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Abstract We consider a fuel oil distribution problem where an oil company is responsible
for the routing and scheduling of ships between ports such that the demand for various fuel
oil products is satisfied during the planning horizon. Inventory management considerations
are taken into account at the demand side only, and consumption rates are given and assumed
to be constant. We provide two alternative mixed integer formulations: a discrete time model
adapted from the case where the consumption rates are varying and a classical continuous
time formulation. We discuss different extended formulations and valid inequalities that
allow us to reduce the linear gap of the two initial formulations. A computational study
comparing the various models accordingly to their size, linear gap and running time, was
conducted based on real small-size instances, using a commercial software.

1 Introduction

Maritime transportation is a major mode of transportation of goods worldwide. The im-
portance of this mode of transportation is obvious for the long distance transportation of
cargoes but it is also crucial in local economies where the sea is the natural link between
the local developed regions, such as countries formed by archipelagoes. When a company
has the responsibility of coordinating the transportation of goods with the inventories at
the ports, the underlying planning problem is a maritime inventory routing problem. Such
problems are very complex. Usually modest improvements in the supply chain planning can
translate into significant cost savings.
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In this chapter we consider a real maritime inventory routing problem occurring in the
archipelago of Cape Verde. An oil company is responsible for the inventory management of
different oil products, such as, diesel, gasoline, fuel and jet, in several tanks located in the
main islands. Fuel oil products are imported and delivered to specific islands and stored in
large supply storage tanks. From these islands, fuel oil products are distributed among all
the inhabited islands using a small heterogeneous fleet of ships. These products are stored
in consumption storage tanks. Some ports have both supply tanks for some products and
consumption tanks of other products. Not all islands consume all products.

Consumption rates are assumed to be given and constant. Typically the consumption
rates are forecasted. Hence, safety stocks must be considered. Additionally, the storage tanks
have limited capacity. Therefore, the level of each product in each tank must always be kept
between a given lower level, determined by the safety stock, and an upper level, determined
by the tank capacity. As the capacity of the supply tanks is very large when compared to the
total demand over the horizon, we omit the inventory aspects for these tanks.

To transport fuel oil products between the islands, the planners control a small hetero-
geneous fleet. Each ship has a specified load capacity, fixed speed and cost structure. The
cargo hold of each ship is separated into several cargo tanks. The products cannot be mixed,
and cleaning operations to change between products on the same tank should be avoided.
Therefore we assume that the ships have dedicated tanks for each product. Each port can
receive at most one ship at a time, and in some ports there exist a minimum time interval
between the departure of one ship and the arrival of the next ship.

Given the initial stock levels at the consumption tanks, the initial ship position (which
can be a point at sea) and the quantities on board each ship, the inter-island distribution plan
consists of designing routes and schedules for the fleet of ships including determining the
number of visits to each port and the (un)loading quantity of each product at each visit to
each port. This plan must satisfy the safety stocks of each product at each island, and the
capacities of the ships and tanks. The transportation and operation costs of the distribution
plan are to be minimized. This problem is called a Short Sea Inventory Routing Problem
(SSIRP). Short sea stands for sea transportation between ports located in the same geo-
graphical area, in contrast to deep sea which is typically transportation between continents.

We have witnessed an increased interest in studying optimization problems within mar-
itime transportation. See the reviews on maritime transportation; [12–14]. Combined routing
and inventory management within maritime transportation have been present in the litera-
ture the last one and a half decades only; see [6] and [10]. These problems are often called
Maritime Inventory Routing Problems (MIRPs). Most of the published MIRP contributions
are based on real cases from the industry, see for the single product case [9, 16–18, 20] and
for the multiple product case [5, 11, 24, 25, 28–30].

In [5, 9, 28], the production and/or consumption rates are considered given and fixed
during the planning horizon. For those problems event based models are used where an index
indicating the visit number to a particular port is added to most of the variables. These event
based models are known as time continuous models [13]. In [1, 16, 18–20, 24, 25, 29] time
discrete models are developed to capture the complicating factors with varying production
and consumption rates.

The most related problems to the SSIRP given here are presented in [2] and [5]. In [2]
it is considered a variant of this SSIRP for short-term planning with demand orders, that is,
amounts of oil products that must be delivered within a given time period. These orders are
determined from the initial stock levels and the consumption rates. Typically, demand orders
lead to a problem with varying demands where demands are zero for most time periods and
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a large amount for a few periods. Several key issues taken into account in the short-term
problem, such as port operating time windows for each time period, are relaxed here or
incorporated indirectly in the data. Otherwise, the problems considered originate from the
same company in the same region. In [5], a problem similar to the SSIRP is considered with
constant consumption rates. However, in [5] only a continuous model is considered. In both
papers the products have dedicated compartments in the ships.

In the literature, many of the MIRP studies give a MIP model and use this model in
various solution approaches. Arc based models with arc variables representing the sail-
ing between two ports, are used in branch-and-bound and branch-and-cut approaches (e.g.
[1–3, 29]). In [29], subproblems that are restricted versions of the original problem are
solved by branch-and-cut. These subproblems are solved iteratively in a large neighbour-
hood search heuristic. In [28], an arc based model is combined with a heuristic. Finally, the
authors in [26] use a rolling horizon heuristic with an underlying arc based model. Path flow
models, where the path is described by the route and/or schedule, are used with pre generated
paths [19], in branch-and-price methods (e.g. [23] and [16]), rolling horizon heuristics [25]
and various fix and relax heuristics [21]. In [19], an arc based model is compared with a path
flow model for a liquefied natural gas inventory routing problem. From the limited number
of instances run, it was hard to conclude which formulation was superior. The path flow for-
mulation was able to solve more instances faster to optimum than the arc based formulation,
while the arc based formulation found the first integer solution faster than the path-flow for-
mulation. Furthermore, the path flow formulation suffered from poor scaling capabilities, so
the same problem was solved by a branch-and-price method in [20].

Just recently the study of valid inequalities has been incorporated in MIRPs. In [27] valid
inequalities are included in order to enhance the proposed formulations to an oil product
transportation problem, and in [23] valid inequalities are developed within a column gen-
eration approach for a maritime inventory routing problem. Also, in [16] valid inequalities
are derived for a single-product maritime inventory routing, which are used within a branch-
price-and-cut algorithm. In [20], valid inequalities are included to improve the formulation
presented for the liquefied natural gas inventory routing problem. Finally, [29] presents valid
inequalities for MIRPs including several practical constraints for solving problems in dif-
ferent shipping segments. Comparison of different formulations in conjunction with valid
inequalities have been used in [1] and [2].

As discussed in both [6] and [29], most combined maritime routing and inventory man-
agement problems described in the literature have particular features and characteristics, and
tailor-made methods are developed to solve the problems. These methods are often based
on heuristics or decomposition techniques. The choice of these solution approaches might
be explained by the high complexity of real MIRPs and the possibility to utilize the special
structure of the problem. However, the constant hardware development combined with the
theoretical advances in optimization techniques have produced optimization solvers capable
of handling increasingly larger instances. Currently, it is possible to obtain optimal or near
optimal solutions to small real instances occurring in maritime transportation problems us-
ing commercial solvers. See [2] for the case of Cape Verde, and [1, 22, 27, 29].

Mathematical formulations, and related discussion, for MIRPs have received some at-
tention during the last decades, see for instance, [1–3, 5, 8, 16, 29]. However, comparison of
different formulations for a given MIRP has just been considered in a few studies so far; see
e.g. [1,2,19]. Such studies are of crucial relevance when planning to solve a problem or sub-
problems (embedded in a more general solution approach) using commercial solvers. The
SSIRP considered here offers an interesting test bed for a computational study of different
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formulations. In this chapter we discuss and compare different mathematical formulations
for the SSIRP, some of them sharing the characteristics of well-known and widely used
formulations. Therefore, although the problem presented here is a particular maritime in-
ventory routing problem, the formulations discussed and compared are of interest to other
related maritime inventory routing problems as well.

In addition to the common approach (see [5] and [9]) that consists of using event based
models (known as continuous time models), we introduce a model that combines a dis-
crete and continuous time where the discrete time corresponds to an artificial discretization
of the continuous time. This model is similar to the one given in [2] for SSIRP with time
varying consumption rates. For each approach, following [2] (see also [1] for a completely
discrete model), we develop an arc-load formulation and two extended formulations. Arc-
load formulations are the most used formulations in MIRPs, see [5, 9, 29]. The extended
formulations use new sets of variables that provide additional information about the solu-
tion. That information is essential to derive a tighter model, that is, to derive a model whose
linear relaxation is closer to the optimal solution than the linear relaxation of the arc-load
model. Similar extended formulations have been extensively used for other problems, such
as lotsizing and network flow problems. In MIRPs they have been used in [1,2] for problems
with time varying consumption rates. To the best of our knowledge, the two extended formu-
lations introduced for the event time model, and the formulations resulting from adaptation
to the constant rate problem of models including time discretization, are new for MIRPs.

We provide a comparison of the two approaches and the three different formulations for
each approach using as criteria the size of the models, the integrality gaps, the number of
branch and bound nodes, and the running time to solve the instances. All formulations are
strengthened with valid inequalities and tightening of constraints. As in [1,2], computational
experiments indicate that the best performances are obtained using extended formulations
based on sets of variables that associate flows to the ship arcs (called arc-load flow mod-
els). This conclusion is highly relevant since, as mentioned above, most MIRPs have been
modeled using arc-load formulations which are dominated (both theoretically, considering
the integrality gap, and computationally, considering the running times) by the arc-load flow
models.

The real test instances are of small size which allow us to use a commercial software
to solve them to optimality. However, it should be remarked that the tested models have a
structure that is well suited for solving instances with longer planning horizons than those
considered here. For instance, the underlying models can be used in heuristic procedures
such as rolling-horizon heuristics, relax-and-fix heuristics, etc. to derive feasible solutions.
In [3], instances are heuristically solved for time horizons of several months using a rolling
horizon heuristic where the planning horizon is split into smaller sub-horizons. Then, re-
peatedly, a limited and tractable problem (which is much related to the one considered in
this paper) is solved for the shorter sub-horizons using a commercial software.

The remaining of this chapter is organized as follows. Section 2 presents arc-load dis-
crete time and arc-load continuous time formulations. Extended formulations are discussed
in Section 3. In Section 4 we discuss how the formulations can be tightened with valid in-
equalities. The computational study is reported in Section 5. Conclusions and final remarks
are presented in Section 6. A glossary of problem and model acronyms is given in Appendix
A.
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2 Mathematical Formulations

In this section we introduce two distinct arc-load formulations. It is mainly the network
structure that differs in the two formulations. Since a ship can visit the same port several
times during the planning horizon, one needs to define the ship visits to each port unam-
biguously. One approach consists of adapting a discrete time formulation of the SSIRP by
performing a discretization of the time to overcome the complicating factor of handling the
multiple visits to each port. The other approach is to consider an ordering of the visits, and
introduce an index indicating the visit number to a particular port. Hence, each network node
corresponds to an event. This approach corresponds to the continuous time formulation. The
first network is in general larger than the second one. However while the first network can
have only cycles within each time period, the second one includes many cycles.

Continuous time formulations have normally been applied when the consumption rates
are constant during the time horizon and the inventory bounds (safety stocks and upper
bound capacity) are satisfied during the entire time horizon. However the discrete time for-
mulations are normally applied when the consumption rates are varying during the time
horizon, but are constant within a time period. For these models the inventory bounds are
normally guaranteed at the end/beginning of each time period, only.

First, we introduce the SSIRP formulation for the time varying consumption rates prob-
lem and call it the Basic Arc-Load Discrete Time formulation with time varying consump-
tion (BD-SSIRP-V). Then we explain the changes of the formulation for the problem with
constant consumption rates and where inventory levels should be within the inventory bounds
during the entire planning horizon, and call it BD-SSIRP. In both models, the time is dis-
cretized into time periods. A node in the underlying network is described by the port and
time period.

The discrete time formulation presented here deviates from the discrete time formulation
in [1], where a ship could stay in port for several time periods, and from [19] where each port
operation was estimated to take one time period and the sailing an integer number of time
periods. Here, a time period is greater or equal to the maximum time for loading/unloading,
and may also include several port visits and sailings between ports. Thus, the time discretiza-
tion needs to be appropriately chosen. The time unit should be simultaneously large enough
to accommodate the duration of a full ship operation, and fine enough as certain constraints
can only be ensured over the entire period or at the end of each time period. For example,
restricting the number of operating vessels in a port can only be enforced over the entire
time period, and constraints such as inventory capacity, are only enforced at the end of each
time period. In addition, the consumption rate needs to be constant within a time period in
the case of time varying consumption.

Demand rates and consumption rates could be used interchangeably, but we use con-
sumption rates throughout the chapter.

An example of the ship routes in a feasible solution is depicted in Figure 1. Ship 1 sails
from its origin to port 2. Then it starts to operate in period 2 at port 2. Further on, it sails to
port 4 and starts to operate in period 3 at port 4. Then it sails to port 3 and starts to operate
at port 3 in period 7. Finally the ship sails to the destination. Observe that the period that
defines a visit is the period at which the ship starts to operate.

The second formulation is called the Basic Arc-Load Continuous Time formulation (BC-
SSIRP) and has been used by several authors when the consumption rates are constant during
the planning horizon, see for instance [5] and [9]. For each port, we define a sequence of
events associated with the vessel arrivals. Each event is represented by a pair: (port, order of
the arrival). Ship paths are illustrated in Figure 2. For instance, ship 2 leaves origin O2 and
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Supply port for
products 1 and 2

Supply port for
products 3 and 4 Consumption port

O1

O2

D2

D1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

t = 1 t = 2 t = 3 · · · t = 6 t = 7 t = 8 t = 9 t = 10

Fig. 1 Example of two routes with a discrete time network. Each column corresponds to a period and each
horizontal layer corresponds to a port.

D1

D2

O1

O2

1,1

4,1
4,2

2,1
2,2

3,2

3,1

Fig. 2 Example of ship routes where each node represents a visit. The first label indicates the port and the
second label indicates the visit. Each arc type represents the path of a different ship.

sails to port 4 (for the first visit to this port), then sails to port 2 (for the second visit to this
port, since the first visit was made by ship 1), and sails to port 1 for its first visit. Finally, the
ship sails to port 3 (for the second visit to port 3, since the first visit was made by ship 1)
before it ends at its destination.

2.1 Arc-Load Discrete Time Formulations

In this section we present the basic arc-load models BD-SSIRP-V and BD-SSIRP for the
time varying consumption and constant consumption, respectively. The finite time horizon is
divided into a discrete number of periods. A ship path is defined as a sequence of pairs (port,
period) representing the nodes of the network. The period that defines a visit is the period in
which the ship starts to operate. Waiting, operating and traveling times are considered in a
continuous time measure.

First we introduce the model BD-SSIRP-V. Then we adapt this formulation for the con-
stant consumption rate case.
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2.1.1 SSIRP with time varying consumption rates

The BD-SSIRP-V is similar to the formulation introduced in [2], but some of the prob-
lem specific details are skipped. To the best of our knowledge, the model has never been
used for constant consumption rates. In this model, all variables will have a superscript D to
indicate the discrete time model.

The presentation of the formulation is split into the following parts: routing constraints,
loading and unloading constraints, time constraints and inventory constraints. The objective
function is presented at the end.

Routing constraints:

Let V denote the set of ships. Each ship v ∈ V must depart from its initial position (in
the beginning of the planning horizon) that can be in a port or a point at sea. The set of ports
is denoted by N and the set of periods is denoted by T.

For the routing we define the following binary variables: xD
it juv is equal to 1 if ship v

starts to operate at port i in period t and then sails from port i to port j and starts to operate
at port j in period u; and 0 otherwise, while xOD

itv indicates whether ship v sails directly from
its initial position to port i to start an operation in period t or not. xOD

itv could have been
included in xD

it juv, but is introduced to ease the reading. Variable zD
itv is 1 if ship v ends its

route at port i after an operation that started in time period t; and 0 otherwise, and zOD
v is 1

if ship v ends its route at the origin (it is not used) and 0 otherwise. Variable wD
itv is 1 if ship

v visits port i in period t; and 0 otherwise. Finally, yD
it is 1 if some ship visits port i in period

t; 0 otherwise.
Variables xD

it juv are not defined for t > u. For ease of notation we include them in the
model assuming they are zero. We allow them to be positive if t = u, that means a ship can
visit two ports in succession in the same time period. We also assume xD

it juv = 0 if i = j.
The routing constraints are as follows:

∑
i∈N

∑
t∈T

xOD
itv + zOD

v = 1, ∀v ∈V, (1)

wD
itv− ∑

j∈N
∑
u∈T

xD
juitv− xOD

itv = 0, ∀v ∈V, i ∈ N, t ∈ T, (2)

wD
itv− ∑

j∈N
∑
u∈T

xD
it juv− zD

itv = 0, ∀v ∈V, i ∈ N, t ∈ T, (3)

∑
v∈V

wD
itv = yD

it , ∀i ∈ N, t ∈ T, (4)

xD
it juv ∈ {0,1}, ∀v ∈V, i, j ∈ N, t,u ∈ T, (5)

xOD
itv ,wD

itv,z
D
itv ∈ {0,1}, ∀v ∈V, i ∈ N, t ∈ T, (6)

yD
it ∈ {0,1}, ∀i ∈ N, t ∈ T, (7)

zOD
v ∈ {0,1}, ∀v ∈V. (8)

Constraints (1) ensure that ship v either departs from its initial position to port i in pe-
riod t or it is not used. Constraints (2) and (3) are the flow conservation constraints ensuring
that a ship arriving at a port also leaves that port by either visiting another port or ending
its route. Equations (4) guarantee that at most one ship can operate at port i in a given time
period.
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Constraints (5)-(8) define the variables as binary.

Loading and unloading:

Let K represent the set of products and Kv represent the set of products that ship v can
transport. Not all ports consume all products. Parameter Jik assumes value 1 if port i is a
supplier of product k; -1 if port i is a consumer of product k, and 0 if i is neither a consumer
nor a supplier of product k. The quantity of product k on board ship v at the beginning of the
planning horizon is given by Qvk.Cvk is the capacity of the compartment of ship v dedicated
for product k. The minimum and maximum discharge quantities of product k are given by
Qik and Qik, respectively.

In order to model the loading and unloading constraints we define the following binary
variables: oD

itvk is equal to 1 if product k is loaded onto or unloaded from ship v at port i in
time period t, and 0 otherwise; and the following continuous variables: qD

itvk is the amount
of product k loaded onto or unloaded from ship v at port i in time period t, lD

itvk is the amount
of product k on board ship v when leaving from port i after an operation that started in time
period t. For ease of notation, variables oD

itvk, such that Jik = 0, are included in the model
and assumed to be zero.

The loading and unloading constraints are given by:

xD
it juv(l

D
itvk + J jkqD

juvk− lD
juvk) = 0, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv, (9)

xOD
itv (Qvk + JikqD

itvk− lD
itvk) = 0, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (10)

lD
itvk ≤Cvk ∑

j∈N
∑
u∈T

xD
it juv, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (11)

qD
itvk ≤CvkoD

itvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv : Jik = 1, (12)

QikoD
itvk ≤ qD

itvk ≤min{Cvk,Qik}oD
itvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv : Jik =−1, (13)

∑
k∈Kv

oD
itvk ≥ wD

itv, ∀v ∈V, i ∈ N, t ∈ T, (14)

oD
itvk ≤ wD

itv, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (15)

lD
itvk,q

D
itvk ≥ 0, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (16)

oD
itvk ∈ {0,1}, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv. (17)

Constraints (9) and (10) relate the quantity on board to the quantity loaded and/or un-
loaded. Constraints (9) ensure that if ship v sails from port i (after an operation started in
period t) to port j (to initialize an operation in period u), then the quantity of product k on
board at the departure from island j should be equal to the quantity on board at departure
from port i plus (resp. minus) the quantity loaded (resp. unloaded) from j. Equations (10)
relate the quantity on board with the quantity loaded and/or unloaded in the starting position.
Constraints (11) impose an upper bound on the quantity on board. They also ensure that if
the quantity on board is positive than the ship must travel to some other port. Constraints
(12) ensure that if an operation occurs at a loading port, that is, qD

itvk > 0, than the setup vari-
able oD

itvk must be one. They also impose an upper bound on the quantity loaded. Constraints
(13) impose lower and upper limits on the unload quantities, respectively. Constraints (14)
ensure that if ship v starts an operation at port i in time period t, then at least one product
must be (un)loaded. Constraints (15) ensure that if ship v (un)loads one product at port i in
period t, then wD

itv must be one. The nonnegativity requirements (16) are given for the vari-
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ables representing the load on board and the (un)loading quantity. Finally, the formulation
involves binary requirements (17) on the operating variables.

Constraints (9) and (10) are non-linear. Following [15], equations (9) can be linearized
by replacing them with the following two sets of constraints:

lD
itvk + J jkqD

juvk− lD
juvk +CvkxD

it juv ≤Cvk, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv, (18)

lD
itvk + J jkqD

juvk− lD
juvk−CvkxD

it juv ≥−Cvk, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv, (19)

and equations (10) can be replaced by:

Qvk + JikqD
itvk− lD

itvk +CvkxOD
itv ≤Cvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (20)

Qvk + JikqD
itvk− lD

itvk−CvkxOD
itv ≥−Cvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv. (21)

Time constraints:

We have chosen a discrete time formulation consisting of few time periods compared to
most existing discrete time formulations in the literature, see e.g. [1] and [16]. In order to
account for the time aspects correctly we consider a continuous time measure in addition to
the discrete time. In comparison to other discrete time MIRP formulations [1], we do not
need to explicitly define binary waiting variables and by this avoid the symmetry problem
that many such models have.

We define the following parameters: T Q
ik is the time required to load/unload one unit of

product k at port i; T S
ik is the set up time required to operate product k at port i. Parameter Ti jv

is the traveling time between port i and j by ship v; T O
iv indicates the traveling time required

by ship v to sail from its initial port position to port i; T B
i is the minimum interval between

the departure of one ship and the next arrival at port i. Finally, T is the length of the time
horizon.

We define the nonnegative continuous variables tD
it as the start time of the operation at

port i in time period t, and tED
it as the end time of the operation that started during period t

in port i. The time constraints are as follows,

tED
it ≥ tD

it + ∑
v∈V

∑
k∈Kv

T S
ikoD

itvk + ∑
v∈V

∑
k∈Kv

T Q
ik qD

itvk, ∀i ∈ N, t ∈ T, (22)

tD
it − tED

i(t−1) ≥ T B
i yD

it , ∀i ∈ N, t ∈ T : t > 1, (23)

tED
it +Ti jv− tD

ju ≤ T (1− xD
it juv), ∀v ∈V, i, j ∈ N, t,u ∈ T, (24)

∑
v∈V

T O
iv xOD

itv ≤ tD
it , ∀i ∈ N, t ∈ T, (25)

t−1≤ tD
it ≤ t, ∀i ∈ N, t ∈ T, (26)

tD
it , t

ED
it ≥ 0, ∀i ∈ N, t ∈ T. (27)

Equations (22) define the end time of each operation. Notice the end time can be greater
than the starting time plus the set up times and the time for the (un)load operations. This
accounts the possibility of a ship to wait between (un)loadings. Constraints (23) impose a
minimum interval between two consecutive visits at port i. Constraints (24) ensure that if
ship v sails from port i (after an operation started in period t) to port j (to initialize an opera-
tion in period u), then the operation at port j can only start after the end time of operation at
port i plus the time required to travel from i to j. Constraints (25) ensure that if ship v travels
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from its initial position to port i to start an operation in period t, then the starting time at
port i can only occur after the traveling time. Constraints (26) link the continuous with the
discrete time measures and constraints (27) define the sign of the continuous time variables.

When time windows are considered they can be easily included in the model. For in-
stance, if the start of an operation at port i in period t is restricted to a time window [Ait ,Bit ],
then it suffices to replace constraints (26) by Ait ≤ tD

it ≤ Bit .

Inventory constraints:

Inventory constraints are considered for each unloading port i (Jik =−1). Ditk indicates
the demand or consumption of product k at port i in period t. For each product k at a con-
sumption port i, the minimum stock level is given by Sik and the maximum stock level (tank
capacity) is given by Sik. SO

ik denotes the initial stock level of product k in port i.
The nonnegative continuous variables sD

itk indicate the stock level of product k in port i
at the end of period t. The inventory constraints are as follows:

sD
i(t−1)k + ∑

v∈V
qD

itvk− sD
itk = Ditk, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1, (28)

sD
i0k = SO

ik, ∀i ∈ N,k ∈ K : Jik =−1, (29)

Sik ≤ sD
itk ≤ Sik, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1. (30)

Constraints (28) are the inventory balance constraints. These constraints together with the
bounds ensure that the demand for each product at each port in each time period is satisfied.
Constraints (29) define the initial stock levels. The upper and lower bounds on the stock
levels are ensured by constraints (30).

Objective Function:

The objective function is to minimize the costs (transportation and setup costs):

Min ∑
v∈V

∑
i, j∈N

∑
t,u∈T

CT
i jvxD

it juv + ∑
v∈V

∑
i∈N

∑
t∈T

CTO
iv xOD

itv + ∑
v∈V

∑
i∈N

∑
t∈T

∑
k∈Kv

CO
ikoD

itvk (31)

where CT
i jv is the total transportation cost for ship v to sail from port i to port j, CTO

iv is the cost
for ship v to sail from its origin to port i, and CO

ik is the fixed cost of operating (load/unload)
product k at port i.

The basic arc-load discrete time formulation with time varying consumption rates, BD-
SSIRP-V, is given by (1)-(8), (11)-(31). Even though the model includes discrete time and
continuous time variables we call it a discrete time formulation.

2.1.2 SSIRP with constant consumption rates

In this section we consider the variant of the SSIRP where constant consumption rates
are assumed. The two related problems occur in two different planning problems. The time
varying consumption problem occurs when a set of orders are given. Each order corresponds
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Ditk

Stock level

Timet∗t−1 t +1t

Sik

Sik

Fig. 3 Delivery must occur no later than t∗ in SSIRP, and it must occur no later than t in the SSIRP-V.

to a quantity of an oil product that must be delivered into a specific port and has a deadline
to be satisfied. The constant consumption rate is normally assumed when the planners are
considering longer time horizons. In this case the consumption rates correspond to the es-
timated consumption rates from real data. In order to model the constant rate case we can
adapt the discrete time formulation.

In the BD-SSIRP-V the safety stock is guaranteed at the end of each period only. These
ends of periods are artificially established. Hence, by choosing a different discretization
the model will guarantee the stock level at different times. As depicted in Figure 3 it may
happen that the stock level goes below the minimum stock level in the middle of a period.
This situation should not be allowed in the constant rate case, SSIRP, where the safety stock
must be satisfied at any time in the interval [0,T ].

In order to prevent such a situation to occur, while keeping a chosen discretization, we
add the following constraints

sD
i(t−1)k−Ditk(tD

it − t +1)≥ Sik, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1. (32)

The left hand side of (32) measures the stock level at the start time of the operation which
is the stock level at the beginning of the period minus the consumption until the start of the
operation. These levels should be above the safety stock levels.

Similarly, in order to prevent stock to go above the tank capacity at the end of a discharge
operation, we add the following constraints

sD
i(t−1)k−Ditk(tED

it − t +1)+ ∑
v∈V

qD
itvk ≤ Sik, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1. (33)

Constraints (32) and (33) could also have been added to BD-SSIRP-V if it is important
to ensure that the inventory levels are within the limits during the time horizon.

The basic arc-load discrete time formulation with constant consumption rates, BD-
SSIRP, is given by (1)-(8), (11)- (33).
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2.2 Arc-Load Continuous Time Formulation

In this section we present the basic arc-load continuous time formulation, BC-SSIRP,
for the case with constant consumption rates.

In the BD-SSIRP we discretized the time such that in each period at most one visit
could occur at each port. Here, we present an alternative formulation where port events,
here called port visits, are distinguished by the order of the visit. This type of formulation
was used in [5] and [9].

Again, we divide the set of constraints of the formulation into the following parts:
routing constraints, loading and unloading constraints, time constraints and inventory con-
straints.

Contrary to the discrete model that combines both discrete and continuous time, this
model uses continuous time only.

For each port we consider an ordering of the visits according to the time of the visit. The
ship paths are defined on a network where the nodes are represented by a pair (i,m), where
i is the port and m is the visit number at port i.

For this formulation only the new notation is introduced.

Routing constraints:

Each possible port visit is denoted by the pair (i,m) representing the mth visit to port
i. Direct ship movements (arcs) from port visit (i,m) to port visit ( j,n) are represented by
(i,m, j,n).

We define SA as the set of possible port visits (i,m), SA
v as the set of possible port visits

made by ship v, and set SX
v as the set of all possible movements (i,m, j,n) of ship v.

For the routing we define the following binary variables: xC
im jnv is equal to 1 if ship v

sails from port visit (i,m) directly to port visit ( j,n); and 0 otherwise, xOC
imv indicates whether

ship v sails directly from its initial position to port visit (i,m) or not, wC
imv is 1 if ship v visits

port i at arrival (i,m); and 0 otherwise, zC
imv is equal to 1 if ship v ends its route at port visit

(i,m); and 0 otherwise, and yC
im indicates whether a ship is visiting port arrival (i,m) or not.

The routing constraints are as follows:

∑
(i,m)∈SA

v

xOC
imv + zOC

v = 1, ∀v ∈V, (34)

wC
imv− ∑

( j,n)∈SA
v

xC
jnimv− xOC

imv = 0, ∀v ∈V,(i,m) ∈ SA
v , (35)

wC
imv− ∑

( j,n)∈SA
v

xC
im jnv− zC

imv = 0, ∀v ∈V,(i,m) ∈ SA
v , (36)

∑
v∈V

wC
imv = yC

im, ∀(i,m) ∈ SA, (37)

yC
i(m−1)− yC

im ≥ 0, ∀(i,m) ∈ SA : m > 1, (38)

xOC
imv,w

C
imv,z

C
imv ∈ {0,1}, ∀v ∈V,(i,m) ∈ SA

v , (39)

xC
im jnv ∈ {0,1}, ∀v ∈V,(i,m, j,n) ∈ SX

v , (40)

yC
im ∈ {0,1}, ∀(i,m) ∈ SA, (41)

zOC
v ∈ {0,1}, ∀v ∈V. (42)
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Equations (34) ensure that each ship departs from its initial position and sails towards
another port or the ship is not used. Equations (35) and (36) are the flow conservation con-
straints, ensuring that a ship arriving at a port also leaves that port by either visiting another
port or ending its route. Constraints (37) ensure that each port visit (i,m) is made at most
once. Constraints (38) state that if port i is visited m times, then it must also have been vis-
ited m−1 times. Constraints (39)-(42) define the variables as binary.

Loading and unloading:

In order to model the loading and unloading constraints, we define the following binary
variables: oC

imvk is equal to 1 if product k is loaded onto or unloaded from ship v at port visit
(i,m), and 0 otherwise. In addition, we define the following continuous variables: qC

imvk is
the amount of product k (un)loaded at port visit (i,m) and lCimvk is the amount of product k
on board ship v when leaving from port visit (i,m).

The loading and unloading constraints are given by:

xC
im jnv(l

C
imvk + J jkqC

jnvk− lCjnvk) = 0, ∀v ∈V,(i,m, j,n) ∈ SX
v ,k ∈ Kv, (43)

xOC
imv(Qvk + JikqC

imvk− lCimvk) = 0, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv, (44)

lCimvk ≤Cvk ∑
( j,n)∈SA

v

xC
im jnv, ∀v ∈V,(i,m) ∈ SA

v ,k ∈ Kv, (45)

qC
imvk ≤CvkoC

imvk, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv : Jik = 1, (46)

QikoC
imvk ≤ qC

imvk ≤min{Cvk,Qik}oC
imvk, ∀v ∈V,(i,m) ∈ SA

v ,k ∈ Kv : Jik =−1, (47)

∑
k∈Kv

oC
imvk ≥ wC

imv, ∀v ∈V,(i,m) ∈ SA
v , (48)

oC
imvk ≤ wC

imv, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv, (49)

lCimvk,q
C
imvk ≥ 0, ∀v ∈V,(i,m) ∈ SA

v ,k ∈ Kv, (50)

oC
imvk ∈ {0,1}, ∀v ∈V,(i,m) ∈ SA

v ,k ∈ Kv. (51)

Equations (43) determine the quantity of product k on board ship v when the ship sails from
port visit (i,m) to port visit ( j,n). These constraints can be linearized as follows:

lCimvk + J jkqC
jnvk− lCjnvk +CvkxC

im jnv ≤Cvk, ∀v ∈V,(i,m, j,n) ∈ SX
v ,k ∈ Kv, (52)

lCimvk + J jkqC
jnvk− lCjnvk−CvkxC

im jnv ≥−Cvk, ∀v ∈V,(i,m, j,n) ∈ SX
v ,k ∈ Kv. (53)

Constraints (44) are similar to (43) and determine the load on board the ship for the first ship
visit. These constraints can be replaced by the following linear constraints:

Qvk + JikqC
imvk− lCimvk +CvkxOC

imv ≤Cvk, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv, (54)

Qvk + JikqC
imvk− lCimvk−CvkxOC

imv ≥−Cvk, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv. (55)

The ship capacity constraints are given by (45). Constraints (46) impose an upper bound on
the quantity loaded at the supply port. Constraints (47) impose lower and upper limits on
the unload quantities. Constraints (48) ensure that if ship v makes port visit (i,m), then at
least one product must be (un)loaded. Constraints (49) ensure that if ship v (un)loads one
product at visit (i,m), then wC

imv must be one. Constraints (50)-(51) are the non-negativity
and integrality constraints.
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Time constraints:

Given the start time and end time variables, tC
im and tEC

im at port visit (i,m), the time
constraints can be written as:

tEC
im ≥ tC

im + ∑
v∈V

∑
k∈Kv

T Q
ik qC

imvk + ∑
v∈V

∑
k∈Kv

T S
ikoC

imvk, ∀(i,m) ∈ SA, (56)

tC
im− tEC

i(m−1)−T B
i yC

im ≥ 0, ∀(i,m) ∈ SA : m > 1, (57)

tEC
im +Ti jv− tC

jn ≤ T (1− xC
im jnv), ∀v ∈V,(i,m, j,n) ∈ SX

v , (58)

∑
v∈V

T O
iv xOC

imv ≤ tC
im, ∀(i,m) ∈ SA, (59)

tC
im, t

EC
im ≥ 0, ∀(i,m) ∈ SA. (60)

Constraints (56) define the end time of service of port visit (i,m). Constraints (57) impose
a minimum interval between two consecutive visits at port i. Constraints (58) relate the end
time of port visit (i,m) to the start time of port visit ( j,n) when ship v sails directly from port
(i,m) to ( j,n). Constraints (59) ensure that if ship v travels from its initial position directly
to port visit (i,m), then the start time is at least the traveling time between the two positions.
Constraints (60) define the continuous time variables.

Single time windows for each visit can be introduced in a similar way as for the discrete
case. However in case the time windows are associated with open hours at ports then new
variables are necessary to model multiple time windows.

Inventory constraints:

The inventory constraints are necessary to ensure that the inventory levels are kept within
the corresponding bounds and to link the inventory levels to the (un)loading quantities.

We define parameter Rik as the consumption rate of product k at port i (that is, Ditk =
Rik,∀t ∈ T ), and define the nonnegative continuous variables sC

imk and sEC
imk indicating the

inventory levels at the start and at the end of port visit (i,m), respectively. The inventory
constraints are as follow:

sC
i1k = SO

ik−RiktC
i1, ∀i ∈ N,k ∈ K : Jik =−1, (61)

sEC
imk = sC

imk + ∑
v∈V

qC
imvk−Rik(tEC

im − tC
im), ∀(i,m) ∈ SA,k ∈ K : Jik =−1, (62)

sC
imk = sEC

i(m−1)k−Rik(tC
im− tEC

i(m−1)), ∀(i,m) ∈ SA : m > 1,k ∈ K : Jik =−1, (63)

Sik ≤ sC
imk,s

EC
imk ≤ Sik, ∀(i,m) ∈ SA,k ∈ K : Jik =−1. (64)

Equations (61) calculate the inventory level of each product at the first visit. Equations (62)
calculate the inventory level of each product when the service ends at port visit (i,m). Simi-
larly, equations (63) relate the inventory level at the start of port visit (i,m) to the inventory
level at the end of port visit (i,m−1). The upper and lower bounds on the inventory levels
are ensured by constraints (64).
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It remains to ensure that the inventory levels at the end of the planning horizon is within
the inventory limits. We discuss two options. The following set of constraints was used
in [22].

Sik ≤ sEC
imk−Rik(T − tEC

im )(yC
im− yC

i(m+1))≤ Sik, ∀(i,m+1) ∈ SA,k ∈ K : Jik =−1.

We can see that tEC
im is the end time of the last visit to port i if and only if yC

im− yC
i(m+1) = 1.

This set of constraints is nonlinear and can be linearized as in [22]. However we omit the
linearization process here, because we will follow the approach used in [9], to handle the
stock level at the end of the planning horizon. Consider the following set of constraints
where µ i is an upper bound on the number of visits to port i.

Sik ≤ sEC
iµ ik

+Rik(T − tEC
iµ i

)≤ Sik, ∀i ∈ N,k ∈ K : Jik =−1, (65)

Here the end time of the last possible visit is given by tEC
iµ i

.

Objective function:

The objective is to minimize the total routing and operating cost:

∑
v∈V

∑
(i,m, j,n)∈SX

v

CT
i jvxC

im jnv + ∑
v∈V

∑
(i,m)∈SA

v

CTO
iv xOC

imv + ∑
v∈V

∑
(i,m)∈SA

v

∑
k∈Kv

CO
ikoC

imvk (66)

The basic arc-load time continuous formulation with constant consumption rates, BC-
SSIRP, is defined by (34)-(42), (45)-(66).

2.3 Comparison of the Discrete Time and Continuous Time Models

Here we discuss the two models regarding their integrality gaps, size, and level of infor-
mation provided.

Integrality gaps

Although the definition of the variables in the time discrete model is different from the
definition of variables in the time continuous model, we can easily see that the two mathe-
matical models are very similar. In fact, removing the inventory constraints from both mod-
els and constraints (38) from the BC-SSIRP, the mathematical expressions of both models
is similar. The unique difference is that variables xD

it juv are defined for all u≥ t while xC
im jnv

are defined for all m and n. As a consequence the linear relaxation of the discrete model
BD-SSIRP without inventory constraints should provide bounds at least as good as those
provided by the linear relaxation of the continuous model BC-SSIRP without inventory
constraints.

To compare theoretically the complete models (with inventory variables) is not a straight-
forward task since one needs to relate the two sets of variables. Here we only provide an
experimental comparison. This study is conducted in Section 5 and shows that the bounds
provided by the two models are the same for the tested instances, which reinforces our com-
ment on the similarity of the models. The computational study also shows that the integrality
gaps of BD-SSIRP and BC-SSIRP are very large. In the two following sections we improve
these formulations by deriving tighter extended formulations (Section 3) and by including
valid inequalities (Section 4). The ideas used in those improvements are similar for both
types of formulations.
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Size of the models

The size of the models is determined by the number of x (routing) variables since this
number establishes the bound for the number of variables and constraints. Contrary to the
discrete model, where the number of routing variables is well defined for a particular dis-
cretization, in the continuous case this number depends on the maximum number of visits
to each port i, µ i. These upper bounds µ i can be computed using the minimum (un)loading
quantities Qk

i and the time constraints. However, usually the quantities Qk
i are not imposed

by any real limit but to avoid a “large” number of visits. Our experience showed that the
maximum number of visits can be set to a minimum number of visits (computed in Sec-
tion 4) plus a constant: one, two or three, depending on the port activity. For larger increases
of µ i, only the running time increases, see Section 5.

We can also eliminate some routing variables xD
it juv from the discrete model. Since the

maximum distance between two ports is short in the underlying real short sea inventory
routing problem, we can eliminate variables where u >> t. In Section 5, we present compu-
tational experiments to evaluate the impact of the objective function, the size of the model,
and on the running time of these restrictions on the variables.

Information provided

The solution of each model provides different information. However, the solution from
one model can easily be converted into a solution of the other. In the discrete formulation, the
information of the period in which the visits occur is given by the time variables tD

it as well
as the routing variables xD

it juv, while in the continuous model this information is provided
only by the time variables. This difference allows us to relate the routing aspects directly to
the inventory in the discrete models. As we will see in Section 4, this property can be used
to tighten the discrete model.

3 Linear Relaxations and Extended Formulations

In this section we discuss some of the weaknesses of the arc-load formulations and
introduce two extended formulations for each type of model (discrete time and continuous
time). We consider only the SSIRP with constant consumption rates.

In Figure 4 we present a fractional solution of the arc-load continuous time model that
illustrates the weaknesses of the arc-load formulations.

As we can see from the example, the fractional solution does not guarantee the equilib-
rium of the flow on board the ship. Both ships unload products that they do not transport.
For instance, ship 2 unloads 50 units at port 1 and these units are never loaded. Next we
justify how such solutions can occur. First notice that the unique link between the load
on board the ship and the path of the ship is established at the nodes. Additionally, the
link is established through constraints (18)-(21) in BD-SSIRP and through constraints (52)-
(55) in the BC-SSIRP. These linking constraints are known to be very weak. It is therefore
possible to get, in a linear fractional solution, an unload operation when the ship has noth-
ing on board. Consider the BC-SSIRP case, and suppose J jk = −1. If 0 < xC

im jnv < 1 and
lCimvk = lCjnvk = 0, then the unload quantity qC

jnvk of product k can be positive. More specifi-
cally 0≤ qC

jnvk ≤Cvk min{xC
im jnv,1− xC

im jnv}.
Also, as expected, each ship follows multiple fractional paths.
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Fig. 4 Example of an optimal solution of the linear relaxation of the BC-SSIRP. The quantities qvk next to
node (i,m) represent the quantity of product k unloaded by ship v in the mth visit to port i. In this solution there
are no loadings. The arc labels represent the values of the corresponding arc-variables. Dark arcs represent
ship 1 and dashed arcs represent ship 2. We assume Qvk = 0, ∀v ∈V,k ∈ Kv.

In order to avoid some of the drawbacks of the arc-load formulations, we propose two
extended formulations for each approach. The new set of variables introduced in each formu-
lation provides additional information about the solution. That information will be essential
to derive tighter models. All the formulations presented in the chapter are compact. In gen-
eral, the linear relations of the extended formulations lead to better bounds but are harder
(considering the computational effort) to obtain. When using such formulations in a branch
and bound scheme, the number of tree nodes tends to be less than in the case where a smaller
formulation is used. However, the time spent in each node is usually greater.

In the first extended formulation, new variables indicating the amount of each product
carried along an arc are introduced. These new variables can be seen as defining the flow
of individual products along the chosen paths resulting from the routing variables for each
ship. The second extended formulation can be seen as a classical multi-commodity refor-
mulation of the first extended formulation where the flow variables additionally indicate the
destination of each product along the chosen paths.

3.1 Arc-Load Flow Reformulations

In this section we introduce new arc-load flow variables that indicate the amount of
each product carried along each arc. These flow variables allow us to assign a flow of each
product to the ship path. In this way we can prevent fractional solutions as the one depicted
in Figure 4.

3.1.1 Discrete time reformulation

Next, we present the arc-load flow discrete time formulation with constant consumption
rates (FD-SSIRP). Let us define f D

it juvk, as the amount of product k that ship v transports
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from port i, after an operation that started in period t, to port j in order to start an operation
in period u. For ease of notation, when xD

it juv = 0, variables f D
it juvk are included in the model

and set to zero.
Let f OD

itvk denote the amount of product k that ship v transports from its initial port position
to port i in period t.

The two sets of variables lD
itvk and f D

it juvk can be related using the following equations

lD
itvk = ∑

j∈N
∑
u∈T

f D
it juvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (67)

Constrains (9), (10) and (11) can be replaced by constraints

f OD
juvk + ∑

i∈N
∑
t∈T

f D
it juvk + J jkqD

juvk = ∑
i∈N

∑
t∈T

f D
juitvk, ∀v ∈V, j ∈ N,u ∈ T,k ∈ Kv, (68)

f OD
itvk = QvkxOD

itv , ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv, (69)

f D
it juvk ≤CvkxD

it juv, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv, (70)

f D
it juvk ≥ 0, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv. (71)

The flow conservation constraints are given by equations (68). Equations (69) determine the
amount of product k on board ship v at departure from the initial position. Constraints (70)
are the variable upper bound constraints. They relate the flow variable f D

it juvk to the routing
variables xD

it juv and, together with the nonnegativity constraints (71) impose bounds on the
flow variables.

The FD-SSIRP formulation is defined by (1)-(8), (12)-(17), (22)-(33), (68)-(71).

Adding constraints (70) for j and u we obtain

∑
j∈N

∑
u∈T

f D
it juvk ≤Cvk ∑

j∈N
∑
u∈T

xD
it juv.

Using (67) we obtain (11). Hence constraints (11) can be obtained by aggregating constraints
(70). Thus, the linear relaxation of FD-SSIRP should provide better bounds than the linear
relaxation of BD-SSIRP. The drawback of this model is that it increases the size by adding
a large number of continuous variables and constraints.

Notice that with the inclusion of variables f D
it juvk, variables qD

juvk can be eliminated from
the model using equations (68), that is, setting

qD
juvk = J jk

(
∑
i∈N

∑
t∈T

f D
juitvk−∑

i∈N
∑
t∈T

f D
it juvk− f OD

juvk

)
, ∀v ∈V, j ∈ N,u ∈ T,k ∈ Kv. (72)

3.1.2 Continuous time reformulation

Here we define a similar flow model for the continuous time formulation, denoted by
FC-SSIRP. Let f C

im jnvk denote the amount of product k that ship v transports from port visit
(i,m) to port visit ( j,n) and f OC

jnvk as the amount of product k that ship v transports from its
initial position to port visit ( j,n).
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Using these additional variables, constraints (43)-(45) can be replaced by the following
set of constraints:

f OC
jnvk + ∑

(i,m)∈SA
v

f C
im jnvk + J jkqC

jnvk = ∑
(i,m)∈SA

v

f C
jnimvk, ∀ v ∈V,( j,n) ∈ SA

v ,k ∈ Kv, (73)

f OC
imvk = QvkxOC

imv, ∀v ∈V,(i,m) ∈ SA
v ,k ∈ Kv, (74)

f C
im jnvk ≤CvkxC

im jnv, ∀v ∈V,(i,m, j,n) ∈ SX
v ,k ∈ Kv, (75)

f C
im jnvk ≥ 0, ∀v ∈V,(i,m, j,n) ∈ SX

v ,k ∈ Kv. (76)

Constraints (73) ensure the equilibrium of product k on board ship v. Equations (74)
determine the quantity on board when ship v sails from its initial port position to port visit
(i,m). Constraints (75) link the new flow variables to the arc variables and impose an upper
bound on the capacity of the compartment of ship v dedicated to carry product k.

The arc-load flow continuous time formulation with constant consumption rates, FC-
SSIRP, is defined by (34)-(42), (46)-(51), (56)-(66), (73)-(76).

Similar to the discrete case, the linear relaxation of FC-SSIRP can be shown to be tighter
than the linear relaxation of BC-SSIRP. In Figure 5 we illustrate the optimal solution of the
linear relaxation of FC-SSIRP for the same example as the one depicted in Figure 4. We can
see that the fractional solution satisfies the equilibrium of the flow along each fractional ship
path.
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Fig. 5 Optimal solution of the linear relaxation of FC-SSIRP for the example used in Figure 4. In this solution
all unloaded products are previously loaded. The quantities qvk represent the quantity of product k loaded (if
k ∈ {1,2} and i = 2, or k = 3 and i = 4) or unload (in the remaining cases) by ship v.
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3.2 Multi-Commodity Reformulations

A multi-commodity reformulation of a flow formulation can be obtained by disaggregat-
ing the flow on each arc according to its destination. In general, such types of formulations
lead to better bounds.

3.2.1 Multi-commodity discrete time reformulation

In this section we define the multi-commodity discrete time formulation with constant
consumption rates (MD-SSIRP). By adding new indices to the flow variables indicating
the destination of the flow, we construct the non-negative multi-commodity arc-load flow
variables vD

it juvkpe, representing the amount of product k that ship v transports from port i,
after an operation that started in period t, to port j for an operation starting in period u to be
delivered at port p in period e.

These variables are nonnegative

vD
it juvkpe ≥ 0, ∀v ∈V, i, j, p ∈ N, t,u,e ∈ T,k ∈ Kv : Jpk =−1, (77)

and can be related to the arc-load flow variables through the following equations,

f D
it juvk = ∑

p 6=i
∑
e≥u

vD
it juvkpe, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv. (78)

The tightening of FD-SSIRP can be obtained by replacing constraints (70) with

vD
it juvkpe ≤ min{Cvk,Qpk}xD

it juv, ∀v ∈V, i, j, p ∈ N, t,u,e ∈ T,k ∈ Kv : Jpk =−1. (79)

The MD-SSIRP can be obtained from the FD-SSIRP by replacing (70) with (77)-(79).
Of course the arc-load flow variables f D

it juvk can be eliminated from the model using (78).

3.2.2 Multi-commodity continuous time flow reformulation

Now we define a similar multi-commodity flow formulation for the continuous time
model, denoted by MC-SSIRP. We define vC

im jnvkpl as the amount of product k destined to
port visit (p, l), which is transported from port visit (i,m) to port visit ( j,n) using ship v.
These variables are nonnegative,

vC
im jnvkpl ≥ 0, ∀v ∈V,(i,m, j,n) ∈ SX

v ,(p, l) ∈ SA
v ,k ∈ Kv : Jpk =−1, (80)

and can be related to the arc-load flow variables by the following equations

f C
im jnvk = ∑

(p,l)∈SA
v :Jpk=−1

vC
im jnvkpl , ∀v ∈V,(i,m, j,n) ∈ SX

v ,k ∈ Kv. (81)

The tightening of the FC-SSIRP can be obtained by replacing constraints (75) by

vC
im jnvkpl ≤min{Cvk,Qpk}xC

im jnv,∀v∈V,(i,m, j,n)∈ SX
v ,(p, l)∈ SA

v ,k ∈Kv : Jpk =−1. (82)

The MC-SSIRP can be obtained from the FC-SSIRP by replacing (75) with (80)-(82).
Of course the arc-load flow variables f C

im jnvk can be eliminated from the model using (81).
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4 Tightening the Models

The formulations discussed in Sections 2 and 3 can be strengthened by including valid
inequalities and by tightening some constraints. The ideas employed in these improvements
are similar for both types of formulations. However, the discrete model embeds time specific
information in the network structure that makes the model more amenable for tightening and
preprocessing. We discuss only the case with constant consumption rates. The inequalities
used in this paper impose either a minimum number of visits to ports or a minimum number
of (un)loads. Similar valid inequalities have been used in related papers for constant rate case
and for the non constant consumption rates case; see for the last case [1,2,16,20,29]. When
consumptions are not constant during time, inequalities based on lot-sizing relaxations have
been used, see [1, 2, 16].

4.1 Valid Inequalities

Here we discuss valid inequalities for the models derived in the previous sections. These
inequalities allow us to reduce the integrality gap of the proposed models. Hence, although
the linear relaxations tend to become more time consuming to solve with the inclusion of
these cuts, the reduction of the integrality gap tends to reduce the number of nodes in a
branch and bound scheme. The gain in the reduced size of the branch and bound tree com-
pensates the time increase required to obtain the dual bound at each node.

Here we just discuss a type of valid inequalities that impose visits to ports. These visits
are forced by the inventory levels combined with the consumption rates. First we consider
the discrete time models BD-SSIRP, FD-SSIRP, and MD-SSIRP.

For each unloading (consumption) port i ∈ N and product k, Jik =−1, let

NDik = max{T ×Rik−SO
ik +Sik, 0}

denote the net consumption or demand over the time horizon. If 0<NDik <Qik, then the net
demand can be increased to the minimum load quantity: NDik = Qik. The minimum number
of visits at port i for unloading product k is given by

λ ik =

⌈
NDik

Qik

⌉
.

Hence, the following inequalities are valid

∑
v∈V

∑
j∈N

∑
u∈T

∑
t∈T

xD
juitv ≥ λ ik, ∀i ∈ N,k ∈ K : Jik =−1, (83)

∑
v∈V

∑
t∈T

oD
itvk ≥ λ ik, ∀i ∈ N,k ∈ K : Jik =−1. (84)

These inequalities can be generalized for each period t ∈ T, as follows. We split the time
horizon into two periods, one from 0 to the end of period t and the other from t to the end of
the time horizon. Let

ND0
itk = t×Rik−SO

ik +Sik,

be the net consumption until the end of period t and let

NDT
itk = (T − t +1)×Rik−Sik +Sik,
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be an underestimation of the net consumption from the end of period t until the end of the
time horizon. Define

ε
0
itk =

⌈
ND0

itk

Qik

⌉
,

and

ε
T
itk =

⌈
NDT

itk

Qik

⌉
,

as a lower bound on the number of visits to port i. Then the following inequalities are valid

∑
u∈T |u≤t

∑
j∈N

∑
e∈T

∑
v∈V

xD
jeiuv ≥ ε

0
itk, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1, (85)

∑
u∈T |u≤t

∑
v∈V

oD
iuvk ≥ ε

0
itk, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1, (86)

∑
u∈T |u>t

∑
j∈N

∑
e∈T

∑
v∈V

xD
jeiuv ≥ ε

T
itk, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1, (87)

∑
u∈T |u>t

∑
v∈V

oD
iuvk ≥ ε

T
itk, ∀i ∈ N, t ∈ T,k ∈ K : Jik =−1. (88)

In order to ensure that if ship v unloads product k at port i in period t, then there must
exist a route of ship v passing through port i at period t, the following inequalities can be
added:

oD
itvk ≤ ∑

j∈N
∑
u∈T

xD
juitv, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv : Jik =−1. (89)

Inequalities (89) coupled with constraints (84) imply (83). This is no longer true if we con-
sider in (83) the aggregated demand (consumption) of a subset of consumption ports instead
of the demand of port i only.

In the underlying real planning problem, the inventory bounds are usually not tight for
the loading ports. Hence, the minimum number of departures can be estimated using the
total demand supplied by those ports. In the real problem, each product has a single origin,
so the demand of that product must be satisfied either from that port or from the quantity in
the ship tanks at the beginning of the time horizon.

For each product k ∈ K and loading port i ∈ N (Jik = 1), let

NDik = ∑
j∈N|J jk=−1

(T ×R jk−SO
ik +Sik)−∑

v∈V
Qvk,

denote the demand (consumption) in excess of what is available on board the ships in the
beginning of the planning horizon. The minimum number of loadings of product k at port i
is given by

λ ik =

⌈
NDik

max{Cvk : v ∈V}

⌉
.

Hence, the following inequalities are valid

∑
v∈V

∑
j∈N

∑
u∈T

∑
t∈T

xD
juitv ≥ λ ik, ∀i ∈ N,k ∈ K : Jik = 1, (90)

∑
v∈V

∑
t∈T

oD
itvk ≥ λ ik, ∀i ∈ N,k ∈ K : Jik = 1. (91)
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As done for the consumption ports, we can derive inequalities for each period u for the load-
ing ports as well; see (85) - (89). We omit these inequalities here.

Observe that a lower bound on the total number of visits to port i ∈ N can be given by

µ
i
= max{λ ik : k ∈ K}. (92)

Hence, the following inequalities are valid:

∑
t∈T

yD
it ≥ µ

i
, ∀i ∈ N. (93)

Now we consider the continuous models BC-SSIRP, FC-SSIRP and MC-SSIRP. Here
we can only impose a minimum number of visits during the planning horizon since the order
of the visits does not provide information about the time for start of service at the visit.
Inequalities (83)-(84) for the consumption ports and (90)-(91) for the loading/production
ports can be written for the continuous case as follows:

∑
v∈V

∑
( j,n)∈SA

v

∑
m∈{1,...,µ i}

xC
jnimv ≥ λ ik, ∀i ∈ N,k ∈ K, (94)

∑
v∈V

∑
m∈{1,...,µ i}

oC
imvk ≥ λ ik, ∀i ∈ N,k ∈ K. (95)

In the continuous time case, the lower bound on the number of visits can be imposed by
the inequality

yC
iµ i

= 1, i ∈ N. (96)

4.2 Tightening constraints

Now we consider another approach to strengthen the models by tightening the linking
constraints. The linking constraints relate the continuous variables to the binary variables.
Improving these constraints can lead to reductions in the integrality gap and in running
times. We focus on formulations for the constant consumption rate case only.

First we consider the tightening of constraints (24) for the discrete model and (58) for
the continuous model, linking time variables with routing variables. The main idea is to
aggregate the routing variables for v since the time variables do not depend on the particular
ship v. Consider the time constraints (24) for the discrete model. These inequalities can be
replaced by the following ones

tED
it + ∑

v∈V
Ti jvxD

it juv− tD
ju ≤ T (1−∑

v∈V
xD

it juv), ∀i, j ∈ N, t,u ∈ T.

When time windows are established to time events

Ait ≤ tD
it ≤ Bit , ∀i ∈ N, t ∈ T,

AE
it ≤ tED

it ≤ BE
it , ∀i ∈ N, t ∈ T,

then, constraints (24) can be replaced by inequalities

tDE
it − tD

ju +(BE
it +Ti jv−A ju)xit juv ≤ BE

it −A ju, ∀v ∈V, i, j ∈ N, t,u ∈ T.
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These inequalities can be further strengthened as follows (see Proposition 1 in [4]):

tDE
it − tD

ju + ∑
v∈V

max{0,BE
it +Ti jv−A ju}xit juv ≤ BE

it −A ju,∀i, j ∈ N, t,u ∈ T. (97)

Constraints (25) establish time windows for tD
it . For tED

it we assume AE
it = t−1 and BE

it = t+1
since an operation takes at most one time period (day).

For the continuous models, constraints (58) can be strengthened in a similar way. We
omit the details here. The major difference is related to the computation of time windows
[Aim,Bim] for tC

im, and [AE
im,B

E
im] for tEC

im . First we set Aim = AE
im = 0 and Bim = BE

im = T. By
reducing the widths of these time windows we strengthen the resulting inequality. However,
since we are dealing with multiple ships, multiple products, and all supply ports also act as
demand ports of other products, it is hard to derive tight time windows. Additionally, some
preliminary results showed that small improvements in the widths of time windows do not
lead to any practical gain.

Next we consider another tightening which use information of the demands to tighten
the linking coefficients. For instance, consider inequalities (13) in model BD-SSIRP. The
unload quantity at period t can be additionally limited by the remaining consumption at that
port. That is,

qD
itvk ≤min{Cvk,Qik,A}oD

itvk, ∀v ∈V, i ∈ N, t ∈ T,k ∈ Kv : Jik =−1, (98)

where A = max{Rk
i (T − t +1),Qik}.

For the BC-SSIRP model, the corresponding variables, qC
itvk, do not provide information

of time of the visit. So we can only limit the demand/consumption for the total time horizon.
Similar reasoning can be applied to inequalities (11), (12), (18)-(21). For brevity we give

the tightening for the flow and multi-commodity formulations in more detail only.
Consider the arc-load flow models FD-SSIRP and FC-SSIRP. In FD-SSIRP, inequalities

(70) can be replaced by

f D
it juvk ≤min{Cvk,B1}xD

it juv, ∀v ∈V, i, j ∈ N, t,u ∈ T,k ∈ Kv, (99)

where B1 = ∑
j∈N|J jk=−1

max{R jk(T − u + 1),Q jk}. In FC-SSIRP, inequalities (75) can be

replaced by

f C
im jnvk ≤min{Cvk,B2}xC

im jnv, ∀v ∈V,(i,m, j,n) ∈ SX
v ,k ∈ Kv, (100)

where B2 = max{ ∑
j∈N|J jk=−1

R jkT ,Q jk}.

Now consider the multi-commodity flow models MD-SSIRP and MC-SSIRP. In MD-
SSIRP, inequalities (79) can be replaced by

vD
it juvkpe ≤ min{Cvk,Qpk,C1}xD

it juv, ∀v ∈V, i, j, p ∈ N, t,u,e ∈ T,k ∈ Kv : Jpk =−1, (101)

where C1 = max{Rpk(T −u+1),Qpk}. In MC-SSIRP, inequalities (82) can be replaced by

vC
im jnvkpl ≤ min{Cvk,Qpk,C2}xC

im jnv, ∀v ∈V,(i,m, j,n) ∈ SX
v ,(p, l) ∈ SA

v ,

k ∈ Kv : Jpk =−1, (102)
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where C2 = max{RpkT ,Qpk}.
We can see that B1 and C1 depend on the time period, while B2 and C2 do not. This is

one of the advantages of the discrete models.

5 Computational Experiments

In this section we conduct computational experiments to test and compare the discrete
time and the continuous time models. All computations were performed using the optimiza-
tion software Xpress Optimizer Version 20.00.05 with Xpress Mosel Version 3.0.0, on a
computer with an Intel Core 2 Duo processor, with CPU 2.2GHz, and with 4GB of RAM.

We use two sets of instances for the SSIRP with constant consumption rates. The first
set consists of 12 real instances from a company in Cape Verde including 2 ships, 4 products
and 7 ports. The other set consists of 12 instances from an artificial scenario where the
consumption rates of the real instances are doubled as well as the number of ships.

First we describe some characteristics of the instances. The typical planning horizon
is two weeks. Here we consider instances with T = 10 and T = 15. The demand for each
product during the planning horizon is, in average, 2.5 times the largest ship tank capacity.
The tank capacity at the main ports can cover the demand at that port for a week (without
regard the safety stocks). For the small islands typically one or two visits are required. The
total number of visits for the tested instances ranged between 12 and 15. The ships have in
average 6 tanks.

Computational experiments are conducted to compare the models according to their
size, running times and integrality gap without any additional tightening. Based on the in-
formation obtained, we select some of the models for further testing. The selected models
are used in a branch-and-cut scheme to solve the two sets of instances.

We also tested the influence of the minimum unload values Qik on solution quality and
tractability.

5.1 Comparison of the Size of the Models

Now we compare the size of the models without any tightening or addition of cuts.
Table 1 provides the information of the average number of variables and average number of
constraints of the three discrete time and continuous time formulations for a time horizon
of 10 and 15 periods (days). Additionally, column “Solved‘” gives the number of instances
solved to optimality using the default options of Xpress optimizer within a time limit of 3
hours.

For the discrete time models we ignore all variables xD
it juv with u > t + 3, and for the

continuous time model we established the upper bound of the number of visits to port i,
µ i = µ

i
+3.

We can see that each continuous time model is smaller than the corresponding discrete
time model. Table 1 also shows that multi-commodity models are too large and most of the
larger instances cannot be solved within the time limit of 3 hours.

Next we study the impact of eliminating some arc-load variables in both types of models.
For the discrete time models we eliminate all variables xD

it juv with u > t +α, and for the
continuous time models we established the upper bound of the number of visits to port i,
as µ i = µ

i
+α. If α is small we reduce substantially the set of feasible solutions and it is
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Table 1 Average size of the tested models.

Model T |V| Binary Var. Cont. Var. Total Var. Constraints Solved

D
is

cr
et

e
M

od
el

s

BD-SSIRP 10 2 3636 1185 4821 22854 10
FD-SSIRP 10 2 3636 7975 11611 13334 9
MD-SSIRP 10 2 3636 155955 159591 111668 7
BD-SSIRP 10 4 7392 2533 9925 74772 4
FD-SSIRP 10 4 7392 14209 21601 27928 10
MD-SSIRP 10 4 7392 311975 319367 227748 2
BD-SSIRP 15 2 5706 1775 7481 36044 5
FD-SSIRP 15 2 5706 12590 18296 20924 9
MD-SSIRP 15 2 5706 370570 376276 254543 2
BD-SSIRP 15 4 11592 3783 15375 159917 4
FD-SSIRP 15 4 11592 22004 33596 49933 7
MD-SSIRP 15 4 11592 741240 752832 525598 2

C
on

tin
uo

us
M

od
el

s

BC-SSIRP 10 2 2356 606 2962 15288 12
FC-SSIRP 10 2 2356 5376 7732 8668 12
MC-SSIRP 10 2 2356 36896 39252 46085 12
BC-SSIRP 10 4 3278 960 4238 22411 4
FC-SSIRP 10 4 3278 8000 11278 12511 12
MC-SSIRP 10 4 3278 41908 45186 55006 3
BC-SSIRP 15 2 2484 623 3107 16153 6
FC-SSIRP 15 2 2484 5678 8162 9133 11
MC-SSIRP 15 2 2484 39074 41558 48726 2
BC-SSIRP 15 4 3926 1065 4991 27214 4
FC-SSIRP 15 4 3926 9656 13582 15004 8
MC-SSIRP 15 4 3926 51004 54930 66596 2

possible that the instance becomes infeasible. On the other hand if α is large the size of the
model increases and the running times tend to be very high. In order to illustrate the effects
of α on the optimal solution, we tested the set of 12 real instances with 10 and 15 periods.
Each instance was solved for α from 1 to 3. The results are given in Table 2. The table gives
the number of instances that resulted in the true optimal value using models FD-SSIRP and
FC-SSIRP.

Table 2 Number of instances where the true optimal solution was obtained. All instances were solved to
optimality. We considered |V |= 2.

FD-SSIRP FC-SSIRP
α T =10 T =15 T =10 T =15
1 5 0 2 0
2 11 2 12 11
3 12 12 12 12

For α = 1 the optimal value is worse compared to the true optimal value in most in-
stances. This situation is opposite for α = 2. For α = 3 we obtain the true optimal value for
all the tested instances. A more detailed test (not reported here) revealed that in order to keep
the quality of the optimal solution while minimizing the number of variables, for continuous
time models, different values of α can be chosen for different ports. Small values of α can
be assumed for low activity ports while larger values should be assumed for high activity
ones. Additionally, Table 2 shows that when the length of the planning horizon is increased
the value of α should also increase to obtain the optimal solution.
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Figure 6 shows the average running times of the arc-load flow models FD-SSIRP and
FC-SSIRP (which proved to be the fastest models among all the tested models) when α

varies from 1 to 5. It is clear that the running time increases rapidly with the increase of α,
and the running times of the discrete time model increase faster than the running time of the
continuous time model.
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Fig. 6 Average solution times using the arc-load flow formulations (FC-SSIRP on left and FD-SSIRP on
right) on 12 real instances with T = 10, and |V |= 2, when increasing α.

5.2 Comparison of the Integrality Gaps

Next we present some computational results in order to compare the integrality gap
of the various formulations. The results of the set of real instances are reported in Ta-
ble 3. For each formulation we present the average integrality gap at the root node, gap =
Optimal value - Lower Bound

Optimal value × 100 for several possible settings. Column N means the
original formulation without tightening of constraints and without inclusion of cuts; Col-
umn T T means with tightening only; Column C means with inclusion of cuts; and Column
T T +C means with tightening and inclusion of cuts. When cuts are added we indicate the
average number of cuts added (Column Ncuts). Notice that the lower bounds obtained with-
out valid inequalities and tightening are very poor, especially for the arc-load formulations,
BD-SSIRP and BC-SSIRP. We can observe that strengthening the models with the addi-
tion of inequalities (83), (84), (90), (91) and with the tightening of constraints reduces the
integrality gaps considerably. Finally, we observe that the arc-load and the arc-load flow
formulations for N and C cases provide essentially the same bounds for both approaches
(discrete time and continuous time). With the inclusion of valid inequalities and tightening
of constraints the discrete time models provide slightly better gaps than the corresponding
continuous time models. This is explained by the fact that, in discrete time models we can
provide tighter constraints as explained in Section 4.2.

We conduct similar computational experiments for the set of artificial instances with 4
ships, 4 products and 7 ports, where the consumption rate is doubled. Here we report results
obtained with the models FD-SSIRP-C and FC-SSIRP only, since the running time was
limited to three hours and the multi-commodity formulations are very time consuming.
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Table 3 Average integrality gaps with and without tightening of constraints and inclusion of valid inequali-
ties. We considered |V |= 2.

N TT C TT+C
Model T = 10 T = 15 T = 10 T = 15 T = 10 Ncuts T = 15 Ncuts T = 10 Ncuts T = 15 Ncuts

BD-SSIRP 57.6 45.3 55.6 43.2 9.2 51 26.1 151.1 7.9 42.3 25.8 108.3
FD-SSIRP 48.9 31.4 47.5 31.1 6.5 60.9 16.1 151.1 3.1 39.1 13.3 94.5
MD-SSIRP 43.3 26 41.3 22.8 6.5 68.3 16.1 151.2 3.1 65.1 13.1 150

BC-SSIRP 57.6 45.3 57.6 45.3 9.2 12.5 26.8 15.3 7.9 12.5 25.8 14.9
FC-SSIRP 48.9 31.4 48.9 31.4 6.5 12.1 16.7 13.8 3.1 10.3 15.1 13.5
MC-SSIRP 43.3 26 41.3 23.6 6.5 15.2 17.4 13.7 3.1 10.3 14.8 13.5

The results for these two models, including tightening constraints and cuts, are presented
in Table 4. We give the average initial integrality gap (Gap-I), that is, the average of the
integrality gaps at the root node, the average gap provided by Xpress after the three hours
limit (Gap-E), and the average running time (Time). We can see that the average initial gap
is smaller using FD-SSIRP but the running times are smaller using the continuous model
FC-SSIRP.

Table 4 Average computational results for FD-SSIRP and FC-SSIRP with |V |= 4.

FD-SSIRP-C FC-SSIRP
Gap-I Gap-E Time (sec.) Gap-I Gap-E Time (sec.)

T = 10 12.9 0 907 13.9 0 476
T = 15 15.4 5.3 6172 17.8 2.4 5602

5.3 Impact of Minimum Delivery Quantities

Restrictions on the minimum delivery quantities of each product at each port are con-
sidered for the SSIRP with constant consumption rates. In fact, delivering small quantities
may result in too many port visits. In reality one wants to avoid too many visits to a port
due to issues like unpredictable weather conditions and port occupancy. Based on historical
data of real instances we conclude that the minimum allowed delivery quantities, Qik, are
around 40% of the maximum allowed unloading quantities, Qik. In order to analyze the real
impact of Qik, in the objective function value, integrality gap, running time, and the num-
ber of branch and bound nodes, we solve the 12 real instances for different values of Qik,

ranging from 0% to 90% of Qik, using the FC-SSIRP model. The results are presented in
Figures 7 and 8 and show that when Qik, varies from 0% to 60% the cost increases slowly,
but when it is greater than 60% the cost increases significantly. We also observe that time,
integrality gap and number of nodes, have small oscillation until 60%, increase significantly
between 60% and 80%, and decrease after 80%.

5.4 Comparison of the Running Times and Number of Branch and Bound Nodes

From Section 5.1 we see that the multi-commodity formulations are much larger in num-
ber of variables and constraints than the arc-load and arc-load flow formulations. However,
Section 5.2 shows that the reduction in the integrality gap by using the multi-commodity
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Fig. 7 Impact of minimum delivery quantities on the integrality gap (left) and number of branch and bound
nodes (right).

Fig. 8 Impact of minimum delivery quantities on the solution cost (left) and on the running time (right).

formulations is very small. These two observations lead to the conclusion that the multi-
commodity formulations can hardly be competitive compared to the other two formulations.
Preliminary results, not reported here, confirm this conclusion. Therefore, in this section we
report results for the BD-SSIRP (BC-SSIRP) and FD-SSIRP (FC-SSIRP) models.

A comparison of the running times and number of branch and bound nodes using the
BD-SSIRP (BC-SSIRP) and FD-SSIRP (FC-SSIRP) models, for each approach, is shown
in Table 5. The notation is the same as the one for Table 3. For T = 15, only results with
tightening and inclusion of cuts are presented because most of the instances were not solved
within 3 hours for the remaining cases. The tests were performed for the 12 real instances.
We observe that tightening constraints and including cuts is essential when solving the in-
stances. The best results where obtained with the improved (with tightened constraints and
cuts) FD-SSIRP and FC-SSIRP models. In fact, only this combination allowed us to solve
all the tested instances to optimality. We can see that in several cases the number of branch
and bound nodes was smaller using the discrete models. This can be justified by the fact
that the discrete time model has, on average, slightly better integrality gaps. However, the
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Table 5 Average running times and number of branch and bound nodes. The running time was set to 3 hours
when the instance was not solved within the 3 hours limit.

T = 10 T = 15

N TT C TT+C TT+C

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

BD-SSIRP 743 38391 1090 26993 590 26493 412 26942 6305 37236

FD-SSIRP 1614 32249 1347 16035 619 8537 86 916 3773 37213

BC-SSIRP 487 85695 360 85395 112 29453 84 14839 3091 36976

FC-SSIRP 245 26823 78 4320 84 8120 39 3544 2740 36926

continuous time model was clearly faster than the discrete one. If we recall that the size of
the continuous model is smaller than the size of the discrete one, and the difference on the
average integrality gaps is small, we may conclude that this is the expected behavior of the
two models, that is, the continuous model should outperform the discrete model, and this
difference tends to be larger when T increases.

6 Conclusions

We present a real short sea inventory routing problem for fuel oil distribution. We pro-
vide two types of formulations. A discrete time model for both time varying and constant
consumption, and a continuous time model for constant consumption rates. We discuss dif-
ferent extended formulations for both types of formulations, and valid inequalities that allow
us to derive tighter formulations.

All the models proposed were compared according to their size, integrality gap and
running time using a commercial software. From this comparison we conclude that: i) the
extended formulations based on arc-load flow variables with valid inequalities provide the
best compromise between integrality gaps and size of model; ii) the discrete time models
tend to provide better bounds. However, the running times using the discrete time models
are in general worse than the running times using the continuous time model.

From i) and ii) we conclude that, for the constant consumption rate case, the continuous
time arc-load flow model with valid inequalities is the best option among all the tested ones
to solve small real sized instances. With this formulation we solved instances with up to 15
days to optimality.
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Appendix A: glossary of problem and model acronyms

Problem acronyms:

SSIRP: Short Sea Inventory Routing Problem with constant consumption rates.
SSIRP-V: Short Sea Inventory Routing Problem with Varying consumption rates.

Model acronyms:

BD-SSIRP-V: Basic arc-load Discrete time model for the SSIRP-V.
BD-SSIRP: Basic arc-load Discrete time model for the SSIRP.
BC-SSIRP: Basic arc-load Continuous time model for the SSIRP.
FD-SSIRP: Arc-load Flow Discrete time model for the SSIRP.
FC-SSIRP: Arc-load Flow Continuous time model for the SSIRP.
MD-SSIRP: Multi-commodity arc-load Discrete time model for the SSIRP.
MC-SSIRP: Multi-commodity arc-load Continuous time model for the SSIRP.
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