
A decomposition approach for the p-median problem on disconnected

graphs ∗

Agostinho Agra1, Jorge Orestes Cerdeira2, and Cristina Requejo3

1Departamento de Matemática and Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA),

Universidade de Aveiro, 3810-193 Aveiro, Portugal.

aagra@ua.pt
2Departamento de Matemática and Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica - Portugal.

jo.cerdeira@fct.unl.pt
3Departamento de Matemática and Centro de Investigação e Desenvolvimento em Matemática e Aplicações, Universidade

de Aveiro, 3810-193 Aveiro, Portugal.

crequejo@ua.pt

Abstract

The p-median problem seeks for the location of p facilities on the vertices (customers) of a

graph to minimize the sum of transportation costs for satisfying the demands of the customers

from the facilities. In many real applications of the p-median problem the underlying graph is

disconnected. That is the case of p-median problem defined over split administrative regions

or regions geographically apart (e.g. archipelagos), and the case of problems coming from

industry such as the optimal diversity management problem. In such cases the problem

can be decomposed into smaller p-median problems which are solved in each component k

for different feasible values of pk, and the global solution is obtained by finding the best

combination of pk medians. This approach has the advantage that it permits to solve larger

instances since only the sizes of the connected components are important and not the size of the

whole graph. However, since the optimal number of facilities to select from each component

is not known, it is necessary to solve p-median problems for every feasible number of facilities

on each component. In this paper we give a decomposition algorithm that uses a procedure

to reduce the number of subproblems to solve. Computational tests on real instances of the

optimal diversity management problem and on simulated instances are reported showing that

the reduction of subproblems is significant, and that optimal solutions were found within

reasonable time.

Keywords: Location; optimal diversity management problem; decomposition.

1 Introduction

The p-median problem is a well-known NP-hard combinatorial optimization problem that

seeks for the location of p facilities on the vertices (customers) of a network to minimize the sum

of transportation costs for satisfying the demands of the customers from the facilities. See [9]

∗Published in Computers & Operations Research, Volume 86, Pages 79–85, 2017. doi: 10.1016/j.cor.2017.05.006

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/95445356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for a recent survey of main results and algorithms for the p-median problem, and [14, 15] for an

extensive annotated bibliography on the p-median and related problems.

In the p-median problem we are given a weighted graph G = (V,A,w), where the vertices of

V = {1, . . . , n} represent locations, and (i, j) is an arc of A if and only if a facility located in

i might serve location j. Each arc a = (i, j) of G has a cost wa. Let, for j ∈ V , yj be a 0-1

variable indicating whether vertex j is selected (yj = 1) or not (yj = 0) to install a facility. Let,

for (i, j) ∈ A, xij be a 0-1 variable indicating whether a facility in location represented by vertex

i will serve location j (xij = 1) or not (xij = 0).

With variables y and x the p-median problem [12] can be formulated as follows.

min
∑

(i,j)∈A

wijxij

subject to

(1.1)

∑
j∈V

yj = p (1.2)

∑
(i,j)∈A

xij + yj = 1, j ∈ V (1.3)

xij ≤ yi, (i, j) ∈ A (1.4)

yj ∈ {0, 1}, j ∈ V (1.5)

xij ∈ {0, 1}, (i, j) ∈ A (1.6)

Equation (1.2) guarantees that exactly p locations are selected. Equations (1.3) state that either

vertex j is selected and no arc will be incident to j, or else there will be exactly one arc incident

to j. Inequalities (1.4) express that if a vertex is not selected, its outdegree is equal to zero.

Finally (1.5) and (1.6) define the ranges of the variables. The problem considered here assumes

that the demand at each vertex cannot be served by more than one facility.

We address the p-median problem when graph G has several different connected compo-

nents. This case arises in the automotive industry, namely in the production of electric wiring

configurations for vehicles, where the problem is known as the optimal diversity management

problem [1, 2, 4, 5, 6]. This situation also occurs when location takes place over split adminis-

trative regions or regions geographically apart (e.g. archipelagos). Thus, the p-median problem

considered here can be seen as a generalization of the classical p-median problem to the case

of multiple components. In what follows, independently of the context of the problem, we call

facility to any element of a p-median set.

When graph G is disconnected, the p-median problem can be decomposed into q-median

problems, for different feasible values of q, in each component of G, and an optimal solution can

be found by optimally combining the solutions of the different components so that the number

of facilities sum up to p.

This procedure has the advantage of decomposing the p-median problem on graph G into

a number of subproblems of much lower sizes. The drawback is the large number of q-median

subproblems that, in principle, have to be solved (in each component of G, as many as p+1 minus

the number of components), which may turn the procedure impractical. However, most of these

subproblems may be neglected in the search for the optimal solutions, and only a small number of

2

selected (active) subproblems need to be solved. In this paper we propose an exact decomposition

algorithm that iterates between a procedure of elimination of subproblems, and solving a selected

active subproblem. For the subproblems elimination procedure, the algorithm uses and updates,

at each iteration, two matrices, one keeping the lower bounds (matrix L) and the other keeping

the upper bounds (matrix U) on the optimal values of every subproblem. Then, the bounds from

these matrices are combined in a efficient procedure to reduce active subproblems. The matrix L

is initialized with values from the dual of the linear relaxation. The matrix U is initialized with

the values obtained from a greedy and a relax-and-fix heuristics. Computational results show

that the number of problems need to be solved is very small, and the optimal solutions were

obtained in reasonable times.

The paper is organized as follows. In Section 2 we review the decomposition approach for

p-median problems on disconnected graphs. In Section 3 we give the procedures to derive lower

bounds and upper bounds on the optimal values of the subproblems.The algorithm to reduce the

number of subproblems is presented in Section 4. In Section 5 we introduce our decomposition

approach for the p-median problem that uses the procedures of Sections 3 and 4. Computational

tests to evaluate the performance of the algorithm on real and simulated instances are reported

in Section 6, and some concluding remarks are discussed in Section 7.

2 Decomposition procedure

Suppose graph G has m > 1 connected components and assume that in each component at

least one facility should be installed. We denote by K = {1, . . . ,m} the set of indices of the

connected components of G and by Gk = (Vk, Ak) the subgraph of G induced by component

k ∈ K.

We can adjust model (1.1)-(1.6) for disconnected graphs, introducing positive integer variables

pk that indicate the number of facilities in each component k, for all k ∈ K. We get the following

formulation.

min
∑

(i,j)∈A

wijxij (2.1)

subject to

(1.3)− (1.6)∑
k∈K

pk = p (2.2)∑
j∈Vk

yj = pk, k ∈ K (2.3)

pk ∈ {1, 2, . . . ,min{p−m+ 1, |Vk|}}, k ∈ K (2.4)

More precisely, we replace equation (1.2) by equations (2.2), (2.3) and (2.4) defining pk as the

number of facilities in each component k, and ensuring that the number of facilities in the m

connected components will be p.

If we knew the values of pk, say p∗k, of an optimal solution, then an optimal p-median solution

would result from the union of optimal p∗k-median solutions of each component k. Not knowing

3

p∗k, the p-median problem can still be solved considering one connected component at a time,

with the following two-phase strategy.

Phase One: solve the pk-median problem for each component k (we shall call this the (pk, k)-

subproblem) with pk varying from 1 to min{p−m+ 1, |Vk|};
Phase Two: identify, among all the pk-median solutions obtained for each component k, an

optimal combination of p facilities.

The first phase reduces to solve a q-median problem, for different values of q, in each compo-

nent and the problem arising in the second phase is the linking set problem (LSP) [3]. The LSP

was considered for the first time, at the best of our knowledge, by Avella et al. [4] and later by

Agra et al. [1], as a subproblem of the optimal diversity management problem.

The LSP is a special case of the following more general problem. Given a non-negative, r×m,

matrix C = [cqk] and a positive integer p ≥ m, select exactly one element in each column of C

such that the sum of the rows’ indices equals p and the sum of the selected elements is minimum.

If we consider binary variables zqk, for q ∈ {1, . . . , r} = Q and k ∈ {1, . . . ,m} = K, indicating

whether element (q, k) of matrix C is selected (zqk = 1) or not (zqk = 0), the problem can be

formulated as a linear integer program as follows.

min
∑
k∈K

∑
q∈Q

cqkzqk (2.5)

subject to∑
k∈K

∑
q∈Q

qzqk = p (2.6)

∑
q∈Q

zqk = 1, k ∈ K (2.7)

zqk ∈ {0, 1}, q ∈ Q, k ∈ K (2.8)

Equation (2.6) ensures that the sum of the rows’ indices equals p. Equations (2.7) ensure that

exactly one element from each column k ∈ K is selected, and (2.8) are the integrality constraints

on the variables. The objective function (2.5) seeks to minimize the sum of the selected elements

of matrix C.

In the LSP, r := p−m + 1; the entry cqk is the optimal value of the (q, k)-subproblem (i.e.,

q-median problem on graph Gk), for q = 1, . . . ,min{r, |Vk|} and, if r > |Vk|, cqk := +∞, for

q = |Vk|+ 1, . . . , r; and variables pk =
∑

q∈Q qzqk.

Problem (2.5)-(2.8) can be efficiently solved as a shortest path on an acyclic graph [8].

The main difficulty with this decomposition approach is the need for solving the min{p−m+

1, |Vk|} q-median problems on every component k of G, since the LSP can be solved very quickly.

In order to avoid solving all these NP-hard problems, we work with lower and upper bounds on

their optimal values, and use a domination rule to discard most of these problems. In the next

section we describe how these bounds are initially computed.

3 Computing initial lower and upper bounds

The decomposition algorithm that we will give for the p-median problem works on two r×m,

with r = p−m+1, matrices L = [lqk] and U = [uqk], where lqk and uqk are, respectively, lower and

4

upper bounds on the optimal value w∗qk of the (q, k)-subproblem, if q ≤ |Vk| and lqk = uqk = +∞,

otherwise.

The effectiveness of the decomposition algorithm strongly depends on the quality of the lower

and upper bounds lqk and uqk, that should be enough close to the respective optimal values w∗qk.

However, given the large number of subproblems to address (m × (m − p + 1)), to compute L

and U within acceptable time, expedite procedures should be used. Having this in mind, we

delineated the strategy that we describe below.

3.1 Initial lower bounds

To compute matrix L we propose an approach that explores the structure of the dual of the

linear relaxation of the p-median problem, and a certain behavior of the marginal improvements

of the objective function of p-median problem, as more facilities are added.

The dual of the linear relaxation of the p-median problem (1.1)-(1.6) is (see [7])

D(p) = max {p γ +
∑
j∈V

αj} (3.1)

subject to∑
j∈V

βij − αi − γ ≤ 0 i ∈ V (3.2)

βij − αj ≤ wij (i, j) ∈ A (3.3)

βij ≥ 0 (i, j) ∈ A (3.4)

where γ, αj and βij are the dual variables associated with constraints (1.2), (1.3) and (1.4),

respectively.

Let (γ∗, α∗, β∗) be an optimal solution of (3.1)-(3.4). Hence, D(p) = p γ∗ +
∑

j∈V α
∗
j is a lower

bound on the optimal value of the p-median solution. As p occurs only in the objective function

(3.1), it follows that (α∗, β∗, γ∗) is a feasible solution of problem D(p′) = max{p′ γ +
∑

j∈V αj}
subject to (3.2)-(3.4), for all values p′. Thus, for every number of facilities p′, D(p′) ≥ p′ γ∗ +∑

j∈V α
∗
j , and the inequality is tight for p′ = p. Letting p′ = p+ t, we then have

D(p+ t) ≥ D(p) + tγ∗p , for t = ±1,±2, . . . (3.5)

It is well known that the marginal improvement in the objective function of the p-median

problem (i.e. the difference between the optimal values for q facilities and q+1 facilities) vanishes

(although it does not necessarily decrease monotonically, see [9] pg 23), when adding facilities,

being much larger for small values of p than for high values of p.

The optimal dual D(p) shares the same behavior. We illustrate this behavior in Figure 1 using

instance R3072p (see Section 6). The values of D(p) (Y axis) for varying number of facilities

p (X axis) are displayed. It is apparent that the marginal improvements (D(p − 1) − D(p))

are large for small values of p, and become close to zero as p gets larger (e.g. D(1) − D(2) =

99.06, D(4)−D(5) = 8.82, D(39)−D(40) = 0.31).

5

Figure 1: The curve C obtained from values of D(p) (Y axis), for varying number of facilities p

(X axis), on instance R3072p (see section 6); and the two tangents L = D(p) + tγ∗p to the curve

C at the points (p,D(p)), with p = 5 and p = 40.

As a consequence of this feature we expect the right hand side of (3.5) to be a reasonable

approximation of the left hand side D(p + t), for small values of t when p is also small, and for

moderately large values of t when p is large. This can be observed in Figure 1 comparing the

relative position of curve C that passes through points (p,D(p)) and that of the straight line (the

right hand side of (3.5)) L = D(p) + tγ∗p , tangent to the curve C at the point (p,D(p)), with

p = 5 and p = 40.

Based on this observation, and to faster the construction of the initial matrix of lower bounds

L = [lqk], we develop the following procedure. For k ∈ {1, . . . ,m}, let F be the set of Fibonacci

numbers j ≤ min{p −m + 1, |Vk|}. If q ∈ F , we calculate the dual optimal value D(q) solving

(3.1)-(3.4) on graph Gk, set lqk := D(q) and keep the optimal dual variable γ∗q corresponding to

D(q). If min{p − m + 1, |Vk|} ≥ q 6∈ F , we identify i < q < j two consecutive numbers in F

and set lqk := max{D(i) + (q − i)γ∗i , D(j) − (j − q)γ∗j }. In this way the proportion of LP dual

problems (3.1)-(3.4) that are solved to optimality is larger when the number of facilities is small,

and the approximation given by the right hand side of (3.5) is more often used as the number of

facilities increase.

3.2 Initial upper bounds

To compute the matrix U = [uqk] of upper bounds on the optimal values w∗qk we first use

the greedy algorithm. For each component k ∈ K, the greedy algorithm starts by finding a

facility that solves the 1-median problem on Gk, and assigns to u1k the cost of that solution.

For q = 2, . . . ,min{m− p+ 1, |Vk|}, the algorithm adds to the solution obtained at the previous

iteration the facility that most reduces the cost, and assigns that cost to uqk. If |Vk| < m− p+ 1,

we let uqk := +∞, for q > |Vk|.
Let zU be the incidence vector of an optimal solution of the LSP (2.5)-(2.8), w.r.t. matrix

U , let u∗ =
∑

k∈K
∑

q∈Q uqkz
U
qk, and let also qUk be the index of the unique row q of column k

for which zUqk = 1, i.e., the p-median solution zU determined by the LSP has exactly qUk facilities

6

in component k. It is worth noting that the weight u∗ of solution zU obtained by the LSP from

greedy solutions in each component Gk of graph G is precisely the same of the solution that the

greedy algorithm would obtain if working over the entire graph G [3].

In [2] it is observed that the values qUk obtained with the greedy algorithm are close to the

ones from optimal solutions, i.e., the greedy solution gives a good estimate of the optimal number

of facilities to choose from each subgraph Gk. Based on this observation, matrix U is further

refined in a neighborhood of values qUk using a relax-and-fix heuristic as follows.

For every 1 ≤ q ≤ |Vk| such that |q − qUk | ≤ 3, we solve the linear relaxation of the (q, k)-

subproblem (i.e., problem (1.1)-(1.6) on graph Gk = (Vk, Ak), with constraints (1.5) and (1.6)

replaced by 0 ≤ yj ≤ 1, for j ∈ Vk and xij ≥ 0, for (i, j) ∈ Ak, and with p := q). Next, for

every vertex j ∈ Vk for which yj ≥ 0.9, we set yj := 1, and solve the resulting restricted (q, k)-

subproblem (with these variables yj fixed to 1). This gives us a feasible q-median solution on

subgraph Gk, and we redefine the entry uqk of matrix U to be its value. After having applied this

procedure to every component k = 1, . . . ,m, the construction of matrix U = [uqk] is completed.

During the construction of U , when the linear relaxation of a (q, k)-subproblem is solved, if

its value exceeds lqk (which only occurs if q is not a Fibonacci number), we update lqk assigning

that value to it.

Note that, if lqk = uqk, then this is also the optimal value for the (q, k)-subproblem. We

call set of active problems, that will be denoted by S, the set of all (q, k)-subproblems for which

lqk < uqk (6= +∞). In the following Section we give an algorithm to reduce the set S of active

subproblems.

4 Reducing the number of subproblems

Let zL and zU be the incidence vectors of the optimal solutions of the LSP (2.5)-(2.8), w.r.t.

matrix L and w.r.t. matrix U , respectively. Clearly,

l∗ =
∑
k∈K

∑
q∈Q

lqkz
L
qk ≤ w∗ ≤

∑
k∈K

∑
q∈Q

uqkz
U
qk = u∗

i.e., l∗ and u∗ are, respectively, lower and upper bounds on the optimal value w∗ of the p-median

problem on graph G.

Let also l̄∗qk be the optimal value of problem (2.5)-(2.8), w.r.t. matrix L and with the additional

constraint zqk = 1, that ensures that the element selected from matrix L on column k is the one

from row q. Note that l∗, u∗ and l̄∗qk can all be easily computed by a shortest path algorithm on

an acyclic graph [8].

If l∗qk > u∗, we obviously have on component k of every optimal p-median solution of G

a number of facilities that will be different from q. Hence, subproblem (q, k) can be discarded.

Based on this observation we propose the procedure below (algorithm RAS) to reduce the number

of active subproblems in S.

5 Decomposition algorithm working on matrices L and U

In this section we present a decomposition algorithm (algorithm DecL&U) that uses as sub-

routines the procedures of Section 3 to compute the initial matrices L and U , and procedure RAS.

7

Algorithm RAS (ReduceActiveSubproblems) : Given current matrices L and U ; set S of

active subproblems; and optimal value u∗ of the LSP w.r.t. matrix U , updates L, U and S.

for all k ∈ K do

for all q such that (q, k) ∈ S do

compute l̄∗qk
if l̄∗qk > u∗ then

lqk ← +∞
uqk ← +∞
S ← S \ {(q, k)}

end if

end for

end for

return L, U and S

The algorithm alternates between improving bounds and reducing active subproblems. For each

iteration, the algorithm solves some subproblem (q, k) ∈ S, updates L and U making lqk = uqk,

and examines the possibility to eliminate from S further active subproblems. The subproblem

(q, k) ∈ S to be solved corresponds to the element of matrix L included in the optimal solution

of the LSP (2.5)-(2.8) w.r.t. matrix L, for which the values in L and U are most apart, i.e., the

one for which Uqkz
L
qk − Lqkz

L
qk is maximum, where zL is an optimal LSP solution w.r.t. matrix

L. The algorithm stops when a solution is found whose value is at most 1 + δ times the optimal

value, where δ ≥ 0.

6 Computational experiments

Here we report computational experiments carried out to assess the performance of algorithm

DecL&U. In all runs we settled the optimality gap δ = 0.001.

All the computational tests were performed on a PC running on a processor Intel(R) Core(TM)

i7-4750HQ CPU @ 2.00 GHz with 8GB of RAM. Software Xpress 8.0 (with Xpress-Optimizer

29.01.10 and Xpress-Mosel 4.0.3) [10] was used to solve all LP and MIP.

We used real optimal diversity management (ODMP) data instances from a producer of wire

harness, consisting of graphs with number of vertices |V | equal to 3072; 10,848; 15,360; 22,080;

and 51,840, having number of components m equal to 8; 46; 14; 16; and 60, respectively (data are

available for download from http://sweet.ua.pt/aagra/ODMPinstances/) and, for each graph, we

tested number of facilities p equal to 50; 100; 150; and 200. (The case |V | = 51, 840,m = 60 and

p = 50, was obviously excluded.) We denote these instances by R|V |p.
Table 1 shows results obtained from running algorithm DecL&U on instances R|V |p. The

first column identifies the instance (which specifies the number of vertices and the number of

facilities to install). The second column indicates the number of components m of the graph. In

columns “TimeL” and “TimeU” we report the CPU time in seconds to obtain initial matrices L

and U , respectively, for each graph and for p = 200 (i.e., the largests (p−m+1)×m matrices for

each graph, as for instances where p < 200 the corresponding matrices are submatrices of these).

Column “|S|BC” gives the number (and percentage w.r.t. (p−m+ 1)×m) of active subproblems

8

Algorithm DecL&U (Decomposition using matrices L and U) : Given m connected

components Gk of a weighted graph G = (V,A,w); number p of facilities to install (at least one

in each component); and optimality gap δ ≥ 0, determines a δ-approximate (optimal if δ = 0)

p-median solution on G.

Compute matrices L and U as described in Section 3

S ← {(q, k) : lqk < uqk}
u∗ ← the optimal value of the LSP w.r.t. U

Update L, U and S using procedure RAS

zL ← an optimal LSP solution w.r.t. matrix L

l∗ ←
∑

k

∑
q Lqkz

L
qk

while u∗ > (1 + δ) l∗ do

Determine (q, k) such that (Uqkz
L
qk − Lqkz

L
qk) is maximum

Solve subproblem (q, k) (i.e. the q-median problem on graph Gk)

w∗qk ← the weight of the optimal solution

lkl ← w∗qk
ukl ← w∗qk
S ← S \ {(q, k)}
u∗ ← the optimal value of the LSP w.r.t. U

update L, U and S using procedure RAS

zL ← an optimal LSP solution w.r.t. matrix L

l∗ ←
∑

k

∑
q Lqkz

L
qk

end while

return u∗ (value of a feasible p-median solution at most (1 + δ) times the optimal value)

9

before the do while cycle of algorithm DecL&U is executed. The number of subproblems that

were solved to optimality is given in column “prob.solved”, and column “TimeDecL&U” indicates

the CPU time in seconds that DecL&U took to solve the p-median problem (not including the

computational time used to obtain matrices L and U).

Table 1: Results obtained by algorithm DecL&U on real ODMP instances R|V |p.

Instance R|V |p m TimeL TimeU |S|BC(%) probl.solved TimeDecL&U

R3072 50 8 4 (1.2) 1 81.5

R3072 100 8 31 (4.2) 9 408.2

R3072 150 8 39 (3.4) 8 556.8

R3072 200 8 212 6 57 (3.7) 20 1407.6

R10848 50 46 0 (0.0) 0 15.8

R10848 100 46 34 (1.3) 4 891.1

R10848 150 46 103 (2.1) 9 3547.6

R10848 200 46 838 9 230 (3.2) 24 16885.0

R15360 50 14 50 (9.7) 8 3037.0

R15360 100 14 96 (7.9) 26 5138.6

R15360 150 14 172 (9.0) 52 8865.5

R15360 200 14 4855 187 206 (7.9) 63 13947.3

R22080 50 16 19 (3.4) 5 28022.0

R22080 100 16 62 (4.6) 13 33920.6

R22080 150 16 124 (5.7) 25 47569.3

R22080 200 16 26788 355 188 (6.4) 47 55301.3

R51840 100 60 0 (0.0) 0 2847.3

R51840 150 60 0 (0.0) 0 6324.7

R51840 200 60 11232 382 0 (0.0) 0 8293.5

The results on Table 1 seem very encouraging on the usefulness of the decomposition algorithm

DecL&U to handle large problems. The number of active subproblems before the do while cycle

was always below 10%. In four instances the optimal values were obtained by RAS algorithm,

with no need to solve to optimality any problem, i.e., the lower and upper bounds derived in

Section 3 combined with the elimination procedure described in Section 4 were sufficient to

prove optimality. Not surprisingly, it can be found that the number of subproblems solved to

optimality, with the exception of instances R3072 100 and R3072 150, increases as p increases.

Among the 20 instances, only in 7 the number of subproblems solved was greater than the

number of components. In the worst case, instance R15360 200, it was necessary to solve 63

subproblems, which corresponds to 2.4% of the number of subproblems. Overall, the average

number of problems that were solved to optimality was less than 1% of the number of subproblems.

Regarding the running times, as expected, the time to compute the matrix of lower bounds L

largely exceeded the time to obtain the matrix U of upper bounds. Even applying the Fibonacci

procedure that significantly reduced the need to obtain the dual optimal values D(q) for each

of the 3.120 subproblems on instance R22080 200, it took about 7.5 hours to compute matrix

L. Also the time to obtain L for instance R51840 200, slightly exceeded 3 hours. Much more

time would be needed if that expedite procedure were not used. In those instances, especially

in instance R22080 200, some of the components have many vertices (one of the components in

R22080 200 has 6144 vertices). The times to compute U were much smaller (maximum about 6.4

minutes). Total times (not including the time for computing matrices L and U) vary from 15.8

10

seconds (R10848 46), where no subproblem was solved, to 15.4 hours (R22080 200). Instances

R22080 50, . . . ,R22080 200 were the most time consuming, and this is due to the large number of

vertices in some of the 16 components of the graph. Nevertheless, the decomposition algorithm

was capable to produce presumably optimal p-median solutions (optimality gap δ = 0.001) for

each of these large real instances. (For some of these instances the optimal solutions were not

known before.)

We also tested the decomposition algorithm DecL&U on simulated data generated as follows.

We considered graphs with |V | = 1000 vertices and number of components m equal to 5 and

10 (0.005|V | and 0.01|V |, respectively). For each m, the number of vertices in each of the m

components was determined uniformly selecting a partition rk, k = 1, . . . ,m, of |V | = 1000 into

exactly m parts. We generated each component Gk of graph G uniformly selecting in a square rk

points for vertices of Gk, and assigning the cost of each arc connecting vertice i to j the Euclidean

distance between points i and j. We used function rand partitions from package ‘rpartitions’ [11]

of R Statistical Software [13] to generate 5 uniform partitions for each m, thus producing

a total of 10 different graphs. For each graph with m = 5 components we settled the number

of medians p to be equal to 10, 20 and 50 (0.01|V |, 0.02|V | and 0.05|V |), and for each graph

with m = 10 components we considered p equal to 20 and 50. We represent these instances by

S1000m,p,l, with l = 1, . . . , 5, corresponding to each of the 5 partitions of m.

The main results of running algorithm DecL&U on Euclidean simulated instances S1000m,p,l

are given in Table 2 which reads as Table 1. These instances are much easier to solve than the

ODMP instances. The number of subproblems solved was either zero (the elimination procedure

solved the problem) or one. With respect to running times, the construction of the matrix of

lower bounds L was also very time consuming. Specially for instances S10005,p,2 and S10005,p,3

it took quite some time to compute matrix L (more than one hour on instance S10005,p,3). This

is justified by the large number of vertices in one of the components of the graph of each of these

instances. Instance S10005,p,2 has a component with 734 vertices, and one of the components of

instance S10005,p,3 includes 779 vertices. For the remaining instances, the times for calculating L

were less than 7 minutes. The largest component of the graphs of all these instances includes 425

vertices. Conversely, the times to compute U were negligible (at most 1.4 seconds). The time of

the do while cycle depends on whether there is one subproblem to solve or not, was in all cases

less than 3 minutes.

11

Table 2: Results obtained by algorithm DecL&U on simulated Euclidean instances S|V |m,p,l.

Instance S|V |m,p,l TimeL TimeU |S|BC(%) probl.solved TimeDecL&U

S1000 5, 10, 1 334.7 0.2 0 (0.0) 0 1.2

S1000 5, 10, 2 1976.3 0.3 1 (3.3) 1 109.3

S1000 5, 10, 3 2507.7 0.4 0 (0.0) 0 1.1

S1000 5, 10, 4 344.8 0.2 0 (0.0) 0 1.1

S1000 5, 10, 5 225.3 0.1 0 (0.0) 0 1.2

S1000 5, 20, 1 369.9 0.5 0 (0.0) 0 3.2

S1000 5, 20, 2 2270.8 0.9 0 (0.0) 0 3.2

S1000 5, 20, 3 5219.9 1.0 0 (0.0) 0 3.2

S1000 5, 20, 4 378.9 0.5 0 (0.0) 0 3.3

S1000 5, 20, 5 250.7 0.4 0 (0.0) 0 3.2

S1000 5, 50, 1 382.6 1.3 0 (0.0) 0 9.4

S1000 5, 50, 2 2353.1 2.6 1 (0.4) 1 78.2

S1000 5, 50, 3 2948.6 2.8 1 (0.4) 1 98.3

S1000 5, 50, 4 396.9 1.4 1 (0.4) 1 28.1

S1000 5, 50, 5 263.3 1.1 0 (0.0) 0 9.5

S1000 10, 20, 1 35.0 0.1 1 (0.9) 1 9.3

S1000 10, 20, 2 198.7 0.2 0 (0.0) 0 4.4

S1000 10, 20, 3 44.7 0.1 0 (0.0) 0 4.3

S1000 10, 20, 4 303.4 0.2 0 (0.0) 0 4.5

S1000 10, 20, 5 138.5 0.2 0 (0.0) 0 4.5

S1000 10, 50, 1 39.0 0.4 1 (0.2) 1 34.0

S1000 10, 50, 2 218.0 0.8 0 (0.0) 0 17.2

S1000 10, 50, 3 48.8 0.5 1 (0.2) 1 32.7

S1000 10, 50, 4 324.5 0.9 1 (0.2) 1 29.4

S1000 10, 50, 5 148.6 0.7 1 (0.2) 1 37.2

The very good results obtained with the subproblem elimination algorithm RAS before enter-

ing the do while cycle of algorithm DecU&U, have a theoretical explanation. When the decrease

of marginal costs is monotone (i.e., the impact on the reduction of the cost decreases as the num-

ber of facilities increases), which is a common behaviour of the objective function of p-median

problems, the following property holds: if a subproblem (q, k) can be eliminated based on the

elimination rule ¯̀∗
qk > u∗ where u∗ was obtained with s facilities in component k, than all the

subproblems (q′, k) with q′ ≤ q if q < s, or all the subproblems (q′, k) with q′ > q if q > s, can

also be eliminated. This result is formally stated and proved in the Appendix.

This was exactly what we have observed in the computational tests. After applying algorithm

RAS, the resulting set of active subproblems (q, k), for each component k, is formed only with

consecutive values of q within an interval containing the number of facilities in component k of

the p-median optimal solutions.

From the practical point of view, this result provides insight on which are the subproblems

whose bounds should be improved first. The result indicates that the (q, k)-subproblems that are

not eliminated by algorithm RAS are those where q is in the neighborhood of the optimal p∗k. As

a consequence, one should not spend much computational effort in improving bounds and solving

(q, k)-subproblems such that q is far from p∗k. As p∗k is not known in advance, we need to estimate

it. Initially, this value is estimated by the number of facilities indicated by the greedy solution,

and then by the optimal solution to a LSP in subsequent steps. This is the reason for which we

opted to initially improve the bounds on a neighborhood (±3) of the number of facilities defined

12

by the greedy solution, and for solving a subproblem belonging to an optimal solution of the LSP

in each iteration of the decomposition algorithm.

Notice that the “curve of the optimal values” as a function of p is “convex”, in most parts

of the domain, as depicted in Figure 1. Thus, even if the monotonicity condition of marginal

improvements does not hold for some values of p, it is still reasonable to expect that subproblems

(q, k) where q is far from p∗k will be promptly eliminated.

7 Conclusion

We propose a decomposition approach to solve the p-median problem on disconnected graphs.

The approach decomposes the p-median problem on graph G into a number of subproblems of

much lower sizes. As the number of subproblems can be large and solving all of them may be

impractical for many instances, the approach starts to compute a lower bound and an upper

bound to approximate the optimal value of each subproblem in order to eliminate subproblems

from further search. Then for each iteration the approach solves a selected subproblem, updates

the bounds, and eliminates subproblems.

We report results on real ODMP instances and on simulated Euclidean instances that show

that using efficiently the elimination procedure more than 90% of the subproblems can be elimi-

nated by using the initial bounds. Moreover, in general, only few subproblems need to be solved

to optimality in order to obtain the optimal solution of the original p-median problem.

To finish we would like to point out that the decomposition algorithm can also be used to

generate feasible solutions for general large size p-median problems, not necessarily defined over

disconnected graphs. It suffices to add a step where the original set of locations is partitioned

by some appropriate clustering algorithm into m subsets, and ignoring the edges linking nodes

in different clusters. Then the proposed decomposition approach can be applied to the resulting

disconnected graph. This process can be repeated for different partitions. We plan to explore

this in future work.

Appendix

Theorem 7.1. Let u∗ be the value of a feasible solution to problem (2.1)-(2.4) with zsk = 1 (s

facilities are installed in component k); p∗k be the number of facilities in component k ∈ K, of

an optimal p-median solution of graph G, and let lS(q) be the lower bound on the optimal value

w∗S(q) of the q-subproblem defined for the subgraph of G containing the components in S ⊆ K.

(For S = {k}, we use the notation introduced in Section 3 where lqk denotes the lower bound on

the optimal value w∗qk of the (q, k)-subproblem). If

l̄∗ik > u∗, (7.1)

and the following monotonicity condition on the decrease on the cost function holds

w∗S(q − 1)− w∗S(q) ≥ w∗S(q)− w∗S(q + 1), for S ⊆ K,
and q = |S|+ 1, . . . ,min{p−m+ |S|,

∑
k∈S |Vk|} − 1,

(7.2)

then the following statements are true.

13

(a) If i > s, then in every optimal solution p∗k < i.

(b) If i < s, then in every optimal solution p∗k > i.

Proof. We only prove (a) since the proof of (b) is similar. We show that if (7.1) and (7.2) hold

then l∗i+1,k > u∗. By induction it will follow that l̄∗i+t,k > u∗, for all possible t > 1.

From (7.2), with S = {k} and q = s+ 1, . . . , i, we can derive the following inequality.

w∗ik − w∗i+1,k ≤
w∗sk − w∗ik
i− s

. (7.3)

Similarly, with S = K \ {k} and q = p− i, . . . , p− s− 1, we get from (7.2)

w∗K\{k}(p− i− 1)− w∗K\{k}(p− i) ≥
w∗K\{k}(p− i)− w

∗
K\{k}(p− s)

i− s
. (7.4)

Using (7.1), we have lik + lK\{k}(p− i) = l̄∗ik > u∗ ≥ w∗sk +w∗p−s,K\{k}. Hence it follows it follows

that

w∗sk − lik < lK\{k}(p− i)− w∗K\{k}(p− s)⇒ w∗sk − w∗ik < w∗K\{k}(p− i)− w
∗
K\{k}(p− s).

Since i− s > 0, this implies

w∗sk − w∗ik
i− s

<
w∗K\{k}(p− i)− w

∗
K\{k}(p− s)

i− s
. (7.5)

Combining the inequalities (7.3), (7.4), (7.5), we have

w∗ik − w∗i+1,k < w∗K\{k}(p− i− 1)− w∗K\{k}(p− i),

and finally

w∗i+1,k + w∗K\{k}(p− i− 1) > w∗ik + w∗K\{k}(p− i) ≥ lik + lK\{k}(p− i) = l̄∗ik > u∗.

Acknowledgements

This research was partially supported by the Fundação para a Ciência e a Tecnologia (Por-

tuguese Foundation for Science and Technology) through projects UID/MAT/04106/2013 (A.

Agra and C. Requejo) and UID/MAT/00297/2013 (J.O. Cerdeira).

References

[1] A. Agra, D. Cardoso, J. Cerdeira, M. Miranda, and E. Rocha. Solving huge size instances of

the optimal diversity management problem. Journal of Mathematical Sciences, 161:956–960,

2009.

[2] A. Agra, J. Cerdeira, and C. Requejo. Using decomposition to improve greedy solutions

of the optimal diversity management problem. International Transactions in Operational

Research, 20(5):617–625, 2013.

14

[3] A. Agra and C. Requejo. The linking set problem: a polynomial special case of the multiple-

choice knapsack problem. Journal of Mathematical Sciences, 161:919–929, 2009.

[4] P. Avella, M. Boccia, C. D. Martino, G. Oliviero, A. Sforza, and I. Vasil’ev. A decomposition

approach for a very large scale optimal diversity management problem. 4OR, 3:23–37, 2005.

[5] O. Briant. Étude théorique et numérique du problème de la gestion de la diversité. PhD

thesis, Institute Nacional Polytechnique de Grenoble, Grenoble, France, 2000.

[6] O. Briant and D. Naddef. The optimal diversity management problem. Operations Research,

52(4):515–526, 2004.

[7] M. Captivo. Fast primal and dual heuristics for the p-median location problem. European

Journal of Operational Research, 52:65–74, 1991.

[8] D. Cardoso and J. Cerdeira. The minimum weight t-composition of an integer. Journal of

Mathematical Sciences, 182:210–215, 2012.

[9] M. Daskin and K. Maass. The p-median problem. In G. Laporte, S. Nickel, and F. S.

da Gama, editors, Location Science, pages 21–45. Springer International Publishing, 2015.

[10] FICO. Xpress Optimization Suite, July 2015.

[11] K. Locey and D. McGlinn. rpartitions: code for integer partitioning. Weecology, Logan, UT,

R package version 0.1, 2012.

[12] P. Mirchandani and R. Francis, editors. Discrete Location Theory. John Wiley & Sons, 1990.

[13] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2016.

[14] J. Reese. Solution methods for the p-median problem: an annotated bibliography. Networks,

48:125–142, 2006.

[15] C. ReVelle, H. Eiselt, and M. Daskin. A bibliography for some fundamental problem cate-

gories in discrete location science. European Journal of Operational Research, 184:817–848,

2008.

15

	Introduction
	Decomposition procedure
	Computing initial lower and upper bounds
	Initial lower bounds
	Initial upper bounds

	Reducing the number of subproblems
	Decomposition algorithm working on matrices L and U
	Computational experiments
	Conclusion

