
i
Universidade de Aveiro Departamento de Electrónica, Telecomunica~ões e
2015 Informática

RITIKA THAKUR Access Control Model to Support Orchestration Of
CRUD Expressions

Modelo de Controlo de Acesso para Suportar
Orquestração de Expressões CRUD

Universidade Departamento de Eletrónica,
de Aveiro Telecomunicações e Informática

RITIKA THAKUR Access Control Model to Support
Orchestration of CRUD Expressions

Modelo de Controlo de Acesso para
Suportar Orquestração de Expressões
CRUD

Tese apresentada a Universidade de Aveiro para
cumprimento dos requisitos necessários a
obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a
orientação científica do Doutor Óscar Mortágua
Pereira, Professor auxiliar do Departamento de
Eletrónica,Telecomunicações e Informática da
Universidade de Aveiro

I would like to dedicate this thesis work to my family and to Ajay Kaushal

o júri I the jury

presidente / president Prof. Doutor André Ventura da Cruz Marnoto Zúquete
professor Auxiliar, Universidade de Aveiro

vogais 1 examiners Prof. Doutora Maribel Yasmina Campos Alves Santos
professora Associada Com Agregação, Universidade do Minho

Prof. Doutor Óscar Narciso Mortágua Pereira,
professor Auxiliar, Universidade de Aveiro

acknowledgement I would take this opportunity to thank my family for
supporting me and giving the courage to finish this work. I
am really grateful for the guidance and support provided to
me from Prof. Doutor Óscar Narciso Mortágua Pereira in
the completion of this work. In the end I would like to thank
eveyone who helped me during the progress of the work.

palavras-chave controlo de acesso, segurança de informação, bases de dados,
expressões CRUD, orquestração

resumo O controlo de acesso é um aspecto sensível e crucial quando se fala de
proteger dados presentes em base de dados. Em aplicações que
assentam numa base de dados baseadas em expressões Creafe, Read,
Update e Delefe (CRUD) , os utilizadores podem executar uma ou uma
sequência de expressões CRUD para obter um dado resultado. Neste
tipo de aplicações o controlo de acesso não é limitado apenas a autorizar
o acesso a um objecto por um sujeito, mas também a autorizar e validar
as operações que o sujeito pode fazer sobre os dados depois de obter
autorização. Os modelos atuais de controlo de acesso geralmente focam-
se em restringir o acesso aos recursos CRUD a CRUD. No entanto, logo
que o sujeito é autorizado, não há restrições sob as ações que este pode
efetuar sobre esses recursos. Neste trabalho é apresentado um modelo
de controlo de acesso que extende as funcionalidades dos modelos de
controlo de acesso atuais para fornecer um ambiente onde um conjunto
de politicas predefinidas são implementadas como grafos de expressões
CRUD. Estes grafos de expressões CRUD são considerados como
sequências que atuam como politicas guardadas e preconfiguradas. O
design das sequências é baseado nas operações que o utilizador deseja
efetuar para obter um dado resultado. Estas sequências de expressões
CRUD são assim usadas para controlar e validar as ações que podem
ser efetuadas sobre a informação armazenada. De forma a reusar estas
políticas, o modelo apresentado define o uso de execuçao externa de
políticas configuradas. O objetivo do trabalho nesta tese é fornecer uma
estrutura que permite aos utilizadores de aplicações apenas executarem
sequências autorizadas de expressões CRUD numa ordem predefinida e
permitir aos administradores de sistema de desenharem politicas de uma
forma flexível através de estruturas de grafos. Como prova de conceito, o
modelo Role Based Access Control (RBAC) foi tido como referência para
o modelo de controlo de acesso e para a base deste trabalho foi
escolhido o S-DRACA que permite sequências de expressões CRUD de
serem executadas por ordem.

keywords

abstract

access control, CRUD expressions, information security, databases,
orchestration

Access Control is a sensitive and crucial aspect when it comes to
securing the data present in the databases. In an application which is
driven by Create, Read, Update and Delete (CRUD) expressions, users
can execute a single CRUD expression or a sequence of CRUD
expressions to achieve the desired results. In such type of applications,
the Access Control is not just Iimited to authorizing the subject for
accessing the object, but it also aims to authorize and validate the
operations that a subject can perform on the data after the authorization.
Current Access Control models are generally concerned with restricting
the access to the resources. However, once the subject is authorized,
there are no restrictions on the actions a subject can perform on the
resources. In this work an Access Control Model has been presented
which extends current Access Control model's features to provide an
environment where a set of predefined policies are implemented as
graphs of CRUD expressions. The design of the access control policies
is based on the CRUD expressions that a user needs to execute to
complete a task. These graphs of CRUD expressions are hence used
for controlling and validating the actions that can be performed on
authorized information. In order to reuse the policies, presented model
allows the inter execution of the policies based on some predefined
rules. The aim of the present thesis work is to provide a structure which
allows the application users to only execute the authorized sequences
of CRUD expressions in a predefined order and allows the security
experts to design the policies in a flexible way through the graph data
structure. As a proof of concept, Role based Access Control model
(RBAC) has been taken as a reference access control model and the
base for this work is chosen as Secured, Distributed and Dynamic
RBAC (S-DRACA) which allowed the sequence of CRUD expressions to
be executed in single direction.

Contents
... List of Figures .. I I I

List of Tables ... iv

List of Acronymsv

1 Introduction .. I

... 1 . 1 Problem Formulation 7

1.2 Proposed Solution .. 8

1.3 Contributions .. 9

1.4 Tools and infrastructure used .. 9

1.5 Structure of the Dissertation .. I O

2 State of the Art ... 11

2.1 Access Control Policies ... I I

2.1 . 1 Discretionary Access Control (DAC) .. 12

... 2.1.2 Mandatory Access Control (MAC) 14

2.1.3 Attribute Based Access Control (ABAC) .. 15

2.1.4 Role Based Access Control (RBAC) .. 6

......................... 2.2 Secured Distributed, Dynamic Role Based Access Control (S-DRACA) 19

2.3 Related Works .. 20

2.3.1 Hybrid approach for XML access control (HyXAC) ... 20

2.3.2 JIF .. 21

2.3.3 Paragon Policy Language ... 21

2.3.4 Multi-Level Dynamic Access Control Model ... 23

2.3.5 Graph theory to access control .. 23

2.3.6 Security-driven model-based dynamic adaptation .. 23

2.3.7 UrNVeb ... 24

2.3.8 Reflective Database Access Control (RDBAC) .. 24

2.3.9 Java EE .. 24

2.3.1 0 Annotated objects ... 25

2.3.1 1 Access Control Driven by CRUD Expressions ... 25

... 3 Technological Background 27

.. 3.1 S-DRACA Architecture 27

.. 3.2 Orchestration 28

.. 3.3 Relational Database Management System 29

.. 3.4 Graph Theory for Access Control 31

... 3.5 Java 33

.. 3.5.1 Serialization and Deserialization 33

3.5.2 Reflection .. 34

.. 3.5.3 Annotations: 35

... 3.6 State Diagrams for complex system representation 36

............................... 4 Access Control Model Supporting Orchestration Of CRUD Expressions 39

4.1 Structure Supported By the Presented Access Control Model 39

... 4.1 . 1 Rules for the execution of the Policy Graph 41

4.1.2 Rules for designing the Policy Graph ... 41

... 4.1.3 Inter Graph Execution 48

.. 4.2 Proof of concept 50

.. 4.2.1 Block Diagram of the Access Control Model 50

... 4.2.2 CRUD Orchestration 52

.............. 4.2.3 Implementation of the Access Control Model using S-DRACA and RBAC 54

... 5 Conclusion and Future directions 65

... 6 Works Cited 66

Table of Figures

Figure 1 SQL table for Client's Balance ... 2

Figure 2 SQL table for transactions carried out by the client ... 2

Figure 3 Java code implernenting the transfer rnethod .. 3

Figure 4 Java code for getting the balance of a client ... 5

Figure 5 Modified java code for Figure 3 ... 5

Figure 6 Java code using method shown in Figure4 for deposit .. 6

Figure 7 MAC hierarchical flow of information ... 15

Figure 8 Role Relationship ... 18

Figure 9 Multi-Role Relationships ... 19

... Figure 10 S-DRACA Architecture 28

Figure 11 Example of graph representing Lampson's Access Matrix ... 32

Figure 12 Annotation Type Definition and Annotation Elements .. 36

Figure 13 Exarnple of Harel's state diagram ... 37

Figure 14 Java Code for execution of single CRUD Expression .. 42

Figure 15 Policy Graph consisting of single node representing a State of the system 42

Figure 16 Java code for the execution of the CRUD expression in a loop 43

Figure 17 Policy Graph consisting of a node that has a l w p to itself ... 43

Figure 18 Java code for Figure 19 .. 44

Figure 19 One state of the system leading to rnultiple states .. 45

Figure 20 Multiple state of system leading to one state ... 45

Figure 21 One of the Multiple CRUD expression leads to single CRUD Expression 46

.. Figure 22 Moving frorn one state to another in Single Direction 47

Figure 23 Execution following a single direction .. 47

Figure 24 Inter- Graph execution Block diagrarn ... 49

Figure 25 State diagram representing the application of predefined policies 50

................................... Figure 26 Block Diagram representing the work flow of Presented work 51

Figure 27 Orchestration of CRUD expressions ... 54

Figure 28 Entity Relationship Diagrarn for different tables for the Pdicy Graph 55

iii

.. Figure 29 SQL table for stonng the Policy Graph description 56

............ Figure 30 SQL queries to insert values in the tables shown in Figure 31 and Figure 29 56

.. Figure 31 SQL table for all the nodes of the Graphs of Figure 29 57

.............................. Figure 32 SQL table specify the parent and child nodes of different graphs 57

.. Figure 33 SQL table for the root nodes of different graphs 58

... Figure 34 SQL table for halt nodes 58

... Figure 35 SQL table for terminating nodes 58

... Figure 36 Java code implementing the class Node-lnfo 59

... Figure 37 Java code for getting the graphs for each Role 60

... Figure 38 Java code of Policy Manger's reply to Policy Configurator 61

Figure 39 Java code to create Policy Graph from the Policy Manager's reply 62

... Figure 40 Method to generate Interfaces for Business Manager 62

.................... Figure 41 Java code for the management of Validation of next Business Schema 63

List of Tables

Table 1 Access Control Matnx for DAC

Table 2 Authorization Table for a particular subject

Table 3 Larnpçon's Access Matnx

List of Acronyms

CRUD

RDBMS

DBMS

MAC

DAC

RBAC

ABAC

S-DRACA

SQL

SSMS

FSM

Create, Read, Update, Delete

Relational Database Management System

Database Management System

Mandatory Access Control

Discretionary Access Control

Role Based Access Control

Attribute Based Access Control

Secured Distributed and Dynamic RBAC

Structured Query Language

SQL Server Management Studio

Flexible Sequence Manager

Access Control Model to Support Orchestration Of CRUD Expressionr I 2015

I Introduction

Privacy, security and trust are crucial for any application, service and transaction

offered over a public communications network, such as the Internet (Rodica

Tirtea,201 l).The evolution of today's business and technical world are imposing growing

demands for flexibility, efficiency, availability and reliability of information upon database

applications. The needs and demands of the current business environment are leading us

to a scenario where reliability and availability of information from various sources is a

crucial issue. In every genera of business processing, storing and securing the information

are the most crucial and important tasks in hand. Current business world forces limits to

maintain a balance between the securing the valuable information and providing an ease

for accessing this stored information. Security Managers design policies which are a

collection of principles and rules that describe how an organization intends to protect the

confidentiality, integrity, and availability of its systems and the information that they

process(Caulfield,2015).

An important requirement of any information management system is to protect data

and resources against unauthorized disclosure (secrecy) and unauthorized or improper

modifications (integrity), while at the same time ensuring their availability to legitimate

users (no denials-of-service). Enforcing protection therefore requires that every access to

a system and its resources be controlled and that all and only authorized accesses can

take place. This process goes under the name of access control (Pierangela Samarati,

2001).

In today's technology oriented worlds, hundreds of applications access the database

either for reading the stored information, modifying existing information, deleting the

unwanted information or for inserting new information. These operations are termed as

CRUD expressions (Create, Read, Update, and Delete) which symbolises the Insert,

Select, Update and Delete operation on the databases. Providing a secured environment

where users can execute the CRUD expressions without violating the security policies has

always been a challenge to the security experts. Security experts implement the access

control models in an organization by determining the allowed activities of legitimate users,

mediating every attempt by a user to access a resource in the system(Vincent C. Hu,

2006). Access Control Policies are designed to act as rules for allowing only legitimate

users to execute the CRUD expressions on the information which they are allowed to

1

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

access. Designing the access control policies depend on the model to be implemented in

an organization and on the level at which it will be implemented (ROGER NEEDHAM,

2008).

Ordering the execution of CRUD expression is required where the execution of a

CRUD expression depends on the result of the execution of another CRUD expression.

To understand the importante of the ordering of the executions of CRUD expressions

consider the example of a bank application for transferring money from one account to

other. Figure 1 shows SQL table of the current amount of money a client has in his

account and Figure 2 shows the SQL table for maintaining the information of the

transactions a user performs.

inf

Figure 1 : SQL table for Client's Balance

In the table shown in Figure 2 the client can only transfers the money into the

account of another client if the amount that he desires to transfer is less than or equal to

the balance he has in table shown in Figure 1.

Column Name Data Type - - ...
i Transa int

Figure 2: SQL table for transactions carried out by the client

To implement the logic of transferring the money from one account to another

Figure 3 shows a piece of java code that implements a method that will take the ids of the

two clients and the amount that the client wants to transfer as parameters and períorms

the operation of transfer if the balance in client's account is more than or equal to the

money he is willing to transfer.

Accea Control Model to Support Orchestmtion Of CRUD Expressions I 2015

public void transferlbneyTo(int ClientID, String Client2 - IBAN, float amount Transfer) -
throws SQLException {

float balance;

PreparedStatement ps = conn.prepareStatement("Se1ect Current - Bclance
t "from Client - Information where Client ID=@idn); -

ps . setInt (1, ClientID) ;
ResultSet rs = ps.executeQuery0 ;

balance = rs.getFloat ("Balance") ;

if (balance > amount - Transfer) {

ps= conn.prepareStatement (" insert into Client - Transaction (Clientl ID, Transacted ValueR - -
t "Client2 - IBAN) Values (tidl, @money, I @Ibanl I ") ;

ps. setInt (1, ClientID) ;

ps. setfloat (2, amount - Transfer) ;
ps. setstring (3, Client2 - IBAN) ;
ps . executeüpdate () ;

} else {

System.out.println("Not enough fundç, your current balance is "+balance);

1
1

Figure 3 Java code implementing the transfer method

In this situation the select query for getting the balance of the client has to be

exewted first as the application needs to check the balance of the client before making a

transfer. In this situation if the order of the execution of CRUD expressions is changed,

then the transfer will be made without considering the fact that client can have his balance

less than the amount he is willing to transfer. Hence we can see that if the order of these

two queries is changed the result will be the vety diíferent from what is being desired.

Therefore we can conclude that, in systems where the execution of the CRUD expression

of one state lead to another state, order of the exewtion of CRUD expressions is very

important. In the example shown in Figure 3, execution of the select took the system to a

state where the decision of making a transfer isto be done.

Current popular access control models such as RBAC, DAC, MAC provides

complete access to data after the user is successfully authenticated (Pierangela Samarati,

2001), but they lack in providing a control over the execution of the authorized CRUD

expressions that authenticated user can perform on the information source (Ausanka-

Crues, 2006). This means that once a user is granted permission to access the secured

Aecess Control Model to Support Orchestration Of CRUD Exprersions I 2015

information, he is able to perform authorized operations in any order as desired by him.

Consider the example depicted by Figure 3, if there is no control on the order of the

execution of the CRUD expressions then the application can execute the insert query

before the select query which will lead to a failure and hence an exception will be thrown.

In critical database applications where the system is growing in size and complexity,

users executes the sequences of CRUD expression to achieve a particular goal. These

sequences either comprise of a list of CRUD expression or a single CRUD to complete a

task in hand. In such applications, the access control has to be maintained at sequence

level instead of controlling the execution of each CRUD individually, as the successful

execution of the sequence results in achieving the goal. Example shown in Figure 3

illustrates the importante of controlling the execution of the sequence rather than

controlling the execution of the CRUD.

To overcome this security gap, we provide a structure where an access control

policy can be designed as a directed graph of CRUD expressions for validating the

actions performed by an authenticated user. This directed graph of CRUD expressions is

regarded as policy graph.

Reusing a piece of code written for a specific task is very powerful feature of many

programming languages such as Java, C#, php etc. Figure 4 shows an example where

getClientBalance0 gets the balance of the client using the SQL select. The access control

policy designed for this method will only allow the execution of the select query. Figure 5

shows a modified version of the java code shown in Figure 3, here the method

getClientBalance0 is being called to execute the select query. Figure 6 shows another

method to deposit money into a client's account using the same function shown by

Figure 4.

To design the access control policy that validates the execution of sequence of

CRUD expressions shown in Figure 5 and Figure 6 we need to use the access control

policy designed for the execution of sequence of CRUD expressions for

getClientBalance0 shown in Figure 4. Therefore the policy designed for validating the

select query shown in Figure 4 is used by the policies designed for validating the

respected insert and update queries.

Access Control Model to Support Orchestmtion Of CRUD Expressions

p u b l i c f l o a t getCl ientBalanae(int Cl ientID) throws SQLException {

f l o a t balance;
Preparedstatement ps = conn.prepareStatement("Se1ect Balance "

+ "from Client Information where Client ID=@idW); - -
ps . s e t I n t (1, ~ l i e n t ~ ~) ;

ResultSet r s = ps.executeQuery();

balance = rs .getFloat ("Balarice'l) ;
r e t u r n balance;

Figure 4: java code for getting the balance of a client

If we wnsider designing a single policy graph to wntrol the order of execution of the

CRUD expressions present in the methods of tmnsfemng and depositing money, then we

eliminate the possibility of reusing the policies. Therefore if policy is designed just to

support the CRUD expressions for getClientBalance(), then it can be reused by the

policies designed to support tmnsferMoneyTo() and depositMoney0. Hence security

manager can reuse the designed policies in difíerent scenarios.

public void transferlbneflo(int ClientID, String Client2 - IBAN, float amount - Transfer)

throws SQLException {

float balance;

PreparedStatement ps;

balance = getClientBalance (Client~~) ;

if (balance > amount - Transfer) {

ps = conn.prepareStatement (I' insert into Client - Transaction(Client1 ID," -
+ "Transacted - Value"
+ "Client2 - IBAN) Values (@ i d l , @money, ' @Ibanl) 'I) ;

ps . setInt (1, ClientID) ;
ps . setFloat (2, amount - Transfer) ;
ps. setString (3, ~lient2 - IBAN) ;
ps . executeupdate () ;

} else {

System. out .println ("~ot enough funds, your current balance is " t balance) ;
1

1

Figure 5: Modified java code for Figure 3

5

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

public void depositbáoney (i n t ' r V l i e n t ~ ~ , f l o a t arnount) throws SQ~Exception {

f l o a t balance;

balance=getClientBalance (ClientID) ;

balance=balance+arnount ;

PreparedStaternent ps= conn.prepareStaternent ("Update Cl ient - Information

f "set Current Balance=@balcnce "
t "where Cl ient - ID=@id ") ;

ps . setFloat (1, balance) ;

ps . s e t I n t (2 , ClientID) ;

ps . execu tepda te () ;

Figure 6 : java code using method shown in Figure4 for deposit

Figure 5 shows the method transferMoneyTo() which uses the result of the select

query to make the decision of next query to be executed. So, the result of the select query

will decide in which state the system will enter: either it will enter into the state where the

money is transferred or it will te11 the client that he has insufficient funds. The scenarios

where execution of a CRUD decides the state that the system will enter requires access

control policies that should limit the user to execute only the CRUD expressions which are

allowed in resulting state. Design of such access control policies can map the

implementation of the applications to the designing of the policies.

In database applications the sequence of CRUD expressions are designed to

achieve a goal (Óscar Mortágua Pereira, 2014). The execution of the sequence as a

single unit is important to complete the task in hand, if any of the CRUD expressions fail to

execute then the system should consider the failure of the task in hand. An access control

policy validates the execution of the CRUD expressions but the decision of rolling back

the execution of the CRUD expressions in case of failure of execution is made by the

application itself.

The current thesis work demonstration will give a direction and solution where the

security managers can design these policies as policy graphs and can reuse the policies

in different scenarios.

For reference Role Based Access Control (RBAC) model has been chosen as it is

one of the most widely trusted and deployed access control model where access to data

6

Access Control Model to Support Orchestntion Of CRUD Expressions 1 2015

is based on the role of a person (Kangsoo Jung, 2013)(D.Richard Kuhn, 2001) and the

base of this work is S-DRACA which allows the execution of CRUD expressions in a

single direction only (Óscar Morthgua Pereira, 2014).

This Chapter is divided into four sections. Section 1.1 explains the problem which is

addressed by this work, section 1.2 explains the solution proposed to solve the problem

explained in pmblem formulation, section 1.3 explains the contribution of this work to

current state of the art, section 1.4 brings light on technologies being used in the

development of this work and section 1.5 explains structure of the presented work.

1.1 Problem Formulation

Popular access control models such as RBAC, DAC, MAC etc. provide an

environment where the security of the information is just limited to the authentication of

the user and authorizing the access to the secured resources. These access control

models lack in providing the control over action performed by the user on the secured

information (Ausanka-Crues,2006). Previously reported work S-DRACA, was able to

provide a secured structure where a user was restricted to execute the allowed CRUD

expressions for a particular role in one direction (Óscar Mortágua Pereira,2014; Óscar

Morthgua Pereira, 201 5).

However, it lacks in providing the flexibility that a security manager can have while

designing the policies. It allowed the execution of the CRUD expressions in single

direction which limits the security managers to design the policies following a unidirected

path. Moreover security experts could only design the policies for the system where

execution of a CRUD expression results into one possible state and system cannot enters

back into its previous state.

To address the problems elaborated in the introduction section and the limitations of

S-DRACA (Secured, Distributed and Dynamic RBAC for relational applications) and

RBAC (Role Based Access Control), this thesis work presents a model which combines

the access control provided by current access control models with an environment where

the security experts can design the policies in the form of policy graphs.

As in database application the sequences of CRUD expressions are executed to

achieve a particular task, therefore policies must be defined to act on the sequence level

rather than acting on the execution of each CRUD expression (Óscar Morthgua Pereira,

2014). If any of the CRUD expression fails to execute during the life cycle of the policy
7

Accen Control Model m Support Orchesmtion Of CRUD Expressionr 1 2015

graph then depending on the design of the policy continuing or discarding the execution of

CRUD expressions is decided.

Presented work also supports halting the execution of a policy graph by starting a

new policy graph which is allowed for the user. The reason for including this feature into

the model is to support the concept of one method calling another method in a program,

and with the addition of this feature to the model the predefined policies can be reused in

different scenarios.

The model given by this work defines the rules that should be followed while

designing access control policies as policy graphs, and the conditions that should be met

when a policy graph is halted to start the execution of another sequence validated by

another policy graph.

Therefore motivations for this work can be summarized as follows:

The security gap in the current Access Control Models, where the user

actions are not controlled after he is authorised access rights to a valuable

resource.

The requirement of having control over the sequence of CRUD expressions

rather controlling the execution of single CRUD, as database driven

applications require a sequence of operations to complete a task.

The need of flexibility in the design of the security policies, which is required

by the security experts while mapping the real world implementation of appli-

cations to the policies design.

1.2 Proposed Solution

Based on S-DRACA which is Secured Distributed Dynamic RBAC model (2.2), this

thesis work gives an access control model which supports designing the access control

policies in the form of sequences of CRUD expressions by implementing the structure

using directed graphs. The Model introduces the flexibility in the design and execution of

the policies. This work uses RBAC model as referente model by authenticating the clients

based on the roles they are assigned, but after the client is authenticated, presented

model control the operations a client can perform on the database by validating the action

against the policies which are implemented as graph structures.

Access Control Model m Support Orchestration Of CRüD Expressions 1 2015

Pmposed solution works in an environment where the databases support the

execution of CRUD expressions. If the underlying data source does not support the

execution of CRUD operation the model cannot be applied to it as the design of the

security policies is implemented by graph structures of CRUD expressions regarded as

policy graph. The access control policies are stored in the database and when they are

requested then they are structured as directed graphs.

Designing the policy is made flexible by using graph structure approach where the

execution on one CRUD expression can lead to one or more options of CRUD

expressions that can be executed. To provide a solution that meets the demands of

complex database applications, halting of the policy graphs is being permitted by storing

the state of the system in which the execution of one sequence was paused to start the

new sequence.

1.3 Contributions

This works aims to provide an Access Contml Model that can be applied with the

current access control model such as RBAC, DAC, MAC etc. and it pmvides the contml

over the execution of the CRUD expressions that a user can execute. Presented model

provides the rules for designing the access contml policies and the rules that should be

followed when a policy graph used for validating the execution of the sequence of CRUD

expressions is halted to start the execution of a new policy graph. This works tries to map

the real world application implementations into the design of the policies.

The presented work allows the policies to be written in the form of directed graphs of

CRUD expression which can utilize the access control provided by the other directed

graphs of CRUD expression. This feature allows the security experts to design policies in

an efficient way as the policies can be reused in different scenarios.

1.4 Tools and infrastructure used

Java is being used to implement the various components of the model, which gives

the work advantage of being portable. The standard libraries for Java Serialization and

Deserialization allows sending and retrieving objects to and fmm remote machines, and

this feature was used to send the policies as graph structure objects to the client side and

on the client side these objects were deserialized to obtain the predefined structure of the

policies(0racle Java Documentation,2015).

9

Access Conb-o1 Model to Support Orchestration Of CRUD Expressionr I 2015

NetBeans IDE is being used to develop different components of this work. This IDE

provides the environment where the web applications, desktop applications and mobile

applications can be designed, code can be indented, a specific word can be easily found

in hundreds of lines of code and code can be refracted too(Netbeans IDE features,2015).

The predefined policies are stored in the relational database using Microsoft SQL

Server. SQL Server Management Studio (SSMS) 2012 is being used to design the

queries for storing and retrieving the data from the database. SSMS provides an

environment where all the components of SQL Server can be accessed, managed,

configured and developed(SQL Server Mangement Studi0~2015).

Jgrapht library is being used to create the graph structures which represent the

predefined stored access control policies. As the graph structures are extensively used in

this project, so using Jgrapht library for implementing the structure of the policies reduced

an overhead of implementing method for designing the graphs. This library provided the

functions such as adding the node, adding a directed edge, adding loops, adding

weighted edges etc. It supports various types of graphs such as directed, undirected,

unmodifiable and listenable etc(Jgrapht,2015)

1.5 Structure of the Dissertation

Thesis structure is categorised into chapters and these chapters are further

subcategorised into sections. Chapter 2 is State of the Art which elaborates the work done

in the area of access control, Chapter 3 is Technological Background which brings light on

the various technologies used in the building of the project, Chapter 4 is Access Control

Model for the orchestration of CRUD expressions which describes the presented model,

the rules for constructing the model and the proof of concept, the final Chapter 5 is the

Conclusion and future work.

Access Control Model to Support Orchestntion Of CRUD Fxpressions 1 2015

State of the Art

This section gives an overview of the current state of proposed thesis work based

on access control policies, databases and distributed applications. The section includes

the discussions on the access control policies, Secured Distributed, Dynamic Role Based

Access Control (S-DRACA) and the recent related works in the field of access control. An

insight of how presented model tries to create various components based on the ideas

from them has also been presented.

2.1 Access Con trol Policies

In this section we discuss the current access control policies. Access to valuable

sources is restricted by defining the set of rules known as policies in order to allow only

authorized user to access authorized source. The objective of designing these policies is

to make the resources only available to legitimate users by restricting unauthorized

access attempts. The most important requirements that must meet are integrity,

availability and secrecy. An important requirement of any information management system

is to protect data and resources against unauthorized disclosure (secrecy) and

unauthorized or improper modifications (integrity), while at the same time ensuring their

availability to legitimate users (no denials-of-service) (Pierangela Samarati, 2001)

To protect the data and resources from unauthorized access, presented work

inherits the security layer of S-DRACA which provides the feature of authentication and

encryption. This security layer has not been altered by any means in this work; therefore

the secured channel provided by S-DRACA is inherited too. In order to proted a resource,

rules are defined as policy graph and then these policies are being used to validate the

actions of the client. The development of an access control mechanism normally follows

three distinct phases as, (i) the definition of the access control policies; (ii) the creation of

the security model to be followed and (iii) the definition of the access control enforcement

mechanism (Pierangela Samarati,2001).

Before getting into the details of the access control models, there is a need to

understand the two entities Object and Subject. Object is the resource that is being

accessed by an authorized entity. Subject is the entity that has perrnission of accessing

Object. According to the requirements and the needs of the system, access control policy

can be formalized in categorise of:

Accesr Control Model to Support Orchestmtion 0f CRUD Expressions I 2015

Discretionary Access Control

Mandatory Access Control

Attribute Based Access Control

Role Based Access Control

The details of these four classes of access control policies have been further discussed in

subsections 2.1 .I to 2.1.4.

2.1.1 Discretionary Access Control (DAC)

Discretionary Access Control authorizes the access to an object solely based on the

identity of the accessing entity and the access rights specified for that identity on every

object present in the system. Users who are given privileges of accessing the objects can

pass their privileges to other users, where as granting or revoking the privileges is done

by an administrative authority. DAC policies are what commercial operating systems

typically enforce. Here, the principals are users; the objects include files, 110 devices, and

other passive system abstractions.

DAC can be implemented by associating an Access Control List to the objects, and

these ACL define what are the access right for that particular object and who can have

access to it. Systems which implement the DAC policies have access rights equal to

NONE until they are defined by a policy. The assignment of privileges using a DAC model

can also be implemented via a matrix form where each user has a row and each object

has a column. Access Matrix was proposed by Lampson for the protection of resources

within the context of operating systems, and later refined by Graham and Denning, the

model was subsequently formalized by Harrison, Ruzzo, and Ullmann (HRU model), who

developed the access control model proposed by Lampson to the goal of analyzing the

complexity of determining an access control policy (Pierangela Samarati, 2001).

Table I shows an access control matrix for the DAC system specifying the access

rights of different users in a file system. This policy structure is being implemented using

matrix for a file system.

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

Table 1 Access Control Matrix for DAC

As per the matrix shown in Table 1, the access rights and the owner of the objects

can be defined as access control policies for the DAC model implementation.

Implementing the policies through the access matrix will require a excessive disk space;

therefore this matrix can be implemented using ACLs where each object will carry a list

specifying the access control rights for each subject. Authorization tables can also be

used to implement the policies defined by the DAC Model. Table 2 shows an example of

authorization table for Subject 2 (shown in Table 1) indicating separate colurnns for the

subjects, objects and for the access right. The formation of this table will eliminate the

empty spaces that was available in Access Matrix by specifying each access right

individually. However, one of the drawbacks of the DAC is that it doesn't control the

distribution of the information once being accessed by the legitimate user. For example

Subje-1 shown in Table I can read File-I and can write it to File-2 whereas Subject-2

now can read and execute the contents of File-1. This is a big security issue.

Su bject\Object

Subject-1

Su bject-2

Su bject-3

Subject-4

Table 2 Authorization Table for a particular subject

I Subject I Access Right I Object I

File-I

ReadMlrite

-

ReadIExecute

-

I I

I Subject-I I Read I File-2 I
I I

I Subject-I I Execute I File-2 I

File-2

Write

ReadIExecute

-

W rite

F i le3

OwnlReadMlritelExecute

-

ReadIExecute

-

Fi le4

-

-

-

Read

Access Control Model to Support Orchestration Of CRUD Expressionr 1 2015

2.1.2 Mandatory Access Control (MAC)

MAC is a type of access control that allows a central entity to constrain the ability of

a subject. A central authority defines the policies to deny or allow the access to the

resources. In comparison to DAC, the owners of the information are not entitled to have

the privilege to change the policies in MAC mechanism. MAC aims to define the policies

which can be implemented for an entire system rather than designing the policy for a part

of the system. In MAC model each object and subject in the system is assigned a security

level based on which the access control enforced. The security level associated with the

object defines the importance of the information contained in that object and the loss that

can happen if that information is leaked to an unauthorized subject. Whereas the security

level for the subject is the level of trust that system has on the subject for not leaking the

secured information contained in the object to unauthorized entity (Samarati, 1994).

Allowing access to a resource depends on the security level of subject that is trying

to access the object. Processing of the request takes into consideration the irnportance of

the secured information and the trust in the entity trying to access the information. The

security level of the subject is compared to the security level of the object and based on

the relationship between the security levels the decision of granting or denying the

permission is made.

There are the two principles that are required to be true while implementing the

MAC model in a system supporting the MAC policies as follows:

Read Down: Subject's security level must be at least as high as of the object

it is about to read. This allows only trusted subjects to read the data.

Write Up: Subject can only write to an object if and only if Object has the

security level as that of the Subject or higher than the Subject. This principie

ensures that only trusted subject can write to the object.

Therefore the subjects who are of high security level can read the information from a

file but cannot write it to the files which are at lower security levels making the information

unavailable to the subjects of lower security level. AI1 this is being achieved by following

the above two mentioned principles.

MAC introduces the levels of security in a hierarchical form which in military terms or

in generic terms can be classified as Top Secret (TS), Secret (S), Confidential (C) and

14

Access Control Model to Support Orchestration Of CRUD Expressions

Unclassified (UC). Therefore if the object is classified as S, then a subject who has

security level of S or lower can only write to the object, whereas the subject who has the

security level at least S or higher can read fmm this object. Write Up principle can damage

the information of an object with higher security level as the subject with lower security

level will not be able to read what is being written and an over write can be obtained

(Pierangela Samarati, 2001), (Amanda Crowell).

Figure 7 shows the MAC hierarchical flow of information in the system

corresponding to security levels assigned to the object and subject in a system.

Figure 7 MAC hierarchical flow of information

Mandatory Access Policies for secrecy can also be understood by studying the Bell

and LaPadulla model which follows two rnain principles known as No-read-up and No-

writedown. Biba Model has shown the implementation of MAC policies for the integrity by

following No-readdown and No-write-up rule (Pierangela Samarati, 2001).

2.1.3 Attribute Based Access Control (ABAC)

As the name explains, access control is based on the attributes of the resources to

be accessed and the attributes of the entity trying to access them. ABAC is a logical

access contml rnodel that is distinguishable because it contmls access to objects by

evaluating rules against the attributes of entities (subject and object), operations, and the

environment relevant to a request(Vincent C. Hu, 2014). Since past decade, rnany security

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

experts and organizations have started to use ABAC for access control. In December

201 1, the Federal Identity, Credential, and Access Management (FICAM) Roadmap and

Implementation Plan v2.0 took a step of calling out ABAC as a recommended access

control model for promoting information sharing between diverse and disparate

organizations(ABAC).

ABAC systems are capable of enforcing both DAC and MAC concepts. Attributes of

a subject can be its name, address, date of birth, role in an organization etc. These

attributes combined with themselves or with other attributes forms an identity of the

subject.

2.1.4 Role Based Access Control (RBAC)

Role Based Access Control (RBAC) is a popular implementation of ABAC, where

roles are considered as attributes and based on this attribute access control is

implemented. As the name explains itself, it is access control model based on the roles

allotted to the entities present in the system. In RBAC entities perform certain sets of

operation which are represented by their roles. Current RBAC model doesn't provide the

support for controlling the operation performed by the entities after the roles has been

assigned. This is a security gap which is tried to reduce with this work.

As role of the entity represents the level of authonzation it gets for performing tasks

on the valuable resource, therefore it is important to have a separation of duties related

with the roles. In separation of duties the level of authority given to a particular role is

tried to be restricted. As in real world one person can't perform all the roles in an

organization, therefore different categories of tasks are assigned to different roles for the

fulfilment of a managed and successful enterprise.

These separate tasks of duty can be categorised as follows:

Static Separation of Duty: In this, the roles are being assigned to the individuals

beforehand and the users perform the transactions according to pre-assigned

roles.

Dynamic Separation of Duty: In this, the roles of the individuals can vary according

to the demand of the system. A user can play different roles as the requirement of

the system changes at runtime.

Access Control Model to Support OrcherIaoon Of CRUD Expressions 1 2015

Sandhu et al. have discussed these categories in more details by considering a

scenario where an owner of a car cornpany is assigned the role of the rnanager. In static

separation of duty the owner can only authorize the production of the cars, hire more

ernployees, take care of the accounts etc. But in case of dynarnic separation of duty the

owner of the company can be the buyer for a car frorn the cornpany and the seller too.

Dynarnic Separation of duty brings flexibility to the systern (Ravi S.Sandhu, 1995).

RBAC model implernents the policies based on the group of people which can

perforrn a specific task. Taking an example of flourishing access control in a cornpany, a

scenario where the ernployees of the cornpany can be divided into different groups which

can perforrn the set of task. These groups can be seen as separate group of managers,

technicians, database handlers etc. This feature of RBAC model allows it to be easily

irnplernented in rnany scenarios. As it provides the platforrn where restriction to a resource

is based on the task a person perforrns by utilising that resource.

A role can have an associated set of rnernbers. As a result, RBAC provides a means

of naming and describing many-to-many relationships between individuals and right

(David F. Ferraiolo, 1992).

Figure 8 shows role relationships of the user in an environment where the Role-A is

set of two rnembers and Role-B has only one member. In this case, these users are

allowed to access two different resources based on their roles assignrnent. Transactions

are being used to show that changes made to the file will either follow the entire rule or

none.

It has been reported that when assigning the roles, principle of least privilege is

being irnplemented by the security manager(Ravi S.Sandhu, Edward J.Coyne, Hal

L.Feinstein and Charles E.Youman, 1995). This principle states that a user is given no

more privilege than it need to access the inforrnation for its needs. Ensuring least privilege

requires identiiing what user's job is, determining the minimurn set of privileges required

to perforrn that job and restricting the user to a domain with only those privileges (David F.

Ferraiolo, 1 992).

A very irnportant concept of RBAC rnodel is role hierarchies. Role hierarchies

represent the level of authorization a role holds for accessing a resource. If the role is of

adrninistrator, then operations such as Insert, Delete, and Update are being allowed but if

the role is of the reader then these operations are not authorized. In organizations

Access Control Model to Support Orchestration Of CRUD Expresdons 1 2015

mangers hold the roles to modify the information, but the employees are categorised in

roles where they can either insert or read information or can perform both operations.

trânsaction

Figure 8 Role Relationshíp

RBAC is a flexible model as it takes on the real world organizational characteristics

and defines them as policies (David F. Ferraiolo, 1992). Figure 9 shows an example of a

bank showing Multi-Role relationships of the bank Manager, Accountant and Clerk wíth

different subjects as well as objects. In this figure Manager inherits the membership of the

Accountant and Clerk hence has access to the transactions of a11 the members including

accountant and clerk as well as his own. Whereas for accountant, the membership of

clerk is being inherited hence has the access to all the transactions of the clerk and his

own but not that of the manager. However, the clerk is only allowed to have access to the

transactions which he was assigned excluding others.

National Institute Of Standards and Technology proposed RBAC model which was

defined in terms of four component models named: (i) Core RBAC; (ii) Hierarchical RBAC;

(iii) Static separation of Duty Relations; and (iv) Dynamic separation of Duty Relations

(D.Richard Kuhn, 2001). Core RBAC models defines minimum set of RBAC element

which are essential to implement an RBAC model such as the user-role assignment and

the permission-role assignment relations. However, in Hierarchical RBAC model, the

support for role hierarchy was introduced. The user with superior role automatically

inherits the permissions assigned to the roles that are lower in hierarchy and roles who

are lower in hierarchy automatically inherit the users of roles higher in hierarchy. In Static

Separation of Duty Relation model, the exclusivity behveen the users and the roles

assigned to them is being introduced. This can be understood by taking an example of

security guard and the clerk in a bank, both have two totally separate roles and therefore

the role of security is not to be assigned to the role of the security guard (Virgil D. Gligor,

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

1998). The Dynamic Separation of Duty Relation model defines the exclusivity between

the roles that are activated as part of user sessions.

Figure 9 Multi-Role Relationships

In the article entitled "Role-Based Access Control Modelsn reported by Ravi S.

Sandhu (Ravi S.Sandhu, 1995), RBAC has been defined in terrns of three different

models which show how flexible and generalized RBAC can be. These models were

defined on the basis of different aspects of RBAC and how they can be related to different

scenarios.

2.2 Secured Distributed, Dynamic Role Based Access Control (S-

DRACA)

Secured Distributed, Dynamic Role Based Access Control (S-DRACA) presents a

structure which has a security layer providing authentication and a secured channel for

communication. It makes an attempt in overcoming the security gap in RBAC model by

restricting the execution of the CRUD expressions allowed for a role in one direction(

Diogo José Domingues Regateiro, 2014).

S-DRACA provides an easy interaction between the users and relational databases

without the overhead of having knowledge of the database schema and access control

policies. It provides a platforrn for the application users where they can design the

application without having pre-knowledge of the access control policies.
19

Aaess Control Model to Support Orchestration Of CRUD Expressionr I 2015

S-DRACA stores the pre-defined policies as sequence of CRUD expressions which

act as permissions for the authorized roles to execute a CRUD operation. These policies

are being retrieved by the client side by making a request to the server; an entity on the

client side uses these pre-defined policies to validate the execution of CRUD expressions.

It enforces the changes made to RBAC policies at run-time, therefore the change in policy

on the server side is mapped to the client side and the application can change its

behaviour and avoiding the run time exceptions. (Óscar Mortágua Pereira, 2014)

The granular information about the architecture of S-DRACA has been further

explained in Chapter 3 section 3.1

2.3 Related Works

As the demand and need of access control has changed over the past few years we

have seen many researchers trying to give better models meeting the demands of the

different branches of the business world. In this section we discuss in brief some of the

works that has been done in the area of access control in the past few years.

2.3.1 Hybrid approach for XML access control (HyXAC)

Mangona Thimma considered the growth of the usage of XML and gave a model

named as 'Hybrid approach for XML access control', which enhances the XML access

control model (Manogna Thimma, 201 5). HyXAC pre-processes user queries by rewriting

the queries and eliminating the parts of the queries which are violating the access control

rules. In particular, HyXAC firstly pre-processes user queries by rewriting queries and

removing parts violating access control rules, and then evaluates the re-written queries

using sub-views, if they are available.

In HyXAC, views are not defined on a per-role basis; instead a sub-view is defined

for each access control rule. The roles sharing identical rules will share sub-views.

Moreover, HyXAC dynamically allocates memory and secondary storage resources to

materialize and cache sub-views to improve query performance. We have conducted

extensive experiments, and the results show that HyXAC improves query processing

efficiency while optimizes the use of system resources. The QFilter approach used in

HyXAC for query pre-processing and been claimed to optimize the usage of system

resource that alternatively improves the performance of query processing.

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

2.3.2 JIF

Jif (Java + information flow) is a security typed programming language written in

java that extends Java with support for information flow control and access control. It

provides access control and information-flow control both at run time and compile time by

using the labels (JIF, 2015). The labels describe how the information flow should be used.

For example considera java script label as:

int {Alice -> Bob) x;

The label in the above example explains that information in variable x is controlled by

Alice and Alice permits Bob to see the information. Thus one can not only know that the

variable x is of type int but also knows about the flow of information explained by the label.

However, if the label is described in other direction as:

int {Alice <- Bob) x;

Then that means the information is owned by Alice and Alice permits Bob to make

changes to the information contained in variable x. Hence to summarize these label

annotations, one can conclude that a Jif compiler analyses information flows within

programs to determine whether they enforce the confidentiality and integrity of

information. One of the disadvantages of Jif is the lack of libraries those should be

translated from Java to Jif to make Jif usable in a larger scale.

L Although signatures can permit the use Java libraries, but it still requires to write

those signatures. Nevertheless using signatures for Java classes does not provide

security because no check is done to verify that the labels of the signatures wrrespond to

the security of the Java classes. For now this has to be done by hand. Moreover, the Jif

has been mostly used to rnanage the information flow at the application level and not to

access data in RDBMS, so other tools must be used to compensate(B0niface Hicks,

2007).
I

2.3.3 Paragon Policy Language

Paragon is an extension to the java language that enables practical programming with

information flow wntrols (Paragon, 2015). In this language the entities those are related to

the information flow are described as actors which can be a user, resources, a system

component etc. These actors are represented as object references. A program policy is

2 1

Access Control Model to Support Orchesmtion Of CRUD Expressions 1 2015

used to label the information containers (local variables, fields) and specifies to which ac-

t o r ~ the contained information will flow. For example, the code fragment shown below can

creates regular instances of the User and File class, where alice and file-I can play a

dual role; both as program variables, and as actors in Paragon policies.

Actors as object references:

User bob = new UserO;

User alice = new User();

File file-1 = new File();

File f ile-2 = new File();

Paragon Policies:

po l i cyp l = {alice:; bob:);

policy p2 = {Flie f :);

A policy consists of a set of items, each specifying a particular actor or a group of

actors. For example, policy p l shown in above code fragment, states that information may

flow to specific user alice or bob and policy p2 states that information may flow to any file.

This makes the policy {Object o:} the most permissive, and the policy with no clauses

(denoted {:I) the most restrictive paragon policy. Paragon also defines the clauses for the

states which can restrict the flow of information for the actors (Niklas Broberg, 2013).

When compared to Jif, Paragon has the advantage of having the flexibility of the

concept of locks. Paragon can províde different declassifying methods to work on different

data in compare to single declassify construct in case of Jif. However, still, much work is

left to be done before Paragon can become a serious competitor to existing programming

such as Jif. It requires both theoretical and practical work, in particular if declassification

mechanisms are shared among threads. A substantial formalisation of Paragon's type

system has been lacked so far, including a proof of soundness with respect to information

flow security.

Access Control Model to Support Orchestmtion 0f CRUD Expressions 1 2015

2.3.4 Multi-Leve1 Dynamic Access Control Model

Recently, Zhou et al. (Yanjie Zhou, 201 5)has formalized a five-level dynarnic access

control rnodel architecture which describes the relation between access control systerns

and applications. They used Role-based Access Control (RBAC) as a reference access

control rnodel. RBAC rnodel has been described in a five-level architecture followed by

web services integration into RBAC rnodel. The reported rnodel distinguishes two kinds of

actions in the entire access control systerns: the administrative actions and the application

action. These actions rnay cause changes of the access control cornponents and

resources. The reported five-level in proposed rnodel are clairned to dernonstrate the logic

relation between access control systerns and applications. It also explains that dynarnic

property of access control is partly decided by applications.

2.3.5 Graph theory to access control

In 2004, a researcher Ravi Sandhu frorn George Mason University, USA reported a

perspective on the connections between graphs and access control rnodels, particularly

with respect to the safety problern and dynarnic role hierarchies(Ravi Sandhu, 2004). The

work explored a connection between graphs and information security especially in the

area of access control and authorization.

2.3.6 Security-driven model-based dynarnic adaptation

In 2010, Morin et al. reported a rnethodology for irnplernenting securitydriven

applications by dernonstrating a rnodel narned security-driven rnodel-based dynarnic

adaptation, reflecting the access control policy (Brice Morin, 2010). The rnodel addresses

I a problern where even with the separation of the policies and the application code proved

in the theory but never fully done is practice, leading to some rules being written directly in

the application code. The approach uses meta-rnodels that describe the access control

I policies and the application architecture. It defines the rnapping (statically and

dynarnically) of the access control policies meta-rnodel to the application architecture

meta-rnodel. However, the rnodel lack in addressing how to statically irnplernent secure

and dynarnic security rnechanisrns.

Access Contrai Model to Support Orchesiration Of CRUD Expressions 1 2015

Chlipala et al. (Chlipala, 2015) has demonstrated a simple model for programming

the web named UrNVeb, which allows programmers to write CRUD expressions that can

check statically the access control policies in a system backed by a DBMS. UrNVeb is a

domain-specific, statically typed functíonal programming language for programming

modern web applications. UriWeb's model is unified, where programs are compiled in a

single programming language to other "Web standards" languages (Chlipala, 2010). It

supports novel kinds of encapsulation of Web-specific state and exposes simple

concurrency where programmers can reason about distributed, multithreaded

applications. It allows the programmers to write the CRUD operations to check statically

the access control policies present in the DBMS. Programs are developed to check that

data involved in the CRUD expressions is accessible through some polices. For policies to

vary from user to user queries that check them can use actual data and the extension of

the SQL which is based on what information needs to be disclosed to user on the basis of

what the user already knows. However, UrNVeb programming documentation requires

and is limited to Haskell and ML expertise making it particularly suitable for statically typed

functional programming.

2.3.8 Reflective Database Access Control (RDBAC)

In 2008, Olson reported on the Reflective Database Access Control (RDBAC) (Lars E.

Olson, 2008). RDBAC aids the management of database access controls by improving

the expressiveness of policies. In this model, the CRUD expressions are the privileges in

the database itself rather than static privileges defined in the access control lists (ACL).

Transaction Datalog given by Bohner et al. (Anthony J. Bonner, 1997)can be used to

express the reflective access control policies.

2.3.9 Java EE

Java Enterprise Editíon (Java EE) is an extension of Java platForm and is the standard in

community-driven enterprise software (Oracle Java Documentation, 201 5). Java EE is

developed using the Java Community Process, with contributions from industry experts,

commercial and open source organizations, Java User Groups, and countless individuals.

A Java EE application server can handle transactions, security, and management of the

components it is deploying, in order to enable developers to concentrate more on the

business logic of the components rather than on infrastructure and integration tasks. It
24

Access Control Model m Support Orchestration Of CRUD Expressions I 2015

uses the @RolesAllowed annotation to enforce RBAC policies directly at the methods

level, controlling the pemissions to invoke them. However, it does not i den t i who is

invoking the protected methods, meaning any user on the allowed roles can get access to

the protected method.

2.3.1 0 Annotated objects

Object-sensitive RBAC (ORBAC) is an extension of RBAC that can be used with object-

oriented programming languages (Jeffrey Fischer, 2009). ORBAC contmls the access at

the level of single objects allowing a fine grained control. Unlike some frameworks, it

allows developers to write access code knowing if they are violating any access control

policy or not through its type system.

In 2010, Zamett et al. also reported RBAC in Java via Proxy Objects using Annotations

(Jeff Zamett, 2010). Their proposed system creates proxy objects which only contain

methods to which a client is authorized access based on the role specifications and hence

the potentially untrusted clients that use Remote Method Invocation (RMI) then receive

proxy objects rather than the originals. They present solution that can be applied to control

the access to methods of remote objects via Java RMI, a framework that allows an

application to use objects that exist in a different application, possibly in a different

machine.

Fischer et al. presented a more fine-grained access control that uses parameterized

Annotations to assign roles to methods, whereas Zamett and co-workers defined each

annotation required for the domain of the application. However, these appmaches in

contrast to ours, do not ease the access to a relational database since the developers still

need to acquire a deep understanding of the database schema and the defined access

policies to access database objects.

2.3.1 1 Access Control Driven by CRUD Expressions

Recently, Oscar Pereira et al. have reported on the RBAC model to provide

access control in a distributed environment using the CRUD expressions (Óscar Mortágua

Pereira, 2014). The work demonstrate a software architectural model from which static

RBAC mechanisms are automatically built, relieving programmers from mastering any

schema. The concept of Business Schema was introduced as a set of CRUD operations.

These sets of the CRUD operations were implemented as interface which hides the direct

Access Control Model m Support Orchestration Of CRUD Expressions 1 2015

and indirect modes of access. Pareira and co-workers has also extended this work with

modification to previous reported results providing access control based on the policies

that were driven from the sequence of CRUD operations. (Óscar Mortágua Pereira, 2014).

Howerver, the model restricted the user to execute the CRUD operation in a single

direction only. The present thesis work focussed on to demonstrate a direction and

solution where sequences consist of permissions for executing an operation and the

security managers can predefine the sequence in a more flexible way and is an extended

modification of earlier reported work (Óscar Mortágua Pereira, 2014).

Access Control Model to Support Orchestration 0f CRUD Expressions 1 2015

Technological Background

This chapter tries to bring light on the technological cornponents being used in this

work. Following section gives an idea about how the various technical cornponents are

being used in to achieve the goals of thesis and also give a brief introduction to these

cornponents.

3.1 S-DRACA Architecture

In this section we bring light on the base of this work which is S-DRACA(Diogo José

Dorningues Regateiro, 2014)(Óscar Mortágua Pereira, 2014). S-DRACA is a security

rnodel which was designed for applications which are distributed and, based on RBAC

rnodel it provides the access wntrol by wntrolling the flow of execution of CRUD

expressions in single direction. S-DRACA gave the concept of Business Schema which

is basically a rnodel frorn which source code can be autornatically generated to handle

CRUD expressions. A Business Scherna can have relation to one or rnany CRUD

expressions (Óscar Mortágua Pereira, 2014).This concept has been inherited to the

present work. Figure 10 shows the architecture of the S-DRACA.

I S-DRACA wnsisted of client side and server side cornponents, on the server side

Policy Manager is an entity which is responsible for retrieving the policies frorn the

I database know as Policy Server. These policies are designed by the sewrity experts by

i: defining roles for the users and each user is assigned with set of sequences of CRUD

expressions. Whenever there is a change in the policies clients are notified of the change

by the Policy Manager. It also authenticates the clients and provides a secured encrypted

channel of cornrnunication.

Policy Extractor is en entity which is integrated in the client application using java

annotation and its purpose if to obtains the policies frorn the Policy Manager and generate

cornponents for access awareness. The Business Manager irnplernents the access

control rnechanisrn for the client application by getting the policies frorn the Policy

Manager and it also keeps track of the active sequence for a particular role in an active

session. It is Business Manager who authorizes the exewtion of the CRUD operation of

the Sequence and rnodifies thern dynarnically in acwrdance with the Policy Manager.

Acces Conbol Model to Support Orchestmtion Of CRUD Enpressions 1 2015

Figure 10 S-DRACA Architecture

Access Mechanism is where the access control policies are being enforced and they

inform the client application about the next authorized CRUD operation to be executed by

requesting the Business Manger about the next CRUD to be executed in the active

sequence. S-DRACA also provides a security layer named as AuthenticationIData

Encryption which provides a secured communication channel between the client and the

server via authentication and encryption.

S-DRACA addressed the security aspect but it lacked in providing the flexibility by

restricting security experts to design the policies following a single direction.

3.2 Orchestration

Orchestration in computing describes as an automatic process which arranges,

manages and coordinates the complex computer system, middleware and the services.

Orchestration is the result of automation.

Orchestration is often discussed in context of systems where one component of the

system provides service to another component following some policies. It defines the

policies and service levels through automated workflows, provisioning, and change

management. The request is sent to the central entity and the reply is provided to the

requestor as the service it requested.

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

In the presented access control rnodel, a user is allowed to execute sequences of

CRUD expressions which can be seen as a service which it has authorization to execute.

One of the aims of this work is to control the execution of these authorized CRUD

expressions. So this works airns to provide a service, which is controlling the execution of

CRUD expressions allowed for a particular user. In this rnodel user application request a

central entity which is deployed on the client side and this entity acts as a central

repository for providing the service of controlling the execution of CRUD expressions and

providing the interface for the client application to execute the next authorized CRUD

expression.

3.3 Relational Database Management System

Current world dernands the speed in data processing and storing. A Database

Managernent Systern (RDBMS) provides the users, a facility to rnanage their Relational

Databases. In 1990, Edgar F. Codd invented the relational rnodel for database

rnanagernent (Edgar F.Codd, 1990). Database rnanagement systerns (DBMS) rnaintains

the integrity of the data, provides security of the data, provide data availability and data

independency.

Relations Databases store data in the form of tables including rows and columns

and the relation between two tables is rnaintained by having at least one same colurnn

values in both tables. To ident i the records of the table, a column is rnaintained where

each value is unique known as the Prirnary key of the table. A Foreign key is the value in

a table which identifies the records of another table to which it rnaintains a relation.

Presented work uses the Relational database as a back end for the model. Access

Control Policies are being stored in the relational database in the form of tables.

Maintaining the integrity of the data present in the database is one of the irnportant

key issues in any organization. For organizations the data is the key ingredient of the work

to earn their reputation in the rnarket. In such big organizations the users need to execute

a series of steps to futfil a task in hand. For exarnple, for opening a new user account in a

bank, a series of insert operations have to be executed to inert the inforrnation into the

database and if any of these operations fails, then the inforrnation provided in the

database will not correct (S. Surnathi, S. Esakkirajan, 2007).

"+ .. Distributed environrnent is the need of current business oriented world, which leads

us to a situation where different users are trying to access and rnanipulate the data source

29

Access Coowl Model to Support Orchesmtion Of CRUD Eapressionr 1 2015

at the same time. This situation brings the database to an inconsistent sate where the

integrity of the information is not maintained as severa1 read operation can be executed

before the correct data is being written in the database. To avoid such situation DBMS

supported locks are being used. The data which is being altered by a transaction during

the execution of the transaction is regarded as data element. Lock can be defined as set

of permissions for a transaction which allows only authorized operations to be executed

for a particular data element. Transaction must get this permission from the Transaction

manager before altering the value of the data element (S. Sumathi, S. Esakkirajan, 2007).

Locking protocols are also being used in distributed environment to ensure that

result of the execution of each transaction in a disordered pattern will be same as the

execution of the transaction in seria1 order.

DBMS must provide the data to the users in a reasonable format and cost so that

the users can easily access the data moreover the access to the data must be authorized

to legitimate users. The DBMS acts like a middle layer between the database and the

client. It's the DBMS which provide the inter-operability feature to the databases. DBMS

hides the complex structure of data storage from the user and just gives an abstract

overview.

Structured Query Language (SQL) is one of the most popular programming

languages that are being used to write queries for the databases. Users state what

information they want from the database or what they want to do to the data of the

database via SQL and the DBMS take care of describing data structures for storing the

data and retrieval procedures for answering queries.

RDBMS keeps the data consistent by applying the following constraints (Edgar

F.Codd, 1990):

Domain integrity: The domain integrity assures that the value of a particular

column is of the column type and whether a null value can be inserted in that

column or not.

Entity integrity: The records in the table are uniquely identity by the Primary

key of that table and entity integrity assures that the values of the primary

key are not duplicated.

Access Contml Model m Support Orehestration Of CRUD Expressions I 2015

e Referential integrity: in this, the constraints guarantee that the value of a

foreign key must exist as the value of the primary key which is being

referenced.

User defined integrity: User-defined integrity allows you to define specific

business rules that do not fall into one of the other integrity categories

3.4 Graph Theory for Access Control

This section explains the generic idea behind graphs and how the implementation of

graphs in access contml has evolved. Graphs are mathematical wncepts which are used

to represent the relationship between objects. Euler published a paper on graphs which

addressed the problem of Seven Bridges of Konigsberg and this paper laid the foundation

of the graphs. Pmgrammers realized the potential in modelling the real world scenarios as

graph structures which lead to the development of many algorithms based on these

structures such as Dijkstra, Bellman-Ford etc.

I
A graph consists of Vertices which are also regarded as nodes and to represent a

relationship between these vertices, edges are being used. Graph structures can be

directed which means that the direction of the edge between the vertices defines the

relationship between the vertices. Undirected graphs are the once in which the edges do

not define any direction for the relationship among the vertices. The relationship between

the vertices can also be represented as labelled edges.

L

The source of an edge is regarded as parent node and the destination of that edge if

the child node. A node which has no incoming edges is regarded as the mot of the graph

where as the node which has no outgoing edges is regarded as a leaf node.

Vertices can be any real world entity which can be represented as an object in a

programming language. Designing graphs totally depends on the needs of a problem and

on the implementation choices of the programmer. Following is the graph structure which

is designed to show the access wntrol maintained by Lampson's access matrix:

Access Contml Model m Support Orchestmtion 0f CRUD Expressions I 2015

Table 3 Lampson's Access Matrix

Figure 11 Example of graph representing Lampson's Access Matrix

As we can see in the above example vertices represent the users and the files

where as the access to the files is defined by the labelled edges which the user vertices

holds to file vertices (Ravi Sandhu, 2004). The label A represents the Read, Write,

Execute (RWE) permissions, label B represents the Read and Write (RW), label C

represents the Write and Execute (WE) permissions, label D represents the Read(R)

permission, label E represents the Write (W) permission, label F represents that User-3 is

the owner of File-I and he has the permission of Read, Write and Execute(RWE)

permissions.

Graphs can also be used to analyse the security of the system, one of the example

of such graph is Attack Graph. Attack graphs are used to define all the paths which an

intruder can use to enter a system and achieve his goals. Security experts use the attack

Access Contml Model to Support Orchesbition 0f CRUD Expressions 1 2015

graphs to detect the threats and to design the measures to eradicate these threats (S.

Jha, O. Sheyner , J. Wing, 2002).

This thesis work takes above mentioned approaches into wnsideration and

presents a rnodel where the stored sequence of CRUD operation which acts as access

contml policies for the users, are fortnalized into graph structures. Graphs bring the

flexibility component by providing the feature of directed edges, which enables the

security experts to design the access control policies to meet the demands of the real

world. Directed Edges of the graph allows the security experts to design the access

contml policies to restrict users to follow a predefined path.

3.5 Java

Java is a universally accepted and used language. The popularity of java is based

on its features such interoperability, secured, object-oriented and distributed. This thesis

work uses java as the programrning language to irnplement the access control model

because of the language being portable, object-oriented and distributed.

Following section explains the Java Serialization and Deseralization which is being

used in this work to send and retneve the access control policies. Java Reflection and

Annotations are also being discussed in the following sections.

3.5.1 Serialization and Deserialization

Java serialization provides the mechanism where object's data and its type can

be represented as sequence of bytes. In distributed environment data needs to be sent

from one machine to another and this need is full filled by wnsidering the data to be sent

to other machines as objects by using java serialization.

Java provides an interface Serializable which is implemented by the class whose

object is to be sent. ObjectOutputStrearn class is used to serialize an objed. The

ObjectOutputStream class writes the object as series of byte characters and on the client

side these objects are Deserialized by performing read from ObjectlnputStream to the

same data type and in the same order as they were written. Java Serialization supports

refracting which means that adding new fields to the class, changing static fields to non-

static fields are automatically managed. A serialization Id is being used to know if the

serialized object has been changed or not (Oracle, 2015)(Neward, Ted, 2015).

Accesr Control Model to Support Orchestration Of CRUD Expressions (2015

This work uses java serialization to send the graph structure of access control

policies which are defined as sequence of CRUD expressions in the database. These

graph structures are defined as object and then Java serialization and

ObjectOutputStream is being used to send the policies to the client side. On the client

side, these policies are retrieved as graph structures by deserialzing the object using

ObjectlnputStream readobject 0.

3.5.2 Reflection

Reflection is generally used by applications which need to monitor or alter the

runtime behaviour of a program running in a JVM. It allows a program to know contents of

the classes, methods, fields at run time, without knowing their names at compile time.

Reflection is a mechanism present in the Java Virtual Machine that provides the

ability of code inspection or modification. For its usage, the Reflection API is provided

which can be used inside an application to execute the said abilities. Reflection shouldn't

be used without a specific purpose, since for its abilities there are drawbacks as follows:

More performance overhead

Comparing to the normal programming way of class instantiation and method

calling, where the compiler will generate runtime code for objects to be directly used, and

its methods to be called directly without the need of a second call, Reflection needs to get

the correct type dynamically, so it will have to find its class structure at runtime in the

classpath, and its methods are called via a second method, which will cause delays at

runtime.

Security restrictions

Permission for using Reflection is granted by the Security Manager in the Java

Virtual Machine at runtime, thus, if not configured properly can lead the application to

terminate prematurely.

Security issues

Reflection can also be used as an alternate way to instantiate a class, which doesn't

even needs to be present at compile time, and cal1 it's methods. Special care should be

Access Control Model to Support Orchestntion Of CRUD Expresions (2015

taken in this technique, because is easy to strip out the class protection mechanisms and

not respect them afterwards.

Unwanted behaviour

With the abilities it has, using Reflection can lead to unwanted or unexpected side-

effects that, without the compiler's oversee, will be harder to debug.

3.5.3 Annotation:

Annotations are the form of metadata that is being used in java. Annotations don't

have direct affect on the operations of the program but are used to provide information to

the compiler; they can be used to generate code or XML files (The Java Tuitorials,2015).

The at sign character (@) indicates the compiler that the following text is an

annotation. Annotations can be applied to the declaration of a class, field, methods etc.

With the release of java 8 now annotations can be applied to the use of types.

A few examples of where types are used is the expression where a new instance of

the class is being created (new), when casting is being done, implementsclauses,

and throws clauses. This form of annotation is called a type annotation (Type annotations

and Pluggable type Systems, 2015).

Java 8 release doesn't provide a type checking framework but it allows writing

modules for type checking which can be used with java compiler. Following example

shows the use of Annotation to support the type check required for a string variable which

should not contain a null value and to void the triggering of NullPointerException:

@NotNull String name;

A module can be designed to achieve this kind of type checking framework. When

code is compiled including the NotNull module, the NotNull module checks the program

for the potential problem and provides wamings if it detects any problem. Multiple type

checking modules can be used for different type of errors. With the judicious use of type

annotations and the presence of pluggable type checkers, you can write code that is

stronger and less prone to error.

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

Annotations can have elements which can be named or unmade and these

elements can be given values. In the Figure 12 annotations are being used to describing

the properties of the node object of the class Node-lnfo:

Str ing node-namel);

Figure 12 Annotation Type Definition and Annotation Elements

In the Figure 12 we can see the use of Annotations in the expressions of node-id

declaration, the Qinterface being used to define custom annotation and how this custom

annotation provides information about the node. @Target tells that this annotation can be

applied to a constructor; @Retention indicates how long annotations with the annotated

type are to be retained.

3.6 State Diagrams for complex system representation

State diagrams are used to represent the states of the system when it is executing

the programs to achieve a particular task in hand. They give an abstract description of the

behaviour of the system. David Harel gave the model where the complex system can be

explained using a diagrammatic approach representing the states of the system.

His work became the base of modelling the system using the UML and also

designing models which can express the system in more efficient way. In Harel's models

rectangles are used to denote the states and to represent the transition from one state to

Access Control Model to SupponOrchestration Of CRUD Expressions 1 2015

another arrows are being used. The amws are labelled to represent the event that

caused the system to transit into another state(David HAREL, 1987). To understand

Harel's model following example to the state diagram is given:

Figure 13 Example of Harel's state diagram

Above diagram shows the representation of system which enters into four stated

namely A, B, C and D. The H' state is the most recently visited history state. The arrows

are labelled with the events which lead to the transition of the stated. By default the

system enters into state C which is denoted by arrow with dot in the end. If the system

doesn't have any history state then only it will enter into state C. State D comprises of

state C and B, indicating if the system is either in state B or C then it is automatically

entered into state D.

Harel's model is adopted in this work to represent the niles which a security expert

need to keep in mind while designing the policies. These rules define the behaviour of the

system while the execution of the predefined polcies.

One of the works which is influenced by Harel is by Il-Yeol Song et al(ll-Yeol Song,

Ki Jung Lee, 2007); they published a paper where focus of their work was to represent

how an object of a class makes transitions to different states during its execution life span

by using the concept of specialization state. In their technique the meaningful states of the

Access Conbol Model to Support Orchestration Of CRUD Expressions 1 2015

class were identified before building the actual state diagram. Three identification rules

were applied - state-valued attributes, association paths, and constraints.

Acceu Control Model to Support Orchestration Of CRUD Expressions I 2015

4 Access Control Model Supporting Orchestration Of CRUD

Expressions

An access control rnodel is an abstraction of an access control mechanisrn which

enforces access control policies specdying who can access what information under what

circurnstances.(Dae-Kyoo Kirn, Pooja Mehta, Priya Gokhale, 2006). Defining an access

control model requires the formulization of rules that can be applied while designing the

access control policies, the scenarios where access control policies can be applied.

This chapter is divided into sections; section 4.1 explains the structure of access control

policies, rules that should be followed while executing the access control policies are

explained in sub section 4.1.1, the rules for designing policies are defined in sub section

4.1.2, the inter Graph execution is explained in sub section 4.1.3. Section 4.2 provides

the proof of concept.

4.1 Structure Supported By the Presented Access Control Model

Presented rnodel supports the design of the Access Control Polices in the form of

graph structures. It allows rnapping the implementation of the applications accessing the

database into the design of the Access Control Policies. This section defines the rules

which need to be followed while designing the Access Control policies.

In this thesis work design of the access control policies for validating the execution

of authorized CRUD expressions for a particular user is irnplernented by considering the
' sequence of the CRUD expression as a graph structure connected by directed edges and ' regarded as a Policy Graph. Designing the access control policies in the form of graph

structure allows the security experts to design the policies which can be applied in

different scenarios.

This work inherits the concept of nodes and directed edges from the graph theory

i and applies this concept to the structure of the Access Control Policies. Therefore the

structure of the access control policies consists of nodes which are connected via directed

edges. Nodes represent the Business Schema which is a set of CRUD expressions that

an application can execute and the relationship between the nodes is maintained by a

directed edge.

Access ConIol Model to Support Orchestration Of CRUD Expressionr I 2015

Applying the graph structure for creating the policies requires the formulation of

rules to be followed while designing the policy structure. The basic terminologies and rules

associated with creation of access control policies are as follows:

Policy Graph: directed graph structure whose nodes consists Business

Schema. It is the access control policy which is used for validating the exe-

cution of CRUD expressions.

Terminating Node: In a Policy Graph a terminating node's execution pro-

vides the user with two options, first if the terminating node has any outgoing

edges then the user can still continue with the current Policy graph by re-

questing the Business schema of the target node, and second the user can

request a new Policy graph and current Policy graph will no longer validates

the execution of the CRUD expressions unless it is requested again.

Halt Node: In a Policy Graph a node can request the execution another Pol-

icy Graph. This node is regarded as Halt Node.

Root Node: it is the node of the graph where the execution of the Policy

Graph starts by executing the Business Schema of the root.

Policy graph must have at least one root and terminating node.

In Policy graph the root and terminating nodes can be halt nodes.

Policy graphs can have multiple root, terminating and halt nodes.

The terminating node which has no outgoing edge cannot be a halt node.

If a node has no outgoing edges then by default it is a terminating node

If a node has a single outgoing edge and that edge is to itself then by default

it is a terminating node

If a node has no incoming edges then by default it is a root node.

If node has only one incoming edge and that edge is a from the node itself

then the node by default becomes a root node.

Presented model validates the execution of the sequence of CRUD expressions via

a Policy Graph. Therefore if the execution of any CRUD expression belonging to se-

40

Access Conirol Model to Support Orchestration Of CRUD Expressions (2015

quence fails then the decision of rolling back the execution of sequence of CRUD expres-

sion is left to the application itseif.

4.1.1 Rules fór the execution of the Policy Graph

This section explains the rules for the execution of the policy graph. Policy graph

validates client's execution of the CRUD expression. The rules for executing the Policy

graph are:

In Policy graph the execution of the graph always starts at the root node.

The execution of the CRUD expression belonging to the Business Schema

present on the source of the directed edge and the direction of the edge

decides the next Business Schema to be executed.

D If the Policy graph contains single node than this node is a root and

terminating node.

4.1.2 Rules fór designing the Policy Graph

Following rules tries to map the scenarios of real world database driven application

where user executes CRUD expressions to achieve a particular task.

4.1.2.1 A single node can tepresent a complete Policy Graph

A Policy Graph can be composed of a single Business Schema which allows the

security manager to design the policy allowing the user to execute the CRUD expressions

of one and only one Business Schema. Therefore a system can have one and only one

state. Figure 14 shows an example of executing an update query for assigning the

department to an employee. Figure 15 shows the structure of the Policy Graph for

validating the execution of the single CRUD expression represented as a SQL update

query-

Access Control Model to Support orcheshation Of CRUD Expressions 1 2015

public void AssignDepartmentToEmployee (int Emp - ID, String Emp - ~epartment)
throws SQLException {

PreparedStatement ps = conn.prepareStatement ("Update Employee - Iiiformation"

+ " set Emg - Y)epartment=' @deptl where Emp - lD=@idl') ;

ps . setInt (2, Emp - ID) ;

ps . set~tring (1, Emp - Department) ;

ps . executeupdate () ;

Figure 14 Java Code for execution of single CRUD Expression

Figure 15 Policy Graph consisting of single node representing a State of the system

4.1.2.2 Policy graph can have a node which has a loop fo ifself

This access control rule is designed for scenarios where the execution of Business

Schema is required in a loop. In this case the Update CRUD expression is called in the

loop to assign the departments. This design of the access control policies addresses the

scenario where the system remains in the same state until it completes required task as

shown in Figure 17. Figure 16 shows a piece of java code where

AssignDepartementEmployees() assigns the updates the table of information

The loop structure is not an endless loop, as the node is defined as the terminating

node of the Policy graph. In applications where the system remains in a particular state by

executing the CRUD expression in a loop, restriction for not executing other CRUDs can

imposed by using this structure. This rule restricts the system to loop through a state

Accern Control Model to Support Orchestration Of CRUD Expressions 1 2015

public void AssignDepartuncn~loyoes (HashMapcInteger, String) EmpDepar)
throws SQLException {

Set set = EmpDepar . keySet () ;
Iterator it = set .iterator () ;

while (it . has~ext ()) {

PreparedStatement ps = co~.prepareStatement

("Update Employee Information" -
t " set Emp Department='@deptl where Emp ID=@idv'); - -

int EmpID = (int) it .next () ;

ps . setInt (2, EmpID) ;
ps . setString (1, Empilepar .get (EmpID)) ;
ps .executeUpdate () ;

1
1

1

Figure 16 Java code for the execution of the CRUD expression in a loop

Figure 17 Policy Graph consisting of a node that has a loop to itself

4.1.2.3 Policy Graph can have multiple terminating nodes

A Policy Graph can have multiple terrninating nodes. Figure 19 show the example

I where system can enter into one of the multiple states as the result of the execution one

state, and these all can be regarded as terminating nodes.

I
4.1.2.4 Moving from single node to multiple nodes is supported

Figure 18 shows an example of Switch case statement where according to the age

of the employee one of the various CRUD expressions is executed. This rule is designed
43

Access Control Model to Support Orcheshaoon Of CRUD Egrea ionr (2015

for scenarios where the execution of a CRUD expression can lead the system to one of

the many possible states. Figure 19 shows the structure of the Policy graph for such

scenarios.

In the example shown in Figure 18 the selecf query for choosing the Emp-lD and

Emp-Age is a state which leads the system into one of the many states. Therefore the

system presents in swifch state enters into one of the many case statements state and

performs the respected CRUD expression.

public void AnalpzeTablesAccordingAge O throws SQLException {

PreparedStatement ps;

gs = conn.prepareStatement ("Select Emp - ID,Emp - Age irom Employee - lnformationl') ;
ResultSet rs = ps.executeQuery();

while (rs .next ())

{ int Emp - Age=rs . getInt ("Ernp - Age") ;
int Emp - ID=~S . getint {"Emp - ID") ;

irjwitch (Emp - Age) {

case 55 : ps=conn .prepareStatement ("Update Employee - Inf ormation "

t "set Salary=20001') ;

break;
case 60: ps=c~nn.prepareStatement('~Delete fron Working - Employees "

+ "úuhere Emp - ID=@idl') ;
ps. setInt (1, Emp - ID) ;
break;

case 30 : ps=conn. preparestatement ("Insert into Trsinee"
t " (Emp - ID) values (@id) ") ;

. ps.setInt (1, Emp - ID) ;
break;

def ault :

ps=conn.prepareStatement ("Insert into ~etiredEmpioyee (Emp - ID) 'I) ;
ps . setInt (1, Emp-ID) ;
break;

'1
ps . executeupdate I) ;

Figure 18 Java code for Figure 19

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

Figure 19 One state of the system leading to multiple states

4.1.2.5 Moving fmm multiple nodes to a single node is supported

Figure 21 shows an exarnple written in java explaining a scenario where rnultiple if,

else if always ends up with a select query. In this exarnple execution of one of the if-else

blocks will result into the execution of the one CRUD expression.

This rule allows the security experts to design the policies where the execution of

one of the rnultiple CRUD expression results into the execution of one and only one

CRUD expressions. This rule addresses the scenanos where multiple states of the systern

can lead to one of the one possible state as shown in Figure 21.

Figure 20 Multiple state of system leading to one state

Access Control Model to Support Orchestration Of CRUD Expressions

public void PerformCperation(String query, HashMapcString, String> parameters)
throws SQLException i

PreparedStatement ps = null;

Set set = parameters.keySet();
Iterator it = set.iterator();

if (query.equals ("Insert")) {

ps = conn.prepareStatement ("Insert into Employee-Infcmation(Eq - Name, 'I
+ ", Emp-Address)Values (I @nameu, '@addressC") ;

ps . setstring (1, parameters .get (it .next 0) ;

ps . setString (2, parameters. get (it . next ())) ;

} else if (query .equals ("update") 1 I
ps = conn.prepareStatement("Updòte Ernployee-Information set Errp - Address='@addressl");
ps.setString(1, parameters.get (it.next 0)) ;

) else if (query .equals ("Delete")) {

ps=conn.prepareStatement ("Delete * from Employee - Information where Ernp-I~=@id") ;
ps. setstring (1, (parameters. get (it .next O))) ;

1
ps .executeUpdate () ;

ps = conn.prepareStatement (nSelect EmpName from Employee-~nformation") ;
Resultset rs = ps.executeQuery();

while (rs . next ()) j

System. out.println (llEmp-Name=l' + rs. getstring ("E3up - Name")) ;
!I

Figure 21 One of the Multiple CRUD expression leads to single CRUD Expression

4.1.2.6 Polícy graph restricted to single direction

Some scenarios require more rigid policies where the client can only follow a certain

path, for example trying to withdraw money from an account. This policy allows the

system to enter into one and only one state as the result of execution of CRUD

expression.

Figure 22 shows java code to update the salary of an employee. In this example the

execution of the update query depends on the result of the select query. The scenarios

where the results of the execution of CRUD expressions of a state are used for the

execution of CRUD expressions of the resulting state, access control policies must be

designed to control order of the execution of state. Figure 23 shows the structure of the

policy that can be designed to meet the scenario

Access Control Model to Support Orchestration Of CRUD Expressions

public void 1JixlateSalary(int Emp ID) throws SQLException {

PreparedStatement ps;

ps = conn .prepareStatement ("Select Salary f rom 'I

I
I + "Employee - Salary where Emp - ID=@idw);
i ps. setint (1, Emp ID) ; 1 -
i ResultSet rs = ps.executeQuery();
i;

int salary = rs .getInt (llSalary") ;

if (salary > 1000) {

1 salary = salary + 300;
i
i ps = conn.prepareStatement("Update Employee Salary "
i -
I + "set ~alary=@salary where Emp 1D=@id ");

ps . setInt (1, salary) ;
4 ps. setInt (2, ~ m p ID) ; - L j ,exe-e<i 3 1 . , , . - . . < . I . . I

. -
i
i

Figure 22 Moving from one state to another in Single Direction

Figure 23 Execution following a single direction

By applying the above mentioned niles to the design of the access control policies

security experts can design the policies to map the execution of the database driven

applications to the structure of the access control policies.

Access Conírol Model to Suppolt Orchestration Of CRUD Expressions 1 2015

4.1.3 Inter Graph Execution

This model supports the feature of halting the execution of an ongoing Policy Graph

and starting a new authorized Policy Graph, and this is regarded as Inter graph

communication. Popular programming languages supports method calling, which makes

the piece of code inside that method reusable. Current Model uses this concept and

supports the concept of reusing the policy graphs.

In Policy graphs The Policy graph whose execution is halted is regarded as

Parent-Graph and the one whose execution is started as the result of halting is called

Child-Graph. The rules that should be followed while implementing the Inter Graph

communication are:

Child-Graph's execution starts at the root node

Only a halt node can cal1 the Policy graphs which it is authorised to call.

After the successful execution of the terminating node of the Child-Graph, system

enters into the state in which the Parent-Graph was halted and based on the

outgoing edges of the halt node the decision of the next Business Schema to be

executed is made.

Figure 24 shows the block diagram where the Policy graph that has the halt node

can request one of the many policy graphs that the halt node has authorization to call.

Designing a graph where halt nodes are supported is a powerful feature as it allows the

security experts to use the policies in different scenarios. But the security expert must take

into consideration while designing the policy that by providing a halt node he gives the

user a freedom to execute a different graph without finishing the current Policy graph. The

security experts should consider before providing a privilege to the design.

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

Figure 24 Inter- Graph execution Block diagram

Policy Graph 2

4.1.3.1 State Diagram explaining the Inter-Graph Execution

For better understanding of the application of the rules a state diagram is presented

in Figure 25. The state diagram representation used for representing the inter graph

execution is based on Harel's model(David HAREL, 1987) .The diagram shown in Figure

25 contains six states named as A. B, C, Y, 2, ff 'TN' stands for the terminating node in

the figure.

Policy Graphl

Policy Graph 3

A is the default state for Policy Graphl and B is the default state for Policy Graph2.

The state H represents the most recent visited state of the system. Root node is marked

with an incoming amw carrying a dot which represents the default state of the systems.

Whenever a CRUD expression of a Business Scherna is executed the system enters into

a new state. Returning back to the Horne-Graph depends on the most recent visited state

of the system. Suppose Policy Graph2 was visited from state Y, then most recent visited

state of Policy Graphl will be Y and the decision of the next Business schema is made

based on the state the system is in. Numbering in the Figure 25 indicates a possible path

that is being used for validating user's actions.

............

Access Control Model to Suppox-t Orchestration Of CRUD Expressions 1 2015

Figure 25 : state diagram representing the application of predefined policies

4.2 Proof of concept

This section provides a proof of concept for the Access Control Model defined by

this thesis work. To implement the presented access control model S-DRACA is chosen

as the base of this work and RBAC models has been chosen as the reference model for

authenticating the clients. This section will bring light on the implementation of the

Orchestration of CRUD expressions, configuration of the Policy graphs and their utilization

for validating the actions of the user. This section also explains the modular structure

which is inherited from S-DRACA, the changes made to the inherited components for

supporting Policy graphs and the implementation of the presented Access Control Model

using S-DRACA and RBAC.

4.2.1 Block Diagram of the Access Control Model

This section describes the behaviour of the various components that are inherited

from S-DRACA and the changes that are made to these components for supporting the

presented Access Control Model.

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

Current model inherits the modular structure of the S-DRACA but changes the

implementation of some of the components to support the access contml policies which

are now designed as graph structures. S-DRACA provided the security layer which

provided the features of authentication and encryptions. In this work the security layer

which is provided by S-DRACA is not altered by any means.

The problem address with this work is freedom that a user can have after he is

authenticated to access a resource. To provide a solution to the pmblem RBAC model

has been chosen as a reference model. Figure 26 shows the block diagram where the

different components that are inherited from S-DRACA are shown.

Access control policies are stored in the Policy Server which is a relational database

and holds the access control policies in the form of relational tables. The client connects

to the Policy Manager and he is authenticated by the access control model that is

deployed on the server side. In current implementation the client is authenticated on the

bases of RBAC model. After the authentication of the client, Policy Manager gets the

authorized policies which are stored in the policy server and generates the Policy graphs.

The Policy graph is then sent to the Policy extractor, and Policy extractor generates the

interfaces for the Business Schemas.

Figure 26 Block Diagram representing the work flow of Presented work

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

At run time the Business Manager request the Policy graphs from the Policy

Manager and also implements the interfaces generated by the Policy extractor. The client

requests the next Business schema to be executed from the Business Manager. If the

client tries to execute a Business Schema which is not allowed to be executed then

Business Manger throws an exception based on the policy graph. The Policy manager

relays the communication of the Business Manager and the Policy server.

In current implementation Business Manger holds another component Flexible

Sequence Manger. This component allows the inter-graph execution and the validation of

the client operations in regards to the Policy graph it has. The implementation of the

modified components is shown in section 4.2.3.

4.2.2 CRUD Orchestration

The word Orchestrate means organizing or arranging something via a planned and

clever way. Orchestration of the CRUD expression in presented work means arranging

the CRUD expression in the form of directed graph that can be used by an entity on the

client side for providing the service of validating the execution of the CRUD expressions of

the client and generating the interíaces for the execution of the authorized CRUD

expressions.

In presented Access Control model the access control policies are stored in the

relational database in the form of tables. These policies are being requested by the

Business Manager and it provides the Clients with the interface to execute the Business

Schema.

In reference to this work Orchestration of the CRUD expressions is obtained by

implementing an entity "Flexible Sequence Manager (FSM)" for providing the service of

validating the execution of CRUD expressions of the client in regard to the policy graph it

has. FSM is a part of the Business Manager and it's the Business Manger that requests

the policy graph from the Policy Manager on behave of the client application.

FSM maintains a stack of active graphs, based on the graphs which are pushed

into the stack client's execution of CRUD expressions is validated. The reason for using a

stack to store the order of active graphs is to support the rule defined by Inter-Graph

Communication in section 4.1.3.

Access Control Madel to Support Orchestration Of CRUD Expressions 1 2015

Whenever client application requests the execution of a new policy graph, FSM

performs the following operation:

1. It pops the policy graph which is on top of the stack of active graphs.

2. Checks if the current node that is executed to validate the execution of

CRUD expression is a halt or terminating node.

3. If it is a halt node then it checks if the requested Policy graph can be

executed from this node or not. If both conditions holds true then it pushes

back the current Policy graph into the stack of active graphs, push the new

Policy graph into the stack and start the execution of the requested new

Policy graph by executing the root node.

4. If it is a terminating node with outgoing edges then it push back the current

Policy graph into the stack, push the new Policy graph into the stack and

start the execution of the requested new Policy graph by executing the root

node.

5. If it is not a halt or terminating node then it throws an exception for the

client, as he is not authorized to request the execution of the new Policy

graph at this point.

Client's execution of CRUD expressions is validated by the FSM using the Policy

graph. When the client requests for the next Business Schema, FSM performs the

following operations:

1. It peeks at the top of the stack of active graphs and checks if the requested

Business Schema belong to the graph present on top of the stack

2. If it is a part of the graph present on top of the stack, then FSM pops the

graph and check if the currently executed node has a directed edge to the

node of the requested Business Schema and the source of the direct edge

is the currently executed node. If both of the conditions holds true then it

validates the execution of the CRUD expressions belonging to that

schema.

3. If it is not the part of the graph present on top of stack of active graphs then

it performs the check for the execution of the new Policy graph.
53

Access Control Model to Support Orchertration Of CRUD Expressions 1 2015

The irnplernentation of the stack of active graphs is shown in section

FSM acts like a central repository which authenticates the execution of the next

authorized business scherna. Figure 27 shows the entire structure for the CRUD

orchestration:

I. Retrieving stored policies from the Policy server

2. Sending policies as objects containing the Policy graphs for authorized user

3. Authenticating next CRUD expressions to be executed

4. Result of CRUD execution from the client to the Policy manager and response of the

Policy Manager.

Policy
Server

- -

Client

Figure 27 Orch.e&raSion o$ CRUD expressions

4.2.3 Implementation of the Access Control Model using S-DRACA and RBAC

This section explains the implementation of the access control policies, how they are

being sent to the Business Manager and Policy Extractor, the generation of the interfaces

using annotation and reflections, how Business Manager provides the validation of CRUD

expression and provide the next Business Schema interface to the client for execution of

CRUD expressions.

54

Accesr Control Model m Support Orchestration Of CRUD Expresions I 2015

4.2.3.1 Implementing the Access Contml Policies

Design of the security policies to control the execution of CRUD expressions

allocated for the role is done by a security manager who wnsiders the fact that RBAC

model is chosen as a reference model. These policies are stored in the databases and

when a client connects to the server, these policies are being sent by the Policy Manager

to the Business Manager and Policy Extrador.

Providing flexibility for designing these policies was one of the most challenging

tasks faced in the completion of this work. In database applications users are not

restricted to execute a unidirected sequence of business schemas but it's the execution

of the business schema that takes the system to a state where user can execute one of

many business schemas or execute a single schema. Figure 28 shows the ent i i

relationship diagram describing how the policies are stored in the database.

1 Burlb (PK) I

Figure 28 Entity Relationship Diagram for different tables for the Policy Graph

For current work policies are stored in Policy Server which is a relational database.

Policy Configurator is a module inherited from S-DRACA which acts as a security expert

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

for designing the access control policies and storing them into the database. It inserts the

policies into the database by using SQL queries. Figure 31 shows an SQL table for storing

the nodes of the different graphs that are present in table shown by Figure 29.

--
GmphlD Descriptíon ~ - - - -

1 $ 1 1 Gmphl
2 2 Eiraph2

3 3
- - Grapk3

Figure 29 SQL table for storing the Policy Graph description

Figure 30 shows the SQL queries for inserting the names and the nodes tnat a

policy graph have into the table. After the values are inserted into these tables, Policy

Configurator needs to formulate the design of the access control policy by inserting the

edge information of the nodes of the graphs, specifying the root nodeslnode of the graph,

specifying the terminating nodelnodes of the graph and providing the information about

the halt nodelnodes.

pstmt = conn . prepares-cazen!& (

"INSERT INTO PolicyGraphs (GraphID, ~escription) "
+ "OALUES (4, "riiph4 ') ") ;

pstmt.executeUpdate();

pstmt = .- - conn.pr&pareStat&ment(.

'I IINSERT INTO BS - GraphNodes (S e q I D , NodeID, RefBusID) "
+ "VALUES (1, 1, (SELECT Bus - id FROM Bus - BusinessSc'hema "

+ "WHERE Busurl = 9 - ~ustomers.IS Customers'))");

pçtmt . executeupdate O ;

Figure 30 SQL queries to insert values in the tables shown in Figure 31 and Figure 29

Access Control Model to Support Orchestration Of CRUD Expressions

Figure 31 : SQL table for all the nodes of the Graphs of Figure 29

The connection between the nodes of the graph is shown by the table Figure 32.

This table provides the information of the directed edge by regarding the nodes as parent

node and child node. The source of the edge is the parent and target is the child.

Figure 32 SQL table specify the parent and child nodes of different graphs

As there can be more than one halt, terminating and root nodes, therefore three

difíerent tables are created in which the respected information is provided. Figure 33

shows the table where the root node of the various graphs is inserted.

Access Contml Model to Support Orchestration Of CRUD Expressions 1 2015

Figure 33 SQL table for the root nodes of different graphs

Figure 34 SQL table for halt nodes

Figure 34 shows an SQL table for the halt nodes. The column AllowedChildGraphlD

specifies which graphs can be requested from this node. To implement Inter-Graph

Execution the permission of requesting the new Policy graph is implemented on node

level rather than Graph level. The reason for doing this is to provide the security expert

with the too1 that he can design the policies where the user can only start inter-graph

execution on specific nodes. If the permission to start the inter-graph execution is

provided at graph level then user can be at any node in the graph and can request the

new policy graph, and this can be avoided if needed.

The terminating nodes information is given by the table shown in Figure 35.

Terminating nodes indicates that the execution of the Policy Graph has ended based on

the policies defined in section 4.1

Figure 35 SQL table for terminating nodes

To implement these policies, graphs are considered to be the basic structure.

Authorizing the path that a user can follow to accomplish a task is done by creating the

directed graph structures where the nodes cany the following information:

The business schema that can be executed on that node

ID of the node in that particular graph

58

Access Controi Model to Support Orchestration Of CRUD Expressions (2015

If the node is a terminating node or not

If the node is a root node or not

The IDs of the other Policy graphs whose execution can be requested after

the execution of the Business Schema of this node (if it is a halt node).

The list of the Business Schemas that are revoked for this node

List of IDs of the nodes that are child of this node (edges)

Figure 36 shows the structure of the class Node-lnfo. The nodes of the Policy graph are

of type Nod~lnfo. Policy manager gets the policies from the Policy server and then

creates directed graphs which are regarded as Policy graphs.

public c lass IodcInfo {

public Integer nodeID;
public S t r ing BSurl;
public Lis t<~nteger> edges = new ArrayList<> () ;

public List<String> revokelist = new ArrayList<> () ;
public boolean isRootNode = false;
public List<String> haltNodeCallable = new ArrayListO () ;

public boolean isTentinatingNode = false;

Figure 36 Java code implementing the class Node-lnfo

Policy manager is the only entity in the project that communicates directly to the

Policy Server, the requests from the Business Manager and Policy Extractor for getting

the stored access control policies are handled by Policy Manager. The result of the

execution of the Business Schema from the clients is mediated by the Policy Manager to

the underlying database.

As the policies are now graph structure therefore the Policy Manager is modified to

support the change in structure of the policies. Policy Manager gets the policies which are

stored in the Policy Server by using the SQL queries. Policy Manager creates the graphs

that are authorized for a particular role.

Access Control Model to Support Orchertration Of CRUD Exprersions 1 2015

After this information is retrieved from the database the Policy Manager creates the

Policy graph. Figure 37 shows the java code which for creating the structure of the Policy

Graph. Nodes of the graph are of type Node-lnfo which is a class shown in Figure 36.

Preparedstatement pstmt = conn.prepareStatement
(Select- Sequerices ID - Position - BusUrl - By - RoleReference) ;

pstmt . setstring (1, role) ;
ResultSet rs = pstmt.executeQuery0;
while (rs.next ()) {

int seq = rs . getInt (1) ;
int nodeN = rs . getInt (2) ;
String beurl = rs . getstring (3) ;
pstmt = conn.prepareStatement(Select - Edges Of - NodeID);
pstmt. setInt (1, çeq) ;
pstmt.setInt (2, nodeN) ;
ResultSet edgesRS = pstmt.executeQuery();

List<String> revokelist = getRevokeListIseq, nodeN);
if (!sequences.contains~ey[seq)) {

sequences .put (seq, new HashMap<> ()) ;I 1
MapcInteger, NodeInfo> seqdata = sequences . get (seq) ;
ArrayList<Integer> edges = new ArrayList<>();

while ledgesRS . next ()) {

edges.add(edgesRS.getInt (1));

I
NodeInf o ni = new NodeInfo (nodeN, beurl, edges, revokelist) ;

ni . isRoo tNode = isRoo t (seq, nodeN) ;
ni.haltNodeCallable= qetNodeCallable(seq,nodeN);
ni . is~erminatingNode=is~eminatingNode (seq, nodeN) ;

seqdata .put (nodeN, ni) ;

Figure 37 Java code for getting the graphs for each Role

At compile time Policy Extractor requests for the policies from the Policy Manager

and Policy Manager responds to the request of the Policy Extractor by writing the

structure of the Policy Graph using PrintWriter. Figure 38 shows java code, where the

Policy Manager writes the information regarding the Policy Graph using PrintWriter object.

Access Control Model to Support Onchestration Of CRUD Exp-ions 1 2015

Map<Integer, MapcInteger, NodeInfo>> sequences =
&
I-

.getSequenceInfoForRole (inputFields [l]) ;

for (int seqID : sequences. keySet ()) {

MapcInteger , NodeInfo> sequence = sequences . get (seqID) ;
for (int nodeID : sequence. keySet ()) {

System. out.println (String. format ("node 8d %d %s",
seqID, nodeID, sequence. get (nodeID) . BSurl)) ;

out .println(String. format ("%d 8d \sw,

seqID, nodeID, sequence. get (nodeID) . BSurl)) ;

out . flush () ;
Figure 38 Java code of Policy Manger's reply to Policy Configurator

4.2.3.2 Extraction and Application of Access Conúal Policies

Policy Extraction:

Policy Extractor sends message to Policy Manager requesting the list of access

contml policies and according to these policies interfaces are generated at compile time

by the policy annotations. Java reflection and annotations are being used to generate the

interfaces. This part is inherited fmm S-DRACA.

As policies are designed in the form of graph stn~dures, the Policy Extractor is now

modified to support these structures. It sends a request to the Policy manager requesting

the infomation about the policies and receives the policies in the form of strings as shown

in Figure 38.

As Policy Extractor get the reply from the Policy Manger, it starts to reconstnict the

Policy graph using the replies. A custom message protocol ensures that the data sent is

correctly interpreted on the Policy Extractor sides, and the same adheres on the Policy

Manager side. Figure 38 shows the java code for the creating the Policy graph from the

replies of the Policy Manager.

After the policy graph is reconstructed the interfaces for the Business Manager can

now be generated by using the java annotation processar and the java reflection. Figure

40 shows the rnethod which is being used to generate the interfaces for the Business

Manager. The StringBuilder object is being used to constnict the interface by appending

the information about the business schema of the node, its child nodes etc.

6 1

Access Control Model to Support Orchestration Of CRUD Expresions I 2015

out.println("getSeqInfo " + role) ;
out . f lush () ;
~tring line;

while (! (line = in. readLine O) . equalsIgnoreCase (''END")) {

string [I resp = line. split (" [I ") ;I
if (resp-length >= 4) {

Integer seq = Integer . parsernt (resp [O]) ;
Integer nodeID = Integer.parseInt(resp[l]);

Integer edge = Integer .parseInt (resp [2]) ;

if (! orqinf o. containsKey (seq)) {

orqinfo .put (seq, new HashMapo ()) ;

1
Map<Integer, NodeInfo> seqdata = orqinfo .get (seq) ;

if (! seqdata . containsHey(nodeID)) {

HodeInfo nodeInfo = new NodeInfo(node1D) ;

nodeInfo. BSurl = "BSerrorURLQ1;
' I

nodeInfo.edges.add(edge);

seqdata .put (nodeID, nodeInf o) ;

) else {

seqdata . get (nodeID) . edges . add (edge) ;
1

1 +.-i.-.- r

Figure 39 Java code to create Policy Graph from the Policy Manager's reply

private static void generateNextMethods(StringBui1der strb, Class c,

Map<Integer, kap<1nteger, NodeInfo>> orqinfo) {

String beurl = c. getpackage () . getName () t I' . 'I + c. getSimpleName () ;
for (Integer seq : orqinfo.keySet ()) {

for (Integer nodeID : orqinfo .get (seq) . keySet ()) {

String gotbeurl = orqinfo . get (seq) . get (nodeID) , BSurl;
if lgotbeurl.e~alialsIgnoreCas~eurl)) {I

strb. append("// : " t orqinfo.get (seq) .get (nodeID) t "\n");

for (Integer edgeID : orqinfo. get (seq) .get (nodeID) . edges) {

strb.append(" public ") ;

strb.append (orqinfo.get (seq) .get (edgeID) .BSurl) .append(" "1 ;
strb.append ("nextBE - G ") . append(seq) . append (" - edge") .append (edgeID) ;

strb. append (I' (iiit crud, ISessioii session) throvs LocalTocls . BTC ~xception; \nT1) ;

Figure 40 Method to generate Interfaces for Business Manager

Access Control Model to Support O r c h e s t i o Of C W D Expressions 1 2015

Policy Application

Business Manager irnplements the interfaces which are generated by the Policy In-

terface generator and provides the client application with the interfaces where the client

can execute the authorized Business Schemas. The Business Managers holds another

module knows as FSM, it is being used to enforce the rules of the presented access con-

trol rnodel.

Business Manager has been rnodified to support the validation based on a Policy

graph. Business Manager's module FSM períorrns the validation of the CRUD expression

that the client is trying to execute by requesting a Business Schema. If the client is not

allowed to the CRUD expression it throws an exception. It's the FSM that enforces the

rules defined by the presented Access Control Model.

public void updaWivmBE8 (Map<Integer, List<NodeInfo>> runningseqs, String beUrl) (

for (Integer seq : runningSeqs.keySet 0) {
if (! runningseqs .get (seq) .get (1astExecutedNode) . isEndNode ()) (

for (Integer nextEdge : runningseqs . get (seq) . get (1astExecutedNode) . edges) {
String edgeBS = getBus (runningseqs . get (seq) . get (nextEdge)) ;

i
setAuthorizedBS (edgeBS) ;

~ist<~tring> values = getRevokeList (runningseqs. get (seq) . get (nextEdge)) ; h g B S e (r 1 . . 1 i besalive .removeAil (values) ;

1

besalive. add (beUrl) ;

1

Figure 41 Java code for the management of Validation of next Business Schema

Figure 41 shows the function which is called when the user request for the next

Business Scherna. This function checks if the last executed node is not an End Node (a

node having no outgoing edges or just a loop to itself) then it gets its outgoing nodes and

puts the target nodes Business Schemas into the list of alive Business schemas.

The validation of a Business Schema execution is done when the client executes

the requested Business Schema. If a client is executing the business scherna of a halt

node then the callable sequence's root nodes' business schernas are inserted into the

63

Access Control Model to Support Orchestration Of CRUD Expresrions I 2015

branches of the active sequence along with the business schemas of the outgoing edges

it has with the current executed node. If the next business schema executed by the client

is the business schema of a callable sequence then this callable sequence is pushed onto

the stack of active sequences. Following the node after the halt node of the same policy

graph makes the previously added policy graphs to be removed from the current branches

of the active sequence. In case of a terminating node, where it was requested a next

business schema (in case there are any outgoing edges) then the branches of the active

sequence is filled with the Business Schema of its target nodes.

A m s Control Model to Support Orchestration Of CRUD Expressions 1 2015

5 Conclusion and Future directions

An atternpt to bring flexibility in the designing of the security policies for controlling the

execution of the CRUD expressions has been made. The introduction of the FSM allows

providing the orchestration of the CRUD expressions. Security rnanagers can design the

policies that can be applied in rnany areas of business world based on the mles defined

for the support of this rnodel. The decision of forrnalizing the mles supported by this rnodel

is based on the real world needs and demands. This rnodel can be used to track the path

that a user follows as the FSM wrnponent knows what the client is executing. This feature

can be applied to many scenarios such as to know on which level majority of users get

stuck while playing a garne and hence the analysts can use this informatiqn to know that

where the problern is, in the design of the game. , I # I r,

.I ' L

Currently the exchange of inforrnation between the Policy Manager, Policy Extractor

and Business Manager is done by writing the data onto the output and input strearns. This

information exchange can only be possible if there is an agreernent to use a specific

message format. In future work this can be modified by using objects for sending and

receiving data.
I 1:u'

The Security Configumtor is a file which is manually written to enter the pol'ides'fnto

the database. This cornponent can be upgraded so that the security rnanager does not

have to write the access control policies one by one. In current structure if need to rnodify

a specific access control policy we need to run the Security Configurator all over againt~

change the policy in the database, this can be avoided.

Access Control Model to Support Orchestration Of CRUD Expressions 1 2015

6 Works Cited

David HAREL. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 231 - 274.

Diogo José Domingues Regateiro. (2014, july). A secure, distributed and dynamic RBAC
for relational applications. Aveiro, Portugal.

Edgar F.Codd. (1990). The Relational Model for Database Management version 2.
Addison-Wesley Publishing Company.

Ravi Sandhu. (2004). A Perspective on Graphs and Access Control Models., (pp. 2-12).
Berlin.

Ravi Sandhu. (2004). A Perspective on Graphs and Access Control Models. In R.
Sandhu, Graph Transformations (pp. 2-12). Rome,ltaly: Springer Berlin
Heidelberg.

SQL Server Mangement Studio. Retrieved November 11, 2015, from Microsoft:
msdn.microsoft.com/en-us/library/msl74173(v=sql.l1 O).aspx

ABAC. (2015, May 6). ATTRIBUTE BASED ACCESS CONTROL (ABAC) - OVERVIEW.
Retrieved November 17, 2015, from NIST: http://csrc.nist.gov/projects/abac/

Anthony J. Bonner. (1997). Transaction Datalog: a Compositional Language for
Transaction Programming. Proceedings of the Sixth International Workshop on
Database Programming Languages, (pp. 303-322). Colorado.

Ausanka-Crues, Ryan. Methods for Access Control:Advances and Limitations. Claremont,
California.

Boniface Hicks, D. K. (2007). Jifclipse: Development Tools for Security-Typed Languages.
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security .
San Diego, Califomia: PLAS.

Brice Morin, Tejeddine Mouelhi,Franck Fleurey,Yves Le Traon,Olivier Barais and Jean-
Marc Jézéquel. (2010,). Security-Driven Model-Based Dynamic Adaptation., (pp.
20-24). Belgium.

Caulfield, T.; Pym, D. (2015). Improving Security Policy Decisions with Models. Security &
Privacy, IEEE (pp. 34 - 41). IEEE.

Chlipala, Adam. (201 0). Ur: Statically-Typed Metaprogramming with Type-Level Record
Computation. PLDI '10 Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (pp. 122-133). New York:
ACM.

Chlipala, Adam. (2015). UrNVeb: A Simple Model for Programming the Web. POPL'I5,
153-1 65.

66

Access Control Model to Support Orchessmion 0f CRUD Expressions I 2015

D.Richard Kuhn, Rarnaswamy Chandramouli,David F.Rerraiolo, Ravi Sandhu,Serban
Gavrila. (2001). Propesed NIST Standards for Role Based Access Control. ACM
Transactions On infroamtion and system security, 224-274.

Dae-Kyoo Kim, Pooja Mehta, Priya Gokhale. (2006). Describing Access Control Models
as Design Patterns Using Roles. Proceedings of the 2006 conference on Pattem
languages of programs.

David F. Ferraiolo and D. Richard Kuhn . (1992). Role-Based Access Controls. National
Computer Security Conference. baltirnore.

Il-Yeol Song, Ki Jung Lee. (2007). Developing State Diagrarns Using a State
Specialization Technique. 86-95.

Jeff Zamett,Mahesh Tripunitara,Patrick Lam. Role-based access control (RBAC) in Java
via proxy objects using annotations. Proceeding of the 15th ACM symposium o n
Access control models and technologies - SACMAT '10.

Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and Todd Millstein. (2009). Fine-
Grained Access Control with Object-Sensitive Roles.

Jgrapht. Retrieved november 12, 2015, from Jgrapht Organization: http://jgrapht.org/

Jif: Java + information flow. Retrieved November 22, 2015, from
http://www.cs.comell.edu/jif/

Kangsoo Jung, Seog Park. (2013). Context-Aware Role Based Access Control Using User
Relationships. Intemational Joumal of Computer Theory and Engineering.

Lars E. Olson, Carl A. Gunter, and P. Madhusudan. (2008). A Formal Framework for
Reflective Database Access Control Policies. ACM.

Manogna Thimma, Tsam Kai Tsui, Bo Luo. (2015). HyXAC: Hybrid XML Access Control
Integrating View-Based and Query-Rewriting Approaches. IEEE Tmnsactions on
Knowledge and Data Engineering,, 2190 - 2202.

Netbeans IDE features. Retrieved November 12, 2015, frorn Netbeans Org:
https://netbeans.orgtfeatures/index. html

Neward, Ted. IBMDeveloperWorks. Retrieved November 22, 2015, from IBM:
http://www.ibm.com/developerworks/library/j-5thingsll

Niklas Broberg, Bart van Delft,David Sands. (2013). Paragon for Practical Programming
with Inforrnation-Flow Control. In B. v. Niklas Broberg, Programming Languages
and Systerns (pp. 21 7-232). Springer Internafinal Publishing.

Oracle Java Documentation. Retrieved November 12, 201 5, from Oracle:
https://docs.oracle.corn/javase/tutorial/erial. html

Access Control Model to Support Orchestration Of CRUD Expressions I 2015

Oracle. Java Tuitorials. Retrieved November 22, 2015, from Oracle:
https://docs.oracle.com/javase/tutorial/jndi/objects/serial. html

Óscar Mortágua Pereira, Diogo Domingues Regateiro, Rui L. Aguiar. (2014). Extending
RBAC model to Control Sequence of CRUD Operations. Int. Conf. on Software
Engineering and Knowledge Engineering. Vancouver.

Óscar Mortágua Pereira, Diogo Domingues Regateiro, Rui L. Aguiar. (2014). Role-Based
Access Control Mechanisms Distributed, Statically Implemented and Driven by
CRUD Expressions. IEEE International Symposium on Computers and
Communications. Madeira.

Óscar Mortágua Pereira, Diogo Domingues Regateiro, Rui L. Aguiar. (2015). Secure,
Dynamic and Distributed Access Control Stack for Database Applications. SEKE
2015 - Intl. Conference on Software Engineering and Knowledge Engineering.
Pittsburgh.

Paragon. Retrieved November 201 5, from
http://www.cse.chalmers.se/research/group/paragon/

Pierangela Samarati, Sabrina de Capitani di Vimercati. (2001). Access
Control:Policies,Models,Mechanisms., (pp. 137-1 96).

Ravi S.Sandhu, Edward J.Coyne, Hal L.Feinstein and Charles E.Youman. (1995).
Role-Based Access Control Models.

Rodica Tirtea, Demosthenes Ikonomou,Slawomir Gorniak,Panagiotis Saragiotis. (201 1).
Survey of accountability, trust, consent, tracking, security and privacy mechanisms
in online environments. European Union Agency for Network and Information
Security.

ROGER NEEDHAM, RICK MAYBURY. (2008). Access Control. (pp. 93-128). Wiley.

S. Jha, O. Sheyner , J. Wing. (2002). Two Formal Analyses of Attack Graphs. Computer
Security Foundations Workshop, 2002. Proceedings. 15th IEEE (pp. 49 - 63).
IEEE.

S. Sumathi, S. Esakkirajan. (2007). Fundamentals of Relational Database Management
System. New York: Springer Berlin Heidelberg.

S. Sumathi, S. Esakkirajan. (2007). Transaction. In S. E. S. Sumathi, Fundamentals of
Relational Database Management Systems (pp. 319-326). Berlin: Springer-Verlag.

Samarati, Ravi S.Sandhu Pierangela. (1994). Access Control: Principle and Practice.
Communication Magazine IEEE, 40-48.

The Java Tuitorials. Retrieved November 22, 2015, from Oracle:
https://docs.oracle.com/javase/tutorial/java/annotations/index.html

Accern Control Model to S~pport Orchestmtion Of CRUD Expremiom (2015

Type annotations and Pluggable type Systems. Retrieved November 22, 2015, from
Oracle:
https://docs.oracle. wm/javase/tutoriaI/java/annotations/type~annotations. html

Vincent C. Hu, David F. Ferraiolo , D. Rick Kuhn. (2006). Assessment of Access Control
Systems. Gaithersburg,: National Institute of Standards and Technology.

Vincent C. Hu, David Ferraiolo,Rick Kuhn,Adam Schnitzer,Booz Allen Hamilton,Kenneth
Sandlin,Robert Miller,Karen Scarfone. (2014). Guide to Attribute Based Access
Control (ABAC) Definition and Considerations. 'NIST.

Virgil D. Gligor, Setban I. Gavrila,David Ferraiolo. (1998). On the Formal Definition of
Separation-of-Duty Policies and their Composition. IEEE Symposium on Security
and Privacy. Oakland, Califomia.

Yanjie Zhou, Li Ma , Min Wen. (2015). A Multi-level Dynamic Access Control Model and
Its Formalization. Information Science and Control Engineering (ICISCE), 2015
2nd Intemational Conference (pp. 23 - 27). IEEE.

RIA – Repositório Institucional da Universidade de Aveiro

Estes anexos só estão disponíveis para consulta através do CD-ROM.

Queira por favor dirigir-se ao balcão de atendimento da Biblioteca.

Serviços de Biblioteca, Informação Documental e Museologia

Universidade de Aveiro

