, since the access requester is intended to
be a user-friendly application that is easily used.

5.3.1 Kernel Module

The kernel module’s primary objective is to verify the authenticity of received packets
through a matching mechanism attached to the Linux iptables firewall. Several advantages
follow through this decision. The iptables firewall, for being an application that directly
communicates with the Linux kernel, is able to perform the verifications in a completely
transparent manner to the user-space access controller application, and inherently to its
administrator. For the same reason, the kernel module also permits an increased throughput
on matching packets to rules set by the access controller. As such, the kernel module stands
a fast mechanism and naturally integrated with iptables, as well as all Netfilter2 matching
modules, best suited for this solution.

The kernel module, named xt hash, was outlined as a standalone package, ready to be
installed and deployed on any machine with root privileges. Its development was fulfilled
holding in credit the Linux Kernel Documentation3, the Linux Kernel Module Programming
Guide4, and a very complete Netfilter modules guidebook [19].

The matching mechanism is naturally consisted of two working pieces. The first piece
implements the user↔kernel communication through the virtual filesystem. The second piece
uses the information retrieved from the user space to implement the actual verification of
incoming network packets. These two pieces must work together to guarantee the satisfaction
of stated objectives. As such, the developed kernel module can be assumed as a concatenation
of two cooperative submodules, which will be further addressed as the Configfs Subsystem
and the iptables Kernel Match, respectively.

For deploying the module as a standalone package, the kernel object file xt hash.ko is
simply inserted into the kernel. The kernel object file results from the compilation of the

2 Framework that implements networking utilities on Linux machines.
3 https://www.kernel.org/doc/Documentation/
4 http://www.tldp.org/LDP/lkmpg/2.6/html/index.html by Peter Jay Salzman

58

https://www.kernel.org/doc/Documentation/
http://www.tldp.org/LDP/lkmpg/2.6/html/index.html

kernel module source code.� �
insmod xt_hash .ko
� �

Listing 5.1: Deployment of the module into the kernel by means of the insmod utility.

For every module that gets inserted into the kernel, an initializing function is called that
must be implemented on the module’s source code. Not only the module init function but
also a module exit function is necessary. The developed kernel module stands no different
and implements the hash mt init and hash mt exit as aliases for the previous functions.
The initializing function is used to register both the Configfs subsystem and the iptables
kernel match. The cleanup function intends to undo whatever the initializing function did,
so it unregisters both submodules.

All the structures and functions related to the kernel module are prototyped in appendix
sections B.2 and C.1, respectively.

static int __init hash_mt_init (void)
{

int ret;
struct configfs_subsystem * subsys ;

subsys = & xt_hash_subsys ;
config_group_init (& subsys -> su_group);
mutex_init (& subsys -> su_mutex);
ret = configfs_register_subsystem (subsys);
if (ret) {

printk (KERN_ERR "Error %d while registering subsystem %s\n", ret ,
subsys -> su_group . cg_item . ci_namebuf);

configfs_unregister_subsystem (& xt_hash_subsys);
return ret;

}

printk (KERN_INFO " Hashing module initialized \n");
return xt_register_match (& xt_hash_mt_reg);

}

static void __exit hash_mt_exit (void)
{

configfs_unregister_subsystem (& xt_hash_subsys);
xt_unregister_match (& xt_hash_mt_reg);

printk (KERN_INFO " Hashing module removed \n");
}

module_init (hash_mt_init);
module_exit (hash_mt_exit);

Listing 5.2: Source code of the hash mt init and hash mt exit, aliases for module init and
module exit, respectively.

59

Configfs Subsystem

The Configfs subsystem is registered during the initialization of the kernel module. It
is possible to identify on Listing 5.2 that the subsystem registration goes through a series
of steps. Since the subsystem is an intrinsic part of the module, it is defined as a static
configfs subsystem structure, with the module’s name. The configfs subsystem structure
represents the module in the virtual filesystem as a top-level directory. The subsystem is also
a config group and must be initialized as such using the config group init function. The
mutual exclusion call preserves the exclusive association of the defined subsystem to the
xt hash module.

In Configfs every object is a config item. Items are created and destroyed in-
side a config group. A group is a collection of items (users in this case) that share
the same attributes and operations. Each item possesses a file reflecting a single-
value configfs attribute. The implemented subsystem identifies xt hash as both a
configfs subsystem and config group, and the different users as config item directories
placed inside the group. The attributes are stored as sessionKey files, following an overall
directory structure similar to the one illustrated in Fig. 5.2.

In order to perform relevant actions onto the virtual filesystem, the operations for items
and groups must be established. There are specific structures that define the items’ and
groups’ operations, being the configfs item operations and configfs group operations,
respectively. The make item operation sets up the possibility to create new items while the
release operation cleans up after the removal of items. These functions are callbacks called
whenever a mkdir or rmdir action is taken.

For the sake of creating and releasing items, these have to be specifically defined for
what they are, and what attributes they retain as well as their possible operations. The
actual definition of the items lies on the simple child structure that simply preserves the
sessionKey attribute. Both the items’ attributes and operations reflect the type of items
used, and are configured in the config item type structure.

static struct config_item * simple_children_make_item (struct config_group
*group , const char *name)

{
struct simple_child * simple_child ;

simple_child = kmalloc (sizeof (struct simple_child), GFP_KERNEL);
if (! simple_child)

return NULL;
memset (simple_child , 0, sizeof (struct simple_child));

config_item_init_type_name (& simple_child ->item , name ,
& simple_child_type);

simple_child -> sessionKey = kzalloc (sizeof (char) *
XT_HASH_MAX_SESSION_KEY_SIZE + 1, GFP_KERNEL);

strcpy (simple_child ->sessionKey , "0");

return & simple_child ->item;
}

Listing 5.3: Source code of the make item function. An item is instantiated with the name
(activeID) of the user and is associated to an item type of simple child.

60

Regarding the items’ operations, these translate into simple show and store callbacks,
directly associated to read and write actions. Due to the fact that the Configfs filesystem
only recognizes config structures, config items must be adapted into simple childs to be
manipulated inside the functions via the to simple child transformation.

iptables Kernel Match

The kernel match is the component that delivers true access control at the network layer. It
is also registered during the initialization of the kernel module allowing for the actual matching
mechanism to operate, respecting the informations kept by the Configfs filesystem. When a
packet traverses the iptables rules and encounters a rule describing the use of the developed
match (--match hash), the packet is sent for authenticity verification on the xt hash kernel
module. The packet is received on the hash mt function which is entrusted with the accurate
assessment of packets. There are yet other functions specified in the xt hash mt reg structure
considered secondary for the matching purpose.

The hash mt function is an entrance point for the packet’s succeeding validation. It is fur-
nished of the packet itself as a socket buffer structure, skb, as well as the parameters/options
specified by the user-space iptables extension as a xt action param structure.

A socket buffer is a core structure present in the Linux Kernel Networking API in which
the kernel handles network packets. A packet received on a network card is implanted into a
socket buffer and then passed to the network stack. Packets operations and manipulations,
like adding and removing protocol headers, occur by means of the socket buffer structure.

Figure 5.4: Structure of a socket buffer. The packet is enclosed by the data and tail pointers.

The options specified on the iptables extension are passed down to the kernel module
via a xt action param structure, which is converted into xt hash info for being able to be
processed the same way it was defined. This is possible thanks to the structure definition file
shared between both the iptables extension and kernel module, where the first places the
rule’s information and the second retrieves it for processing.

Having the packet and rule’s parameters set, the authenticity verification may be initiated
by the worker function hash match it. In this function, the packet is either ultimately
accepted on the current rule’s context or is immediately dropped, no packet rejections are

61

allowed. On Listing 5.4 the example of ICMP validation process is shown.
The hash match it function starts by decoding the IP header, in which it retrieves the

encapsulated protocol, and retains a pointer for the Configfs subsystem. According to each
protocol the operations performed are slightly different, so a distinction is made on the IP
header’s identified protocol. A pointer to the initial byte of the NUAC trailer is calculated in
order to retrieve NUAC fields and fill the NUAC structure, defined specifically for the kernel
module (see appendix section B.1). If such fields represent an invalid NUAC specification
the packet is instantly dropped. The packet’s payload is retrieved and the MAC is calculated
using the sessionKey existing at the virtual filesystem. The MAC calculation fails for packets
not compliant to the NUAC protocol. The calculated MAC is then compared to the received
counterpart and if such comparison fails the packet is also dropped. It should be noted that
the calculation of the MAC is made possible through the usage of the Linux Kernel Crypto
API. When the authenticity of the packet is finally verified, the NUAC trailer is pulled off
and all length and checksum fields are recalculated.

IP packet fragmentation is handled in advance through the linearization of the socket
buffer structure. The module is capable of detecting whether a packet is divided into several
fragments simply by decoding information on the socket buffer. After the packet is linearized,
the validation process becomes a completely transparent operation.

5.3.2 iptables Extension

The iptables extension, named libxt hash, consists on a shared library add-on to
iptables to include hash validation, a generalized matching on hash security tokens found
on incoming NUAC-compliant packets. It directly and transparently interacts with the kernel
module to provide the needed tools for a successful verification. Its development is substan-
tially based on the knowledge provided by the Netfilter Documentation5. For deploying the
extension, the shared library must simply be added to the xtables library directory and
becomes automatically enabled on the firewall.� �

cp libxt_hash .so /lib/ xtables
� �
Listing 5.5: Deployment of the extension into iptables as a shared library.

This extension’s main purpose is to verify the correctness of the applied matching rules,
as well as to produce an interface containing the parameters’ information to be utilized by the
module. Such interface is defined in the header file of the xt hash module as a xt hash info
structure, and is shown on Listing 5.6. Essentially, the extension operates whenever a rule
is included of the hash matching mechanism (--match hash). For every specified option in
such rule, the hash parse function is called to parse all the options. The options that find
themselves to be part of this extension are parsed into the xt hash info internal structure.

Similarly to every Netfilter extension, the newly developed custom match must be reg-
istered within xtables. The extension’s init function does exactly that and calls for the
xtables register match to register all the operational functions for parsing rules. The
hash init function is used to specify default values in case no extra options are inserted.
The hash parse follows and parses the extra options, by calling worker parsers to popu-
late the internal communicating structure with the correct parameters. The possible options
aggregated to the extension along with their types are identified in the xt option entry

5 https://www.netfilter.org/documentation/

62

https://www.netfilter.org/documentation/

switch (iph -> protocol) {
case IPPROTO_ICMP :

icmph = icmp_hdr (skb);
data_char = skb_tail_pointer (skb) - sizeof (struct nuachdr)

nuach ->id = data_char [0] << 8 | data_char [1];
nuach ->algo = ((data_char [2] << 8 | data_char [3]) & NUAC_ALGO_M)

>> NUAC_ALGO_LE_OFFSET ;
nuach -> reserved = ((data_char [2] << 8 | data_char [3]) &

NUAC_RESERVED_M) >> NUAC_RESERVED_LE_OFFSET ;
nuach ->len = (data_char [2] << 8 | data_char [3]) & NUAC_LEN_M ;

if (nuach ->algo != data ->algo || nuach ->id != data ->id ||
nuach -> reserved != 0) {
ret = NF_DROP ;
break ;

}

payload_len = skb ->len - ip_hdrlen (skb) - sizeof (struct icmphdr)
- sizeof (struct nuachdr) - nuach ->len;

payload = skb ->data + ip_hdrlen (skb) + sizeof (struct icmphdr);

ret = hmac_vfs_key (hmac_vfs , payload , payload_len , nuach , subsys);
kfree(payload);
if (ret != 0)

break ;

hmac_pkt = data_char - nuach ->len;
ret = memcmp (hmac_pkt , hmac_vfs , nuach ->len);
if (ret != 0)

break ;

skb_trim (skb , skb ->len - sizeof (struct nuachdr) - nuach ->len);

iph -> tot_len = htons(skb ->len);
iph ->check = 0;
iph ->check = ip_fast_csum (iph , iph ->ihl);

icmph -> checksum = 0;
icmph -> checksum = ip_compute_csum ((unsigned short *) icmph ,

ntohs (iph -> tot_len) - (iph ->ihl << 2));

break;
...

}

Listing 5.4: Source code snippet of the ICMP validation process. Three verifications are made
to establish the validity of the packet.

63

ifndef _XT_HASH_H
define _XT_HASH_H

include <linux/types.h>

define XT_HASH_MAX_SESSION_KEY_SIZE 64

...

struct xt_hash_info {
// __u8 invert ;
__u8 algo;
__u16 id;

};

#endif /* _XT_HASH_H */

Listing 5.6: Structure shared by the kernel module and the iptables extension. Grants
an internal and transparent communication channel between the specified rules and their
appliance on incoming packets.

structure. There are other secondary functions that merely provide informational outputs
mainly destined to the server administrator.

All the structures and functions described in this section are prototyped in sections B.3
and C.2, respectively

5.3.3 Access Controller Application

The access controller application is the most dominant and essential component. It acts
as a controlling and supervising entity of all the operations that take place on the server side
of the system. The application does not deal with any traffic, it exclusively regulates the
interactions between each component by communicating control information. Three inter-
actions are considered when managing the system: the communication with the client, rule
registration on iptables, and configuration of the virtual filesystem.

The communication with the client is guaranteed with the introduction of an SSH server.
It is rendered as the implementation of an SSH library’s interface onto a Python class. The
SSH server reacts to client connection attempts to initiate an SSH session on port 2200. This
is the only port that does not respect authoritative policies due to the fact that, clients must
connect themselves and exchange configurations before user authorization can be applied. For
that, the port 2200 is the only port that is always open and may suffer from port scanning
attacks. Public keys and passwords are the two supported methods for authenticating clients.

Client’s configurations are exchanged through the secure SSH channel. When a client
requests for a control channel and if SSH’s authentication ends up being successful, an SSH
session is established with the server host. According to the username received, the access
controller follows up with the process of creating a random session key as well as establishing
a random and available client id for the session. These configuration parameters, along with
the running algorithm set by the server administrator, are sent to the access requester via
sockets, encased in a configuration object.

64

� �
python3 access_controller .py --help
...

optional arguments :
-c, --create -role ROLE create a role in database
-h, --help show this help message and exit
-i, --insert USER insert a user in database
-p, --permissions [PERM [PERM ...]] premissions for the role
-r, --roles [ROLE [ROLE ...]] roles for the user
...
-x, --run ALGO run server with algorithm
� �

Listing 5.7: Command line syntax of the access controller application. All the specified
options relating to users, roles, and permissions can be specified before or during runtime.
List, update, and remove options are omitted from this listing.

The configurations sent are stored inside a database directly attached to the server ap-
plication. The database can be interpreted as a dumping ground for caching active sessions’
parameters. Not only it accommodates the previous parameters but also the users, their roles,
and associated permissions (see Fig. 5.5). As such the database is represented as an abstrac-
tion of a permission provider, and it can be easily replaced, with an LDAP server for instance.
For accessing the database, the server application requires the use of certain parameters on
execution. Listing 5.7 provides an overview of such interactions with the database.

username hashedPass

...

username actID actKey actRole

...

username roles

...

role permissions

...

Figure 5.5: Database tables from top left to bottom right: passwords, activeConfigs,
userConfigs, roles. Each user may have several algorithms and roles, and each role may
have several permissions.

Having sent the parameters for the client’s configuration, and cached them on a local
database, the only action remaining is to enforce the same configurations on the server, to
be applied on forthcoming traffic. Some of the configurations sent to the client - the client id
and hashing algorithm - are replicated and transformed into iptables rules that make use
of the new matching module, representing the authentication barrier. The user’s permissions
of the active role are set up on iptables chains identified by users’ ids, representing the
authorization barrier. The session key, for being a relatively large string of characters, is
placed onto the virtual filesystem where the kernel has direct access.

The three main interactions are therefore epitomized by the retrieve configurations,
deploy firewall rules, and deploy keys functions, respectively. The first function either
creates new configurations for a connecting client, or retrieves and recreates them for an

65

active client that has reached the 5-minute timeout. The second function places the activated
client’s permissions as rules onto the iptables. The last function simply allocates the session
keys on the virtual filesystem, to be used by the kernel matching module.

def deploy_keys (username):
User = Query ()
keys = db.table ("keys")
configs = db.table(" configs ")

user = configs .get(User. username == username)
uid = user[" activeID "]

subprocess .call (["mkdir", "/ config / xt_hash /" + str(uid)])

echo = subprocess .Popen (["echo", keys.get(User. username == \
username)[" activeSessionKey "]], stdout = subprocess .PIPE)

tee = subprocess .Popen (["tee", "/ config / xt_hash /" + str(uid) + \
"/ sessionKey "], stdin=echo. stdout)

tee. communicate () [0]

return True

Listing 5.8: Function used for deploying keys onto the virtual filesystem. The manipulation
of session keys on the VFS is accomplished by the standard echo command.

5.3.4 Access Requester Application

An access requester application was developed essentially as an SSH library client, to
establish a control channel with the remote server. The SSH channel is requested by the
client host, to exchange configuration values used on forthcoming traffic. All outgoing traffic
is required to be altered according to the NUAC specification, in order to guarantee a suc-
cessful authentication and authorization of the client’s traffic on the server side. The NUAC
specification and the functions’ prototypes are specified in sections B.1 and C.4, respectively.

After starting the application, a secure communication is initiated between the access
requester and access controller. This communication carries the configurations needed for
modifying traffic. The access requester expects to receive an id, a hashing algorithm, a
session key, and a list of roles. The configurations arrive through sockets binded to the SSH
channel, and are stored into Python global objects. After prompting the user for the role to
be activated, the exchange is complete and the client assumes that the server host is ready
to receive authenticated traffic.

In order to send authenticated traffic, the access requester was extended to support a
simple packet mangling mechanism where all packets destined to the server are intercepted
and modified. The interception, as shown in Listing 5.9, is made possible through the usage of
Netfilter queues (NFQUEUE) applied on the output chain of iptables by the packet modifier.
The SSH traffic, however, must not be intercepted since the SSH channel must be maintained
throughout the session and is out of the scope of authorization policies.

Whenever a packet reaches a rule specifying a Netfilter queue, it is sent to the binded
callback. The modify packet callback function processes packets according to their proto-
col, and modifies them by inserting the NUAC trailer along with the security token (see
Listing 5.10). The modified packets are then accepted and naturally routed to the server.

66

def nfqueue_start ():
nfqueue = NetfilterQueue ()
nfqueue .bind (1, modify_packet)

try:
nfqueue .run ()

except KeyboardInterrupt :
pass

print (Packet modification turned off .)
nfqueue . unbind ()

Listing 5.9: Function used for sending traffic to the access requesting application. The
NFQUEUE number 1 is binded between the iptables and the application. Packets are sent
to the modify packet callback.

...
real_payload = bytes(pkt)[((ihl * 4) + (pkt[TCP]. dataofs * 4)):]

aalgo = configuration_object [" algorithm "]
aid = configuration_object [" activeID "]
sess_key = configuration_object [" activeSessionKey "]

real_hmac = hmac.new(sess_key . encode (), real_payload , algo)
real_digest = real_hmac . digest ()

pkt = pkt / real_digest / HSP(id=aid , algo=aalgo , reserved =0, \
length = real_hmac . digest_size)

pkt[IP]. len = prev_length + 4 + real_hmac . digest_size
del pkt[IP]. chksum
del pkt[TCP]. chksum
...

Listing 5.10: Source code snippet of a TCP packet modification process. A security token is
calculated using the payload of the packet. The NUAC trailer and security token are inserted
into the packet.

67

68

Chapter 6

Evaluation

In favor of evaluating the implemented system, this chapter exposes a series of basic tests
performed. The initial and most fundamental approach is to verify that the proposed system
is working as it is supposed to. This means that the access controller must correctly identify,
authenticate, and authorize users requesting for specific services, based on their permissions
on the system. For that reason, functionality tests were executed to assert that the traffic
originated on a given user is properly verified, and replied if the latter is legitimate.

A following self-evident approach is to acknowledge that the proposed solution is in fact
superior than current comparable solutions, according to the initial stated objectives. The
proposed solution should be lightweight and efficiently fast when dealing with incoming mod-
ified traffic. A set of performance tests were executed, attempting to measure the efficiency
of the network traffic flowing between the client and the server, on distinct contexts.

All the executed tests ran on Ubuntu 16.04.1 LTS systems with the Linux Kernel 4.4.0.
Due to the fact that the system implementation occurred on the Linux Kernel 3.19.0, some
slight negligible alterations were made on the source code in order to comply with the more
recent kernel version. The testing environment is additionally detailed in Appendix A.

The sections below illustrate the performed tests categorized as either functional or
performance-related. The tests consist essentially on a specified procedure, the expected
results, and the actual obtained results. A detailed analysis is presented after each series of
tests, to summarize and reason over the obtained results.

6.1 Functional Testing

The functional tests intend to guarantee that the implemented system is operating ac-
cording to the authentication and authorization policies previously specified onto the access
manager. The performed tests also intend to prove that, different running protocols, IP
fragmentation, and NAT mechanisms, do not disrupt the system and are in fact completely
integrated with it.

In order to verify the functionality of the system, a network packet analyzer (Wireshark)
was set up in-between the client and the server. The packet analyzer is able to verify network
traffic on both flow directions, specially if the modified packets, on the client→server flow,
are in accordance with the NUAC specification.

The validation of the system’s functionalities is therefore attended by the performed tests,
which are summarized in the following items:

69

1. ICMP check;

2. UDP check;

3. TCP check;

4. GRE check;

5. ICMP check + NAT;

6. UDP check + NAT;

7. TCP check + NAT;

8. GRE check + NAT;

9. ICMP check + IP fragmentation;

10. TCP check + no packet modifier;

11. TCP check + UDP permissions;

The designated tests are simple versions of data exchange between the access requester
and the access controller. For the GRE tests, ICMP packets are encapsulated and tunneled
through GRE. While the first tests are used for exhibiting successful accesses onto the server,
the last two intend to demonstrate that the access control is indeed in place, and no access is
granted when certain requirements are not met.

Although the listed tests do not comprise the whole set of possible interactions, they are
suitable enough to represent all possible verifications. In light of this fact, the IP fragmenta-
tion (Test 9) is only applied on ICMP but stands an equivalent process for the other protocols.
Also the TCP checks with no proper access (Tests 10 and 11) represent identical resolutions
through ICMP, UDP and GRE. NAT is checked on all protocols since, not only it is applied
differently on all used protocols, but it is also considered an important mechanism used on
most Internet connected networks.

The tests were accomplished with the usage of the ping and hping31 utilities for their ver-
satility. For the scope of the following tests, a simple nomenclature is used where: HAR stands
for the access requester host, and the HAC stands for the access controller host, representing
the client and server machines, respectively.

Test 1 [ICMP check] Protocol validation with permissive policies for ICMP. No NAT gate-
ways are used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpRole, with ICMP permissions, on HAC;
3. Assign the icmpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
1 https://linux.die.net/man/8/hping3

70

https://linux.die.net/man/8/hping3

6. On HAR, send ICMP Echo Request packets to HAC.

Expected Result: An ICMP Echo Reply packet should arrive at the requesting host
for every ICMP Echo Request packet sent.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. ICMP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular ICMP Echo Replies.

Test 2 [UDP check] Protocol validation with permissive policies for UDP port 100. No NAT
gateways are used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, udpRole, with UDP permissions on port 100, on HAC;
3. Assign the udpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send UDP packets with destination port 100 to HAC.

Expected Result: An ICMP Port Unreachable packet should arrive at the requesting
host for every UDP packet sent with destination port 100, since no UDP service is
bound to that port.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. UDP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular ICMP Port Unreachable packets exposing
that no UDP service is bound to port 100.

Test 3 [TCP check] Protocol validation with permissive policies for TCP port 200. No NAT
gateways are used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, tcpRole, with TCP permissions on port 200, on HAC;
3. Assign the tcpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send TCP packets with destination port 200 to HAC.

Expected Result: A TCP RST packet should arrive at the requesting host for every
TCP SYN packet sent with destination port 200, since no TCP service is bound to that
port.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. TCP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular TCP RST packets exposing that no TCP
service is bound to port 200.

71

Test 4 [GRE check] Protocol validation with permissive policies for both GRE and ICMP.
No NAT gateways are used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpGreRole, with ICMP and GRE permissions, on HAC;
3. Assign the icmpGreRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Create a GRE tunnel endpoint on HAC;
6. Create a GRE tunnel endpoint on HAR;
7. Route all traffic to the HAC through the GRE tunnel, on HAR.
8. Run the packet modifier application and provide the correct created credentials,

on HAR;
9. On HAR, send ICMP Echo Request packets to the remote tunnel endpoint on HAC.

Expected Result: An ICMP Echo Reply packet should arrive at the requesting host
for every GRE-encapsulated ICMP Echo Request packet sent. Traffic sent should be
routed via the GRE tunnel.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. GRE traffic sent afterwards was modified at the client side, and received on the
tunnel endpoint, de-encapsulated and validated on the server side. The server replied
with regular ICMP Echo Replies.

Test 5 [ICMP check + NAT] Protocol validation with permissive policies for ICMP. NAT
gateways are deployed in-between the client and the server.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpRole, with ICMP permissions, on HAC;
3. Assign the icmpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send ICMP Echo Request packets to HAC, passing through both NAT

gateways.

Expected Result: An ICMP Echo Reply packet should arrive at the requesting host
for every ICMP Echo Request packet sent. NAT should not interfere with the proper
routing of traffic, nor should it tamper the NUAC trailers or security tokens.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. ICMP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular ICMP Echo Replies. The traffic traveling
the networks is translated by NAT gateways from a private address into a public address
and back.

72

Test 6 [UDP check + NAT] Protocol validation with permissive policies for UDP port 100.
NAT gateways are deployed in-between the client and the server.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, udpRole, with UDP permissions on port 100, on HAC;
3. Assign the udpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send UDP packets with destination port 100 to HAC, passing through

both NAT gateways.

Expected Result: An ICMP Port Unreachable packet should arrive at the requesting
host for every UDP packet sent with destination port 100, since no UDP service is
bound to that port. NAT should not interfere with the proper routing of traffic, nor
should it tamper the NUAC trailers or security tokens.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. UDP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular ICMP Port Unreachable packets expos-
ing that no UDP service is bound to port 100. The traffic traveling the networks is
translated by NAT gateways from a private address into a public address and back.

Test 7 [TCP check + NAT] Protocol validation with permissive policies for TCP port 200.
NAT gateways are deployed in-between the client and the server.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, tcpRole, with TCP permissions on port 200, on HAC;
3. Assign the tcpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send TCP packets with destination port 200 to HAC, passing through

both NAT gateways.

Expected Result: A TCP RST packet should arrive at the requesting host for every
TCP SYN packet sent with destination port 200, since no TCP service is bound to that
port. NAT should not interfere with the proper routing of traffic, nor should it tamper
the NUAC trailers or security tokens.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. TCP traffic sent afterwards was modified at the client side and validated on the
server side. The server replied with regular TCP RST packets exposing that no TCP
service is bound to port 200. The traffic traveling the networks is translated by NAT
gateways from a private address into a public address and back.

73

Test 8 [GRE check + NAT] Protocol validation with permissive policies for both GRE and
ICMP. NAT gateways are deployed in-between the client and the server.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpGreRole, with ICMP and GRE permissions, on HAC;
3. Assign the icmpGreRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Create a GRE tunnel endpoint on HAC;
6. Create a GRE tunnel endpoint on HAR;
7. Route all traffic to the HAC through the GRE tunnel, on HAR.
8. Run the packet modifier application and provide the correct created credentials,

on HAR;
9. On HAR, send ICMP Echo Request packets to the remote tunnel endpoint on HAC,

passing through both NAT gateways.

Expected Result: An ICMP Echo Reply packet should arrive at the requesting host
for every GRE-encapsulated ICMP Echo Request packet sent. Traffic sent should be
routed via the GRE tunnel. NAT should not interfere with the proper routing of traffic,
nor should it tamper the NUAC trailers or security tokens.
Result: Ok. The requester was successfully authenticated through the correct creden-
tials. GRE traffic sent afterwards was modified at the client side, and received on the
tunnel endpoint, de-encapsulated and validated on the server side. The server replied
with regular ICMP Echo Replies. The traffic traveling the networks is translated by
NAT gateways from a private address into a public address and back.

Test 9 [ICMP check + IP fragmentation] Protocol validation with permissive policies for
ICMP. Data size exceeds interface MTU and packet is fragmented. No NAT gateways
are used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpRole, with ICMP permissions, on HAC;
3. Assign the icmpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send ICMP Echo Request packets with data size of 1500 bytes to HAC.

Expected Result: Two ICMP Echo Reply fragments should arrive at the requesting
host for every ICMP Echo Request packet sent with data size of 1500 bytes. This is due
to the definition of an MTU of 1500 bytes for the client’s interface. The system should
rebuild the fragments and accurately identify the NUAC specification.

74

Result: Ok. The requester was successfully authenticated through the correct cre-
dentials. ICMP traffic sent afterwards was modified at the client side, and rebuilt and
validated on the server side. The server replied with regular fragmented ICMP Echo
Replies.

Test 10 [TCP check + no packet modifier] Protocol validation with no running packet mod-
ifier application. No NAT gateways are used.

Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;

2. Run the access manager application using the SHA1 algorithm, on HAC;

3. Run an SSH session and login onto the remote server with the correct created
credentials, on HAR;

4. On HAR, send TCP packets with destination port 200 to HAC.

Expected Result: No packets should arrive at the requesting host for the TCP traffic
sent with destination port 200. The iptables should filter and discard incoming packets
not compliant with the NUAC specification.

Result: Ok. The requester was successfully authenticated through the correct creden-
tials. TCP traffic sent afterwards was not modified at the client side and therefore was
not validated on the server side. No response is seen from the server.

Test 11 [TCP check + UDP permissions] Protocol validation with permissive policies for
UDP port 200 but not for TCP. No NAT gateways are used.

Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;

2. Create a new role, udpRole, with UDP permissions on port 200, on HAC;

3. Assign the udpRole to the created user, on HAC;

4. Run the access manager application using the SHA1 algorithm, on HAC;

5. Run the packet modifier application and provide the correct created credentials,
on HAR;

6. On HAR, send TCP packets with destination port 200 to HAC.

Expected Result: No packets should arrive at the requesting host for the TCP traffic
sent with destination port 200. The iptables should allow the authentication of packets
but not their authorization, since the client is only allowed to access the service bound
to UDP port 200.

Result: Ok. The requester was successfully authenticated through the correct creden-
tials. TCP traffic sent afterwards was modified at the client side, and authenticated on
the server side. The packets were filtered and discarded since the client is not authorized
to communicate with TCP port 200. No response is seen from the server.

75

Tests Analysis

Considering the previous tests, it is possible to notice that the procedures for the different
protocols are very similar. Also each step produces several automated operations that enable
the system to work correctly. In functional terms, the first 8 tests simply create a user on
the system, give him the required permissions and validate his packets after running both the
access manager and packet modifier applications.

Creating a user and a role, and assigning the latter to the former is made through the
access manager application with specific initial parameters (see Listing 5.7). The username
and the hashed password, along with the user’s supported algorithm, SHA1, are stored in
database. Note that, despite the MD5 algorithm is not used on any test, it works identically to
SHA1 except that MD5 uses 16-byte tokens whereas SHA1 uses 20-byte’s. The permissions
are specified for the new role and are also stored. Afterwards, the user is assigned to the
created role associated with specific permissions.

Running the access controlling application enables the server to receive incoming SSH
connections on port 2200. When the access requesting application starts on the client side,
the SSH credentials are provided and a connection is established, where the configuration
values are exchanged. Subsequent traffic is intercepted and modified by the packet modifier
that appends the security token (20 bytes) and the NUAC trailer (4 bytes).

A packet received at the server, that unavoidably traverses iptables rules, crosses the
packet authentication barrier and the packet authorization barrier. For the first 9 tests,
the sent packets are correctly generated and are able to bypass both barriers, triggering an
automatic system’s reply.

As a result, it is viable to infer that each single step described is functioning correctly,
due to the fact that all the tests’ expected and obtained results match perfectly.

In a more pragmatic view, the first 4 tests acknowledge that the system works properly.
The GRE test is executed exclusively using the ICMP protocol, however, encapsulating other
protocols is effectively analogous. The four following tests (Tests 5-8) support the evidence
that the system is capable of handling network access of clients hidden behind NAT devices.
This is achievable thanks to the NUAC specification of trailing the fields and the security
token on packets.

The last 3 tests are special cases that should be taken into further consideration. They
are performed without NAT mechanisms for simplification purposes only, but are obviously
transposable and compatible with NAT.

On Test 9, ICMP Echo Requests are sent with data size of 1500 bytes. Since the default
MTU value of the Ethernet interface is 1500 bytes, the packets are split into two fragments,
one containing 1500 bytes (20 bytes from the IP header + 1480 bytes from the data) and the
other containing 72 bytes (20 bytes from the IP header + 8 bytes from the ICMP header +
20 bytes of data + 24 bytes from the NUAC trailer and security token). The obtained results
succeed to match the expected, considering that packets are defragmented and handled in
their entirety, once inside the kernel module.

Tests 10 and 11 intend to reproduce modest attacks by authenticated users. On Test 10,
the user simply sends packets to the access control server without having them modified by
the packet modifier. The packet authentication barrier inhibits packets not compliant with
the NUAC specification to follow through, being therefore discarded. On Test 11, the user
attempts to access an unauthorized service port. Despite having its packets authenticated by
the NUAC protocol, the user is not authorized to access the service bound to TCP port 200,

76

since the only authorization he possesses is to access UDP port 200. These packets fail to
pass the packet authorization barrier and are also discarded.

6.2 Performance Testing

The performance tests aim to provide statistical evidence of how efficient is the imple-
mented system, when compared with parallel mechanisms. The tests report two measurements
inherently linked to packet processing: the dispatch time within the server, and the network
throughput. The first is tested to estimate the time each packet takes to be processed on the
iptables firewall, added to the reply packet generation. The second measures the rate of
successful packet delivery over the network. These tests are therefore capable of contributing
with a good performance deduction of the entire system.

Both measurements are evaluated over three different communicational approaches: native
transmission, where packets are sent without any alterations; the solution’s transmission,
where packets are modified according to the NUAC specification; and SSH transmission,
where packets are encrypted and tunneled through the network. Each of the measurements
is then compared between one another, allowing for a mature and proper tests’ analysis.

The performed tests are divided into packet processing and network throughput, respect-
ing both measurements. All the tests are executed within a NAT-enabled environment, how-
ever, for simplicity purposes, NAT-related statements are excluded from the tests’ descrip-
tions.

Server Packet Processing

The following list of items outlines the performed tests on the server’s packet processing
duration:

1. Native ICMP;

2. Native UDP;

3. Native TCP;

4. Native GRE;

5. Native ICMP + IP fragmentation;

6. Solution ICMP;

7. Solution UDP;

8. Solution TCP;

9. Solution GRE;

10. Solution ICMP + IP fragmentation;

11. SSH ICMP;

12. SSH UDP;

77

13. SSH TCP;

14. SSH ICMP + IP fragmentation;

The designated tests follow the same principles of the functional tests, meaning that
they are also simple versions of data exchange between the access requester and the access
controller. Yet, these tests are further extended to transmit 250 packets in 5 spanned series
of 50 packets. The minimum, maximum, and average values are calculated and presented
further below in the tests’ analysis.

The tests were also accomplished with the usage of the ping and hping3 utilities. In order
to measure the processing time, the network packet analyzer was placed on the server host,
inspecting packets leaving the Ethernet interface. The time in which a reply packet leaves the
server is deducted to the time that indicates its request’s entrance, resulting in the processing
duration inside the server. For the scope of the following tests, a simple nomenclature is used
where: HAR stands for the access requester host, and the HAC stands for the access controller
host, representing the client and server machines, respectively.

Test 1 [Native ICMP] Protocol performance testing on packet processing with permissive
policies for ICMP. Native transmission is used.
Procedure:

1. On HAR, send 50 ICMP Echo Request packets to HAC;
2. Repeat the above steps 5 times.

Result: The average duration of packet processing on the server is 36 µs per packet.

Test 2 [Native UDP] Protocol performance testing on packet processing with permissive
policies for UDP port 100. Native transmission is used.
Procedure:

1. On HAR, send 50 UDP packets with destination port 100 to HAC;
2. Repeat the above steps 5 times.

Result: The average duration of packet processing on the server is 42 µs per packet.

Test 3 [Native TCP] Protocol performance testing on packet processing with permissive
policies for TCP port 200. Native transmission is used.
Procedure:

1. On HAR, send 50 TCP packets with destination port 200 to HAC;
2. Repeat the above steps 5 times.

Result: The average duration of packet processing on the server is 35 µs per packet.

Test 4 [Native GRE] Protocol performance testing on packet processing with permissive
policies for both GRE and ICMP. Native transmission is used.
Procedure:

1. Create a GRE tunnel endpoint on HAC;

78

2. Create a GRE tunnel endpoint on HAR;
3. Route all traffic to the HAC through the GRE tunnel, on HAR.
4. On HAR, send 50 ICMP Echo Request packets to the remote tunnel endpoint on

HAC;
5. Repeat the above steps 5 times.

Result: The average duration of packet processing on the server is 46 µs per packet.

Test 5 [Native ICMP + IP fragmentation] Protocol performance testing on packet processing
with permissive policies for ICMP. Data size exceeds interface MTU and packet is
fragmented. Native transmission is used.
Procedure:

1. On HAR, send 50 ICMP Echo Request packets with data size of 1500 bytes to HAC;
2. Repeat the above steps 5 times.

Result: The average duration of packet processing on the server is 56 µs per packet.

Test 6 [Solution ICMP] Protocol performance testing on packet processing with permissive
policies for ICMP. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpRole, with ICMP permissions, on HAC;
3. Assign the icmpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send 50 ICMP Echo Request packets to HAC;
7. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
slightly higher than the value of the corresponding native test.
Result: The average duration of packet processing on the server is 98 µs per packet. It
is slower than the corresponding native version.

Test 7 [Solution UDP] Protocol performance testing on packet processing with permissive
policies for UDP. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, udpRole, with UDP permissions on port 100, on HAC;
3. Assign the udpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;

79

5. Run the packet modifier application and provide the correct created credentials,
on HAR;

6. On HAR, send 50 UDP packets with destination port 100 to HAC;
7. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
slightly higher than the value of the corresponding native test.
Result: The average duration of packet processing on the server is 111 µs per packet.
It is slower than the corresponding native version.

Test 8 [Solution TCP] Protocol performance testing on packet processing with permissive
policies for TCP port 200. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, tcpRole, with TCP permissions on port 200, on HAC;
3. Assign the tcpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send 50 TCP packets with destination port 200 to HAC;
7. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
slightly higher than the value of the corresponding native test.
Result: The average duration of packet processing on the server is 95 µs per packet. It
is slower than the corresponding native version.

Test 9 [Solution GRE] Protocol performance testing on packet processing with permissive
policies for both GRE and ICMP. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpGreRole, with ICMP and GRE permissions, on HAC;
3. Assign the icmpGreRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Create a GRE tunnel endpoint on HAC;
6. Create a GRE tunnel endpoint on HAR;
7. Route all traffic to the HAC through the GRE tunnel, on HAR.
8. Run the packet modifier application and provide the correct created credentials,

on HAR;
9. On HAR, send 50 ICMP Echo Request packets to the remote tunnel endpoint on

HAC;

80

10. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
slightly higher than the value of the corresponding native test.
Result: The average duration of packet processing on the server is 113 µs per packet.
It is slower than the corresponding native version.

Test 10 [Solution ICMP + IP fragmentation] Protocol performance testing on packet pro-
cessing with permissive policies for ICMP. Data size exceeds interface MTU and packet
is fragmented. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, icmpRole, with ICMP permissions, on HAC;
3. Assign the icmpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the packet modifier application and provide the correct created credentials,

on HAR;
6. On HAR, send 50 ICMP Echo Request packets with data size of 1500 bytes to HAC;
7. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
slightly higher than the value of the corresponding native test.
Result: The average duration of packet processing on the server is 131 µs per packet.
It is slower than the corresponding native version.

Test 11 [SSH ICMP] Protocol performance testing on packet processing with permissive
policies for ICMP. SSH transmission is used.
Procedure:

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. On HAR, send 50 ICMP Echo Request packets to the remote tunnel endpoint on

HAC;
5. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
higher than the value of both the corresponding native test and solution’s test.
Result: The average duration of packet processing on the server is 193 µs per packet.
It is slower than both the corresponding native and solution’s versions.

Test 12 [SSH UDP] Protocol performance testing on packet processing with permissive poli-
cies for UDP port 100. SSH transmission is used.
Procedure:

81

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. On HAR, send 50 UDP packets with destination port 100 to the remote tunnel

endpoint on HAC;
5. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
higher than the value of both the corresponding native test and solution’s test.
Result: The average duration of packet processing on the server is 203 µs per packet.
It is slower than both the corresponding native and solution’s versions.

Test 13 [SSH TCP] Protocol performance testing on packet processing with permissive poli-
cies for TCP port 200. SSH transmission is used.
Procedure:

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. On HAR, send 50 TCP packets with destination port 200 to the remote tunnel

endpoint on HAC;
5. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
higher than the value of both the corresponding native test and solution’s test.
Result: The average duration of packet processing on the server is 188 µs per packet.
It is slower than both the corresponding native and solution’s versions.

Test 14 [SSH ICMP + IP fragmentation] Protocol performance testing on packet processing
with permissive policies for ICMP. Data size exceeds interface MTU and packet is
fragmented. SSH transmission is used.
Procedure:

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. On HAR, send 50 ICMP Echo Request packets with data size of 1500 bytes to the

remote tunnel endpoint on HAC;
5. Repeat the above steps 5 times.

Expected Result: The value for the duration of a single packet processing should be
higher than the value of both the corresponding native test and solution’s test.
Result: The average duration of packet processing on the server is 432 µs per packet.
It is slower than both the corresponding native and solution’s versions.

82

Network Throughput

The following list of items summarizes the performed tests on the network throughput:

A. Native UDP;

B. Native TCP;

C. Solution UDP;

D. Solution TCP;

E. SSH UDP;

F. SSH TCP;

The identified tests’ procedures are identical to the tests performed over the packet pro-
cessing duration, with a single exception. In this case, the packets are not produced separately
and repeated several times, instead they are generated with random data and transfered in
bulk, to measure the network throughput.

The tests were accomplished with the usage of the iperf2 utility. This tool runs with
the UDP and TCP protocols since only these stand the actual information carriers meant to
transport applicational data. For all UDP tests, an initial bandwidth of 9 Mbit/s is set to
transfer 10.7 MB of data. The measured outputs are the real throughput, the time taken to
transfer the data, packet jitter, and packet loss. For the TCP tests, the amount of transfered
data and network throughput are measured for a specified time frame of 10 seconds. All the
tests are repeated 10 times for simple average calculation. For the scope of the following tests,
a simple nomenclature is used where: HAR stands for the access requester host, and the HAC
stands for the access controller host, representing the client and server machines, respectively.

Test A [Native UDP] Protocol performance testing on network throughput with permissive
policies for UDP port 100. Native transmission is used.
Procedure:

1. Run the iperf server on UDP port 100, on HAC;
2. On HAR, run the iperf client and send 10.7 MB of data inside UDP packets with

destination port 100 to HAC;
3. Repeat the above steps 10 times.

Result: The real observable network throughput is in average 9.01 Mbit/s.

Test B [Native TCP] Protocol performance testing on network throughput with permissive
policies for TCP port 200. Native transmission is used.
Procedure:

1. Run the iperf server on TCP port 200, on HAC;
2. On HAR, run the iperf client for 10 seconds and send TCP packets with destination

port 200 to HAC;
2 http://manpages.ubuntu.com/manpages/xenial/man1/iperf.1.html

83

http://manpages.ubuntu.com/manpages/xenial/man1/iperf.1.html

3. Repeat the above steps 10 times.

Result: The real observable network throughput is in average 8.78 Mbit/s.

Test C [Solution UDP] Protocol performance testing on network throughput with permissive
policies for UDP. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, udpRole, with UDP permissions on port 100, on HAC;
3. Assign the udpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the iperf server on UDP port 100, on HAC;
6. Run the packet modifier application and provide the correct created credentials,

on HAR;
7. On HAR, run the iperf client and send 10.7 MB of data inside UDP packets with

destination port 100 to HAC;
8. Repeat the above steps 10 times.

Expected Result: The value for the network throughput should be slightly lower than
the value of the corresponding native test.
Result: The real observable network throughput is in average 8.97 Mbit/s. It has less
throughput than the corresponding native version.

Test D [Solution TCP] Protocol performance testing on network throughput with permissive
policies for TCP port 200. The solution’s transmission is used.
Procedure:

1. Create a new user adopting the SHA1 algorithm, on HAC;
2. Create a new role, tcpRole, with TCP permissions on port 200, on HAC;
3. Assign the tcpRole to the created user, on HAC;
4. Run the access manager application using the SHA1 algorithm, on HAC;
5. Run the iperf server on TCP port 200, on HAC;
6. Run the packet modifier application and provide the correct created credentials,

on HAR;
7. On HAR, run the iperf client for 10 seconds and send TCP packets with destination

port 200 to HAC;
8. Repeat the above steps 10 times.

Expected Result: The value for the network throughput should be slightly lower than
the value of the corresponding native test.
Result: The real observable network throughput is in average 8.75 Mbit/s. It has less
throughput than the corresponding native version.

84

Test E [SSH UDP] Protocol performance testing on network throughput with permissive
policies for UDP port 100. SSH transmission is used.
Procedure:

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. Run the iperf server on UDP port 100, on HAC;
5. On HAR, run the iperf client and send 10.7 MB of data inside UDP packets with

destination port 100 to HAC;
6. Repeat the above steps 10 times.

Expected Result: The value for the network throughput should be lower than the
value of both the corresponding native test and solution’s test.
Result: The real observable network throughput is in average 8.38 Mbit/s. It has less
throughput than both the corresponding native and solution’s versions.

Test F [SSH TCP] Protocol performance testing on network throughput with permissive
policies for TCP port 200. SSH transmission is used.
Procedure:

1. Create an SSH tunnel endpoint on HAC;
2. Create an SSH tunnel endpoint on HAR;
3. Route all traffic to the HAC through the SSH tunnel, on HAR;
4. Run the iperf server on TCP port 200, on HAC;
5. On HAR, run the iperf client for 10 seconds and send TCP packets with destination

port 200 to HAC;
6. Repeat the above steps 10 times.

Expected Result: The value for the network throughput should be lower than the
value of both the corresponding native test and solution’s test.
Result: The real observable network throughput is in average 7.68 Mbit/s. It has less
throughput than both the corresponding native and solution’s versions.

Tests Analysis

The series of performance tests were executed following a simple and common practice. A
baseline performance statistic is provided and the other mechanisms are compared on top of
it. The native tests act as the baseline for comparison, therefore, they do not present expected
performance results. The implemented solution’s tests are evidently compared, along with
SSH’s extended security mechanism. The comparison of the three transmission mechanisms
grants the possibility to establish a ratio between the tested performance and usability, in
terms of the required security characteristics.

The native transmissions exhibit natural data exchange between the client and the server,
where there is no added external security. The solution’s transmission concedes the possibility

85

of service access control by the cost of a transmission overhead of 24 bytes (20 bytes in the case
of MD5) per packet, added to the additional packet processing time within the server. The
SSH heavyweight approach, not only changes the properties of the original traffic, but also
further increases the expense on both the transmission overhead, mainly due to encryption,
and the packet processing to calculate and verify the same encryption.

Tests 1 through 14 collect performance statistics on the packet processing time, while
tests A through F achieve network throughput performance values. The packet processing
duration is divided into its filtering period and the reply generation period. For this thesis
purpose, only the filtering time on iptables is taken into consideration, since no changes
were made on server’s reply generation. The network throughput stands as a more global
series of tests that account for the amount of data traveling the network and the time it takes
to reach the destination.

Regarding the packet processing tests, it is possible to see that in the native transmissions
the processing time is rather similar for every protocol. Minor discrepancies are seen in GRE,
since these packets traverse firewall rules two times, and in packet fragmentation, due to the
obvious additional computation of fragments.

Native Solution SSH

ICMP 17/36/45 51/98/113 134/193/245

UDP 21/42/50 67/111/133 142/203/258

TCP 18/35/43 53/95/112 130/188/232

GRE 22/46/66 68/113/126 - / - / -

IP Frag. 27/56/82 82/131/178 334/432/499

Table 6.1: Statistical results of the tests performed on packet processing. The portrayed
results represent the time a packet spends inside the server host, and take the format
Min/Avg/Max, in microseconds (µs).

It is expected that the packets modified with the new NUAC protocol take longer to
process at the iptables firewall. This is mainly due to the verification of the packet’s se-
curity token against the MAC calculated using the stored session key. The removal of the
NUAC trailer and security token virtually takes no time, since the pointer to the end of the
data within the socket buffer is simply changed to an earlier address. Also two new check-
sums are calculated to reassure the packet’s validity, the IP checksum, and the encapsulated
protocol’s checksum, whether ICMP, UDP or TCP. The checksums’ calculation also takes a
considerable part on the duration of the packet processing. The obtained results show that
NUAC-compliant packets take approximately 3 times longer than their native counterparts,
for ICMP, UDP and TCP. GRE’s disparity is simply due to the firewall double pass. On
fragmented packets the security token verification and checksum calculation are performed
with longer payloads, nevertheless, they are only made once per packet. For that reason, they
are slightly faster than the prevailing 3-times proportion.

The SSH’s packet processing is anticipated to be quite slower than both the other methods,
considering all the payload has to be decrypted. For the tested packets where there is little

86

payload, the SSH packet processing is slower than the NAUC method by a discreet ratio of
2 times. The most substantial test is when the payload actually contains data, with a size
close to the Ethernet MTU. For that, Test 14 shows results close to 4 times the duration of
NUAC packet processing and 8 times the duration of the native method. This indicates that
the SSH packet processing time depends on the packet’s payload size by a high proportionate
ratio. For this set of tests, GRE tunneling was not tested since SSH was already deployed as
a tunnel.

All the obtained results are detailed in Table 6.1 where it is possible to identify the min-
imum, maximum and average values for every test. Although the average value is the most
significant, the maximum and minimum values intend to demonstrate that each method is
possibly faster or slower than the actual average. On packets with more expensive computa-
tion methods the deviation is noticeably wider. A more visually appealing and comprehensible
chart is shown on Fig. 6.1 that sub-categorizes the different mechanisms within each protocol.

Figure 6.1: Packet processing time on the server host, in microseconds (µs). The results
are represented as intervals between the maximum and minimum values. The intervals are
divided for the different protocols and further categorized according to the three transmission
mechanisms. The average value is highlighted.

Regarding the network throughput, UDP and TCP tests have minor differences. On UDP
tests, the data to be transfered and the pretended bandwidth are set as initial parameters.
UDP’s iperf measures the time it took to transfer the data and the real throughput of
the network. Packet jitter and packet loss statistics are also provided for a more complete
evaluation. On TCP tests, iperf simply measures the throughput of the network within the
given time interval.

Since the tests were performed through 10 Mbit/s links, an initial bandwidth was set to
9 Mbit/s to guarantee minimum network congestion. Considering UDP’s native transmission
results, specially the obtained throughput of 9.01 Mbit/s, it is possible to reckon that a higher
initial bandwidth would still enable all the data to be transmitted with no packet loss. Not
only that, it would also enable a faster transfer. The solution’s transmission actually follows
similarly behind, however, the packet jitter is increased and the packet loss draws residual
values, translating into a slight lesser throughput. The SSH results immediately show that

87

obviously no packets are lost, since UDP is encapsulated into SSH’s TCP. The packet jitter
surpasses by 3 times the one identified in the implemented solution. Also the same amount
of data takes longer to transfer between the client and the server, resulting in the reduction
of the network throughput to 8.38 Mbit/s.

Native Solution SSH

Time
(s) 10.0 10.0 10.8

Data
(MB) 10.7 10.7 10.7

Packet Jitter
(µs) 16±2 107±9 290±33

Packet Loss
(%) 0.00±0.00 0.42±0.14 0.00±0.00

Throughput
(Mbit/s) 9.01±0.00 8.97±0.01 8.38±0.02

Table 6.2: Statistical results of the tests performed on network throughput for UDP. The
results are presented as the average of 10 runs with a confidence interval of 95 %.

By analyzing TCP’s test results, the native transmission is capable of delivering 10.5 MB
of data in 10 seconds translating into an average of 8.78 Mbit/s. Again, the NUAC packets’
throughput accompanies very closely its native counterpart, with a value of 8.75 Mbit/s.
SSH’s transmission rate decreases to 7.68 Mbit/s allowing to transfer only 9.4 MB of data in
the same time interval.

Native Solution SSH

Time
(s) 10.0 10.0 10.0

Data
(MB) 10.5±0.03 10.5±0.07 9.4±0.36

Throughput
(Mbit/s) 8.78±0.03 8.75±0.06 7.68±0.31

Table 6.3: Statistical results of the tests performed on network throughput for TCP. The
results are presented as the average of 10 runs with a confidence interval of 95 %.

Bearing in mind the iperf tests, some deductions can be made. On both UDP and
TCP, the throughput is definitely identical. This is due to the fact that the packet modifier
application simply appends 24 bytes of the NUAC trailer and security token. The transfer of
an overhead of such value is therefore negligible for packets sizes close to the Ethernet MTU.
Differently of the solution’s transmission, SSH falls short precisely on bigger packets, since
the decryption process depends proportionately on the amount of bytes to decrypt. On a side
note, the packet jitter values for all UDP transmissions stand insignificant for the deployed
network. A NUAC packet loss below 1 % is also insignificant. Both the UDP and TCP tests’
results are listed on Tables 6.2 and 6.3, respectively.

88

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Network services existing throughout the Internet are visible to every connected entity. As
such, they stand easily accessible targets to attackers, that may perform security exploits and
gain access to unauthorized resources. Although firewalls can impose a first level of security
constraints based on accessing hosts, they do not possess the ability to associate client hosts
to the actual users operating behind them. Firewalls are therefore incapable of determining
whether individual access requests are made by legitimate parties, moreover, if such parties
are entitled to access the services from multiple locations across the globe. In order to answer
all of these restrictions, a system was conceived and implemented which’s primary motivation
was to protect network services from unauthorized accesses.

The devised system assimilates and combines high-level accessing rules based on actual
users, with low-level operational components where the access control is preferably exercised.
As such, the system assumed the firewall to be the sole entrance point of traffic and incorpo-
rated it with an improved module that allows the filtering of incoming packets, on different
protocols (ICMP, UDP, TCP, and GRE), based on user profiles. In practice, the system con-
sists of a lightweight user authentication and authorization mechanism at the packet level. It
allows the negotiation of out-of-band security credentials that are used to elaborate accessing
rules on the server host. The rules are enforced distinctively for each user, based on roles and
security keys capable of handling current security requirements. The traffic destined to the
services is modified to comply with the negotiated credentials.

The system retains the global strategy of discarding incorrect packets early on the oper-
ational flow. Therefore, not only it was enriched with new network-level user-based access
control, but unauthorized access to services was also prevented immediately at the entrance of
the server host. In addition to these two objectives, the system was designed to be completely
transparent and user-friendly for both the user and server administrator individuals. Its eas-
ily deployable property was achieved thanks to the implementation’s intention to provide the
system as a standalone package, ready to be installed anywhere.

The implementation prototype, along with the tests performed, has confirmed that such
system is not only possible to reproduce and guarantee trustworthy access control, but it is
rather efficient when compared to similar solutions. It uses relatively modern concepts, that
lack proper documentation, such as the Configfs virtual filesystem, and other well-know and
widely used concepts such as message authentication codes (MACs) and role-based access

89

control (RBAC). It also describes new components and protocols that refresh the network
security universal subject.

During the performance evaluation phase, the implemented system was compared with the
native transmission and SSH’s tunneled transmission of packets. Naturally, the native packet
transmission had the fastest processing time inside the server as packets are simply accepted
once they reach the firewall. The implemented solution followed right after with an increased
process time of nearly 3 times the native solution. SSH’s transmission was the slowest, being
considerably critical on packets with a size of the Ethernet MTU, when compared to the other
two types of transmissions.

There are certain drawbacks related to the implemented system that should be noted.
First, since the authentication and authorization mechanisms for packets are separated into
two barriers, the resulting accessing rules increase in number proportionate to each user’s
permissions. Second, the time it takes for a packet to be modified on the client side is
presumed to be higher than on the server side. Third, the SSH channel port is susceptible
to unauthorized access. Fourth, there is no possibility for advanced settings such as network
profiles. Lastly, the system currently has no support for version 6 of the IP protocol.

Considering all the above features and drawbacks, it is admissible to find that the pro-
posed objectives were fulfilled. The system is viable to be integrated with any of the identified
protocols and can effortlessly be extended to accommodate other protocols. It can be con-
cluded that the access control of users’ traffic was in fact enabled at the network level, totally
independent of easily forgeable hosts addresses.

7.2 Future Work

Having concluded the development of the proposed system, and since it is a new imple-
mentation of a proof of concept, it is only reasonable to take notes about future work that
would enhance such system with additional features. As such, the future work essentially
focuses on the handicaps identified in the previous section.

One identified inconvenience was the increased number of the firewall’s accessing rules.
Since the authentication barrier of rules is divided from the authorization one, according to
each user’s permissions, the firewall’s listing becomes too populated and almost unreadable
to identify possible failures. The solution to this issue would be to merge both packet au-
thentication and authorization barriers. This means that incoming traffic would be accepted
into the service in a single step, with one single rule at the firewall. For this to happen, the
architecture would have to incorporate keys, not only independent for each client, but at the
same time distinct for each service. The kernel module’s matching mechanism would then
have to validate the security token based on the required service and its associated key.

Despite presumed to be more efficient than the current solution, it also brings other
disadvantages. The increased number on firewall rules would convert into an increased number
of keys to store both in the server and the client hosts. Also, in environments where NAPT is
deployed, the translation information would have to be redundant on the server host, due to
the fact that service ports would have to be securely enclosed inside the security token. These
two adversities would make the system very unscalable and less lightweight than it currently
is.

Another identified issue was the fact that the packet modifier application is believed to
take longer to append the security tokens on outgoing packets than their processing time on

90

the server host. This is most likely due to the packet modifier being on the application level.
The solution would comprise the installment of another kernel module on the client host that
would insert the security tokens faster than an user-level packet mangler. However, it would
be more difficult and not so intuitive for an amateur client user to run the packet modifier
module. He would have to run unknown scripts to install the kernel module on his machine.

The server host’s SSH port where the control channel resides was recognized to be prone to
unauthorized access attempts. There are several mechanisms that can be applied to mitigate
this problem, although all of them introduce more complexity to the system. One of the
solutions would be to apply port knocking mechanisms before the establishment of the SSH
control channel, thus obfuscating the SSH port from attacking parties.

As additional future work, a graphical interface (GUI) could be developed for the access
manager application that would be more user-friendly and intuitive for the server adminis-
trator. On such application several new features could be implemented as advanced settings,
as for instance a network profiler that identifies which type of network it is connected to, and
attempts to differentiate different access permissions and security algorithms automatically
based on that information. These settings could be maintained in a secluded tab, so that the
initial purpose of granting a user-friendly application that can be used by security amateurs
would be preserved. The GUI addition was actually projected but due to time constraints
was impossible to realize.

The extension to IPv6 of the implemented system is also considered a valid future work
development. This extension should be fairly easy to deploy but also requires additional de-
veloping time. Having deployed IPv6 on this system, there would be no need to consider NAT
environments. As such, the initial solution described in this section, where the packet au-
thentication and authorization barriers are agglutinated into the same matching mechanism,
would become more promising and eventually be considered for development.

91

92

Appendices

93

94

Appendix A

Testing Environment

A detailed overview of the testing environment is described in this appendix. In the
following items, the system’s hardware and software information, running on both hosts
machines, is presented:

• Processor: 8x Intel Core i7-4790 CPU @ 3.60 GHz;

• Memory: 8040 MB;

• Operating System: Ubuntu 16.04.1 LTS;

• Kernel: Linux 4.4.0-43-generic (x86 64);

• C Compiler: GNU C Compiler 5.4.0

• Python: Python 3.5.2

In order to prepare the server host to be able to run the access manager application, some
configurations must be made beforehand. Such configurations include the insertion of kernel
modules, the mount of the Configfs filesystem, and the insertion of the iptables extension.
On the client host no specific configurations have to be made.� �

/ server # cd module
/ server / module # make
/ server / module # modprobe x_tables
/ server / module # modprobe configfs
/ server / module # insmod xt_hash .ko
/ server / module # mount -t configfs none / config /
/ server / module # cd ../ extension
/ server / extension # make libxt_hash .so
/ server / extension # cp libxt_hash .so /lib/ xtables /
/ server / extension # cd ..
/ server /# python3 access_controller .py ...
� �

Listing A.1: Script for deploying the access controlling application. The last command runs
the application with specified options.

The network architectures and configurations are different according to the types of tests
performed. Fig. A.1 illustrates the network architecture for tests that do not use NAT.

95

Fig. A.2 illustrates the network architecture for NAT-enabled tests. The hub existing between
the NAT gateways is used merely to guarantee that the whole system is functioning properly,
by placing a network packet analyzer on the hooked host 100.100.100.3. The hub introduces
the constraint of links with a maximum bandwidth of 10 Mbit/s. On the client’s NAT gateway,
dynamic PAT (or PAT overload) is performed. On the server’s NAT gateway, dynamic PAT
is performed along with static PAT entries according to the available services at the server
host.

192.168.56.81

Client Host

192.168.56.80

Server Host

Figure A.1: Simple network architecture of the system. The server host runs the access
manager application and the client host runs the packet modifier application. No NAT is
used.

Figure A.2: Network architecture of the system with two NAT Gateways. Both NAT gateways
perform NAT/PAT translation. The host directly connected to the hub runs the network
packet analyzer.

96

Appendix B

Structures

This appendix intends to provide additional information regarding the structures defined
by the different inter-operable components. The information is presented as actual developed
source code.

B.1 NUAC

The NUAC protocol is used by both the client host and server host. It was developed
using different programming languages. Therefore, the NUAC protocol is defined for the
kernel module as a C structure and for the access requester as a Python3 list descriptor.

ifndef _NUAC_H
define _NUAC_H

include <linux/types.h>

define NOP 0
define MD5 1
define SHA1 2

define MAX_MD5_SIZE 16
define MAX_SHA1_SIZE 20

struct nuachdr {
__be16 id;
__be16 algo :4,

reserved :4,
len :8;

};

enum {
NUAC_ALGO_M = 0xF000 ,
NUAC_RESERVED_M = 0x0F00 ,
NUAC_LEN_M = 0x00FF

};

enum {
NUAC_ID_LE_OFFSET = 16,
NUAC_ALGO_LE_OFFSET = 12,
NUAC_RESERVED_LE_OFFSET = 8,

97

NUAC_LEN_LE_OFFSET = 0,
NUAC_ID_BE_OFFSET = 0,
NUAC_ALGO_BE_OFFSET = 16,
NUAC_RESERVED_BE_OFFSET = 20,
NUAC_LEN_BE_OFFSET = 24

};

#endif /* _NUAC_H */

Listing B.1: Source code of the NUAC specification in the kernel module.

class NUAC(Packet):
...
fields_desc = [ShortField ("id", None),

BitEnumField ("algo", 2, 4 {0:"nop" ,1:"md5" ,2:"sha1"})
BitField (" reserved ", 0, 4)
BitField (" length ", None , 8)]

...

Listing B.2: Source code of the NUAC specification in the packet modifier.

B.2 Kernel Module

Below, the structures present in the xt hash module can be consulted. The source code
is written in the C programming language.

/* Structure representing a simple child item (user) */
struct simple_child {

struct config_item item;
char * sessionKey ;

};

/* Structure representing the sessionKey attribute and its permissions */
static struct configfs_attribute simple_child_attr_session_key = {

. ca_owner = THIS_MODULE ,

. ca_name = " sessionKey ",

. ca_mode = S_IRUGO | S_IWUSR ,
};

/* Structure containing all attributes of simple child */
static struct configfs_attribute * simple_child_attrs [] = {

& simple_child_attr_session_key ,
NULL ,

};

/* Structure identifying the simple child operations */
static struct configfs_item_operations simple_child_item_ops = {

. release = simple_child_release ,

. show_attribute = simple_child_attr_show ,

. store_attribute = simple_child_attr_store ,
};

/* Structure representing the type of simple child */
static struct config_item_type simple_child_type = {

. ct_item_ops = & simple_child_item_ops ,

98

. ct_attrs = simple_child_attrs ,

. ct_owner = THIS_MODULE ,
};

/* Structure identifying the xt_hash group operations */
static struct configfs_group_operations simple_children_group_ops = {

. make_item = simple_children_make_item ,
};

/* Structure representing the type of xt_hash group */
static struct config_item_type simple_children_type = {

. ct_group_ops = & simple_children_group_ops ,

. ct_owner = THIS_MODULE ,
};

/* Structure representing the subsystem xt_hash */
static struct configfs_subsystem xt_hash_subsys = {

. su_group = {
. cg_item = {

. ci_namebuf = " xt_hash ",

. ci_type = & simple_children_type ,
},

},
};

Listing B.3: Source code of the Configfs defined structures.

/* Structure representing the kernel match infrastructure */
static struct xt_match xt_hash_mt_reg __read_mostly = {

.name = "hash",

. revision = 0,

. family = NFPROTO_UNSPEC ,

. checkentry = hash_mt_check ,

. destroy = hash_mt_destroy ,

.match = hash_mt ,

. matchsize = sizeof (struct xt_hash_info),

.me = THIS_MODULE ,
};

Listing B.4: Source code of the kernel match defined structures.

B.3 iptables Extension

Below, the structures present in the libxt hash extension can be consulted. The source
code is written in the C programming language.

/* Structure containing all possible options */
static const struct xt_option_entry hash_opts [] = {

{. name = "id", .id = O_ID , .type = XTTYPE_UINT16 , .flags =
XTOPT_MAND },

{. name = "sha1", .id = O_SHA1 , .type = XTTYPE_NONE , .flags = 0},
{. name = "md5", .id = O_MD5 , .type = XTTYPE_NONE , .flags = 0},
XTOPT_TABLEEND ,

};

99

/* Structure representing the iptables match infrastructure */
static struct xtables_match hash_match = {

.name = "hash",

. family = NFPROTO_UNSPEC ,

. version = XTABLES_VERSION ,

.size = XT_ALIGN (sizeof (struct xt_hash_info)),

. userspacesize = XT_ALIGN (sizeof (struct xt_hash_info)),

.help = hash_help ,

.init = hash_init ,

.print = hash_print ,

.save = hash_save ,

. x6_parse = hash_parse ,

. x6_options = hash_opts ,
};

Listing B.5: Source code of the iptables extension defined structures.

100

Appendix C

Function Prototypes

This appendix intends to provide additional information regarding the most important
functions defined by the different inter-operable components. Some negligible functions are
omitted. The information is presented as actual developed source code.

C.1 Kernel Module

Below, the functions’ prototypes present in the xt hash module can be consulted. The
source code is written in the C programming language.

/* Function that creates a new item (mkdir) */
static struct config_item * simple_children_make_item (struct config_group

*group , const char *name);

/* Function that shows a value existing in an attribute */
static ssize_t simple_child_attr_show (struct config_item *item , struct

configfs_attribute *attr , char *page);

/* Function that stores a value into an attribute */
static ssize_t simple_child_attr_store (struct config_item *item , struct

configfs_attribute *attr , const char *page , size_t count);

/* Function that removes an item (rmdir) */
static void simple_child_release (struct config_item *item);

/* Function that transforms a config_item into a simple_child */
static inline struct simple_child * to_simple_child (struct config_item

*item);

Listing C.1: Source code of the Configfs related function prototypes.

/* Function that serves as entry point the kernel match */
static bool hash_mt (struct sk_buff *skb , struct xt_action_param *par);

/* Function that validates the authenticity of a packet */
static bool hash_match_it (const struct xt_hash_info *data , struct sk_buff

*skb);

/* Funtion that retrieves the sessionKey from the VFS */

101

static int hmac_vfs_key (unsigned char *hmac , unsigned char *text ,
unsigned int text_len , struct hsphdr *hsph , struct configfs_subsystem
* subsys);

/* Function that calculates an HMAC */
static int calc_hmac (unsigned char *hmac , unsigned char *key , unsigned

int key_size , unsigned char *text , unsigned int text_size , unsigned
int algo);

/* Function that destroys dynamically allocated resources */
static void hash_mt_destroy (const struct xt_mtdtor_param *par);

/* Function that checks input parameters */
static int hash_mt_check (const struct xt_mtchk_param *par);

Listing C.2: Source code of the kernel match related function prototypes.

C.2 iptables Extension

Below, the functions’ prototypes present in the libxt hash extension can be consulted.
The source code is written in the C programming language.

/* Function that provides default values for the internal structure */
static void hash_init (struct xt_entry_match *m);

/* Function that parses options of a rule */
static void hash_parse (struct xt_option_call *cb);

/* Function that parses the id */
static void parse_id (const char *s, struct xt_hash_info *info);

/* Function that prints --help */
static void hash_help (void);

/* Function that prints the extra match information */
static void hash_print (const void *ip , const struct xt_entry_match

*match , int numeric);

/* Function that saves the extra match information */
static void hash_save (const void *ip , const struct xt_entry_match *match);

Listing C.3: Source code of the iptables extension related function prototypes.

C.3 Access Controller Application

Below, the functions and methods’ prototypes present in the access controller application
can be consulted. The source code is written in the Python programming language.

""" Function that retrieves a client ’s configurations """
retrieve_configurations (username)

""" Function that deploys a client ’s permissions into the firewall """
deploy_firewall_rules (username , algo)

102

""" Function that deploys a client ’s session key into the VFS """
deploy_keys (username)

""" Method that verifies the provided credentials - public key """
check_auth_publickey (self , username , key)

""" Method that verifies the provided credentials - password """
check_auth_password (self , username , password)

Listing C.4: Source code of the access controller application related function and method
prototypes.

C.4 Access Requester Application

Below, the functions’ prototypes present in the access requester application can be con-
sulted. The source code is written in the Python programming language.

""" Function that starts an SSH connection """
create_ssh_connection (username , ip)

""" Function that authenticates the client """
ssh_manual_auth (transport , username , ip)

""" Function that checks cached SSH connections """
check_ssh_connections_cache (ip)

""" Function that calculates an HMAC """
calc_hmac (payload)

""" Function that binds the Netfilter queue """
nfqueue_start ()

""" Function that modifies a packet """
modify_packet (packet)

Listing C.5: Source code of the access requester application related function prototypes.

103

104

Bibliography

[1] H. Al-Bahadili and A. H. Hadi. Network Security Using Hybrid Port Knocking. IJCSNS,
10(8):8, 2010.

[2] F. H. M. Ali, R. Yunos, and M. A. M. Alias. Simple Port Knocking Method: Against
TCP Replay Attack and Port Scanning. In Cyber Security, Cyber Warfare and Digital
Forensic (CyberSec), 2012 International Conference on, pages 247–252. IEEE, 2012.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681, IETF,
2009.

[4] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Requirements
for Unicast UDP. RFC 4787, IETF, 2007.

[5] J. Aycock, M. Jacobson, et al. Improved Port Knocking with Strong Authentication.
In 21st Annual Computer Security Applications Conference (ACSAC’05), pages 10–pp.
IEEE, 2005.

[6] P. Barham, S. Hand, R. Isaacs, P. Jardetzky, R. Mortier, and T. Roscoe. Techniques for
Lightweight Concealment and Authentication in IP Networks. Intel Research Berkeley.
July, 2002.

[7] E. B. Barker and A. L. Roginsky. Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths. SP-800 131A Revision 1, National
Institute of Standards and Technology (NIST), 2015.

[8] J. Becker. configfs, Userspace-Driven Kernel Object Configuration. In https://www.
kernel.org/doc/Documentation/filesystems/configfs/configfs.txt , Oracle Cor-
poration, 2005.

[9] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access
Control Model. ACM Transactions on Information and System Security (TISSEC),
4(3):191–233, 2001.

[10] M. Bever, K. Geihs, L. Heuser, M. Mühlhäuser, and A. Schill. Distributed Systems, OSF
DCE, and Beyond. In DCEâĂŤThe OSF Distributed Computing Environment Clien-
t/Server Model and Beyond, pages 1–20. Springer, 1993.

[11] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger. TCP Extensions for High
Performance. RFC 7323, IETF, 2014.

105

https://www.kernel.org/doc/Documentation/filesystems/configfs/configfs.txt
https://www.kernel.org/doc/Documentation/filesystems/configfs/configfs.txt

[12] R. Braden, D. Borman, C. Partridge, and W. W. Plummer. Computing the Internet
Checksum. RFC 1071, IETF, 1988.

[13] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet Security:
Repelling the Wily Hacker (2nd Edition). Addison-Wesley Professional, 2 edition, 2003.

[14] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Internet Assigned
Numbers Authority (IANA) Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry. RFC 6335, IETF, 2011.

[15] M. De Vivo, E. Carrasco, G. Isern, and G. O. de Vivo. A Review of Port Scanning
Techniques. ACM SIGCOMM Computer Communication Review, 29(2):41–48, 1999.

[16] S. E. Deering and R. M. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460, IETF, 1998.

[17] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, IETF, 2008.

[18] G. Dommety. Key and Sequence Number Extensions to GRE. RFC 2890, IETF, 2000.

[19] J. Engelhardt and N. Bouliane. Writing Netfilter Modules. Revised, July 3, 2012.

[20] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Routing Encapsulation
(GRE). RFC 2784, IETF, 2000.

[21] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID Sys-
tems Using the AES Algorithm. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 357–370. Springer, 2004.

[22] E. B. Fernandez and R. Warrier. Remote Authenticator/Authorizer. Procs. of PLoP,
2003.

[23] S. Freire and A. Zúquete. A TCP-layer Name Service for TCP Ports. In USENIX Annual
Technical Conference, pages 275–280, 2008.

[24] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC: Distributed
Role-Based Access Control for Dynamic Coalition Environments. In Distributed Com-
puting Systems, 2002. Proceedings. 22nd International Conference on, pages 411–420.
IEEE, 2002.

[25] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing Remote Un-
trusted Storage. In NDSS, volume 3, pages 131–145, 2003.

[26] L. Gong. A Secure Identity-Based Capability System. In Security and Privacy, 1989.
Proceedings., 1989 IEEE Symposium on, pages 56–63. IEEE, 1989.

[27] F. Gont, R. Atkinson, and C. Pignataro. Recommendations on Filtering of IPv4 Packets
Containing IPv4 Options. RFC 7126, IETF, 2014.

[28] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behavioral Require-
ments for TCP. RFC 5382, IETF, 2008.

106

[29] C. Hota, S. Sanka, M. Rajarajan, and S. K. Nair. Capability-Based Cryptographic Data
Access Control in Cloud Computing. International Journal of Advanced Networking and
Applications, 1(01), 2011.

[30] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296, IETF, 2014.

[31] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301, IETF,
2005.

[32] T. J. Killian. Processes as Files. In USENIX Summer Conference Proceedings, pages
203–207, 1984.

[33] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authen-
tication. RFC 2104, IETF, 1997.

[34] M. Krzywinski. Port Knocking - Network Authentication Across Closed Ports. Sys
Admin: The Journal for UNIX Systems Administrators, 12(6):12–17, 2003.

[35] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol Version
5. RFC 1928, IETF, 1996.

[36] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad. Identity Authentication
and Capability Based Access Control (IACAC) for the Internet of Things. Journal of
Cyber Security and Mobility, 1(4):309–348, 2013.

[37] A. I. Manzanares, J. T. Márquez, J. M. Estevez-Tapiador, and J. C. H. Castro. Attacks
on Port Knocking Authentication Mechanism. In International Conference on Compu-
tational Science and Its Applications, pages 1292–1300. Springer, 2005.

[38] C. L. C. Miller. Next Generation Firewalls for Dummies. Wiley Publishing Inc., 2011.

[39] P. Mochel. The sysfs filesystem. In Linux Symposium, pages 313–326, 2005.

[40] K. V. Nguyen. Simplifying Peer-to-Peer Device Authentication Using Identity-Based
Cryptography. In International conference on Networking and Services (ICNS’06), pages
43–43. IEEE, 2006.

[41] R. Oppliger. Internet Security: Firewalls and Beyond. Communications of the ACM,
40(5):92–102, 1997.

[42] J. S. Park, R. Sandhu, and G.-J. Ahn. Role-Based Access Control on the Web. ACM
Transactions on Information and System Security (TISSEC), 4(1):37–71, 2001.

[43] L. I. Pesonen, D. M. Eyers, and J. Bacon. A Capability-Based Access Control Archi-
tecture for Multi-Domain Publish/Subscribe Systems. In International Symposium on
Applications and the Internet (SAINT’06), pages 7–pp. IEEE, 2006.

[44] J. Postel. User Datagram Protocol. RFC 768, IETF, 1980.

[45] J. Postel. Internet Control Message Protocol. RFC 792, IETF, 1981.

[46] J. Postel. Internet Protocol. RFC 791, IETF, 1981.

107

[47] J. Postel. Transmission Control Protocol. RFC 793, IETF, 1981.

[48] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notifi-
cation (ECN) to IP. RFC 3168, IETF, 2001.

[49] M. Rash. Single Packet Authorization with Fwknop. login: The USENIX Magazine,
31(1):63–69, 2006.

[50] I. Ray, M. Kumar, and L. Yu. LRBAC: A Location-Aware Role-Based Access Control
Model. In International Conference on Information Systems Security, pages 147–161.
Springer, 2006.

[51] J. Reynolds. Assigned Numbers: RFC 1700 is Replaced by an On-line Database. RFC
3232, IETF, 2002.

[52] H. Roeckle, G. Schimpf, and R. Weidinger. Process-Oriented Approach for Role-Finding
to Implement Role-Based Security Administration in a Large Industrial Organization.
In Proceedings of the fifth ACM workshop on Role-based access control, pages 103–110.
ACM, 2000.

[53] P. Samarati and S. C. de Vimercati. Access Control: Policies, Models, and Mechanisms.
In International School on Foundations of Security Analysis and Design, pages 137–196.
Springer, 2000.

[54] R. S. Sandhu. Lattice-Based Access Control Models. IEEE Computer, 26(11):9–19, 1993.

[55] R. S. Sandhu, E. J. Coynek, H. L. Feinsteink, and C. E. Youmank. Role-Based Access
Control Models. IEEE Computer, 29(2):38–47, 1996.

[56] R. S. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE commu-
nications magazine, 32(9):40–48, 1994.

[57] A. Schaad, J. Moffett, and J. Jacob. The Role-Based Access Control System of a Euro-
pean Bank: A Case Study and Discussion. In Proceedings of the sixth ACM symposium
on Access control models and technologies, pages 3–9. ACM, 2001.

[58] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional
NAT). RFC 3022, IETF, 2001.

[59] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha. NAT Behavioral Requirements for
ICMP. RFC 5508, IETF, 2009.

[60] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology and
Considerations. RFC 2663, IETF, 1999.

[61] A. Vapen, D. Byers, and N. Shahmehri. 2-clickauth Optical Challenge-Response Au-
thentication. In Availability, Reliability, and Security, 2010. ARES’10 International
Conference on, pages 79–86. IEEE, 2010.

[62] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC 4252,
IETF, 2006.

108

[63] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC 4254,
IETF, 2006.

[64] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251,
IETF, 2006.

[65] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC
4253, IETF, 2006.

[66] E.-J. Yoon, E.-K. Ryu, and K.-Y. Yoo. Efficient Remote User Authentication Scheme
Based on Generalized ElGamal Signature Scheme. IEEE Transactions on Consumer
Electronics, 50(2):568–570, 2004.

[67] A. Zúquete. Segurança em Redes Informáticas. FCA - Editora de Informática, Lda., 4th
edition, 2013.

[68] A. Zúquete, P. Correia, and M. Rocha. A Framework for Enforcing User-Based Au-
thorization Policies on Packet Filter Firewalls. In IFIP International Conference on
Communications and Multimedia Security, pages 204–206. Springer, 2012.

109

	Contents
	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Contribution
	Organization

	Theoretical Context
	Network Communication
	UDP
	TCP
	ICMP
	GRE

	Firewalls
	Port and Service Scanning
	Secure Channels
	SSH
	SSL
	IPsec

	Authentication Through Cryptography
	MAC
	Digital Signatures

	NAT
	Access Control
	Virtual Filesystems
	Procfs
	Sysfs
	Configfs

	Related Work
	Controlling Port Scanning
	A TCP-Layer Name Service
	Port Knocking Mechanism
	Lightweight Concealment and Authentication

	Exercising Access Control
	Authentication
	User-Based Access Control Framework
	Challenge-Response Authentication Mechanism
	Public Key Authentication
	Symmetric Authentication

	Authorization
	Access Control Lists
	Capability Lists
	Role-Based Access Control

	Architecture
	Access Information Exchange Through a Control Channel
	Network-Level User Access Control Protocol
	Calculation of the Security Token Using MAC
	Authenticity and Integrity Verification
	Per Service, Role-Based Authorization

	Implementation
	Structural Specifications
	NUAC Protocol
	SSH Exchanged Configuration Messages
	Configfs Directory Structure

	Communication Between Kernel and User Space
	Component Development
	Kernel Module
	iptables Extension
	Access Controller Application
	Access Requester Application

	Evaluation
	Functional Testing
	Performance Testing

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Testing Environment
	Structures
	NUAC
	Kernel Module
	iptables Extension

	Function Prototypes
	Kernel Module
	iptables Extension
	Access Controller Application
	Access Requester Application

	Bibliography

