
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Vasco Alexandre
Maia dos Santos

Infraestrutura Segura e Descentralizada para a
Internet das Coisas

Secure Decentralized Internet of Things
Infrastructure

“The walls between art and engineering exist only in our minds”

— Theo Jansen

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Vasco Alexandre
Maia dos Santos

Infraestrutura Segura e Descentralizada para a
Internet das Coisas

Secure Decentralized Internet of Things
Infrastructure

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2016

Vasco Alexandre
Maia dos Santos

Infraestrutura Segura e Descentralizada para a
Internet das Coisas

Secure Decentralized Internet of Things
Infrastructure

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Diogo
Nuno Pereira Gomes, Professor auxiliar do Departamento de Eletrónica, Te-
lecomunicações e Informática da Universidade de Aveiro, e do Doutor João
Paulo Silva Barraca, Professor auxiliar do Departamento de Eletrónica, Tele-
comunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor André Ventura da Cruz Marnoto Zúquete
professor auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutora Ana Cristina Costa Aguiar
professora auxiliar convidada da Faculdade de Engenharia da Universidade do Porto

Prof. Doutor Diogo Nuno Pereira Gomes
professor auxiliar da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Gostava de agradecer, em primeiro lugar ao Professor Doutor Diogo Gomes
e ao Professor Doutor João Paulo Barraca pela oportunidade de integrar o
ATNOG e trabalhar nesta dissertação, bem como por todo o apoio dado ao
longo do mestrado.

Queria também deixar um grande agradecimento para os meus colegas
de casa Joel Pinheiro, José Sequeira, Miguel Vicente e Rui Monteiro pelas
discussões e momentos de convívio durante os últimos cinco anos.

Aproveito ainda para agradecer aos meus amigos André Alves, André
Jerónimo, Andreia Jacinto, Daniela Tomás, David Fontes, Henrique Cruz,
João Abel, João Leitão, José Mendes, José Rosa, Miguel Campos, Miguel
Valério, Rafael Saraiva e Ricardo Martins pelo apoio e amizade.

Por fim, um agradecimento especial aos meus pais, António Santos e Célia
Santos, bem como à minha irmã Diana Santos, por toda o apoio e motivação
que me deram ao longo do meu percurso académico. A todos dedico esta
dissertação.

Palavras Chave Internet das coisas, Infraestruturas descentralizadas, DHT, P2P, Privacidade,
Segurança.

Resumo Apesar de várias infraestruturas para IoT terem sido implementadas nos úl-
timos anos, nenhuma delas está realmente preparada para ser utilizada a
uma escala global, onde a escalabilidade e a tolerância a falhas são um
requisito essencial. Esta dissertação apresenta um conceito alternativo de
infraestruturas para a IoT, cujo foco consiste em evoluir a tradicional arquite-
tura centralizada, normalmente utilizada por uma entidade única, para uma
arquitetura descentralizada, compatível com múltiplas entidades e casos de
uso. Propomos uma infraestrutura auto-configurável, dinâmica e orientada à
comunidade, construída em cima de uma rede Peer-to-Peer estruturada, ba-
seada numa Distributed Hash Table. Além disso, a infraestrutura proposta é
suficientemente flexível para permitir que cada peer da rede possa ativar dife-
rentes serviços, mediante as suas capacidades. Por outro lado, um conjunto
de protocolos de comunicação é providenciado, de modo a suportar dispo-
sitivos heterogéneos, bem como o acesso aos dados e a sua transmissão e
persistência. Também é um foco importante desta proposta a disponibiliza-
ção de mecanismos que garantam a privacidade e segurança da informação
durante a sua transmissão e o seu armazenamento.

Keywords Internet of Things, Decentralized Infrastructures, DHT, P2P, Privacy, Security.

Abstract Despite many IoT Infrastructures having been implemented in recent years,
none of them is truly prepared for a global deployment, where failure toler-
ance and scalability are an essential requirement. This dissertation presents
an alternative concept for IoT Infrastructures, which focuses on enhancing
the traditional centralized architecture, usually operated by a single entity, into
a decentralized architecture featuring multiple entities and use cases. We
propose a dynamic, community driven and self-configurable infrastructure on
top of a structured Peer-to-Peer network, based on a Distributed Hash Table.
Moreover, the proposed infrastructure is flexible enough to allow each peer of
the overlay to enable a set of different services, according to its capabilities.
In addition, a set of communication protocols is provided in order to support
heterogeneous devices, as well as data access, streaming and persistence. It
is also an important focus of our proposal to have mechanisms that guarantee
the privacy and security of the information flow and storage.

Contents

Contents . i

List of Figures . v

List of Tables . vii

Listings . ix

Acronyms . xi

1 Introduction . 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Dissertation Outline . 4

2 Internet of Things (IoT) . 5
2.1 Concept and Vision . 5
2.2 Scenarios . 6
2.3 Wireless Sensor Network (WSN) . 7
2.4 Machine-to-Machine (M2M) Communications 8

2.4.1 Representational state transfer (REST) 9
2.4.2 MQ Telemetry Transport (MQTT) 9
2.4.3 Constrained Application Protocol (CoAP) 10
2.4.4 Comparative Summary . 10

2.5 Infrastructure . 11
2.5.1 Vertical Solution . 11
2.5.2 Centralized Horizontal Solution . 12
2.5.3 Decentralized Horizontal Solution . 16

2.6 Persistence . 18
2.7 Privacy and Security . 19

3 Distributed Systems . 21
3.1 Architectures . 21

3.1.1 Centralized Architectures . 21
3.1.2 Decentralized Architectures . 22

3.2 Distributed Hash Table (DHT) . 24
3.2.1 Chord . 24

i

3.2.2 Kademlia . 25
3.2.3 Pastry . 26
3.2.4 Tapestry . 27
3.2.5 Content Addressable Network (CAN) 28
3.2.6 Comparative Summary . 29

3.3 Security . 31
3.3.1 Hierarchical Certification . 32
3.3.2 Web of Trust (WoT) . 32
3.3.3 Blockchain-based PKI . 33

3.4 Promising Decentralized Infrastructures . 33
3.4.1 Ethereum . 33
3.4.2 InterPlanetary File System (IPFS) 34
3.4.3 ZeroNet . 34

4 Decentralized IoT Infrastructure 37
4.1 Problem Statement . 37
4.2 Functional Requirements . 38
4.3 Non-functional Requirements . 40
4.4 Design Principles . 42

4.4.1 Overlay Network . 43
4.4.2 Management Interface . 45
4.4.3 Data Interfaces . 50
4.4.4 Data Persistence . 54

4.5 Peer Architecture . 54

5 Prototype Implementation and Technologies 57
5.1 Architecture . 57
5.2 Twisted Application Communication . 59

5.2.1 REST Application Programming Interfaces (APIs) 60
5.3 Register Server . 61
5.4 Deployment and Integration . 61

5.4.1 Configuration and Setup . 62
5.4.2 Application Binding . 63

6 Evaluation and Results . 65
6.1 Sensor Simulators . 65

6.1.1 Software Specification . 65
6.1.2 Data Model . 66

6.2 Web Application . 67
6.2.1 Architecture . 67
6.2.2 Features and Graphical User Interface 68

6.3 Deployment Scenario . 73
6.3.1 Network Deployment . 73
6.3.2 Performance Evaluation . 74
6.3.3 Communication Protocols Evaluation 76
6.3.4 Data Security Evaluation . 77
6.3.5 Final Overview . 79

7 Conclusions . 81
7.1 Final Considerations . 81

ii

7.2 Future Work . 82

References . 83

Appendix A: Infrastructure’s Peer REST API 89

Appendix B: Register Server’s REST API 97

Appendix C: Gateway Peer Configuration 102

Appendix D: Gateway Peer Configuration File 104

iii

List of Figures

1.1 Infrastructure shared across the globe. 3

2.1 Devices growth prediction. 6
2.2 Wireless Sensor Network. 7
2.3 Vertical Solution for the IoT. 11
2.4 The IrisNet architecture. 12
2.5 Horizontal Solution for the IoT. 13
2.6 The Sensor Andrew architecture. 14
2.7 High level architecture for the Service oriented framework for IoT. 14
2.8 The OpenMTC architecture. 15
2.9 Overview of the WebDust Architecture [40]. 16
2.10 Overview of the ADEPT Architecture [43]. 17

3.1 Wireless Sensor Network. 22
3.2 Peer-2-Peer Model . 23
3.3 Chord Topology organization. 24
3.4 Kademlia Topology organization. 26
3.5 CAN 2-d topology organization. 28

4.1 Network of the infrastructure. 38
4.2 Use case Scenario. 39
4.3 Process for a new node get in the overlay. 44
4.4 Messages exchange in the overlay network . 45
4.5 Sign up a user in the infrastructure. 47
4.6 Log in a user, in order to request its data to the infrastructure. 48
4.7 Bind sensor to a pseudonym. 49
4.8 Share data from a sensor with other entity. 50
4.9 Sensor data to be inserted in the DHT. 52
4.10 Get data history from the distributed database. 53
4.11 Architecture for a Decentralized IoT Peer. 55

5.1 Gateway Peer prototype architecture. 58
5.2 Kademlia API Interactions. 59
5.3 Register Server prototype architecture. 61

6.1 HTTP Sensors Simulator. 66
6.2 Web Application. 67
6.3 Log in interface. 68

v

6.4 Sign up interface. 69
6.5 Main interface of the dashboard. 69
6.6 Sensor management Interface. 70
6.7 Share Data Interface. 71
6.8 Main interface of the user. 71
6.9 Sensor management Interface. 72
6.10 Data History of a Sensor Interface. 72
6.11 Prototype Scenario Diagram. 73
6.12 Percentage of CPU usage. 75
6.13 Percentage of Memory in Peers. 75
6.14 Response time of HTTP messages over time. 76
6.15 Response time of MQTT messages over time. 77
6.16 InfluxDB query for bound sensor. 78
6.17 Sensor data request. 78
6.18 Sensor data response. 79

1 Documentation Resume. 89
2 Method for getting the last received data of a sensor. 90
3 Method for getting the data history of a sensor. 90
4 Method for publishing new data in the Infrastructure. 91
5 Method for accepting a share request. 91
6 Method for getting the access list of a sensor. 92
7 Method for acknowledging a data sharing refusal. 92
8 Method for acknowledging a data unsharing. 93
9 Method for binding a new sensor. 93
10 Method for getting the private data of the user, when logged in. 94
11 Method for logging a user in the infrastructure. 94
12 Method for refusing a share request. 94
13 Method for sharing data of a sensor. 95
14 Method for finishing the sign up process by spreading the user’s private credentials

through the overlay. 95
15 Method for initiating a sign up process. 96
16 Method for unsharing sensor data. 96

17 Documentation Resume. 97
18 Method for getting a list o bootstrapping peers. 97
19 Method for getting the self-signed certificate of the Certification Authority. . . . 98
20 Method for getting the data a specific peer. 98
21 Method for getting the public key of a peer. 98
22 Method for registering a peer on the Certification Authority. 99

vi

List of Tables

3.1 DHT comparison summary (1). 30
3.2 DHT comparison summary (2). 30
3.3 DHT comparison summary (3). 30
3.4 DHT performance comparison. 31

4.1 Use cases description. 40

6.1 Virtual Machines’ Specifications. 74
6.2 RaspberryPis’ Specifications. 74

vii

Listings
1 User Data Model for DHT . 46
2 Sensor Meta-data Model for DHT . 48
3 Sensor Data Model for DHT . 51
4 Menu output for gateway script. 62
5 Sensor object from JSON file. 66
6 Format of data sent from the simulator. 67
7 Output for configuring a gateway with all services enabled. 102
8 JSON Configuration File. 105

ix

Acronyms

ADEPT Autonomous Decentralized
Peer-to-Peer Telemetry

API Application Programming Interface

CA Certification Authority

CAN Content Addressable Network

CoAP Constrained Application Protocol

DBMS Database Management System

DDoS Distributed Denial of Service

DNS Domain Name System

DHT Distributed Hash Table

HMAC Hash-based Message Authentication
Code

HTTP Hypertext Transfer Protocol

IEEE Institute of Electrical and
Electronics Engineers

IoT Internet of Things

IP Internet Protocol

IPFS InterPlanetary File System

IV Initialization Vector

JSON JavaScript Object Notation

M2M Machine-to-Machine

mDNS Multicast Domain Name System

MQTT MQ Telemetry Transport

P2P Peer-to-Peer

PGP Pretty Good Privacy

PKI Public Key Infrastructure

PoC Proof-of-Concept

QoS Quality of Service

REST Representational state transfer

RPC Remote Procedure Calls

SDK Software Development Kit

SPO Small Programmable Object

TCP Transmission Control Protocol

TSDB Time series Database

UDP User Datagram Protocol

URI Uniform Resource Identifier

W3C World Wide Consortium

WoT Web of Trust

WSN Wireless Sensor Network

xi

chapter 1
Introduction
The continuous evolution of wireless and mobile communications has allowed an ever increasing number
of devices, such as computers, smartphones and daily items (for example, air conditioning and heating
systems, or luminaries), to not only being remotely managed, but also to be connected to the Internet.
That enhancement, together with the technological evolution of sensors, resulted in the development of
the Internet of Things (IoT). Although the term is relatively recent, this concept has the same basis
as the concept of Ubiquitous Computing.

Nowadays, the IoT is becoming an important subject in the technology industry, as it can be
seen in the headline news of popular media 1 2 3. Moreover, it is bringing into existence exceptional
opportunities for a considerable number of new use cases, which promise to enhance our quality of life.
Therefore, the approaching wave in the era of computing will be outside the realm of the traditional
desktop.

In Computer Science, the IoT is a concept in which computing is made to appear everywhere, in
order to improve the way the world works. IoT focuses on a wide range of topics, including Distributed
Computing and Sensor Networks. Several technologies serve as the building blocks of this new paradigm,
such as Wireless Sensor Network (WSN) and Machine-to-Machine (M2M) communications. Finally,
it has an infinitude of application domains, such as health care, logistics, automotive, environmental
monitoring, and many others.

Above all, the IoT aims to allow several heterogeneous devices to be sensed and controlled remotely
through network infrastructures. These devices are locatable and addressable on the Internet, which
allows them to communicate with other devices, but frequently IoT Gateways. As a result of the
communications between the physical world and computers, it is possible to both enhance the efficiency
and accuracy of things, as well as to decrease costs.

Technology advances so rapidly that it is difficult to understand what will make a remarkable
impact on human life. There are some breakthroughs that have potential to make a difference, such as
the IoT. Nonetheless, it raises significant challenges that could stand in the way of realizing its potential
benefits. In conferences, reports and news articles [1]–[3], it has been discussed the potential impact of

1http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10
2http://cloudtweaks.com/2016/04/growing-popularity-iot/
3http://betanews.com/2016/01/19/internet-of-things-rising-popularity-will-increase-security-

risks-business-costs/

1

the “IoT Revolution”. Some observations refer to the IoT as a revolutionary fully-interconnected
“Smart” world of progress, efficiency, and opportunity, with the potential for adding billions in value
to industry, as well as to the global economy [1]. Others refer that it represents a darker world of
surveillance, privacy and security violations, as well as consumer lock–in [2], [3].

Accordingly, critical problems have to be solved, in order to achieve the IoT success. It is crucial
to build an open and uncensored network infrastructure, which has to be capable of interconnecting all
types of IoT business processes, as well as to be efficient, secure and scalable. This way, each business
model may bind their WSN to the infrastructure, without any network and privacy concerns.

Recently, developers and manufacturers have created a considerable number of different IoT
infrastructures (either closed or not). This allowed the communication between their own devices and
applications, without concerning with the devices’ interoperability [4]. However, this advancement
in the architecture of IoT platforms resulted in the appearance of the so called silos [5]. A data silo
consists of a data repository, which is under the control of a single entity. It may lead to inflexible
solutions, as well as to security and privacy problems.

Moreover, thanks to the interactions among machines without human intervention, the amount of
information that flows in this networks is increasing significantly. Although each device does not send
data to the infrastructure in a data stream, and the data sent each time is relatively small, the fact
that there might be millions of sensors sending data at the same time, gives the sense that the network
is being crossed by large streams of data.

Therefore, the infrastructures have to be flexible and scalable enough to accommodate such a level
of diversity, concerning both the users and objects, as well as to support billions of smart objects,
producing massive amounts of data. In addition, it is fundamental to preserve privacy and provide
secure means for data sharing, in order to accomplish a secure and reliable infrastructure. However,
with billions of devices being connected together, an infinitude of vulnerabilities will inevitably be
uncovered. This results in the devices becoming vulnerable to exploits. Furthermore, IoT is present in
many applications and industry use cases, each having its own security requirements but relying in the
same fundamental IoT technologies. Therefore, designing security that applies to all use cases is an
imposing task.

The current solutions rely on centralized architectures and not so open environments, in reality
leading to the Internet of Platforms [6]–[8]. With this dissertation, we propose a new concept to truly
enable an organically growing and secure Internet of Things.

1.1 objectives
Traditional IoT infrastructures are built on top of a centralized architecture, which obtains

information from sensors located in data retrieval networks, and provide it to data consumers. Therefore,
these centralized platforms control the whole information flow. On the other hand, taking into
consideration a distributed approach, entities at the edge of the network would exchange information
and collaborate with each other in a dynamic way, providing a self-organized and scalable infrastructure.

Our work aims at taking a side step from current trends, in order to avoid the many issues
created by a platform oriented to the Internet growth. In particular, we consider an Internet where
an high number of loosely coupled devices, owned by users, or even Telecom operators, provide a
decentralized infrastructure, which is responsible for interconnecting all IoT platforms, without the

2

need for any central entity. It focuses on storing and securing data at a global scale, instead of in
a set of central entities. Accordingly, in a distributed approach, entities at the edge of the network
exchange information and collaborate with each other in a dynamic way, providing a decentralized,
self-organized and scalable operation.

We specifically aim at avoiding centralized data storage, and centralized data processing, even when
considering Cloud infrastructures. We particularly consider that data should be strongly encrypted and
only accessible to their rightful owners, or someone else with the appropriate authorization. Scalability
and organic growth, by the addition of new sensors and systems, are also mandatory. This will have
the potential of empowering local businesses and citizens to provide the services required for others to
integrate their devices. In the end, we envision that everything will be connected to a global net, acting
as a secure common data repository and communication channel, which we see as the real Internet of
Things. This approach resides in a decentralized infrastructure that may be used across the globe for
a diversity of business processes, each one with its own requirements, as illustrated in Figure 1.1.

Figure 1.1: Infrastructure shared across the globe.

All things considered, the centralized approaches have some properties that do not match the IoT
philosophy. Some crucial challenges are scalability, fault tolerance and data silos. Accordingly, this
dissertation proposes to solve the above challenges relying on a decentralized architecture, based on a
DHT. Therefore, taking into account the characteristics of a decentralized architecture [9], we intend
to design an efficient, scalable and secure infrastructure, which could be used by a wide range of IoT
business processes, preserving the entities privacy.

1.2 contributions
The proposed and implemented solution contributes to the evolution of the IoT infrastructures.

Essentially, it provides a new vision for scaling and securing this type of platforms.
The work inherent to this dissertation originated an article entitled "Secure Decentralized

IoT Infrastructure", which was submitted to the Wireless Days 2017, an international conference
co-sponsored by IEEE Communications Society and IFIP.

3

1.3 dissertation outline
This document is organized in 6 chapters, being the first chapter the already presented introduction.

The next chapters of this dissertation are organized in the following sequence:

• Chapter 2: introduces the necessary background information about the IoT state of the art,
regarding its scenarios, protocols, databases and architectures.

• Chapter 3: gives an overview of distributed systems architectures, as well as how to implement
secure distributed systems. Additionally, several decentralized solutions are presented, in order
to analyze the potential of these solutions;

• Chapter 4: provides a depth description of the problem that this dissertation aims to solve, as
well as the requirements of the proposed solution. Moreover, the decisions and principles used
for designing the solution are specified;

• Chapter 5: presents the implemented prototype, based on the designed solution previously
depicted. Shortly, the software architecture and its communications are described, as well as
the implemented Register Server;

• Chapter 6: provides an overview of the obtained results, as well as a discussion concerning the
performance and security of the proposed solution;

• Chapter 7: sums up the outcomes of this dissertation, along with relevant conclusions and
future work that may enrich this work.

4

chapter 2
Internet of Things (IoT)

At the moment, the IoT is becoming a popular term of discussion and research. However, connecting a
few embedded systems to the Internet is not sufficient to achieve its tremendous potential. Therefore,
before confronting any other problems, it is important to define in this chapter, what is this IoT, as
well as its vision and how it can be explored. Afterwards, it is presented a brief description of the
state of the art for the IoT data flow (generation, transmission and persistence), as well as a detailed
analysis of the IoT infrastructures state of the art. Finally, the state of the art regarding Privacy and
Security in the IoT is described.

2.1 concept and vision
The term “Internet of Things” (IoT) was used for the first time in 1999. It was used by a British

technology pioneer called Kevin Ashton, in order to describe a system in which objects could be
connected to the Internet [10]. This concept promised to transform the way we work, live and play.

At the present time, the Internet of Things is an emergent topic of technical, social, and economic
significance. It illustrates a variety of scenarios in which Internet connectivity and computing capability
extends to a diversity of objects, sensors and devices, allowing these objects to produce, exchange and
consume data.

The enhancement of technology is providing more processing power, as well as storage and battery
capacity, at a relatively low cost. This trend is allowing the production of small electronic devices,
which may be embedded in common objects. As a result, smart objects are getting to the market and
the IoT is showing up is potential to the consumers.

Above all, the IoT illustrates the vision of a network of devices that collect data from an environment
and share it through the Internet. This collected data can be processed, with the objective of trans-
forming it into valuable information. Moreover, devices communicate through M2M communications,
allowing the information to flow from machine to machine with no human intervention.

As the number of Internet-connected devices grows, the amount of traffic generated is presupposed
to increase significantly. For instance, Cisco estimates that the amount of M2M connections will

5

increase from 24% of all connected devices in 2014 to 43% in 2019[11]. Consequently, the quantity of
generated data in the context of the IoT will considerably grow.

Although they differ about predictions, most technology observers admit that billions of additional
devices will be connected to the Internet in the near future. As a result of these numbers around IoT,
numerous studies have been published in the recent years, which focus on the IoT potential and trends.

In a study [12] conducted by John Greenough, a Senior Research Analyst for Business Insider
(American business, celebrity and technology news website) it was predicted that by 2020, there will be
24 billion IoT devices. The following Figure 2.1 aims to illustrate the expected growth of IoT devices.

Figure 2.1: Devices growth prediction.

Oracle published a business outlook study [13], which estimates that the value of the global IoT
market will be $14.4 trillion by 2022 [14]. Additionally, it is anticipated that the IoT will provoke
a tremendous impact in the amount of digital data that needs to be stored [15]. Accordingly, it is
expected that it will generate 4.4 trillion GB of data by 2020.

2.2 scenarios
Unquestionably, the IoT vision offers a considerable set of opportunities to companies, as well as

users, in a wide range of contexts. Therefore, this paradigm has an infinitude of application domains,
such as the following ones.

The concept of "Smart Cities" has attracted considerable attention and investments recently,
aiming to improve the citizens’ quality of life and the socio-economic development [16]. Accordingly,
there are several use cases regarding this topic, such as managing the rubbish levels in containers
aiming to optimize the trash collection routes, monitoring parking spaces in order to determine the
available parking spaces in the city, supervising the traffic congestion in the interest of improving the
driving routes, among others.

Taking into account the enhancement of efficiency and security of houses, the "Smart Homes"
approach has also appeared [17]. Therefore, there are some use cases in this field, such as intrusion
detection systems, monitoring the energy and water consumption, remote control of devices in order to
avoid accidents, as well as save energy and time, and so forth.

Considering that the Agriculture is an industry closely related to the welfare and the people’s
livelihood, it is also an important application domain for the IoT [18]. It is possible to control micro-

6

climate conditions to maximize the production, as well as its quality, study the weather conditions in
fields in order to enhance forecasts, enhance the wine quality through the monitoring of soil water in
vineyards, with a view to control the amount of sugar in grapes, as well as grapevine health, among
others.

Recently, environment monitoring has also received much attention, focusing on using scientific
and engineering principles to enhance the environmental conditions. This area has experienced a very
rapid development thanks to the IoT rise [19]. Control air pollution in factories, as well as the pollution
emitted by cars, fire detection through the monitoring of combustion gases, snow level measurements in
real time, in order to predict avalanches, are some examples of IoT use cases regarding the environment
monitoring.

The IoT may also provide several benefits in the Health-care domain [20], such as patients
surveillance through the monitoring of patients, sportsmen care through vital signs monitoring in high
performance centers, identification and authentication of people, automatic data collection and sensing,
among others.

In a final analysis, it has to be noticed that each scenario has unique requirements, which must be
taken into account. For instance, disaster predictions have real-time requirements, while in tracking
scenarios, security and reliability are vital. Instead, scenarios like Smart Agriculture do not have
substantial constraints regarding real-time and security. Therefore, the IoT requires an infrastructure
able to handle different scenarios’ requirements and paradigm modifications.

2.3 Wireless Sensor Network (WSN)
One of the key concepts associated with the IoT is the concept of WSN. A WSN [21] is a network

consisting of a large number of autonomous nodes (devices), cooperating in order to collect, process,
analyse and propagate valuable data. This data is sent through the network to a main location, i.e.
Gateway Sensor Node. An example of a WSN is depicted in Figure 2.2.

Figure 2.2: Wireless Sensor Network.

A sensor is a hardware device that generates measurable response signals when a physical condition
changes, such as temperature, pressure and location. This analog signal is digitalized by a analog-
to-digital converter and sent to an embedded processor for being processed. Therefore, each node is

7

usually equipped with one or more sensors, as well as, a microcontroller, a wireless transceiver and an
energy source (usually a battery). Thanks to the flexibility given by wireless networks, nodes can be in
any location within a range, of one another. Despite the word “sensor” in the name, nodes can also be
actuators, interacting with the physical world based on decision processes.

In the IoT context, it is possible to think in a WSN as a virtual layer where the information about
the world can be accessed by a computational system [22]. Accordingly, combining the IoT and WSN
has benefits regarding the heterogeneous environment inherent to the IoT, since a group of devices
communicate with a single gateway, instead of directly with the infrastructure. Consequently, sensors
may communicate with the gateway using a protocol within a set of different communication protocols,
as described in the following section.

Finally, it is important to notice that the majority of the IoT devices are constrained in memory,
CPU and power capacity. Therefore, it is crucial to have this characteristic in mind when developing
software for the IoT.

2.4 Machine-to-Machine (M2M) communications
In the recent history of technology, the evolution of cellular networks allowed the creation of a

new paradigm, which consists on connecting smartphones, tablets, sensors and wearables in a smart
environment. Therefore, the evolution of M2M is providing the opportunity to create a new concept of
smart environment, where simple devices like sensors and actuators are also connected through the
Internet.

M2M Communications consists of a set of mechanisms for allowing a direct communication between
devices through a certain channel, without human intervention. These mechanisms include algorithms
to handle networked devices and to transmit data. The evolution of M2M results mainly from the
technological progress in the sensors area, as well as the decreasing costs of semiconductor components.

Just like the IoT, this is not a new concept. It is already common to have communications between
machines without human intervention, such as routers’ and servers’ communications. However, in the
context of the IoT, machines not only are able to communicate with each other, but they are also
capable of understanding the information received. This capacity provides a wide range of opportunities,
as it is possible to trigger certain actions in real time, according to the data received [23].

As previously stated, WSNs are composed by a set of sensor nodes and a gateway, where sensor
nodes must communicate with the gateway to publish its data, that is, M2M communications between
sensor nodes and the gateway. In addition, these nodes operate on constrained devices, and consequently
require low-bandwidth and energy efficient protocols for data transmission.

Considering a global deployment of a IoT infrastructure, which is composed by heterogeneous
devices around the globe, the infrastructure must be able to communicate with a set of different
protocols. The most used protocols for the IoT are REST, MQTT and CoAP, which are described
next [24], [25].

8

2.4.1 Representational state transfer (REST)
The IoT intends to build a deployment where devices can communicate with each others using the

Internet. Taking into account the adoption of REST communications in the World Wide Web, it is
fundamental for the IoT gateways to support this type of communication. As a result, web services
based on REST ease the IoT deployment and management.

REST is a software architectural style, which is built on top of the HTTP and, consequently, relies
on a client-server architecture. Accordingly, this protocol uses the request-response model wherein a
client sends a HTTP request to the server, the server handles the client request and returns a HTTP
response message to the client. The response may be characterized by its code, which can indicate the
completion of the request, as well as an error that occurred. Moreover, it offers a reliable transport and
flow control, so that the sender cannot overflow the receiver, and it supports the use of a structured
data type, such as JSON or XML.

This type of communication is characterized by stateless interactions between a server and a set of
clients. Accordingly, the interactions between both parties are oriented to a particular resource, which
has a specific state and a unique address. Thanks to the central server that handles clients’ requests,
the data processing may be executed in the server, instead of on the clients. As a result, the clients
efficiency increases significantly.

In the context of the IoT, a sensor can be the client that reports data changes to a specific server,
using a HTTP POST request. Thus, each smart device has to send its data through a specific URI,
which contains its identifier. This protocol matches perfectly several use cases of the IoT. However, it
does not satisfy the real time requirements of some business processes [24].

2.4.2 MQ Telemetry Transport (MQTT)
MQTT is an asynchronous messaging protocol that was introduced by Andy Stanford-Clark and

Arlen Nipper in 1999 and was standardized in 2013 at OASIS [26]. It intends to connect embedded
devices and networks with applications and middlewares. In addition, it consists of a lightweight publish-
subscribe messaging protocol designed for resource-constrained devices and M2M communications [25],
[26]. Finally, it is built on top of TCP/IP protocol.

This protocol is based on a publish-subscribe pattern, in order to provide transition flexibility
and simplicity of implementation, as well as one-to-many message distribution. Moreover, MQTT is
composed by three components, a subscriber, a publisher and a broker. Thus, an interested entity may
register as a subscriber for a specific set of topics, with a view to be informed by the broker when a
publisher publishes data to the topics previously subscribed. Regarding the IoT, a device publishes
MQTT messages to the network. Those messages contain a topic, which generally consists of a device
identifier, and the data generated by the sensor. Applications and services may subscribe sensors, in
order to receive their generated data.

A MQTT [26] message is composed by a header and a payload. The header has a fixed length of 2
bytes and contains the protocol name and version, several flags, message type, among others. As a result,
each type of MQTT message has an associated message type, such as CONNECT, DISCONNECT,
PUBLISH, SUBSCRIBE, among others. The payload is responsible for the content of the message.

Regarding Quality of Service (QoS) for the transmission of messages, MQTT has three types of
QoS control [26]. Firstly, QoS level 0 (at most once delivery) may be used when message loss can
occur. Secondly, QoS level 1 (at least once delivery) should be adopted if message loss can not occur,

9

but message duplicates may exist. Finally, QoS level 2 (exactly once delivery) has to be used when it
is intended that messages always arrive to the destination, without any duplicate.

Considering the devices with limited resources that compose the IoT, it is crucial for the IoT
gateways to also support MQTT communications. However, it was not designed with security in mind
and it only checks authorization of the publishers and subscribers through the use of a user-name and
a password.

All things considered, this protocol is an important messaging protocol for the IoT and M2M
communications, as a result of providing lightweight messaging between devices, as well as real time
data acquisition.

2.4.3 Constrained Application Protocol (CoAP)
CoAP [27] was designed by the IETF Constrained RESTful environments working group. It

consists of an application layer protocol for RESTful web services in resource-constrained devices. In
addition, it aims to keep the protocol overhead as low as possible.

As practiced in REST, CoAP also uses a URI for identifying resources. Moreover, it provides several
features, such as adaptability for constrained environments, multicast and asynchronous transactions
support, built-in resource discovery, among others [28].

Taking into account its architecture, CoAP is divided into two layers, the messaging and the
request/response. While the messaging layer provides reliable asynchronous communications over the
UDP, the request/response layer handles the requests and responses exchanged on top of REST.

In spite of CoAP being based on HTTP, it relies on UDP instead of TCP [25]. As a result of the
UDP lower overhead, CoAP is prepared for being used by constrained devices (processing, bandwidth,
memory and power). Its header may be reduced to 4 bytes, in order to produce lightweight messages.
In addition, some HTTP features are modified, in order to guarantee low power consumption and
operation in the presence of lossy and noisy links. Nonetheless, since it has been built on top of REST,
the conversion between these two protocols is straightforward [28] and its integration with the web is
easy.

In summary, despite having a behavior similar to REST, it is more lightweight and, consequently,
has a smaller overhead. However, it does not satisfy the real time requirements either.

2.4.4 comparative summary
After presenting all the previous M2M application protocols, it is important to compare them

according to different metrics. These protocols are important for the efficiency of a IoT platform and
should be analyzed according to their bandwidth and energy consumption, overhead, reliability, as
well as the number and size of the messages that need to be exchanged.

Taking into account the performance of each protocol, the chosen transport layer has a crucial
impact on it [29], [30]. In spite of providing more reliability to the communications, protocols based
on TCP consume more bandwidth than the protocols built on top of UDP, as a result of exchanging
messages frequently, in order to maintain its connection. Therefore, MQTT and REST use more
bandwidth than CoAP for transferring the same amount of data. Consequently, CoAP should be used
for constrained environments.

10

For transmitting a certain quantity of data, REST needs to transmit more bytes than CoAP and
MQTT, as a result of not being optimized for constrained devices and, consequently, having a larger
header with unimportant information in it. Despite the MQTT header being smaller than the CoAP
header, both are small enough for the requirements of constrained communications.

With a view to prevent data loss, CoAP and MQTT have a QoS mechanism to enhance their
reliability. Both mechanisms include retransmission time-out for solving this problem. However,
increasing the number of exchanged messages across the network has a considerable impact on the
performance of the protocols.

Considering the service discovery, CoAP has its own service discover, while MQTT and REST use
the DNS for the discovery in the network. According to a study [31], the service discovery used in
CoAP has a lower overhead than DNS.

All in all, the described protocols have their set of advantages and disadvantages. Shortly, CoAP
and MQTT were conceived for constrained environments, while HTTP was designed for web scenarios.
Consequently, an IoT gateway should be able to use all these protocols to communicate with sensors,
so that it may be prepared for the heterogeneous environment inherent to the IoT, as well as the
requirements of each use case.

2.5 infrastructure

2.5.1 vertical solution
Taking into consideration that in a first instance WSNs were used in a limited scale, the first

infrastructures created to manage these WSNs were not complex. As an initial approach, the vertical
solution consists of a system capable of producing data, which can be used by a service or an
application. Figure 2.3 illustrates a vertical solution deployment, where each business model needs its
own infrastructure, in order to have communication with its WSN.

Figure 2.3: Vertical Solution for the IoT.

11

The first proposal for integrating networks of sensor was IrisNet [32]. This project intended to
create a global system built on top of a WSN, which provides a set of services to an application. In
other words, it aims to receive data from multiple heterogeneous sensors, as well as to provide it to an
application developed by a third party.

The architecture of IrisNet is divided into two layers as represented in Figure 2.4, namely the
Sensing Agents (SAs) layer and the Organizing Agent (OA) layer. The first one is responsible for
accessing and fetching the data from sensors in a generic way, in order to allow heterogeneous sensors
in the WSN. The other one has to handle the persistence of the retrieved data.

Figure 2.4: The IrisNet architecture.

In spite of IrisNet not presenting a relevant state of the art, it represented a transformative vision,
regarding the use of sensors networks, as well as the possibility of getting information about the
data generated by the sensors, in a comfortable way. Nevertheless, this project did not consider the
possibility of combining the data received from multiple services, as a consequence of having a different
service for each data source.

Despite being able to fill the requirements of some systems (at least, in an initial phase), vertical
solutions do not match the IoT vision. Particularly, the evolution and scalability that these solutions
provide is very limited, and lead to compartments and silos.

2.5.2 centralized horizontal solution
With the aim of overcoming the main problems of the previous solution, horizontal solutions

appeared in more complex systems. They introduced an additional layer, which is used to create an
abstraction of the communication between applications and WSNs. In Figure 2.5, the deployment of
a horizontal solution is illustrated. It is possible to verify that the network infrastructure is shared
among the applications and WSNs, which contrasts with the previous solution.

As a result of this appearance, several highly flexible infrastructures appeared, more capable of
scaling and easier to manage and maintain. Nowadays, commercial solutions from world class players
(e.g., Amazon, ThingsWorks) provide highly available products, capable of integrating heterogeneous

12

Figure 2.5: Horizontal Solution for the IoT.

devices with ease, and potentiating novel services. From an academic perspective, several other
solutions kept innovating, by exploring more radical, and differentiated solutions. Several examples are
described below.

MetroSense [33] follows a people-centric paradigm and is focused on urban sensing. It consists of
an infrastructure based on an opportunistic sensor network [34], that allows it to scale to large urban
areas together with the active users. At its core, it provides data from the interactions between people
and their environment.

The MetroSense architecture consists of a hierarchical network structure, which allows a scalable
people centric sensing at a relatively low cost. Moreover, it focuses on the use of sensors, as well as
the range and scalability of the Internet to provide data gathered from and around people, to a set of
applications.

In the context of MetroSense, a prototype was developed and tested. Therefore, a sensor network
was installed in a university campus, which sent its data to an infrastructure. This infrastructure
provided the generated data to a set of applications.

Sensor Andrew [35] presents a multi-purpose, scalable infrastructure, aiming to offer a platform
where applications can be easily deployed, in order to handle the received data. It fails to offer a
scalable data persistence, as well as to support a heterogeneous environment of sensors, but this work
was pioneer in many aspects related to scalability.

As a consequence of focusing on a set of goals that had not been studied in depth before, this
project was important to the advancement of IoT infrastructures. These design goals were ease of
management and configuration, built-in security and privacy and data sharing among different services.

With a view to satisfy the requirements specified previously, as well as robustness and scalability,
a architecture composed by three layers was designed. It is divided into front-end server layer, gateway
layer and transducer layer. The transducer layer is composed of sensor devices with low capacities,
while servers and gateways were part of a campus network. Moreover, the gateway layer aggregates
and structures the data received from sensors, in order to make it available for being requested by the
front-end server layer. Finally, the front-end server layer allows the subscription of sensor data, so that
it may provide high-level services. The architecture described is depicted in Figure 2.6.

Regarding security and privacy, an access control mechanism in the application communications
interface was considered, which is essential to protect sensitive data. In addition, this interface allows
privileges sharing, so that the stored data may be accessed by a set of authorized entities.

13

Figure 2.6: The Sensor Andrew architecture.

Considering another proposal, Service oriented framework for IoT [36] consists of an infrastructure
that allows efficient and secure interactions between Small Programmable Objects (SPOs) and the
Internet, as well as the management, maintenance and operation of those SPOs.

The main goal of this proposal consists of the management and monitoring of multiple networks
of sensors. Moreover, its architecture is also divided into three layers. The SPOs are located in the
lowest layer, the controller in the intermediate layer and the clients in the highest one, as presented in
Figure 2.7.

Figure 2.7: High level architecture for the Service oriented framework for IoT.

For exposing their features, SPOs provide web services, which are implemented using Senselets, a
minimalistic adaption of Java Servlets that allows constrained devices to provide web services. Apart
from Senselets, there are also mechanisms for interacting with the infrastructure in the SPOs.

14

The controller layer is divided into three modules. A WSN controller to perform administration
and maintenance operations in the SPOs, a module routing that implements the virtual topologies
among the networks of SPOs and the proxy module, which publishes and exposes the features provided
by the Senselets to the client side.

Finally, the clients layer may offer a website or an application that consumes the services offered
by the controller in order to interact with the SPOs.

On the other hand, some platforms were created aiming to offer a standards-compliant platforms
for M2M services, with the aim of providing standardized environments, open to large scale integration
of devices. One relevant example is OpenMTC [37], [38], which was developed by Fraunhofer FOKUS
institute and Technische Universität Berlin.

OpenMTC is a middleware intended to interconnect IoT sensors from different scenarios using a
cloud platform. Moreover, it provides communication and device management. However, it does not
take care of data handling and persistence, as this is delegated to application specific software systems.

Taking into account that the OpenMTC aim to provide standardized environments, it offers a SDK
containing core assets and services that may be used in third party applications. Therefore, Figure
2.81 illustrates the OpenMTC architecture.

Figure 2.8: The OpenMTC architecture.

Summing up, traditional solutions are characterized by an infrastructure composed of a set of
centralized servers, which receives WSNs’ data from IoT gateways, providing it to applications through
service exposure layers, pub-sub brokers and high level APIs. Consequently, these platforms control
the whole information flow, and the model brings some disadvantages, which do not match the IoT
vision [9]. Namely, scalability, single point of failure, surveillance, easy target for cyber-criminals and
proprietary solutions without external security verifications. Accordingly, some approaches based on a
decentralized infrastructure have appeared recently.

1http://www.openmtc.org/

15

2.5.3 decentralized horizontal solution
One of the first approaches to decentralize traditional solutions was Hourglass[39]. This infrastruc-

ture aims to integrate different networks of sensors, which interact with computers and programmed
agents. Moreover, it deals with the discovery, addressing and routing of data streams to client applica-
tions. Therefore, this proposal allows several applications to extract data from sensors positioned in
different places, which are connected to the Internet.

Despite Hourglass allowing the communication with heterogeneous devices, as well as low bandwidth
connections and data streams, it may have scalability problems, as a consequence of connections being
established only at the time of each request. Thus, Hourglass opened a set of new problems, but
provided a solid background for future research. In addition, it proved the feasibility of the concept.

WebDust [40] consists of a P2P framework for managing and monitoring multiple and heterogeneous
WSN widely dispersed. Consequently, it provides a web-based dashboard for the administration and
visualization of the network state.

This platform architecture encourages the implementation of customized applications. Moreover,
it is based on three different sub-domains, namely the P2P network, Nano-Peers and Gateway-Peers.
Firstly, the P2P network is composed by desktop applications that actuate as peers in the distributed
environment. Nano-Peers is a cluster of sensors that communicate using wireless Communications.
Finally, Gateway-Peers handle the communication between the Nano-Peers and the P2P network. In
addition, Gateway-Peers have monitoring and sensing capabilities, and consequently act as stations
that control the networks of sensors. An overview of WebDust architecture is depicted in Figure 2.9.

Figure 2.9: Overview of the WebDust Architecture [40].

Taking into consideration the peers that compose the network, each one has a two layer architecture
containing an inner layer and an outer layer. The inner layer is responsible for keeping the sensor network
information, as well as the results of the previous executed queries and the devices’ specifications. The

16

outer layer takes care of the high level services provided by the peer. As a consequence, the outer layer
requests information to the inner layer.

In this proposal, the data received from the networks of sensors is stored in a relational database.
It is organized in different categories, namely by device, by query and by state of the sensor. Finally,
this proposition offers other important services, such as a buffering for temporary storage to store data
in connection failures, data aggregation by sets and a network performance monitoring.

More recently, large players like IBM and Samsung Eletronics developed the Autonomous Decen-
tralized Peer-to-Peer Telemetry (ADEPT) Proof-of-Concept (PoC)[41]. It aims to demonstrate several
capabilities, which are fundamental for building a full decentralized IoT, and clearly demonstrates that
these solutions need research, having interest from the market. This proposal intended to design a
system capable of providing a trust-less P2P messaging system and a distributed file sharing, as well
as a autonomous coordination among devices

This PoC selected three open source protocols for its implementation. Firstly, Telehash (a DHT
implementation of Kademlia protocol[42]), to provide encrypted peer-to-peer messages. BitTorrent was
chosen for file sharing purposes, and finally Ethereum (a blockchain protocol), for the synchronization
and security of the devices. A logical overview of its architecture is illustrated in Figure 2.10.

Figure 2.10: Overview of the ADEPT Architecture [43].

Combining the blockchain[41], [44] idea with the IoT may provide an attractive set of capabilities.
Namely, maintaining sensors information, create an immutable history of transactions, as well as data
security and privacy. ADEPT supports different types of devices, according to their performance and
storage capabilities. However, devices require considerable resources, in order to take advantage of the
security benefits of a blockchain.

The proposed use cases were tested using Samsung washers of the future, equipped with high
storage and processing capabilities matching the blockchain requirements. This equipments are far
away from the common user, as they represent a considerable investment. Moreover, no blockchain
solution was tested at a world scale [45]. Even Bitcoin (world leader cryptocurrency) cannot scale to a

17

world currency, as a result of the large amount of time needed to validate each transaction. Finally, its
consensus algorithm is under research, in order to prevent denial of service attacks [43].

All things considered, the solutions proposed pave the way to decentralized IoT systems, but they
are not ready for the current view of the IoT, where the devices are expected to be inexpensive and
their real-time communications may be crucial. In addition, even recent solutions like ADEPT are
limited to Proof-of-Concepts (PoCs) and do support global scale operation, as consequence of the
blockchain’s slow validation and high resource requirements.

2.6 persistence
After describing the communications between the WSNs and the gateway nodes, it is also crucial

to describe how the infrastructure should process the received data, in order to generate valuable
information. As previously mentioned, it is expected a massive growth in the amount of data generated
by the IoT in the next years. Consequently, an efficient and scalable data persistence is necessary.

The main goals of a database consist of storing and retrieving data, as well as handling modifications.
Currently, the databases are divided into NoSQL databases and relational databases. Shortly, NoSQL
databases discard some features of relational databases, in order to enhance their scalability.

Data generated by sensors consists of a series of data points listed in time order, which is known by
time series data. New NoSQL approaches are being used for handling this type of data, with advantages
in flexibility and performance over relational databases [46]. Therefore, a new Database Management
System (DBMS) is arising, which is know by Time series Database (TSDB). This approach has
attractive characteristics, such as being able to scale and use less structured data than traditional
database systems.

The Time series Databases (TSDBs) are optimized for taking care of large amounts of time series
data, i.e. each entry of the database is associated with a timestamp [47]. Accordingly, the data entries
are indexed by their timestamps, which results in a set of advantages that matches the IoT scenario
[48].

At first, this DBMS provides efficient sequential writes, as well as efficient queries for a temporal
result set. In addition, it provides a fast removal of samples that are no longer relevant (by its
timestamp) [47].

Considering a large scale IoT infrastructure containing heterogeneous data from an enormous
number of sensors, the TSDB should be a column oriented database, where each column of the table
would contain the received data from a sensor, indexed by its timestamp. In spite of all its advantages,
there are few stable implementations available, as a result of this approach being recent. The most
popular TSDB are InfluxDB and RiakTS.

The number one in the db engines ranking 2, InfluxDB 3, is an open source database designed for
high-performance writes and compact disk storage. It also provides clustering capabilities built-in. In
addition, it offers a simple documentation and setup.

RiakTS 4 is an enterprise NoSQL database specifically optimized to store, query and analyze time
series data. It is easy to manage and scale, as well as to distribute data through a cluster. However, it

2http://db-engines.com/en/ranking/time+series+dbms
3https://influxdata.com/time-series-platform/influxdb/
4http://basho.com/products/riak-ts/

18

does not provide an easy to use documentation and the majority of its features are paid.

2.7 privacy and security
In the context of Information technology, security considerations and problems are not a new topic.

With the emergence of the IoT concept, a wide range of new and unique security challenges will appear.
These challenges represent a critical factor for allowing the widespread adoption of IoT infrastructures.
For this purpose, addressing them must be a vital priority for the IoT success.

As a rule, without assurances related to confidentiality, authenticity and privacy the stakeholders
are unlikely to approve IoT solutions on a large scale. Furthermore, users have to trust that IoT
devices are secure, particularly as this technology becomes omnipresent into users daily lives.

A set of attacks can be done in order to compromise an IoT platform, namely:

Distributed Denial of Service(DDoS) IoT infrastructures may be vulnerable to a wide range of
DDoS attacks [49]. Besides traditional DDoS attacks, the WSN can also be targeted;

Physical damage In the context of the IoT, things may be accessible to anyone. In consequence,
the attacker can simply target the "thing" hardware;

Eavesdropping. In a passive way, an attacker may intercept the communications, in order to retrieve
data from the communication flow;

Controlling In an active way, an attacker may try to get control over an IoT device. Consequently,
the stored data could be accessed compromising data privacy, as well as modified in order to
cause damage to its owner.

Thus, IoT and WSNs are at a considerable distance from being secure. In essence, devices and
services can be potential entry points for exploiting security vulnerabilities, which will expose user’s
data. Moreover, the interconnected nature of IoT means that a compromised device, which is connected
online, may perturb the security and resilience of the entire network. For instance, according to [50] it
is possible to identify three main issues that require new approaches: data confidentiality, privacy and
trust.

However, adding an extra layer for security purposes requires appropriate decisions, in order to
ensure that the operation of the device stays adequate. Failing to do so has consequences, such as the
incapacity to achieve real-time requirements, the decrease of features and the need of more energy
than expected. Doubtless, security results in an overhead, which we may not be inclined to accept.

All things considered, the IoT should be secure and privacy-preserving by design. To put it
differently, security should be taken into account at the time of the design of architectures and
methods for IoT infrastructures. However, relevant problems to be solved in this context are associated
with scalability and energy consumptions of existing infrastructures, which may not match the usual
requirements of the IoT infrastructures.

19

chapter 3
Distributed Systems
All things considered regarding IoT horizontal solutions described in Section 2.5, it is important
to analyze in detail the advantages and disadvantages of the described architectures for an IoT
infrastructure. Therefore, in this chapter is presented a comparison of different categories of Distributed
Systems’ Architectures, which may be implemented in an IoT infrastructure. Taking into account
decentralized architectures, several implementations of a DHT are also presented. Moreover, this
chapter also presents the reader with a brief overview of the state of the art for Security in Distributed
Systems. At last, some deployments, which were built on top of decentralized infrastructures, are
briefly described.

3.1 architectures
There are several architectures, which may be used according to the specifications of the required

system. They can be divided into two broad architectures - Centralized and Decentralized. It is
important to analyze both regarding failure tolerance, management cost, performance and scalability,
in order to verify which type matches the requirements of an IoT infrastructure. Therefore, both
architecture types are described as follows.

3.1.1 centralized architectures
The traditional centralized architecture is known as the Client-Server architecture, which has one

server that provides a service and many clients that communicate with the server, in order to consume
the provided service. The main disadvantages of this architecture are the inherent difficulty to system’s
scalability, server’s susceptibility to congestion, system’s availability and system’s high cost of building
and managing [51], [52]. An example of this architecture is illustrated in Figure 3.1.

As a general rule, in spite of a resource pretended by a client may be replicated across the web,
the client will request this resource to a particular server located in a specific location of the network.
However, if the client looked up the network in order to find the resource, as well as got it from a closer

21

Figure 3.1: Wireless Sensor Network.

location, it will eventually result in a smaller consumption of bandwidth, as well as a lower response
time.

For example, considering a room where a person uploads a video to a common video sharing
platform and asks the other people in the room to watch the uploaded video. In consequence, a huge
amount of bandwidth will be consumed, because all the people in the room will need to communicate
and receive the video through the platform’s data center. However, if the people in the room get the
video from each other, the bandwidth consumed would be incredibly smaller.

All things considered, the properties of a centralized architecture do not match the needs of a
global IoT Infrastructure. Particularly, the lack of scalability and performance, as well as its single
point of failure. Therefore, the proposed system could be structured in a different way, in order to
provide lower response times, as well as lower consumptions of bandwidth.

3.1.2 decentralized architectures
Due to the disadvantages of centralized architectures, for some systems other types of architectures

are used, known as Peer-to-Peer (P2P) architectures.
P2P systems and applications are distributed systems without any centralized control or hierarchical

organization. Thus, P2P computing is a networking paradigm that provides high scalability by
exploiting the resources of the participants (including computation, storage and bandwidth). In
addition, it guarantees the autonomy of the system and has a low cost of ownership. Due to these
desirable properties, P2P has been acclaimed as an encouraging technology that will reconstruct the
architecture of distributed computing [51], [52].

A P2P network is usually composed by a set of equally privileged participants in the network.
These participants are known as peers, which are both suppliers and consumers of resources, in contrast
to the traditional client-server model in which the server supplies resources that are consumed by the
clients. That network may be designated as an overlay network, which is a computer network that is
built on top of another network. For example, distributed systems such as P2P networks are overlay

22

networks because their nodes run on top of the Internet [9]. An example of an overlay network is
depicted in Figure 3.2.

Peer1

Peer2 Peer3

Peer4

Peer5 Peer6

Peer7

Figure 3.2: Peer-2-Peer Model

In the presented overlay network, there is no central entity. Each peer has a partial view of the
P2P network and offers data or services that may be relevant to other peers. The biggest challenge
of this architecture is to find which peers provide the desired resources quickly. Comparing with the
previous analyzed architecture, this one removes the single point of failure and enjoys high performance
and scalability [9], which are important advantages for the vision of the proposed infrastructure.

Decentralized P2P architectures may have a different logical network topology. It can be categorized
as structured and unstructured overlays and their difference consists of how queries are being forwarded
to other nodes.

In an unstructured P2P topology, there is no straight mapping between identifiers of objects and
peers. Therefore, each peer is responsible for its own data, and keeps a list of neighbors that it may
forward queries to. In this type of topology, locating specific data is complex, since it is difficult to
precisely predict which peers have the data that is being queried. Consequently, there is no guarantee
on the completeness of answers (unless all the network is searched), as well as no prediction on the
response time of the query. The best known unstructured P2P systems are FreeNet[53] and the original
version of Gnutella[54].

On the other hand, in a structured P2P topology, data location is controlled by certain strategies.
In order to provide a mapping between data and peers, the strategy generally used is a distributed
hash table (DHT), which is described in the following subsection.

23

3.2 Distributed Hash Table (DHT)
A DHT is a class of a decentralized distributed system that has a look up feature identical to a hash

table: (key, value) pairs are stored in a DHT and any node can easily get the value associated with its
key. Continual node arrivals, departures, and failures are easy to handle, as long as the responsibility
for maintaining the mapping from keys to values is being distributed among the nodes [9], [55].

The structured P2P systems provide a guarantee (precise or probabilistic) on query cost, which
makes possible that a request can be routed to a peer quickly and accurately. However, since the
location of data is highly controlled, maintaining the structured topology is expensive, especially in
a dynamic network environment, where peers may join and leave the network at will [9]. Chord,
Kademlia, Pastry, Tapestry and Content Addressable Network (CAN) are some well-known solutions
used to build such structured overlays.

3.2.1 chord
Chord [56] is a protocol for structured P2P overlays, which uses Distributed Hash Tables (DHTs)

to locate specific data items, i.e. keys, in the nodes of a P2P network. Mainly, Chord uses consistent
hashing for binding keys to nodes, in order to balance related workload of nodes, since it leads to nodes
keeping approximately the same number of keys.

As shown in Figure 3.3, Chord’s topology is organized into a virtual ring where each node always
has an higher identifier than its predecessor and knows who is its successor (next hop). The consistent
hashing assigns a key to each node identifier (node’s IP address hash), whereas a key is also generated
for every data item available on the overlay (data’s hash).

Figure 3.3: Chord Topology organization.

Taking into account that the length of the identifier is m, then the identifiers are ordered in a
Chord ring of module 2m size. When a new data item is on the overlay network and has a key k, its
key is associated to the node in the Chord ring, whose identifier is either k or is the first to come in
a clockwise order after k. Meanwhile, assuming that a new peer joins the overlay, its IP is hashed
and its position in the ring is determined based on the produced key. This process may require a
rearrangement of the key-node bindings [56].

24

Particularly, some keys that were previously handled by the successor of the new node in the ring
will now need to be assigned to the new node itself, based on the previous principle of key-node binding.
Furthermore, when a node leaves the overlay, all the keys that were assigned to it must be reassigned
to its successor in the ring. For instance, considering Figure 3.3 in a given time and considering that
the nodes whose hash is 1, 7 and 9 are part of the overlay network. Consequently, node 7 is responsible
for keys whose hash is between 2 and 7. However, if a new peer whose hash is 5 joins the overlay, node
5 will be take responsibility for keys whose hash is between 2 and 5.

For implementing the consistent hashing in a distributed environment, each node only needs to be
aware of its successor in the ring. Nonetheless, this solution may be inefficient for the reason that it
may require to pass through all the nodes to find the appropriate mapping. To accelerate this process,
Chord maintains additional routing information. Therefore, every node maintains a routing table
called Finger Table, which is used to look up data items on the Chord overlay. The Finger Table is
constructed so that for a node n its ith entry has a pointer to the successor of node n+ 2i−1 in the
Chord ring, where 1 ≤ i < m and m is the maximum size of the table. This allows Finger Tables to
have information about the nodes in its neighborhood, as well as about a few remote nodes [56], [57].

Undoubtedly, the consistent modifications in the topology, caused by nodes joining and leaving the
overlay, influences the Finger Tables, which should be updated constantly, in order to ensure correct
lookups.

Finally, it is clear that nodes joining and leaving the overlay only influences their neighborhood
and not the whole overlay. In consequence, a lookup procedure in a stable N-node Chord overlay
requires O(log N) messages [56]. However, if the overlay topology is always changing as nodes join and
leave the network, the performance of the system decreases as a result of its high cost of maintenance.
In this case, an unstable overlay can have a performance of (logN)2 [56].

3.2.2 kademlia
Kademlia [42] is one of the most famous structured, fully decentralized P2P overlay. Currently, it

is used in several public networks, such as Kad Network and BitTorrent. It uses a consistent hash
method to bind identifiers to keys and nodes, as well as a XOR-based metric to compute the distance
between identifiers. Furthermore, Kademlia was designed based on observations regarding existing
P2P overlays’ activity. One of the main conclusions of these observations was that the longer a node
remains connected, greater is the probability to stay connected for another hour. Accordingly, in order
to ensure an higher probability in the overlay’s connectivity, Kademlia promotes the use of “old” nodes
as neighbors [42].

Regarding the topology of this protocol, nodes are considered leaves in a binary tree. Thus, each
node’s position consists of the shortest unique prefix of its identifier. Figure 3.4 illustrates a simple
example, where a node with ID 10110 is represented by the node 10 of the tree. This is possible if the
10 prefix is unique for all the nodes that are part of the overlay.

An identifier from a 160-bit name-space is assigned to nodes and resources. Each node maintains
several lists of nodes, which have a distance between 2i and 2i+1 from itself, where 0 ≤ i < 160. These
lists are called k-buckets and their size can grow up to k (typically 20). A k-bucket is a list of nodes,
that are at a distance k from the node. The distance between two identifiers is the integer value
obtained from their XOR [42].

The K-buckets of a node are updated when messages are received from other nodes: in case that

25

Figure 3.4: Kademlia Topology organization.

the message sender is known by the receiver, the k-bucket where the sender is currently present is
updated, i.e. the sender ID is moved to the end of the list; whereas in case that the message sender is
unknown, the sender ID is added to the end of the correspondent k-bucket, according to the distance
between the sender and the receiver, and assuming that the k-bucket is not full. However, when
the k-bucket is full, the least seen node is pinged to check its status. If it answers, the new node
information is discarded, otherwise the least seen node is discarded and the new node is added to end
of the list [42], [58], [59].

When a new node intends to join the overlay network, it needs to communicate with a bootstrap
node, which is any node currently in the overlay network that provides initial configuration information.
Therefore, the new node is added to the appropriate k-bucket of the bootstrap node and performs a
lookup procedure for its own identifier, in order to get information on other nodes and populate its
k-buckets accordingly. In this way, k-buckets promotes “old” nodes as neighbors in the overlay, with a
view to ensure an higher availability and stability.

At the time that a certain node identifier is requested, it is located the k closest nodes for a given
identifier. Firstly, the initiator of the lookup verifies in its own k-buckets for the closest α nodes
(typical value for α is 3). Then, it sends requests to these α nodes in parallel and they return nodes
that are close to the requested identifier (use of XOR operation), according to the entries in their
k-buckets. Consequently, nodes are recursively contacted in order to collect further nodes that are
closer to the requested one. This process continues until k nodes have been collected by the initiator
[42], [58], [59].

With regard to the lookup efficiency, Kademlia allows redundancy and caching (keys can be stored
to up to k different nodes in the overlay), as well as proper operation even under dynamic conditions,
such as node failures. Kademlia has a performance of logN , where N is the number of nodes in the
network. It is an efficient algorithm, as a result of sending parallel requests and maintaining the
network topology through the received messages [42].

3.2.3 pastry
Pastry is a scalable P2P overlay and routing network for P2P applications based on a DHT. In

terms of functionality, it is similar to Chord, but it differs mostly in how it handles neighbor sets and
routing. Each node in the pastry network has a unique identifier of 128 bits. When a node receives a
request message with a key, it can efficiently route the request message to the node, whose unique
identifier is closer to the requested key [60].

Nodes are organized into a virtual ring, ordered by their identifiers, like Chord. However, in Pastry,

26

each node has three data structures to store, namely a routing table, a neighborhood set and a leaf set.
The routing table has logB N rows, B − 1 columns and it contains one entry for each address

block. To build the address blocks, the 128 bits key is divided up into digits with B bits length. This
divides the nodes into different levels, with level 0 representing a zero-digit common prefix between
two nodes, level 1 a one-digit common prefix, and so on. The neighborhood list of a node represents
the closest peers, considering a routing metric (usually the size of the list is 2 ∗ B). Although it is
not used directly in the routing algorithm, the neighborhood list is important to maintain the locality
principles in the routing table [60]–[62].

When a new node wants to join the overlay network, it needs to communicate with a node currently
in the network, which will provide a list of the closer nodes. Randomly, the new node contacts one
node of the provided list and sends its join request, with its unique identifier as the key. As soon as
the bootstrap node, as well as the nodes in the routing path, receive a join request, the bootstrap node
sends a reply composed by its routing table content. Finally, the new node builds its routing table,
based on the received information, and notifies all the interested nodes of its arrival.

On the other hand, if a node leaves the overlay, its neighbors will contact the remaining members
of their neighborhood sets and it is found an alternative node to replace the departed one.

The data items have a key (unique identifier) from the same identifier space as the nodes. These
keys from data items are handled by nodes whose identifiers are numerically close to each other.
Moreover, when a certain data item key is requested, nodes forward lookup queries to nodes whose
identifiers have a prefix with at least 1 bit similar [60]. Thus, the node that is responsible for the data
item is located in a progressive manner.

Finally, a key can be located in up to logB N overlay hops (number of rows in the routing table).
It has great results in scalability (experiments show that it works efficiently for networks of even a
hundred thousand nodes) and fault tolerance (it is necessary the departure of at least L/2 nodes from
the overlay to cause failure problems to the overlay) [60].

3.2.4 tapestry
Tapestry is a decentralized, scalable, fault-tolerant and location-aware routing infrastructure

for distributed applications. Its main design goal consists of scalability and fault tolerance under
dynamic network conditions. Tapestry is very similar to Pastry, essentially in terms of their common
routing infrastructure. However, it has some differences, namely it replicates data objects for creating
redundancy and has a different definition of networking locality [63].

Nodes and objects have a unique identifier of 160-bit. These unique identifiers are determined
from the same 160-bit identifier space using a uniform distribution.

In this overlay topology, nodes have the minimum necessary information about the network. Every
node has node identifiers and IP addresses only of its direct neighbors, i.e. neighbors with common
prefixes, in the form of neighbor maps. Each row of a neighbor map contains information about the
neighbors that have the same prefix as the node. This prefix has a length equal to the row’s level in the
map [62]. Moreover, it is used a redundant routing, which consists of adding two backup nodes in each
row of the map, in order to ensure the connectivity between nodes in dynamic network environments
[63].

When a new node gets in the overlay, it finds out the length of the longest prefix of the unique
identifier it shares. Then it sends a multicast message to all the existing nodes sharing the same prefix,

27

and these nodes add the new node to their routing tables. After this, the new node performs an
iterative nearest neighbor search to fill all levels in its routing table. Moreover, the new node based on
its identifier might need to become responsible for some object references. When a node intends to leave
the overlay, it sends a broadcast message informing about its departure and transmits a replacement
node for each level in the routing tables of the other nodes. Object references at the leaving node are
redistributed from redundant copies, to another node. An unexpected node failure is handled through
redundancy in the network and backup object references to restore damaged references.

To add new objects to the overlay, the owner of the object sends a publish object message and the
node, whose identifier is closer to the object’s identifier, will be responsible for the object reference.
This node, will keep information about the original owner of the object, in order to be able to return it
to any requesting nodes.

When a concrete resource is requested, its unique identifier is used, in order to find a node that
has information about the resource’s owner. Therefore, resource discovery is made by progressively
contacting a node with a closer unique identifier. Each node along the path checks the mapping and
redirects the request properly.

Finally, routing in Tapestry occurs in at most logB N hops (where N is the size of the identifier
space). According to some experiments [63], Tapestry is an efficient solution, even under dynamic
network environments. Its routing has a good performance, as a result of the stretch factor for locating
resources remains low.

3.2.5 Content Addressable Network (CAN)
CAN is a distributed, decentralized P2P infrastructure system that is based on the DHT concept.

It organizes the overlay nodes in a d-dimensional coordinate space, where d is a parameter of the CAN
protocol. This coordinate space is used to store key/value pairs, however it is completely independent
of the physical location of the nodes. All the coordinate space is dynamically distributed among all
the nodes in the overlay, in order to guarantee that every node has at least one distinct zone of the
coordinate space [64]. Therefore, Figure 3.5 illustrates a 2-dimensional coordinate space with 5 nodes.

Figure 3.5: CAN 2-d topology organization.

Every node maintains a routing table with the IP address and virtual coordinate zone of each of
its neighbors. A joining node has to find a node already in the overlay (bootstrap node), in order to
get in the network. After contacting a bootstrap node, the joining node may join the overlay and

28

discover further nodes. Then, the new node chooses a random point of the coordinate space and sends
a JOIN message to that point. The existing node, which is responsible for that point, divides its area
in two and assigns one part to the new node. Finally, messages are sent in order to update the routing
tables of the neighbors. On the other side, if a node leaves the network, its coordinate space area has
to be assigned to one of its neighbors. For this, each node is continuously monitoring their neighbors,
to update their routing information [64]–[66].

When a new resource is added to the overlay, a hash function is applied to it, in order to map its
key to a certain point on the CAN space. Then, the node responsible for the area, which that point
belongs to, becomes in charge of that key/value pair. Moreover, if a resource is requested, it is applied
a hash function to the resource key, in order to get the location of the point and consequently, the node
that is responsible for that key. After this, it is sent a request message to the discovered node, using a
greedy forwarding routing mechanism, i.e. each node forwards this request to the closest neighbor in
the coordinate space that it knows [64].

Assuming that every node of the overlay network maintains a list of 2d neighbors and that the
d-dimensional space is divided in n equal zones, accordingly to [65], the average routing path is
computed to be equal to d

4n
1
d . A CAN overlay is reliable because its construction provides alternative

routing paths to connect nodes [64]. Nonetheless, it is susceptible to failure in case of area partitions
and it does not guarantee load balancing, considering that is possible to have areas that contain much
larger number of key/value pairs than others.

3.2.6 comparative summary
After presenting all the previous implementations of a DHT, it is important to compare them

according to different metrics.
Load Balancing is an important feature, since it provides scalability, availability and reduces the

probability of bottleneck occurrences in the overlay. A tremendous advantage of most DHTs results
in the use of consistent hashing algorithms to assign resources/services to certain nodes. Therefore,
these algorithms provide a uniform distribution of resources through the nodes of the overlay, which
promotes a load balancing for handling lookup and routing requests. Only CAN does not include Load
Balancing in its features.

However, when changes in the overlay occur, hashing algorithms face a challenge, which consists of
the need to reorganize resources. This need is expensive for processing and communication overhead,
particularly in Chord and CAN, which have inflexible structures. In some cases, such as Kademlia, the
notion of redundancy represents an enhancement in the performance of the hashing algorithms and
lookup operations, as a consequence of having resources replicated through the overlay.

In the context of an overlay set up, nodes and resources have to be arranged in a topology
by creating or updating existing connections of themselves, as well as, of other neighboring nodes.
Consequently, when a new node joins the overlay or an existing node departs, some nodes of the overlay
may be affected. Therefore, P2P Overlays’ performance is affected in dynamic networks, where churn
rates are quite high. This aspect was considered in some cases, where some approaches were adopted,
in order to support the robustness and resilience of the overlay. This is the case of Kademlia, Pastry
and Tapestry approaches [67].

P2P overlays based on DHT solutions have a great performance in locating specific resources
(exact matching, as a result of the nature of consistent matching, which implies that identifiers are

29

uniquely mapped). Therefore, these solutions are not usually appropriate for range queries. Only
Kademlia provides a concept of range queries, through the asynchronous lookup messages.

A comparison summary of the studied implementations of a DHT is presented in Tables 3.1, 3.2
and 3.3.

P2P Architecture Queries
Chord Circular and uni-directional node identifier space Regular Queries

Kademlia XOR metric for computing distance Range Queries
Pastry Hypercube Regular Queries

Tapestry Hypercube Regular Queries
CAN Multidimensional ID coordinate space Regular Queries

Table 3.1: DHT comparison summary (1).

P2P Churn Redundancy
Chord Performance decrease and high overhead N/A

Kademlia Good support thanks to redundancy Replication and caching
Pastry Robust for a few changes N/A

Tapestry Replication and routing redundancy Resource replication
CAN Depends of the node degree Routing redundancy

Table 3.2: DHT comparison summary (2).

P2P Security Load Balancing
Chord N/A Consistent hashing

Kademlia Older nodes more trusted Consistent hashing
Pastry N/A Consistent hashing

Tapestry N/A Consistent hashing
CAN N/A N/A

Table 3.3: DHT comparison summary (3).

Typically, most structured P2P overlays have a small diameter, which allows an efficient resource
discovery [68]. Therefore, the greater part of the DHT solutions studied in this section have a
logarithmic performance for lookup requests, as well as routing.

Chord and Kademlia have a logN lookup performance, whereas Pastry and Tapestry have a
logB N performance, which is associated with the base B of the defined identifier space. In contrast,
CAN’s performance does not depend on the number of nodes, but depends on the number of neighbors
of a node (d) and on the total number of zones in the d-dimensional zones (n).

On the whole, a performance comparison of the implementations of a DHT is presented in Table
3.4. For a better understanding, β represents the base of a key identifier, d symbolizes the number of
dimensions considered and n is the number of nodes in the overlay.

30

P2P Lookup Table Size Join/Leave
Chord O(log N) log N (logN)2

Kademlia O(logN) logN logN
Pastry O(logβ N) 2β logβ N logβ N

Tapestry O(logβ N) logβ N logβ N
CAN d

4n
1
d 2d 2d

Table 3.4: DHT performance comparison.

In the context of network security, all the presented solutions may suffer from security threats.
The biggest threat is the placement of resources exclusively according to hashing algorithms, which
can result in hosting resources on non-trusted nodes.

All things considered, the properties inherent to a structured P2P system provide great value for a
new type of IoT Infrastructure, which is built on top of a decentralized paradigm. Namely efficient
data queries, as well as the scalability and failure tolerance.

3.3 security
There is a wide range of security threats applicable to distributed environments that have to be

considered, in order to implement a secure system. Even in a closed distributed environment, it is
unrealistic to take for granted that none of the participating peers have been compromised.

Aiming to describe some attacks regarding distributed systems, we will take into account a scenario
where some entities are part of a P2P network and provide a set of services to the overlay. When an
entity is requested to provide one of its services, it can efficiently provide the demanded service or, on
the other hand, it can provide a malicious service. It is possible to find in a P2P network individual
malicious peers, as well as malicious groups of peers. Such peers, may corrupt messages and routing
information, as well as assume the identity of other nodes, in order to provide corrupt services.

Considering the IoT paradigm described in Section 2.1, millions of internet-connected devices are
predicted to be deployed, some of them from critical systems. Those systems need to keep their data
properly safe. However, security risks grow with the number of deployed devices.

Therefore, considering the expected massive deployment of devices, it is necessary to have an
infrastructure properly prepared. Currently, the solution for security in Decentralized Systems is know
as Public Key Infrastructure (PKI).

PKI is a well-established standard, which may provide authentication, data access control, data con-
fidentiality and information integrity [69]. It is widely used as a standard for Internet Security. Accord-
ing to a IEEE article [70], "When you are looking at authenticating devices, the only real
standards at the moment that offer any real interoperability tend to the PKI". It pro-
vides the authentication and encryption components needed by a distributed platform for data security,
making it a proven solution. Consequently, it could be the groundwork for the deployment of a secure
IoT Infrastructure.

In this standard, each infrastructure’s entity has an associated public key certificate. This
association is established by a registration process, as well as the issuance of certificates for identity

31

validation. There are three main approaches for certification, namely Hierarchical Certification, Web
of Trust and Blockchain-based PKI. Following are described these three approaches.

3.3.1 hierarchical certification
In the context of this approach, there is a set of centralized servers, which represents the Certification

Authority (CA) root [71]. It contains an RSA key pair, as well as a self-signed certificate. In addition,
it handles the issuance and revocation of certificates.

The set of centralized servers listens requests from entities, so that it issue certificates for them.
Accordingly, a request contains the entity’s public key, which will be signed by the CA private key. The
certificate binds a public key with a specified entity and is valid for a previously defined time, according
to the CA policies. Thus, an entity that trusts a CA will trust an entity which has a certificate signed
by it [72].

The hierarchical certification may have n levels [71]. In this case, certificates are issued and signed
by the private key of an entity that is higher in the hierarchy. Therefore, certificates are validated
using a chain of trust, which validates all the certification hierarchy until reaching a trustworthy entity.

In spite of the possible redundancy of the CA servers, its main disadvantage consists of not being
completely tolerate to failures. On the other hand, it provides lower response times and does not
need a considerable number of messages to issue and validate certificates. Finally, it is the most used
approach for handling the certification in PKIs.

3.3.2 Web of Trust (WoT)
Considering the WoT [73], no central server is necessary for taking care of the certification. This

approach does not have a hierarchical notion, as a result of the certification role being shared among
all the entities that compose the infrastructure.

Taking into account the certification process, each peer that composes the WoT has a self-signed
certificate, as well as information regarding other peers’ certificates [73]. Therefore, several peers will
have to participate in the validation of a peer’s certificate process. An entity of the network establishes
trust in others by checking that those others are trusted by at least one already-trusted entity. For
instance, if an entity A trusts an entity B and the entity B trusts and entity C, A trusts C consequently.

This approach may be characterized as a flexible and generic solution, thanks to its distributed
nature. However, this nature results in an infrastructure difficult to manage.

The Pretty Good Privacy (PGP) is the most popular implementation of this approach [73]. It
was created by Zimmermann[74] and consists of a public key cryptography designed for being used in
the e-mail. Each entity has a list of the public keys of the entities it communicates with. This list
is signed by the entity’s private key, so that it can not be modified by an attacker without leaving
behind an evidence.

The main advantage of this approach consists of the absence of a single point of failure. However,
the response time for the validation of certificates increases significantly compared to the previous
approach, as a result of the necessity to exchange a considerable number of messages for the consensus
algorithm. In addition, it is difficult for an entity to join the network without being previously trusted.

32

3.3.3 blockchain-based PKI
The blockchain was presented in 2008 as the groundwork technology of the Bitcoin cryptocurrency

[75]. In this approach, as in the WoT, there is not any centralized set of servers for handling the
certification. However, in the context of the Blockchain-based PKI, each entity has part of a distributed
database, containing all the transactions previously performed. This distributed database has a
previously defined replication factor for reliability [76].

Typical blockchain solutions provide appealing security characteristics. However, they are not
scalable and suitable enough for many PKI infrastructures [77]. In addition, they do not provide
privacy as a result of all the actions being recorded in the database.

This approach is mainly used in cryptocurrencies, being Bitcoin the most popular example of a
blockchain. Shortly, Bitcoin [75] consists of a purely P2P electronic coin, which can be used for online
payments without going through a centralized financial institution. The network keeps the transactions
timestamps by hashing them into an ongoing chain of hash-based proof-of-work. This proof-of-work
represents a record that cannot be modified without recomputing itself. Peers may leave and join
the network at will, accepting the longest proof-of-work chain, which represents all the transactions
history. Therefore, as long as the greater part of the computing power is not controlled by attackers,
the blockchain will not be compromised.

As in the previous approach, the main advantage of this procedure is the absence of a single point
of failure. Moreover, it provides an easy entrance in the blockchain for new entities, contrarily to the
WoT. On the other hand, thanks to its complex algorithms for transaction validations, the response
time of certificate validation is even higher than the WoT approach. In addition, any implementation
of this protocol was tested in a large scale [45].

3.4 promising decentralized infrastructures
Taking into account the modern requirements, the current platforms have to change their paradigm,

as a result of the problems stated in the beginning of this section, regarding centralized architectures.
With this in mind, modern infrastructures should be built on top of a P2P architecture, in order to
provide a more efficient service to its clients.

Accordingly, some infrastructures are being built according to this view. Following are described
some examples of promising decentralized infrastructures.

3.4.1 ethereum
The Ethereum1 [78], [79] project consists of a platform that is built for developers and application

users. It is a blockchain platform that allows developers to deploy distributed applications through
their platform. These applications run with no possibility of downtime, censorship, fraud or third
party interferences.

This platform monitors the state of every Ethereum accounts, as well as all the blockchain
transitions, in order to validate the exchanged information among accounts. In other words, it may be
characterized as a decentralized and cryptographically secure, transaction-based state machine [78].

1https://www.ethereum.org

33

In this context, each user of a deployed application also provides data of the deployed applications
to other users. In exchange, the consumers receive ether (cryptocurrency) for paying the hardware,
electricity and processing power that are using for maintaining the applications running. On the other
hand, the developers who intend to deploy their applications have to buy ether to have it deployed in
the platform.

Despite all its appealing characteristics, scalability remains an endless concern [78]. As a conse-
quence of its state transition paradigm, it is difficult to parallelize the validation of transactions.

Currently, there are already several applications running on top of the Ethereum platform. An
example is the Eth-tweet2, which consists of a decentralized microblogging service similar to Twitter.
As a consequence, there is no central entity who controls what is being published.

3.4.2 InterPlanetary File System (IPFS)
The IPFS [80] consists of a hypermedia distribution protocol that intends to interconnect all the

file systems of the peers, which are part of a P2P network, building a distributed file system. It intends
to revolutionize the web, so that it becomes faster, more open and safer.

Considering a traditional file sharing platform built on top of HTTP, a machine downloads a file
directly from another machine. Contrarily, IPFS allows a machine to download a file through the
transmission of data chunks from multiple machines dispersed over the network. Therefore, IPFS
enables the distribution of high quantities of data efficiently thanks to its P2P approach.

The increasing centralization of data may lead to threats regarding cyber attacks and natural
disasters. IPFS vision aims to prevent this problem dispersing the data through the network. Moreover,
it allows the persistence availability with or without an Internet connection

In essence, the IPFS [80] may be described as a combination of Web, with BitTorrent and Git.
When a file is inserted in the IPFS, it is identified by the hash of its content. Therefore, IPFS is able
to guarantee the nonexistence of duplicated files, as well as a version history tracking for every file,
similar to Git.

Taking into account data storage and routing, each node of the network is responsible for storing
the content it is interested in, as well as indexing information. This information is used for discovering
a set of peers which are storing a certain file, through its unique hash. It is also important pointing
out that IPFS uses a decentralized naming system that maps human-readable file names with its hash
identifier, in order to enable queries.

With a view to make this possible, IPFS combines a DHT, a content-addressed blocked storage
and a keychain (concept similar to the web of trust).

3.4.3 zeronet
ZeroNet3 is a decentralized web platform, which allows the deployment of open, free and uncen-

sorable websites, using the Bitcoin cryptography, as well as the BitTorrent network.
2http://ethertweet.net/
3https://zeronet.io

34

When a visitor accesses a web site, its content is distributed using the BitTorrent network, instead
of using a central server. Accordingly, the websites deployed using this platform are uncensored as a
result of not being deployed on a specific location.

Every site deployed in this platform has a content.json file associated, which contains a signature
generated using the site’s private key. This signature is validated by the peers before starting to serve
the web site contents to its visitors. This mechanism guarantees that only the site owner is able to
modify the site.

In summary, this platform provides no hosting costs to websites, as well as no single point of failure
and low response times. In addition, it matches real-time requirements of certain use cases and offers
security, transparency and trust to the websites.

35

chapter 4
Decentralized IoT
Infrastructure
In this chapter, the motivation for decentralizing an IoT infrastructure using a DHT is described,
followed by the identification of the requirements that such an infrastructure must comprise. Afterwards,
the decisions and principles used for designing the intended infrastructure are presented, as well as an
overview of the proposed architecture.

4.1 problem statement
In section 2.5 is stated that the current IoT infrastructures are built on top of horizontal solutions,

which combine multiple WSNs and applications, in a single infrastructure. This single infrastructure
usually consists of a centralized server, which receives WSNs’ data from gateways. Accordingly, this
distributed system has a centralized architecture, which is described in section 3.1.1. This type of
architecture has disadvantages, which do not match the IoT vision described in section 2.1.

IoT infrastructures must be flexible and extensible enough to accommodate such a high level
of diversity, concerning both the users and objects, as well as to support billions of smart devices
producing massive amounts of data. Ideally, one could argue that infrastructures should not exist, as
they contribute to the ever existing problem of data and management silos. The Internet grew from
organic attachment of networks, end-devices and servers, and this proved to be a much successful
approach, both by the amount of distribution it presents, and by the adaptation to new use cases
and services. Moreover, common infrastructures store large amounts of data in a central location,
which will have an ever increasing impact in case of a cyber attack, as more data is continuously being
gathered and stored together.

Taking into account the objectives stated in section 1.1, the infrastructure proposed relies on a
DHT to set up a decentralized infrastructure, as well as route messages among peers. It is a P2P
overlay network, where IoT gateways (GW) are the network peers. This network is complemented
by several WSNs, which will provide data to the infrastructure. In addition, a undefined number of
applications may communicate with it, as depicted in the picture below.

37

Figure 4.1: Network of the infrastructure.

With the proposed topology illustrated in Figure 4.1, it is possible to achieve the Internet level of
scalability, once each new node joining the network shares its resources towards the overlay. Therefore,
the topology consists of a community driven, decentralized network. Consequently, the system may
provide different roles in the overlay, which will result in the share of computational power, storage
capacity and network bandwidth, allowing the system to scale easily.

One of the biggest disputes that must be overcome in order to deploy IoT in a global scale is
security. In section 2.7, the importance of having a secure IoT is described, as well as the impact of
security mechanisms on system’s performance. In the context of this dissertation, the decentralized and
heterogeneous nature of the distributed approach increases the complexity of most security mechanisms,
such as Access Control, Data Integrity, Identity Management, Network Security, Trust Management
and Privacy [81].

In short, an efficient, scalable, secure and self-configuring decentralized infrastructure is proposed
to integrate IoT platforms. This solution has a set of advantages, such as no single point of failure,
data replication in different locations of the network and capacity to have different types of peers, each
one with its roles, according to its hardware specifications.

4.2 functional requirements
The proposed infrastructure may appeal to a wide range of entities. Firstly, telecom operators may

improve their services, as well as create new business processes to provide secure and privacy-preserving
IoT services to their clients. In addition, this solution provides a great opportunity for common
corporations to enhance their quality of service, such as wine vendors, shipping enterprises, factories,
among others. Moreover, public entities may also provide public data of certain cities, which can be
used by developers, in order to improve the quality of life of those cities’ residents. Finally, common
people should also be allowed to make their things smarter, such as houses, by sending data to the

38

infrastructure.
Nevertheless, taking into consideration the community-driven approach of this infrastructure, all

the described entities must provide resources to the infrastructure, so that it can continue its growth.
Briefly, sensors owned by the described entities send periodic data to the infrastructure. Afterwards,

each entity, usually behind an application, may act with the infrastructure using different approaches.
The use-case model illustrated in Figure 4.2 shows the possible interactions of some entities with the
infrastructure. It is important to notice, that several other entities may also be presented in this
diagram, according to the diverse use cases of the IoT.

Figure 4.2: Use case Scenario.

The specified use cases are briefly described in Table 4.1.

39

Use Case Description

Deploy gateway peer
Provide public gateways to the infrastructure, in
order to enhance the infrastructure’s performance
and scalability, as well as enable its growth.

Sign Up Sign up in the infrastructure, with a view to
assign sensors to this account.

Log In Authenticate in the infrastructure, aiming to
interact with it.

Bind sensor Assign a sensor to an entity.
Get last data of a sensor Request the last received data of a sensor.
Get data history of a sensor Ask the data history of a given sensor.
Get data stream Request a data stream from a set of sensors.
Share data Share data from a sensor with other entity.
Unshare data Unshare data from a sensor with other entity.
Send data Sensor send a new chunk of data to be persisted.

Table 4.1: Use cases description.

4.3 non-functional requirements
After presenting the scope of this solution, this sub-section intends to identify the main charac-

teristics of a IoT infrastructure, pointing out their benefits and disadvantages towards its different
architectures. Then, the non-functional requirements of this system are specified.

A generic IoT infrastructure must comprise the following characteristics [81]:

1. Data Management: As data is being generated, it is necessary to identify where to store it,
as well as how it should be accessed;

2. Fault Tolerance: In the event of failures, the infrastructure must continue its proper behavior;

3. Interoperability: Within the IoT paradigm, the devices are expected to be heterogeneous;

4. Performance: The infrastructure needs to provide a minimum level of performance, so that it
does not compromise the requirements of a business process;

5. Reliability: It must assure a minimum level of up-time to match the IoT requirements;

6. Scalability: The infrastructure must scale, in order to allow the number of connected devices,
as well as the amount of data generated, to grow exponentially;

7. Security: There is a wide range of issues that must be addressed, in order to guarantee a
secure and trusted IoT.

In a centralized IoT infrastructure, data management is simple, since all the infrastructure data is
stored in the same point of the network. Consequently, the data access is easy to manage. Additionally,
it is easy to guarantee the interoperability of the infrastructure, because all sources of data will

40

communicate with a single API, provided by the centralized system. Considering performance and
reliability, the centralized infrastructures are usually built on top of a cloud platform, which allows
a very good service up-time, as well as an acceptable performance. Therefore, the infrastructure
scalability is limited by the available cloud resources, which are proportional to the available budget.
Regarding Security, a single vulnerability may put the whole infrastructure in risk. In other words, the
central entity consists in a single point of failure, as well as a possible security vulnerability. Finally,
this type of architecture may provide a simple publish-subscriber system for real-time data acquisition.

On the other hand, in a decentralized IoT infrastructure, data management is more complex,
as the data will be distributed through the network. As a result, the data access is more difficult
to manage, but it can easily be replicated through the network. Then, due to the communications
between heterogeneous devices, the interoperability is complex to achieve and should be standardized.
Considering performance and reliability, the infrastructure up-time and efficiency depends on the
number of peers maintaining the infrastructure, but a failure of a peer will not affect the whole system.
In terms of scalability, it is considerably improved through the distribution of computational power, as
well as data storage through the peers. Moreover, the information will be stored in different locations,
which results in a smaller impact in case of a successful attack. However, the number of possible points
of attack increases significantly. Finally, providing a global publish-subscriber mechanism is considered
a complex task, as a result of the need for synchronizing peers efficiently.

Therefore, it is easy to understand that a centralized infrastructure is easier to implement and
consequently, it was the first approach to get in the market. In spite of the numerous problems that
need to be solved, a distributed approach has benefits that are important to accomplish the IoT
potential, namely fault-tolerance, scalability and security.

Summing up, the following list of non-functional requirements has to be accomplished, in order to
have a secure decentralized IoT infrastructure:

1. Adaptability - concerning an infrastructure composed by heterogeneous nodes, the infras-
tructure should accept nodes with different constraints, as well as take advantage of the main
hardware characteristics of each type of node.

2. Data Access Control - with regard to protect data from attackers, an access control mechanism
should be used, in order to determine if a certain entity is allowed to access the requested data;

3. Data Anonymity - the infrastructure must store the IoT data, considering that if an attacker
accesses this data, he could not link the stolen data to its owner;

4. Data Integrity - the data stored in the infrastructure, as well as the data transmitted through
it, should maintain its accuracy and consistency over the time;

5. Data Replication - regarding possible failures of nodes in the network, the infrastructure
should have its data replicated through the network, in order to guarantee no loss of data;

6. Fault Tolerance - in spite of any failure in the infrastructure, it must be always available for
receiving and storing data, as well as answering data requests;

7. Identity Management - the infrastructure must manage the identities of data consumers,
assuring the entities authenticity and privacy;

8. Interoperability - with regard for the heterogeneous environment of IoT, as well as the lack
of standards, the infrastructure must provide interface communications for a wide range of
protocols;

41

9. Performance - the proposed infrastructure may comprise short response times, as well as high
throughputs, in order to not compromise its expected behavior;

10. Real-time Data - the infrastructure must provide a secure data stream, as a result of the
real-time requirements of many use cases;

11. Scalability - concerning the IoT vision, the proposed infrastructure must be prepared to an
exponential growth of devices, as well as generated data;

12. Secure Data Storage - the collected data must be encrypted, in order to be useless in case of
a successful attack to the infrastructure’s persistence;

13. Secure Communications - concerning that the infrastructure is built on top of the Internet,
its nodes must communicate in a secure way among them, in order to protect communications
from man in the middle attacks.

4.4 design principles
In this section, considering the requirements defined in the previous ones, the design principles are

outlined along with a brief motivation for making the associated decisions.
As the IoT continues expanding, researchers and companies search for economical and efficient

solutions to secure the infrastructures. Mutual authentication, secure communications and integrity
messaging will undoubtedly be necessary for the IoT success. As stated in section 3.3, PKI has been
the backbone of security in the Internet since its inception, relying in the use of digital certificates.
It is a concept that covers authentication, data access control, data confidentiality and information
integrity. Above all, PKI is an economical, reliable and proven technology that can be used, in order
to set up a secure and high-performance infrastructure [69].

In spite of PKIs extensive capabilities having never been completely explored, this is about to
change due to the IoT emergence, which will test the real performance and scalability of PKIs. Unlike
conventional PKI and connected devices, the IoT will be composed by constrained devices, which can
compromise the infrastructure’s performance. In addition, it is necessary to equip all potential devices
with PKI-based credentials, which is not easy, since making good keys, in an efficient way, is not an
easy task.

Therefore, the PKI is the obvious option for achieving the security requirements identified previously.
For a secure infrastructure, it is required to guarantee the peers identity and authenticity. Currently,
the three most frequently adopted approaches are considerable different and are known as Hierarchical
Certification, WoT and Blockchain-based PKI, as described in section 3.3.

After analyzing the three mentioned approaches, as well as the ADEPT proposal in section 2.5
and the scaling problems regarding the blockchain implementation [45], it is possible to understand
that the current implementation of the blockchain cannot be used to achieve the requirements of the
proposed infrastructure. Above all, the interoperability, real-time data and scalability required will not
be guaranteed using it. For instance, a bitcoin transaction takes about 10 minutes to be validated [45].
Moreover, the WoT approach can not achieve the requirements of the proposed solution either. In
particular, the infrastructure growth, real-time data transmissions and scalability may be compromised,
as a result of this approach taking a considerable time to validate an identity, as well as being difficult
for new entities to join the network without being previously trusted. For these reasons, the proposed

42

infrastructure makes use of a Hierarchical Certification. Consequently, it will have a centralized
dependency. However, considering the current implementations for a decentralized certification, it is
not possible to achieve an interoperable and scalable solution with real-time capabilities.

While the number of networked devices is becoming larger, the capabilities of them will diversify.
In consequence, the proposed infrastructure must be flexible enough to allow peers with different
purposes in the overlay, according to their hardware constraints. For instance, the infrastructure should
accept peers with a set of different services enabled, namely:

1. Data Access: provides an end-point for accessing the data stored in the infrastructure, which
may be used by applications and services. This end-point has an access control mechanism
associated, in order to verify if the requester has permissions to access the requested data. After
the access control, it handles the data retrieval from the infrastructure network;

2. Data Collector: offers an end-point for reporting data, which is used by the sensors of the
WSNs associated with the peer. As new data arrives to the end-point, this service forwards the
received data to the data persistence and data stream services, which may be in other peers;

3. Data Persistence: manages and runs a distributed database combined among the peers with
this service enabled. Moreover, it provides an end-point for storing data, which is used by the
data collector service, and for retrieving data, which is used by the data access service;

4. Data Stream: provides a publish-subscriber mechanism to the infrastructure. As in the data
access service, this service has an access control mechanism for allowing entities to subscribe
sensors. Therefore, it receives subscribe messages from services and applications, as well as
publish messages from the data collector and forwards the received data to the interested parties.

In order to accomplish an infrastructure as described previously, it is possible to divide the
peers architecture into four different large categories, Overlay Network, Management Interface, Data
Interfaces and Data Persistence.

4.4.1 overlay network
The Internet protocol suite consists of a computer networking model, which has a set of communi-

cation protocols used on computer networks like the Internet [82]. The proposed overlay will be built
on top of the Internet, so that a scalable infrastructure may be accomplished. Therefore, the network
transport should be carried out through UDP or TCP, which are protocols that run on top of the IP.

UDP is a connectionless protocol, that is, one entity may send a set of packets to another, and
the entities relationship would end afterwards. This protocol is faster because there is no guarantee
of reliability nor ordering of packets. In consequence, UDP is appropriate for fast and efficient
transmissions.

TCP is a connection-oriented protocol, in other words, one entity establishes a session with another
entity, sending its packets afterwards. It also requires acknowledge messages, in order to guarantee
that the messages arrived their destination. As a result, TCP is suited for networks that prefer high
reliability to transmission time. Due to its nature, this protocol is slower than UDP.

On balance, while UDP should be applied in time sensitive networks, as well as in networks where
small packets are exchanged by a huge number of clients, TCP should be applied for web browsing

43

and file transfer. All things considered, UDP is the best protocol for the proposed infrastructure as a
result of the large quantity of small packets that are expected to be exchanged among peers.

As previously stated, a structured P2P system is the evident choice for the proposed infrastructure,
since it provides a guarantee (precise or probabilistic) on query cost, which makes possible that a
request can be routed to a peer, who maintains the desired data quickly and accurately [9].

The most used technique for building a structured P2P overlay is the DHT. Regarding the
described implementations in section 3.2, Kademlia was the chosen DHT implementation, since it
guarantees good performance, while also providing caching, resource replication and asynchronous
range queries [42].

Kademlia ensures a fast and lightweight exchange of data by using UDP instead of TCP. It is
based on four simple RPC, known as PING, STORE, FIND_NODE and FIND_VALUE. Each peer of the
overlay is identifiable through its node_id, while each data resource is identifiable by the corresponded
sensor identifier. The nodes communicate using the mentioned RPC over UDP communications.

According to the defined requirements, this DHT implementation needs to be enhanced, in order
to build a secure and trusted network. In short, the communication among peers must both be secure
and maintain the data integrity through the network. Considering the PKI, each peer of the overlay
will keep a public key certificate. As represented in Figure 4.3, when a node intends to join the overlay,
the following interactions will occur:

1. Get the information of a set of bootstrapping nodes, so that the new node may join the overlay;

2. A set of bootstrapping nodes containing their IP addresses, ports and public key certificates are
returned to the new node;

3. Node information and digital signature are sent to a bootstrapping node, in order to request
the entrance in the overlay;

4. The bootstrap node creates a session key (symmetric key) and sends it back, encrypted with
the new peer’s public key.

New
Node

Bootstrap
Node

Register
Server

CentralizedOverlay Network

Internet

1

2

3

4

Figure 4.3: Process for a new node get in the overlay.

Since this moment, as illustrated in Figure 4.4, if the previous message is correctly authenticated,
both peers will communicate with each other using lightweight encrypted messages, using the session

44

key previously created for the cryptographic operations. Moreover, when a peer intends to communicate
with a new peer of the overlay, they need to negotiate a session key first, which will be persisted next
to the node identifier in the kademlia’s protocol k-bucket.

PeerA Message PeerB

1

Figure 4.4: Messages exchange in the overlay network.

To summarize, the design choices at the overlay network level are crucial to achieve a high-
performance, scalable and fault tolerant infrastructure. These decisions also provide data replication,
as well as data integrity and secure communications through the network.

4.4.2 management interface
The proposed infrastructure needs to be able to manage entities, who intend to access the data

persisted in it, as well as devices, that will report data to it. Another important aspect is the fact that
such infrastructure should guarantee data anonymity. As a result, an attacker cannot link a data set
to its original owner. It must manage its entities, as well as their information, without compromising
their privacy. To achieve this, each entity should have a pseudonym, which is a anonym identifier of an
entity inside the infrastructure [83].

The entity’s pseudonym must be generated on the application side, using, for example a specific
hardware token or the hash of the entity’s private key, in order to assure that only the entity can
produce its own identity. The proposed infrastructure stores the entity’s data through the DHT, where
the pseudonym of the entity consists of its key. However, the private credentials of the entity must be
stored in a different location of the network, so that no other entity may know who those encrypted
credentials belong to. Moreover, all the entity data must be generated on the client side.

Taking into consideration the entities that may sign up in the infrastructure, their data must be
properly secured, with a view to prevent identity theft and data tempering. The data model defined
for this solution is known as User Data Model and is illustrated in Listing 1.

The User Data Model may be analyzed into three different sections. Firstly, the "data" and
"signature" fields are used for keeping the credentials of the entity, as well as its integrity. Then, the
"sensors" and "sensorsSignature" fields are responsible for storing the list of sensors the entity
may access, as well as the lists integrity. Finally, the "share_invites" and "share_requests" fields
are responsible for data sharing events.

45

1 {
2 "data" :
3 {
4 "code": privateCredentialsDHTKeyCiphered ,
5 "iv": privateCodesIV ,
6 "salt": privateCodesSalt ,
7 " pub_key_DS ": digitalSignaturesKey ,
8 " pub_key_ED ": encryptionDecryptionKey
9 },

10 " signature ": dataSignature ,
11 " sensors " :
12 {
13 "list" : userSensors ,
14 "shared" : userSharedSensors
15 },
16 " sensorsSignature ": sensorsSignature ,
17 " share_invites ": invitesDataSharing ,
18 " share_requests ": shareRefusalOrUnsharedData
19 }

Listing 1: User Data Model for DHT

When an application assigned to the infrastructure intends to sign up a new entity, it must create
two RSA key pairs, an RSASSA-PKCS1-v1_5 key pair for digital signatures and an RSA-OAEP key
pair for encryption and decryption. In addition, it has to generate the entity’s pseudonym, as well
as a random hexadecimal value for storing the private credentials in the DHT. It is also required to
derive the entity’s key using a key derivation algorithm, such as PBKDF2. Afterwards, the resulting
derivation is used to cipher the private keys and the random hexadecimal previously generated, using
an encryption algorithm, such as AES-CBC (it needs a salt and an Initialization Vector (IV)).

Accordingly, the application may sign up the user to the infrastructure, as illustrated in Figure 4.5.
This procedure is composed of the four following interactions:

1. The encrypted private credentials of the entity are sent to the infrastructure;

2. Credentials are inserted in the DHT, using the previously generated hexadecimal value as key
(if nonexistent in the DHT), in order to keep the entity’s credentials stored;

3. The User Data Model of the entity is sent to the infrastructure;

4. The User Data Model is inserted in the DHT, using the pseudonym as key.

It is important to notice that in case of a key overlapping attempt, the infrastructure must inform
the application to create new credentials for the user.

46

Figure 4.5: Sign up a user in the infrastructure.

After a sign up process has been made, when a user intends to log in the application, the
infrastructure only has to receive the user’s pseudonym, since only the entity is capable of generating
it. The log in process is depicted in Figure 4.6 and comprehend the following interactions:

1. Requests to a infrastructure’s peer the user data model of a specific pseudonym, which has been
stored in the sign up process;

2. A gateway peer tries to get the user data model from the DHT;

3. The requester verifies the integrity of the previously received data, deciphers the private
credentials hexadecimal code, using the password derivation and consequently, requests the
user’s private credentials, using this code;

4. A gateway peer tries to get the private credentials from the DHT.

When a new sensor is connected to the infrastructure, the user must bind it to its account, with
a view to keep his data secure. As a result, the infrastructure has to receive meta-data information
about the sensor, as well as to update the list of sensors in the user data model. The Sensor Meta-data
Model is represented in Listing 2.

47

Figure 4.6: Log in a user, in order to request its data to the infrastructure.

1 {
2 "meta" :
3 {
4 "owner": ownerPseudonym ,
5 "public": boolean ,
6 " access_list ": [pseudonymsWhoMayAccess]
7 },
8 " meta_signature ": metaSignature
9 }

Listing 2: Sensor Meta-data Model for DHT

For security reasons, the sensor bind operation, illustrated in Figure 4.7, must be authenticated
using digital signatures, in order to guarantee the requests authenticity, as well as integrity. Aiming to
prevent data tempering, as well as rewrites as a consequence of concurrent operations, this data model
can only be modified by the sensor owner in atomic and signed operations. Moreover, the key used
to insert the Sensor Meta-data in the overlay is generated by appending the letter m and the sensor
unique identifier. Thus, this process is composed of the three following interactions:

1. The entity requests to a gateway a sensor binding. Therefore, it sends the Sensor Meta-data
Model, composed by the meta-data of the sensor and the signature for validating the identity of
the entity;

2. The gateway peer gets the entity data, as well as the sensor meta-data from the DHT and
verifies if the received sensor identifier is already assigned, as well as the authenticity of the
binding request;

48

3. The Sensor Meta-data is inserted in the DHT and the entity’s data of the requester is updated
with this sensor identifier in the access list.

Figure 4.7: Bind sensor to a pseudonym.

Taking into account security purposes regarding authenticity, the sharing and unsharing of data
have to be divided into two independent procedures. Firstly, the data owner sends a sharing invitation
to another entity. Afterwards, the invited entity may accept or refuse the data share.

Both procedures have the same type of interactions and may be illustrated by Figure 4.8. As
represented, the first process comprehend the three following interactions:

1. Requests to a gateway a data sharing to a certain pseudonym, sending the entities and sensor
identifiers, as well as a signature of the request;

2. The gateway peer gets the entity data, the sensor meta-data and the intended entity for sharing
from the DHT;

3. If all the requested data was found, the gateway peer verifies the authenticity of the sharing
request, using the public Key of the requester, as well as if the requester entity is the sensor
owner. Afterwards, it sends the updated sensor meta-data, with the new entity in the access
list and the updated entity data model with the sharing notification.

49

Figure 4.8: Share data from a sensor with other entity.

Therefore, when the user who received the sharing invitation logs in to the application, his data
model will contain the received invitation, which may be accepted or refused. This process contains
the following interactions:

1. Requests to a gateway peer the acceptance or refusal of a data sharing;

2. The gateway peer gets the user data and the sensor meta-data from the DHT;

3. If all the requested data was found, the gateway peer verifies if the received sensor identifier
already has the requester pseudonym, as well as the authenticity of the request. If the user
intends to accept the sharing invitation, the gateway updates the shared sensors list of the user,
as well as the signature of the list. Finally, it removes the share notification from the user data,
and sends the new data to the DHT.

The unshare process is similar to the previously described share. A user, who is the owner of
the sensor, may unshare data with a previously shared user. This process is also divided into two
independent procedures. Firstly, when a user A unshares data with a user B, the pseudonym of the
user B is removed from the sensor access list and a unshare notification is added to his data model.
Afterwards, when the user who received the unshare notification logs in the application, he receives
and accepts the notification, where the sensor identifier is removed from his list of shared sensors and
the notification is removed from his data.

4.4.3 data interfaces
The infrastructure must be able to receive data from WSNs and provide it to applications or

services. It needs to have a data storage interface, as well as a data access interface. Both interfaces

50

must have security concerns, so that the infrastructure guarantees data security, as well as user’s
privacy.

Considering that the data produced by sensors may be an attack target of an IoT infrastructure,
which may compromise the privacy of business processes, and the intended infrastructure will be in an
environment with multiple entities, each one with its privileges, access to information must be limited
to the entities who are part of an access list. Therefore, the requests for data retrieval must go through
and access control mechanism fist.

The tremendous number and diverse nature of IoT deployments brings plenty new considerations
to the table concerning how to actually implement flexible and interoperable IoT infrastructures.
Every IoT device is uniquely identifiable by its embedded computing system and must be able to
communicate within its WSN.

The store interface consists of a public interface through which the sensors of all WSNs will send
their gathered data to the infrastructure. In other words, this public interface is the entrance door for
the generated data and should accept different protocol communications, in order to be prepared for
the heterogeneous environment of the IoT deployments. Therefore, the proposed infrastructure must
accept data from a set of protocols, such as HTTP, MQTT and CoAP.

Taking into consideration that the application layer will update sensors’ meta-data, it is necessary
to have an additional data model, in order to avoid synchronization problems when both applications
and sensors make requests for the same sensor. As a result, the Sensor Data Model is presented in
Listing 3.

1 {
2 "data" : cipheredDataOrPlainText ,
3 "codes": cipherAccessCodes ,
4 " distribution ": boolean
5 }

Listing 3: Sensor Data Model for DHT

This data model only contains information related to the data received by the sensor and con-
sequently, it is only updated by a new message from it. Firstly, the "data" field contains the data
received by the sensor. If the sensor is subscribed to a pseudonym, this data should be previously
encrypted, using a random generated key (symmetric encryption). Secondly, the "codes" field consists
of a list of access tokens for each pseudonym who may access this data. The access tokens result from
the encryption of the random key used for the symmetric encryption, with the public key of each
pseudonym (asymmetric encryption). Finally, the "distribution" field is used for the distribution of
data through the peers, which have the data stream service enabled.

As illustrated in Figure 4.9, the insertion of new data in the infrastructure is composed by three
interactions, which may be described as follows:

1. The applications requests the insertion of data in the infrastructure to a GW Peer, which has
the data collector service enabled;

2. The GW peer tries to get the Sensor Meta-data from the DHT. If the sensor meta-data does
not exist in the overlay, then this sensor is not subscribed by any pseudonym (public data).
Otherwise, the GW peer gets the public keys’ of the entities who may access this data.

51

3. If the sensor data is not public, the received data is encrypted and an access code for each entity,
who may access the sensor’s data, is computed. Finally, the new sensor’s data is inserted in the
DHT. Otherwise, it is inserted in the DHT in plain text.

Figure 4.9: Sensor data to be inserted in the DHT.

However, the GW peer has also to persist this new data sending it to a peer, which has the
persistence service enabled. Moreover, it also has to forward the new data to the peers, which have
the stream service enabled, so that all the subscribers of real-time data of this sensor may receive the
subscribed data. Both of this communications are performed asynchronously.

The global scale deploy of IoT devices promises to change the way we live. Accordingly, the data
generated by sensors has to be retrieved by those who have the permissions to access it. Therefore, the
proposed infrastructure must provide a flexible access interface, so that all business processes needs
may be accomplished.

This access interface may be divided into three different interfaces, each one behind the same
access control mechanism, in order to verify if the requester holds certain privileges to access the
solicited data. The infrastructure should be able to provide the last known data of a sensor (value of
the sensor in the DHT). In addition, it must be able to provide the history data of a sensor, i.e. all the
measured data during a temporal interval (data persistence). Finally, it should provide a data stream,
that is, a publish/subscriber mechanism, so that data consumers may subscribe events from their data.

It is also relevant pointing out the need for data integrity in this context. Accordingly, integrity
guarantees that the transmitted data remains consistent and unmodified during its transmission
through the network. When it is intended to transmit data, this data must be also signed by the
emitter, in order to ensure to the receiver, the authenticity of the message. When an entity requests
data from a sensor, it must send the sensor identifier, as well as the pseudonym along with the signature
of the request.

52

Regarding Figure 4.10, a data history access procedure comprehends the following interactions:

1. The application requests the data history of a certain sensor to a GW Peer, which has the data
access service enabled. This request contains the entity pseudonym, the sensor identifier, the
intended query and a signature;

2. The GW peer tries to get the entity’s data of the requester, as well as the sensor meta-data,
from the DHT;

3. If the sensor-meta data and the entity data are found, the GW peer validates the request
signature and verifies if the requester may access the requested data. Accordingly, the queried
history data is requested to a peer, which has the persistence service enabled and forwarded to
the application.

Figure 4.10: Get data history from the distributed database.

When the requested set of data is returned to the requester, he will need to decrypt the access
code with its private key. Afterwards, it can use the resulting access code to decrypt the received data
and parse it. Therefore, only the intended recipient can decrypt the received data through its private
key, and the entity privacy is guaranteed.

Taking into consideration the publish-subscriber mechanism needed for real-time data acquisition,
three important aspects must be taken into account. When a user tries to subscribe data from a
sensor identifier, this subscription must be granted by an access control mechanism, such as in the
data access previously described. Moreover, when a sensor publishes data to the broker, this data must
be encrypted before being propagated by its subscribers. Finally, regarding the decentralized nature of
the infrastructure, it must behave as a single broker. Each peer has to synchronize its publishers and
subscribers with the other peers. Thus, each one subscribes all the other peers, which have the stream
service enabled, in order to exchange information among them.

The design choices made aim to provide data access control and privacy, as well as data anonymity
to the infrastructure. In addition, they intend to achieve a flexible and interoperable infrastructure.

53

4.4.4 data persistence
Considering the IoT premise where millions of devices will be connected and will be producing

massive volumes of data, the capacity and efficiency of data storage are crucial. The stored data must
be encrypted, in order to prevent unauthorized access to it, in case of an attacker getting access to a
gateway.

Just after the Store Interface generates the encrypted data, as well as the entities’ access codes,
this layer will get in scene, in order to persist this information along the network, for keeping the
history state of the IoT.

Considering the expected amount of data that will be generated, it is crucial to distribute the
specified data through the overlay. Therefore, this data could be stored in a distributed file system
or, in a distributed database. A distributed database provides data consistency, as well as efficient
data access and replication. On the other side, a distributed file system consumes considerably less
hardware resources.

As stated in Section 2.6, time series databases are optimized for sequential writes, which will be
indexed by timestamps. Moreover, they also provide an efficient retrieval for data in a time interval,
as well as a fast removal of data that is no longer relevant.

Considering the tremendous advantages of time series databases for IoT infrastructures, as well as
the flexibility to have nodes with different capabilities in the overlay, it was decided to use a distributed
time series database for storing the received data.

This database will consist of a table oriented by columns, where each column will correspond to
a sensor identifier. As a result, each entry of this column will contain the sensor data model for a
certain time-stamp, and all the data received from a sensor will be stored sequentially, ordered by its
relevance, that is, the most recent data is in the top of the column.

To summarize, the design decisions of this layer aim to provide a secure data storage to the
infrastructure, guaranteeing the data anonymity. Moreover, the distributed database allows the
scalability and performance of the infrastructure, as well as data replication.

4.5 peer architecture
The above design principles aim to accomplish all the objectives and requirements previously

stated. These principles lead to the following system architecture for the gateway peers, which is
represented in Figure 4.11:

Peers with different constraints may cohabit in the overlay network and, consequently, the
infrastructure has to be flexible to accommodate such a diversity of nodes. Therefore, when a peer is
started, it has to select its roles in the overlay. The Network Transport, DHT, Overlay, Management,
Middleware and Data Security layers are mandatory for all the peers, so that the infrastructure runs
properly.

On the other hand, the Access Interface, Store Interface, Stream and Data Persistence layers
are optional for the peers. In consequence, they should be enabled according to the peers hardware
specifications. A peer capable of storing large quantities of data should enable the Data Persistence
service, while an IoT gateway peer has to enable the Store interface, in order to listen for IoT events of
its assigned WSN. Furthermore, the Access interface may be enabled, if the peer has good computing
capabilities, so that it may provide the requested data.

54

DHT
Overlay

Access
Interface

Store
Interface Stream Management

Data Persistence

Data Security

Middleware

Network Transport

Internet

Figure 4.11: Architecture for a Decentralized IoT Peer.

The Middleware layer is responsible for enabling the layers of the services selected in the peers
configuration. Moreover, this layer handles the communication between the different services of the
architecture. For instance, when an application requests data to the Access Interface end-point, the
Access Interface asks the middleware to handle the communications with the other components, in
order to retrieve the requested data in a secure manner.

55

chapter 5
Prototype Implementation
and Technologies
In this chapter, the prototype architecture is presented, as well as an overview of the technologies
that have been used in its implementation. Some important aspects regarding the implementation
components, as well as its deployment and integration are described.

5.1 architecture
The implemented prototype, known as dIoTi, was developed regarding the requirements previously

specified in section 4.3. It may be composed of three different processes, a Twisted Application
Infrastructure, an MQTT Broker (optional) and a Database Engine (optional), according to the
enabled services of the gateway. The software architecture of this prototype is illustrated in Figure 5.1.

The main process was developed using Python Twisted1, an event-driven networking engine. As a
result of its asynchronous nature, it can handle thousands of connections in a single thread, providing a
great performance and scalability, even in constrained devices. The Twisted Application Infrastructure
implemented acts as a container of different services. Consequently, the implemented application
is modular and easy to update, allowing new services to be easily developed and integrated in the
application.

In the context of this prototype, the developed Twisted Infrastructure contains several services.
The Overlay Service is used to build a secure and trusted overlay network, on top of a DHT, as
described in section 4.4.1. In addition, the Management Service implements a REST API for managing
the user entities as specified in Section 4.4.2 for the Management Interface. The Access Service and the
Collector Service also implement REST APIs for handling data flows between sensors and applications,
as described in the Data Interface in section 4.4.3. Furthermore, the Collector Service also receives
data from the MQTT Broker and forwards it to the Persistence Service, which persists the received
data in a local or remote InfluxDB Database, according to Section 4.4.4. Finally, the Stream Service is

1https://twistedmatrix.com

57

Figure 5.1: Gateway Peer prototype architecture.

used by the MQTT broker for communicating with the infrastructure, whereas the Distributed Stream
Service is used for synchronizing all the MQTT Broker processes of the overlay network.

All the developed services use auxiliary modules, such as modules for encryption and decryption,
or certification. Combining those modules, with the developed services and its communications, we
achieve a Peer Architecture similar to the specified in Section 4.5.

Taking into consideration the decentralized nature of this prototype, as well as its security
requirements, it is fundamental to have a logging system in the proposed infrastructure. Thus, a
logging instance is provided to each service, which is bound to the developed application. With the
resulting log files, it is possible to identify attack attempts to certain sensors, as well as to detect
applications misuses or even errors and loss of availability. In the context of this prototype, the logging
messages have a tag where the service is identified and the associated message.

Since developing a fully working broker was not part of this dissertation’ scope, we opted for
modifying an already existing open source implementation, in order to suit our needs. Accordingly, the
HBMQTT Broker2 implementation was modified, so that we can achieve the proposed infrastructure

2https://github.com/beerfactory/hbmqtt

58

requirements. Shortly, this implementation has also an access control mechanism for data subscriptions
and a data encryption mechanism for data publishes. This broker is executed in its own process,
separated from the main process.

5.2 twisted application communication
The networking infrastructure developed, needs a set of different types of communication, each

one with its own properties.
The overlay service uses an open source implementation of the Kademlia Protocol3, properly

modified so that the security requirements may be achieved. Therefore, all the communications between
the overlay peers are properly encrypted. This API provides two main methods to the developed
infrastructure, as depicted in Figure 5.2. It has a set method, which is used for inserting data in a
certain key of the DHT. Moreover, it provides a get method, which allows the peer to get data stored
in the DHT by its key. Both of this methods are made on top of RPC over UDP, which consists of
another open source project4.

Figure 5.2: Kademlia API Interactions.

As previously stated, the modified HBMQTT broker has an access control, as well as a data
encryption mechanism. In the context of the access control mechanism, the broker process communicates
with the Twisted Application, so that it can verify if a pseudonym may subscribe a certain topic
(sensor identifier). Moreover, considering the data encryption mechanism, the encryption is requested
to the Twisted Application, in order to encrypt the received data before spreading it to its subscribers,

3https://github.com/bmuller/kademlia
4https://github.com/bmuller/rpcudp

59

as well as persist it in the infrastructure. Both communications described are made on top of HTTP
communications.

Taking into account the peers which have a local database enabled, it is necessary to have a driver
that allows the communications between the Twisted Application and the database engine. There is a
Python client for interacting with the database, which was developed by its creators. However, this
client is not compatible with twisted, thanks to its asynchronous nature.

Accordingly, an open source driver was developed for the InfluxDB database5, which is compatible
with Twisted. Therefore, the Persistence Service uses this driver to communicate with the Database,
in order to insert new data, as well as query it.

Considering the different services that each peer may have activated, it is necessary a form of
discovering what services each peer offer. Consequently, a good solution to solve this problem is the
mDNS[84]. It provides the ability to look up DNS resource record data types in the network.

In the context of this prototype, an open source Twisted plugin6 is used for using the Avahi/Bonjour
service[85]. Thus, when a gateway peer starts, it starts broadcasting its enabled services, using the
services’ name, in order to have its services available for being discovered.

5.2.1 REST APIs
The implemented peer’s architecture is composed of five different services, which may implement a

REST API. However, only Management Service must be enabled in every gateway peer. Therefore,
the Access Service, Collector Service, Stream Service and Persistence Service will be enabled according
to the peers’ configuration.

The Management Service, which is responsible for managing the infrastructure entities, has twelve
methods that may be used by applications. Briefly, it has methods for authentication, associations
between sensors and pseudonyms, as well as methods for handling data sharing.

Considering the HTTP interface, which is used by sensors to report their data, the Collector
Service has a method for publishing data in the infrastructure. Moreover, as the applications need to
get sensors’ data, the Access Service provides two different methods for accessing data. It is provided
a method for retrieving the last received data of a certain sensor, as well as a method for obtaining the
history data of a sensor (may be filtered by timestamps).

Bearing in mind the needed communication between the MQTT Broker and the application, the
Stream Service has two methods to be used by the broker. For subscription requests, the application
provides an access control method, while for publishing requests, it is used a method for data encryption.

Finally, when a peer has the Persistence Service enabled, it also provides methods for data querying
and data insertion to the peers that have the considered service disabled. In addition, the REST APIs
described are properly documented in the Appendix A.

5https://github.com/vasco-santos/Twisted_InfluxDB_Driver
6https://github.com/jdcumpson/txbonjour

60

5.3 register server
Complementing the IoT Gateway peers, a CA server was developed using Python’s AsyncIO

library, as depicted in Figure 5.3. In addition, aiming to persist the peers’ certificates, it is used a
RedisDB.

Figure 5.3: Register Server prototype architecture.

This server’s main feature consists of generating signed X.509 certificates to the overlay peers.
This certificates are persisted in the database for a short limited time (previously defined expiration
time). Consequently, the overlay peers have to register in the CA periodically, in order to keep a fresh
list of bootstrapping nodes.

Taking into account the register server communications, it has a REST API implemented using an
open source HTTP server known as aiohttp7, which provides a set of methods to the overlay peers. It
provides methods for getting bootstrapping nodes and to register a peer, as well as for getting peers’
data. This API is fully described in the Appendix B. Finally, it uses an open source Redis client,
known as aioredis8, for communicating with the database.

5.4 deployment and integration
Considering the complexity of this prototype, it is essential to automate its installation and setup.

Moreover, it is important to provide a good support for the application developers, so that they can
start developing applications, which use the proposed infrastructure.

The implemented prototype contains a set of modules and scripts, for handling the configuration,
set up and profiling of the peers. These modules and scripts aim to automate the installation and
setup of the peers, requesting only a few inputs to the entity that is installing the software.

7https://github.com/KeepSafe/aiohttp
8https://github.com/aio-libs/aioredis

61

According to the prototype architecture previously presented, this prototype may have multiple
processes running. The Twisted Application Infrastructure was developed using Python2, as a result
of the cryptographic libraries compatibility, while the broker was developed using Python3, thanks to
the use of the AsyncIO library. Consequently, peers must have both versions of python installed.

Aiming to offer an easy deployment to gateway managers, a machine_setup shell script is provided,
as well as a requirements file for Python2 and a requirements file for Python3. Therefore, the shell
script starts by installing the required Linux packages. Afterwards, it installs the required packages
for both Python versions, as well as the InfluxDB database.

It is also important pointing out that it is used the version 0.11 of the InfluxDB database, which
was released during the implementation of the presented prototype. In spite of a new version being
already available, the version 0.11 was the last open source version that included the clustering feature9.

5.4.1 configuration and setup
After executing the machine setup script for installing all the necessary packages, it is necessary to

configure the gateway. In the interest of providing an easy to use software, it was developed a shell
script for configuring and starting the peer. When this script is executed with any parameter, it prints
out a menu with its available options, as illustrated in Listing 4.

> ./dioti.sh

Usage: ./dioti.sh <command> [<arg>]

GATEWAY COMMANDS:

config [<conf>] -> Change Configuration (Addresses OR Register OR Services)
init -> Initalize Gateway Local Configuration
show [<conf>] -> Show Configuration details (Addresses OR Identity OR

Register OR Services)

NETWORK COMMANDS:

daemon -> Start a long-running daemon process
reload -> Restart Server

Listing 4: Menu output for gateway script.

For installing the peer software, it is executed the command with the init argument for configuring
the Gateway, as illustrated in the Appendix C. The presented execution starts by creating the directory
structure, where all the configuration files and logs of the application are stored. Then, openssl is used
for generating an RSA key pair and the peer identifier for the DHT is generated, using the sha1sum
of the generated Private Key. Afterwards, the network environment of the peer is configured and
the CA’s self-signed certificate is requested. Finally, the gateway manager may decide what services
he intends to enable, as well as its configurations. An example of the generated configuration file is
presented in the Appendix D.

9https://docs.influxdata.com/influxdb/v0.12/concepts/011_vs_012/

62

From this moment on, the peer only has to execute the script with the daemon argument, in order
to be ready for being part of the overlay network.

5.4.2 application binding
Taking into consideration the application layer, which will be composed of a large number of

different applications, the developers must be focused on their features, instead of the integration of
the application with the infrastructure. Consequently, it was developed two JavaScript snippets, which
may be included in web applications, in order to provide an easy integration for web applications.

The cryptographic snippet abstracts the necessary logic for all the cryptographic operations inherent
to the authentication processes, as well as to the integrity validations and data encrypting/decrypting.
This snippet uses the Web Cryptography API10, which was implemented by the Web Cryptography
Working group from the W3C, which has the participation of companies like Google and Netflix.
This snippet processes the needed cryptographic approaches and generates the necessary data to
be sent to the Infrastructure. It provides a wide set of methods, including signUp, logIn, sign,
verifySignature, decipherData, among others.

The mDNS snippet may be used to discover the IP addresses of peers, which have the Access
Service and Management Service. This snippet uses an open source implementation of the mDNS
for JavaScript11. It monitors the network, in order to keep an updated list of the peers, which have
the Management Service enabled, as well as a list of the peers, whose Access Service is enabled.
Furthermore, it has methods for retrieving peers with the intended service enabled.

10https://www.w3.org/TR/WebCryptoAPI/
11https://github.com/agnat/node_mdns

63

chapter 6
Evaluation and Results
The present chapter aims to evaluate the designed and implemented solution. A deployment scenario
has to be built, in order to create a real test scenario for evaluating the proposed IoT infrastructure.
Therefore, this scenario has to include sensors sending data to the infrastructure and an application
requesting data to it.

At the beginning of this chapter is presented the sensor simulators implemented, which were
developed so that the infrastructure may receive data from sensors. In addition, a web application
that was built for simulating entities requesting data to the infrastructure is presented. Finally, the
deployment scenario which was used to evaluate the proposed infrastructure is outlined and evaluated,
regarding performance, data security and the use of different communication protocols.

6.1 sensor simulators
Taking into account that the proposed infrastructure must receive data, in order to be properly

evaluated, two sensor simulators were developed. Shortly, these simulators send periodic messages to
the infrastructure, simulating the behavior of a large set of different sensors.

6.1.1 software specification
Two identical simulators were developed for evaluating two different communication protocols, as

well as the infrastructure. Both were implemented using Python Twisted and use a JSON file, which
contains a list of sensors. The main difference between these simulators consists in the protocol used
for reporting data to the infrastructure. One uses the HTTP protocol, whereas the other uses the
MQTT protocol.

When a simulator is started, it loads the sensors list from the JSON file and finds peers, which
have the collector service enabled, using the mDNS. For each sensor in this list, a chunk of random
data is generated, according to the sensor object specified, and forwarded to the infrastructure. Finally,
a new chunk of random data is generated and forwarded periodically. Accordingly, each sensor has a

65

previously defined period, which is specified in the sensor object. Thanks to the asynchronous nature
of twisted, multiple requests can be efficiently sent at the same time.

An example of the HTTP simulator deployment is illustrated in Figure 6.1.

Figure 6.1: HTTP Sensors Simulator.

6.1.2 data model
Considering the JSON file previously mentioned, which contains a list of sensor objects, the Listing

5 exemplifies an entry of this list. It is possible to verify that this object contains the sensor identifier,
the range of values it may generate and its periodicity, in seconds. In addition, it has an object field,
which is used by the application layer to manage different types of sensors.

1 {
2 "device": "56e0849db14f9ecd0d51bbae",
3 "object": " temperature ",
4 "value": [-20, 50],
5 " periodicity ": 20
6 }

Listing 5: Sensor object from JSON file.

The simulator verifies the value range and generates periodic random values accordingly. An
example of the data, which may be sent to the infrastructure, is presented in Listing 6. In the HTTP
simulator, the sensor identifier is passed in the URI, whereas in the MQTT simulator, the sensor
identifier corresponds to the MQTT topic used.

66

1 {
2 "object": " temperature ",
3 "value": 30
4 }

Listing 6: Format of data sent from the simulator.

6.2 web application
In the context of the IoT, it is crucial to obtain the data generated by sensors easily and safely.

Consequently, common IoT platforms have applications, which allow the users to visualize their data,
even in real-time. These applications may be desktop, mobile or web-based. Considering the advantages
of web applications, regarding the multiple operating systems compatibility and the easy access in all
types of devices, it was the chosen type of test application to be implemented.

6.2.1 architecture
This web application was designed taking into consideration the functional requirements previously

defined in section 4.2. Its main goal consists in testing all the implemented features of the infrastructure.
Accordingly, this web application was developed, composed of a server-side and a client-side, as
illustrated in Figure 6.2.

Figure 6.2: Web Application.

The server-side handles the logic inherent to the application context, as well as the communications
between the client-side and the proposed infrastructure. It is composed of a Node.js1 server and a
MongoDB2 database. This database is responsible for the data specifically related to the application.

1https://nodejs.org/en/
2https://www.mongodb.com/

67

For the client-side, it was developed a single-page application, using the AngularJS3 framework. It
is structured according to the model-view-controller (MVC) pattern. Taking into account the Graphical
User Interface development, the Bootstrap Framework was used, as well as the AdminLTE4 theme.
Chart.js5 was also used for the creation of dynamic graphs for representing the data history of a sensor.
Moreover, MQTT.js6 client was used for the browser, in order to allow the subscription of MQTT
topics from the browser, on top of web sockets, directly to the infrastructure. Finally, it is important
pointing out that the developed application uses the Cryptographic Snippet described in section 5.4.2
for the cryptographic related operations.

Taking into consideration that this application is not the focus of this dissertation, the entity’s
pseudonym is stored in the application’s database. As a result, the entity has to trust the application
to use the infrastructure. However, the ideal solution consists of the entity’s pseudonym being only in
his hands. For instance, the entity could have a hardware token for providing his pseudonym, which
could be protected with a password or a pin code.

6.2.2 features and graphical user interface
In the IoT realm, current applications have a user management system for authentication and

access control. For the proposed infrastructure, it is also essential for the applications to have an
authentication mechanism, so that the entity’s privacy and security are guaranteed.

Presented in Figure 6.3 is the first interaction that dIoTi provides to the user. It consists of a
login screen, where the user is prompted to enter his credentials. If the user has no account in the
application, he has to click on the "Register New Membership" button.

Figure 6.3: Log in interface.

3https://angularjs.org/
4https://almsaeedstudio.com/
5http://www.chartjs.org/
6https://github.com/mqttjs/MQTT.js

68

Figure 6.4 illustrates the sign up form. In this process, all the user credentials are generated on
the client-side and sent to the infrastructure, as specified previously.

Figure 6.4: Sign up interface.

In case of a successful login, the user is redirected to the main page of the dashboard, and all his
data is requested to the infrastructure and decrypted on the client-side. Afterwards, as illustrated in
Figure 6.5, a resume of the entity’s account is presented. The last received data of each sensor owned
by the entity is presented in the first panel, while the second panel shows the last received data of
each sensor shared with the entity. Finally, the entity’s notifications are shown in the last panel. All
the sensors that may be accessed by the entity are subscribed and consequently, the first two panels of
this page are updated in real-time.

Figure 6.5: Main interface of the dashboard.

69

The dashboard provides a set of other pages that may be accessed by the user through the left
bar. The entity can bind his new sensors by selecting the Sensors option. As illustrated in Figure 6.6,
the user has to insert the sensor identifier and, if it was not previously bound by another entity, the
infrastructure binds this identifier to the entity.

Figure 6.6: Sensor management Interface.

For data sharing, as well as data unsharing the user has to select the Share Data option. In this
page, the entity may share data of a specific sensor with another entity, as well as unshare data with
a entity, who currently has access to it. In Figure 6.7, it is illustrated a data share of the sensor
"397be722aa18d4e5d0a875bc" to the entity "maria10". As a consequence of any entity having access
to this sensor yet (besides its owner), there is no users to unshare the sensor data with.

As a result of the previous data share, the entity "maria10" receives a notification of data sharing,
as illustrated in Figure 6.8. The entity may accept or refuse this data sharing.

In the case of a data unsharing, the entity that no longer has access to a sensor data receives a
notification, as depicted in Figure 6.9.

Finally, it is possible to analyze the data history of the sensors. In the main page of the dashboard,
the user may click on a sensor to get their data history. The user is redirected to another page and it
is presented a chart containing the received data over the time, as exemplified in Figure 6.10. This
chart is updated in real-time, as new data of the sensor is received by the infrastructure.

70

Figure 6.7: Share Data Interface.

Figure 6.8: Main interface of the user.

71

Figure 6.9: Sensor management Interface.

Figure 6.10: Data History of a Sensor Interface.

72

6.3 deployment scenario
With a view to simulate a real scenario for testing the proposed infrastructure, or at least a

sequence of events close to what might be real, a scenario was designed, which is composed of seven
Gateway Peers, a Register Server, two Sensor Simulators and a Web Application. It was used to
analyze and test the infrastructure, regarding its non-functional requirements, previously specified in
section 4.3. Briefly, the tests presented essentially aim to validate the infrastructure interoperability,
performance, security and scalability.

Considering a 7 days test scenario in a local network, the infrastructure received messages from
the simulators, where each sensor had its own periodicity varying between 20 and 150 seconds. The
simulator that uses the MQTT protocol for communicating with the infrastructure contains 66 sensors,
while the the simulator that uses the HTTP has 77 sensors. The first simulator sent a total of 998889
messages, while the second one provided 908445 data messages.

6.3.1 network deployment
Aiming to deploy the designed scenario in the network, ten machines were used. Four of them

(Peer 2, 3, 5 and 6) are RaspberryPi’s, which have hardware limitations and consequently, do not have
persistence, nor do they have data stream services enabled. In addition, one machine is used for the
simulators, as well as one for the Register Server and one for the Web Application. The remaining
ones are virtual machines with capabilities to have all the services enabled. The described scenario is
illustrated in Figure 6.11.

Figure 6.11: Prototype Scenario Diagram.

73

The specifications of the machines, which were used are discriminated in Table 6.1. For a better
understanding, the services column represent the list of services enabled by the peer (A - Access, C -
Collector, M - Management, P - Persistence, S - Stream).

VM vCPU MEM (MB) Storage (GB) Services
Peer1 1 1024 25 A, C, M, P
Peer4 1 1024 25 A, C, M, P, S
Peer7 1 2048 25 A, C, M, P, S

Register Server 1 512 10 NA
Simulators 1 1024 25 NA

Web Application 1 512 10 NA

Table 6.1: Virtual Machines’ Specifications.

The specifications of the RaspberryPy’s used are detailed in Table 6.2.

RaspberryPi CPU MEM (MB) Storage (GB) Services
Peer2 1 512 16 A, C, M
Peer3 1 512 16 A, C, M
Peer4 1 512 16 A, M
Peer6 1 512 16 C, M

Table 6.2: RaspberryPis’ Specifications.

6.3.2 performance evaluation
Taking into account the distributed and heterogeneous environment of the proposed infrastructure,

it is essential to build efficient software. Each peer of the overlay was monitored during this test
scenario, in order to obtain their CPU and Memory usage over the time. During the test scenario, all
these measures were obtained each 60 seconds, using psutil (Python System and Process Utilities).
Therefore, the results obtained for Peer1, Peer2 Peer4 and Peer7 are presented as follows.

Starting with the CPU, Figure 6.12 shows the hourly average CPU usage along the experience.
From the traces of Peer1 and Peer4, it is possible to verify that the Persistence service is heavy, as a
result of the need to have a local database running. It is important to notice that InfluxDB recommends
a minimum of 2-4 CPUs, and it was used only one. Moreover, Peer4 uses more CPU than Peer1 as
a consequence of having the broker process running. Peer2 has an average CPU usage of 42%, as a
result of the lower hardware requirements of its enabled services.

74

Figure 6.12: Percentage of CPU usage.

Regarding memory, the graph that presents the hourly average memory usage along the tests is
presented in Figure 6.13. Taking into consideration the Memory graphs, Peer1 presents a growth in
the memory consumption over the time. As in the CPU, it is important to consider that InfluxDB
recommends a minimum of 2-4 GB of RAM, and Peer1 has only 1GB. Moreover, peer7 maintained
its memory consumption as a consequence of having 2GB of memory available. Peer2 maintained its
memory consumption, from 36% to 48% during all the test.

Figure 6.13: Percentage of Memory in Peers.

In the final analysis, we may conclude that the proposed infrastructure provides a satisfying
efficiency for a IoT deployment, which will be composed of devices with different capabilities. This
results from the developed architecture, which is divided into different services that may be enabled
according to the hardware constraints of each peer.

75

6.3.3 communication protocols evaluation
An important aspect of a IoT infrastructure is the response time of the communication protocols,

which are used to communicate with the infrastructure. In this test scenario were transmitted 908445
MQTT messages and 998889 HTTP messages. For each message, the round-trip time of the request
was measured. The obtained results are presented in Figures 6.14 and 6.15. It illustrates the response
time of each message that was sent to the infrastructure over time.

Figure 6.14: Response time of HTTP messages over time.

Analyzing the results presented, the average round-trip time for the HTTP was approximately
116.2ms, while for the MQTT was about 80.58ms. Thanks to its connection-oriented nature, MQTT
provided better and uniform results, with a standart deviation of about 7. In contrast, HTTP presented
more disperse response times, with a standart deviation of approximately 101. As a consequence of the
asynchronous nature of the peers, in rare occasions the obtained response time is considerable high.
This occurs when the peer receives a considerable number messages in a short period of time.

It is expected that in the Internet scale, the response times will increase. However, as it is
illustrated in the presented figures, the response times will be continuous over time, as a result of the
use of an efficient time-series database. In addition, it is predicted that those response times will not
compromise the real time requirements of critical systems.

76

Figure 6.15: Response time of MQTT messages over time.

6.3.4 data security evaluation
In the context of the security and privacy requirements defined for this infrastructure, it is important

to verify the security of the data during its flow and storage. For this test, an user bound a sensor
with identifier "397be722aa18d4e5d0a875bc". Afterwards, the simulator was started, so that the
infrastructure may store data from the bound sensor.

Aiming to analyze the stored data, it was started the InfluxDB shell. In this shell, it was executed
a query to get the data of the bound sensor. As illustrated in Figure 6.16, it was executed the
query select * from "397be722aa18d4e5d0a875bc". For the presented query results, it is possible
to verify that for each timestamp, there is a list containing one code and the sensor data, properly
ciphered. The code consists of a symmetric key, appended with a IV, a salt and a HMAC code,
ciphered with the user’s public key, which is needed to decipher the data cryptogram, as well as to
verify its integrity. For this evaluation, it will be considered the last received data from this sensor
(first entrance of the query).

Using google chrome, the user started the web application, which requested to the infrastructure
the last received data of the previously bound sensor. Using the developer tools of the browser,
as presented in Figure 6.17, the request contains an "accessData" parameter. This parameter is
composed of the sensor identifier, as well as a signature, in order to verify the authenticity of the
request. In other words, this data is used for the access control mechanism of the access service.

77

Figure 6.16: InfluxDB query for bound sensor.

Figure 6.17: Sensor data request.

Moreover, using the developer tools, it was also possible to verify what was received from the
infrastructure. As illustrated in Figure 6.18, the received data is equal to the first entry stored in the
database, which was shown in Figure 6.16. The received data is decrypted on the client side, using the
user’s private key to decrypt the code, which will be used to decipher the data.

78

Figure 6.18: Sensor data response.

6.3.5 final overview
All in all, the results obtained prove that the requirements of the designed solution were accom-

plished. The infrastructure can adapt its behavior according to the peers constraints, resulting in using
the available hardware in an efficient manner. In addition, it maintains its performance while receiving
data from simulators, as well as data accesses and streams from the application. Furthermore, the
proposed infrastructure is fault tolerant and scalable thanks to its decentralized architecture and has
its data replicated through the network, as a benefit of the chosen database.

Regarding security, it was shown that the infrastructure is keeping the data properly encrypted
while stored and during its flow, as well as maintaining its anonymity and integrity. The infrastructure
authenticates the requests of the users and pass them through a data access control.

Nonetheless, it would be important to test this infrastructure in a uncontrolled environment,
composed of thousands of peers and WSNs, in order to verify the real scalability of the infrastructure.

79

chapter 7
Conclusions
In this chapter, a brief overview of the work done is presented, as well as its academic contributions. It
is also discussed how the proposed infrastructure can evolve.

7.1 final considerations
Nowadays, the IoT infrastructures are built on top of centralized architectures [86]. This type of

architectures results in an infrastructure that is not scalable nor fault tolerant. In addition, thanks to
the data silos created, these infrastructures may have privacy and security problems.

Accordingly, the main objective of this work was to solve the specified problems, taking advantage
of a decentralized architecture. Consequently, this architecture ensures a scalable and fault tolerant
infrastructure, as well as the nonexistence of data silos. We essentially aimed to interconnect multiple
business processes and use cases in a single infrastructure. Thus, a global decentralized infrastructure
has potential to reduce the infrastructure and maintenance costs, as well as to enhance the privacy of
its clients, as a result of their data being encrypted and dispersed over the network.

Some other problems resulted from this architectural decision, such as the different requirements of
each business process, real-time data acquisition, as well as the heterogeneous environment of sensors,
regarding their communication protocols and hardware capacity. In the context of this dissertation, all
this problems were studied and properly solved.

This dissertation consists of a proof of concept that matches all the specified requirements.
Consequently, it is a good initial solution for a global IoT infrastructure. This results from the current
state of the IoT, where devices are intended to be inexpensive and lightweight, as well as the current
state of blockchain, which does not scale to the Internet level. However, some research is currently being
done, in order to scale the blockchain. Whenever this is possible, combining a scalable blockchain with
the enhancement of devices’ computing capabilities, will for sure provide a better infrastructure, as a
result of the possibility of end-to-end encryption, which is not supported by the proposed infrastructure.

Regarding the objectives and requirements of this dissertation, all of them were properly accom-
plished. This work contributes for the decentralized architectures in IoT research, regarding several
fields. Firstly, it was designed a flexible solution, considering the heterogeneous environment of the

81

IoT. The proposed solution also provides a decentralized publish-subscribe mechanism for real-time
data. Finally, it was integrated a time-series database cluster inside the overlay network, which allows
for efficient data insertions and queries, as well as data security and privacy.

7.2 future work
In spite of this dissertation fulfilling all the specified objectives and requirements, there are several

aspects to explore that would allow its further enhancement. The following list identifies some of the
most relevant aspects that should be considered in the future:

• Broker Implementation: implement a broker integrated in the Python Twisted Application,
in order to remove the overhead of the communication between processes and enhance the
synchronization among peers;

• Certification: evaluate the Pretty Good Privacy Algorithm for replacing the hierarchical certi-
fication, in the event of achieving the real-time requirements and maintaining the performance
of the infrastructure;

• Sharing Permissions: allow sensor data-sharing with different permissions, such as permission
for receiving data, permission for sharing with other users, permission for retrieving data between
specific time intervals, among others;

• Software Updates: the infrastructure may propagate software updates through its peers, so
that new features may be provided to the applications by updating the installed software;

Some other aspects could be considered, in order to transform this work in a product. It would
be necessary to elaborate a business process, where for example, users would have to deploy a public
gateway, for each set of n sensors that they intend to bind.

82

References
[1] A. Thierer and A. Castillo, “Projecting the growth and economic impact of the internet of

things”, George Mason University, 2015. [Online]. Available: http://mercatus.org/sites/
default/files/IoT-EP-v3.pdf.

[2] A. Greenberg, Hackers remotely kill a jeep on the highway—with me in it, 2015. [Online].
Available: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

[3] D. Ackerman, Samsung smart tv’s voice recognition creates privacy concerns, 2015. [Online].
Available: http://www.cbsnews.com/videos/samsung-smart-tvs-voice-recognition-
creates-privacy-concerns/.

[4] M. Blackstock and R. Lea, Iot interoperability : a hub-based approach:79–84, 79–84, 2014.

[5] S. Kubler, M.-j. Yoo, C. Cassagnes, and K. Fr, Opportunity to leverage information-as-an-asset
in the iot – the road ahead, (September 2014), 2015. doi: 10.1109/FiCloud.2015.63.

[6] A. Riahi, Y. Challal, E. Natalizio, Z. Chtourou, and A. Bouabdallah, A systemic approach for
iot security:351–355, 351–355, 2013. doi: 10.1109/DCOSS.2013.78.

[7] M. Floeck, A. Papageorgiou, A. Schuelke, and J. Song, Horizontal m2m platforms boost vertical
industry : effectiveness study for building energy management systems:15–20, 15–20, 2014.

[8] V. Gazis, M. Goertz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wiesmaier, and F. Zeiger,
Short paper : iot : challenges , projects , architectures:145–147, 145–147, 2015.

[9] Q. H. Vu, M. Lupu, and B. C. Ooi, Peer-to-Peer Computing: Principles and Applications. Berlin,
Germany: Springer, 2010.

[10] W. Alex, The internet of things is revolutionising our lives, but standards are a must, 2015.
[Online]. Available: http://www.theguardian.com/media- network/2015/mar/31/the-
internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must.

[11] Cisco, Cisco visual networking index: forecast and methodology, 2014-2019, 2015. [Online].
Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-
ngn-ip-next-generation-network/white_paper_c11-481360.pdf.

[12] J. Greenough, How the ’internet of things’ will impact consumers, businesses, and governments
in 2016 and beyond, 2015. [Online]. Available: http://www.businessinsider.com/how-the-
internet-of-things-market-will-grow-2014-10.

[13] Oracle, Energize your business with iot enabled applications, 2015. [Online]. Available: http:
//tamarafranklin.com/wp-content/uploads/2015/09/Oracle-Internet-of-Things-
Cloud-Service_RGB.pdf.

83

http://mercatus.org/sites/default/files/IoT-EP-v3.pdf
http://mercatus.org/sites/default/files/IoT-EP-v3.pdf
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.cbsnews.com/videos/samsung-smart-tvs-voice-recognition-creates-privacy-concerns/
http://www.cbsnews.com/videos/samsung-smart-tvs-voice-recognition-creates-privacy-concerns/
http://dx.doi.org/10.1109/FiCloud.2015.63
http://dx.doi.org/10.1109/DCOSS.2013.78
http://www.theguardian.com/media-network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must
http://www.theguardian.com/media-network/2015/mar/31/the-internet-of-things-is-revolutionising-our-lives-but-standards-are-a-must
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10
http://www.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10
http://tamarafranklin.com/wp-content/uploads/2015/09/Oracle-Internet-of-Things-Cloud-Service_RGB.pdf
http://tamarafranklin.com/wp-content/uploads/2015/09/Oracle-Internet-of-Things-Cloud-Service_RGB.pdf
http://tamarafranklin.com/wp-content/uploads/2015/09/Oracle-Internet-of-Things-Cloud-Service_RGB.pdf

[14] J. Bradley, J. Barbier, and D. Handler, Embracing the internet of everything to capture your
share of $14.4 trillion, 2015. [Online]. Available: https://www.cisco.com/web/about/ac79/
docs/innov/IoE_Economy.pdf.

[15] EMC, The digital universe of opportunities, 2014. [Online]. Available: http://www.emc.com/
collateral/analyst-reports/idc-digital-universe-2014.pdf.

[16] H. Schaffers, N. Komninos, M. Pallot, and B. Trousse, Smart cities and the future internet :
towards cooperation frameworks for open innovation:431–446, 431–446.

[17] M. Wang, G. Zhang, C. Zhang, J. Zhang, and C. Li, An iot-based appliance control system for
smart homes:744–747, 744–747, 2013.

[18] Y. Bo and H. Wang, The application of cloud computing and the internet of things in agriculture
and forestry:168–172, 168–172, 2011. doi: 10.1109/IJCSS.2011.40.

[19] S. Fang, L. Da Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu, An integrated system for regional
environmental monitoring and management based on internet of things, IEEE Transactions on
Industrial Informatics, 10(2):1596–1605, 1596–1605, 2014.

[20] L. Atzori, A. Iera, and G. Morabito, The internet of things: A survey, Computer networks,
54(15):2787–2805, 2787–2805, 2010.

[21] Q. Wang and I. Balasingham, Wireless sensor networks - an introduction, 2010. [Online].
Available: http://cdn.intechweb.org/pdfs/12464.pdf.

[22] C. Alcaraz, P. Najera, J. Lopez, and R. Roman, Wireless sensor networks and the internet of
things: Do we need a complete integration?, in 1st International Workshop on the Security of
the Internet of Things (SecIoT’10), 2010.

[23] M. Chen, J. Wan, X. Liao, S. Gonzalez, and V. Leung, “A survey of recent developments in home
m2m networks”, Vol 16, 98-114, 2013. [Online]. Available: http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=6674156&newsearch=true&queryText=A%20Survey%20of%
20Recent%20Developments%20in%20Home%20M2M%20Networks.

[24] X. Zhang, Z. Wen, Y. Wu, and J. Zou, The implementation and application of the internet of
things platform based on the rest architecture, BMEI 2011 - Proceedings 2011 International
Conference on Business Management and Electronic Information, 2:43–45, 43–45, 2011. doi:
10.1109/ICBMEI.2011.5917838.

[25] D. Thangavel, X. Ma, A. Valera, H. X. Tan, and C. K. Y. Tan, Performance evaluation of
mqtt and coap via a common middleware, IEEE ISSNIP 2014 - 2014 IEEE 9th International
Conference on Intelligent Sensors, Sensor Networks and Information Processing, Conference
Proceedings, (April):21–24, 21–24, 2014, issn: 978-1-4799-2843-9. doi: 10.1109/ISSNIP.2014.
6827678.

[26] D. Locke, Mq telemetry transport (mqtt) v3. 1 protocol specification, IBM developerWorks
Technical Library], available at http://www. ibm. com/developerworks/webservices/library/ws-
mqtt/index. html, 2010.

[27] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol (coap)”, Tech.
Rep., 2014.

[28] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, Internet of things: A
survey on enabling technologies, protocols, and applications, IEEE Communications Surveys &
Tutorials, 17(4):2347–2376, 2347–2376, 2015.

[29] S. Bandyopadhyay and A. Bhattacharyya, Lightweight internet protocols for web enablement
of sensors using constrained gateway devices, in Computing, Networking and Communications
(ICNC), 2013 International Conference on, IEEE, 2013, 334–340.

84

https://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoE_Economy.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://dx.doi.org/10.1109/IJCSS.2011.40
http://cdn.intechweb.org/pdfs/12464.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6674156&newsearch=true&queryText=A%20Survey%20of%20Recent%20Developments%20in%20Home%20M2M%20Networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6674156&newsearch=true&queryText=A%20Survey%20of%20Recent%20Developments%20in%20Home%20M2M%20Networks
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6674156&newsearch=true&queryText=A%20Survey%20of%20Recent%20Developments%20in%20Home%20M2M%20Networks
http://dx.doi.org/10.1109/ICBMEI.2011.5917838
http://dx.doi.org/10.1109/ISSNIP.2014.6827678
http://dx.doi.org/10.1109/ISSNIP.2014.6827678

[30] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, and C. Görg, Implementation of coap and
its application in transport logistics, Proc. IP+ SN, Chicago, IL, USA, 2011.

[31] B. C. Villaverde, R. D. P. Alberola, A. J. Jara, S. Fedor, S. K. Das, and D. Pesch, Service
discovery protocols for constrained machine-to-machine communications, IEEE communications
surveys & tutorials, 16(1):41–60, 41–60, 2014.

[32] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, Irisnet: An architecture for a worldwide
sensor web, IEEE pervasive computing, 2(4):22–33, 22–33, 2003.

[33] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. a. Peterson, People-centric
urban sensing, Proceedings of the 2nd annual international workshop on Wireless internet -
WICON ’06 :18–31, 18–31, 2006, issn: 1089-7801. doi: 10.1145/1234161.1234179.

[34] Q. Liang, X. Cheng, and D. Chen, Opportunistic sensing in wireless sensor networks: theory and
application, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 63(8):1–5,
1–5, 2011, issn: 1930-529X. doi: 10.1109/GLOCOM.2011.6134471.

[35] a. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H. Garrett, J. M. F. Moura,
and L. Soibelman, Sensor andrew: large-scale campus-wide sensing and actuation, IBM Journal
of Research and Development, 55(1.2):6:1–6:14, 6:1–6:14, 2011, issn: 0018-8646. doi: 10.1147/
JRD.2010.2089662.

[36] O. Akribopoulos, I. Chatzigiannakis, C. Koninis, and E. Theodoridis, A web services-oriented
architecture for integrating small programmable objects in the web of things, in Developments
in E-systems Engineering (DESE), 2010, IEEE, 2010, 70–75.

[37] S. Wahle, T. Magedanz, and F. Schulze, Demonstration of openmtc – m2m solutions for smart
cities and the internet of things:3–5, 3–5.

[38] M. Corici, H. Coskun, A. Elmangoush, A. Kurniawan, T. Mao, T. Magedanz, and S. Wahle,
Openmtc: Prototyping machine type communication in carrier grade operator networks, in 2012
IEEE Globecom Workshops, IEEE, 2012, 1735–1740.

[39] J. Shneidman, P. Pietzuch, J. Ledlie, and et al, Hourglass: an infrastructure for connecting
sensor networks and applications, Harvard Technical Report TR-21-04, 2004. [Online]. Available:
http://www.eecs.harvard.edu/syrah/hourglass/papers/tr2104.pdf.

[40] I. Chatzigiannakis, C. Koninis, G. Mylonas, U. Colesanti, and A. Vitaletti, A peer-to-peer
framework for globally-available sensor networks and its application in building management, in
2nd international workshop on sensor network engineering (IWSNE 2009), 2009.

[41] IBM, Empowering the edge - practical insights on a decentralized internet of things, 2015.
[Online]. Available: http://www-935.ibm.com/services/multimedia/GBE03662USEN.pdf.

[42] P. Maymounkov and D. Mazières, Kademlia: a peer-to-peer information system based on the
xor metric, Revised Papers from the First International Workshop on Peer-to-Peer Systems:891–
921, 891–921, 2002. [Online]. Available: https://pdos.csail.mit.edu/~petar/papers/
maymounkov-kademlia-lncs.pdf.

[43] B. Panikkar, S. Nair, P. Brody, and V. Pureswaran, Adept: An iot practitioner perspective,
2014.

[44] T. Mcconaghy, Blockchain, throughput, and big data, 2014. [Online]. Available: http://trent.
st/content/2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf.

[45] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi,
and E. Gün, On scaling decentralized blockchains, Proc. 3rd Workshop on Bitcoin and Blockchain
Research, 2016. [Online]. Available: http://fc16.ifca.ai/bitcoin/papers/CDE+16.

[46] T. Dunning and E. Friedman, Time series databases, 2015.

85

http://dx.doi.org/10.1145/1234161.1234179
http://dx.doi.org/10.1109/GLOCOM.2011.6134471
http://dx.doi.org/10.1147/JRD.2010.2089662
http://dx.doi.org/10.1147/JRD.2010.2089662
http://www.eecs.harvard.edu/syrah/hourglass/papers/tr2104.pdf
http://www-935.ibm.com/services/multimedia/GBE03662USEN.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
http://trent.st/content/2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf
http://trent.st/content/2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf
http://fc16.ifca.ai/bitcoin/papers/CDE+16

[47] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veeraraghavan,
Gorilla: a fast, scalable, in-memory time series database, 2015. [Online]. Available: http:
//www.vldb.org/pvldb/vol8/p1816-teller.pdf.

[48] D. Namiot, Time series databases, 2015. [Online]. Available: https://pdfs.semanticscholar.
org/bf26/5b6ee45d814b3acb29fb52b57fd8dbf94ab6.pdf.

[49] Q. Gu and S. Marcos, Denial of service attacks department of computer science texas state
university – san marcos school of information sciences and technology pennsylvania state
university denial of service attacks outline:1–28, 1–28.

[50] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of things: vision, appli-
cations and research challenges”, Ad Hoc Networks, 2012. [Online]. Available: https://www.
researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_
and_Research_Challenges.

[51] A. Gupta and L. Awasthi, “Peer-to-peer networks and computation: current trends and future
perspectives”, Computing and Informatics, Vol 30, 559-594, 2011. [Online]. Available: http:
//www.cai.sk/ojs/index.php/cai/article/viewFile/184/155.

[52] J. Kangasharju, Peer-to-peer networks. [Online]. Available: https://www.cs.helsinki.fi/u/
jakangas/Teaching/PrintOuts/08s-P2P-01-Introduction.pdf.

[53] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, Freenet : a distributed anonymous information
storage and retrieval system.

[54] C. D. S. Services, The gnutella protocol specification v0.4.

[55] J. Buford and K. Ross, “P2p overlay design overview”, IETF P2P-SIP ad hoc, 2005. [Online].
Available: http://www.cs.uml.edu/~buford/irtf-p2prg/JBufordKRoss-IETF-Overlay-
Systems-v4.pdf.

[56] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek, and H. Balakrishnan,
Chord: a scalable peer-to-peer lookup service for internet applications, ACM SIGCOMM
Computer Communication, 31:149–160, 149–160, 2001. [Online]. Available: https://pdos.
csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf.

[57] B. Karp, Distributed hash tables: chord. [Online]. Available: http://www0.cs.ucl.ac.uk/
staff/B.Karp/gz06/s2012/lectures/gz06-lecture5-dhts.pdf.

[58] A. Payberah and S. Haridi, Kademlia: a peer-to-peer information system based on the xor metric.
[Online]. Available: https://www.sics.se/~amir/files/download/p2p/kademlia.pdf.

[59] A. Kogan, Distributed systems (tutorial 7 - kademlia). [Online]. Available: http://webcourse.
cs.technion.ac.il/236351/Winter2012-2013/ho/WCFiles/236351-win12-tut7.pdf.

[60] A. I. T. Rowstron and P. Druschel, Pastry: scalable, decentralized object location, and routing
for large-scale peer-to-peer systems, Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg:329–305, 329–305, 2001. [Online]. Available: http:
//research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf.

[61] J. Song and S. Wang, The pastry algorithm based on dht, Computer and Information Science,
2, 2009. [Online]. Available: http://www.ccsenet.org/journal/index.php/cis/article/
viewFile/4282/3729.

[62] M. Welzl, Peer-to-peer systems: dht examples, part 2 (pastry, tapestry and kademlia). [Online].
Available: https://heim.ifi.uio.no/michawe/teaching/p2p-ws08/p2p-5-6.pdf.

[63] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz, Tapestry:
a resilient global-scale overlay for service deployment, IEEE Journal on selected areas in

86

http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://pdfs.semanticscholar.org/bf26/5b6ee45d814b3acb29fb52b57fd8dbf94ab6.pdf
https://pdfs.semanticscholar.org/bf26/5b6ee45d814b3acb29fb52b57fd8dbf94ab6.pdf
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges
https://www.researchgate.net/publication/235642082_Internet_of_Things_Vision_Applications_and_Research_Challenges
http://www.cai.sk/ojs/index.php/cai/article/viewFile/184/155
http://www.cai.sk/ojs/index.php/cai/article/viewFile/184/155
https://www.cs.helsinki.fi/u/jakangas/Teaching/PrintOuts/08s-P2P-01-Introduction.pdf
https://www.cs.helsinki.fi/u/jakangas/Teaching/PrintOuts/08s-P2P-01-Introduction.pdf
http://www.cs.uml.edu/~buford/irtf-p2prg/JBufordKRoss-IETF-Overlay-Systems-v4.pdf
http://www.cs.uml.edu/~buford/irtf-p2prg/JBufordKRoss-IETF-Overlay-Systems-v4.pdf
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
http://www0.cs.ucl.ac.uk/staff/B.Karp/gz06/s2012/lectures/gz06-lecture5-dhts.pdf
http://www0.cs.ucl.ac.uk/staff/B.Karp/gz06/s2012/lectures/gz06-lecture5-dhts.pdf
https://www.sics.se/~amir/files/download/p2p/kademlia.pdf
http://webcourse.cs.technion.ac.il/236351/Winter2012-2013/ho/WCFiles/236351-win12-tut7.pdf
http://webcourse.cs.technion.ac.il/236351/Winter2012-2013/ho/WCFiles/236351-win12-tut7.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://research.microsoft.com/en-us/um/people/antr/PAST/pastry.pdf
http://www.ccsenet.org/journal/index.php/cis/article/viewFile/4282/3729
http://www.ccsenet.org/journal/index.php/cis/article/viewFile/4282/3729
https://heim.ifi.uio.no/michawe/teaching/p2p-ws08/p2p-5-6.pdf

Communications, 2004. [Online]. Available: http://www.srhea.net/papers/tapestry_jsac.
pdf.

[64] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-addressable
network, Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications:161–172, 161–172, 2001. [Online]. Available: http:
//conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf.

[65] A. Popescu, D. Ilie, and D. Kouvatsos, On the implementation of a content-addressable network.
[Online]. Available: https://www.diva-portal.org/smash/get/diva2:836192/FULLTEXT01.
pdf.

[66] T. Strufe, Peer-to-peer networks - chapter 3: dht. [Online]. Available: http://www.p2p.tu-
darmstadt.de/fileadmin/user_upload/Group_P2P/share/p2p-ws10/Lecture_3-2.pdf.

[67] B. Zhao, L. Huang, and J. Stribling, Exploiting routing redundancy via structured peer-to-peer
overlays, Proceedings of 11th IEEE international conference on network protocols, 2003. [Online].
Available: http://oceanstore.net/publications/papers/pdf/tapestry_icnp.pdf.

[68] J. Xu, A. Kumar, and X. Yu, On the fundamental tradeoffs between routing table size and
network diameter in peer-to-peer networks, IEEE J Select Areas Communications, 2006. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.4641&
rep=rep1&type=pdf.

[69] Digicert, White paper: pki - the security solution for the internet of things. [Online]. Available:
https://www.digicert.com/internet-of-things/iot-pki-whitepaper.htm.

[70] M. Anderson, Looking for the key to security in the internet of things, 2014. [Online]. Available:
http://spectrum.ieee.org/riskfactor/consumer-electronics/standards/looking-
for-the-key-to-security-in-the-internet-of-things.

[71] W. E. Burr, N. A. Nazario, and W. T. Polk, A proposed federal pki using x. 509 v3 certificates,
NIST Gaithersburg, 1996.

[72] AICPA/CICA, Trust service principles and criteria for certification authorities, 2011. [Online].
Available: http://www.webtrust.org/homepage-documents/item54279.pdf.

[73] G. Caronni, Walking the web of trust, in Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2000.(WET ICE 2000). Proeedings. IEEE 9th International Workshops on, IEEE,
2000, 153–158.

[74] P. R. Zimmermann, The official PGP user’s guide. MIT press, 1995.

[75] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.

[76] T. McConaghy, D. Jonghe, R. Henderson, R. Marques, T. McConaghy, S. Bellemare, A. Muller,
M. Greg, and A. Granzotto, Bigchaindb: a scalable blockchain database, 2016. [Online]. Available:
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf.

[77] L. Axon, Privacy-awareness in blockchain-based pki, 2015.

[78] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, Ethereum Project
Yellow Paper, 2014.

[79] V. Buterin, A next-generation smart contract and decentralized application platform, White
paper, 2014.

[80] J. Benet, Ipfs-content addressed, versioned, p2p file system, ArXiv preprint arXiv:1407.3561,
2014.

87

http://www.srhea.net/papers/tapestry_jsac.pdf
http://www.srhea.net/papers/tapestry_jsac.pdf
http://conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf
http://conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf
https://www.diva-portal.org/smash/get/diva2:836192/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:836192/FULLTEXT01.pdf
http://www.p2p.tu-darmstadt.de/fileadmin/user_upload/Group_P2P/share/p2p-ws10/Lecture_3-2.pdf
http://www.p2p.tu-darmstadt.de/fileadmin/user_upload/Group_P2P/share/p2p-ws10/Lecture_3-2.pdf
http://oceanstore.net/publications/papers/pdf/tapestry_icnp.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.4641&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.4641&rep=rep1&type=pdf
https://www.digicert.com/internet-of-things/iot-pki-whitepaper.htm
http://spectrum.ieee.org/riskfactor/consumer-electronics/standards/looking-for-the-key-to-security-in-the-internet-of-things
http://spectrum.ieee.org/riskfactor/consumer-electronics/standards/looking-for-the-key-to-security-in-the-internet-of-things
http://www.webtrust.org/homepage-documents/item54279.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf

[81] R. Roman, J. Zhou, and J. Lopez, On the features and challenges of security & privacy in
distributed internet of things, Computer Networks, vol. 57, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2494697.

[82] I. E. T. Force, Requirements for internet hosts – communication layers, Networking Group, 1989.
[Online]. Available: https://tools.ietf.org/html/rfc1122.

[83] R. Lu, X. Lin, T. H. Luan, X. Liang, S. Member, and X. S. Shen, Pseudonym changing at social
spots(an effective strategy for location privacy in vanet), 61(1):86–96, 86–96, 2012.

[84] I. E. T. Forsce, “Multicast dns”, 2013. [Online]. Available: https://tools.ietf.org/html/
rfc6762.

[85] D. Kaiser, A. Rain, M. Waldvogel, and H. Strittmatter, A multicast-avoiding privacy extension
for the avahi zeroconf daemon, 2015.

[86] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Internet of things (iot): A vision,
architectural elements, and future directions, Future Generation Computer Systems, 29(7):1645–
1660, 1645–1660, 2013.

88

http://dl.acm.org/citation.cfm?id=2494697
http://dl.acm.org/citation.cfm?id=2494697
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762

Appendix A:
Infrastructure’s Peer REST
API

Figure 1: Documentation Resume.

89

Figure 2: Method for getting the last received data of a sensor.

Figure 3: Method for getting the data history of a sensor.

90

Figure 4: Method for publishing new data in the Infrastructure.

Figure 5: Method for accepting a share request.

91

Figure 6: Method for getting the access list of a sensor.

Figure 7: Method for acknowledging a data sharing refusal.

92

Figure 8: Method for acknowledging a data unsharing.

Figure 9: Method for binding a new sensor.

93

Figure 10: Method for getting the private data of the user, when logged in.

Figure 11: Method for logging a user in the infrastructure.

Figure 12: Method for refusing a share request.

94

Figure 13: Method for sharing data of a sensor.

Figure 14: Method for finishing the sign up process by spreading the user’s private
credentials through the overlay.

95

Figure 15: Method for initiating a sign up process.

Figure 16: Method for unsharing sensor data.

96

Appendix B: Register
Server’s REST API

Figure 17: Documentation Resume.

Figure 18: Method for getting a list o bootstrapping peers.

97

Figure 19: Method for getting the self-signed certificate of the Certification Authority.

Figure 20: Method for getting the data a specific peer.

Figure 21: Method for getting the public key of a peer.

98

Figure 22: Method for registering a peer on the Certification Authority.

99

Appendix C: Gateway Peer
Configuration

101

> ./dioti.sh init
Initializing DIoTI at /home/vagrant/.dioti

Generating 2048-bit RSA keypair...
Generating RSA private key, 2048 bit long modulus
......+++
.............+++
writing RSA key

Peer Identity: f20aa2a0e57e3c35fe6941c5c8077639151960af

Getting your network definitions...

IPv4 addresses available:
10.0.2.15
192.168.33.20
127.0.0.1
- Select which IP address to use (line number, default value: 0): 1
- UDP Port (Default Value: 8468):
- TCP Port (Default Value: 8080):
- MQTT Port for Broker (Default Value: 1883):
- Register Server Address (Default Value: 192.168.33.30):
- Register Server Port (Default Value: 8080):
- Management TCP Port (Default 2000):
- Enable Data Access (Y/N, Default: Y):
- TCP Port (Default 6000):
- Enable Data Collector (Y/N, Default: Y):
- HTTP Port (Default 7000):
- MQTT Broker Address (Default 127.0.0.1):
- Enable Data Persistence (Y/N, Default: Y):
- TCP Port (Default 8087):
- Enable Data Stream (Y/N, Default: Y):
- TCP Port (Default 9000):

Everything is ready!

Listing 7: Output for configuring a gateway with all services enabled.

102

Appendix D: Gateway Peer
Configuration File

103

104

1 {
2 " Addresses ": {
3 "ipv4": "192.168.33.20",
4 " mqttPORT ": 1883,
5 " tcpPORT ": 8080,
6 " udpPORT ": 8468
7 },
8 " Identity ": {
9 " Passphrase ": "/ home/ vagrant /. dioti/ passphrase ",

10 "PeerID":
"f20aa2a0e57e3c35fe6941c5c8077639151960af",

11 " PrivKey ": "/ home/ vagrant /. dioti/ peer_priv .pem",
12 "PubKey": "/ home/ vagrant /. dioti/ peer_cert .pem"
13 },
14 " Register ": {
15 " ca_cert ": "/ home/ vagrant /. dioti/ ca_cert .pem",
16 "ipv4": "192.168.33.30",
17 " tcpPORT ": 8080
18 },
19 " Services ": [
20 {
21 " function ": "Data Access",
22 " tcpPORT ": 6000
23 },
24 {
25 " function ": "Data Collector ",
26 " httpPORT ": 7000,
27 "mqttIP": "127.0.0.1"
28 },
29 {
30 " function ": "Data Persistence ",
31 "ip": " localhost ",
32 " tcpPORT ": 8087
33 },
34 {
35 " function ": "Data Stream",
36 " tcpPORT ": 9000
37 },
38 {
39 " function ": " Management ",
40 " tcpPORT ": 2000
41 }
42]
43 }

Listing 8: JSON Configuration File.

105

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Objectives
	Contributions
	Dissertation Outline

	Internet of Things (IoT)
	Concept and Vision
	Scenarios
	Wireless Sensor Network (WSN)
	Machine-to-Machine (M2M) Communications
	Representational state transfer (REST)
	MQ Telemetry Transport (MQTT)
	Constrained Application Protocol (CoAP)
	Comparative Summary

	Infrastructure
	Vertical Solution
	Centralized Horizontal Solution
	Decentralized Horizontal Solution

	Persistence
	Privacy and Security

	Distributed Systems
	Architectures
	Centralized Architectures
	Decentralized Architectures

	Distributed Hash Table (DHT)
	Chord
	Kademlia
	Pastry
	Tapestry
	Content Addressable Network (CAN)
	Comparative Summary

	Security
	Hierarchical Certification
	Web of Trust (WoT)
	Blockchain-based PKI

	Promising Decentralized Infrastructures
	Ethereum
	InterPlanetary File System (IPFS)
	ZeroNet

	Decentralized IoT Infrastructure
	Problem Statement
	Functional Requirements
	Non-functional Requirements
	Design Principles
	Overlay Network
	Management Interface
	Data Interfaces
	Data Persistence

	Peer Architecture

	Prototype Implementation and Technologies
	Architecture
	Twisted Application Communication
	REST APIs

	Register Server
	Deployment and Integration
	Configuration and Setup
	Application Binding

	Evaluation and Results
	Sensor Simulators
	Software Specification
	Data Model

	Web Application
	Architecture
	Features and Graphical User Interface

	Deployment Scenario
	Network Deployment
	Performance Evaluation
	Communication Protocols Evaluation
	Data Security Evaluation
	Final Overview

	Conclusions
	Final Considerations
	Future Work

	References
	Appendix A: Infrastructure's Peer REST API
	Appendix B: Register Server's REST API
	Appendix C: Gateway Peer Configuration
	Appendix D: Gateway Peer Configuration File

