
Open Research Online
The Open University’s repository of research publications
and other research outputs

The mystery of the writing that isn’t on the wall:
differences in public representations in traditional and
agile software development
Conference or Workshop Item

How to cite:

Petre, Marian; Sharp, Helen and Freudenberg, Sallyann (2012). The mystery of the writing that isn’t on the
wall: differences in public representations in traditional and agile software development. In: 5th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2012), 2-9 Jun 2012, Zurich,
Switzerland.

For guidance on citations see FAQs.

c© 2012 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.chaseresearch.org/workshops/chase2012

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/9544141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.chaseresearch.org/workshops/chase2012
http://oro.open.ac.uk/policies.html

The Mystery of the Writing That Isn’t on the Wall: Differences in Public
Representations in Traditional and Agile Software Development

Marian Petre
Centre for Research in Computing

The Open University
Milton Keynes, UK

m.petre@open.ac.uk

Helen Sharp
Centre for Research in Computing

The Open University
Milton Keynes, UK

h.c.sharp@open.ac.uk

Sallyann Freudenberg
Adfectio Ltd

UK
Sallyann.freudenberg@gmail.com

Abstract—This paper considers the use of public displays,

such as whiteboards and papers pinned to walls, by different
software development teams, based on evidence from a
number of empirical studies. This paper outlines differences in
use observed between traditional and agile teams and begins
to identify the implications that they may have for software
development.

I. PUBLIC DISPLAYS IN SOFTWARE DEVELOPMENT
This paper addresses one particular form of external

representation (ER): public displays such as shared
whiteboards or material posted on corridor walls. Cockburn
[4] writes about these as “information radiators”: displays
posted where people can see them as they work or walk by,
and which present relevant information, improving group
communication with fewer interruptions. ‘Good’
information radiators are large and easily visible, can be
understood at a glance, and change periodically.

Yet the nature and content of public displays in different
software development environments can vary significantly.
In traditional software development, informal representation
features heavily [11], including whiteboards and paper
displays on public walls. Many of the whiteboards and
environmental displays observed in traditional settings
reflect high-level structure (e.g., maps, structure diagrams,
architecture diagrams) or planning (e.g., lists of tasks or
requirements). In contrast, public displays in eXtreme
Programming (XP) and agile software development focus
on low- level components and project progress.

More broadly, XP takes a very different stance on
representation in general from the long tradition of
documentation and representation in traditional software
development. For example, XP favours a verbal system
metaphor over an external representation of the systems
architecture; XP de-emphasises the usefulness of persistent
formal external representations of the system; and so on [1].

Many researchers have portrayed the importance of
external representations in design, where they are used both
to support design reasoning and as a medium of
communication among designers, both in design generally
(e.g., [5]; [13]) and in software design in particular (e.g., [6];
[3]). Goldschmidt [8] describes a ‘dialectic’ between
designer and sketched representation that contributes to the
processes of design, evaluation, and reflection. Such
research tends to focus on sketches used to explore or

confirm design possibilities, whether individual or shared,
on paper or on whiteboards.

This paper asks specifically: What roles do public
representations (i.e., material displayed in shared spaces)
actually play in supporting design? What might it mean if
there are significant differences in what is represented in
different settings, and might there be important implications,
for example in terms of how a team’s attention and
communication are focused? Do the roles, include sharing
designs and information, promoting communication and
coordination within a design team, and developing designs,
as the literature (e.g., [3]) might suggest?

Drawing on a number of empirical studies by the
authors, this paper describes briefly the different contexts
and considers the implications of those differences for
software development. The paper is a reflection on
empirical research, rather than a report on new research.

II. OBSERVATIONS ABOUT THE USE OF PUBLIC DISPLAYS
This section describes the public displays observed in

agile and traditional software development contexts.

A. Agile Displays: Story Cards and the Wall
Sharp et al. [14] analyze in detail the activity of one

agile team and conclude that the role of public displays is
largely restricted to process issues such as progress-tracking,
and that these artefacts lack detailed information about the
application under development. This analysis also points out
that, in a co-located team, artefacts are used in an
information-rich environment supported by open and simple
information flows. Sharp and Robinson [15, 16] analyze
further teams and highlight the role of physical artefacts in
co-operation and collaboration activities. They identify story
cards and the Wall as key public displays with two main
roles: enabling the capture of requirements and supporting
the development process. Story cards represent user stories,
the mechanism in agile development by which user
requirements are captured. The Wall is a vertical surface on
which the story cards are displayed publicly, in a codified
structure that indicates their status (e.g., under development,
ready for testing, etc.) and hence the progress of the project.

B. Traditional Displays: Whiteboards
Petre, over a number of empirical studies of professional

software development [11, 12], observed that traditional

978-1-4673-1824-2/12/$31.00 c© 2012 IEEE CHASE 2012, Zurich, Switzerland120

Figure 1. (Agile) A photograph of the Wall, showing story cards

arranged in an array that indicates status and priority.

teams employ a rich repertoire of informal external
representations, offering differing perspectives on the
software. Traditional teams’ shared representations – on
shared whiteboards and on papers pinned to walls – tend to
be concerned with requirements, functionality, conceptual
structure, and software architecture, with a certain amount
of planning information (usually in the form of lists or
annotations) juxtaposed. Whereas the agile ‘Wall’ is
typically a single, focal representation, the shared displays
in traditional teams are often more numerous, although there
are typically key displays in places of high traffic. There are
examples of 6-foot whiteboards propped next to desks or
mounted in corridors and near coffee machines. Developers
are observed standing around, glancing at them, gesturing
toward them.

Figure 2. Fig. 2 (Traditional) A photograph of a whiteboard, showing

structural and functional elements of a design.

III. THE IMPLICATIONS OF WHAT IS/ISN’T DISPLAYED
Green and Petre [9] summarised a “Maxim of

Information Representation”: “Every notation highlights
some kinds of information at the expense of obscuring other
kinds.” (p. 134) Not everything can be highlighted at once.
If a representation highlights dataflow, then it may well
obscure the control flow; if a representation highlights the
conditions under which actions are to be taken, then it may
obscure the sequential ordering of actions. If the public
representation used by an agile team highlights the priority
in which requirements are addressed, then it may obscure
functionality; if the public representation of a traditional
team highlights software structure, then it may obscure
status or progress. Hence, the question here is: if the public
displays of agile and traditional teams emphasise different
information, where is the information maintained that is not

displayed? Are there consequences on productivity of the
choice of emphasis in the public representations?

A. It’s in the Dialogues
One possibility is that the ‘other information’ resides in

dialogues. Having public displays in frequented places
serves to reinforce the information represented, promoting
reference, awareness, and coordination. Information that is
not represented explicitly is not reinforced across the team
in this way. It falls to the social context to ‘fill in the gaps’:
to share, renew, and articulate important information.

The public displays of agile teams emphasise the
progress of the project as related to requirements. So where
are functionality, structure and architecture captured? Beck
[1] argues that a verbal system metaphor should be used
instead of a representation of the system’s architecture, and
that the architecture should be instantiated through pair
programmer dialogues and code generation, and that code
should be largely ‘self documenting’. But is this sufficient
to support development and common understanding of a
coherent, effective architecture? Other agile practices
support sharing and the development of common ground
between team members but (how) do these work in
practice? Do all the members of an agile team maintain a
consistent, coordinated view of the system architecture, or
do components evolve independently, or do their dialogues
promote ‘sufficient emergent coordination’ as it evolves?

The public displays of traditional teams emphasise
functionality and structure. So where is the progress of the
project reflected? Although progress information is not
prioritised, and perhaps not monitored continually, there is
some evidence that it is nevertheless valued. For example,
one of the 12 criteria in the Joel Test [17], a ‘straw test’ to
gauge the quality of a computer software team, is “Do you
have an up-to-date schedule?” Do members of traditional
teams maintain an awareness of the project priorities and
progress, or concentrate on their own targets, perhaps
proceeding in a manner that is not strategic to the project?

Both opportunities and issues are raised by relying on
dialogues to maintain key project information. Doing so
requires that dialogue actually happens; in agile dialogue is
compulsory, whereas in traditional development it is a
matter of good practice. Maintaining information (largely)
through dialogue subjects the information to continual
renewal: on one hand, the process of articulation and re-
articulation may facilitate negotiation of shared
understanding that develops along with the software artifact
[2]; on the other, it may mean ‘drift’ in the understanding
that poses a challenge for coordination between pairs or sub-
teams. This is in contrast to dialogues around external
representations, which can provide an ‘anchor’ for the
negotiation of understanding and can assist in team
coordination (to the extent to which the interpretation of the
ERs is consistent across the team).

If the maxim is that representation is necessarily
selective, then what accounts for the selections – and the
implied priorities – associated with the different practices,
and what are the trade-offs in terms of reasoning and
outcomes? Is the implication that the other information is

121

less important for that development process or that it is more
easily maintained through dialogue? Or that it does not
require continual attention with the same support? Is the
architecture of the software developed by agile teams so
clearly established or stable that it does not need to be
reinforced? Or is the social process enough to maintain
coordination and address change? Similarly, is project
progress something for which periodic attention is sufficient
in traditional teams?

Although we’ve heard software developers speculate
about the impact of ‘the information that isn’t on the
whiteboard’, our studies have not yet produced sufficient
evidence to draw conclusions about consequences or
tradeoffs.

B. It’s in Someone’s Notebook
Another possibility is that the other information is

represented, but with less prominence, or in something other
than a shared representation. Freudenberg [7] observed of
agile teams that “there were … some indications of
graphical representations of systems architectures in a
number of project spaces, suggesting that these architectural
diagrams were useful in group communications rather than
when working on a specific development task”. Sharp
observed that agile teams refer to a planning phase in which
an architecture is set out, but the representation of that
architecture does not persist in public displays; it is enough
that the team knows it exists ‘somewhere’.

Similarly, process or progress information in traditional
teams is often maintained by a project leader who keeps an
overview, although that information may not be displayed
publicly. Team members know what is expected of them,
and they may monitor project progress beyond their own
tasks via interactions and cues in the environment.
Although not prioritised, some planning information may be
included in public displays, typically as lists or as
annotations to requirements or diagrams.

IV. SUMMARY
In general, the public displays of agile software

development teams emphasise project progress and
requirements at a low level of granularity. The public
displays of traditional software development teams tend to
emphasise higher-level requirements, functionality,
conceptual structure, and software architecture. The
differences in public displays between the two contexts raise
a number of open questions that warrant further
investigation:

• What does the dominant representation imply about
priorities, or about the way the teams collaborate?

• Where does the other information reside (in the
social interaction? elsewhere?), and is it maintained
well enough to provide effective input into
development?

• What are the implications of the differences?
Would software development process be better
supported by different public displays?

This example of provocative differences in practice in
the two contexts highlights the need for comparative studies
between the settings, using detailed analytic approaches to
draw out factors that may affect reasoning, productivity, or
quality. We plan to look more deeply and across other
informal representations that support the development
process and to seek to relate choices in representation to
impact on efficacy.

REFERENCES
[1] Beck, K. 2000. Extreme Programming Explained: Embrace Change.

Addison Wesley.
[2] Binti Abdullah, N.N., Sharp, H. and Honiden, S. 2010.

Communications in context: a stimulus-response account of Agile
team interactions. A. Sillitti, A. Martin,X. Wang, E. Whitworth
(eds.) XP 2010, 166-171.

[3] Cherubini, M., Venolia, G., DeLine, R., and Ko, A.J. 2007. Let’s go
to the whiteboard: how and why software developers use drawings.
CHI, 557-566.

[4] Cockburn, A. 2002. Agile Software Development, Addison-Wesley.
[5] Fish, J. and Scrivener, S. 1990. Amplifying the mind’s eye:

sketching and visual cognition. Leonardo, 23 (1), 118-126.
[6] Flor, N.V. and Hutchins, E.L. 1991. Analysing distributed cognition

in software teams: a case study of team programming during
perfective software maintenance. J. Koenemann, T.G. Moher and
S.P. Robertson (eds.) Empirical Studies of Programmers: Fourth
Workshop. Ablex, 36–64.

[7] Bryant (Freudenberg), S. (2004) Double trouble: mixing quantitative
and qualitative methods in the study of extreme programmers. IEEE
Symposium on Visual Languages and Human Centric Computing
(VL/HCC) Rome, Italy.

[8] Goldschmidt, G. 1991. The dialectics of sketching, Creativity
Research Journal, 4 (2), 123–143.

[9] Green, T.R.G., and Petre, M. 1996. Usability analysis of visual
programming environments: a ‘cognitive dimensions’ framework.
Journal of Visual Languages and Computing, 7 (2), 131 - 174.

[10] Norman, D. 1993. Cognition in the head and in the world. Cognitive
Science, 17, 1-6.

[11] Petre, M. 2009. Insights from expert software design practice.
ESEC/FSE'09, 233-242.

[12] Petre, M. 2004. Team coordination through externalised mental
imagery. Int’l Jnl of Human-Computer Studies, 61 (2), 205 - 218.

[13] Schön, D. 1988. Design rules, types and worlds. Design Studies, 9
(3), 181–190.

[14] Sharp, H., Robinson, H., Segal, J., Furniss, D. 2006. The role of
story cards and the wall in XP teams: a distributed cognition
perspective. Agile 2006, 65–75.

[15] Sharp, H.C., Robinson, H.M., 2008. Collaboration and co-ordination
in mature eXtreme Programming teams. International Journal of
Human–Computer Studies, 66, 506–518.

[16] Sharp, H.C., Robinson, H.M., and Petre, M. 2008. The role of
physical artefacts in agile software development: two
complementary perspectives. Interacting with Computers, 21 (1-2),
108-116.

[17] Spolsky, J. 2000. The Joel Test: 12 steps to better code. Joel on
Software blog.
http://www.joelonsoftware.com/articles/fog0000000043.html

122

