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Abstract

A square matrix of order n with n ≥ 2 is called a permutative matrix
or permutative when all its rows (up to the first one) are permutations of
precisely its first row. In this paper, the spectra of a class of permutative
matrices are studied. In particular, spectral results for matrices partitioned
into 2-by-2 symmetric blocks are presented and, using these results sufficient
conditions on a given list to be the list of eigenvalues of a nonnegative per-
mutative matrix are obtained and the corresponding permutative matrices
are constructed. Guo perturbations on given lists are exhibited.
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1. Introduction

We present here a short overview related with the nonnegative inverse
eigenvalue problem (NIEP) that is the problem of determining necessary
and sufficient conditions for a list of complex numbers

σ = (λ1, λ2, . . . , λn) (1)

to be the spectrum of a n-by-n entrywise nonnegative matrix A. If a list σ is
the spectrum of a nonnegative matrix A, then σ is realizable and the matrix A
realizes σ, (or, that is a realizing matrix for the list). This problem attracted
the attention of many authors over 50+ years and it was firstly considered by
Sulĕımanova [25] in 1949. Although some partial results were obtained the
NIEP is an open problem for n ≥ 5. In [12] this problem was solved for n = 3
and for matrices of order n = 4 the problem was solved in [14] and [15]. It
has been studied in its general form in e.g. [2, 6, 8, 9, 12, 22, 23, 26]. When
the realizing nonnegative matrix is required to be symmetric (with, of course,
real eigenvalues) the problem is designated by symmetric nonnegative inverse
eigenvalue problem (SNIEP) and it is also an open problem. It has also been
the subject of considerable attention e.g [3, 7, 11, 24]. The problem of which
lists of n real numbers can occur as eigenvalues of an n-by-n nonnegative
matrix is called real nonnegative inverse eigenvalue problem (RNIEP), and
some results can be seen in e.g. [1, 4, 17, 20, 21]. In what follows σ (A)
denotes the set of eigenvalues of a square matrix A. Below are listed some
necessary conditions on a list of complex numbers σ = (λ1, λ2, . . . , λn) to be
the spectrum of a nonnegative matrix.

1. The Perron eigenvalue max {|λ| : λ ∈ σ(A)} belongs to σ.

2. The list σ is closed under complex conjugation.

3. sk (σ) =
n∑
i=1

λki ≥ 0.

4. smk (σ) ≤ nm−1skm (σ) for k,m = 1, 2, . . ..

The first condition listed above follows from the Perron-Frobenius theorem,
which is an important theorem in the theory of nonnegative matrices. The
last condition was proved by Johnson [6] and independently by Loewy and
London [12]. The necessary conditions that were presented for the NIEP are
sufficient only when the list σ has at most three elements. The solution for
NIEP was also found for lists with four elements, while the problem for lists
with five or more elements is still open.
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Definition 1. The list σ in (1) is a Sulĕımanova spectrum if the λ′s are real
numbers, λ1 > 0 ≥ λ2 ≥ · · · ≥ λn and s1 (σ) ≥ 0.

Sulĕımanova, [25] stated (and loosely proved) that every such spectrum
is realizable. Fiedler [3] proved that every Sulĕımanova spectrum is symmet-
rically realizable (i.e. realizable by a symmetric nonnegative matrix).

One of the most promising attempts to solve the NIEP is to identify the
spectra of certain structured matrices with known characteristic polynomials.
Friedland in [4] and Perfect in [18] proved Sulĕımanova’s result via compan-
ion matrices of certain polynomials. However, constructing the companion
matrix of a Sulĕımanova’s spectrum is computationally difficult. Recently,
Paparella [16] gave a constructive proof of Sulĕımanova’s result. The author
defined permutative matrix as follows.

Definition 2. [16] Let x = (x1, . . . , xn)T ∈ Cn. Let P2, . . . , Pn be permuta-
tion matrices. A permutative matrix P is a matrix which takes the form

P =


xT

(P2x)T

...

(Pn−1x)T

(Pnx)T

 .

In [16], explicit permutative matrices which realize Sulĕımanova spectra were
found. A few remarks concerning the brief history of permutative matrices
are in order.

1. Ranks of permutative matrices were studied by Hu et al. [5]

2. Moreover, the author [16] proposed the interesting problem which asks
if all realizable spectra can be realizable by a permutative matrix
or by a direct sum of permutative matrices. An equivalent problem
communicated to the author by R. Loewy is to find an extreme non-
negative matrix [8] with real spectrum that can not be realized by a
permutative matrix or a direct sum of permutative matrices. Loewy
[13] resolved this problem in the negative by showing that the list

σ =
(

1, 8
25

+
√
51
50
, 8
25

+
√
51
50
,−4

5
,−21

25

)
is realizable but cannot be re-

alized by a permutative matrix or by a direct sum of permutative ma-
trices.
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In this paper we call the problem as PNIEP when the NIEP involves
permutative matrices. Note that the lists considered along the paper are
equivalent (up to a permutation of its elements). Therefore, unless we say
the contrary, we call a given n-tuple σ or any permutation resulting from it,
as “the list”. In consequence, any of these lists can be used.

In this work we will find spectral results for partitioned into 2-by-2 blocks
matrices and using these results sufficient conditions on given lists to be the
list of eigenvalues of a nonnegative permutative matrix are obtained. The
paper is organized as follows: At Section 2 some definitions and facts related
to permutative matrices are given. At Section 3 spectral results for matrices
partitioned into 2-by-2 blocks are presented and the results are applied to
NIEP, SNIEP and PNIEP. Some illustrative examples are provided. At Sec-
tion 4 results for matrices with odd order are presented. Finally, at Section 5
Guo perturbations on lists of eigenvalues of this class of permutative matrices
(in order to obtain a new permutative matrix) are studied.

2. Permutatively equivalent matrices

In this section some auxiliary results from [16] and some new definitions
are introduced. In [16] the following results were proven.

Lemma 3. [16, Lemma 3.1] For x = (x1, x2, . . . , xn)T ∈ Cn, let

X =



x1 x2 . . . xi . . . xn−1 xn
x2 x1 . . . xi . . . xn−1 xn
...

...
. . .

...
. . .

...
...

xi x2
. . . x1

. . .
...

...
...

...
...

...
. . .

...
...

xn−1 x2 . . .
...

... x1 xn
xn x2 . . . xi . . . xn−1 x1


. (2)

Then, the set of eigenvalues of X is given by

σ(X) =

{
n∑
i=1

xi, x1 − x2, x1 − x3, . . . , x1 − xn

}
. (3)
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Theorem 4. [16] Let σ = (λ1, . . . , λn) be a Sulĕımanova spectrum and con-
sider the n-tuple x = (x1, x2, . . . , xn), where

x1 = λ1+···+λn
n

and xi = x1 − λi, 2 ≤ i ≤ n,

then the matrix in (2) realizes σ. In particular, if λ1 + · · · + λn = 0 the
solution matrix, X0 becomes

X0 =



0 |λ2| . . . |λi| . . . |λn−1| |λn|
|λ2| 0 . . . |λi| . . . |λn−1| |λn|

...
...

. . .
...

. . .
...

...

|λi| |λ2|
. . . 0

. . .
...

...
...

...
...

...
. . .

...
...

|λn−1| |λ2|
...

...
... 0 |λn|

|λn| |λ2| . . . |λi| . . . |λn−1| 0


.

Remark 5. By previous results and the proof of above Theorem 4 in [16], it
is clear that for any set σ = {α1, . . . , αn} there exists a permutative matrix
with the shape of X in (2) whose set of eigenvalues is σ.

The following notions will be used in the sequel.

Definition 6. Let τ = (τ1, . . . , τn) be an n-tuple whose elements are permu-
tations in the symmetric group Sn, with τ1 = id. Let a = (a1, . . . , an) ∈ Cn.
Define the row-vector,

τj (a) =
(
aτj(1), . . . , aτj(n)

)
and consider the matrix

τ (a) =


τ1 (a)
τ2 (a)

...
τn−1 (a)
τn (a)

 . (4)

An n-by-n matrix A, is called τ -permutative if A = τ (a) for some n-tuple a.
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Remark 7. Although the statement in Definition 2 is precisely the state-
ment found in [16, Definiton 2.1], it is clear that Definition 6 of this work is
the proper definition of a permutative matrix (indeed, since every permuta-
tion matrix is a permutative matrix, it is not ideal to define the latter with
the former). Thus, Definition 6 is a better definition of a permutative matrix
than the one given at Definition 2.

Definition 8. If A and B are τ -permutative by a common vector τ =
(τ1, . . . , τn) then they are called permutatively equivalent.

Definition 9. Let ϕ ∈ Sn and the n-tuple τ = (id, ϕ, ϕ2, . . . , ϕn−1) ∈ (Sn)n .
Then a τ -permutative matrix is called ϕ-permutative.

It is clear from the definitions that two ϕ-permutative matrices are per-
mutatively equivalent matrices.

Remark 10. If permutations are regarded as bijective maps from the set
{0, 1, · · · , n− 1} to itself, then a circulant (respectively, left circulant) matrix
is a ϕ-permutative matrix where ϕ (i) ≡ i − 1(mod n) (resp. ϕ (i) ≡ i +
1(mod n)). Indeed, notice that the 3-by-3 circulant matrixa b c

c a b
b c a


is ϕ- permutative with

ϕ =

(
0 1 2
2 0 1

)
and the 3-by-3 left circulant matrixa b c

b c a
c a b


is ϕ- permutative with

ϕ =

(
0 1 2
1 2 0

)
.
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Remark 11. A permutative matrix A defines the class of permutatively
equivalent matrices. Let σ1, σ2 be two Sulĕımanova spectra, then the cor-
responding realizing matrices Xσ1 and Xσ2 given by Theorem 4 are permu-
tatively equivalent matrices. Furthermore, by Lemma 3 and Remark 5 it
is easy to check that given two arbitrary inverse eigenvalue problems (not
necessarily NIEP) there exist a solution which is permutatively equivalent to
the matrix X in (2).

For τ -permutative matrices an analogous property related with circulant
matrices is given below.

Proposition 12. Let {Ai}ki=1 be a family of permutatively equivalent matri-

ces in Cn×n. Let {γi}ki=1 be a set of complex numbers. Consider

A =
k∑
i=1

γiAi. (5)

Then A1 and A are permutatively equivalent matrices.

Proof. Let τ = (τ1, . . . , τn) be an n-tuple whose elements are permu-
tations in the symmetric group Sn and suppose that the family {Ai} are
permutatively equivalent by τ . Let e1, e2, . . . , en be the canonical row vec-
tors in Cn. The result is an immediate consequence of the fact that for any
a = (a1, . . . , an) ∈ Cn the matrix τ (a) in (4) can be decomposed as

τ (a) = a1τ (e1) + a2τ (e2) + · · ·+ anτ (en) ,

where

τ (ej) =


ej

τ2 (ej)
...

τn−1 (ej)
τn (ej)

 .
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3. Eigenpairs for some into block matrices

In this section we exhibit spectral results for matrices that are partitioned
into 2-by-2 symmetric blocks and we apply the results to NIEP, SNIEP and
PNIEP. The next theorem is valid in an algebraic closed field K of charac-
teristic 0. For instance, K = C.

Theorem 13. Let K be an algebraically closed field of characteristic 0 and
suppose that A = (Aij) is a block matrix of order 2n, where

Aij =

(
aij bij
bij aij

)
, aij, bij ∈ K. (6)

If
sij = aij + bij, 1 ≤ i, j ≤ n

and
cij = aij − bij, 1 ≤ i, j ≤ n

Then
σ (A) = σ (S) ∪ σ (C)

where
S = (sij) and C = (cij) .

Proof. Let (λ, v) be an eigenpair of S, with v = (v1, . . . , vn)T , and consider
the 2n-by-1 block vector w = (wj), where wj := vje and e = (1, 1)T . Since

Aijwj =

(
aij bij
bij aij

)
vje =

(
aij + bij
bij + aij

)
vj = sijvje,

notice that, for every i = 1, . . . , n,

n∑
j=1

Aijwj =

(
n∑
j=1

sijvj

)
e = (λvi) e =λ (vie) = λwi

i.e (λ,w) be an eigenpair of A. Thus σ (S) ⊆ σ (A).
Similarly, let (µ, x) be an eigenpair of C, with x = (x1, . . . , xn)T and

consider the 2n-by-1 block vector y = (yj), where yj := xjf and f = (1,−1)T .
Since

Aijyj =

(
aij bij
bij aij

)
xjf =

(
aij − bij
bij − aij

)
xj = cijxjf ,
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notice that, for every i = 1, . . . , n,

n∑
j=1

Aijyj =

(
n∑
j=1

cijxj

)
f = (λxi) f =λ (xif) = λyi

i.e (µ, y) is also an eigenpair of A. Thus σ (C) ⊆ σ (A). Suppose that

Θs =
{

(x1i, x2i, . . . , xni)
T : i = 1, . . . , n

}
and

Θc =
{

(y1i, y2i, . . . , yni)
T : i = 1, . . . , n

}
are bases formed with eigenvectors of S and C, respectively. The result will
follow after proving the linear independence of the set Υ = Υ1 ∪Υ2, where:

Υ1 =
{(
x1e

T
2 ,x2e

T
2 , . . . ,xne

T
2

)T
: (x1,x2, . . . ,xn)T ∈ Θs

}
and

Υ2 =
{(
y1f

T
2 ,y2f

T
2 , . . . ,ynf

T
2

)T
: (y1,y2, . . . ,yn)T ∈ Θc

}
.

Therefore, we consider the following determinant,

d =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n
−y11 . . . −y1n x11 . . . x1n

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

yn1 . . . ynn xn1 . . . xnn
−yn1 . . . −ynn xn1 . . . xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that d stands for the determinant of a 2n-by-2n matrix obtained from
the coordinates of the vectors in Υ. By adding rows and after making suitable
row permutations we conclude that the absolute value of d coincides with the
absolute value of the following determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n
...

. . .
...

...
. . .

...
yn1 . . . ynn xn1 . . . xnn
0 . . . 0 2x11 . . . 2x1n

0 . . . 0
... . . .

...
0 . . . 0 2xn1 . . . 2xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣
9



which is nonzero by the linear independence of the sets Θs and Θc respec-
tively.

Theorem 14. Let S = (sij) and C = (cij) be matrices of order n whose spec-
tra (counted with their multiplicities) are σ(S) = (λ1, λ2, . . . , λn) and σ(C) =
(µ1, µ2, . . . , µn), respectively. Let 0 ≤ γ ≤ 1. If

|cij| ≤ sij, 1 ≤ i, j ≤ n, (7)

(or equivalently if S, S + C and S − C are nonnegative matrices), then the
matrices 1

2
(S + γC) and 1

2
(S − γC) are nonnegative and the nonnegative

matrices

M±γ =
(
Mij±γ

)
,with Mij±γ =

( sij±γcij
2

sij∓γcij
2

sij∓γcij
2

sij±γcij
2

)
, 1 ≤ i, j ≤ n (8)

realize, respectively, the following lists

σ(S) ∪ γσ(C) := (λ1, λ2, . . . , λn, γµ1, γµ2, . . . , γµn)

and

σ(S) ∪ (−γσ(C)) := (λ1, λ2, . . . , λn,−γµ1,−γµ2, . . . ,−γµn) .

Proof. By the definitions of 1
2

(S + γC) and 1
2

(S − γC) and the condition
in (7) it is clear that M±γ in (8) are nonnegative matrices. By conditions of
Theorem 13 one can see that each (i, j)-block of the matrix takes the form(
xij yij
yij xij

)
and its spectrum is partitioned into the union of the spectra of

the n-by-n matrices (xij + yij)
n
i,j=1 and (xij − yij)ni,j=1. If we impose that

S = (xij + yij)
n
i,j=1 and ±γC = (xij − yij)ni,j=1 we obtain sij = xij + yij and

±γcij = xij − yij. Thus, for both cases xij =
sij±γcij

2
and yij =

sij∓γcij
2

, as it
is required for the respective realization of the spectra σ(S)∪±γσ(C).

Remark 15. Note that in the previous result if S = (sij) and C = (cij),
then

M±γ =



s11±γc11
2

s11∓γc11
2

. . . . . . s1n±γc1n
2

s1n∓γc1n
2

s11∓γc11
2

s11±γc11
2

. . . . . . s1n∓γc1n
2

s1n±γc1n
2

...
...

. . . . . .
...

...
...

...
. . . . . .

...
...

sn1±γcn1
2

sn1∓γcn1
2

. . . . . . snn±γcnn
2

snn∓γcnn
2

sn1∓γcn1
2

sn1±γcn1
2

. . . . . . snn∓γcnn
2

snn±γcnn
2


. (9)
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The next corollary establishes the result when the matrices S and C are
symmetric, both with prescribed list of eigenvalues.

Corollary 16. Let S = (sij) and C = (cij) be symmetric matrices of orders
n whose spectra (counted with their multiplicities) are σ(S) = (λ1, λ2, . . . , λn)
and σ(C) = (µ1, µ2, . . . , µn), respectively. Let 0 ≤ γ ≤ 1. Moreover, suppose
that |cij| ≤ sij for all 1 ≤ i, j ≤ n. Then 1

2
(S + γC) and 1

2
(S − γC) are

symmetric nonnegative matrices and

M±γ =
(
Mij±γ

)
with Mij±γ =

( sij±γcij
2

sij∓γcij
2

sij∓γcij
2

sij±γcij
2

)
, for 1 ≤ i, j ≤ n

are symmetric nonnegative matrices such that, respectively, realize the fol-
lowing lists

σ(S) ∪ (±γσ(C)) = (λ1, λ2, . . . , λn,±γµ1,±γµ2, . . . ,±γµn) .

Proof. It is an immediate consequence of Theorem 14 that if the matrices
S and C are symmetric, then the matrices M±γ obtained in (9) are also
symmetric.

Remark 17. We remark that for two permutatively equivalent n-by-n ma-
trices S = (sij) and C = (cij) whose first row, are the an n-tuple (s1, . . . , sn) ,
and (c1, . . . , cn) , respectively, the inequalities |cij| ≤ sij hold if and only if
|ci| ≤ si, 1 ≤ i ≤ n.

Theorem 18. Let S = (sij) and C = (cij) be permutatively equivalent matri-
ces whose first row are the n-tuples (s1, . . . , sn) and (c1, . . . , cn) , respectively,
such that |ci| ≤ si, 1 ≤ i ≤ n. Moreover, their spectra (counted with their mul-
tiplicities) are the lists σ(S) = (λ1, λ2, . . . , λn) and σ(C) = (µ1, µ2, . . . , µn),
respectively. Let 0 ≤ γ ≤ 1. Then, 1

2
(S + γC) and 1

2
(S − γC) are nonneg-

ative matrices, permutatively equivalent matrices and the following matrices:

M±γ =
(
Mij±γ

)
with Mij±γ =

( sij±γcij
2

sij∓γcij
2

sij∓γcij
2

sij±γcij
2

)
, 1 ≤ i, j ≤ n (10)

are permutative and realize, respectively, the following lists

σ(S) ∪ (±γσ(C)) = (λ1, λ2, . . . , λn,±γµ1,±γµ2, . . . ,±γµn) .
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In particular, if the list (λ1, λ2, . . . , λn) is a Sulĕımanova’s type list and
(µ1, µ2, . . . , µn) satisfies the condition

µ1 + µ2 + · · ·+ µn ≤ λ1 + λ2 + · · ·+ λn, (11)

and∣∣∣∣µ1 + µ2 + · · ·+ µn
n

− µi
∣∣∣∣ ≤ (λ1 + λ2 + · · ·+ λn

n
− λi

)
for 2 ≤ i ≤ n,

(12)
then, the lists σ(S) ∪ (±γσ(C)) are respectively, realizable by the matrices
M±γ in (10), where S = (sij) and C = (cij) are the corresponding permutative
matrices obtained from Theorem 4 and Lemma 3 by replacing with the lists
of eigenvalues.

Proof. Is an immediate consequence of the fact that if the matrices S
and C in Theorem 14 are considered to be permutatively equivalent matrices
then, by Proposition 12, both 1

2
(S + γC) and 1

2
(S − γC) are permutatively

to S. Therefore, by the shape of the matrices in (9) the matrices M±γ in (10)
become permutative matrices. In particular, if the matrices S and C and its
spectra σ(S) and σ(C), respectively, are as in the statement, by last state-
ment of Remark 11 the matrices S and ±γC that realize the spectra σ(S)
and ±γσ(C) are permutatively equivalent matrices. Then 1

2
(S + γC) and

1
2

(S − γC) are nonnegative permutative matrices, implying, by the above
reasoning that the matrices M±γ in (9), with the given description by (10),
will be also nonnegative permutative matrices. The conditions in (11) and
(12) are derived from the condition |ci| ≤ si, for all 1 ≤ i ≤ n when the
n-tuples (s1, . . . , sn) and (c1, . . . , cn) are the first row of S and C, respec-
tively, where the corresponding descriptions of (s1, . . . , sn) and (c1, . . . , cn)
are obtained from Lemma 3 and Theorem 4 .

Note that it is important that the matrices S and C are permutatively
equivalent otherwise we can not guarantee that the matrices M±γ are per-
mutative. In fact consider the following example:

Example 19. Both matrices S and C are not permutatively equivalent and
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M constructed as in the previous theorem is not permutative.

S =

1 2 3
3 1 2
2 3 1

 , (13)

C =

0 1 2
2 0 1
2 0 1

 (14)

M =



1
2

1
2

3
2

1
2

5
2

1
2

1
2

1
2

1
2

3
2

1
2

5
2

5
2

1
2

1
2

1
2

3
2

1
2

1
2

5
2

1
2

1
2

1
2

3
2

2 0 3
2

3
2

1 0
0 2 3

2
3
2

0 1

 (15)

In the next examples S and C are permutatively equivalent.

Example 20. Let S and C be the following circulant matrices, in conse-
quence, they are permutatively equivalent matrices

S =

2 2 1
1 2 2
2 1 2

 and C =

0 0 1
1 0 0
0 1 0


whose spectra, respectively, are the following lists(

5,
1 + i

√
3

2
,
1− i

√
3

2

)
and

(
1,

1 + i
√

3

2
,
1− i

√
3

2

)
.

It is easy to see that the conditions of Theorem 18 are verified. In conse-
quence, the 6-by-6 matrix

M =


1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 1 1 1
0 1 1 1 1 1
1 1 1 0 1 1
1 1 0 1 1 1


13



is a permutative matrix and realizes the list(
5,

1 + i
√

3

2
,
1− i

√
3

2
, 1,

1 + i
√

3

2
,
1− i

√
3

2

)
.

Example 21. Let S and C be the following circulant matrices, in conse-
quence, they are permutatively equivalent matrices

S =

2 2 1
1 2 2
2 1 2

 and C =

 0 0 −1
−1 0 0
0 −1 0


whose spectra, respectively, are(

5,
1 + i

√
3

2
,
1− i

√
3

2

)
and

(
−1,
−1− i

√
3

2
,
−1 + i

√
3

2

)
.

It is easy to see that the conditions of Theorem 18 are verified. In conse-
quence, the 6-by-6 matrix

M =


1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1


is nonnegative permutative and realizes the spectrum(

5,
1 + i

√
3

2
,
1− i

√
3

2
,−1,

−1− i
√

3

2
,
−1 + i

√
3

2

)
.

Example 22. Let σ = (10, 7,−3,−3,−2,−2,−2− 1). The following Sulĕımanova
sub-lists (7,−3,−2,−2) and (10,−3,−2,−1) can be obtained from σ. Thus,
the conditions of Theorem 18 hold and by Theorem 4 the matrix that realizes
(10,−3,−2,−1) is

S =


1 2 3 4
2 1 3 4
3 2 1 4
4 2 3 1


14



and the matrix that realizes (7,−3,−2,−2) is

C =


0 2 2 3
2 0 2 3
2 2 0 3
3 2 2 0

 .

Therefore, the matrix M in (9) becomes

M =



1
2

1
2

2 0 5
2

1
2

7
2

1
2

1
2

1
2

0 2 1
2

5
2

1
2

7
2

2 0 1
2

1
2

5
2

1
2

7
2

1
2

0 2 1
2

1
2

1
2

5
2

1
2

7
2

5
2

1
2

2 0 1
2

1
2

7
2

1
2

1
2

5
2

0 2 1
2

1
2

1
2

7
2

7
2

1
2

2 0 5
2

1
2

1
2

1
2

1
2

7
2

0 2 1
2

5
2

1
2

1
2


which is a permutative matrix and realizes the initial list.

4. Real odd spectra

We now present spectral results for matrices partitioned into blocks and
with odd order. We start with the following spectral result that is presented
in an algebraic closed field, K, for instance K = C.

Theorem 23. Let K be an algebraically closed field of characteristic 0 and
suppose that A = (Aij) is an into block square matrix of order 2n+ 1, where

Aij =



(
aij bij
bij aij

)
1 ≤ i, j ≤ n(

aij
aij

)
1 ≤ i ≤ n, j = n+ 1(

aij bij
)

i = n+ 1, 1 ≤ j ≤ n
aij i = n+ 1, j = n+ 1.

If

sij =


aij + bij 1 ≤ i, j ≤ n
aij 1 ≤ i ≤ n, j = n+ 1

aij + bij i = n+ 1, 1 ≤ j ≤ n
aij i = n+ 1, j = n+ 1

15



and
cij = aij − bij, 1 ≤ i, j ≤ n.

Then
σ (A) = σ (S) ∪ σ (C) ,

where
S = (sij) and C = (cij) .

Proof. Let (λ, v) be an eigenpair of S, with v = (v1, . . . , vn, vn+1)
T , and

consider the (2n+ 1)-by-1 block vector w =

(
(wj)
wn+1

)
, where by an abuse of

notation, we have

wj =

{
vje 1 ≤ j ≤ n
vn+1 j = n+ 1.

Since

Aijwj =

(
aij bij
bij aij

)
vje =

(
aij + bij
bij + aij

)
vj = sijvje, 1 ≤ i, j ≤ n

Ai,n+1wn+1 =

(
aij
aij

)
wn+1 = si,n+1vn+1e, 1 ≤ i ≤ n

An+1,jwj =
(
an+1,j bn+1,j

)
wj =

(
an+1,j bn+1,j

)
(vje)

= (an+1,j + bn+1,j) vj = sn+1,jvj, 1 ≤ j ≤ n

Finally,
An+1,n+1wn+1 = sn+1,n+1vn+1.

Notice that, for every i ∈ {1, . . . , n},
n+1∑
j=1

Aijwj =
n∑
j=1

Aijwj + Ai,n+1wn+1

=

(
n∑
j=1

sijvj + si,n+1vn+1

)
e = (λvi) e =λ (vie) = λwi

and
n+1∑
j=1

An+1,jwj =
n∑
j=1

sn+1,jvj + An+1,n+1wn+1

=

(
n∑
j=1

sn+1,jvj + sn+1,n+1vn+1

)
=λvn+1=λwn+1

16



i.e (λ,w) is an eigenpair of A. Thus σ (S) ⊆ σ (A).
Similarly, let (µ, x) be an eigenpair of C, with x = (x1, . . . , xn)T and

consider the (2n+ 1)-by-1 block vector y =

(
(yj)

0

)
, where yj := xjf and

f = (1,−1)T . Since

Aijyj =

(
aij bij
bij aij

)
xjf =

(
aij − bij
bij − aij

)
xj = cijxjf ,

notice that, for every i = 1, . . . , n,

n+1∑
j=1

Aijyj =

(
n∑
j=1

cijxjf+Ai,n+1yn+1

)
= (λxi) f =λ (xif) = λyi

i.e (µ, y) be an eigenpair of A. Thus σ (C) ⊆ σ (A). Suppose that

Θs =
{

(x1i,x2i, . . . ,xni, xn+1,i)
T : i = 1, . . . , n+ 1

}
and

Θc =
{

(y1i,y2i, . . . ,yni)
T : i = 1, . . . , n

}
are bases of eigenvectors of S and C, respectively. The result will follow after
proving the linear independence of the following set Υ = Υ1 ∪Υ2 where

Υ1 =
{(
x1e

T
2 , x2e

T
2 , . . . , xne

T
2 , xn+1

)T
: (x1, x2 . . . , xn, xn+1)

T ∈ Θs

}
and

Υ2 =
{(
y1f

T
2 , y2f

T
2 , . . . , ynf

T
2 , 0
)T

:
(
η, (y1, y2, . . . , yn)T

)
∈ Θc

}
.

To this aim, we study the next determinant:

d =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n x1,n+1

−y11 . . . −y1n x11 . . . x1n x1,n+1
...

. . .
...

...
. . .

...
...

...
. . .

...
...

. . .
...

...
yn1 . . . ynn xn1 . . . xnn xn,n+1

−yn1 . . . −ynn xn1 . . . xnn xn,n+1

0 . . . 0 xn+1,1 . . . xn+1,n xn+1,n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

17



Note that d stands for the determinant of a (2n + 1)-by-(2n + 1) matrix
obtained from the coordinates of the vectors in Υ. As before, adding rows
and making suitable row permutations we conclude that the absolute value
of d coincides with the absolute value of the following determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y11 . . . y1n x11 . . . x1n x1,n+1
...

. . .
...

...
. . .

...
...

yn1 . . . ynn xn1 . . . xnn xn,n+1

0 . . . 0 2x11 . . . 2x1n 2x1,n+1

0 . . . 0
... . . .

...
...

0 . . . 0 2xn,1 . . . 2xn,n 2xn,n+1

0 . . . 0 xn+1,1 . . . xn+1,n xn+1,n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which is nonzero by the linear independence of the set Θs and Θc. Thus the
statement follows.

Theorem 24. Let S = (sij) be a matrix of order n + 1 and C = (cij)
a matrix of order n whose spectra (counted with their multiplicities) are
σ(S) = (λ1, λ2, . . . , λn+1) and σ(C) = (µ1, µ2, . . . , µn), respectively. More-
over, suppose that sij ≥ |cij| for all 1 ≤ i, j ≤ n, si,n+1 ≥ 0, for i = 1, . . . , n+1

and ϕ
(j)
n+1,i ≥ 0, for j = 1, 2 and for i = 1, . . . , n. Then, for all 0 ≤ γ ≤ 1,

the nonnegative matrices

M±γ =



s11±γc11
2

s11∓γc11
2

. . . . . . s1n±γc1n
2

s1n∓γc1n
2

s1,n+1
s11∓γc11

2
s11±γc11

2
. . . . . . s1n∓γc1n

2
s1n±γc1n

2
s1,n+1

...
...

. . . . . .
...

...
...

...
...

. . . . . .
...

...
...

sn1±γcn1
2

sn1∓γcn1
2

. . . . . . snn±γcnn
2

snn∓γcnn
2

sn,n+1
sn1∓γcn1

2
sn1±γcn1

2
. . . . . . snn∓γcnn

2
snn±γcnn

2
sn,n+1

ϕ
(1)
n+1,1 ϕ

(2)
n+1,1 . . . . . . ϕ

(1)
n+1,n ϕ

(2)
n+1,n sn+1,n+1


, (16)

ϕ
(1)
n+1,i + ϕ

(2)
n+1,i = sn+1,i, i = 1, 2, . . . , n

have spectra

σ(S) ∪ ±γσ(C) = (λ1, λ2, . . . , λn+1,±γµ1,±γµ2, . . . ,±γµn) .
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Proof. The result follows from a direct application of Theorem 23 to the
matrix M in (16).

Example 25. Let S =

1 1 0
1 2 1
0 1 1

 and C =

(
1 0
0 1

)
be matrices which

spectrum are (1, 0, 3) and (1, 1), respectively. Let

M =


1 0 1

2
1
2

0
0 1 1

2
1
2

0
1
2

1
2

3
2

1
2

1
1
2

1
2

1
2

3
2

1
0 0 1

2
1
2

1

 .

Then, M has eigenvalues

σ(M) = (3, 0, 1, 1, 1) .

Theorem 26. Let A = (ai,j) and B = (bi,j) be matrices of order n. More-
over, consider the n-tuples

x = (x1, . . . , xn)T

and
yT = (y1, . . . , yn)T .

Let

S =

(
A+B x

2y u

)
and C = A−B (17)

with A+B and A−B nonnegative matrices and with x, y and u also non-
negative and, consider the matrix partitioned into blocks

M =



M11 M12 . . . . . . M1n x1

M21 M22 . . . . . . M2n x2
...

...
. . . . . .

...
...

...
...

. . . . . .
...

...
Mn1 Mn2 . . . . . . Mnn xn
y1 y2 . . . . . . yn u


, (18)
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where, for 1 ≤ i, j ≤ n

Mij =

(
aij bij
bij aij

)
, xi = (xi, xi)

T and yi = (yi, yi) .

Then
σ(M) = σ(S) ∪ σ(C).

Moreover, the matrix M is nonnegative symmetric when A, B are symmetric
matrices and xT = y.

Proof. This result is a clear consequence of Theorem 23.

Example 27. Let us consider the list σ =
(

2, −1+
√
5

2
, −1+

√
5

2
, −1−

√
5

2
, −1−

√
5

2

)
.

If we want to apply the known sufficient conditions of Laffey and Smigoc,
[10], it is not possible to obtain a partition of σ where each of its subset has
cardinality three. Nevertheless, the matrices

S =

0 1 1
1 1 0
2 0 0

 and C =

(
0 1
1 −1

)

have respectively, the following list of eigenvalues(
2,
−1 +

√
5

2
,
−1 +

√
5

2

)
and

(
−1−

√
5

2
,
−1−

√
5

2

)
.

In consequence, we consider the matrix M in (18)

M =


0 0 1 0 1
0 0 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 0

 ,

and by Theorem 26 this matrix M realizes the list(
2,
−1 +

√
5

2
,
−1 +

√
5

2
,
−1−

√
5

2
,
−1−

√
5

2

)
.
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In [22] it was proven that if σ = (λ1, . . . , λn) is a list of complex numbers
whose Perron root is λ1 and with λi ∈ Υ =

{
z ∈ C: Re z < 0,

∣∣√3 Re z
∣∣ ≥ |Im z|

}
,

for i = 2, . . . , n, then there exists a nonnegative matrix realizing the list σ if

and only if
n∑
i=1

λi ≥ 0. The example below shows that the set Υ can widen

out.

Example 28. Let

S =

4 3 5
5 4 3
3 5 4

 and C =

(
4 3
−3 4

)

whose spectra are

σ(S) =
(

12, i
√

3,−i
√

3
)

and σ(C) = (4 + 3i, 4− 3i) . (19)

Both matrices satisfy the conditions of Theorem 24 and, the matrix M ob-
tained from S and C with the techniques above

M =


4 0 3 0 5
0 4 0 3 5
1 4 4 0 3
4 1 0 4 3
3
2

3
2

5
2

5
2

4


realizes the complex list

σ(M) =
(

12, i
√

3,−i
√

3, 4 + 3i, 4− 3i
)

where, i
√

3,−i
√

3, 4+3i, 4−3i /∈ Υ.

With this example we illustrate the fact that it is possible to find a non-
negative matrix that realizes a certain list of complex numbers that are not
only in Υ. Moreover, note that the list at the example also verifies the con-
dition that the sum of its elements is greater or equal than zero.
The next example shows that accordingly to Theorem 24 the next matrix M
also realizes the complex list and, therefore it is worth to notice that there
is more than one matrix that realizes it.
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Example 29. Let

S =

4 3 5
5 4 3
3 5 4

 and C =

(
4 3
−3 4

)

be the matrices as previous example, whose spectra are as in (19). Both
matrices satisfy the conditions of Theorem 24 and, the matrix M obtained
from S and C with the techniques above (recall that the construction of M
in (16).

M =


4 0 3 0 5
0 4 0 3 5
1 4 4 0 3
4 1 0 4 3
3 0 5 0 4


realizes the same complex list.

5. Guo Perturbations

In what follows the lists are considered as ordered an n-tuples. Guo [26],
in a partial continuation of a work by Fiedler extended some spectral prop-
erties of symmetric nonnegative matrices to general nonnegative matrices.
Moreover, he introduced the following interesting question:

If the list σ = (λ1, λ2, . . . , λn) is symmetrically realizable (that is, σ is the
spectrum of a symmetric nonnegative matrix), and t > 0, whether (or not)
the list σt = (λ1 + t, λ2 ± t, λ3, . . . , λn) is also symmetrically realizable?

In [19] the authors gave an affirmative answer to this question in the case
that the realizing matrix is circulant or left circulant.

They also presented a necessary and sufficient condition for σ to be the
spectrum of a nonnegative circulant matrix. The following result was pre-
sented.

Theorem 30. [19] Let σ =
(
λ1, λ2, λ3, . . . , λ3, λ2

)
be the spectrum of an n-

by-n nonnegative circulant matrix. Let t ≥ 0 and θ ∈ R. Then

σt =
(
λ1 + 2t, λ2 ± t exp (iθ) , λ3, . . . , λ3, λ2 ± t exp (−iθ)

)
is also the spectrum of an n-by-n nonnegative circulant matrix. Moreover, if
n = 2m+ 2 , then

22



σt =
(
λ1 + t, λ2, λ3, . . . , λm+1, λm+2 ± t, λm+1, . . . , λ3, λ2

)
is also the the spectrum of an n-by-n nonnegative circulant matrix.

Theorem 31. Let n = 2m + 2 and consider the n-tuples σ1 = σ(S) =(
λ1, λ2, λ3, . . . , λ3, λ2

)
and σ2 = σ(C) =

(
β1, β2, β3, . . . , β3, β2

)
with, respec-

tively, realizing matrices S and C being ciculant matrices and such that the
matrices S, S + C and S − C are nonnegative matrices (see necessary and
sufficient conditions to this fact, for instance, in [19]). Let t1 and t2 such
that

t1 ≥ |t2| , (20)

then, there exists a nonnegative permutative matrix M realizing the list σs,t1∪
σc,t2, where

σs,t1 =
(
λ1 + t1, λ2, λ3, . . . , λm+1, λm+2 ± t1, λm+1, . . . , λ3, λ2

)
and

σc,t2 =
(
β1 + t2, β2, β3, . . . , βm+1, βm+2 ± t2, βm+1, . . . , β3, β2

)
.

Proof. Let rs = (s1, . . . , sn)T and rc = (c1, . . . , cn)T be the first row of
matrices S and C, respectively. In [19], it is shown that these rows satisfy

rs =
1

n
FσT1 and rc =

1

n
FσT2

where F is the n by n matrix,

F =
(
ω(k−1)(j−1))

1≤k,j≤n and ω = exp
(
2πi
n

)
and F is the matrix conjugate of F . Then, if r̃s and r̃c are the first row of
the realizing matrices of the spectra σs,t1 and σc,t2 those rows satisfy

r̃s =
1

n
FσTs,t1 and r̃c =

1

n
FσTc,t2 . (21)

Let e1 and em+2 be the first and the (m+ 2)-nd canonical vectors of Cn.
Adding, at first, and after taking difference on the expressions in (21) we
obtain

r̃s + r̃c =
1

n
F
(
σTs,t1 + σTc,t2

)
= rs + rc + (t1 + t2)Fe1 ± (t1 + t2)Fem+2
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and
r̃s − r̃c = rs − rc + (t1 − t2)Fe1 ± (t1 − t2)Fem+2.

Since S + C and S − C are nonnegative then rs + rc and rs − rc are
nonnegative. Moreover both t1 + t2 ≥ 0, t1− t2 ≥ 0 (due to (20)) by Theorem
30, therefore both r̃s+r̃c and r̃s−r̃c are nonnegative columns. In consequence

the circulant matrices S̃, S̃ + C and S̃ − C, whose first rows, respectively,
are r̃s, r̃s + r̃c and r̃s − r̃c, are nonnegative matrices and by Theorem 30
they are still circulant matrices and nonnegative. In consequence, using the
techniques from the above section the matrix M̃ obtained from the circulant

matrices S̃ + C and S̃ − C is a permutative circulant by blocks matrix whose
spectrum is σs,t1 ∪ σc,t2 as required.
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