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1. Introduction

We present here a short overview related with the nonnegative inverse
eigenvalue problem (NIEP) that is the problem of determining necessary
and sufficient conditions for a list of complex numbers

o= (A2 M) (1)

to be the spectrum of a n-by-n entrywise nonnegative matrix A. If a list o is
the spectrum of a nonnegative matrix A, then o is realizable and the matrix A
realizes o, (or, that is a realizing matrix for the list). This problem attracted
the attention of many authors over 50+ years and it was firstly considered by
Suleimanova [25] in 1949. Although some partial results were obtained the
NIEP is an open problem for n > 5. In [12] this problem was solved for n = 3
and for matrices of order n = 4 the problem was solved in [14] and [15]. It
has been studied in its general form in e.g. [2, 6, 8 9, 12, 22, 23, 26]. When
the realizing nonnegative matrix is required to be symmetric (with, of course,
real eigenvalues) the problem is designated by symmetric nonnegative inverse
eigenvalue problem (SNIEP) and it is also an open problem. It has also been
the subject of considerable attention e.g [3, 7, 11, 24]. The problem of which
lists of n real numbers can occur as eigenvalues of an n-by-n nonnegative
matrix is called real nonnegative inverse eigenvalue problem (RNIEP), and
some results can be seen in e.g. [1, 4, 17, 20, 21]. In what follows o (A)
denotes the set of eigenvalues of a square matrix A. Below are listed some
necessary conditions on a list of complex numbers o = (A1, Ag,..., \,) to be
the spectrum of a nonnegative matrix.

1. The Perron eigenvalue max {|A| : A € 0(A)} belongs to o.
2. The list o is closed under complex conjugation.

3. sp(0)=>_AF>0.
i=1
4. st (o) < n™ sy, (o) for k,m =1,2,. ...

The first condition listed above follows from the Perron-Frobenius theorem,
which is an important theorem in the theory of nonnegative matrices. The
last condition was proved by Johnson [6] and independently by Loewy and
London [12]. The necessary conditions that were presented for the NIEP are
sufficient only when the list ¢ has at most three elements. The solution for
NIEP was also found for lists with four elements, while the problem for lists
with five or more elements is still open.
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Definition 1. The list o in (1) is a Suleimanova spectrum if the \'s are real
numbers, Ay > 0> Ay > --- >\, and s; (o) > 0.

Suleimanova, [25] stated (and loosely proved) that every such spectrum
is realizable. Fiedler [3] proved that every Suleimanova spectrum is symmet-
rically realizable (i.e. realizable by a symmetric nonnegative matrix).

One of the most promising attempts to solve the NIEP is to identify the
spectra of certain structured matrices with known characteristic polynomials.
Friedland in [4] and Perfect in [18] proved Suleimanova’s result via compan-
ion matrices of certain polynomials. However, constructing the companion
matrix of a Suleimanova’s spectrum is computationally difficult. Recently,
Paparella [16] gave a constructive proof of Suleimanova’s result. The author
defined permutative matrix as follows.

Definition 2. [16] Let x = (z1,...,2,)" € C" Let P,..., P, be permuta-
tion matrices. A permutative matriz P is a matrix which takes the form

XT

(Px)"

P=|

(Pn—lx)T
(PnX)T

In [16], explicit permutative matrices which realize Suleimanova spectra were
found. A few remarks concerning the brief history of permutative matrices
are in order.

1. Ranks of permutative matrices were studied by Hu et al. [5]

2. Moreover, the author [16] proposed the interesting problem which asks
if all realizable spectra can be realizable by a permutative matrix
or by a direct sum of permutative matrices. An equivalent problem
communicated to the author by R. Loewy is to find an extreme non-
negative matrix [8] with real spectrum that can not be realized by a
permutative matrix or a direct sum of permutative matrices. Loewy
[13] resolved this problem in the negative by showing that the list

_ (1.8 AL 8 VBT 4 _ 21 - _
o= (1, 55 T 50195 T 500 "5 25) is realizable but cannot be re

alized by a permutative matrix or by a direct sum of permutative ma-
trices.



In this paper we call the problem as PNIEP when the NIEP involves
permutative matrices. Note that the lists considered along the paper are
equivalent (up to a permutation of its elements). Therefore, unless we say
the contrary, we call a given n-tuple o or any permutation resulting from it,
as “the list”. In consequence, any of these lists can be used.

In this work we will find spectral results for partitioned into 2-by-2 blocks
matrices and using these results sufficient conditions on given lists to be the
list of eigenvalues of a nonnegative permutative matrix are obtained. The
paper is organized as follows: At Section 2 some definitions and facts related
to permutative matrices are given. At Section 3 spectral results for matrices
partitioned into 2-by-2 blocks are presented and the results are applied to
NIEP, SNIEP and PNIEP. Some illustrative examples are provided. At Sec-
tion 4 results for matrices with odd order are presented. Finally, at Section 5
Guo perturbations on lists of eigenvalues of this class of permutative matrices
(in order to obtain a new permutative matrix) are studied.

2. Permutatively equivalent matrices

In this section some auxiliary results from [16] and some new definitions
are introduced. In [16] the following results were proven.

Lemma 3. [16, Lemma 3.1] For x = (x1, 22, . .. ,a:n)T e Cn, let

T To ... Xj ... Tp—_1 Tp
i) ry ... iy ... Tp—_1 Tp
X=1 z ) (2)
Tp—1 To ... . . T Tn
Tn Tog ... Tij ... Tp-1 I1

Then, the set of eigenvalues of X is given by

U<X):{inaxl_55'2)1'1—1'3,...,%1—1'”}. (3)
i=1



Theorem 4. [16] Let 0 = (A1, ..., \,) be a Suleimanova spectrum and con-
sider the n-tuple x = (x1, %2, ..., x,), where

and x; =x1 — N, 2 <1< n,

T, = >\1+";L'+>\n

then the matriz in (2) realizes o. In particular, if \y + -+ + A\, = 0 the
solution matrix, X, becomes

0 ol oo N e Pl A
Dol 0 o ] P A
DS U b VI U D W

Remark 5. By previous results and the proof of above Theorem 4 in [16], it
is clear that for any set 0 = {aq,...,a,} there exists a permutative matrix
with the shape of X in (2) whose set of eigenvalues is o.

The following notions will be used in the sequel.
Definition 6. Let 7 = (7,...,7,) be an n-tuple whose elements are permu-

tations in the symmetric group S, with 71 = id. Let a = (ayq,...,a,) € C".
Define the row-vector,

75 (a) = (ar)s- s Arym))
and consider the matrix
71 (a)
7 ()
r=| | (4)
Tn—1 (a)
Tn (a)

An n-by-n matrix A, is called 7-permutative if A = 7 (a) for some n-tuple a.



Remark 7. Although the statement in Definition 2 is precisely the state-
ment found in [16, Definiton 2.1], it is clear that Definition 6 of this work is
the proper definition of a permutative matrix (indeed, since every permuta-
tion matrix is a permutative matrix, it is not ideal to define the latter with
the former). Thus, Definition 6 is a better definition of a permutative matrix
than the one given at Definition 2.

Definition 8. If A and B are 7-permutative by a common vector 7 =
(T1,...,Tn) then they are called permutatively equivalent.

Definition 9. Let ¢ € S, and the n-tuple 7 = (id, ¢, p?,..., 0" 1) € (S,)".
Then a T-permutative matrix is called p-permutative.

It is clear from the definitions that two p-permutative matrices are per-
mutatively equivalent matrices.

Remark 10. If permutations are regarded as bijective maps from the set
{0,1,--- ,n — 1} toitself, then a circulant (respectively, left circulant) matrix
is a @-permutative matrix where ¢ (i) = ¢ — 1(mod n) (resp. ¢ (i) = i +
1(mod n)). Indeed, notice that the 3-by-3 circulant matrix

>0
o o
[SEE~ e

is (- permutative with

(012
=\ 201
and the 3-by-3 left circulant matrix
a b c
b ¢ a
c a b
is - permutative with
(01 2
7=\120 )



Remark 11. A permutative matrix A defines the class of permutatively
equivalent matrices. Let oy,09 be two Suleimanova spectra, then the cor-
responding realizing matrices X,, and X,, given by Theorem 4 are permu-
tatively equivalent matrices. Furthermore, by Lemma 3 and Remark 5 it
is easy to check that given two arbitrary inverse eigenvalue problems (not
necessarily NIEP) there exist a solution which is permutatively equivalent to
the matrix X in (2).

For 7-permutative matrices an analogous property related with circulant
matrices is given below.

Proposition 12. Let {Ai}le be a family of permutatively equivalent matri-
ces in C™*". Let {%}f:l be a set of complex numbers. Consider

k
i=1

Then Ay and A are permutatively equivalent matrices.

Proof. Let 7 = (1q,...,7,) be an n-tuple whose elements are permu-
tations in the symmetric group S, and suppose that the family {A;} are
permutatively equivalent by 7. Let ey, e,,..., e, be the canonical row vec-
tors in C". The result is an immediate consequence of the fact that for any
a=(ay,...,a,) € C" the matrix 7 (a) in (4) can be decomposed as

T7(a) =a17 (e1) + as7 (€2) + -+ - + a,7 (e,),

where



3. Eigenpairs for some into block matrices

In this section we exhibit spectral results for matrices that are partitioned
into 2-by-2 symmetric blocks and we apply the results to NIEP, SNIEP and
PNIEP. The next theorem is valid in an algebraic closed field K of charac-
teristic 0. For instance, K = C.

Theorem 13. Let K be an algebraically closed field of characteristic 0 and
suppose that A = (A;;) is a block matrixz of order 2n, where

(@ by
A= (bij aij) , g, bij € K. (6)
If

sij = a;; + by, 1<4,5<n
and

Cij = a; — by, 1 <4, <n
Then

o(A)=0c(S)Uc(C)
where
S = (Sij) and C = (Cij) .

Proof. Let (A, v) be an eigenpair of S, with v = (v, ... ,vn)T, and consider

the 2n-by-1 block vector w = (w;), where w; := v;e and e = (1,1)". Since

Aijwj = K K vje = w B ?Jj = sijvje,
] v %) v

notice that, for every i = 1,...,n,
Z Aijwj = <Z Sz‘jﬂj> e = ()\UZ) e =)\ (Uz'e) = )\wz
j=1 j=1
i.e (A\,w) be an eigenpair of A. Thus o (S) C o (A).
Similarly, let (u,x) be an eigenpair of C, with x = (zq,... ,a:n)T and

consider the 2n-by-1 block vector y = (y;), where y; := z;f and f = (1, -1

Since
(e b\ e fag—by\
Az]y] - (sz (lij) l'jf = (b” — ay T; = Cl]fB]fa

8



notice that, for every i =1,...,n,
> Aigy; = (Z cz-jxj> £ = (Azi) £ =\ (a:f) = Ay
J=1 j=1
i.e (1,y) is also an eigenpair of A. Thus o (C') C o (A). Suppose that
O, = {(fliaiﬂ% e ,$m‘)T i=1,... ,n}

and
O. = {<y1i7y2ia-~7ym‘)T S 1,...,n}

are bases formed with eigenvectors of S and C, respectively. The result will
follow after proving the linear independence of the set T = T; U T, where:

T
T, = {(x1e2T,x2e2T, o mney) (3,2, an) e @S}

and i
TQ - {(3/1f2Tay2f2T> s ,ynng) : (yl,yg, R ,yn)T c @c} .

Therefore, we consider the following determinant,

Y oo Y T - Tin

Y -+ —Yin T11 ... Tin
d=

Yn1 ce Ynn Tnl --- Tpn

—Yn1 -+ " Yan Tp1 ... Tpn

Note that d stands for the determinant of a 2n-by-2n matrix obtained from
the coordinates of the vectors in Y. By adding rows and after making suitable
row permutations we conclude that the absolute value of d coincides with the
absolute value of the following determinant

Yir -+ Yin T -.. Tin
0 0 21’11 . 2'%‘171
0 0
0 0 2z, ... 2z,



which is nonzero by the linear independence of the sets ©, and O, respec-
tively. U

Theorem 14. Let S = (s;;) and C = (c¢;;) be matrices of order n whose spec-
tra (counted with their multiplicities) are o(S) = (A1, A2, ..., \n) and o(C) =
(1, piay - - - fin), Tespectively. Let 0 <~y < 1. If

leii| < sijy 1 <i,j <n, (7)

(or equivalently if S, S+ C and S — C are nonnegative matrices), then the
matrices 3 (S +~C) and (S —~C) are nonnegative and the nonnegative
matrices

Mi’y = (Mijify> ,’lUZth M,

sigEYCij  SiFVCij
iji'y =

) ) ..
Sij FVCij siji'ycij) Y 1 S Z? j S n (8>
2 2

realize, respectively, the following lists

a(S)U~a(C) = (A, Aoy ooy Ay YHL, Y, - -3 V)

and

a(S)U (=ya(C)) := (A1, Mgy ooy Ay =YL, — Y2y« -y — V) -

Proof. By the definitions of £ (S +~C) and 1 (S — () and the condition
in (7) it is clear that M, in (8) are nonnegative matrices. By conditions of
Theorem 13 one can see that each (i, j)-block of the matrix takes the form

(?gj” i” ) and its spectrum is partitioned into the union of the spectra of
i iJ

the n-by-n matrices (z;; +yy;5); ,_; and (i — yy)
S = (Tij + Yij); j=1
+v¢;; = 245 — yij. Thus, for both cases z;; = S”i% and y;; = slﬁ%, as it
is required for the respective realization of the spectra o(S)U £y (C). g

?].:1. If we impose that
and £7C = (x;; — yij)?j:l we obtain s;; = x;; + y;; and

Remark 15. Note that in the previous result if S = (s;;) and C' = (¢;),
then

s11Evyc11 s11F7yc11 sinEycin SinTYClin
5 3 e e 3 5
s11Fyc11 s11E£vyec11 SinFYCin sinEtycin
B} 3 e e 3 5
My, = (9)
Sn1Eycn1 Sn1FYCnl SnnEtYCnn SnnFYCnn
5 3 e e 3 3
Sn1FYCnl Sn1tycn1 SnnFYCnn SnnEycnn
B} 3 e e 3 5
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The next corollary establishes the result when the matrices S and C' are
symmetric, both with prescribed list of eigenvalues.

Corollary 16. Let S = (s;;) and C = (¢;j) be symmetric matrices of orders
n whose spectra (counted with their multiplicities) are o(S) = (A1, Ag, ..., \p)
and o(C) = (1, 2, - - -, fin), Tespectively. Let 0 < v < 1. Moreover, suppose
that |c;j| < s for all 1 < i,5 < n. Then 5 (S +~C) and 5 (S —~C) are
symmetric nonnegative matrices and

Mi’y = <Mijiw) with Mz

sijEycij  SijFCij
J £~ =

2 2 ) 9
Sij FVCij Sij:l:’ycij) ) fO'f' 1 S Z?j S n
2 2

are symmetric nonnegative matrices such that, respectively, realize the fol-
lowing lists

U(‘S) U (i’VU(O)) = ()\17 )\27 R >\n7 :l:’y:ula i/}/M?v s 7:|:’Ylun) :

Proof. It is an immediate consequence of Theorem 14 that if the matrices
S and C' are symmetric, then the matrices My, obtained in (9) are also
symmetric. 0

Remark 17. We remark that for two permutatively equivalent n-by-n ma-
trices S = (s;;) and C' = (c¢;;) whose first row, are the an n-tuple (s1,...,s,),
and (cq,...,¢,), respectively, the inequalities |c;;| < s;; hold if and only if
lei| < 83,1 <i <.

Theorem 18. Let S = (s;;) and C = (¢;;) be permutatively equivalent matri-
ces whose first row are the n-tuples (sy, ..., 8,) and (c1,. .., ¢,) , respectively,
such that |c;| < s;,1 < i < n. Moreover, their spectra (counted with their mul-
tiplicities) are the lists o(S) = (A1, A2y ..., An) and o(C) = (u1, pro, - .-, fin),
respectively. Let 0 <y < 1. Then, 5 (S +~C) and 5 (S —~C) are nonneg-
ative matrices, permutatively equivalent matrices and the following matrices:

J -+~ =

sijEvci; S FVCi
My = (M. ) with My

Si]':g’ycij Sij:EWCij> ? 1 S Z?] S n <1O>
2 2

are permutative and realize, respectively, the following lists
0<S) U (i’VU(O)) = ()\17 )\27 R >\n7 :t’)/ul’ i/}/M?v s 7:|:’Ylun) :
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In particular, if the list (A1, Aa,..., \n) 1S a Suleimanova’s type list and
(1, piay - - -y fin) Satisfies the condition

,U1+H2+"'+:un<>\1+)\2+"'+)\n7 (11)

and

1t pg s iy
n

— My
n

< (/\1+>\2+---+)\n —)\1') fora<i<n,

(12
then, the lists o(S) U (£y0(C)) are respectively, realizable by the matrices
My, in (10), where S = (s;;) and C = (c;;) are the corresponding permutative
matrices obtained from Theorem 4 and Lemma 3 by replacing with the lists
of eigenvalues.

Proof. Is an immediate consequence of the fact that if the matrices S
and C'in Theorem 14 are considered to be permutatively equivalent matrices
then, by Proposition 12, both 1 (S +~C) and 3 (S —~C) are permutatively
to S. Therefore, by the shape of the matrices in (9) the matrices M., in (10)
become permutative matrices. In particular, if the matrices S and C and its
spectra o(S) and o(C'), respectively, are as in the statement, by last state-
ment of Remark 11 the matrices S and +yC that realize the spectra o(S5)
and £y0(C) are permutatively equivalent matrices. Then 3 (S +~C) and
(S —~C) are nonnegative permutative matrices, implying, by the above
reasoning that the matrices My, in (9), with the given description by (10),
will be also nonnegative permutative matrices. The conditions in (11) and
(12) are derived from the condition |¢;| < s;, for all 1 < ¢ < n when the

n-tuples (si,...,$,) and (cq,...,¢,) are the first row of S and C, respec-
tively, where the corresponding descriptions of (si,...,s,) and (c1,...,¢,)
are obtained from Lemma 3 and Theorem 4 . U

Note that it is important that the matrices S and C' are permutatively
equivalent otherwise we can not guarantee that the matrices M., are per-
mutative. In fact consider the following example:

Example 19. Both matrices S and C' are not permutatively equivalent and

12



M constructed as in the previous theorem is not permutative.

12 3
S = |31 2], (13)
2 31
01 2
C = 1201 (14)
2 0 1
113 105 1
2 2 2 2 2 2
1 11315
2 2 2 2 2 2
511 1 31
M=11 31113 (15)
202 7 7 2 2
2.0 5 5 10
023301

In the next examples S and C' are permutatively equivalent.

Example 20. Let S and C be the following circulant matrices, in conse-
quence, they are permutatively equivalent matrices

S:

[NOR e NV
NN

1 0 0 1
2l andC =11 0 O
2 010
whose spectra, respectively, are the following lists

1+ivV3 1—iV3 1+iv3 1—iV3
D, 7 5 and | 1, 5 5 :

It is easy to see that the conditions of Theorem 18 are verified. In conse-
quence, the 6-by-6 matrix

— = O =
e i i = e
O ==
—_ O = = =
— = = = O
— = = == O

13



is a permutative matrix and realizes the list

(5 14+iv3 1—iV3 X 143 1—N§>
b b 2 Y 2 b 2 .

2

Example 21. Let S and C be the following circulant matrices, in conse-
quence, they are permutatively equivalent matrices

0 0 -1
andC=1|-1 0 O

2 2
S=11 2
21 0 -1 0

NN

whose spectra, respectively, are

<5jl+i\/§’1—i\/§> - (_1’—1—¢\/§’—1+¢\/§>.

2 2 2 2

It is easy to see that the conditions of Theorem 18 are verified. In conse-
quence, the 6-by-6 matrix

111101
111110
011111

M=1101111
110111
111011

is nonnegative permutative and realizes the spectrum

(5 1+iv3 1—iV3 . —1—1iV3 —1+z‘\/§)
’ 3 9 y T b 9 3 9 .

2

Example 22. Let o = (10,7, —3,-3,—2,—2,—2 — 1). The following Suleimanova
sub-lists (7, —3, -2, —2) and (10, =3, —2, —1) can be obtained from o. Thus,

the conditions of Theorem 18 hold and by Theorem 4 the matrix that realizes

(10, -3, —2, 1) is

=~ W N =
DN =N
W = W W
— o e e

14



and the matrix that realizes (7, -3, —2, —2) is

02 2 3
20 2 3
C=19 9 0 3
3220

Therefore, the matrix M in (9) becomes

22 ) 133
SEEEEEE
welY%Y 2333333
5 1 1 1 7 1
P EC2 1113
1t 0281111
T B B R
3 202 5 35 3 3

which is a permutative matrix and realizes the initial list.

4. Real odd spectra

We now present spectral results for matrices partitioned into blocks and
with odd order. We start with the following spectral result that is presented
in an algebraic closed field, K, for instance K = C.

Theorem 23. Let K be an algebraically closed field of characteristic 0 and
suppose that A = (A;;) is an into block square matriz of order 2n + 1, where

( (a.: b
(b ) asidgsa
bij Qi
Ay = (a"j 1<i<n, j=n+1
Qg5
(Clij bl]) z:n+1,1§j§n
L Q5 Z:n—l—l, j:n+1
If
a;j + bij 1<4,5<n

Qg5 1§Z§n,]:n+1
ai+by; 1=n+1,1<j<n
i 1=n+1, 5=n+1

Sij =

15



and

Then
og(A)=0(S)Uoc(C),
where
S == (Sij) and C = (Cij) .
Proof. Let (A, v) be an eigenpair of S, with v = (vy, ... ,vn,vnH)T, and
consider the (2n + 1)-by-1 block vector w = (Z(ij ) ), where by an abuse of
n+1

notation, we have

e — vie 1<7<n
T Un+1 j:n_l_l

Since
Ajw; = Yo s = sve, 1<4,j<n
ij Wj b aw v;e bij +ai; ) ijVj€; S4] s
Ai,n+1wn+1 = ( ) Wn+1 = Sin+1VUn+1€, 1<i<n
Apprjw; = (aniry bugrg) wy = (angry basry) (vje)
= (p+1,j + bpy1) V) = Spg105, 1<ji<n
Finally,

An—l—lm-{—l Wn+1 = Sn+1,n+1Un+1-
Notice that, for every ¢ € {1,...,n},

n+1 n
g Ajjw; = g Aijwj + Aipp1Wn1
J=1 J=1

= (Z 8iV; + si,nﬂvml) e =(\v;) e =\ (vie) = \w;

Jj=1
and
n+1

n
E Apg1jwy = g Snt1,jVj + Aniinr1Wni
: =

n
= ( E Sn41,jV5 + Sn+1,n+1vn+1> =AUp11=AWp 11

=1

16



i.e (A, w) is an eigenpair of A. Thus o (S) C o (A).
Similarly, let (g, ) be an eigenpair of C, with x = (zy,...,2,

consider the (2n + 1)-by-1 block vector y = <<yj)>, where y; = z;f and

)" and

0
f =(1,-1)". Since

;s bz Qi — bz
Aijy; = (sz a;) ot = (b”] Clz'j') 7 = Gyt

notice that, for every i =1,..

n+1
Z Aijyj = (Z C’ijjf—i_A’L n+1Yn+1
j=1

7=1

=X (xf) = Ay,

\_/

€ (i, y) be an eigenpair of A. Thus o (C') C o (A). Suppose that

T .
@S = {(mli,x% RN ,LEm,ZL’nJrLi) 1= 1, e ,n—l— 1}

and
60 - {(yli7y2i7 cee 7ym')T 1= 1, . ,n}

are bases of eigenvectors of S and C| respectively. The result will follow after
proving the linear independence of the following set T = T; U 15 where

Ti= {<xleg’$2eg’ T ’xneg’$"+1)T : ($1,l’2 <oy Iy, ZUn-i-l)T € @s}
and
T
TQ = {(?/1sz7?/2sz7 cee 7ynf2TaO) : (77, (yl,yg, . ,yn)T> c @c}

To this aim, we study the next determinant:

Yin - Yin T11 <o Tin L1 n+1
Y11 - —UYin T11 oo Tin T1n+1
d=
Yn1 e Ynn Tn1 e Tnn Tnn+1
—Yn1 -+ —Ynn Tnl s Tnn Lnn+l
0 ce 0 Tpn+11 -+ Tp+ln Tnggntl

17



Note that d stands for the determinant of a (2n + 1)-by-(2n + 1) matrix
obtained from the coordinates of the vectors in Y. As before, adding rows
and making suitable row permutations we conclude that the absolute value
of d coincides with the absolute value of the following determinant

Y1 - Yin T11 oo Tin T1n+1
Yn1 Ynn Tnl ce Lnn Tnn+1
0 0 211711 N 2171” 2[)’]1’“_’_1
0 0 e :
0 0 2x,1 ... 2Tpn 2T5p41
0 0 Tn4+11 -+ Tn4ln xn_H,n—i—l

which is nonzero by the linear independence of the set ©, and ©.. Thus the
statement follows.

0

Theorem 24. Let S = (s;;) be a matriz of order n+ 1 and C = (c¢;;)
a matriz of order n whose spectra (counted with their multiplicities) are
a(S) = (M, A2y .., A1) and o(C) = (ua, pro, -« -, fin), Tespectively. More-
over, suppose that s;; > |c;;| foralll <i,5 <n,S;n41 >0, fori=1,...,n+1
and 901(1]11,1' >0, forj =1,2 and fort=1,...,n. Then, for all 0 < v < 1,
the nonnegative matrices

s11yc11 s11FYc11 s1nEycin SinFYCin

5 5 e e 3 3 S1,n+1
siiFyeir suifyenn S1nFYCln  SinEYCin s

5 5 e 5 ) 1,041

Moy = L e : 2| (26)

snl:l:')/cnl Sn1FYCn1 snn:t'}/cnn SnnFYCnn s

5 3 e 5 3 nn+l
Sn1Fycn1  snifycnl SnnFY¥Cnn  SnntYCnn s

5 5 e 5 5 n,ntl

1) (2) 1) 2) s
90n+1,1 SOnJrl,l ter e ()On+1,n QDnJrl,n n+1,n+1
(1) 2 _ S
Ori1i T Priri = Sn+1is 0=1,2,....m

have spectra

a(S)UEyo(C) = (A, Ay - ooy Aprs ypia, Eypig, - v n) -

18



Proof. The result follows from a direct application of Theorem 23 to the
matrix M in (16). 0

10

0 1) be matrices which

1 10
Example 25. Let S = |1 2 1| and C = <
0 1 1

spectrum are (1,0,3) and (1, 1), respectively. Let

1 1
10 5 50
O A

M=13 335 31
S N B
2 2 3
001l 11

Then, M has eigenvalues
o(M)=(3,0,1,1,1).

Theorem 26. Let A = (a;;) and B = (b;;) be matrices of order n. More-
over, consider the n-tuples

X = (:vl,...,a:n)T

and

yT:(yl?"'ayn)T-

5:(%) and C = A— B (17)
2y U

with A+ B and A — B nonnegative matrices and with x, y and u also non-
negative and, consider the matrix partitioned into blocks

Let

M11 M12 Mln X1
M21 M22 e e Mgn X9
M=\ - , (18)
Mnl Mng e e Mnn Xn
Y1 Y2 cee e Yn u
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where, for 1 <1,5 <n
aij by T
Mi; = b.. )X = (zi, )" and y; = (yi, yi) -

Then
o(M)=0c(S)Ua(C).

Moreover, the matriz M is nonnegative symmetric when A, B are symmetric
matrices and x' =y.

Proof. This result is a clear consequence of Theorem 23. U

Example 27. Let us consider the list 0 = (2, _1;”/5, _1;"/5, _1;‘/5, _1;\/5> .

If we want to apply the known sufficient conditions of Laffey and Smigoc,
[10], it is not possible to obtain a partition of o where each of its subset has
cardinality three. Nevertheless, the matrices

011
S=1110 andC:((l) _11)
2 00

have respectively, the following list of eigenvalues

(2 —14++/5 —1+\/3> nd (—1—\/5 —1—\/3>.

2 2 2 ’ 2

In consequence, we consider the matrix M in (18)

=

I
_— O = O O
= -0 O O
O = OO =
OO R~k O
OO O = =

and by Theorem 26 this matrix M realizes the list

(2 —14+V5 —1+v6 —1—-56 —1—\/5>‘

2 2 2 ’ 2
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In [22] it was proven that if o = (A1,...,\,) is a list of complex numbers
whose Perron root is A\ and with A\; € T = {z € C:Rez <0, |\/§Re z‘ > |Im z|},
for i = 2,...,n, then there exists a nonnegative matrix realizing the list o if

and only if Z)‘i > 0. The example below shows that the set T can widen

i=1
out.

Example 28. Let

@)

I
SUNS N
U W
B o O

4 3
and C' = (_3 4>

whose spectra are
o() = (12,iV3,~iV3) and o(C) = (4+3i,4 - 3i). (19)

Both matrices satisfy the conditions of Theorem 24 and, the matrix M ob-
tained from S and C with the techniques above

4 0 3 0 5
040 3 5
M=11 44 0 3
41 0 4 3
3 3 5 5 4
2 2 2 2

realizes the complex list

o(M) = (12,N§, i34+ 304 — 3@) where, iv/3, —iV/3,44+3i,4—3i ¢ T.

With this example we illustrate the fact that it is possible to find a non-
negative matrix that realizes a certain list of complex numbers that are not
only in T. Moreover, note that the list at the example also verifies the con-
dition that the sum of its elements is greater or equal than zero.

The next example shows that accordingly to Theorem 24 the next matrix M
also realizes the complex list and, therefore it is worth to notice that there
is more than one matrix that realizes it.
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Example 29. Let

4 3 5
S=15 4 3 ade’:(_Zl3 Z)
3 5 4

be the matrices as previous example, whose spectra are as in (19). Both
matrices satisfy the conditions of Theorem 24 and, the matrix M obtained
from S and C' with the techniques above (recall that the construction of M
in (16).

4 0 3 0 5
040 35
M=|14 40 3
410 4 3
305 0 4

realizes the same complex list.

5. Guo Perturbations

In what follows the lists are considered as ordered an n-tuples. Guo [26],
in a partial continuation of a work by Fiedler extended some spectral prop-
erties of symmetric nonnegative matrices to general nonnegative matrices.
Moreover, he introduced the following interesting question:

If the list 0 = (A1, Ag, ..., \,) is symmetrically realizable (that is, o is the
spectrum of a symmetric nonnegative matrix), and ¢ > 0, whether (or not)
the list o, = (A1 + ¢, Ao =1, A3, ..., \,) is also symmetrically realizable?

In [19] the authors gave an affirmative answer to this question in the case
that the realizing matrix is circulant or left circulant.

They also presented a necessary and sufficient condition for ¢ to be the
spectrum of a nonnegative circulant matrix. The following result was pre-
sented.

Theorem 30. [19] Let 0 = ()\1, Ao, A3, ... ,Xg,Xg) be the spectrum of an n-
by-n nonnegative circulant matrix. Let t > 0 and 0 € R. Then

Ot = ()\1 + Qt, )\2 + texp (7/9) s )\3, ce ,Xg,XQ + texp (—ZQ))

1s also the spectrum of an n-by-n nonnegative circulant matrixz. Moreover, if
n=2m+ 2, then
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Oy = ()\1 + t, )\2, )\3, ceey )\m+17)\m+2 + t,Xerl, oo ,Xg,}g)

is also the the spectrum of an n-by-n nonnegative circulant matrix.

Theorem 31. Let n = 2m + 2 and consider the n-tuples oy = o(S) =
(/\1, Ao, Az, ... ,X3,X2) and oy = o(C') = (61, Ba, B3, ... ,33,32) with, respec-
tively, realizing matrices S and C' being ciculant matrices and such that the
matrices S, S + C and S — C' are nonnegative matrices (see necessary and
sufficient conditions to this fact, for instance, in [19]). Let t; and ty such
that

th 2 |t2| ) (2())
then, there exists a nonnegative permutative matriz M realizing the list o4, U
Octy, Where

Ost; = (/\1 + tl, )\2, )\3, Ce 7)\m+17 )\m+2 + tl,xm+1, R ,Xg,XQ)

and

Octy — (/81 + t27 627 537 s 7Bm+17ﬁm+2 + t273m—|—17 s 733732) .

Proof. Let ry = (sq,.. .,sn)T and r. = (cq, ... ,cn)T be the first row of
matrices S and C, respectively. In [19], it is shown that these rows satisfy

1— 1—
re =—Fol and r. = —Fo?
n n

where F'is the n by n matrix,

_{(, (k=1)(j—1 _ 2mi

= (w( U ))1§k,j§n and w = exp (%)
and F is the matrix conjugate of F. Then, if 7, and 7, are the first row of
the realizing matrices of the spectra o,,, and o.;, those rows satisfy

U . 1= 4

Ts = EFU&t1 and 7. = EFUC’tQ' (21)
Let e; and e, 2 be the first and the (m + 2)-nd canonical vectors of C".
Adding, at first, and after taking difference on the expressions in (21) we

obtain
- 1—
Ts +Tc= ;F (050 + 0ess)

=Ts+ 7.+ (tl + tg) Fel + (tl + tz) Fem+2
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and B N
?s_?c:Ts_rc"i_(tl _tQ)Felj:<t1 _t2)Fem+2-

Since S 4+ C and S — C' are nonnegative then r, + r. and ry — r. are
nonnegative. Moreover both ¢, +t2 > 0,t; —t3 > 0 (due to (20)) by Theorem

30, therefore both 74+7. and r; —7r, are nonnegative columns. In consequence

—_

the circulant matrices S , S+ C and S — C, whose first rows, respectively,
are ry, rs + r. and ry — r., are nonnegative matrices and by Theorem 30
they are still circulant matrices and nonnegative. In consequence, using the
techniques from the above section the matrix M obtained from the circulant

matrices S + C' and S — C'is a permutative circulant by blocks matrix whose
spectrum is o4, U o, as required. U
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