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Abstract. In this paper we are interested in finding solutions to Riemann–
Hilbert boundary value problems, for short Riemann–Hilbert
problems, with variable coefficients in the case of axially monogenic
functions defined over the upper half unit ball centred at the origin in
four-dimensional Euclidean space. Our main idea is to transfer Riemann–
Hilbert problems for axially monogenic functions defined over the up-
per half unit ball centred at the origin of four-dimensional Euclidean
spaces into Riemann–Hilbert problems for analytic functions defined
over the upper half unit disk of the complex plane. Furthermore, we
extend our results to axially symmetric null-solutions of perturbed gen-
eralized Cauchy–Riemann equations.
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1. Introduction

Bernhard Riemann was the first to consider a version of the problem which is
nowadays generally called a Riemann–Hilbert problem. But his statement of
the problem and its solution were very geometrically. David Hilbert rewrote
the problem using a singular integral operator, i.e. the singular Cauchy inte-
gral operator or Hilbert transform. Later on, the theory of Riemann–Hilbert
problems has been well developed by many authors, see, e.g. [4,17,22,30,34].
Recently, this theory has also been applied to the investigation of other
boundary value problems, including Dirichlet, Neumann, Schwarz, Robin,
and Riemann–Hilbert–Poincaré BVPs for analytic functions, which are ei-
ther special cases of Riemann–Hilbert boundary value problems or closely
linked to them. Apart from the theoretical significance of Riemann–Hilbert
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boundary value problems, their study is closely connected with the theory
of singular integral equations [17,30] and has a wide range of applications in
other fields, such as in the theory of cracks and elasticity [22,30], in quantum
mechanics and of statistical physics [9] as well as in the theory of linear and
nonlinear partial differential equations [14], in the theory of orthogonal poly-
nomials and asymptotic analysis [12], and in the theory of time-frequency
analysis [1]. In addition, their methods and related problems have been ex-
tended to null-solutions to complex partial differential equations (PDEs) on
the complex plane like poly-analytic functions, meta-analytic functions, and
poly-harmonic functions, see, e.g. [5]. Moreover, also recently, the boundary
value theory of null-solutions to complex PDEs has been explored on special
domains of the complex plane, like the unit disk, upper half plane, half disks,
circular rings, triangles, and sectors, and so on, see, e.g. [5,6,36].

In parallel, there have been many attempts of generalizing the classi-
cal boundary value theory of Riemann–Hilbert problems into higher dimen-
sions, mainly by considering two principal ways, i.e., the theory of several
complex variables and Clifford analysis, in particular quaternionic analysis.
The latter is an elegant generalization of the classical theory of complex
analysis. It concentrates on the study of the theory of so-called monogenic
functions, and refines real harmonic analysis in the sense that its princi-
pal operator, the Dirac or generalized Cauchy–Riemann operator, factorizes
the higher-dimensional Laplace operator, see, e.g. [7,13,18]. In the setting
of quaternionic and Clifford analysis, Riemann–Hilbert problems were dis-
cussed by many authors, see, e.g. [2,8,16,18–21,23–29,32,33,35]. In Refs.
[2,8,16,19,26,27,29,32,33,35], the authors studied Riemann–Hilbert prob-
lems with constant coefficients. Their solutions were given explicitly in terms
of Cauchy-type integral operators together with power series expansions.
Moreover, these problems are closely connected with applications, like the
theory of fluid mechanics [18] and signal processing in higher dimensions
[16,32]. To the authors’ knowledge in Refs. [20,21] the authors made the first
attempt in the direction of solving Riemann–Hilbert problems with variable
coefficients for axially monogenic functions (see Sect. 2) defined on four di-
mensional domains, whose projection onto the corresponding complex plane
is contained in the upper half plane. The basic method is to apply Fueter’s
theorem, see e.g. [10,11,15,31] for the four dimensional case, and to transfer
the Riemann–Hilbert problem to an equivalent Riemann–Hilbert problem for
analytic functions over the complex plane. However, so far, there are no re-
sults about Riemann–Hilbert problems with variable coefficients for axially
monogenic functions defined over special domains in four dimensions, like the
upper half unit ball, upper half space, and the quadrant. Thus, it is natural
to look into these cases. This is not just a theoretical question for Riemann–
Hilbert problems because such problems are intimately related to problems
in mechanics and mathematical physics, in particular problems like fluid and
hydrodynamic mechanics [18]. Moreover, solving such problems will provide
a possible tool to study linear and of nonlinear partial differential equations
in higher dimensions [14] as well as orthogonal polynomials and their as-
ymptotic analysis [12,13]. Motivated by these considerations, the aim of this
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paper is to study Riemann–Hilbert problems on the upper half ball centred at
the origin of R4. Our idea is to transfer them to Riemann–Hilbert problems
for holomorphic functions in complex plane by applying Fueter’s theorem in
four dimensions, and to derive explicit integral expressions for the solution
to the Riemann–Hilbert problem under investigation. Besides the focus on
different domains the difference from [20,21] lies in the fact that in this pa-
per the Riemann–Hilbert problems are studied for continuous boundary data
instead of Hölder continuous boundary data like in [20,21], which leads us to
the construction of different kernel functions in the involved integral repre-
sentation formulae. Afterwards, these integral formulae will be used to prove
our results. We are confident that our results will help to further develop the
theory of Riemann–Hilbert problems for monogenic functions with variable
coefficients in four dimensions.

The paper is organized as follows. In Sect. 2, we will recall the necessary
facts about quaternionic analysis. In Sect. 3, we will provide a detailed exposi-
tion of Riemann–Hilbert problems for axially monogenic functions with vari-
able coefficients defined the upper half unit ball centred at the origin of R4,
and link them to Riemann–Hilbert problems for analytic functions over the
upper half disk in the complex plane. Then, we will derive solutions to them
with continuous boundary data in terms of a integral formulae by solving the
equivalent Riemann–Hilbert problems for analytic functions over the upper
half disk in the complex plane. In final section, we extend the results obtained
in Sect. 3 to null-solutions to the Riemann–Hilbert problems for (D − α)φ =
0, α ∈ R with axial symmetry, where R denotes the field of real numbers.

2. Preliminaries

For the convenience of the reader we review some of the standard facts about
Quaternions and quaternionic analysis [7,13,18,28].

Let {e0, e1, e2, e3} be the standard basis of H. They satisfy the relation-
ships as follows:

eiej + ejei = −2δi,j , i, j = 1, 2, 3, e1e2 = e3, e2e3 = e1, e3e1 = e2,

where δ denotes the Kronecker delta, and e0 = 1 denotes the identity element
of the algebra of quaternions H. Thus, H is a real linear, associative, but non-
commutative algebra.

An arbitrary quaternion x ∈ H can be written as x = x0 +x1e1 +x2e2 +
x3e3 � x0 + x, xj ∈ R, where Sc(x) � x0 and Vec(x) � x are the scalar and
vector part of x ∈ H, respectively. Elements x ∈ R

4 can be identified with
quaternions x ∈ H. The conjugation is defined by x =

∑3
j=0 xjej , with e0 =

e0 and ej = −ej , j = 1, 2, 3, and hence, xy = ȳx̄. The algebra of H possesses
an inner product (x, y) = Sc(xy) = (xy)0 for all x, y ∈ H.

The corresponding norm is |x| = (
∑3

j=0 |xj |2)
1
2 =

√(
x, x

)
. Any element

x ∈ R
4\{0} is invertible with inverse element x−1 � x|x|−2, i.e., xx−1 =

x−1x = 1. Furthermore, we can introduce the set
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[x] = {y : y = Sc(x) + I|x|, I ∈ S2},

where S2 = {x ⊂ R
3 : |x| = 1}.

In this paper we will consider the generalised Cauchy–Riemann operator
D =

∑3
j=0 ej∂xj

in R
4. The generalised Cauchy–Riemann operator factorizes

the Laplacian in the sense DD =
∑3

j=0 ∂2
xj

= Δ, where Δ denotes the Lapla-
cian in R

4.
Without loss of generality, in the remainder of this paper we will restrict

our attention to the upper unit ball B+ = {x ∈ R
4|(|x| < 1)∧ (x3 > 0)} with

its boundary ∂B+ = {x ∈ R
4|[(|x| = 1) ∧ (x3 > 0)] ∨ [(|x| < 1) ∧ (x3 = 0)]}.

The study of the case of other balls centred at the origin of R
4 is simi-

lar. Following Definition 2.1 in [20,21,31], we say that a nonempty open
set Ω ⊂ R

4 is axially symmetric if for arbitrary x ∈ Ω, the subset of [x]
is contained in Ω ⊂ R

4. It is obvious that B+ is an axially symmetric do-
main. An H-valued function φ =

∑3
j=0 φjej is continuous, Hölder contin-

uous, p-integrable, continuously differentiable and so on if all components
φj : B+ ∪ ∂B+ → R, j = 0, 1, 2, 3, have that property. The correspond-
ing function spaces, considered as either right-Banach or right-Hilbert mod-
ules, are denoted by C(Ω,H), Hμ(Ω,H)(0 < μ ≤ 1), Lp(Ω,H)(1 < p < +∞),
C1(Ω,H), respectively.

Referring to Fueter’s theorem (see, [10,11,15,20,21,31]) a function of
axial type is given by

φ(x) = A(x0, r) + ωB(x0, r), (1)

where x = x0 + x = x0 + rω ∈ R
4, r = |x|, ω = x

|x| , A(x0, r) and B(x0, r) are
real-valued functions. It should be mentioned that in [15,25,31] a function of
axial type is also called a function with axial symmetry.

In what follows, any functions defined on B+ ∪ ∂B+ taking values in H

are supposed to be of axial type unless otherwise stated.

Definition 2.1. A function φ ∈ C1(B+,H) is called (left-) monogenic if and
only if Dφ = 0. A monogenic function of axial type is called axially mono-
genic. It is obvious that the set of all axially monogenic functions defined in
B+ forms a right-module, denoted by M(B+,H).

Definition 2.2. For a function of axial type φ : B+ → H, we define the real
part as Re φ = A.

Remark 2.3. From [7,13,20,21], a special type of Vekua system on the unit
ball B+ is derived from the equation Dφ = 0 for functions of axial type
belonging to C1(B+,H). That is, associated with Term (1), Dφ = 0 leads to

(∗)
{

∂x0A − ∂rB = 2
r B,

∂x0B + ∂rA = 0,

where ∂x0 , ∂r denote ∂
∂x0

, ∂
∂r

respectively, and Term (∗) is a special type of
Vekua system with respect to A,B.

In what follows we denote by D+ =
{
z = x0 + ir

∣
∣|z| < 1, r > 0

} ⊂ C+

the projection of B+ into the (x0, r)-plane, where C+ is the upper half of the
(x0, r)-plane. This projection corresponds to consider ω fixed and replacing
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it with the imaginary unit since ω2 = 1. Moreover, since B+ is of axial type
the projection does not depend on the actual choice of ω.

3. Riemann–Hilbert Problems for Axially Monogenic
Functions

In this section we will proceed with the study of the Riemann–Hilbert prob-
lems with variable coefficients for axially monogenic functions on upper half
unit ball of R4. Our Riemann–Hilbert problem is solved by taking account
into an equivalent Riemann–Hilbert problem on upper half disc for complex
analytic functions. When the boundary value belongs to a C (B+,H) space,
we will get its solution in terms of explicit integral representation formulae.
As a corollary we get the solution to the corresponding Schwarz problem.

Problem I. Find a function φ ∈ C1
(
B+,H

)
of axial type, which satisfies the

condition
{Dφ(x) = 0, x ∈ B+,

Re{λ(t)φ(t)} = g(t), t ∈ ∂B+,
(2)

where g : ∂B+ → R and λ is a R-valued function defined on ∂B+.

Let us start with the following lemma, which links Riemann–Hilbert
problems for axially monogenic functions on upper half unit ball of R4 with
Riemann–Hilbert problems for analytic functions over upper half disc of the
complex plane. More details about the construction principle can be found
in [10,11,15,20,21,31].

Lemma 3.1. The Riemann–Hilbert problem (2) is equivalent to the following
problem: Find a complex-valued analytic function h, satisfying one of the
following conditions:

(i) When λ ∈ C(∂B+,R), and λ �= 0 for arbitrary x ∈ ∂B+,
{

∂z̄h(z) = 0, z ∈ D+,

Re{h(z)} = r
2

g(z)
λ(z) , z ∈ ∂D+,

(3)

where z = x0 + ir, ∂z̄ = 1
2 (∂x0 + i∂r), h = ∂rf, f and r given as in

Lemma 3.1, λ, g : ∂D+ → R are both scalar-valued functions, and D+ =
{z = x0 + ir

∣
∣|z| < 1, r > 0} with boundary ∂D+.

(ii) When λ = Πλ̂ with Π(x) = Πm
i=1(x − α̂i)

νi , α̂i ∈ ∂B+, νi ∈ N, and
λ̂ �= 0 for arbitrary x ∈ ∂B+,

{
∂z̄ĥ(z) = 0, z ∈ D+,

Re{ĥ(z)} = r
2

g(z)

λ̂(z)
, z ∈ ∂D+,

(4)

where z = x0 + ir, ∂z̄ = 1
2 (∂x0 + i∂r), ĥ = Π∂rf, f and r given as in

Lemma 3.1, λ, g : ∂D+ → R are both scalar-valued functions, and D+ =
{z = x0 + ir

∣
∣|z| < 1, r > 0} with boundary ∂D+.
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Proof. By either Theorem 3.1 in [20] or directly applying Fueter’s theorem
we know that the Riemann–Hilbert problem (2) is equivalent to the problem

{
∂z̄h(z) = 0, z ∈ D+,
Re{λ(z)h(z)} = r

2g(z), z ∈ ∂D+.
(5)

Hereby, the uniqueness is imposed by the boundary condition and the maxi-
mum principle for holomorphic functions.

Since λ ∈ C(∂B+,R), we get that λ ∈ C(∂D+,R). Hence, it is necessary
and sufficient for us to consider all zero points of λ on ∂D+.

(i) When λ ∈ C(∂B+,R), and λ �= 0 for arbitrary x ∈ ∂B+, then its pro-
jection onto (x0, r)-plane belongs to C(∂D+,R), and λ �= 0 for arbitrary
x ∈ ∂D+. So, one obtains the Riemann–Hilbert problem (3).

(ii) When λ = Πλ̂ with Π(x) = Πm
i=1(x − α̂i)

νi , α̂i ∈ ∂B+, νi ∈ N, and λ̂ �=
0 for arbitrary x ∈ ∂B+, it is obvious that λ̂ ∈ C(∂B+,R). Therefore, on
the (x0, r)-plane, λ = Πλ̂ with Π(z) = Πm

i=1(z − α̂i)
νi , α̂i ∈ ∂D+, νi ∈

N, and λ̂ �= 0 for arbitrary x ∈ ∂D+, λ̂ ∈ C(∂D+,R).
Since Π(z) = Πm

i=1(z − α̂i)
νi is entire function with respect to z,

where α̂i ∈ ∂D+, νi ∈ N.
Let ĥ = hΠ. The Riemann–Hilbert problem (5) is changed into the

case
{

∂z̄ĥ(z) = 0, z ∈ D+,

Re{λ̂(z)ĥ(z)} = r
2g(z), z ∈ ∂D+.

(6)

Applying the case (i), we derive the Riemann–Hilbert problem (4). Thus,
the proof is complete. �

It is worth pointing out that Lemma 3.1 allows us to study the solvability
of our original Riemann–Hilbert problem on upper half unit ball B+ of R4

by discussing the equivalent Riemann–Hilbert problem over the upper half
disc of complex plane.

Now, we give the following theorem.

Theorem 3.2. Let g ∈ C(∂B+,R), and D+ with boundary ∂D+.

(i) If λ ∈ C
(
∂B+,R

)
, and λ �= 0 for arbitrary x ∈ ∂B+, then the Riemann–

Hilbert problem (2) is solvable and its solution is given by

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where Re(f) and Im(f) denote the real and imaginary part of the
complex-valued function f, respectively. f itself is given by

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
g̃1(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

g̃1(t)dtdξ, z ∈ D+,

with g̃1 = r
2λ−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.



Vol. 27 (2017) Riemann–Hilbert Problems for Monogenic Functions 2499

(ii) If λ = Πλ̂ with Π(x) = Πm
i=1(x − α̂i)

νi , α̂i ∈ ∂B+ and νi ∈ N,

furthermore, if λ̂ ∈ C(∂B+,R) and λ̂ �= 0 for arbitrary x ∈ ∂B+, then the
Riemann–Hilbert problem (2) is solvable, and its solution is given again
by

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where f is given by

f(z) =
1
2π

z∫

0

1
Π(ξ)

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
g̃2(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1
Π(ξ)

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

g̃2(t)dtdξ, z ∈ D+,

with g̃2 = r
2 λ̂−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.

Proof. Since D+ = {z : |z| < 1, Imz > 0} is the projection of B+ into (x0, r)-
plane, in virtue of Lemma 3.1, we get that the problem (2) is equivalent to
the following Riemann–Hilbert problem.

(i) When λ ∈ C
(
∂B+,R

)
, and λ �= 0 for arbitrary x ∈ ∂B+,

{
∂z̄h(z) = 0, z ∈ D+,
Re{h(z)} = g̃1, z ∈ ∂D+,

(7)

where z = x0 + ir, ∂z̄ = 1
2 (∂x0 + i∂r), h = ∂rf , f and r given as in

Lemma 3.1, λ, g̃1 : ∂D+ → R with g̃1 = r
2

g
λ are both scalar-valued

functions, and D+ = {z = x0 + ir
∣
∣|z| < 1, r > 0} with boundary ∂D+.

(ii) When λ = Πλ̂ with Π(x) = Πm
i=1

(
x − α̂i

)νi , α̂i ∈ ∂B+, νi ∈ N, and
λ̂ �= 0 for arbitrary x ∈ ∂B+,

{
∂z̄ĥ(z) = 0, z ∈ D+,

Re{ĥ(z)} = g̃2, z ∈ ∂D+,
(8)

where z = x0 + ir, ∂z̄ = 1
2

(
∂x0 + i∂r

)
, ĥ = Π∂rf ,f and r given as in

Lemma 3.1, λ, g : ∂D+ → R with g̃2 = r
2

g

λ̂
are both scalar-valued functions,

and D+ =
{
z = x0 + ir

∣
∣|z| < 1, r > 0

}
with boundary ∂D+.

This shows that solving the Riemann–Hilbert problem (2) is equivalent
to finding solutions to the Schwarz problems (3) and (4) over the upper half
disc of complex plane.

For the first case (i), since λ, g ∈ C(∂D+,R), and λ �= 0 for arbitrary
x ∈ ∂D+, we get

g̃1 =
r

2
g

λ
=

1
4i

(z − z̄)
g

λ
∈ C(∂D+,R). (9)



2500 M. Ku et al. Adv. Appl. Clifford Algebras

Then, the solution to the Riemann–Hilbert problem (7) is expressed by

h(z) =
1

2πi

∫

Γ

(
ζ + z

ζ − z
− ζ̄ + z

ζ̄ − z

)

g̃1(ζ)
dζ

ζ

+
1
πi

1∫

−1

(
1

t − z
− z

1 − zt

)

g̃1(t)dt, z ∈ D+, (10)

where g̃1 is given by (9).
Noticing that h = ∂rf and h is analytic in D+ with respect to z, one

derives h = i∂zf in D+. Hence, associating with (10), we get

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)

g̃1(ζ)
dζ

ζ
dξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

g̃1(t)dtdξ, z ∈ D+, (11)

where g̃1 is given by (9).
Therefore, we end up with the solution to the Riemann–Hilbert problem

(2) by

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+.

For the second case (ii), from the Riemann–Hilbert problem (8), we
know that λ̂, g ∈ C(∂D+,R), and λ �= 0 for arbitrary x ∈ ∂D+. So,

g̃2 =
r

2
g

λ̂
=

1
4i

(z − z̄)
g

λ̂
∈ C(∂D+,R). (12)

Thus, the solution to the Riemann–Hilbert problem (8) is written as

h(z) =
1

2πiΠ(z)

∫

Γ

(
ζ + z

ζ − z
− ζ̄ + z

ζ̄ − z

)

g̃2(ζ)
dζ

ζ

+
1

πiΠ(z)

1∫

−1

(
1

t − z
− z

1 − zt

)

g̃2(t)dt, z ∈ D+, (13)

where g̃2 is given by (12), and Π is given by the Riemann–Hilbert problem
(8).

Therefore, similar to (11), one has

f(z) =
1
2π

z∫

0

1
Π(ξ)

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)

g̃2(ζ)
dζ

ζ
dξ,

+
1
π

z∫

0

1
Π(ξ)

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

g̃2(t)dtdξ, z ∈ D+, (14)
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where g̃2 is given by (12), and Π is given by the Riemann–Hilbert problem
(8).

This allows us to write the solution to the Riemann–Hilbert problem
(2) as

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

This finishes the proof. �

As a special case of Problem I, we can consider the following Schwarz
problem. Schwarz problem Find a function φ ∈ C1(B+,H) which satisfies
the system

{Dφ(x) = 0, x ∈ B+,
Re{φ(t)} = g(t), t ∈ ∂B+,

(15)

where g : ∂B+ → R is a R-valued function defined on ∂B+.
Thanks to Theorem 3.2 we can deduce the following theorem.

Theorem 3.3. If g ∈ C(∂B+,R) then the Schwarz problem (15) is solvable,
and its solution is given by

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where f is given by

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
ĝ1(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

ĝ1(t)dtdξ, z ∈ D+,

with ĝ1 = r
2g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.

Remark 3.4. What is the key point of Theorem 3.2: we solve the Riemann–
Hilbert problems with variable coefficients for axially monogenic functions
over upper half unit ball centred at the origin of R4 by considering the equiv-
alent Riemann–Hilbert problems on upper half disc for analytic functions over
the complex plane. This provides a way of overcoming the obstacle that the
multiplication of two axially monogenic functions is not axially monogenic.

The Riemann–Hilbert problem on upper half disc for analytic functions,
see, e.g. [5,6,36] is a trivial case of the Riemann–Hilbert problem (2) when the
space dimension is equivalent to 2. Moreover, the Schwarz problem on upper
half disc for analytic functions [5,6,36] is the case of our Riemann–Hilbert
problem (2) when the coefficient λ is a constant equal to 1.

Remark 3.5. It is known that in general it is difficult to give explicit ana-
lytic solutions to Riemann–Hilbert problems of the Vekua system in terms
of integral representation formulas. However, from Theorem 3.3, the explicit
solutions to the Schwarz problem for a special type of Vekua system defined
over the upper half disc of complex plane [13,18] can be derived.
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4. RHBVPs for Perturbed Generalised Cauchy–Riemann
Operator

In this section, the approach used in Sect. 3 will be adapted to the case of null-
solutions to the equation (D − α)φ = 0, α ∈ R. We will consider RHBVPs
with variable coefficients for functions of axial type, i.e., null-solutions to the
equation (D − α)φ = 0, α ∈ R, defined over upper half unit ball centred at
the origin of R4. We start with the following extension of Problem I.

Problem II. Find a function φ ∈ C1(B+,H) of axial type which satisfies the
condition

{
(D − α)φ = 0, α ∈ R, x ∈ B+,
Re{λ(t)φ(t)} = g(t), t ∈ ∂B+,

(16)

where α is understood as αI, with I being the identity operator, g : ∂B+ → R

and λ is a R-valued function defined on ∂B+.

Theorem 4.1. Let g ∈ C(∂B+,R), and D+ = {z : |z| < 1, Imz > 0} with
boundary ∂D+.

(i) If λ ∈ C(∂B+,R), and λ �= 0 for arbitrary z ∈ ∂B+, then the Riemann–
Hilbert problem (16) is solvable, and its solution is given by

φ(x) = eαx0Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where Re(f) and Im(f) denote the real and imaginary part of the
complex-valued function f, respectively. f itself is given by

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
e−αx0 g̃1(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

e−αx0 g̃1(t)dtdξ, z ∈ D+,

with g̃1 = r
2λ−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.

(ii) Let λ = Πλ̂ with Π(x) = Πm
i=1(x − α̂i)

νi , α̂i ∈ ∂B+, νi ∈ N, and
λ̂ ∈ C(∂B+,R), λ̂ �= 0 for arbitrary x ∈ ∂B+, then the Riemann–Hilbert
problem (16) is solvable, and its solution is given again by

φ(x) = eαx0Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where f is given by

f(z) =
1
2π

z∫

0

1
Π(ξ)

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
e−αx0 g̃2(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1
Π(ξ)

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

e−αx0 g̃2(t)dtdξ, z ∈ D+,

with g̃2 = r
2 λ̂−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.
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Proof. Noticing the fact (D − α)φ = D(e−αx0φ), α ∈ R, then

(D − α)φ = 0 is equivalent to D(e−αx0φ) = 0, α ∈ R. (17)

Therefore, Problem (16) is equivalent to the case
{D(e−αx0φ

)
= 0, α ∈ R, x ∈ B+,

Re{λ(t)e−αx0φ(t)} = e−αx0g(t), t ∈ ∂B+,

where g : ∂B+ → R and λ is a R-valued function defined on ∂B+.
Noting that g ∈ C(∂B+,R), we have e−αx0g ∈ C(∂B+,R).
Applying Theorem 3.2, (i) If λ ∈ C

(
∂B+,R

)
, and λ �= 0 for arbitrary

z ∈ ∂D+, then the Riemann–Hilbert problem (16) is solvable, and its solution
is written as

φ(x) = eαx0Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where Re(f) and Im(f) denote the real and imaginary part of the
complex-valued function f , respectively. f itself is given by

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
e−αx0 g̃1(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

e−αx0 g̃1(t)dtdξ, z ∈ D+,

with g̃1 = r
2λ−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.

(ii) If λ = Πλ̂ with Π(x) = Πm
i=1(x − α̂i)

νi , α̂i ∈ ∂B+ and νi ∈ N, and if
λ̂ ∈ C(∂B+,R) and λ̂ �= 0 for arbitrary x ∈ ∂B+, then the Riemann–Hilbert
problem (16) is solvable, and its solution is given again by

φ(x) = eαx0Δ(Re(f)
(
x0, |x|) + ωIm(f)

(
x0, |x|)), x ∈ B+,

where f is given by

f(z) =
1
2π

z∫

0

1
Π(ξ)

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
e−αx0 g̃2(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1
Π(ξ)

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

e−αx0 g̃2(t)dtdξ, z ∈ D+,

with g̃2 = r
2 λ̂−1g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}. It follows the result. �

Remark 4.2. The Riemann–Hilbert problem for the first order meta-analytic
functions defined over upper half disc of complex plane [5,6] is the special
case of Problem (16) when the space dimension is 2.

Similarly to the Schwarz Problem (15), take λ = 1 in Problem (16), we
can take account into the following problem.

Problem III. Find a function φ ∈ C1
(
B+,H

)
which satisfies the system

{
(D − α)φ = 0, α ∈ R, x ∈ B+,
Re{φ(t)} = g(t), t ∈ ∂B+,

(18)
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where α is understood as αI, with I being the identity operator, and g :
∂B+ → R is a R-valued function defined on ∂B+.

According to Theorem 4.1 we can derive the following theorem.

Theorem 4.3. If g ∈ C
(
∂B+,R

)
then Problem (18) is solvable, and its solu-

tion is given by

φ(x) = eαx0Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ B+,

where f is given by

f(z) =
1
2π

z∫

0

∫

Γ

(
ζ + ξ

ζ − ξ
− ζ̄ + ξ

ζ̄ − ξ

)
e−αx0 ĝ1(ζ)

ζ
dζdξ,

+
1
π

z∫

0

1∫

−1

(
1

t − ξ
− ξ

1 − ξt

)

e−αx0 ĝ1(t)dtdξ, z ∈ D+,

with ĝ1 = r
2g, where Γ = {ζ| |ζ| = 1,Re ζ > 0}.

Remark 4.4. Thanks to [31], the following term appeared in Theorems 3.2,
3.3, 4.1 and 4.3

Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)) (19)

could be replaced by the explicit integral formula. Since it will be a direct
replacement, here, we will not develop the details.

Remark 4.5. Given the continuous boundary data, we have a study of the
Riemann–Hilbert problems (2), (15), (16) and (18) with variable coefficients
for monogenic functions of axial type defined upper half unit ball centred at
the origin of R4 and for null-solutions to (D − α)φ = 0, α ∈ R. Hereby, we
single out that Problem (2) is the special case of Problem (16) when α equals
0, and that Problem (15) is the special case of Problem (18).

Remark 4.6. In this context we are concerned about the Riemann–Hilbert
problems on upper half ball of R

4. Compared to the results contained in
Refs. e.g. [5,6,36], we can consider the Riemann–Hilbert Problems I and II
on other sectors, like the upper half space of R4. For example, let the case be
R

4
+ = {x|x ∈ R

4, x0 > 0},R4
0 = {x|x ∈ R

4, x0 = 0}, and then analogous to
Problem I allow us to consider the following Riemann–Hilbert Problem IV.

Problem IV. To find a function φ ∈ C1(R4
+,H) of axial type, which satisfies

the condition
{Dφ(x) = 0, x ∈ R

4
+,

Re{λ(t)φ(t)} = g(t), t ∈ R
4
0,

(20)

where g : R4
0 → R and λ is a R-valued function defined on R

4
0.

Similar to Problem I, Problem (21) is equivalent to the problem
{

∂z̄h(z) = 0, z ∈ QI ,
Re{λ(z)h(z)} = r

2g(z), z ∈ ∂QI ,
(21)
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where QI = {z = x0 + ir|(r > 0) ∧ (x0 > 0)} and ∂QI = {z = x0 + ir
∣
∣[(r =

0) ∧ (x0 > 0)] ∨ [(r > 0) ∧ (x0 = 0)]}. Hereby, the uniqueness is also imposed
by the boundary condition and the maximum principle for holomorphic func-
tions. This leads us to consider a Riemann–Hilbert Problem (21) on the first
quadrant of (x0, r)-plane.

In fact, since in the Problem (20) λ �= 0, t ∈ R
4
0, then λ �= 0, z ∈ ∂QI .

Therefore, the Problem (21) is equivalent to the problem
{

∂z̄h(z) = 0, z ∈ QI ,

Re{h(z)} = r
2

g(z)
λ(z) , z ∈ ∂QI .

(22)

If g, λ−1 ∈ L2(R4
0,R) ∩ C(R4

0,R), then the Riemann–Hilbert Problem (21) is
solvable and its solution is given by

φ(x) = Δ(Re(f)(x0, |x|) + ωIm(f)(x0, |x|)), x ∈ QI , (23)

where f is given by

f(z) =
1
π

∫

∂QI

(
1

ζ − z
+

1
ζ + z

)

g3(ζ)dζ, z ∈ QI , (24)

where g3 = r
2

g
λ .

Moreover, similar to Problem II, associated with Problem IV, we could
derive the solution to a Riemann–Hilbert problem on the upper space R

4
+ =

{x|x ∈ R
4, x0 > 0} of R4. But here we omit the details.

Furthermore, we point out that from (23), (24), in order to solve Prob-
lem IV a kernel function should be constructed for the Riemann–Hilbert
Problem (21) and the different boundary data are considered, which is dif-
ferent from that of Problem I.

Remark 4.7. The Schwarz problem for analytic functions defined over upper
half plane of complex plane [3] is the special case of Problem (20) when the
space dimension is 2 and λ = 1.
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