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1. Introduction

Semi-infinite Programming (SIP) deals with extremal problems that involve infinitely
many constraints in a finite dimensional space. Semi-infinite optimization has always been
a topic of a special interest due to the numerous theoretical and practical applications
such as robotic, classical engineering, optimal design, the Chebyshev approximations etc.
(see [8, 10, 11], and the references therein). Nowadays, SIP models are efficiently used
in dynamic processes, biomedical and chemical engineering, biology, tissue engineering,
polymer reaction engineering, etc. (see [1, 25], and others).

Generally, a Semi-infinite Programming (SIP) problem can be formulated as follows:

min
κ∈Rn

c(κ) s.t. f(κ, τ) ≤ 0 ∀ τ ∈ T,

where κ ∈ Rn is a decision variable, τ is a constraint index, T ⊂ Rp is an infinite index
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set. When, additionally, the index set T depends on the decision variable κ, one gets a
problem of the generalized SIP (see [12]).

The use of the SIP models for real processes systems is often associated with global
parametric identifiability of a dynamic model and a robust design of dynamic experiments
where certain parameters arise (see [1, 3, 4], et al). In such situations, the objective
function and the functions defining the feasible set depend additionally on so called
perturbational parameters and problems of parametric Semi-infinite Programming arise.
Many fundamental and especial results concerning parametric Semi-infinite Programming
are due to H. Th. Jongen, J.-J. Rückmann, and G.- W. Weber ([15–17]) as well as to F.J.
Bonnans, A. Shapiro, G. Still, O. Stein and others (see e.g. [3, 13, 24]). For applications
of the parametric SIP see [1, 23–25] et al.

When one deals with the parametric SIP problems, then even small perturbations
of the parameters can seriously change the properties of solutions. Hence the study of
the dependence of solutions on parameters is a topical issue in parametric SIP (see e.g.
[3, 15, 16, 24]).

In our study, we are interested in properties of auxiliary NLP problems that arise when
the following parametric SIP problem is being studied:

(SIP (ε)) : min
κ

c(κ, ε), s.t. f(κ, τ, ε) ≤ 0, τ ∈ T = {τ ∈ Rp : gi(τ) ≤ 0, i ∈ Ī},

where the index set T ∈ Rp is compact, functions

c(κ, ε), f(κ, τ, ε), gi(τ), i ∈ Ī , (1)

are sufficiently smooth w.r.t. all their arguments, and ε > 0 is a parameter, ε ∈ E(ε0) =
[ε0, ε0 + δ], with sufficiently small δ > 0, ε0 being the unperturbed parameter value.

When considering a problem (SIP (ε)), with a fixed ε, one is interested in finding an
optimal solution κ(ε) of this problem, the corresponding active index set Ta(κ(ε)) := {τ ∈
T : f(κ(ε), τ, ε) = 0} and the Lagrange multipliers vector η(ε) = (η(τ), τ ∈ Ta(κ(ε)))
satisfying the first order optimality conditions ( see e.g. [10, 11], et al.).

Suppose that for the problem (SIP (ε0)) (corresponding to an unperturbed parameter
value ε := ε0) we have found an optimal solution κ(ε0) with a finite active index set
Ta(κ(ε0)) = {τj(ε0), j ∈ I}, and the Lagrange multipliers vector η(ε0) = (ηj(ε0), j ∈ I).
Then under rather “nonrestrictive “ assumptions one can show that the perturbed problem
(SIP (ε)) with ε ∈ E(ε0), has an optimal solution κ(ε) ∈ Rn such that κ(ε) → κ(ε0)
as ε → ε0. Moreover the corresponding active index set Ta(κ(ε)) and the Lagrange
multipliers vector η(ε) admit the presentations

Ta(κ(ε)) = {τkj(ε), k = 1, . . . , pj , j ∈ J̄}, η(ε) = (ηkj(ε), k = 1, . . . , pj , j ∈ J̄),

such that τkj(ε) → τj(ε0), k = 1, . . . , pj , j ∈ J̄ ,
pj∑
k=1

ηkj(ε) → ηj(ε0), j ∈ J, with some

integer parameters pj ≥ 1, j ∈ J , pj = 1, j ∈ J̄ \ J, and a set J̄ , J ⊂ J̄ ⊂ I, J := {j ∈ I :
ηj(ε0) > 0}.

In other words this means the following:
• for each j ∈ J̄ , the active index τj(ε) of the unperturbed (SIP (ε0)) problem generates

pj active indices τkj(ε), k = 1, . . . , pj , of the perturbed problem (SIP (ε)),
• for each j ∈ I \ J̄ , the active index τj(ε) of the unperturbed (SIP (ε0)) problem does

not generate any active index of the perturbed problem (SIP (ε)).

2



August 3, 2017 Optimization Methods & Software Kost-Tchem-Kurd-OMS-RIA

Notice that the integer parameters pj , j ∈ J and the set J̄ , are unknown a priori and
can not be evidently found on the basis of a known solution of the unperturbed problem
(SIP (ε0)).

One of the main goals of study of the parametric SIP problem (SIP (ε)) consists in the
following: based on the known solution κ(ε0), τj(ε0), ηj(ε0), j ∈ I, of the unperturbed
problem SIP (ε0) and the derivatives of functions (1) w.r.t. their arguments calculated at
κ(ε0), τj(ε0), j ∈ I, and ε0, to predict the behavior of optimal solutions of the problem
(SIP (ε)) under small perturbations of ε. For example, it is interesting to know

a) the integer parameters pj , j ∈ J and the set J̄ ;
b) the initial values ηki(ε0 + 0), k = 1, . . . , pj , i ∈ J̄ ;
c) the derivatives κ̇(ε0 + 0), τ̇kj(ε0 + 0), k = 1, . . . , pj , j ∈ J, and η̇ki(ε0 + 0), k =

1, . . . , pj , i ∈ J̄ .

In our subsequent paper dedicated to study of the parametric SIP problem (SIP (ε)),
we will show that all of these data can be found on the basis of an optimal solution
of some auxiliary NLP problem P (pj , j ∈ J) that depends on the integers pj , j ∈ J,
mentioned above and has the following decision variables vector: ξ = (x, tkj , ykj , k =
1, ..., pj , j ∈ J ; yi, i ∈ I). Namely, if the “right” values of integer parameters pj , j ∈ J,
are found, and ξ0 = (x0, t0kj , y

0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I) is an optimal solution

of the corresponding problem P (pj , j ∈ J), then κ̇(ε0 + 0) = x0, τ̇kj(ε0 + 0) = t0kj , k =

1, . . . , pj , j ∈ J, ηkj(ε0 + 0) = y0kj , k = 1, . . . , pj , i ∈ J ; ηki(ε0 + 0) = 0, k = 1, . . . , pj , j ∈

J̄ \ J ; and
pi∑

k=1

η̇ki(ε0 + 0) = y0i , i ∈ J̄ .

Hence, to obtain the data a) - b), we have to find the “right” values of the parameters
pj , j ∈ J, and solve the NLP problem P (pj , j ∈ J). In its term, the “right choice” of
the parameters pj , j ∈ J, is characterized by the fact that the optimal solutions of the
corresponding problem P (pj , j ∈ J) possess some additional properties. Therefore it is
important to provide a deep study of this auxiliary NLP problem and its properties w.r.t.
the values of the parameters.

As well as most NLP problems arising in applications (see for example [2, 18]), the
problem P (pj , j ∈ J) has a special form. It is well-known that a detailed study of NLP
problems taking in respect their specific structure permits one to get more strong theo-
retical results and to create efficient numerical methods [7, 14].

This paper is dedicated to study of the properties of the problem P (pj , j ∈ J) w.r.t.
the parameters pj ≥ 1, j ∈ J . We will justify the existence of the parameters’ values for
which the problem P (pj , j ∈ J) admits an optimal solution possessing certain properties
and describe a procedure that permits to find these parameters values.

As far as we know, in literature there is no detailed study of NLP problems in the form
P (pj , j ∈ J) in respect of the above mentioned aspects.

The rest of the paper is organized as follows. In section 2, we formulate problem
P (pj , j ∈ J) and present some of its properties that will be used in our subsequent
paper dedicated to parametric SIP. The main result of section 3 consists in formulation
and proof of optimality conditions for problem P (pj , j ∈ J). In section 4, we provide
a detailed study of properties of optimal solutions of P (pj , j ∈ J) for different values
of the parameters (lemmas 4.1-4.6) and on the basis of the obtained results, formulate
conditions that guarantee the existence of the values of the integers pj ≥ 1, j ∈ J , such
that optimal solutions of the corresponding problem P (pj , j ∈ J) possess the properties
formulated in section 2. In section 5, we present the conditions that guarantee solvability
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of the problem P (pj , j ∈ J). A conceptual algorithm that determines the set of integers
pj , j ∈ J such that an optimal solution of the problem P (pj , j ∈ J) satisfies the proper-
ties from section 2, is described in section 6, and an example illustrating application of
this algorithm is presented in section 7. The final section 8 contains some conclusions.
We have included in the paper three appendices containing some technical proofs and
constructive procedures which can contribute to a better understanding of some of the
allegations and numerical rules for testing assumptions.

2. Problem statement

Suppose that the following index sets:

I = I1 ∪ I2, I1 ∩ I2 = ∅, |I1| ≤ n; J, |J | ≤ n, (2)

matrices, vectors and numbers

D ∈ Rn×n, c ∈ Rn, Dj ∈ Rp×p, Aj ∈ Rn×p, Bj ∈ Rsj×p,

cj ∈ Rp,mj ∈ R,mj > 0, j ∈ J, qi ∈ Rn, ωi ∈ R, i ∈ I,
(3)

are given and fixed. These data are uniquely generated by data of unperturbed parametric
SIP problem (SIP (ε0)) and its optimal solution, for example

Dj :=
∂2f(κ0,τ0

i ,ε0)
∂t2 , Aj :=

∂2f(κ0,τ0
i ,ε0)

∂t∂x , cj :=
∂2f(κ0,τ0

i ,ε0)
∂t∂ε , mj := ηj(ε0)j ∈ J,

qi :=
∂f(κ0,τ0

i ,ε0)
∂x , ωi =

∂f(κ0,τ0
i ,ε0)

∂ε , i ∈ I. (4)

Denote K(j) := {l ∈ Rp : Bjl ≤ 0}, j ∈ J, and suppose that

D = DT , xTDx ≥ 0 ∀x ∈ Rn, Dj = DT
j , t

TDjt ≤ 0 ∀t ∈ K(j), j ∈ J. (5)

Let relations ∑
i∈I

qi∆yi = 0,∆yi ≥ 0, i ∈ I2, (6)

imply the inequality

−
∑
i∈I

ωi∆yi ≥ 0. (7)

We omit here a detailed explanation of the origin of conditions (5) and implication (6)
=⇒ (7), just mention that this is a property of the data of the parametric SIP problem
(SIP (ε0)) and is supposed to be satisfied in our study. The importance of this implication
(6) =⇒ (7) will be explain is what follows.
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For any fixed set of the integers pj ≥ 1, j ∈ J, consider problem in the form

min F (ξ) :=
1

2
xTDx−

∑
j∈J

pj∑
k=1

ykj

(1
2
tTkjDjtkj + cTj tkj

)
−

∑
i∈I

ωiyi,

s.t. F(ξ) := Dx+
∑
j∈J

Aj

pj∑
k=1

ykjtkj +
∑
i∈I

qiyi + c = 0,

yi ≥ 0, i ∈ I2;

pj∑
k=1

ykj = mj , ykj ≥ 0, tkj ∈ K(j), k = 1, ..., pj ; j ∈ J,

(8)

where

ξ = ξ(pj , j ∈ J) = (x, tkj , ykj , k = 1, ..., pj , j ∈ J ; yi, i ∈ I) (9)

is a vector of decision variables. In what follows, we denote problem (8) by P (pj , j ∈ J).
It can be shown that that the fulfillment of the implication (6) =⇒ (7) is a necessary

condition for boundedness from below of the cost function of the problem P (pj , j ∈ J).
Moreover, due to this implication , for the problem P (pj , j ∈ J) introduced above, without
loss of generality we may consider that rank(qi, i ∈ I1) = |I1| (see Lemma A.1 in Appendix
A).

The problem P (pj , j ∈ J) is a parameterized NLP problem in a special form. When
values ykj , k = 1, ..., pj , j ∈ J are fixed (in particular, when pj = 1, j ∈ J), this prob-
lem becomes a nonconvex Quadratic Programming (QP) problem. Hence the problem
P (pj , j ∈ J) can be considered as a weighted QP problem that incorporates additional
nonlinearities.

Motivated by the ultimate aim of our study in parametric SIP, we are particularly
interested in determination of the values of the parameters pj ≥ 1, j ∈ J , for which the
problem P (pj , j ∈ J) admits an optimal solution

ξ0 = ξ0(pj , j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I), (10)

possessing certain properties that are listed next.

Property 1: The following inequalities take place:

y0kj > 0, k = 1, ..., pj , j ∈ J. (11)

Property 2: The following rank condition is satisfied:

rank
(
Aj(t

0
kj − t01j), k = 2, ..., pj , j ∈ J∗, qi, i ∈ I1 ∪ Ia2

)
= |Ia2 |+

∑
j∈J

pj+γ∗,

where |K| denotes a number of elements of a set K, γ∗ := |I1| − |J |, J∗ = {j ∈ J : pj ≥ 2},
Ia2 = {i ∈ I2 : y0i > 0}.

Notice that the above equality implies |Ia2 |+
∑
j∈J

pj+γ∗ ≤ n.
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Property 3: For any j ∈ J, vectors

t0kj , k ∈ {s ∈ {1, ..., pj} : y0sj > 0}, (12)

are global optimal solutions in the problem

min Ψj(t) :=
(
−1

2
tTDjt− (cj +AT

j x
0)T t

)
, s.t. t ∈ K(j). (13)

Notice that problem (13) is quadratic but not convex.

The aim of this paper is to study the properties of the class of the NLP problems
P (pj , j ∈ J) with different values of the parameters pj ≥ 1, j ∈ J , and on the base of the
obtained results to

• prove that there exist the values of the integers pj ≥ 1, j ∈ J , such that the corre-
sponding problem P (pj , j ∈ J) possesses the Properties 1) - 3) mentioned above,
• propose an algorithm that allows to find such right values of the integers.

3. Optimality conditions for the problem P (pj, j ∈ J)

Let us recall here some known results of the NLP theory that we will use in what follows.
Consider a general nonlinear problem

min c(x), s.t. fi(x) = 0, i ∈ S1; fi(x) ≤ 0, i ∈ S2. (14)

Let x0 be a feasible solution of problem (14). Denote by S2(x
0) = {i ∈ S2 : fi(x

0) = 0}
the set of the inequality constraints of this problem that are strongly satisfied at x0.

Definition 1 The Relaxed Constant Rank constraint qualification (RCRCQ) is said to
be satisfied at a feasible solution x0 of problem (14) if there exists a neighborhood V (x0)
of x0 such that for any index set S ⊂ S2(x

0), the set of vectors {∇fi(x), i ∈ S1 ∪ S} has
constant rank in V (x0).

The following statement can be formulated on the basis of [22].

Proposition 3.1 Let x0 be an optimal solution of problem (14) and let (RCRCQ) be
satisfied at x0. Then there exist numbers λi, i ∈ S1 ∪ S2(x

0) such that

∇c(x0) +
∑

i∈S1∪S2(x0)

λi∇fi(x
0) = 0, λi ≥ 0, i ∈ S2(x

0).

Notice that the problem P (pj , j ∈ J) is a particular case of problem (14). Let us show
that any feasible solution ξ of P (pj , j ∈ J) satisfies the condition (RCRCQ). Consider
the matrix

∂F(ξ)

∂ξ
= (D,Ajykj , Ajtkj , k = 1, ..., pj , j ∈ J ; qi, i ∈ I),

where the function F(ξ) is defined in (8). Since ξ is feasible in (8), then from the con-
straints of this problem we conclude that for any j ∈ J there exists k(j) ∈ {1, ..., pj} such

6
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that yk(j)j ̸= 0. Consequently rank (Ajykj , Ajtkj , k = 1, ..., pj) = rank Aj , j ∈ J and
hence

rank (D,Ajykj , Ajtkj , k = 1, ..., pj , j ∈ J ; qi, i ∈ I) = rank (D,Aj , j ∈ J ; qi, i ∈ I).

Therefore the gradients of the function F(ξ) defining the equality constraints F(ξ) = 0
in the problem P (pj , j ∈ J), have the constant rank at any feasible solution. Notice
that in problem (8) all the constraints in the form of inequalities as well as the equality

constraints
pj∑
k=1

ykj = mj , j ∈ J, are linear.

Hence we have shown that the constraint qualification (RCRCQ) is satisfied for any
feasible solution ξ of the problem P (pj , j ∈ J). Thus, it follows from Proposition 3.1
that the necessary optimality conditions for this problem take the form of the following
proposition.

Proposition 3.2 Let

ξ̄0 = (x̄0, t0kj , y
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I) (15)

be an optimal solution of the problem P (pj , j ∈ J). Then there exists a vector of the
Lagrange multipliers

(z ∈ Rn, λ(j) ∈ R, µ(k, j) ∈ Rsj , k = 1, ..., pj , j ∈ J), (16)

such that

Dx̄0 +Dz = 0, (17)
−qTi z + ωi = 0, i ∈ I1; −qTi z + ωi ≤ 0, y0i (q

T
i z − ωi) = 0, i ∈ I2, (18)

AT
j z −Djt

0
kj − cj +BT

j µ(k, j) = 0, µ(k, j) ≥ 0, µT (k, j)Bjt
0
kj = 0, k ∈ P ∗

j , j ∈ J ; (19)

−1
2 t

0T
kj Djt

0
kj − cTj t

0
kj + zTAjt

0
kj + λ(j) = 0, k ∈ P ∗

j , (20)

−1
2 t

0T
kj Djt

0
kj − cTj t

0
kj + zTAjt

0
kj + λ(j) ≥ 0, k ∈ P 0

j , j ∈ J,

where

P ∗
j := {k ∈ {1, ..., pj} : y0kj > 0}, P 0

j := {1, ..., pj} \ P ∗
j , j ∈ J. (21)

Taking into account the definition of the problem P (pj , j ∈ J), one can notice that if
vector (15) is its optimal solution, then any vector (x, t0kj , y

0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈

I) with x satisfying the equality D(x̄0 − x) = 0 is an optimal solution as well.
To reduce such an ambiguity in optimal solutions of the problem P (pj , j ∈ J), in what

follows, without loss of generality, we will consider optimal solutions in the form

ξ0 = (x0, t0kj , y
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I), (22)

where x0 = −z, z being the vector of the first components of the Lagrange multiplier
vector (16).

The necessary optimality conditions for the solution ξ0 defined in (22) can be rewritten

7



August 3, 2017 Optimization Methods & Software Kost-Tchem-Kurd-OMS-RIA

as follows:

−AT
j x

0 −Djt
0
kj − cj +BT

j µ(k, j) = 0, µ(k, j) ≥ 0, µT (k, j)Bjt
0
kj = 0, k ∈ P ∗

j , j ∈ J ; (23)

−1
2 t

0T
kj Djt

0
kj − cTj t

0
kj − x0TAjt

0
kj + λ(j)

{
= 0, k ∈ P ∗

j ,

≥ 0, k ∈ P 0
j ,

j ∈ J ; (24)

qTi x
0 + ωi = 0, i ∈ I1; qTi x

0 + ωi ≤ 0, y0i (q
T
i x

0 + ωi) = 0, i ∈ I2. (25)

Hence we have proved the following theorem.

Theorem 3.3 (The first order necessary optimality conditions) Let vector (15) be an
optimal solution of the problem P (pj , j ∈ J). Then there exist vector x0 and multipliers
(λ(j), µ(k, j), k = 1, ..., pj , j ∈ J) such that vector (22) is an optimal solution in P (pj , j ∈
J) and relations (23)- (25) are satisfied.

It is easy to verify that from (23), (24), it follows λ(j) = −1
2 t

0T
kj Djt

0
kj , k ∈ P ∗

j , j ∈ J.
Let us make the following assumption.

Assumption 1 For an optimal solution (15) of the problem P (pj , j ∈ J), there do
not exist two vectors of the Lagrange multipliers (16) satisfying (17)-(20) with different
components z.

Remark 1 It should be noticed that if

lTDl > 0, ∀ l ∈ {l ∈ Rn : qTi l = 0, i ∈ I1; qTi l ≤ 0, i ∈ I2, l
TAjt

0
kj = 0, k ∈ P ∗

j , j ∈ J}\{0},

then Assumption 1 is satisfied. Other necessary and sufficient conditions guaranteeing
the fulfillment of this assumption (as well as constructive rules for its verification) are
presented in the Appendix.

Note that if y0kj = 0 for some k ∈ P ∗
j , j ∈ J , then any vector from K(j) can be chosen

as the component t0kj in the optimal solution (22). Therefore, under Assumption 1 the
condition (24) can be rewritten in the form

Ψj(t
0
kj) = −λ(j), k ∈ P ∗

j ; Ψj(t) ≥ −λ(j) ∀t ∈ K(j), k ∈ P 0
j , j ∈ J, (26)

the functions Ψj , j ∈ J, being defined as in (13). Hence we can formulate the following
corollary of Theorem 3.3.

Corollary 3.4 Let ξ0 be an optimal solution of problem P (pj , j ∈ J) satisfying As-
sumption 1 and suppose that P 0

j ̸= ∅, j ∈ J, in (21). Then ξ0 satisfies Property 3).

Lemma 3.5 Given j ∈ J, let numbers y0kj , k = 1, ..., pj , satisfy the conditions

pj∑
k=1

y0kj = mj , y
0
kj ≥ 0, k = 1, ..., pj ,

vectors t0kj , k ∈ P ∗
j , be global optimal solutions in problem (13) and t0kj ∈ K(j), k ∈ P 0

j ,

with P ∗
j , P

0
j defined in (21). Then the vector

ν0j := (t0kj , y
0
kj , k = 1, ..., pj) (27)

8
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is a global optimal solution of the problem

min Φj(νj) := −
pj∑
k=1

ykj

(1
2
tTkjDjtkj + (cj +AT

j x
0)T tkj

)
,

s.t.

pj∑
k=1

ykj = mj , ykj ≥ 0, tkj ∈ K(j), k = 1, ..., pj .

(28)

Proof. Let νj := (tkj , ykj , k = 1, ..., pj) be a feasible solution of problem (28).
Since vectors t0kj , k ∈ P ∗

j , are the global optimal solutions in problem (13), then having
denoted Ψj(t

0
kj) := const(j), k ∈ P ∗

j , we get const(j) ≤ Ψj(t) ∀ t ∈ K(j). Consequently,

for any vector νj that is feasible in (28), we have Φj(νj) =
pj∑
k=1

ykjΨj

(
tkj

)
≥ mjconst(j).

On the other hand, vector ν0j is also feasible in (28) and Φj(ν
0
j ) =

pj∑
k=1

y0kjΨj

(
t0kj

)
=

= mjconst(j). Hence ν0j is a global optimal solution of problem (28). The lemma is
proved. �

Fix j ∈ J , and let a vector ν0j = (t0kj , y
0
kj , k = 1, ..., pj) be a global optimal solution of

problem (28). Hence for all vectors in the form

νj := (tkj := t0kj +∆tkj , ykj := y0kj +∆ykj , k = 1, ..., pj), j ∈ J, (29)

such that

pj∑
k=1

∆ykj = 0, y0kj +∆ykj ≥ 0, t0kj +∆tkj ∈ K(j), k = 1, ..., pj , j ∈ J, (30)

we evidently have

Φj(νj)− Φj(ν
0
j ) ≥ 0, j ∈ J. (31)

Now we can prove sufficient optimality conditions for the problem P (pj , j ∈ J).

Theorem 3.6 (Sufficient optimality conditions) Let vector ξ0 in the form (22) be a
feasible solution of problem (8) and let the following conditions be satisfied:

(1) ξ0 satisfies (25) and
(2) for j ∈ J, vectors (12) are global optimal solutions of problem (13).

Then the vector ξ0 is a global optimal solution of problem (8).

Proof. Let us consider any feasible solution ξ of problem (8). This vector admits a pre-
sentation

ξ := (x := x0+∆x, tkj := t0kj+∆tkj , ykj := y0kj+∆ykj , k = 1, ..., pj , j ∈ J, yi := y0i+∆yi, i ∈ I).

9
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From feasibility of ξ in (8), it follows that

D∆x+
∑
j∈J

Aj

pj∑
k=1

(∆tkjy
0
kj +∆ykjt

0
kj +∆tkj∆ykj) +

∑
i∈I

qi∆yi = 0, (32)

∆yi ≥ 0, if i ∈ I2 and y0i = 0, (33)

and relations (30) take place.
Taking into account equalities (32), let us calculate

F (ξ)− F (ξ0) =
1

2
∆xTD∆x−

∑
i∈I

(x0T qi + ωi)∆yi +
∑
j∈J

(Φj(νj)− Φj(ν
0
j )),

where vector ν0j , νj are defined in (27), (29).
Due to the assumption of the positive semi-definitiveness of the matrix D, we have

∆xTD∆x ≥ 0 for all ∆x ∈ Rn.
Conditions (25) and (33) imply the inequality −

∑
i∈I

(x0T qi + ωi)∆yi ≥ 0.

Taking into account condition 2) of this theorem and applying Lemma 3.5, we conclude
that inequalities (31) take place when conditions (30) are satisfied.

Consequently, F (ξ)− F (ξ0) ≥ 0 for any feasible ξ in problem (8). This means that ξ0

is a global optimal solution of problem (8). The theorem is proved. �

4. Properties of the problem P (pj, j ∈ J)

In the previous sections, we have formulated the Properties 1) - 3) that can be satisfied
by the optimal solutions of the problem P (pj , j ∈ J) in the form (8). In this section, we
establish some additional properties of this problem. In the following lemmas 4.1-4.4 we
will study how the change of the parameters in problem (8) affects its optimal value.

Lemma 4.1 Suppose that there is an optimal solution ξ0 (see (22)) of problem (8) such
that y0k0j0

= 0 for some 1 ≤ k0 ≤ pj0 , j0 ∈ J. Then

val(P (p̄j , j ∈ J)) = val(P (pj , j ∈ J)), (34)

where p̄j = pj , j ∈ J \ {j0}, p̄j0 = pj0 − 1.

Here and in what follows, val(P ) denotes the optimal value of the cost function in an
optimization problem P .

Proof. Without loss of generality, we can consider that k0 = pj0 . It is easy to show that
vector ξ0(p̄j , j ∈ J) := (x0, t0kj , y

0
kj , k = 1, ..., p̄j , j ∈ J ; y0i , i ∈ I), is an optimal solution

of the problem P (p̄j , j ∈ J) and equality (34) takes place. �

Lemma 4.2 Let integers p̄j , pj , j ∈ J, satisfy the inequalities p̄j ≥ pj , j ∈ J. Then
val(P (p̄j , j ∈ J)) ≤ val(P (pj , j ∈ J)).

10
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Proof. Let vector ξ0(pj , j ∈ J) in the form (10) be an optimal solution of the problem
P (pj , j ∈ J). It is evident that vector ξ(p̄j , j ∈ J) := (x0, t0kj , y

0
kj , k = 1, ..., p̄j , j ∈

J ; y0i , i ∈ I) with t0kj = 0, y0kj = 0, k = pj + 1, ..., p̄j , is a feasible solution of the problem
P (p̄j , j ∈ J) and F (ξ(p̄j , j ∈ J)) = F (ξ0(pj , j ∈ J)) = val(P (pj , j ∈ J)), where F (ξ) is
the objective function of the problem P (pj , j ∈ J) for a feasible ξ.

The last equalities and the inequality val(P (p̄j , j ∈ J)) ≤ F (ξ(p̄j , j ∈ J)) imply the
inequality val(P (p̄j , j ∈ J)) ≤ val(P (pj , j ∈ J)). �

Lemma 4.3 Let a feasible solution (22) of the problem P (pj , j ∈ J) satisfy conditions
(25) and Property 3). Then for all integers p̄j ≥ pj , j ∈ J, the following equality holds:

val(P (p̄j , j ∈ J)) = val(P (pj , j ∈ J)). (35)

Proof. It follows from the assumptions of this lemma and from Theorem 3.6 that the
vector ξ0 defined in (22) is a global optimal solution of the problem P (pj , j ∈ J).

Consider vector

ξ̄ = ξ̄(p̄j , j ∈ J) = (x̃, t̄kj , ȳkj , k = 1, ..., p̄j , j ∈ J ; ȳi, i ∈ I), (36)

whose components are defined using that of the vector ξ0 as follows:

x̄ = x0; t̄kj = t0kj , ȳkj = y0kj , k = 1, ..., pj ; t̄kj = t0pjj , ȳkj = 0, k = pj+1, ..., p̄j , j ∈ J ; ȳi = y0i , i ∈ I.

It is easy to check that
i) vector ξ̄ is a feasible solution of the problem P (p̄j , j ∈ J),
ii) the value of the cost function of the problem P (p̄j , j ∈ J) at ξ̄ is equal to the value

of the cost function of the problem P (pj , j ∈ J) at its feasible solution ξ0,
iii) all the conditions of Theorem 3.6 are satisfied for vector ξ̄ and consequently, vector

ξ̄ is a global optimal solution of this problem.
The conditions i)-iii) imply the equality (35) and the lemma is proved. �

Lemma 4.4 Let problem (8) admit an optimal solution ξ0 (see (22)) that satisfies As-
sumption 1 but does not satisfy Property 3). Then val(P (p̄j , j ∈ J)) < val(P (pj , j ∈ J)),
where p̄j = pj + 1, j ∈ J.

Proof. Suppose that, on the contrary, the equality

val(P (p̄j , j ∈ J)) = val(P (pj , j ∈ J)) (37)

takes place. Consider an optimal solution ξ0(pj , j ∈ J) of the problem P (pj , j ∈ J). Let
ξ0(pj , j ∈ J) have the form (22). It follows from (37) that vector ξ0(p̄j , j ∈ J) defined as

ξ0(p̄j , j ∈ J) := (x0, t0kj , y
0
kj , k = 1, ..., pj ; t

0
pj+1,j , y

0
pj+1,j = 0, j ∈ J ; y0i , i ∈ I)

with any t0pj+1,j , j ∈ J, satisfying the conditions t0pj+1,j ∈ K(j), j ∈ J, is an optimal
solution of the problem P (p̄j , j ∈ J). Hence it follows from Assumption 1 and Theorem
3.3 that for the optimal solution ξ0(p̄j , j ∈ J), conditions (26) with pj , j ∈ J , replaced by
p̄j = pj + 1, j ∈ J , are satisfied.

Based on these conditions and the equalities y0p̄j ,j
= 0, j ∈ J , we conclude that, for any

j ∈ J, vectors t0kj , k = 1, ..., pj , are optimal in problem (13). This means that the optimal

11
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solution ξ0 of the problem P (pj , j ∈ J) possesses Property 3). But this contradicts the
assumptions of the lemma. The obtained contradiction completes the proof. �

In the final part of this section, we present the conditions that guarantee that the
problem P (pj , j ∈ J) admits optimal solutions satisfying Properties 1) - 3).

Lemma 4.5 Suppose that the problem P (pj , j ∈ J) with pj = n + 2, j ∈ J, admits an
optimal solution satisfying Assumption 1. Then the optimal solution satisfies Property 3).

Proof. Suppose that the problem P (pj , j ∈ J) with pj = n+ 2, j ∈ J, admits an optimal
solution ξ0 = (x0, t0kj , y

0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I). Consider the sets P 0

j , j ∈ J,

defined in (21).

It follows from Assumption 1 and Theorem 3.3 that conditions (26) are satisfied. Hence,
if for all j ∈ J, we have P 0

j ̸= ∅, then the optimal solution ξ0 satisfies Property 3) and
the lemma is proved.

Suppose now that for some j ∈ J it holds P 0
j = ∅, i.e. y0kj > 0 for all k = 1, ..., pj . It

follows from (26) that for these j ∈ J and ξ0, there exists a multiplier λ(j) such that

−1

2
t0Tkj Djt

0
kj − cTj t

0
kj = x0TAjt

0
kj − λ(j), k = 1, ..., pj . (38)

Hence

−
pj∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

pj∑
k=1

y0kj(x
0TAjt

0
kj − λ(j)) =

pj∑
k=1

y0kjx
0TAjt

0
kj − λ(j)mj .

(39)

Consider the (n+ 1)−vectors
(

Ajt
0
kj

1

)
, k = 1, ..., pj , where pj = n+ 2.

It is evident that these vectors are linearly dependent, hence there exists a vector

∆y := (∆yk, k = 1, ..., pj) ̸= 0 such that
pj∑
k=1

∆ykAjt
0
kj = 0,

pj∑
k=1

∆yk = 0.

Set: λk := ∞ if ∆yk ≥ 0, λk := −y0kj/∆yk if ∆yk < 0, k = 1, ..., pj , and calculate
λ := min

k=1,...,pj

λk > 0. Consider the numbers

ȳ0kj := y0kj + λ∆yk, k = 1, ..., pj . (40)

By construction, we have

pj∑
k=1

ȳ0kj = mj , ȳ
0
kj ≥ 0, k = 1, ..., pj , ∃ 1 ≤ k0 ≤ pj such that ȳ0k0j = 0,

pj∑
k=1

ȳ0kjAjt
0
kj =

pj∑
k=1

y0kjAjt
0
kj ,

12
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−
pj∑
k=1

ȳ0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

pj∑
k=1

ȳ0kj(x
0TAjt

0
kj − λ(j)) =

pj∑
k=1

ȳ0kjx
0TAjt

0
kj − λ(j)mj

=

pj∑
k=1

y0kjx
0TAjt

0
kj − λ(j)mj = −

pj∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj).

Consequently the vector ξ∗ := (x0, t0kj , ȳ
0
kj , k = 1, ..., pj , j ∈ J ; y0i , i ∈ I), with the

components ȳ0kj , k = 1, ..., pj , j ∈ J, defined by the rule:

• ȳ0kj = y0kj , k = 1, ..., pj , if P 0
j ̸= ∅;

• ȳ0kj , k = 1, ..., pj , are given by formulae (40), if P 0
j = ∅,

is an optimal solution in P (p∗j , j ∈ J) as well.
The vector ξ∗ satisfies Assumption 1 and, by construction, min{ȳ0kj , k = 1, ..., pj} =

0, j ∈ J. Hence it follows from Corollary 3.4 that ξ∗ satisfies Property 3).
Taking into account the rules for constructing the components ȳ0kj , k = 1, ..., pj , j ∈ J ,

and the fact that the vectors ξ0 and ξ∗ have the same components x0 and t0kj , k = 1, ..., pj ,

j ∈ J , we conclude that ξ0 satisfies Property 3) as well. The lemma is proved. �

Lemma 4.6 Suppose that the problem P (pj , j ∈ J) has an optimal solution satisfying
Property 3). Then there exist integers 1 ≤ p̄j ≤ pj , j ∈ J, such that problem P (p̄j , j ∈ J)
has an optimal solution satisfying Properties 1)- 3).

Proof. Suppose that the problem P (pj , j ∈ J) has an optimal solution satisfying Property
3). If this solution does not satisfy Property 1),then following the proof of Lemma 4.1,
we can easily find numbers p̃j ≤ pj , j ∈ J, such that the problem P (p̃j , j ∈ J) has an
optimal solution

ξ0(p̃j , j ∈ J) := (x0, t0kj , y
0
kj , k = 1, ..., p̃j , j ∈ J ; y0i , i ∈ I) (41)

satisfying Property 3) and, additionally, Property 1):

y0kj > 0, k = 1, ..., p̃j , j ∈ J. (42)

Consider the sets J∗ := {j ∈ J : p̃j ≥ 2} and Ia2 = {i ∈ I2 : y0i > 0}. Suppose that
Property 2) is not satisfied for ξ0(p̃j , j ∈ J), i.e.

m(ξ0(p̃j , j ∈ J)) < |Ia2 |+
∑
j∈J

p̃j + γ∗, (43)

where m(ξ0(p̃j , j ∈ J)) := rank
(
Aj(t

0
kj − t01j), k = 2, ..., p̃j , j ∈ J∗, qi, i ∈ I1 ∪ Ia2

)
. Hence

vectors
(

Ajt
0
kj

ej

)
, k = 1, ..., p̃j , j ∈ J, and

(
qi
0

)
, i ∈ I1∪Ia2 , where ej = (eij , i ∈ J)T ,

eij = 0 if i ̸= j, eij = 1 if i = j, i ∈ J, j ∈ J, 0 = (0, 0, ..., 0)T ∈ R|J |, are linearly
dependent. Consequently, there exist numbers ∆ykj , k = 1, ..., p̃j , j ∈ J, ∆yi, i ∈ I1∪Ia2 ,
such that

13
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(∆ykj , k = 1, ..., p̃j , j ∈ J,∆yi, i ∈ Ia2 ) ̸= 0,∑
j∈J

p̃j∑
k=1

∆ykjAjt
0
kj +

∑
i∈I1∪Ia

2

qi∆yi = 0,

p̃j∑
k=1

∆ykj = 0, j ∈ J.
(44)

Let us set

λkj := ∞ if ∆ykj ≥ 0, λkj := −y0kj/∆ykj if ∆ykj < 0, k = 1, ..., p̃j , j ∈ J ;

λi := ∞ if ∆yi ≥ 0, λi := −y0i /∆yi if ∆yi < 0, i ∈ Ia2 ; (45)
λ := min{λkj , k = 1, ..., p̃j , j ∈ J ;λi, i ∈ Ia2} > 0,

and

ȳ0kj := y0kj + λ∆ykj , k = 1, ..., p̃j , j ∈ J ; (46)

ȳ0i := y0i + λ∆yi, i ∈ I1∪Ia2 , ȳ0i := y0i , i ∈ I \ (I1∪Ia2 ).

By construction, we have
p̃j∑
k=1

ȳ0kj = mj , ȳ
0
kj ≥ 0, k = 1, ..., p̃j , j ∈ J ; ȳ0i ≥ 0, i ∈ I2.

Due to inequalities (42), it is easy to show that for all j ∈ J, relations (38) take place
with pj replaced by p̃j . Hence

−
p̃j∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

p̃j∑
k=1

y0kj(x
0TAjt

0
kj − λ(j)) =

p̃j∑
k=1

y0kjx
0TAjt

0
kj − λ(j)mj ,

−
p̃j∑
k=1

ȳ0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) =

p̃j∑
k=1

ȳ0kjx
0TAjt

0
kj − λ(j)mj

= −
p̃j∑
k=1

y0kj(
1

2
t0Tkj Djt

0
kj + cTj t

0
kj) +

p̃j∑
k=1

∆ykjx
0TAjt

0
kj .

(47)

Recall that F (ξ) stays for the objective function of the problem P (pj , j ∈ J) in ξ. Taking
into account the last relations and (44), it is easy to verify that

F (ξ0(p̃j , j ∈ J)) = F (ξ̄0(p̃j , j ∈ J)),

where ξ0(p̃j , j ∈ J) is defined in (41) and

ξ̄0(p̃j , j ∈ J) := (x0, t0kj , ȳ
0
kj , k = 1, ..., p̃j , j ∈ J ; ȳ0i , i ∈ I).

From the considerations above, it follows that ξ0(p̃j , j ∈ J) is an optimal solution of the
problem P (p̃j , j ∈ J).

Notice that, by construction, min{ȳ0kj , k = 1, ..., p̃j , j ∈ J ; ȳi, i ∈ Ia2} = 0. Following
lemma 4.1 let us find numbers ¯̃pj ≤ p̃j , j ∈ J, such that the vector

ξ̄0(¯̃pj , j ∈ J) := (x0, t0kj , ȳ
0
kj , k = 1, ..., ¯̃pj , j ∈ J ; ȳ0i , i ∈ I)

14
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is optimal for the problem P (¯̃pj , j ∈ J) and ȳ0kj > 0, k = 1, ..., ¯̃pj , j ∈ J. It is easy to
check that

m(ξ̄0(¯̃pj , j ∈ J)) = m(ξ0(p̃j , j ∈ J)), |Ia2 |+
∑
j∈J

p̃j > |Īa2 |+
∑
j∈J

¯̃pj , (48)

where Īa2 := {i ∈ I2 : ȳ
0
i > 0}, J̄∗ := {j ∈ J : ¯̃pj ≥ 2},

m(ξ̄0(¯̃pj , j ∈ J)) := rank
(
Aj(t

0
kj − t01j), k = 2, ..., ¯̃pj , j ∈ J̄∗, qi, i ∈ I1 ∪ Īa2

)
.

It follows from (43) and (48) that in a finite number of iterations, one can find the
numbers p̄j ≤ pj , j ∈ J, such that Properties 1)-3) are satisfied for an optimal solution of
the problem P (p̄j , j ∈ J). The lemma is proved. �

Based on lemmas 4.5 and 4.6, it is easy to prove the following theorem.

Theorem 4.7 Suppose that the problem P (p∗j , j ∈ J) with p∗j = n + 2, j ∈ J, admits
an optimal solution satisfying Assumption 1. Then there exist numbers pj ≥ 1, j ∈ J,∑
j∈J

pj ≤ n − γ∗, such that the problem P (pj , j ∈ J) has an optimal solution satisfying

Properties 1)-3).

The main result of this section consists in the proof that for the existence of integers
pj ≥ 1, j ∈ J, such that the problem P (pj , j ∈ J) possesses an optimal solution satisfying
Properties 1) - 3), it is sufficient that the problem P (p∗j , j ∈ J) with p∗j = n + 2, j ∈ J,
had an optimal solution for which all the Lagrange multiplier vectors in the form (16)
have the same first component z.

In section 6, we develop a constructive procedure of determination of the values of the
parameters for which the problem P (pj , j ∈ J) satisfied Properties 1) - 3).

5. On solvability of the problem P (pj, j ∈ J)

In section 4, we considered properties of the optimal solutions of the NLP problem
P (pj , j ∈ J) in the form (8) having supposed that the optimal solutions of this prob-
lem exist. Now, we will study in which cases one can guarantee the existence of the
optimal solutions of P (pj , j ∈ J).

First of all, we should notice that if the feasible set of problem

Pmin := P (pj = 1, j ∈ J) (49)

is not empty, then the same we can state about the feasible sets of all problems P (pj , j ∈
J) with pj ≥ 1, j ∈ J.

In what follows, we will need the following assumption.

Assumption 2 In (8), the matrices Dj, j ∈ J, satisfy

tTDjt < 0 ∀ t ∈ K(j) \ {0}, j ∈ J. (50)

Denote the feasible set of the problem P (pj , j ∈ J) by X and a feasible solution ξ ∈ X
of problem (8) (see (9)) by

15
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ξ = (γ, y), where γ = (x, tkj , k = 1, ..., pj , j ∈ J ; yi, i ∈ I), y = (ykj , k = 1, ..., pj , j ∈ J).

Lemma 5.1 Given problem P (pj , j ∈ J) satisfying Assumption 2, suppose that its feasible
set X is not empty. Then the objective function F (ξ) of this problem is not bounded from
below on X if and only if there exist numbers ∆yi, i ∈ I, such that the following conditions
are satisfied: ∑

i∈I
qi∆yi = 0, ∆yi ≥ 0, i ∈ I2, −

∑
i∈I

ωi∆yi < 0. (51)

Proof. ⇐) Evidently, if X ̸= ∅ and there exist numbers ∆yi, i ∈ I, satisfying (51), then
the objective function of the problem P (pj , j ∈ J) is not bounded from below on the
feasible set X .
⇒) Suppose now that in the problem P (pj , j ∈ J), the objective function F (ξ) is

not bounded on the feasible set. Then there exists a sequence of the feasible solutions
ξ̄s = (γ̄s, ȳs), s = 1, 2, ..., such that F (ξ̄s) =: Ms → −∞ as s → ∞.

For each s ∈ N, consider the following NLP problem:

||γ||2 → min,

s.t. F (ξ) ≤ Ms, ||γ|| ≤ Ps := ||γ̄s||; F(ξ) = 0,

yi ≥ 0, i ∈ I2;

pj∑
k=1

ykj = mj , ykj ≥ 0, tkj ∈ K(j), k = 1, ..., pj ; j ∈ J,

(52)

where ξ = (γ, y), and the functions F(ξ), F (ξ) are defined in (8).
Problem (52) has an optimal solution since its feasible set is nonempty, bounded and

closed. Let ξs = (γs, ys) be an optimal solution of problem (52).
Evidently, the sequence ξs = (γs, ys), s = 1, 2, ..., does not possess any convergent

subsequence since F (ξs) ≤ Ms, Ms → −∞ as s → ∞. Therefore, taking into account
that ||ys||1 =

∑
j∈J

mj , s = 1, 2, ..., where || · ||1 stays for the l1 norm, we can conclude that

||γs|| → ∞ as s → ∞ for any norm, including the Euclidean norm || · ||.
Let us divide both sides of the inequality F (ξs) ≤ Ms < 0 by ||γs||2 and pass to the

limit. As a result we obtain

1

2
∆xTD∆x−

∑
j∈J

pj∑
k=1

y0kj
1

2
∆tTkjDj∆tkj ≤ 0 (53)

where

∆γ = (∆x,∆tkj , k = 1, ..., pj , j ∈ J ; ∆yi, i ∈ I) = lim
s→∞

γs

||γs|| , ||∆γ|| = 1, (54)

y0 = (y0kj , k = 1, ..., pj , j ∈ J) = lim
s→∞

ys.

It follows from (53) that

∆xTD∆x = 0, ∆tTkjDj∆tkj = 0, k = 1, ..., pj , j ∈ J. (55)

16



August 3, 2017 Optimization Methods & Software Kost-Tchem-Kurd-OMS-RIA

These equalities together with (50) imply

D∆x = 0, ∆tkj = 0, k = 1, ..., pj , j ∈ J. (56)

Taking into account that for any ξ ∈ X , it holds

1

2
xTDx−

∑
j∈J

pj∑
k=1

ykj

(1
2
tTkjDjtkj

)
≥ 0, (57)

we conclude that −
∑
j∈J

pj∑
k=1

yskjc
T
j t

s
kj −

∑
i∈I

ωiy
s
i ≤ Ms < 0, s = 1, 2, ....

Let us divide both sides of the last inequality by ||γs|| and pass to the limit, taking
into account (56). As a result, we obtain

−
∑
i∈I

ωi∆yi ≤ 0. (58)

Since ξs is feasible, the equality F(ξs) = 0 holds. Having divided both sides of this
equality by ||γs|| and passing to the limit, taking into account (56) , we get∑

i∈I
qi∆yi = 0. (59)

Notice that the inequalities ysi ≥ 0, i ∈ I2, imply

∆yi ≥ 0, i ∈ I2. (60)

Consider the inequality (58). Suppose, first, that it is strictly satisfied:

−
∑
i∈I

ωi∆yi < 0. (61)

Then the relations (59)-(61) imply the existence of the numbers ∆yi, i ∈ I, satisfying
(51), and the lemma is proved.

Suppose now that (58) is verified as an equality:

−
∑
i∈I

ωi∆yi = 0. (62)

By construction, for any s = 1, 2, . . . , the vector ξs can be presented in the form

ξs =

(
γs

ys

)
=

(
(∆γ + δγs)||γs||

ys

)
, (63)

where

δγs := (δxs, δtskj , k = 1, ..., pj , j ∈ J ; δysi , i ∈ I)T , ||δγs|| → 0 as s → ∞. (64)
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Notice that by construction,

∆yi + δysi ≥ 0, ∆yi ≥ 0, i ∈ I2. (65)

Hence

if ∆yi = 0 then δysi ≥ 0, i ∈ I2. (66)

Denote

ηs := max{ηsi , i ∈ I2}, (67)

where

ηsi :=

{
0, if δysi ≥ 0,

−δysi /∆yi, if δysi < 0,
i ∈ I2. (68)

It follows from (64) and (66) that ηs ≥ 0 and ηs → 0 as s → ∞. By construction,

∆tkj + δtskj ∈ K(j), ∆tkj = 0 ∈ K(j), k = 1, ..., pj , j ∈ J. (69)

Then

δtskj ∈ K(j), k = 1, ..., pj , j ∈ J. (70)

It is evident that

ηs∆yi + δysi ≥ 0, i ∈ I2, ηs∆tkj + δtskj ∈ K(j), k = 1, ..., pj , j ∈ J. (71)

From (63), (64), it follows that vector ξs can be presented in the form

ξs =

(
∆γθs

0

)
+ ξ̂s, ξ̂s =

(
γ̂s

ys

)
, γ̂s := (∆γηs + δγs)||γs||, θs := (||γs|| − ηs). (72)

Taking into account this presentation and (56), (59), (62), it is easy to show that

F (ξs) = F (ξ̂s), F(ξs) = F(ξ̂s).

It follows from the last equalities and (71) that the vector ξ̂s is a feasible solution of
problem (52). Taking into account that (∆γηs + δγs) → 0 as s → ∞, we obtain the
inequality

||γs|| > ||γ̂s|| = ||(∆γηs + δγs)|| · ||γs|| (73)

that contradicts the optimality of ξs in problem (52). The obtained contradiction proves
that equality (62) can not take place and hence inequality (58) is always verified as a
strict one. The lemma is proved. �

Remark 2 In formulating and proving Lemma 5.1 we do not assume that the implication
(6) =⇒ (7) takes place.
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Corollary 5.2 Given problem P (pj , j ∈ J), suppose that X ̸= ∅, Assumption 2 and
the implication (6) =⇒ (7) are fulfilled. Then the objective function of this problem is
bounded from below on the set X .

Lemma 5.3 Let Assumption 2 be fulfilled for the problem P (pj , j ∈ J) in the form (8).
If the problem Pmin defined in (49) is feasible and the objective function of the problem
P (pj , j ∈ J) is bounded from below on its feasible set, then for all p̄j ≤ pj , j ∈ J, the
problems P (p̄j , j ∈ J), admit optimal solutions.

Proof. Let us show, first, that the problem P (pj , j ∈ J) admits an optimal solution if it
is feasible and its objective function is bounded from below in the feasible set.

Indeed, since the objective function F (ξ) in (8) is bounded from below, there exists a
sequence ξ̄s = (γ̄s, ȳs), s = 1, 2, ..., such that

F (ξ̄s) =: Ms, Ms → M0, as s → ∞; M0 := inf
ξ∈X

F (ξ),

where X is the set of all feasible solutions of the problem P (pj , j ∈ J).
For any s, let us consider problem (52). This problem admits an optimal solution

ξs = (γs, ys) since its feasible set is nonempty, bounded and closed. If the sequence
ξs = (γs, ys), s = 1, 2, ..., admits a convergent subsequence ξsi , i = 1, 2, ... such that
si → ∞ as i → ∞ and lim

i→∞
ξsi = ξ0, then it is obvious that ξ0 should be an optimal

solution of the problem P (pj , j ∈ J) and the lemma is proved.
Suppose now that all subsequences of ξs = (γs, ys), s = 1, 2, ..., diverge. In this case we

have ||γs|| → ∞ as s → ∞. Here (as before) we took into account that ||ys||1 =
∑
j∈J

mj ,

s = 1, 2, ....
Let us divide both sides of the inequality F (ξs) ≤ Ms by ||γs||2 and pass to the limit,

taking into account that the numbers Ms are finite. As a result we obtain inequality (53),
where ∆γ, y0 are defined in (54).

It follows from (53) that equalities (55) take place. These equalities together with (50)
imply the equalities (56). Taking into account that for any ξ ∈ X , the inequality (57)
takes place, we conclude that

−
∑
j∈J

pj∑
k=1

ykjc
T
j t

s
kj −

∑
i∈I

ωiy
s
i ≤ Ms.

Divide both sides of the last inequality by ||γs|| and pass to the limit, taking into
account (56) and finiteness of numbers Ms. As a result we obtain inequality (58).

Since ξs is feasible in (52), then F(ξs) = 0.
Now divide both sides of the equality F(ξs) = 0 by ||γs|| and pass to the limit, taking

into account (56). As a result we get equality (59).
Notice that inequalities ysi ≥ 0, i ∈ I2, imply (60).
Let us suppose that inequality (58) is strict: −

∑
i∈I

ωi∆yi < 0. Then according to Lemma

5.1, this inequality together with (60) and (59) imply that the cost function F (ξ) in
unbounded from below on the feasible set X . But this contradicts the assumptions of the
lemma. Hence equality (62) takes place.

By construction, the vector ξs can be presented in the form (63), (64). Notice that
inequalities (65) take place and hence (66) holds.

Consider the sequence of the numbers ηs defined in (67), (68). It follows from (65), (66)
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that ηs ≥ 0 and ηs → 0 as s → ∞. By construction, inclusions (69) take place, hence
inclusions (70) take place as well. Consequently, conditions (71) are fulfilled.

It follows from (63), (64) that for any s ∈ N, vector ξs can be presented in the form
(72). Taking into account this presentation and (56), (59), (62), one can show that

F (ξs) = F (ξ̂s), F(ξs) = F(ξ̂s).

It follows from the last equalities and (71) that vector ξ̂s is a feasible solution of problem
(52). Notice that taking into account that (∆γηs+ δγs) → 0 as s → ∞, we get inequality
(73) that contradicts the optimality of ξs in problem (52).

This contradiction proves that the sequence ξs = (γs, ys), s = 1, 2, ..., has a convergent
subsequence ξsi , i = 1, 2, ..., such that si → ∞, lim

i→∞
ξsi = ξ0, as i → ∞, and hence, ξ0 is

optimal in the problem P (pj , j ∈ J).
Thus, we have proved that the problem P (pj , j ∈ J) admits an optimal solution if it is

feasible and its objective function is bounded from below on the feasible set. To complete
the proof of the lemma, let us notice that
• the feasibility of the problem Pmin implies the feasibility of any problem P (pj , j ∈ J)

with pj ≥ 1, j ∈ J ,
• the boundedness from below of the objective function of the problem P (pj , j ∈ J)

on its feasible set implies the boundedness from below on the feasible set of the objective
function of the problem P (p̄j , j ∈ J) when p̄j ≤ pj , j ∈ J .
The lemma is proved. �

Based on the results of this section and the previous one, we can prove the following
theorem.

Theorem 5.4 Suppose that Assumption 2 is fulfilled, the problem Pmin is feasible, and
there are no numbers ∆yi, i ∈ I, satisfying (51). Then problem P (pj , j ∈ J) with pj ≥
1, j ∈ J, has an optimal solution.

6. Determination of the "right" values of the parameters pj, j ∈ J, in the
problem P (pj, j ∈ J)

The results of the previous sections, permit one to develop algorithmic procedures that
determine integers pj , j ∈ J, such that the problem P (pj , j ∈ J) has an optimal solution
satisfying Properties 1)-3).

Below, we describe a conceptual algorithm that is based on theorems and the lemmas
proved in the sections 4 and 5.

Algorithm

Step 1. Solve the problem P (p∗j , j ∈ J) with p∗j = n+ 2, j ∈ J. If this problem has no
solution, then STOP: there are no integers pj , j ∈ J, such that the problem P (pj , j ∈ J)
has an optimal solution satisfying Properties 1)-3). Otherwise go to Step 2.

Step 2. Suppose that for the optimal solution found at Step 1, Assumption 1 is fulfilled.
(See Remark 1 that gives sufficient conditions for fulfillment of Assumption 1 and the
Appendix for the common rules that can be used for verification of this assumption.)

It follows from Lemma 4.5 that the optimal solution found at Step 1, satisfies Property
3). (The rules for testing Property 3) are described in Appendix.) Go to Step 3.
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Step 3. At this step, we have an optimal solution

ξ0(p∗j , j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ...p∗j , j ∈ J, y0i , i ∈ I)

of the problem P (p∗j , j ∈ J). This solution satisfies Property 3). If, additionally, ξ0(p∗j , j ∈
J) satisfies Property 1) then set pj(1) := p∗j , j ∈ J, and go to Step 4.

If ξ0(p∗j , j ∈ J) does not satisfy Property 1), then follow the method used in the proof
of Lemma 4.1 to find integers pj(1) ≤ p∗j , j ∈ J, such that P (pj(1), j ∈ J) has an optimal
solution

ξ0(pj(1), j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ...pj(1), j ∈ J, y0i , i ∈ I)

that satisfies Property 1). Go to Step 4.
Step 4. At the beginning of this step we have s ≥ 1 and integers pj(s), j ∈ J, such

that P (pj(s), j ∈ J) has an optimal solution

ξ0(pj(s), j ∈ J) = (x0, t0kj , y
0
kj , k = 1, ...pj(s), j ∈ J, y0i , i ∈ I)

satisfying Properties 1) and 3). If this solution satisfies also Property 2) then STOP: we
have found the "right" integers pj , j ∈ J.

Otherwise, following the rules described in the proof of Lemma 4.6, find new integers
¯̃pj ≤ pj(s), j ∈ J, and an optimal solution

ξ̄0(¯̃pj , j ∈ J) = (x0, t0kj , ȳ
0
kj , k = 1, ..., ¯̃pj , j ∈ J ; ȳ0i , i ∈ I)

of the problem P (¯̃pj , j ∈ J) that satisfies the Properties 1) and 3) and

m(ξ̄0(¯̃pj , j ∈ J)) = m(ξ0(pj(s), j ∈ J)), |Ia2 |+
∑
j∈J

pj(s) > |Īa2 |+
∑
j∈J

¯̃pj , (74)

where m(ξ̄0(¯̃pj , j ∈ J)) := rank
(
Aj(t

0
kj − t01j), k = 2, ..., ¯̃pj , j ∈ J̄∗, qi, i ∈ I1 ∪ Īa2

)
,

m(ξ0(pj(s), j ∈ J)) := rank
(
Aj(t

0
kj − t01j), k = 2, ..., pj(s), j ∈ J∗, qi, i ∈ I1 ∪ Ia2

)
, and

the sets are defined as Īa2 = {i ∈ I2 : ȳ0i > 0}, J̄∗ = {j ∈ J : ¯̃pj ≥ 2},
Ia2 = {i ∈ I2 : y

0
i > 0}, J∗ = {j ∈ J : pj(s) ≥ 2}.

Set pj(s + 1) = ¯̃pj , j ∈ J, ξ0(pj(s + 1), j ∈ J) = ξ̄0(¯̃pj , j ∈ J), and repeat Step 4 with
s replaced by s+ 1.

It follows from (74) that in a finite number of iterations we will find parameters ¯̃pj , j ∈ J
such that m(ξ̄0(¯̃pj , j ∈ J)) = |Īa2 | +

∑
j∈J

¯̃pj , i.e. Property 2) is satisfied and according to

Step 4 the algorithm finishes its work. Consequently, the described algorithm is finite.

7. Example

Consider the problem P (pj , j ∈ J) (see (8)) with the following data:

n = 5, p = 4, J = {1, 2, 3}, I1 = {1, 2}, I2 = {3, 4}, D = E ∈ Rn×n,
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D1 = −


0 1 2 1
1 0 1 1
2 1 0 3
1 1 3 0

 , D2 = −


1 1 0 0
1 0 1 5
0 1 1 2
0 5 2 1

 , D3 = −


1 0 0 1.5
0 0 −1 −0.5
0 −1 −1 1.5
1.5 −0.5 1.5 0

 ,

A1 = A2 =


1 0 0 −2
4 −1 2 1
0 1 3 0
2 −1 0 1
0 0 1 0

 , A3 =


0 0 0 2
1 −1 −2 1
0 1 0 0
2 −1 0 1
1 0 1 0

 , B3 =


1 −1 0 −1
1 1 1 0
0 1 −1 1
1 2 1 0
−1 0 0 0

 ,

B1 = B2 = −E ∈ Rp×p, c1 = (−7, 4, 5, 1)T , c2 = (−6, 3, 6, 2)T , c3 = (−2, 1, 4,−2)T ,
ω1 = 5, ω2 = −7, ω3 = 8, ω4 = 0, q1 = (1, 0, 2, 0,−1)T , q2 = (1, 2,−1, 1, 0)T , q3 =
(0,−1, 2, 0, 3)T , q4 = (1,−1, 0, 0,−2)T , c = (−25.5,−37.25, 4.5,−27.75,−3.75)T , m1 =
1.5, m2 = 2, m3 = 3.

According to the algorithm proposed in section 6, let us find such values of the integers
pj ≥ 1, j ∈ J , that a solution of the corresponding problem P (pj , j ∈ J) possesses
Properties 1)-3).

Step 1. Solve the problem P (p∗j , j ∈ J) with p∗j = n+ 2 = 7, j ∈ J. It has an optimal

solution ξ0(p∗j , j ∈ J) =
(
x0, t0kj , y

0
kj , k = 1, ..., p∗j , j ∈ J, y0i , i ∈ I

)
, where

x0 = (1, 2,−3,−1, 0)T , y01 = 1, y02 = −1, y03 = 1, y04 = 0,

t011 = (0, 0, 0, 1)T , t021 = (0, 1, 0, 0)T , t031 = (0, 0, 1, 0)T , t0i1 = (1, 0, 0, 0)T , i = 4, ..., 7,

y011 = 0.5, y021 = 0.25, y031 = 0.25, y041 = 0.5, y051 = y061 = y071 = 0; (75)
t012 = (1, 0, 1, 0)T , t0i2 = (1, 0, 0, 1)T , i = 2, ..., 7; y012 = 1.5, y022 = 0.5, y0i2 = 0, i = 3, ..., 7;

t0i3 = (0,−4, 0, 4)T , i = 1, ..., 7; y013 = 3, y0i3 = 0, i = 2, ..., 7.

Go to Step 2.
Step 2. Assumption 1 is fulfilled since matrix D = E is positive definite (see Remark

1). Go to Step 3.
Step 3. The optimal solution ξ0(p∗j , j ∈ J) satisfies Property 3) but does not satisfy

Property 1). Then following the method used in the proof of Lemma 4.1 we find the
integers p1(1) = 4, p2(1) = 2, p3(1) = 1, such that P (pj(1), j ∈ J) has an optimal solution
ξ0(pj(1), j ∈ J) = (x0, t0kj , y

0
kj , k = 1, ...pj(1), j ∈ J, y0i , i ∈ I) with the data given in (75)

and this solution satisfies Property 1). Go to Step 4.
Step 4. Calculate γ∗ = |I1| − |J | = 2− 3 = −1, Ia2 = {3} and verify that the solution

ξ0(pj(1), j ∈ J) of the problem P (pj(1), j ∈ J) found on the previous step, does not
satisfy Property 2) since

m(ξ0(pj(1), j ∈ J)) = 5 < |Ia2 |+
∑
j∈J

pj(1) + γ∗ = 1 + 4 + 2 + 1− 1 = 7.

According to the proof of Lemma 4.6, find the vector
(∆ykj , k = 1, ..., pj(1), j ∈ J,∆yi, i ∈ I1 ∪ Ia2 ) =
(0.73, 0.27, 0, −1, 0.18, −0.18, 0, 0.39, 1.72, 0.07) satisfying (44) and the numbers

λ = min{λ41 = 0.5, λ22 = 2.83} = 0.5,

ȳ011 = 0.86, ȳ021 = 0.39, ȳ031 = 0.25, ȳ041 = 0, ȳ012 = 1.59, ȳ022 = 0.41, ȳ013 = 3,
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ȳ01 = 1.19, ȳ02 = −0.14, ȳ03 = 1.04, ȳ04 = 0

by the rules (45), (46). Since ȳ041 = 0, then, following the proof of Lemma 4.2, define
new numbers ¯̃p1 = p1(1) − 1 = 3, ¯̃p2 = p2(1) = 2, ¯̃p3 = p3(1) = 1. The vector
ξ̄0(¯̃pj , j ∈ J) = (x0, t0kj , ȳ

0
kj , k = 1, ..., ¯̃pj , j ∈ J ; ȳ0i , i ∈ I) is an optimal solution of the

problem P (¯̃pj , j ∈ J) that satisfies the Properties 1) and 3). Set p1(2) = ¯̃p1 = 3, p2(2) =
¯̃p2 = 2, p3(2) = ¯̃p3 = 1, ξ0(pj(2), j ∈ J) = ξ̄0(¯̃pj , j ∈ J) and repeat Step 4 with s = 2.

Step 4. Solution ξ0(pj(2), j ∈ J) of problem P (pj(2), j ∈ J) does not satisfy Property
2) since m(ξ0(pj(2), j ∈ J)) = 5 < |Ia2 |+

∑
j∈J

pj(2) + γ∗ = 1 + 3 + 2 + 1− 1 = 6.

Following the rules described in the proof of Lemma 4.6, find vector

(∆ykj , k = 1, ..., pj(2), j ∈ J,∆yi, i ∈ I1 ∪ Ia2 ) = (1, 0, −1, 1, −1, 0, 0, 0, 0),

satisfying (44) and numbers λ = min{λ31 = 0.25, λ22 = 0.41} = 0.25,

ȳ011 = 1.11, ȳ021 = 0.39, ȳ031 = 0, (76)
ȳ012 = 1.84, ȳ022 = 0.16, ȳ013 = 3, ȳ01 = 1.19, ȳ02 = −0.14, ȳ03 = 1.04, ȳ04 = 0,

by formulae (45), (46). Since ȳ031 = 0, then following Lemma 4.2, define new numbers
¯̃p1 = p1(2)− 1 = 2, ¯̃p2 = p2(2) = 2, ¯̃p3 = p3(2) = 1. The optimal solution ξ̄0(2, 2, 1) of
the problem P (2, 2, 1) satisfies the Properties 1), 3).

Set p1(3) = 2, p2(3) = 2, p3(3) = 1, ξ0(pj(3), j ∈ J) = ξ̄0(¯̃pj , j ∈ J) and repeat Step
4 again with s = 3.

Step 4. Solution ξ0(pj(3), j ∈ J) of problem P (pj(3), j ∈ J) satisfies Property 2):
m(ξ0(pj(3), j ∈ J)) = 5 = |Ia2 |+

∑
j∈J

pj(3) + γ∗ = 1 + 2 + 2 + 1− 1 = 5, then STOP.

As a result of applying of the algorithm to the example, we have found integers p1 =
2, p2 = 2, p3 = 1 and an optimal solution ξ̄0(p1, p2, p3) of the corresponding problem
P (p1, p2, p3) that satisfies the Properties 1)–3). Here ξ̄0(p1, p2, p3) = (x0, t0kj , ȳ

0
kj , k =

1, ..., pj , j ∈ J ; ȳ0i , i ∈ I) with components x0, t0kj , k = 1, ..., pj , j ∈ J, defined in (75) and
components ȳ0kj , k = 1, ..., pj , j ∈ J ; ȳ0i , i ∈ I, defined in (76).

8. Conclusions

In this paper, given a finite set J, |J | ≤ n, and a finite number of integers pj , j ∈ J , we
have considered the NLP problem P (pj , j ∈ J) in the form (8).

This problem appears as an auxiliary problem in our study of the parametric problems
of SIP and may have different values of parameters pj , j ∈ J . When the differential
properties of solutions of the parametric SIP problems are being studied, we are especially
interested in such values of parameters pj ≥ 1, j ∈ J , that the corresponding problem
P (pj , j ∈ J) has an optimal solution possessing Properties 1)-3).

Use of the specificity of the problems P (pj , j ∈ J) and in-depth analysis of their prop-
erties allowed us to get the following results.

• We have shown that all the feasible solutions of the problem P (pj , j ∈ J) are regular,
in the sense that they satisfy the Relaxed Constant Rank CQ. This has permitted us
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to formulate and prove the first order necessary and sufficient optimality conditions.
• Taking into account the obtained optimality conditions, in Section 4, we have studied

in details how the change of the parameters in the problem P (pj , j ∈ J) affects the
optimal value of its cost function.

• We have shown that if the problem P (p∗j , j ∈ J) with p∗j = n + 2, j ∈ J, admits
an optimal solution satisfying Assumption 1, then for some values of the parameters
pj ≥ 1, j ∈ J,

∑
j∈J

pj ≤ n − γ∗, the corresponding problem P (pj , j ∈ J) satisfies

Properties 1) - 3). We have also proposed conditions that guarantee the solvability of
the problem P (p∗j , j ∈ J).

• Finally, we have constructed an algorithm that in a finite number of iterations either
finds the values of the parameters for which the corresponding problem P (pj , j ∈ J)
has optimal solutions satisfying Properties 1) - 3) or proves that such parameters do
not exist.

The results of the paper will be used in the forthcoming paper devoted to study of the
parametric SIP problems with finitely representable index sets.
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Appendix A. Proof of Lemma A.1

Lemma A.1 Let the implication (6) =⇒ (7) take place and

rank(qi, i ∈ I1) = rank(qi, i ∈ Ī1) = |Ī1| < |I1|, Ī1 ⊂ I1. (A1)

Then in the problem P (pj , j ∈ J), without loss of generality we can exclude from consid-
eration variables yi, i ∈ I1 \ Ī1, having replaced I1 by Ī1.

Proof. From the implication (6) =⇒ (7), one can deduce the following one:∑
i∈I1

qi∆yi = 0 =⇒
∑
i∈I1

ωi∆yi = 0. (A2)

Indeed, let us consider two sets of parameters

(∆y∗i , i ∈ I1, ∆yi = 0, i ∈ I2) and(−∆y∗i , i ∈ I1, ∆yi = 0, i ∈ I2)
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with ∆y∗i , i ∈ I1, such that
∑
i∈I1

qi∆y∗i = 0. Both these sets satisfy conditions (6) that imply

(see (7)) the inequalities −
∑
i∈I1

ωi∆y∗i ≥ 0 and −
∑
i∈I1

ωi(−∆y∗i ) ≥ 0. The implication

(A2) is proved.
It follows from (A1) that

for any ∆yi, i ∈ I1 \ Ī1, ∃∆yi, i ∈ Ī1, such that
∑
i∈I1

qi∆yi = 0. (A3)

Taking into account (A2), (A3), it is easy to see that for any feasible solution ξ (see (9))
of the problem P (pj , j ∈ J), there exists a feasible solution

ξ̄ = (x, tkj , ykj , k = 1, ..., pj , j ∈ J ; ȳi, i ∈ I1, yi, i ∈ I2)

such that ȳi = 0, i ∈ I1 \ Ī1 and F (ξ) = F (ξ̄) where F (ξ) denotes the cost function in the
problem P (pj , j ∈ J). Hence, without loss of generality, in the problem P (pj , j ∈ J) we
can exclude from consideration variables yi, i ∈ I1 \ Ī1, having replaced I1 by Ī1. �

Appendix B. Verification of Assumption 1

It is evident that system (17)-(20) can be written in the form

Az +Bµ = b, µ ≥ 0, (B1)

where A ∈ Rm×n, B = (bi, i ∈ I) ∈ Rm×|I|, and b ∈ Rm are given matrices and vector
that are constructed on the base of initial data (3). It is known that the system has a
solution. Then Assumption 1 takes the form of the following one.

Assumption 3 Given a solution (z∗, µ∗) of system (B1), there is no another solution
(z̄, µ̄) of this system such that z̄ ̸= z∗.

Denote M∗ := {µ ∈ R|I| : Az∗ + Bµ = b, µ ≥ 0}, I∗ := {i ∈ I : ∃µ = (µi, i ∈ I) ∈
M∗, µi > 0}.

Proposition B.1 Assumption 3 is fulfilled if and only if the following two conditions
are satisfied:

1) rank (A, bi, i ∈ I∗) = n+ rank (bi, i ∈ I∗), 2) val(LP∗) = 0,

where val(LP∗) denotes the optimal value of the cost function of the following Linear
Programming (LP) problem:

LP∗ : max
∑
i∈I0

∆µi,

s.t. A∆z +B∆µ = 0,
∑
i∈I0

∆µi ≤ 1, ∆µi ≥ 0, i ∈ I0 = I \ I∗.

Proof. Notice that by construction, there exists a vector µ̃ ∈ M∗ such that µ̃i > 0, i ∈ I∗,
and (z∗, µ̃) is a solution of system (B1).
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⇒) Suppose first, that Assumption 3 is fulfilled, but condition 1) is not satisfied:
rank (A, bi, i ∈ I∗) < n+ rank (bi, i ∈ I∗). Let Ĩ∗ ⊂ I∗ be such a set that

rank (bi, i ∈ I∗) = rank (bi, i ∈ Ĩ∗) = |Ĩ∗|.

Hence, there exists a vector (∆z,∆µi, i ∈ Ĩ∗) ̸= 0 with the componentes satisfying the
condition A∆z +

∑
i∈Ĩ∗

bi∆µi = 0, ∆z ̸= 0. It is evident that for sufficiently small ϵ > 0

the vector (z̄ = z∗ + ϵ∆z, µ̄i = µ̃i + ϵ∆µi, i ∈ Ĩ∗, µ̄i = µ̃i, i ∈ I \ Ĩ∗) is a solution of
system (B1) and z∗ ̸= z̄. But this contradicts Assumption 3. Hence under Assumption 3,
condition 1) should be satisfied.

Now suppose that Assumption 3 is fulfilled, but condition 2) is not satisfied. Hence
there exists a vector (an optimal solution of problem (LP∗)) (∆z0,∆µ0

i , i ∈ I) with
∆µ0

i ≥ 0, i ∈ I0,
∑
i∈I0

∆µ0
i = 1. If suppose that in this vector ∆z0 = 0 , then it is easy to

show that for a sufficiently small ϵ > 0, the vector (µ̄i = µ̃i + ϵ∆µ0
i , i ∈ I) belongs to the

set M∗ defined above, and there exists i ∈ I0 such that µ̄i > 0. But this contradicts the
rules for constructing the set I∗. Hence ∆z0 ̸= 0. As before, it is easy to show that in this
case the vector (z̄ = z∗ + ϵ∆z0, µ̄i = µ̃i + ϵ∆µ0

i , i ∈ I) is a solution of system (B1) and
z∗ ̸= z̄ that contradicts Assumption 3.

Hence we have proved that if Assumption 3 is fulfilled, then conditions 1) and 2) are
satisfied.

⇐) Now suppose that conditions 1) and 2) are satisfied but system (B1) admits an
another solution (z̄, ȳ) such that z∗ ̸= z̄. Denote ∆z∗ = z̄ − z∗ ̸= 0, ∆µ∗ = µ̄ − µ̃.
Notice that by construction, ∆µ∗

i = µ̄i ≥ 0, i ∈ I0. If suppose that at least one of the
last inequalities is strictly satisfied, then

∑
i∈I0

∆µ∗
i > 0, and we obtain a contradiction

with condition 2). Hence ∆µ∗
i = 0, i ∈ I0. Therefore A∆z∗ +

∑
i∈I∗

bi∆µ∗
i = 0, wherefrom,

taking into account the definition of the set Ĩ∗, one can conclude that there exist ∆µ̄∗
i , i ∈

Ĩ∗, such that A∆z∗ +
∑
i∈Ĩ∗

bi∆µ̄∗
i = 0. Since ∆z∗ ̸= 0, then from the last equality it

follows: rank (A, bi, i ∈ Ĩ∗) < n + |Ĩ∗| = n + rank (bi, i ∈ Ĩ∗). Taking into account that
rank (A, bi, i ∈ Ĩ∗) = rank (A, bi, i ∈ I∗) we obtain a contradiction with condition 1).
Hence conditions 1) and 2) imply Assumption 3. The proposition is proved. �

It follows from Proposition B.1, that to verify the fulfillment of Assumption 3 one needs
to find the set I∗. This set can be constructed by a procedure described below.

Recall here that val(P ) denotes the optimal value of the cost function in an optimization
problem (P).

A procedure of constructing the set I∗.

Let (z∗, µ∗) be a known solution of system (B1).
Initialization. Set I

(1)
∗ := {i ∈ I : µ∗

i > 0}, I(1)0 := ∅, s := 1.

Step s. If I(s)∗ ∪ I
(s)
0 = I, then set I∗ := I

(s)
∗ and STOP.
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Suppose that I(s) = I \ (I(s)∗ ∪ I
(s)
0 ) ̸= ∅. Solve the following LP problem:

LP0 : max
∑
i∈I(s)

∆µi, s.t.
∑

i∈I(s)
∗ ∪I(s)

bi∆µi = 0,
∑
i∈I(s)

∆µi ≤ 1,∆µi ≥ 0, i ∈ I(s).

This problem has an optimal solution. Let (∆µ0
i , i ∈ I

(s)
∗ ∪ I(s)) be a primal and λ ∈ Rm

be a dual optimal solutions of problem (LP0).
There are two possibilities here: either val(LP0) = 0 or val(LP0) = 1.

If val(LP0) = 0 then set I∗ := I
(s)
∗ and STOP.

Suppose now that val(LP0) = 1. From the LP optimality conditions we have

λT bi = 0, i ∈ I
(s)
∗ , λT bi ≥ 0, ∆µ0

iλ
T bi = 0, i ∈ I(s).

Set I
(s+1)
∗ := I

(s)
∗ ∪ {i ∈ I(s) : ∆µ0

i > 0}, I(s+1)
0 := I

(s)
0 ∪ {i ∈ I(s) : λT bi > 0}, and go to

the next step having set s := s+ 1.

Since by construction |I(s+1)
∗ | ≥ |I(s)∗ | + 1 and |I(s+1)

0 | ≥ |I(s)0 |, it is evident that the
described procedure constructs the set I∗ in a finite number of steps.

Notice that the matrices A and B were introduced to rewrite system (17)-(20) in the
form (B1) and therefore have special structure. Accounting of this structure considerably
simplifies the described above procedure and verification of the conditions 1), 2).

Appendix C. Testing optimality of feasible solutions of the QP problem (13)

Any problem (13) can be written in the following form:

QP ∗ : min
1

2
tTQt+ aT t, s.t. t ∈ K = {t ∈ Rp : bTs t ≤ 0, s ∈ S},

where matrix Q satisfies the condition tTQt ≥ 0, ∀t ∈ K.
Problem (QP ∗) is a nonconvex QP problem with the unbounded feasible set. It is

known that such problems are NP-hard and over the past decades, much effort has been
applied to the search for solutions of these problems. Some computational algorithms for
solving special classes of nonconvex QP problems can be found in [5, 6, 23].

In what follows, we present three theorems (see [5, 23]) that can be used to test the
optimality of a given feasible solution of problem (QP ∗).

Theorem C.1 (Necessary and sufficient optimality conditions for local optimality) A
vector t0 ∈ K is a local minimizer of problem (QP ∗) iff there exists a vector (µs, s ∈
Sa(t

0)) with Sa(t
0) := {s ∈ S : bTs t

0 = 0} such that

Qt0 + a+
∑

s∈Sa(t0)

bsµs = 0, µs ≥ 0, s ∈ Sa(t
0), (C1)

and lTQl ≥ 0, ∀l ∈ {l ∈ Rp : bTs l ≤ 0, s ∈ Sa(t
0), (Qt0 + a)T l ≤ 0}.

Theorem C.2 (Sufficient optimality conditions for global optimality) A vector t0 ∈ K
is a global minimizer of problem (QP ∗) if there exists a vector (µs, s ∈ Sa(t

0)) such that
conditions (C1) are satisfied and lTQl ≥ 0, ∀l ∈ {l ∈ Rp : bTs l ≤ 0, s ∈ Sa(t

0)}.
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Theorem C.3 If in problem (QP ∗), matrix Q has s negative eigenvalues and t0 is any
local (global) optimal solution of this problem, then |Sa(t

0)| ≥ s.

In the cases when application of Theorems C.1- C.3 does not permit to check the
optimality of a given feasible solution t0 of problem (QP ∗), the following procedure can
be applied.

Denote by S be the set of all subsets S∗ of the index set S. For S∗ ∈ S, solve the
following LP problem:

max(λ− aT t),

LP (S∗) : λa+Qt+
∑
s∈S∗

bsµs = 0, 0 ≤ λ ≤ 1;

bTs t = 0, s ∈ S∗; bTs t ≤ 0, s ∈ S \ S∗.

This problem possesses a feasible solution: λ = 0, t = 0, µs = 0, s ∈ S∗. Hence
val(LP (S∗)) ≥ 0.

If val(LP (S∗)) = ∞, then val(QP ∗) = −∞ and problem (QP ∗) does not admit optimal
solutions since its cost function is not bounded from below on the set of its feasible
solutions.

Suppose that the problem (LP (S∗)) has an optimal solution that we denote here by
λ∗, t∗, µ∗

s, s ∈ S∗.
a) If val(LP (S∗)) = 0, set v(S∗) := 0. Notice that the equality val(LP (S∗)) = 0 implies

the relations λ∗ = 0, aT t∗ = 0.
b) If 0 < val(LP (S∗)) < ∞, set v(S∗) := −1

2 t
∗TQt∗ ≤ 0. In this case λ∗ = 1 and

aT t∗ = −t∗TQt∗ = aT t = −tTQt for all t ∈ K(S∗), where

K(S∗) = {t ∈ Rp : ∃µs, s ∈ S∗, a+Qt+
∑
s∈S∗

bsµs = 0, bTs t = 0, s ∈ S∗; bTs t ≤ 0, s ∈ S\S∗}.

Therefore in the case b), we have v(S∗) = 1
2 t

∗TQt∗+aT t∗ = 1
2 t

TQt+aT t for all t ∈ K(S∗).
Suppose that val(LP (S∗)) < ∞ for all S∗ ∈ S. Then val(QP ∗) = min

S∗∈S
v(S∗).

To test the optimality of a given t0 ∈ K, one has to compare two values: f(t0) :=
1
2 t

0TQt0 + aT t0 and val(QP ∗). If f(t0) = val(QP ∗), then t0 is an optimal solution of
problem (QP ∗). If f(t0) > val(QP ∗), then t0 is not optimal in (QP ∗).

Remark 3 The described procedure, additionally, provides the following information
about the set K0 of all optimal solutions of problem (QP ∗):

• if there exists S∗ such that val(LP (S∗)) = ∞, then val(QP ∗) = −∞ and K0 = ∅;
• if val(QP ∗) = 0 then K0 = {t ∈ K : tTQt = 0, aT t = 0};
• if 0 > val(QP ∗) > −∞ then K0 =

∪
S∗∈S0

K(S∗), where S0 = {S∗ ∈ S : val(QP ∗) =

v(S∗)}.

Remark 4 Applying the approach described above, using Theorems C.1-C.3, the branch
and bound method and the duality theory, one can develop more efficient procedures
permitting in many cases to avoid iterating through all the existing options.
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