The modified Schultz index of graph operations

Paula Carvalho and Paula Rama

Abstract

Given a simple and connected graph G with vertex set V, denoting by $d_{G}(u)$ the degree of a vertex u and $d_{G}(u, v)$ the distance of two vertices, the modified Schultz index of G is given by $S^{*}(G)=$ $\sum_{\{u, v\} \subseteq V} d_{G}(u) d_{G}(v) d_{G}(u, v)$, where the summation goes over all non ordered pairs of vertices of G. In this paper we consider some graph operations, namely cartesian product, complete product, composition and subdivision, and we obtain explicit formulae for the modified Schultz index of a graph in terms of the number of vertices and edges as well as some other topological invariants such as the Wiener index, the Schultz index and the first and second Zagreb indices.

1. Introduction

Let $G=(V, E)$ be a simple and connected graph. The cardinality of V is called the order and the cardinality of E is called the dimension of G. The elements of E are denoted by $u v$, where u and v are the end-vertices of the edge $u v$. For a vertex $u \in V, d_{G}(u)$ denotes the degree of u and the distance between two vertices u and v is $d_{G}(u, v)$, the length of the shortest path between vertices u and v. The distance from a vertex w to an edge $e=u_{1} u_{2}$ is $d_{G}^{*}(w, e)=\min \left\{d_{G}\left(w, u_{1}\right), d_{G}\left(w, u_{2}\right)\right\}$ and the distance between two edges e and f is $D_{G}(e, f)=\min \left\{d_{G}^{*}\left(u_{1}, f\right), d_{G}^{*}\left(u_{2}, f\right)\right\}$.

The Wiener index of G, introduced by H. Wiener in 1947 [12] and defined by $W(G)=$ $\sum_{\{u, v\} \subseteq V} d_{G}(u, v)$, is widely studied in the literature. The edge Wiener index is defined by $W_{e}(G)=\sum_{\{f, g\} \subseteq E} D_{G}(f, g)$ [7].

The line graph $L(G)$ of a nonempty graph G is the graph whose vertex set can be put in one-to-one correspondence with the edge set of G in such a way that two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent. Since $D_{G}(f, g)=$ $d_{L(G)}(f, g)-1$, for all $f, g \in E$, an immediate consequence [8] is that

$$
\begin{equation*}
W(L(G))=W_{e}(G)+\binom{|E|}{2} . \tag{1.1}
\end{equation*}
$$

The Schultz index of $G, S(G)=\sum_{\{u, v\} \subseteq V}\left(d_{G}(u)+d_{G}(v)\right) d_{G}(u, v)$, often called the degree distance of a graph (see [3], [4], [6], [11] for more references) has been shown to be a useful graph theoretical descriptor in the design of molecules with desired properties namely to characterize alkalenes by an integer number. Schultz index and the Wiener index are closely related quantities for trees ([5], [10]). Other indices that can be seen as molecular structure-descriptors are the first and second Zagreb indices. The first Zagreb index is equal to the sum of squares of the degrees of all vertices, $Z_{1}(G)=\sum_{u \in V} d_{G}^{2}(u)=$ $\sum_{u v \in E} d_{G}(u)+d_{G}(v)$, and the second Zagreb index is $Z_{2}(G)=\sum_{u v \in E} d_{G}(u) d_{G}(v)$. Analogously, the first Zagreb coindex is $\bar{Z}_{1}(G)=\sum_{u v \notin E}\left(d_{G}(u)+d_{G}(v)\right)$ and the second Zagreb coindex is given by $\bar{Z}_{2}(G)=\sum_{u v \notin E} d_{G}(u) d_{G}(v)$.

[^0]The modified Schultz index of G, also known (see [1]) as Schultz index of the second kind and even also as Gutman index, is defined by

$$
S^{*}(G)=\sum_{\{u, v\} \subseteq V} d_{G}(u) d_{G}(v) d_{G}(u, v),
$$

where the summation goes over all non ordered pairs of vertices of G. For a graph $G=$ (V, E) and $V^{\prime} \subseteq\{\{u, v\}: u, v \in V\}$, we set $S_{V^{\prime}}^{*}(G)=\sum_{\{u, v\} \in V^{\prime}} d_{G}(u) d_{G}(v) d_{G}(u, v)$.

In this paper we give explicit formulas for the modified Schultz index of simple connected graphs, under several operations in terms of its order and dimension and other known graph invariants, such as the Wiener index, the Schultz index and Zagreb indices.

2. Main results

The aim of this section is to compute the modified Schultz index for some graph operations, namely complete product (also known as join), cartesian product, composition and subdivision. We start with a lemma that is widely used in the rest of the paper.
Lemma 2.1. [2] If $G=(V, E)$ is a graph of order n and dimension q then
(a) $\bar{Z}_{1}(G)=2 q(n-1)-Z_{1}(G)$.
(b) $\bar{Z}_{2}(G)=2 q^{2}-\frac{1}{2} Z_{1}(G)-Z_{2}(G)$.
2.1. Complete product. The complete product $G=G_{1} \nabla G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all edges joining each vertex of V_{1} to each vertex of V_{2}.

Lemma 2.2. [9]Let G_{i} be a connected graph of order n_{i} and dimension $q_{i}, i=1,2$. Then
(a) $Z_{1}\left(G_{1} \nabla G_{2}\right)=\sum_{\substack{i, j=1 \\ i \neq j}}^{2}\left(Z_{1}\left(G_{i}\right)+4 q_{i} n_{j}+n_{i} n_{j}^{2}\right)$.
(b) $Z_{2}\left(G_{1} \nabla G_{2}\right)=\sum_{\substack{i, j=1 \\ i \neq j}}^{2}\left(n_{i} Z_{1}\left(G_{j}\right)+Z_{2}\left(G_{i}\right)+2 q_{i} q_{j}+2 n_{i} n_{j} q_{i}+n_{i}^{2} q_{j}+\frac{1}{2} n_{i}^{2} n_{j}^{2}\right)$.

Theorem 2.1. Let $G_{i}=\left(V_{i}, E_{i}\right)$ be a connected graph of order n_{i} and dimension q_{i}, for $i=1,2$ and $G=G_{1} \nabla G_{2}$. Then the modified Schultz index of G is
(a) $S^{*}(G)=\sum_{\substack{i, j=1 \\ i \neq j}}^{2}\left(\left(2 q_{i}+n_{i} n_{j}\right)^{2}-n_{i} q_{j}\left(n_{i}+4\right)+2 q_{i} q_{j}-n_{i}^{2} n_{j}\right.$ $\left.+n_{i} n_{j} q-\frac{1}{2} n_{i}^{2} n_{j}^{2}-\left(n_{i}+1\right) Z_{1}\left(G_{j}\right)-Z_{2}\left(G_{i}\right)\right)$
(b) $S^{*}(G)=4 q^{2}-\left(Z_{1}(G)+Z_{2}(G)\right)$, where $q=|E(G)|=q_{1}+q_{2}+n_{1} n_{2}$.

Proof. Notice that $d_{G}(u)=d_{G_{1}}(u)+n_{2}$ if $u \in V_{1}$ and $d_{G}(v)=d_{G_{2}}(v)+n_{1}$ if $v \in V_{2}$. Furthermore,

$$
d_{G}(u, v)= \begin{cases}0 & \text { if } u=v \\ 1 & \text { if } u v \in E_{1} \text { or } u v \in E_{2} \text { or }\left(u \in V_{1} \text { and } v \in V_{2}\right) \\ 2 & \text { otherwise }\end{cases}
$$

Hence, the modified Schultz index of G is given by

$$
\begin{equation*}
S^{*}(G)=S_{V_{11}}^{*}(G)+S_{V_{22}}^{*}(G)+S_{V_{12}}^{*}(G) \tag{2.2}
\end{equation*}
$$

where $V_{i j}=\left\{\{u, v\}: u \in V_{i}, v \in V_{j}\right\}, 1 \leq i \leq j \leq 2$.

Using Lemma 2.1, we obtain

$$
\begin{align*}
S_{V_{11}}^{*}(G)= & \sum_{u v \in E_{1}} d_{G}(u) d_{G}(v) d_{G}(u, v)+\sum_{\substack{\{u, v\} \subseteq V_{1} \\
u v \notin E_{1}}} d_{G}(u) d_{G}(v) d_{G}(u, v) \\
= & \sum_{u v \in E_{1}}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)+2 \sum_{\substack{\{u, v\} \subseteq V_{1} \\
u v \notin E_{1}}}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right) \\
= & \sum_{\{u, v\} \subseteq V_{1}}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)+\sum_{\substack{\{u, v\} \subseteq V_{1} \\
u v \notin E_{1}}}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right) \\
= & \sum_{\{u, v\} \subseteq V_{1}} d_{G_{1}}(u) d_{G_{1}}(v)+n_{2} \sum_{\{u, v\} \subseteq V_{1}}\left(d_{G_{1}}(u)+d_{G_{1}}(v)\right)+\sum_{\{u, v\} \subseteq V_{1}} n_{2}^{2} \\
& +\sum_{\{u, v\} \subseteq V_{1}} d_{G_{1}}(u) d_{G_{1}}(v)+n_{2} \sum_{\substack{\{u, v\} \subseteq V_{1} \\
u v \notin E_{1}}}\left(d_{G_{1}}(u)+d_{G_{1}}(v)\right)+\sum_{\{u, v\} \subseteq V_{1}}^{u v \notin E_{1}} n_{2}^{2} \\
= & 2 \overline{Z_{2}}\left(G_{1}\right)+Z_{2}\left(G_{1}\right)+n_{2}\left(2 \overline{Z_{1}}\left(G_{1}\right)+Z_{1}\left(G_{1}\right)\right)+n_{2}^{2}\left(2\binom{n_{1}}{2}-q_{1}\right) \\
= & 4 q_{1}^{2}+4 q_{1} n_{2}\left(n_{1}-1\right)+\left(n_{1} n_{2}\right)^{2}-n_{2}^{2}\left(n_{1}+q_{1}\right)-\left(1+n_{2}\right) Z_{1}\left(G_{1}\right)-Z_{2}\left(G_{1}\right) . \tag{2.3}
\end{align*}
$$

Similarly,

$$
\begin{align*}
S_{V_{22}}^{*}(G)= & 4 q_{2}^{2}+4 q_{2} n_{1}\left(n_{2}-1\right)+\left(n_{1} n_{2}\right)^{2}-n_{1}^{2}\left(n_{2}+q_{2}\right) \\
& -\left(1+n_{1}\right) Z_{1}\left(G_{2}\right)-Z_{2}\left(G_{2}\right) . \tag{2.4}
\end{align*}
$$

Finally, the last term in (2.2) is:

$$
\begin{align*}
S_{V_{12}}^{*}(G) & =\sum_{\{u, v\} \in V_{12}}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{2}}(v)+n_{1}\right) \\
& =\sum_{\{u, v\} \in V_{12}}\left(d_{G_{1}}(u) d_{G_{2}}(v)+n_{1} d_{G_{1}}(u)+n_{2} d_{G_{2}}(v)+n_{1} n_{2}\right) \\
& =\sum_{\{u, v\} \in V_{12}} d_{G_{1}}(u) d_{G_{2}}(v)+n_{1} n_{2} \sum_{u \in V_{1}} d_{G_{1}}(u)+n_{1} n_{2} \sum_{v \in V_{2}} d_{G_{2}}(v)+\left(n_{1} n_{2}\right)^{2} \\
& =\left(\sum_{u \in V_{1}} d_{G_{1}}(u)\right)\left(\sum_{v \in V_{2}} d_{G_{2}}(v)\right)+2 n_{1} n_{2}\left(q_{1}+q_{2}\right)+\left(n_{1} n_{2}\right)^{2} \\
& =4 q_{1} q_{2}+2 n_{1} n_{2}\left(q_{1}+q_{2}\right)+\left(n_{1} n_{2}\right)^{2} . \tag{2.5}
\end{align*}
$$

Adding (2.3), (2.4) and (2.5) we obtain formula (a). Formula (b) is a consequence of (a) together with Lemma 2.2.

Example 2.1. The modified Schultz index of the complete split graph $C S_{q, p}=\bar{K}_{p} \nabla K_{q}$ can be computed using formula (a) of Theorem 2.1: $S^{*}\left(C S_{q, p}\right)=\frac{q}{2}\left((q-1)^{3}+p^{2}(5 q-1)+\right.$ $p\left(4 q^{2}-8 q+2\right)$). In particular, $S^{*}\left(C S_{2, q}\right)=\frac{q}{2}\left(q^{3}+5 q^{2}+7 q-1\right)$, and for a star with n vertices, $S_{n}=\bar{K}_{n-1} \nabla K_{1}, S^{*}\left(S_{n}\right)=2 n^{2}-5 n+3$.
2.2. Cartesian product. The cartesian product $G=G_{1} \times G_{2}=(V, E)$ of two disjoint graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph with vertex set $V=V_{1} \times V_{2}$ where two vertices $\left(u_{1}, u_{2}\right)$ and (v_{1}, v_{2}) are adjacent if they agree in one coordinate and are adjacent in the other, that is, if $u_{1}=v_{1}$ and $u_{2} v_{2} \in E_{2}$ or $u_{1} v_{1} \in E_{1}$ and $u_{2}=v_{2}$.

For $\left(u_{1}, u_{2}\right) \in V$ we have $d_{G}\left(u_{1}, u_{2}\right)=d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$ and the distance between two vertices is $d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)=d_{G_{1}}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)$.

Theorem 2.2. The modified Schultz index of $G=G_{1} \times G_{2}$ is given by

$$
S^{*}(G)=\sum_{\substack{i, j=1 \\ i \neq j}}^{2}\left(n_{i}^{2} S^{*}\left(G_{j}\right)+2 q_{i} n_{i} S\left(G_{j}\right)+4 q_{i}^{2} W\left(G_{j}\right)\right) .
$$

Proof. Consider $\left.A_{1}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1}=v_{1}\right)\right\}, A_{2}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq\right.$ $\left.\left.V_{1} \times V_{2}: u_{2}=v_{2}\right)\right\}$ and $A_{3}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1} \neq v_{1}, u_{2} \neq v_{2}\right\}$. We have successively,

$$
\begin{aligned}
S_{A_{1}}^{*}(G) & =\sum_{w \in V_{1}} \sum_{\left\{u_{2}, v_{2}\right\} \subseteq V_{2}}\left(\left(d_{G_{1}}(w)+d_{G_{2}}\left(u_{2}\right)\right)\left(d_{G_{1}}(w)+d_{G_{2}}\left(v_{2}\right)\right) d_{G_{2}}\left(u_{2}, v_{2}\right)\right) \\
& =W\left(G_{2}\right) \sum_{w \in V_{1}} d_{G_{1}}(w)^{2}+S\left(G_{2}\right) \sum_{w \in V_{1}} d_{G_{1}}(w)+\sum_{w \in V_{1}} S^{*}\left(G_{2}\right) \\
& =Z_{1}\left(G_{1}\right) W\left(G_{2}\right)+2 q_{1} S\left(G_{2}\right)+n_{1} S^{*}\left(G_{2}\right)
\end{aligned}
$$

and $S_{A_{2}}^{*}(G)$ is obtained in a similar way.
Using Lemma 2.1 we have

$$
\begin{aligned}
& S_{A_{3}}^{*}(G)= \\
& \sum_{\{x, y\} \in A_{3}}\left(d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right)\left(d_{G_{1}}\left(v_{1}\right)+d_{G_{2}}\left(v_{2}\right)\right)\left(d_{G_{1}}\left(u_{1}, v_{1}\right)+d_{G_{2}}\left(u_{2}, v_{2}\right)\right) \\
= & \sum_{\{x, y\} \in A_{3}} d_{G_{1}}\left(u_{1}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right)+\sum_{\{x, y\} \in A_{3}} d_{G_{2}}\left(u_{2}\right) d_{G_{2}}\left(v_{2}\right) d_{G_{2}}\left(u_{2}, v_{2}\right) \\
& +\sum_{\{x, y\} \in A_{3}} d_{G_{2}}\left(u_{2}\right) d_{G_{2}}\left(v_{2}\right) d_{G_{1}}\left(u_{1}, v_{1}\right)+\sum_{\{x, y\} \in A_{3}} d_{G_{1}}\left(u_{1}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{2}}\left(u_{2}, v_{2}\right) \\
& +\sum_{\{x, y\} \in A_{3}} d_{G_{1}}\left(u_{1}\right) d_{G_{2}}\left(v_{2}\right) d_{G_{1}}\left(u_{1}, v_{1}\right)+\sum_{\{x, y\} \in A_{3}} d_{G_{2}}\left(u_{2}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +\sum_{\{x, y\} \in A_{3}} d_{G_{1}}\left(u_{1}\right) d_{G_{2}}\left(v_{2}\right) d_{G_{2}}\left(u_{2}, v_{2}\right)+\sum_{\{x, y\} \in A_{3}} d_{G_{2}}\left(u_{2}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{2}}\left(u_{2}, v_{2}\right) \\
= & \left.n_{2}\left(n_{2}-1\right) S^{*}\left(G_{1}\right)+n_{1}\left(n_{1}-1\right) S^{*}\left(G_{2}\right)+2\left(2 q_{2}^{2}-\frac{1}{2} Z_{1}\left(G_{2}\right)\right) W\left(G_{1}\right)\right) \\
& +2\left(2 q_{1}^{2}-\frac{1}{2} Z_{1}\left(G_{1}\right)\right) W\left(G_{2}\right)+2 q_{2}\left(n_{2}-1\right) S\left(G_{1}\right)+2 q_{1}\left(n_{1}-1\right) S\left(G_{2}\right) .
\end{aligned}
$$

As $\left\{A_{1}, A_{2}, A_{3}\right\}$ is a partition of the set of 2-sets of $V=V_{1} \times V_{2}$, we obtain

$$
\begin{aligned}
S^{*}(G) & =S_{A_{1}}^{*}(G)+S_{A_{2}}^{*}(G)+S_{A_{3}}^{*}(G) \\
& =\sum_{\substack{i, j=1 \\
i \neq j}}^{2}\left(n_{i}^{2} S^{*}\left(G_{j}\right)+2 q_{i} n_{i} S\left(G_{j}\right)+4 q_{i}^{2} W\left(G_{j}\right)\right) .
\end{aligned}
$$

Example 2.2. The modified Schultz index of a 4-nanotube $P_{n} \times C_{m}$ (m even) is $S^{*}\left(P_{n} \times\right.$ $\left.C_{m}\right)=\frac{m^{3}}{2}(1-2 n)^{2}+\frac{m^{2}}{3}\left(8 n^{3}-12 n^{2}+7 n-3\right)$; for the 4-nanotorus $C_{k} \times C_{m}$ (with k, m even), we have $S^{*}\left(C_{k} \times C_{m}\right)=2 k^{2} m^{2}(k+m)$ and for $P_{n} \times K_{2}$ (the ladder graph), $S^{*}\left(P_{n} \times K_{2}\right)=6 n^{3}-3 n^{2}-2 n$.
2.3. Composition of graphs. Let G_{1} and G_{2} be graphs with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2}. The composition graph of G_{1} and $G_{2}, G=G_{1}\left[G_{2}\right]$, is the graph with vertex set $V_{1} \times V_{2}$ and $\left(u_{1}, u_{2}\right)$ is adjacent to $\left(v_{1}, v_{2}\right)$ whenever u_{1} is adjacent to v_{1} or $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}. For each $\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}, d_{G}\left(u_{1}, u_{2}\right)=$ $n_{2} d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$, and

$$
d_{G}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)= \begin{cases}0 & \text { if }\left(u_{1}, u_{2}\right)=\left(v_{1}, v_{2}\right) \\ 1 & \text { if } u_{1}=v_{1} \text { and } u_{2} v_{2} \in E_{2} \\ 2 & \text { if } u_{1}=v_{1} \text { and } u_{2} v_{2} \notin E_{2} \\ d_{G_{1}}\left(u_{1}, v_{1}\right) & \text { if } u_{1} \neq v_{1}\end{cases}
$$

Theorem 2.3. For $i=1,2$, let $G_{i}=\left(V_{i}, E_{i}\right)$ be a connected graph of order n_{i} and dimension q_{i}. Then the modified Schultz index of $G=G_{1}\left[G_{2}\right]$ is given by

$$
\begin{aligned}
S^{*}(G)= & n_{2}^{4} S^{*}\left(G_{1}\right)+2 n_{2}^{2} q_{2} S\left(G_{1}\right)+4 q_{2}^{2} W\left(G_{1}\right) \\
& +\left(n_{2}^{3}\left(n_{2}-1\right)-n_{2}^{2} q_{2}\right) Z_{1}\left(G_{1}\right)-2 n_{2} q_{1} Z_{1}\left(G_{2}\right) \\
& -n_{1}\left(Z_{1}\left(G_{2}\right)+Z_{2}\left(G_{2}\right)\right)+8 q_{1} q_{2} n_{2}\left(n_{2}-1\right)+4 n_{1} q_{2}^{2} .
\end{aligned}
$$

Proof. Let $A_{1}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1}=v_{1}, u_{2} v_{2} \in E_{2}\right\}$,
$A_{2}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1}=v_{1}, u_{2} v_{2} \notin E_{2}\right\}$,
$A_{3}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1} \neq v_{1}, u_{2}=v_{2}\right\}$ and
$A_{4}=\left\{\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq V_{1} \times V_{2}: u_{1} \neq v_{1}, u_{2} \neq v_{2}\right\}$. Let $x=\left(w, u_{2}\right), y=\left(w, v_{2}\right) \in A_{1}$.
Then

$$
\begin{aligned}
S_{A_{1}}^{*}(G)= & \sum_{\{x, y\} \in A_{1}} d_{G}\left(w, u_{2}\right) d_{G}\left(w, v_{2}\right) d_{G}\left(\left(w, u_{2}\right),\left(w, v_{2}\right)\right) \\
= & \sum_{w \in V_{1}} \sum_{u_{2} v_{2} \in E_{2}}\left(d_{G_{1}}(w) n_{2}+d_{G_{2}}\left(u_{2}\right)\right)\left(d_{G_{1}}(w) n_{2}+d_{G_{2}}\left(v_{2}\right)\right) \\
= & n_{2}^{2} \sum_{u_{2} v_{2} \in E_{2}} \sum_{w \in V_{1}} d_{G_{1}}^{2}(w)+n_{2} \sum_{w \in V_{1}} d_{G_{1}}(w) \sum_{u_{2} v_{2} \in E_{2}}\left(d_{G_{2}}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)\right) \\
& +\sum_{w \in V_{1}} \sum_{u_{2} v_{2} \in E_{2}} d_{G_{2}}\left(u_{2}\right) d_{G_{2}}\left(v_{2}\right) \\
= & n_{2}^{2} q_{2} Z_{1}\left(G_{1}\right)+2 n_{2} q_{1} Z_{1}\left(G_{2}\right)+n_{1} Z_{2}\left(G_{2}\right) .
\end{aligned}
$$

With $x=\left(w, u_{2}\right), y=\left(w, v_{2}\right) \in A_{2}$ and using Lemma 2.1 we have,

$$
\begin{aligned}
S_{A_{2}}^{*}(G)= & 2 \sum_{w \in V_{1}} \sum_{u_{2} v_{2} \notin E_{2}}\left(d_{G_{1}}(w) n_{2}+d_{G_{2}}\left(u_{2}\right)\right)\left(d_{G_{1}}(w) n_{2}+d_{G_{2}}\left(v_{2}\right)\right) \\
= & 2 n_{2}^{2} \sum_{u_{2} v_{2} \notin E_{2}} \sum_{w \in V_{1}} d_{G_{1}}^{2}(w)+2 n_{2} \sum_{w \in V_{1}} d_{G_{1}}(w) \sum_{u_{2} v_{2} \notin E_{2}}\left(d_{G_{2}}\left(u_{2}\right)+d_{G_{2}}\left(v_{2}\right)\right) \\
& +2 \sum_{w \in V_{1}} \sum_{u_{2} v_{2} \notin E_{2}} d_{G_{2}}\left(u_{2}\right) d_{G_{2}}\left(v_{2}\right) \\
= & 2 n_{2}^{2}\left(\binom{n_{2}}{2}-q_{2}\right) Z_{1}\left(G_{1}\right)+4 n_{2} q_{1} \bar{Z}_{1}\left(G_{2}\right)+2 n_{1} \bar{Z}_{2}\left(G_{2}\right) \\
= & 2 n_{2}^{2}\left(\binom{n_{2}}{2}-q_{2}\right) Z_{1}\left(G_{1}\right)+4 n_{2} q_{1}\left(2 q_{2}\left(n_{2}-1\right)-Z_{1}\left(G_{2}\right)\right) \\
& +2 n_{1}\left(2 q_{2}^{2}-\frac{1}{2} Z_{1}\left(G_{2}\right)-Z_{2}\left(G_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & 2\left(n_{2}^{2}\binom{n_{2}}{2}-n_{2}^{2} q_{2}\right) Z_{1}\left(G_{1}\right)-2\left(2 q_{1} n_{2}+\frac{n_{1}}{2}\right) Z_{1}\left(G_{2}\right) \\
& -2 n_{1} Z_{2}\left(G_{2}\right)+8 q_{1} q_{2} n_{2}\left(n_{2}-1\right)+4 n_{1} q_{2}^{2} .
\end{aligned}
$$

With $x=\left(u_{1}, w\right), y=\left(v_{1}, w\right) \in A_{3}$,

$$
\begin{aligned}
S_{A_{3}}^{*}(G)= & n_{2}^{2} \sum_{w \in V_{2}} \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(u_{1}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +n_{2} \sum_{w \in V_{2}} d_{G_{2}}(w) \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}}\left(\left(d_{G_{1}}\left(u_{1}\right)+d_{G_{1}}\left(v_{1}\right)\right) d_{G_{1}}\left(u_{1}, v_{1}\right)\right) \\
& +\sum_{w \in V_{2}} d_{G_{2}}(w)^{2} \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(u_{1}, v_{1}\right) \\
= & n_{2}^{3} S^{*}\left(G_{1}\right)+2 n_{2} q_{2} S\left(G_{1}\right)+Z_{1}\left(G_{2}\right) W\left(G_{1}\right)
\end{aligned}
$$

For $x=\left(u_{1}, u_{2}\right), y=\left(v_{1}, v_{2}\right) \in A_{4}$,

$$
\begin{aligned}
S_{A_{4}}^{*}(G)= & \sum_{\{x, y\} \in A_{4}}\left(d_{G_{1}}\left(u_{1}\right) n_{2}+d_{G_{2}}\left(u_{2}\right)\right)\left(d_{G_{1}}\left(v_{1}\right) n_{2}+d_{G_{2}}\left(v_{2}\right)\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
= & 2 n_{2}^{2} \sum_{\left\{u_{2}, v_{2}\right\} \subseteq V_{2}} \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(u_{1}\right) d_{G_{1}}\left(v_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +n_{2} \sum_{u_{2} \in V_{2}} \sum_{v_{2} \in V_{2} \backslash\left\{u_{2}\right\}} d_{G_{2}}\left(u_{2}\right) \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(v_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +n_{2} \sum_{v_{2} \in V_{2}} \sum_{u_{2} \in V_{2} \backslash\left\{v_{2}\right\}} d_{G_{2}}\left(v_{2}\right) \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(u_{1}\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +2 \sum_{\left\{u_{2}, v_{2}\right\} \subseteq V_{2}} d_{G_{2}}\left(u_{2}\right) d_{G_{2}}\left(v_{2}\right) \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}} d_{G_{1}}\left(u_{1}, v_{1}\right)
\end{aligned}
$$

And by Lemma 2.1 we obtain

$$
\begin{aligned}
S_{A_{4}}^{*}(G)= & 2 n_{2}^{2}\binom{n_{2}}{2} S^{*}\left(G_{1}\right)+2 n_{2}\left(n_{2}-1\right) q_{2} \sum_{\left\{u_{1}, v_{1}\right\} \subseteq V_{1}}\left(d_{G_{1}}\left(u_{1}\right)+d_{G_{1}}\left(v_{1}\right)\right) d_{G_{1}}\left(u_{1}, v_{1}\right) \\
& +2\left(2 q_{2}^{2}-\frac{1}{2} Z_{1}\left(G_{2}\right)\right) W\left(G_{1}\right) \\
= & n_{2}^{3}\left(n_{2}-1\right) S^{*}\left(G_{1}\right)+2 n_{2}\left(n_{2}-1\right) q_{2} S\left(G_{1}\right)+4 q_{2}^{2} W\left(G_{1}\right)-Z_{1}\left(G_{2}\right) W\left(G_{1}\right)
\end{aligned}
$$

Since $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ is a partition of the set of 2-sets of $V=V_{1} \times V_{2}$ then $S^{*}(G)=$ $S_{A_{1}}^{*}(G)+S_{A_{2}}^{*}(G)+S_{A_{3}}^{*}(G)+S_{A_{4}}^{*}(G)$ and the result follows.

Example 2.3. Composing paths and cycles with various small graphs one obtains classes of polymer-like graphs. For $G=P_{n}\left[K_{p}\right]$, we have $S^{*}\left(P_{n}\left[K_{p}\right]\right)=\frac{n^{3} p^{2}}{6}(1-3 p)^{2}+n^{2} p^{3}(1-$ $3 p)-p^{2}\left(6 p^{2}-7 p+2\right)+\frac{n p}{6}\left(42 p^{3}-45 p^{2}+20 p-3\right)$. In particular, for $P_{n}\left[K_{2}\right]$, the fence graph, $S^{*}\left(P_{n}\left[K_{2}\right]\right)=\frac{50}{3} n^{3}-40 n^{2}+\frac{193}{3} n-48$.
2.4. Subdivision of a graph. The subdivision graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of a graph G is the graph obtained from $G=(V, E)$ by inserting a new vertex of degree 2 in each edge of G. It follows immediately that $\left|V^{\prime}\right|=|V|+|E|$ and $\left|E^{\prime}\right|=2|E|$. We define, for each $u \in V$, $D^{*}(u)=\sum_{e \in E} d_{G}^{*}(u, e)$ and $D^{\diamond}(G)=\sum_{u \in V} d_{G}(u) D^{*}(u)$.

Theorem 2.4. Let $G=(V, E)$ be a connected graph of dimension q and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ the subdivision graph of G. Then

$$
S^{*}\left(G^{\prime}\right)=2 S^{*}(G)+8 W(L(G))+4 D^{\diamond}(G)+4 q^{2}
$$

Proof. For $u, v \in V^{\prime}$,

$$
d_{G^{\prime}}(u, v)= \begin{cases}2 d_{G}(u, v), & \text { if } u, v \in V \\ 1+2 d_{G}^{*}\left(u, e_{v}\right), & \text { if } u \in V, v \in V^{\prime} \backslash V \\ 2+2 D_{G}\left(e_{u}, e_{v}\right), & \text { if } u, v \in V^{\prime} \backslash V\end{cases}
$$

with $e_{x} \in E$ being the edge of G where a new vertex x is inserted.
In the following we use (1.1) to obtain

$$
\begin{aligned}
S^{*}\left(G^{\prime}\right)= & \sum_{\{u, v\} \subseteq V^{\prime}} d_{G^{\prime}}(u) d_{G^{\prime}}(v) d_{G^{\prime}}(u, v) \\
= & 2 \sum_{\{u, v\} \subseteq V} d_{G}(u) d_{G}(v) d_{G}(u, v)+2 \sum_{u \in V} \sum_{v \in V^{\prime} \backslash V} d_{G}(u) d_{G^{\prime}}(u, v) \\
& +4 \sum_{\{u, v\} \subset V^{\prime} \backslash V} d_{G^{\prime}}(u, v) \\
= & \left.2 S^{*}(G)+2 \sum_{u \in V} \sum_{e \in E} d_{G}(u)\left(1+2 d_{G}^{*}(u, e)\right)+4 \sum_{\{e, f\} \subseteq E}\left(2+2 D_{G}(e, f)\right)\right) \\
= & 2 S^{*}(G)+4 q^{2}+4 D^{\diamond}(G)+8\binom{q}{2}+8 W(L(G))-8\binom{q}{2} \\
= & 2 S^{*}(G)+8 W(L(G))+4 D^{\diamond}(G)+4 q^{2} .
\end{aligned}
$$

Example 2.4. Let G^{\prime} be the subdivision graph of the complete graph K_{n}. From Theorem 2.4, it follows that $S^{*}\left(G^{\prime}\right)=2 S^{*}\left(K_{n}\right)+8 W\left(T_{n}\right)+4 D^{\diamond}\left(K_{n}\right)+4\binom{n}{2}^{2}=2\binom{n}{2}\left((n-1)^{2}+\right.$ $\left.8\binom{n-1}{2}+2\binom{n}{2}\right)=3 n(n-1)^{2}(2 n-3)$, with T_{n} being the line graph of K_{n}, that is, the triangular graph.

Acknowledgements. This research was supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.

References

[1] Andova, V., Dimitrov, D., Fink, J., and Škrekovski, R., Bounds on the Gutman index, MATCH Commun. Math. Comput. Chem., 67 (2012), 515-524
[2] Ashrafi, A. R., Dǒslic, T. and Hamzeh, A., The Zagreb coindices of graph operations, Discrete Appl. Math., 158 (2010), 1571-1578
[3] Dankelmann, P., Gutman, I., Mukwembi, S., and Swart, H. C., On the degree distance of a graph, Discrete Appl. Math., 157 (2009), 2773-2777
[4] Du, Z. and Zhou, B., Maximum degree distance of graphs with exactly two cycles, Bull. Math. Soc. Sci. Math. Roumanie, Tome 54 (102) (2011), No. 2, 119-136
[5] Gutman, I., Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci., 34 (1994), 1087-1089
[6] Hao, Y., Wang, M., Tree-like polyphenyl chains with extremal degree distance, Digest J. of Nanomaterials and Biostructures, 6 (2011), 739-745
[7] Iranmanesh, A., Gutman, I., Khormalia, O. and Mahmianic, A., The edge version of the Wiener Index, MATCH Commun. Math. Comput. Chem., 61 (2009), 663-672
[8] Khalifeh, M. H., Yousefi-Azari, H., Ashrafi, A. R. and Wagner, S. G., Some new results on distance-based graph invariants, Eur. J. Comb., 30 (2009), 1149-1163
[9] Khalifeh, M. H., Yousefi-Azari, H., and Ashrafi, A. R., The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 (2009), 804-811
[10] Klein, D. J., Mihalic, Z., Plavšic, D. and Trinajstic, N., Molecular Topological Index: a relation with the Wiener index, J. Chem. Inf. Comput. Sci., 32 (1992), 304-305
[11] Tomescu, I., Properties of connected graphs having minimum degree distance, Discrete Math., 309 (2009), 2745-2748
[12] Wiener, H., Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc., 69 (1947), 17-20

Department of Mathematics
Center for Research and Development in Matematics and Applications
University of Aveiro
Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
E-mail address: paula.carvalho@ua.pt
E-mail address: prama@ua.pt

[^0]: Received: 19.07.2016. In revised form: 08.11.2016. Accepted: 22.11.2016
 2010 Mathematics Subject Classification. 05C12, 05C76, 05C90.
 Key words and phrases. Graph theory, graph operations, topological indices, modified Schultz index.
 Corresponding author: Paula Carvalho; paula.carvalho@ua.pt

