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Zusammenfassung v

Zusammenfassung

In der vorliegenden Dissertation werden regressionsbasierte Monte-Carlo-Verfahren für dis-
kretisierte Diffusionsprozesse vorgestellt. Diese Verfahren beinhalten die Konstruktion von
geeigneten Kontrollvariaten, die zu einer signifikanten Reduktion der Varianz führen. Da-
durch kann die Komplexität des Standard-Monte-Carlo-Ansatzes (ε−3 für Schemen erster
Ordnung und ε−2.5 für Schemen zweiter Ordnung) im besten Fall reduziert werden auf eine
Ordnung von ε−2+δ für ein beliebiges δ ∈ [0, 0.25), wobei ε die zu erzielende Genauigkeit
bezeichnet. In der Komplexitätsanalyse werden sowohl die Fehler, die auch beim Standard-
Monte-Carlo-Ansatz auftreten (Diskretisierungs- und statistischer Fehler), als auch die aus
der Schätzung bedingter Erwartungswerte mittels Regression resultierenden Fehler berück-
sichtigt. Darüber hinaus werden verschiedene Algorithmen hergeleitet, die zwar zu einer
ähnlichen theoretischen Komplexität führen, jedoch numerisch gesehen bei der Regressions-
schätzung unterschiedlich stabil und genau sind. Die Effektivität dieser Algorithmen wird
anhand von numerischen Beispielen veranschaulicht und mit anderen bekannten Metho-
den verglichen. Zudem werden geeignete Kontrollvariaten für die Bewertung von Bermuda-
Optionen sowie amerikanischen Optionen basierend auf einer dualen Monte-Carlo-Methode
hergeleitet. Auch hierbei ergibt sich eine signifikante Komplexitätsreduktion, sofern die zu-
grunde liegenden Funktionen gewisse Glattheitsannahmen erfüllen.
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Chapter 1

Introduction

Monte Carlo methods belong to the class of algorithms, which use random simulations, and
have become quite popular in various applications. In particular, realisations of random
variables are generated via a “pseudorandom number generator” to solve specific problems,
e.g. the estimation of an integral via averaging those realisations. In terms of a practical
implementation, a random number generator is represented by a non-random sequence of
real numbers between 0 and 1, initialised by a changing seed. Obviously, simulations on
a different set of random numbers lead to different outputs. The more samples are drawn
from the distribution, the smaller becomes the variance (statistical error) of the estimator.
Since Monte Carlo methods are easily implementable, they can provide the evaluation of
very complicated quantities in a simple way. The usual measure of “goodness” of a Monte
Carlo algorithm, its numerical complexity, is defined as the minimal cost, in terms of the
desired accuracy ε, needed to achieve mean squared error (MSE) at most of order ε2. Let us
consider the example of numerical integration via Monte Carlo simulation. Here the MSE
converges to zero when the number of samples tends to infinity. More precisely, the MSE is
of order 1/N , where N is the number of samples. The requirement that the MSE is at most
of order ε2 necessitates that N should be of order ε−2. The cost being of order N is then
also of order ε−2. Thus, the complexity here is ε−2 and is not affected by the dimensionality
of the problem, that describes the number of variables over which we shall compute the
integral in this case. In contrast, many deterministic (non-random) approaches, such as
the rectangle and trapezoid methods, become too expensive and thus inefficient, as the
dimensionality increases. In such approaches the complexity is typically of the form ε−cd,
where c is a positive constant and d is the dimension. This phenomenon of the complexity
growing exponentially in the dimensionality (with the basis ε−1, where we recall that ε is
the desired accuracy) is often called “curse of dimensionality” (see e.g. [21]). Thus, Monte
Carlo methods are especially useful in high-dimensional situations, since they do not suffer
from the curse of dimensionality.

Typically one does not use Monte Carlo methods in its plain form, but rather considers
variance reduction methods. The aim of such a variance reduction is to reduce the statistical
error of the plain Monte Carlo method, leading to an acceleration of the convergence (see
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e.g. [46]). Clearly, a reduction of the variance is desirable, since it shall also reduce the
complexity: either, for similar cost one shall achieve a smaller error, or, to achieve similar
errors, less cost shall be required.

For a detailed overview of Monte Carlo methods, including several variance reduction
techniques, see e.g. [19], [21], [23] and [46].

Main goal. The starting point of this thesis is the problem to compute the expecta-
tion E [f(XT )], where T is a fixed time horizon, f is a given continuous function on Rd

and (Xt)t∈[0,T ] is a d-dimensional diffusion process, defined on a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P), with natural filtration (Ft)t∈[0,T ], by the Itô stochastic differential
equation (SDE)

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x0 ∈ Rd, (1.1)

with (Wt)t∈[0,T ] being a standardm-dimensional (Ft)t∈[0,T ]-Brownian motion. The functions
µ : Rd → Rd and σ : Rd → Rd×m are assumed to be Lipschitz continuous, such that the
SDE (1.1) has a strong solution, and pathwise uniqueness holds. In fact, the expectation
E [f(XT )] can alternatively be computed by solving the following parabolic Cauchy problem:

∂u

∂t
+ Lu = 0 on [0, T )× Rd, (1.2)

u(T, x) = f(x) for x ∈ Rd. (1.3)

Here, L is the differential operator associated with the equation (1.1)

(Lu)(t, x) :=
d∑
i=1

µi(x) ∂u
∂xi

(t, x) + 1
2

d∑
i,j=1

(σσ>)ij(x) ∂2u

∂xi∂xj
(t, x),

where σ> denotes the transpose of σ. Under appropriate conditions on µ, σ and f , the
solution of the Cauchy problem (1.2)–(1.3) is unique in the class of solutions satisfying
certain growth conditions, and the following Feynman-Kac stochastic representation (see
Section 5.7 in [37], which is based on [16] and [36]) holds

u(t, x) = E[f(Xt,x(T ))],

where Xt,x denotes the solution started at time t in point x. Moreover we have (see e.g.
Newton [49])

u(t,Xt) = E[f(XT )|Xt], a.s.

for t ∈ [0, T ], where we simply write Xt rather than X0,x0(t). That is, for the computation of
E [f(XT )] = u(0, x0) one can use both Monte Carlo and deterministic algorithms. However,
the deterministic approach related becomes inefficient for high dimensional problems (d,m�
5).

The standard Monte Carlo (SMC) approach for estimating E[f(XT )] consists of three
steps: first an approximation XT for XT is constructed via a time discretisation of the
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equation (1.1), since the exact distribution of XT is usually not known. Next N independent
copies of the approximation XT are generated and finally a Monte Carlo estimate VN is
defined as an average of the values of f at simulated points

VN := 1
N

N∑
n=1

f
(
X

(n)
T

)
. (1.4)

As for the complexity of the SMC approach, we would like to have

E
[
(VN − E [f(XT )])2

]
. ε2,

where ε is again the accuracy to be achieved. Rewriting the MSE leads to two types of
errors: a discretisation error (below we will rather write “bias”) E[f(XT )] − E[f(XT )] and
a Monte Carlo (statistical) error, which result from the substitution of E[f(XT )] with the
sample average VN . More precisely, it holds

E
[
(VN − E [f(XT )])2

]
= (E [VN − f(XT )])2 + Var [VN ]

=
(
E
[
f(XT )− f(XT )

])2 +
Var

[
f(XT )

]
N

.

A discretisation scheme has (numerically) weak convergence of order α > 0 if, for all func-
tions f that belong to a certain class, it holds

∣∣E[f(XT )]− E[f(XT )]
∣∣ ≤ chα, where h

denotes the norm of the partition (in case of an equidistant partition its grid size) of [0, T ]
on which the discretisation scheme is constructed, and c is a positive constant that does not
depend on h (but depends on f). As a consequence, the complexity of the SMC approach
is, independently of the dimensionalities d and m, of order

CSMC � ε−2− 1
α . (1.5)

If the solution of (1.1) at point T could be computed at cost one, then the complexity would
have been of order ε−2. Regarding the weak convergence, in the literature they consider
somewhat different classes of functions for different discretisation schemes. For instance, for
a popular method of discretisation, the so called Euler scheme, the class of functions f is
typically the class of four times continuously differentiable functions with partial derivatives
of order four having polynomial growth (then the functions themselves have polynomial
growth).

From now on we focus on a specific variance reduction approach, namely the method
of control variates, which are very useful in our setting, since they can be conveniently
constructed. In particular, one looks for a random variable ξ with Eξ = 0, that can be
simulated, such that the variance of the difference f(XT )− ξ is significantly reduced, i.e.,

Var[f(XT )− ξ]� Var[f(XT )].

Then one uses the sample average

V CVN := 1
N

N∑
n=1

[
f
(
X

(n)
T

)
− ξ(n)

]
(1.6)
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instead of (1.4) to approximate E[f(XT )].
As for the construction of potential control variates, it holds (cf. [49])

f(XT ) = E[f(XT )] +M∗T , a.s. (1.7)

where

M∗T :=
T∫

0

∇xu(t,Xt)σ(Xt) dWt, (1.8)

and where ∇xu(t, x) denotes the gradient of u w.r.t. x.
The use of control variates for solving (1.1) via Monte Carlo path simulation approach

was initiated by Newton [49] and further developed in Milstein and Tretyakov [45]. Since
the function u(t, x) is unknown, the control variate M∗T cannot be directly computed. This
is why Milstein and Tretyakov [45] proposed to use regression for getting a preliminary
approximation for u(t, x) in a first step. In fact, the construction of the appropriate control
variates in the above two papers essentially relies on the identity (1.7) implying that the
zero-mean random variable M∗T can be viewed as an optimal control variate, since

Var[f(XT )−M∗T ] = Var[Ef(XT )] = 0.

However, due to the fact that we only can simulate from the distribution of the discretised
process and not from the exact one, we will derive proper control variates reducing the
variance of f(XT ) rather than the one of f(XT ). As a by-product our control variates can
be computed in a rather simple and constructive way. More importantly, we are able to get
a sufficient convergence order of the resulting variance to zero at low cost, which leads to
a significant complexity reduction as compared to the SMC algorithm. Another prominent
example of Monte Carlo algorithms with this property is themultilevel Monte Carlo (MLMC)
algorithm of [18], where one uses a telescoping sum to estimate E[f(XT )] at different levels,
that is, with different number of time steps. It turned out that the complexity of the MLMC
algorithm can at best reduced down to order ε−2. Further interesting approaches that reduce
the complexity via deterministic quadrature-based algorithms can be found in [47] and [48].
Our aim is to derive an efficient algorithm with complexity rate better than ε−2. This is
achieved by using regression-type algorithms for the construction of control variates. As
opposite to the SMC approach, our method takes advantage of the smoothness in µ, σ
and f (which is needed for nice convergence properties of regression methods) and hence is
especially efficient for smooth problems.

This dissertation is organised in the following way: in Chapter 2 we focus on regression
estimates and smoothness conditions on general discretisation schemes. Chapter 3 describes
the construction of control variates for schemes with Gaussian increments. The construction
of control variates for weak approximation schemes is discussed in Chapter 4, where the
schemes of first and second order are analysed. Chapter 5 contains a stratified regression-
based variance reduction approach for weak schemes. Control variates for the pricing of
early-exercise options are conducted in Chapter 6. Finally, we give an outlook in Chapter 7.
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Chapter 2

Setup

In this chapter we derive connections and results which will be very important in the sequel.
In Section 2.1 we focus on Monte Carlo regression estimates. More precisely, we sum-

marise regression error bounds for both a general framework and a specific approach, namely
the piecewise polynomial regression. As for a detailed overview of regression approaches,
see e.g. [24], [25], [35] and [54].

Section 2.2 presents a technical result in terms of a general class of discretisation schemes.
For an overview of various discretisation schemes, see e.g. [4], [29], [30], [32] and [38].

2.1 Regression estimates and its convergence rates

This section is partly based on the paper [7].
We consider a (d + 1)-dimensional random vector (X,Y ) where X is Rd-valued and Y

is R-valued. Suppose that we want to find an approximation which is “close to” the R-valued
function

a(x) := E [Y |X = x] . (2.1)

Below we present Monte Carlo algorithms which give us regression estimates for a. Moreover,
we present L2-upper bounds of the regression error.

2.1.1 Monte Carlo regression

Let us choose Q real-valued functions ψ1, . . . , ψQ on Rd and simulate a big number1 Nr of
samples from the distributions of X and Y . In what follows these Nr samples are denoted
by DNr :

DNr :=
{

(X(n), Y (n)) : n = 1, . . . , Nr
}
.

1In the complexity analyses in the chapters below we show how large Nr is required to be in order to
provide an estimate within some given tolerance.
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Let β = (β1, . . . , βQ) be a solution of the following least squares optimisation problem:

argminβ∈RQ
Nr∑
n=1

[
Y (n) −

Q∑
k=1

βkψk(X(n))
]2

.

Define an estimate for the function a via

â(x) := â(x,DNr ) :=
Q∑
k=1

βkψk(x), x ∈ Rd.

The intermediate expression â(x,DNr ) in the above formula emphasises that the estimates
â of the functions a are random in that they depend on the simulated samples. The cost of
computing β is of order NrQ2, since β is of the form β = B−1b with

Bk,l := 1
Nr

Nr∑
n=1

ψk
(
X(n))ψl(X(n)) (2.2)

and

bk := 1
Nr

Nr∑
n=1

ψk
(
X(n))Y (n),

where k, l ∈ {1, . . . , Q}.
In what follows, we use the notation PX for the distribution of X. In particular, we will

work with the corresponding L2-norm:

‖g‖2L2(PX) :=
∫
Rd

g2(x)PX(dx) = E
[
g2 (X)

]
.

We assume that, for some positive constants Σ and A, it holds

(A1) supx∈Rd Var[Y |X = x] ≤ Σ <∞,

(A2) supx∈Rd |a(x)| ≤ A <∞.

Next we denote by ã the truncated regression estimate, which is defined as follows:

ã(x) := TAâ(x) :=

â(x) if |â(x)| ≤ A,

A sgn â(x) otherwise.
(2.3)

We again emphasise that, in fact, ã(x) = ã(x,DNr ), that is, the estimates ã of the functions
a depend on the simulated samples.

Under (A1)–(A2) we obtain the following L2-upper bound

E‖ã− a‖2L2(PX) ≤ c̃
(
Σ +A2(logNr + 1)

) Q
Nr

+ 8 inf
g∈ΨQ

‖a− g‖2L2(PX), (2.4)

where ΨQ := span ({ψ1, . . . , ψQ}) and c̃ > 0 is a universal constant (cf. Theorem 11.3 in [24]).

Remark 2.1. When applying Theorem 11.3 in [24], we obtain actually

E‖ã− a‖2L2(PX) ≤ c̃max
{

Σ, A2} (logNr + 1) Q
Nr

+ 8 inf
g∈ΨQ

‖ã− g‖2L2(PX). (2.5)

However, the maximum in (2.5) is in fact a sum of two terms A2(logNr + 1) and Σ so that
the logarithm is only included in one term (see proof of Theorem 11.3 in [24]).
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Let us introduce the assumption that the function a can be well approximated by the
functions from ΨQ in the sense that there are constants κ > 0 and Dκ > 0 such that

inf
g∈ΨQ

‖a− g‖2L2(PX) ≤
Dκ

Qκ
. (2.6)

Note that this is a natural condition to be satisfied for good choices of ΨQ.
In what follows, we perform a detailed analysis for the specific choice of the basis func-

tions, which leads to the so-called piecewise polynomial partitioning estimates.

2.1.2 Error bounds for piecewise polynomial regression

There are different ways to choose the basis functions ψ1, . . . , ψQ. In this section we describe
piecewise polynomial partitioning estimates and present L2-upper bounds for the estimation
error. We fix some p ∈ N, which will denote the maximal degree of polynomials involved in
our basis functions. The piecewise polynomial partitioning estimate of a works as follows:
consider some R > 0 and an equidistant partition of [−R,R]d in Sd cubes K1, . . . ,KSd ,
where S ∈ N denotes the number of equidistant subintervals of [−R,R]. Further, con-
sider the basis functions ψk,1, . . . , ψk,cp,d with k ∈

{
1, . . . , Sd

}
and cp,d :=

(
p+d
d

)
such that

ψk,1(x), . . . , ψk,cp,d(x) are polynomials with degree less than or equal to p for x ∈ Kk and
ψk,1(x) = . . . = ψk,cp,d(x) = 0 for x /∈ Kk. Then we obtain the least squares regression
estimate â(x) for x ∈ Rd as described in Subsection 2.1.1, based on Q = Sdcp,d = O(Sdpd)
basis functions. In particular, we have â(x) = 0 for any x /∈ [−R,R]d. We note that the
cost of computing â is O(NrSdp2d) rather than O(NrS2dp2d) due to a block diagonal matrix
structure of B in (2.2). An equivalent approach, which leads to the same estimator â(x),
is to perform separate regressions for each cube K1, . . . ,KSd . Here, the number of basis
functions at each regression is of order pd so that the overall cost is of order NrSdp2d, too.

For x = (x1, . . . , xd) ∈ Rd and h ∈ [1,∞), we will use the notations

|x|h :=
( d∑
i=1
|xi|h

)1/h
, |x|∞ := max

i=1,...,d
|xi|.

Let us define the operator Dα as follows

Dαg(x) := ∂|α|g(x)
∂xα1

1 · · · ∂x
αd
d

, (2.7)

where g is a real-valued function, α ∈ Nd0 and |·| means the cardinality of a set. For s ∈ N0,
C > 0 and h ∈ [1,∞], we say that a function g : Rd → R is (s+ 1, C)-smooth w.r.t. the
norm |·|h whenever, for all α with |α| =

∑d
i=1 αi = s, we have

|Dαg(x)−Dαg(y)| ≤ C|x− y|h, x, y ∈ Rd,

i.e. the function Dαg is globally Lipschitz with the Lipschitz constant C with respect to the
norm | · |h on Rd (cf. Definition 3.3 in [24]). We assume that, for some constant h ∈ [1,∞]
and some positive constants Ch, ν, Bν , it holds:

(A3) a is (p+ 1, Ch)-smooth w.r.t. the norm | · |h,
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(A4) P(|X|∞ > R) ≤ BνR−ν for all R > 0.

Remark 2.2. Let us note that it is only a matter of convenience which h to choose in (A3)
because all norms | · |h are equivalent.

Let â be the piecewise polynomial partitioning estimate of a described in the beginning of
this section. By ã = TAâ we denote again the truncated estimate.

Lemma 2.3. Under (A1)–(A4), we have

E‖ã− a‖2L2(PX) ≤ c̃
(
Σ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr
(2.8)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2(p+1)
+ 8A2BνR

−ν ,

where c̃ > 0 is again a universal constant.

Remark 2.4. Notice that the terms in the second line of (2.8) are of order(
R

S

)2(p+1)
+R−ν , (2.9)

provided that we only track R and S and ignore the remaining parameters, such as p.2 Let
us assume that both terms in (2.9) are of the same order. Then we get R = O(S

2(p+1)
ν+2(p+1) )

and thus R−ν = O(S−
2ν(p+1)
ν+2(p+1) ). Together with the fact that the overall number of basis

functions Q is of order Sd, we have R−ν = O(Q−
2ν(p+1)

d(ν+2(p+1)) ). Hence, when in the framework
of the piecewise polynomial regression approach the assumptions (A3)–(A4) are satisfied,
then the assumption (2.6) in Subsection 2.1.1 is satisfied with

κ = 2ν(p+ 1)
d(ν + 2(p+ 1)) . (2.10)

The only difference between the frameworks in Subsections 2.1.1 and 2.1.2 is that the
cost in the more general framework in Subsection 2.1.1 is of order NrQ2, while the cost in
case of the piecewise polynomial regression is O(Nrp2dSd) = O(NrpdQ), that is O(NrQ) for
fixed p.

Below we focus on discretisation schemes for the Itô process (Xt)t∈[0,T ]. In particular,
using the notation (2.1), Y is related to a real-valued function which is evaluated at the
discretised process at some time tj , and X is given by the discretised process at some time
tl, where 0 ≤ tl < tj ≤ T .

2.2 Smoothness theorem for a general setting of dis-
cretisation schemes

To begin with, let J ∈ N denote the time discretisation parameter, we set ∆ := T
J and

consider discretisation schemes defined on the grid {j∆ : j = 0, . . . , J}.
2In the complexity analyses in the chapters below we need to have R,S → ∞ to make the statistical

error tend to zero, whereas the remaining parameters are fixed.
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Let us consider a scheme, where d-dimensional approximations X∆,j∆, j = 0, . . . , J ,
satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆
(
X∆,(j−1)∆, ξj

)
, j = 1, . . . , J, (2.11)

for some Borel measurable functions Φ∆ : Rd×m̃ → Rd, where m̃ ≥ m, and for m̃-dimensional
i.i.d. random vectors ξj = (ξ1

j , . . . , ξ
m̃
j )> with independent coordinates satisfying E

[
ξij
]

= 0
and Var

[
ξij
]

= 1 for all i = 1, . . . , m̃, j = 1, . . . , J . Moreover, let G0 be the trivial σ-field
and Gj = σ(ξ1, . . . , ξj), j = 1, . . . , J . In the chapters below we will focus on different kinds
of discretisation schemes, resulting in different convergence behaviour.

We now define the function Gl,j(x) for J ≥ l ≥ j ≥ 0, x ∈ Rd, as follows

Gl,j(x) ≡ Φ∆,l ◦ Φ∆,l−1 ◦ . . . ◦ Φ∆,j+1(x), l > j, (2.12)

Gl,j(x) ≡ x, l = j,

where Φ∆,l(x) := Φ∆ (x, ξl) for l = 1, . . . , J . By Φk∆,l, k ∈ {1, . . . , d}, we denote the k-th
component of the function Φ∆,l. Note that it holds

qj(x) := E [f(X∆,T ) |X∆,j∆ = x] = E [f(GJ,j(x))] (2.13)

with f introduced in Chapter 1.
In the next theorem we present some smoothness conditions on qj , which will be used

several times in the chapters below.

Theorem 2.5. Let K ∈ {1, 2, 3}. Suppose that f is K times continuously differentiable with
bounded partial derivatives up to order K, Φ∆(·, ξ) is K times continuously differentiable
(for any fixed ξ), and that, for any n ∈ N, l ≥ j, k ∈ {1, . . . , d}, α ∈ Nd0 with 1 ≤ |α| ≤ K,
it holds

∣∣∣E [(DαΦk∆,l+1(Gl,j(x))
)n∣∣∣Gl]∣∣∣ ≤

(1 +An∆), |α| = αk = 1

Bn∆, (|α| > 1) ∨ (αk 6= 1)
(2.14)

with probability one for some constants An > 0, Bn > 0. Moreover, suppose that for any
n1, n2 ∈ N, α, α̃ ∈ Nd0, 1 ≤ |α| ≤ K, 1 ≤ |α̃| ≤ K, α 6= α̃, it holds∣∣∣E [(DαΦk∆,l+1(Gl,j(x))

)n1 (
Dα̃Φk∆,l+1(Gl,j(x))

)n2
∣∣∣Gl]∣∣∣ ≤ Cn1,n2∆ (2.15)

for some constants Cn1,n2 > 0. Then we obtain for all j ∈ {0, . . . , J} that qj is K times
continuously differentiable with bounded partial derivatives up to order K.

2.3 Proofs

First of all, we require the following multivariate generelisation of Lemma 11.1 in [24] to
prove Lemma 2.3:
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Lemma 2.6. Let a : [0, 1]d → R be a (p+ 1, C)-smooth function w.r.t. the norm |·|h, where
d ∈ N, h ∈ [1,∞] and p ∈ N0. Further, let g be a piecewise polynomial of degree less than
or equal to p w.r.t. an equidistant partition of [0, 1]d in Sd cubes. Then it holds

sup
x∈[0,1]d

|a(x)− g(x)| ≤ C

d1−1/h (p+ 1)!

(
d

2S

)p+1
. (2.16)

Proof. Consider the Taylor expansion of the function a up to the degree p around
z ∈ (0, 1)d:

ap (x) =
p∑

n=0

1
n!

∑
l1+...+ld=n

(
n

l1, . . . , ld

)
∂nm (z)

∂xl11 · · · ∂x
ld
d

d∏
i=1

(xi − zi)li ,

where
(

n
l1,...,ld

)
:= n!

l1!···ld! is the multinomial coefficient. The remainder term has the form

a(x)− ap (x) = 1
p!

1∫
0

(1− t)p
∑

l1+...+ld=p+1

(
p+ 1

l1, . . . , ld

)
∂p+1a (z + t (x− z))

∂xl11 · · · ∂x
ld
d

d∏
i=1

(xi − zi)li dt.

At first, we will focus on the case p > 0. For g = ap we have

a(x)− g(x) = a(x)− ap−1 (x)− 1
p!

∑
l1+...+ld=p

(
p

l1, . . . , ld

)
∂pa (z)

∂xl11 · · · ∂x
ld
d

d∏
i=1

(xi − zi)li

= 1
(p− 1)!

1∫
0

(1− t)p−1 ∑
l1+...+ld=p

(
p

l1, . . . , ld

)(
∂pa (z + t (x− z))

∂xl11 · · · ∂x
ld
d

− ∂pa (z)
∂xl11 · · · ∂x

ld
d

)

·
d∏
i=1

(xi − zi)li dt
]
.

Since a is (p+ 1, C)-smooth, we obtain

|a(x)− g(x)| ≤ C

(p− 1)! |x− z|h

1∫
0

t (1− t)p−1
dt

∑
l1+...+ld=p

(
p

l1, . . . , ld

) d∏
i=1
|xi − zi|li

= C

(p+ 1)! |x− z|h

(
d∑
i=1
|xi − zi|

)p
≤ C

(p+ 1)! |x− z|
p+1
h dp(1−1/h). (2.17)

As for the remaining case p = 0, (2.17) also holds due to the (p+ 1, C)-smoothness assump-
tion.

Next, we consider the equidistant partitioning of [0, 1]d into Sd cubes K1, . . . ,KSd with⋃Sd
k=1Kk = [0, 1]d. Let yk be the midpoint of Kk. We then have supx∈Kk |x− yk|h = d1/h

2S

for all k ∈
{

1, . . . , Sd
}
. This finally yields (2.16).

Proof of Lemma 2.3

The first term in (2.8) comes directly from the first term in (2.4) with Q being replaced by(
p+d
d

)
Sd. Define the set

ΨS,p := span
({
ψk,1, . . . , ψk,cp,d : k ∈

{
1, . . . , Sd

}})
.
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We split the integral in (2.5) into two parts:

‖a− g‖2L2(PX) =
∫

[−R,R]d

(a(x)− g(x))2 PX(dx) +
∫

Rd\[−R,R]d

a2(x)PX(dx), (2.18)

since g(x) = 0 for x /∈ [−R,R]d and g ∈ ΨS,p. The second integral in (2.18) refers to the
case |X|∞ > R, where we simply use Assumptions (A2) and (A4) to get∫

Rd\[−R,R]d

a2 (x) PX(dx) ≤ sup
x∈Rd

|a(x)|2 P(|X|∞ > R)

≤ A2BνR
−ν .

Regarding the first integral in (2.18), we obtain by Lemma 2.6

inf
g∈ΨS,p

∫
[−R,R]d

(a (x)− g(x))2 PX(dx) ≤ inf
g∈ΨS,p

sup
x∈[−R,R]d

|a(x)− g(x)|2

≤ C2
h

d2−2/h (p+ 1)!2

(
Rd

S

)2p+2
.

Notice that, since we consider [−R,R]d instead of [0, 1]d, the expression d
2S in (2.16) is

replaced by Rd
S because supx∈Kk |x− yk|h = Rd1/h

S with yk being the midpoint of Kk.

Proof of Theorem 2.5

Let us begin with the case K = 1. We have for some k, r ∈ {1, . . . , d}

∂

∂xr
Gkl+1,j(x) =

d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x)) ∂

∂xr
Gsl,j(x) =:

d∑
s=1

γs

and ∂
∂xr

Gsj+1,j(x) = ∂
∂xr

Φs∆ (x, ξj+1), where Gsl+1,j and Φs∆, s ∈ {1, . . . , d}, denote the s-th
component of the functions Gl+1,j and Φ∆. Hence

E

[(
∂

∂xr
Gkl+1,j(x)

)2
]
≤ E

γ2
k +

∑
s 6=k

(
2γkγs + (d− 1)γ2

s

) .
Denote

ρr,sl+1,n,1 := E
[(

∂

∂xr
Gsl+1,j(x)

)n]
,

then, due to the assumptions (2.14) and (2.15), we get for l = j + 1, . . . , J − 1,

ρr,kl+1,2,1 ≤ (1 +A2∆)ρr,kl,2,1 +
∑
s6=k

(
C1,1∆(ρr,kl,2,1 + ρr,sl,2,1) + (d− 1)B2∆ρr,sl,2,1

)
.

Further, denote

ρrl+1,n,1 :=
d∑
s=1

ρr,sl+1,n,1,

then we get

ρrl+1,2,1 ≤ (1 +A2∆)ρrl,2,1 + 2(d− 1)C1,1∆ρrl,2,1 + (d− 1)2B2∆ρrl,2,1.
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This gives us
ρrl+1,2,1 ≤ (1 + κ1∆)ρrl,2,1

for some constant κ1 > 0, leading to

ρrl,2,1 ≤ (1 + κ1∆)l−j−1ρrj+1,2,1, l = j + 1, . . . , J − 1, (2.19)

where

ρrj+1,2,1 =
d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)2
]
,

which is bounded due to (2.14). Together with (2.19) we obtain the boundedness of {ρrJ,2,1 :
J ∈ N} and hence the boundedness of∣∣∣∣ ∂∂xr qj(x)

∣∣∣∣ ≤ d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x)) ∂

∂xr
GsJ,j(x)

∣∣∣∣
≤

d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,sJ,2,1

for all r ∈ {1, . . . , d}, since f is assumed to be continuously differentiable with bounded
partial derivatives.

Let us proceed with the case K = 2. We have, due to (
∑d
k=1 ak)n ≤ dn−1∑d

k=1 a
n
k ,

E

[(
∂

∂xr
Gkl+1,j(x)

)4
]

≤ E

γ4
k +

∑
s6=k

(
4γ3
kγs + 6(d− 1)γ2

kγ
2
s + 4(d− 1)2γkγ

3
s + (d− 1)3γ4

s

)
and thus, due to 4a3b ≤ 3a4 + b4 and 2a2b2 ≤ a4 + b4,

ρr,kl+1,4,1 ≤ (1 +A4∆)ρr,kl,4,1 +
∑
s6=k

(
C3,1∆(3ρr,kl,4,1 + ρr,sl,4,1) + 3(d− 1)C2,2∆(ρr,kl,4,1 + ρr,sl,4,1)

+(d− 1)2C1,3∆(ρr,kl,4,1 + 3ρr,sl,4,1) + (d− 1)3B4∆ρr,sl,4,1
)
.

This gives us

ρrl+1,4,1 ≤ (1 +A4∆)ρrl,4,1 + 4(d− 1)C3,1∆ρrl,4,1 + 6(d− 1)2C2,2∆ρrl,4,1
+4(d− 1)3C1,3∆ρrl,4,1 + (d− 1)4B4∆ρrl,4,1.

Hence, we obtain
ρrl+1,4,1 ≤ (1 + κ2∆)ρrl,4,1,

for some constant κ2 > 0, leading to

ρrl,4,1 ≤ (1 + κ2∆)l−j−1ρrj+1,4,1, l = j + 1, . . . , J − 1,

where

ρrj+1,4,1 =
d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)4
]
.
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Next, we have for some k, o, r ∈ {1, . . . , d}

∂2

∂xr∂xo
Gkl+1,j(x) =

d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x)) ∂2

∂xr∂xo
Gsl,j(x)

+
d∑

s,u=1

∂2

∂xs∂xu
Φk∆,l+1(Gl,j(x)) ∂

∂xr
Gsl,j(x) ∂

∂xo
Gul,j(x)

=:
d∑
s=1

η1,s +
d∑

s,u=1
η2,s,u

and ∂2

∂xr∂xo
Gsj+1,j(x) = ∂2

∂xr∂xo
Φs∆ (x, ξj+1). Hence

E

[(
∂2

∂xr∂xo
Gkl+1,j(x)

)2]

≤ E

η2
1,k +

∑
s6=k

(
2η1,kη1,s + (d− 1)η2

1,s
)

+ 2
d∑

s,u,v=1
η1,vη2,s,u + d2

d∑
s,u=1

η2
2,s,u

 .
Denote

ρr,o,sl+1,n,2 = E
[(

∂2

∂xr∂xo
Gsl+1,j(x)

)n]
,

then we get, due to

2E [XY Z] ≤ 2
√
E [X2] 4

√
E [Y 4] 4

√
E [Z4] ≤ E

[
X2]+

√
E [Y 4]

√
E [Z4]

≤ E
[
X2]+ 1

2
(
E
[
Y 4]+ E

[
Z4]) ,

as well as assumptions (2.14) and (2.15),

ρr,o,kl+1,2,2 ≤ (1 +A2∆)ρr,o,kl,2,2 +
∑
s6=k

(
C1,1∆(ρr,o,kl,2,2 + ρr,o,sl,2,2 ) + (d− 1)B2∆ρr,o,sl,2,2

)

+
d∑

s,u,v=1
C1,1∆

(
ρr,o,vl,2,2 + 1

2

(
ρr,sl,4,1 + ρo,ul,4,1

))

+d2
d∑

s,u=1
B2∆1

2

(
ρr,sl,4,1 + ρo,ul,4,1

)
.

Further, denote

ρr,ol+1,n,2 =
d∑
s=1

ρr,o,sl+1,n,2,

then we get for l = j + 1, . . . , J − 1,

ρr,ol+1,2,2 ≤ (1 +A2∆)ρr,ol,2,2 + 2(d− 1)C1,1∆ρr,ol,2,2 + (d− 1)2B2∆ρr,ol,2,2

+d3C1,1∆
(
ρr,ol,2,2 + 1

2
(
ρrl,4,1 + ρol,4,1

))
+ d4B2∆1

2
(
ρrl,4,1 + ρol,4,1

)
.

This gives us
ρr,ol+1,2,2 ≤ (1 + κ3∆)ρr,ol,2,2 + κ4∆,
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for some constants κ3, κ4 > 0, leading to

ρr,ol,2,2 ≤ (1 + κ3∆)l−j−1ρr,oj+1,2,2 + κ5, l = j + 1, . . . , J − 1,

where κ5 > 0 and

ρr,oj+1,2,2 =
d∑
s=1

E

[(
∂2

∂xr∂xo
Φs∆ (x, ξj+1)

)2]
.

Thus, we obtain the boundedness of∣∣∣∣ ∂2

∂xr∂xo
qj(x)

∣∣∣∣ ≤ d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x)) ∂2

∂xr∂xo
GsJ,j(x)

∣∣∣∣
+

d∑
s,u=1

E
∣∣∣∣ ∂2

∂xs∂xu
f(GJ,j(x)) ∂

∂xr
GsJ,j(x) ∂

∂xo
GuJ,j(x)

∣∣∣∣
≤

d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,o,sJ,2,2

+
d∑

s,u=1

√√√√E

[(
∂2

∂xs∂xu
f(GJ,j(x))

)2
]

4
√
ρr,sJ,4,1ρ

o,u
J,4,1

for all r, o ∈ {1, . . . , d}, since f is assumed to be twice continuously differentiable with
bounded partial derivatives up to order 2.

Let us proceed with the final case K = 3. We have

E

[(
∂

∂xr
Gkl+1,j(x)

)6
]

≤ E

γ6
k +

∑
s6=k

(
6γ5
kγs + 15(d− 1)γ4

kγ
2
s + 20(d− 1)2γ3

kγ
3
s + 15(d− 1)3γ2

kγ
4
s

+6(d− 1)4γkγ
5
s + (d− 1)5γ6

s

)]
and thus, due to 6a5b ≤ 5a6 + b6, 3a4b2 ≤ 2a6 + b6 and 2a3b3 ≤ a6 + b6,

ρr,kl+1,6,1 ≤ (1 +A6∆)ρr,kl,6,1
+
∑
s6=k

(
C5,1∆(5ρr,kl,6,1 + ρr,sl,6,1) + 5(d− 1)C4,2∆(2ρr,kl,6,1 + ρr,sl,6,1)

+ 10(d− 1)2C3,3∆(ρr,kl,6,1 + ρr,sl,6,1) + 5(d− 1)3C2,4∆(ρr,kl,6,1 + 2ρr,sl,6,1)

+(d− 1)4C1,5∆(ρr,kl,6,1 + 5ρr,sl,6,1) + (d− 1)5B6∆ρr,sl,6,1
)
.

This gives us

ρrl+1,6,1 ≤ (1 +A6∆)ρrl,6,1 + 6(d− 1)C5,1∆ρrl,6,1 + 15(d− 1)2C4,2∆ρrl,6,1
+20(d− 1)3C3,3∆ρrl,6,1 + 15(d− 1)4C2,4∆ρrl,6,1 + 6(d− 1)5C1,5∆ρrl,6,1
+(d− 1)6B6∆ρrl,6,1.
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Hence, we obtain
ρrl+1,6,1 ≤ (1 + κ6∆)ρrl,6,1

for some constant κ6 > 0, leading to

ρrl,6,1 ≤ (1 + κ6∆)l−j−1ρrj+1,6,1, l = j + 1, . . . , J − 1,

where

ρrj+1,6,1 =
d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)6
]

Moreover, we have

E

[(
∂

∂xr
Gkl+1,j(x)

)8
]

≤ E

γ8
k +

∑
s6=k

(
8γ7
kγs + 28(d− 1)γ6

kγ
2
s + 56(d− 1)2γ5

kγ
3
s + 70(d− 1)3γ4

kγ
4
s

+56(d− 1)4γ3
kγ

5
s + 28(d− 1)5γ2

kγ
6
s + 8(d− 1)6γkγ

7
s + (d− 1)7γ8

s

)]
and thus, due to 8a7b ≤ 7a8 + b8, 4a6b2 ≤ 3a8 + b8, 8a5b3 ≤ 5a8 + 3b8 and 2a4b4 ≤ a8 + b8,

ρr,kl+1,8,1 ≤ (1 +A8∆)ρr,kl,8,1
+
∑
s6=k

(
C7,1∆(7ρr,kl,8,1 + ρr,sl,8,1) + 7(d− 1)C6,2∆(3ρr,kl,8,1 + ρr,sl,8,1)

+ 7(d− 1)2C5,3∆(5ρr,kl,8,1 + 3ρr,sl,8,1) + 35(d− 1)3C4,4∆(ρr,kl,8,1 + ρr,sl,8,1)

+ 7(d− 1)4C3,5∆(3ρr,kl,8,1 + 5ρr,sl,8,1) + 7(d− 1)5C2,6∆(ρr,kl,8,1 + 3ρr,sl,8,1)

+(d− 1)6C1,7∆(ρr,kl,8,1 + 7ρr,sl,8,1) + (d− 1)7B8∆ρr,sl,8,1
)
.

This gives us

ρrl+1,8,1 ≤ (1 +A8∆)ρrl,8,1 + 8(d− 1)C7,1∆ρrl,8,1 + 28(d− 1)2C6,2∆ρrl,8,1
+56(d− 1)3C5,3∆ρrl,8,1 + 70(d− 1)4C4,4∆ρrl,8,1
+56(d− 1)5C3,5∆ρrl,8,1 + 28(d− 1)6C2,6∆ρrl,8,1
+8(d− 1)7C1,7∆ρrl,8,1 + (d− 1)8B8∆ρrl,8,1.

Hence, we obtain
ρrl+1,8,1 ≤ (1 + κ7∆)ρrl,8,1,

for some constant κ7 > 0, leading to

ρrl,8,1 ≤ (1 + κ7∆)l−j−1ρrj+1,8,1, l = j + 1, . . . , J − 1,

where

ρrj+1,8,1 =
d∑
s=1

E

[(
∂

∂xr
Φs∆ (x, ξj+1)

)8
]
.
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Moreover, we have

E

[(
∂2

∂xr∂xo
Gkl+1,j(x)

)4]

≤ E

η4
1,k +

∑
s6=k

(
4η3

1,kη1,s + 6(d− 1)η2
1,kη

2
1,s + 4(d− 1)2η1,kη

3
1,s + (d− 1)3η4

1,s
)

+
d∑

s,u,v=1

(
4d2η3

1,vη2,s,u + 6d3η2
1,vη

2
2,s,u + 4d4η1,vη

3
2,s,u

)
+ d6

d∑
s,u

η4
2,s,u

]

and thus, due to 4a3bc ≤ 3a4 + 1
2
(
b8 + c8

)
, 2a2b2c2 ≤ a4 + 1

2
(
b8 + c8

)
and 4ab3c3 ≤

a4 + 3
2
(
b8 + c8

)
,

ρr,o,kl+1,4,2 ≤ (1 +A4∆)ρr,o,kl,4,2

+
∑
s6=k

(
C3,1∆(3ρr,o,kl,4,2 + ρr,o,sl,4,2 ) + 3(d− 1)C2,2∆(ρr,o,kl,4,2 + ρr,o,sl,4,2 )

+(d− 1)2C1,3∆(ρr,o,kl,4,2 + 3ρr,o,sl,4,2 ) + (d− 1)3B4∆ρr,o,sl,4,2

)

+
d∑

s,u,v=1

(
d2C3,1∆

(
3ρr,o,vl,4,2 + 1

2

(
ρr,sl,8,1 + ρo,ul,8,1

))

+ 3d3C2,2∆
(
ρr,o,vl,4,2 + 1

2

(
ρr,sl,8,1 + ρo,ul,8,1

))

+d4C1,3∆
(
ρr,o,vl,4,2 + 3

2

(
ρr,sl,8,1 + ρo,ul,8,1

)))

+d6
d∑

s,u=1
B4∆1

2

(
ρr,sl,8,1 + ρo,ul,8,1

)
.

This gives us

ρr,ol+1,4,2 ≤ (1 +A4∆)ρr,ol,4,2 + 4(d− 1)C3,1∆ρr,ol,4,2 + 6(d− 1)2C2,2∆ρr,ol,4,2
+4(d− 1)3C1,3∆ρrl,4,1 + (d− 1)4B4∆ρr,ol,4,2

+d5C3,1∆
(

3ρr,ol,4,2 + 1
2
(
ρrl,8,1 + ρol,8,1

))
+3d6C2,2∆

(
ρr,ol,4,2 + 1

2
(
ρrl,8,1 + ρol,8,1

))
+d7C1,3∆

(
ρr,ol,4,2 + 3

2
(
ρrl,8,1 + ρol,8,1

))
+ d8B4∆1

2
(
ρrl,8,1 + ρol,8,1

)
.

Hence, we obtain

ρr,ol+1,4,2 ≤ (1 + κ8∆)ρr,ol,4,2 + κ9∆,

for some constants κ8, κ9 > 0, leading to

ρr,ol,4,2 ≤ (1 + κ8∆)l−j−1ρr,oj+1,4,2 + κ10, l = j + 1, . . . , J − 1,
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where κ10 > 0 and

ρr,oj+1,4,2 =
d∑
s=1

E

[(
∂2

∂xr∂xo
Φs∆ (x, ξj+1)

)4]
.

Next, we have for some k, o, r, z ∈ {1, . . . , d}

∂3

∂xr∂xo∂xz
Gkl+1,j(x)

=
d∑
s=1

∂

∂xs
Φk∆,l+1(Gl,j(x)) ∂3

∂xr∂xo∂xz
Gsl,j(x)

+
d∑

s,u=1

∂2

∂xs∂xu
Φk∆,l+1(Gl,j(x))

(
∂2

∂xr∂xo
Gsl,j(x) ∂

∂xz
Gul,j(x) + ∂2

∂xr∂xz
Gsl,j(x) ∂

∂xo
Gul,j(x)

+ ∂

∂xr
Gsl,j(x) ∂2

∂xo∂xz
Gul,j(x)

)

+
d∑

s,u,v=1

∂3

∂xs∂xu∂xv
Φk∆,l+1(Gl,j(x)) ∂

∂xr
Gsl,j(x) ∂

∂xo
Gul,j(x) ∂

∂xz
Gvl,j(x)

=:
d∑
s=1

ψ1,s +
d∑

s,u=1
ψ2,s,u +

d∑
s,u,v=1

ψ3,s,u,v

and ∂3

∂xr∂xo∂xz
Gsj+1,j(x) = ∂3

∂xr∂xo∂xz
Φs∆ (x, ξj+1). Hence

E

[(
∂3

∂xr∂xo∂xz
Gkl+1,j(x)

)2]

≤ E

ψ2
1,k +

∑
s6=k

(
2ψ1,kψ1,s + (d− 1)ψ2

1,s
)

+ 2
d∑

s,u,v=1
ψ1,vψ2,s,u

+2
d∑

s,u,v,w=1
ψ1,wψ3,s,u,v + 2d2

d∑
s,u=1

ψ2
2,s,u + 2d3

d∑
s,u,v=1

ψ2
3,s,u,v

]
.

Denote

ρr,o,z,sl+1,n,3 = E
[(

∂3

∂xr∂xo∂xz
Gsl+1,j(x)

)n]
,

then we get, due to 3a2b2c2 ≤ a6 + b6 + c6 and

2E [XY ZU ] ≤2
√
E [X2] 6

√
E [Y 6] 6

√
E [Z6] 6

√
E [U6] ≤ E

[
X2]+ 3

√
E [Y 6] 3

√
E [Z6] 3

√
E [U6]

≤ E
[
X2]+ 1

3
(
E
[
Y 6]+ E

[
Z6]+ E

[
U6]) ,
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as well as the assumptions (2.14) and (2.15),

ρr,o,z,kl+1,2,3 ≤ (1 +A2∆)ρr,o,z,kl,2,3 +
∑
s 6=k

(
C1,1∆(ρr,o,z,kl,2,3 + ρr,o,z,sl,2,3 ) + (d− 1)B2∆ρr,o,z,sl,2,3

)

+
d∑

s,u,v=1
C1,1∆

(
ρr,o,z,vl,2,2 + 1

2

(
ρr,sl,4,1 + ρo,ul,4,1 + ρz,ul,4,1 + ρr,o,sl,4,2 + ρr,z,sl,4,2 + ρo,z,ul,4,2

))

+
d∑

s,u,v,w=1
C1,1∆

(
ρr,o,z,wl,2,2 + 1

3

(
ρr,sl,6,1 + ρo,ul,6,1 + ρz,vl,6,1

))

+3d2
d∑

s,u=1
B2∆

(
ρr,sl,4,1 + ρo,ul,4,1 + ρz,ul,4,1 + ρr,o,sl,4,2 + ρr,z,sl,4,2 + ρo,z,ul,4,2

)

+d3
d∑

s,u,v=1
B2∆1

3

(
ρr,sl,6,1 + ρo,ul,6,1 + ρz,vl,6,1

)
.

Further, denote

ρr,o,zl+1,2,3 =
d∑
s=1

ρr,o,z,sl+1,2,3,

then we get

ρr,o,zl+1,2,3 ≤ (1 +A2∆)ρr,o,zl,2,2 + 2(d− 1)C1,1∆ρr,o,zl,2,2 + (d− 1)2B2∆ρr,o,zl,2,2

+d3C1,1∆
(
ρr,o,zl,2,2 + 1

2

(
ρrl,4,1 + ρol,4,1 + ρzl,4,1 + ρr,ol,4,2 + ρr,zl,4,2 + ρo,zl,4,2

))
+d4C1,1∆

(
ρr,o,zl,2,2 + 1

3
(
ρrl,6,1 + ρol,6,1 + ρzl,6,1

))
+3d4B2∆

(
ρrl,4,1 + ρol,4,1 + ρzl,4,1 + ρr,ol,4,2 + ρr,zl,4,2 + ρo,zl,4,2

)
+d6B2∆1

3
(
ρrl,6,1 + ρol,6,1 + ρzl,6,1

)
.

This gives us

ρr,o,zl+1,2,3 ≤ (1 + κ11∆)ρr,o,zl,2,2 + κ12∆,

for some constants κ11, κ12 > 0, leading to

ρr,o,zl,2,2 ≤ (1 + κ11∆)l−j−1ρr,o,zj+1,2,3 + κ13, l = j + 1, . . . , J − 1,

where κ13 > 0 and

ρr,o,zj+1,2,3 =
d∑
s=1

E

[(
∂3

∂xr∂xo∂xz
Φs∆ (x, ξj+1)

)2]
.
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Thus, we obtain the boundedness of∣∣∣∣ ∂3

∂xr∂xo∂xz
qj(x)

∣∣∣∣
≤

d∑
s=1

E
∣∣∣∣ ∂∂xs f(GJ,j(x)) ∂3

∂xr∂xo∂xz
GsJ,j(x)

∣∣∣∣
+

d∑
s,u=1

E
∣∣∣∣ ∂2

∂xs∂xu
f(GJ,j(x))

(
∂2

∂xr∂xo
GsJ,j(x) ∂

∂xz
GuJ,j(x) + ∂2

∂xr∂xz
GsJ,j(x) ∂

∂xo
GuJ,j(x)

+ ∂

∂xr
GsJ,j(x) ∂2

∂xo∂xz
GuJ,j(x)

)∣∣∣∣
+

d∑
s,u,v=1

E
∣∣∣∣ ∂3

∂xs∂xu∂xv
f(GJ,j(x)) ∂

∂xr
GsJ,j(x) ∂

∂xo
GuJ,j(x) ∂

∂xz
GvJ,j(x)

]

≤
d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j(x))

)2
]
ρr,o,z,sJ,2,3

+
d∑

s,u=1

√√√√E

[(
∂2

∂xs∂xu
f(GJ,j(x))

)2
](

4
√
ρr,o,sJ,4,2ρ

z,u
J,4,1 + 4

√
ρr,z,sJ,4,2ρ

o,u
J,4,1 + 4

√
ρr,sJ,4,1ρ

o,z,u
J,4,2

)

+
d∑

s,u,v=1

√√√√E

[(
∂3

∂xs∂xu∂xv
f(GJ,j(x))

)2
]

6
√
ρr,sJ,6,1ρ

o,u
J,6,1ρ

z,v
J,6,1

for all r, o, z ∈ {1, . . . , d}, since f is assumed to be three times continuously differentiable
with bounded partial derivatives up to order 3.
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Chapter 3

Regression-based variance
reduction for strong
approximation schemes

This chapter is mainly based on the paper [9].

Below we present control variates for schemes with Gaussian increments. In particu-
lar, we consider the Euler discretisation scheme3 and derive truncation errors for specific
control variates. Then we perform error and complexity analyses for two regression-based
approaches, where the above-mentioned control variates are involved. Finally, we illustrate
numerical results, in which we compare the performance of the novel algorithms with well-
established ones.

3.1 Construction of control variates

To begin with, let us note that elements of Rd (resp. R1×d) are understood throughout as
column-vectors (resp. row-vectors). Generally, most vectors in what follows are column-
vectors. However, gradients of functions and some vectors defined via them are row-vectors.
Next we define ∆jW := Wj∆ −W(j−1)∆ for j ∈ {1, . . . , J}, and by ∆jW

i, i ∈ {1, . . . ,m},
we denote the i-th component of the vector ∆jW . Further, for k ∈ N, Hk : R → R stands
for the (normalised) k-th Hermite polynomial, i.e.

Hk(x) := (−1)k√
k!

e
x2
2
dk

dxk
e−

x2
2 , x ∈ R.

Notice that H0 ≡ 1, H1(x) = x, H2(x) = 1√
2 (x2− 1). To motivate a general construction of

optimal control variates, let us first look at an example.

3abbreviation for Euler-Maruyama discretisation scheme, see [42]
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3.1.1 Motivating example

Consider a simple one-dimensional SDE (d = m = 1)

dXt = σXtdWt, t ∈ [0, T ],

with X0 = x0, and its Euler discretisation (X∆,j∆)j=0,...,J , where X∆,0 = x0 and

X∆,j∆ = X∆,(j−1)∆(1 + σ∆jW ), j = 1, . . . , J.

Suppose that f(x) = x2, that is, we would like to approximate u(0, x0) = E[X2
T ]. It is easy

to see that E
[
X2

∆,T
]

= x2
0 (1 + σ2∆)J and using a telescoping sum trick, we derive

X2
∆,T − E

[
X2

∆,T
]

=
J∑
j=1

(
X2

∆,j∆(1 + σ2∆)J−j −X2
∆,(j−1)∆(1 + σ2∆)J−j+1

)
. (3.1)

Since ∆jW = X∆,j∆−X∆,(j−1)∆
σX∆,(j−1)∆

, we get

X2
∆,j∆ −X2

∆,(j−1)∆(1 + ∆σ2) = 2σX2
∆,(j−1)∆∆jW + σ2X2

∆,(j−1)∆
(
∆jW

2 −∆
)
.

As a result

X2
∆,T − E

[
X2

∆,T
]

=
J∑
j=1

(
aj,1(X∆,(j−1)∆)H1

(
∆jW√

∆

)
+ aj,2(X∆,(j−1)∆)H2

(
∆jW√

∆

))
(3.2)

with aj,1(x) = 2σ
√

∆x2(1 + σ2∆)J−j and aj,2(x) =
√

2σ2∆x2(1 + σ2∆)J−j . Notice that
representation (3.2) has a very simple form. Furthermore, the coefficients aj,1 and aj,2 can
be represented as conditional expectations

aj,k(x) = E
[
X2

∆,T Hk

(
∆jW√

∆

)∣∣∣∣X∆,(j−1)∆ = x

]
, k = 1, 2.

Thus, the control variate

M∆,T :=
J∑
j=1

2∑
k=1

aj,k(X∆,(j−1)∆)Hk

(
∆jW√

∆

)
, (3.3)

is a perfect control variate, as it satisfies Var[X2
∆,T −M∆,T ] = 0. The above example en-

courages us to look for control variates of the form (3.3), where the coefficients aj,k(x) have
the form of conditional expectations, which in turn can be computed by regression methods.
As we will see in the next sections, such perfect control variates can be constructed in the
general case.

Remark 3.1. The control variate in (3.3) is a sum over all time steps. At this point
it is, therefore, unclear whether the variance reduction achieved in the proposed method
outweighs the additional computational work required to implement such a control variate.
After the detailed description of our algorithm we will present the complexity analysis, which
shows that, given the precision ε to be achieved, implementing such a control variate results
in less total computational work, provided several parameters are chosen a proper way.
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3.1.2 Series representation

Let us consider a scheme, where d-dimensional approximations X∆,j∆, j = 0, . . . , J , satisfy
X∆,0 = x0 and

X∆,j∆ = Φ∆

(
X∆,(j−1)∆,

∆jW√
∆

)
, j = 1, . . . , J, (3.4)

for some Borel measurable functions Φ∆ : Rd×m → Rd. That is, relating to the framework
in Section 2.2, we have m̃ = m and use standard normal distributed increments ξij = ∆jW

i

√
∆

,
i = 1, . . . ,m. Clearly, the (strong) Euler scheme with Φ∆ given by

Φ∆(x, y) = x+ µ(x)∆ + σ(x)
√

∆y. (3.5)

is a special case of this setting.

Theorem 3.2. Let f : Rd → R be a Borel measurable function such that it holds E|f(X∆,T )|2 <
∞. Then we have the representation

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

∑
k∈Nm\{0m}

aj,k(X∆,(j−1)∆)
m∏
i=1

Hki

(
∆jW

i

√
∆

)
, (3.6)

where k = (k1, . . . , km) and 0m := (0, . . . , 0) ∈ Rm (in the second summation), and the
coefficients aj,k : Rd → R are given by the formula

aj,k(x) = E

[
f(X∆,T )

m∏
i=1

Hki

(
∆jW

i

√
∆

) ∣∣∣∣X∆,(j−1)∆ = x

]
, (3.7)

for all j ∈ {1, . . . , J} and k ∈ Nm \ {0m}.

Remark 3.3. (i) Representation (3.6) shows that we have a perfect control variate, namely

M∆,T :=
J∑
j=1

∑
k∈Nm\{0m}

aj,k(X∆,(j−1)∆)
m∏
i=1

Hki

(
∆jW

i

√
∆

)
, (3.8)

for the random variable f(X∆,T ), i.e. Var[f(X∆,T )−M∆,T ] = 0.

(ii) Representation (3.6) can be viewed as a discrete-time analogue of the Clark-Ocone
formula. See e.g. [1] (Gaussian increments), [53] (Bernoulli increments) and the references
therein for representations of similar types. Our form (3.6) is aimed at constructing control
variates via regression methods.

(iii) A comparison of (3.3) and (3.6) gives rise to the question whether our motivating
example fits the framework (3.6). The answer is affirmative: a straightforward calculation
using the facts that f(x) = x2 in the motivating example and that, for k ≥ 3, Hk

(
∆jW√

∆

)
is

orthogonal to all polynomials in ∆jW of degree two reveals that aj,k ≡ 0 whenever k ≥ 3
in the situation of our motivating example.
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Theorem 3.4. Alternatively to (3.6), we also have the following representation formula

f(X∆,T ) =E[f(X∆,T )] +
J∑
j=1

∞∑
k=1

m∑
i=1

aj,k,i(X∆,(j−1)∆, (∆jW
r)i−1
r=1)Hk

(
∆jW

i

√
∆

)
, (3.9)

where the coefficients aj,k,i can be computed by the formula

aj,k,i(x, (yr)i−1
r=1) = E

[
f(X∆,T )Hk

(
∆jW

i

√
∆

) ∣∣X∆,(j−1)∆ = x, (∆jW
r)i−1
r=1 = (yr)i−1

r=1

]
.

Remark 3.5. Compared with the control variate based on (3.6), the one based on (3.9)
contains a smaller number of coefficients to be computed, but these coefficients are functions
of a greater number of variables (provided that we would truncate both sums on k at some
level).

From the computational point of view, it is unprofitable to use the control variate based
on (3.9), since the matrixB (cf. (2.2)), containing the basis functions for a regression, changes
even for one fixed j ∈ {1, . . . , J} due to the additional conditioning on (∆jW

r)i−1
r=1 = (yr)i−1

r=1.
This results in a high computational effort, whereas we can use the same matrix for one fixed
j when using (3.6) (only conditioning on X∆,(j−1)∆ = x).

Let us introduce the following “truncated” control variate

Mser
∆,T :=

J∑
j=1

m∑
i=1

aj,ei(X∆,(j−1)∆)∆jW
i

√
∆

, (3.10)

where ei denotes the i-th unit vector in Rm and aj,ei is given by (cf. (3.7))

aj,ei(x) = E
[
f(X∆,T )∆jW

i

√
∆

∣∣X∆,(j−1)∆ = x

]
. (3.11)

Note that the superscript “ser” comes from “series”.
In the next subsection we will derive another control variate, which is theoretically equiv-

alent to Mser
∆,T .

3.1.3 Integral representation

Below we assume E |f(X∆,T )| <∞. Let us introduce the function u∆ : [0, T ]× Rd+m → R
via

u∆(t, x, y) ≡ E
[
u∆

(
tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

, t ∈ [tj−1, tj), (3.12)

u∆(T, x, 0) ≡ f(x),

where tj := jT
J , j ∈ {0, . . . , J}. Note that it holds

u∆(tj , x, 0) = E
[
f(X∆,T )

∣∣X∆,tj = x
]
. (3.13)

Theorem 3.6. The following representation holds

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

tj∫
tj−1

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) dWt, (3.14)

where ∇yu∆(t, x, y) ∈ R1×m denotes the gradient of u∆ w.r.t. y.
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Let us define the operator (cf. (2.7))

Dα
t,y := ∂|α|

∂tα1∂yα2
1 · · · ∂y

αm+1
m

. (3.15)

for α ∈ Nm+1
0 . Next, we derive a connection between the series and integral representations.

Theorem 3.7. Provided that it holds∣∣∣∣Dα
t,y

(
∂

∂yr
u∆(t, x, y)

)∣∣∣∣ ≤ CK (3.16)

for all K ∈ N, |α| = K, r ∈ {1, . . . ,m}, t ∈ [tj−1, tj), j ∈ {1, . . . , J}, x ∈ Rd, y ∈ Rm and
for some constant C > 0, we have

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

∞∑
l=1

∆l/2
∑
k∈Nm0∑m

r=1
kr=l

∂lu∆(tj−1, X∆,tj−1 , 0)
∂yk1

1 · · · ∂y
km
m

m∏
r=1

Hkr

(
∆jW

r

√
∆

)
√
kr!

(3.17)

whenever 0 < ∆ < 1
C2 . (The series converge in L2.) Consequently, we obtain for l =∑m

r=1 kr ∈ N

∆l/2
√
k1! · · ·

√
km!
· ∂

lu∆(tj−1, x, 0)
∂yk1

1 · · · ∂y
km
m

= aj,k(x). (3.18)

Let us recall the control variate Mser
∆,T in (3.10). We get from Theorem 3.8 that Mser

∆,T is
equivalent to the following control variate

M int
∆,T :=

J∑
j=1

m∑
i=1

∂u∆(tj−1, X∆,tj−1 , 0)
∂yi

∆jW
i. (3.19)

(Note that the superscript “int” comes from “integral”.) Next, we derive that the equivalence
of Mser

∆,T and M int
∆,T also holds without assumption (3.16).

Theorem 3.8. We have for i ∈ {1, . . . ,m}

aj,ei(x) =
√

∆ ∂

∂yi
u∆(tj−1, x, 0). (3.20)

Let us study the order of the truncation error, which arises from replacing the control
variate M∆,T in (3.8) (including infinite number of terms) by M int

∆,T , respectively Mser
∆,T

(including finite number of terms).

Theorem 3.9. Provided that the function u∆(t, x, y) has bounded partial derivatives in y

of orders 2 and 3, it holds

Var
[
f(X∆,T )−M int

∆,T
]

= Var
[
f(X∆,T )−Mser

∆,T
]
. ∆. (3.21)

Below we focus on the Euler scheme (3.5) and assume that all the functions f, µk, σki, k ∈
{1, . . . , d}, i ∈ {1, . . . ,m}, are continuously differentiable. Let us define by Id the identity
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matrix of size d and by δiXk
s,x(t) := ∂Xks,x(t)

∂xi
the “derivative processes” for i, k ∈ {1, . . . , d}

and s ≤ t. Similar to the process Xt, we simply write δiXk
t rather than δiXk

0,x0
(t) for

t ∈ [0, T ] and define the matrix

δXt :=


δ1X1

t · · · δdX1
t

...
. . .

...
δ1Xd

t · · · δdXd
t

 ∈ Rd×d

as well as the vectors δiXt :=
(
δiX1

t , . . . , δ
iXd

t

)> ∈ Rd for i ∈ {1, . . . , d}.

Remark 3.10. Note that δiXt satisfies the following SDE

dδiXt =
d∑
k=1

δiXk
t

[
∂µ(Xt)
∂xk

dt+ ∂σ(Xt)
∂xk

dWt

]
, δiXk

0 =
{

1, i = k

0, i 6= k
, (3.22)

and it holds (cf. (1.7) and [45])

f(XT ) = E[f(XT )] +
T∫

0

E [∇f(XT )δXT |Xt ] δX−1
t σ(Xt) dWt. (3.23)

Regarding the Euler discretisation δX∆,j∆ = (δiXk
∆,j∆)i,k=1,...,d of δXt, we have

δiX∆,tj = δiX∆,tj−1 +
d∑
k=1

δiXk
∆,tj−1

[
∂µ(X∆,tj−1)

∂xk
∆ +

∂σ(X∆,tj−1)
∂xk

∆jW

]
, (3.24)

where δX∆,0 = Id and δiX∆,tj :=
(
δiX1

∆,tj , . . . , δ
iXd

∆,tj

)>
∈ Rd for i ∈ {1, . . . , d}.

As for Theorem 3.6, we can derive the following result.

Theorem 3.11. It holds for the Euler scheme

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

tj∫
tj−1

E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj |Ft

]
σ(X∆,tj−1) dWt. (3.25)

Remark 3.12. For t = tj−1, j ∈ {1, . . . , J}, we obtain from (3.25) (cf. (3.14))

∇yu∆(tj−1, x, 0) = E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj

∣∣X∆,tj−1 = x
]
σ(x). (3.26)

Note that we may write (3.26) by means of expectations conditioned on X∆,tj−1 instead of
Ftj−1 , since (X∆,tj )j=0,...,J , is a Markov chain.

Let us define the function gj : Rd → R1×d, j ∈ {1, . . . , J}, through

gj(x) = (gj,1(x), . . . , gj,d(x)) := E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj

∣∣X∆,tj−1 = x
]
, (3.27)

such that we have (cf. (3.26))

∇yu∆(tj−1, x, 0) = gj(x)σ(x). (3.28)
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Note that it also holds (see the proof of Theorem 3.11)

gj(x) = E
[
∇xu∆(tj , X∆,tj , 0)

∣∣X∆,tj−1 = x
]
, (3.29)

where ∇xu∆(t, x, y) denotes the gradient of u∆ w.r.t. x. We get that the control variate
M int

∆,T can be expressed by means of function gj , that is (cf. (3.19) and (3.28))

M int
∆,T =

J∑
j=1

gj(X∆,tj−1)σ(X∆,tj−1)∆jW

=
J∑
j=1

d∑
k=1

gj,k(X∆,tj−1)
m∑
i=1

σki(X∆,tj−1)∆jW
i. (3.30)

Remark 3.13. (i) Note that there will appear more precise assumptions on the functions
f, µ, σ in Section 3.3 which ensure the assumption on u∆ in Theorem 3.9.

(ii) Moreover, the control variate M int
∆,T in (3.30) differs from the one suggested in [45] only

in an index concerning the inverted matrix, i.e. we have δX−1
∆,tj inside of gj(X∆,tj−1) rather

than the Ftj−1 -measurable random variable δX−1
∆,tj−1

. In case of the exact solution, one
obtains from a discretisation of the stochastic integral in (3.23)

J∑
j=1

E
[
∇f(XT )δXT

∣∣Xtj−1

]
δX−1

tj−1
σ(Xtj−1)∆jW

as an analogue of M int
∆,T .

(iii) In order to use the control variate M int
∆,T in practice, we need to estimate the unknown

coefficients gj,k. Thus, practically implementable control variates M̃ int
∆,T have the form (3.30)

with some estimated functions g̃j,k : Rd → R. Notice that they remain valid control variates,
i.e. we still have E

[
M̃ int

∆,T
]

= 0, which is due to the martingale transform structure4 in (3.30).

(iv) It is natural to expect that, under some additional conditions, a generalisation of The-
orem 3.9 has the form

Var
[
f(X∆,T )−M int,(K)

∆,T

]
= Var

[
f(X∆,T )−Mser,(K)

∆,T

]
. ∆K ,

where K ∈ N and

M
int,(K)
∆,T :=

J∑
j=1

K∑
l=1

∆l/2
∑
k∈Nm0∑m

r=1
kr=l

∂lu∆(tj−1, X∆,tj−1 , 0)
∂yk1

1 · · · ∂y
km
m

m∏
r=1

Hkr

(
∆jW

r

√
∆

)
√
kr!

, (3.31)

M
ser,(K)
∆,T :=

J∑
j=1

K∑
l=1

∑
k∈Nm0∑m

r=1
kr=l

aj,k(X∆,tj−1)
m∏
r=1

Hkr

(
∆jW

r

√
∆

)
.

4This phrase means that the discrete-time process M̃ = (M̃l)l=0,...,J , where M̃0 = 0 and M̃l is defined
like the right-hand side of (3.30) but with

∑J

j=1 being replaced by
∑l

j=1 and gj,k by g̃j,k is a martingale,
which is a straightforward calculation.
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However, on the one hand we will observe below that control variates based on the direct
estimation of aj,k (in particular Mser,(K)

∆,T ) are numerically not convincing. On the other
hand, for the implementation of an approximation for M int,(K)

∆,T with K > 1, one has to
derive conditional expectation formulas for ∂lu∆(tj−1,x,0)

∂y
k1
1 ···∂y

km
m

as for K = 1, that is (3.26) (note

that M int
∆,T = M

int,(1)
∆,T and Mser

∆,T = M
ser,(1)
∆,T ). In the one-dimensional case d = m = 1, we

will derive such a representation for K = 2 in Subsection 3.1.4.

Regarding the convergence of the Euler scheme, we have the following result (cf. Theo-
rem 2.1 in [44]).

Proposition 3.14. Assume that µ and σ in (1.1) are Lipschitz continuous with components
µk, σki : Rd → R, k = 1, . . . , d, i = 1, . . . ,m, being 4 times continuously differentiable with
their partial derivatives of order up to 4 having polynomial growth. Let f : Rd → R be 4
times continuously differentiable with partial derivatives of order up to 4 having polynomial
growth. Then, for the Euler scheme (3.5), we have

|E [f(XT )− f(X∆,T )]| ≤ c∆, (3.32)

where the constant c does not depend on ∆.

Notice that the assumption that, for sufficiently large n ∈ N, the expectations E|X∆,j∆|2n

are uniformly bounded in J and j = 0, . . . , J (cf. Theorem 2.1 in [44]) is automatically
satisfied for the Euler scheme because µ and σ, being globally Lipschitz, have at most linear
growth.

3.1.4 Second order derivatives in the one-dimensional case

Let us consider the case d = m = 1 and define the “second derivative process” δ2Xs,x(t) :=
∂2Xs,x(t)

∂x2 . Note that it holds ∂2Xs,x(t)
∂x2 = ∂δXs,x(t)

∂x , where δXs,x(t) is defined in Chapter 1.
Below we simply write δ2Xt rather than δ2X0,x0(t). The following SDE holds for δ2Xt

(cf. [45])

dδ2Xt = δ2Xt(µ′(Xt) dt+ σ′(Xt) dWt) + δX2
t (µ′′(Xt) dt+ σ′′(Xt) dWt), δ2X0 = 0.

Regarding the Euler discretisation δ2X∆,tj for δ2Xt we have for j = 1, . . . , J

δ2X∆,tj =δ2X∆,tj−1(1 + µ′(X∆,tj−1)∆ + σ′(X∆,tj−1)∆jW ) (3.33)

+ δX2
∆,tj−1

(µ′′(X∆,tj−1)∆ + σ′′(X∆,tj−1)∆jW ).

Proposition 3.15. We obtain for the second derivative of the function u∆ w.r.t. y

∂2u∆

∂y2 (tj−1, x, 0) =E

[
f ′(X∆,T )

δ2X∆,T δX∆,tj − δ2X∆,tjδX∆,T

δX3
∆,tj

(3.34)

+f ′′(X∆,T )
δX2

∆,T

δX2
∆,tj

∣∣X∆,tj−1 = x

]
σ2(x).
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Consequently, in the one-dimensional case we have derived conditional expectation for-
mulas for the first and second derivatives of u∆ w.r.t. y and thus could implement an
approximation of the control variate

M
int,(2)
∆,T =

J∑
j=1

(
∂

∂y
(tj−1, X∆,tj−1 , 0)∆jW + ∂2

∂y2 (tj−1, X∆,tj−1 , 0)∆jW
2 −∆
2

)
.

However, below we will not consider control variates including second order derivatives of u∆

(note that this will be justified in Section 3.4).

3.2 Generic regression algorithm

In the previous sections we have given several representations for the control variates. For
the sake of clarity, we focus on the control variate given by (3.30), that is, we estimate the
functions gj,k in (3.27) via regression.

3.2.1 Summary of the algorithm

The algorithm of the “integral approach” consists of two phases: “training phase” and
“testing phase”. In the training phase, we simulate Nr independent “training paths”

DtrNr :=
{

(Xtr,(n)
∆,j∆ , δX

tr,(n)
∆,j∆ )j=0,...,J : n = 1, . . . , Nr

}
and construct regression estimates ĝj,k(·,DtrNr ) for the coefficients gj,k(·), k ∈ {1, . . . , d} (cf.
Subsection 2.1.1). (Note that the superscript “tr” comes from “training”.) In the testing
phase, independently from DtrNr we simulate N independent “testing paths” (X(n)

∆,j∆)j=0,...,J ,
n = 1, . . . , N , and build the Monte Carlo estimator for Ef(XT ) as

E = 1
N

N∑
n=1

(
f(X(n)

∆,T )− M̂ int,(n)
∆,T

)
, (3.35)

where (cf. (3.30))

M̂
int,(n)
∆,T :=

J∑
j=1

d∑
k=1

ĝj,k(X(n)
∆,tj−1

)
m∑
i=1

σki(X(n)
∆,tj−1

)∆jW
i,(n). (3.36)

Due to the martingale transform structure in (3.36) (recall footnote 4 on page 27), we have
E
[
M̂

int,(n)
∆,T |Dtr

Nr

]
= 0, hence E[E|DtrNr ] = E[f(X(n)

∆,T )− M̂ int,(n)
∆,T |DtrNr ] = E[f(X∆,T )], and we

obtain

Var[E ] = E[Var(E|DtrNr )] + Var[E(E|DtrNr )] = E[Var(E|DtrNr )]

= 1
N

E
[
Var

[
f(X(1)

∆,T )− M̂ int,(1)
∆,T |DtrNr

]]
= 1
N

Var
[
f(X(1)

∆,T )− M̂ int,(1)
∆,T

]
.

Summarising, we have

E[E ] = E[f(X∆,T )], (3.37)

Var[E ] = 1
N

Var
[
f(X(1)

∆,T )− M̂ int,(1)
∆,T

]
. (3.38)
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Notice that the result of (3.38) indeed requires the computations above and cannot be stated
right from the outset because the summands in (3.35) are dependent (through DtrNr ).

This concludes the description of the generic regression algorithm for constructing the
control variate. Further details, such as bounds for the right-hand side of (3.38), depend
on a particular implementation, i.e. on the quality of the chosen basis functions. In what
follows, we focus on the piecewise polynomial partitioning estimates.

3.3 Error bounds for piecewise polynomial regression

Below we use the notation P∆,j−1 for the distribution of X∆,(j−1)∆. In particular, we will
work with the corresponding L2-norm:

‖g‖2L2(P∆,j−1) :=
∫
Rd

g2(x)P∆,j−1(dx) = E
[
g2 (X∆,(j−1)∆

)]
.

We now define ζJ,j,k as the k-th component of the vector

ζJ,j := (ζJ,j,1, . . . , ζJ,j,d) := ∇f(X∆,T )δX∆,T δX
−1
∆,j∆

and remark that gj,k(x) = E[ζJ,j,k|X∆,(j−1)∆ = x]. In what follows, we consider the following
assumptions: there exist h ∈ [1,∞] and positive constants Σ, A,Ch, ν, Bν such that, for all
J ∈ N, j ∈ {1, . . . , J} and k ∈ {1, . . . , d}, it holds:

(A1) supx∈Rd Var
[
ζJ,j,k|X∆,(j−1)∆ = x

]
≤ Σ <∞,

(A2) supx∈Rd |gj,k(x)| ≤ A <∞,

(A3) gj,k is (p+ 1, Ch)-smooth w.r.t. the norm | · |h,

(A4) P(|X∆,(j−1)∆|∞ > R) ≤ BνR−ν for all R > 0.

Remark 3.16. As we mentioned in Subsection 2.1.2, it is only a matter of convenience
which h to choose in (A3) because all norms | · |h are equivalent. Moreover, since µ and
σ are assumed to be globally Lipschitz, hence have linear growth, then, given any ν > 0,
(A4) is satisfied with a sufficiently large Bν > 0. In other words, (A4) is needed only to
introduce the constant Bν , which appears in the formulations below.

In the next theorem we present, based on Theorem 2.5, sufficient conditions in terms of
the functions f, µ and σ that imply the preceding assumptions for the Euler scheme.

Theorem 3.17. (i) Let all functions f, µk, σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, be continu-
ously differentiable with bounded partial derivatives. Then (A1) and (A2) hold.

(ii) Moreover, if all functions σki are bounded and all functions f, µk, σki are 3 times con-
tinuously differentiable with bounded partial derivatives up to order 3, then the function
u∆(t, x, y) has bounded partial derivatives in y up to order 3. In particular, (3.21) holds
true.
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Remark 3.18. As a generalisation of Theorem 3.17, it is natural to expect that assump-
tion (A3) is satisfied with a sufficiently large constant Ch > 0 if all the functions f, µk, σki
are (p+2) times continuously differentiable with bounded partial derivatives up to order p+2
(might be proven by di Bruno’s formula, see e.g. [17]).

Let ĝj,k be the piecewise polynomial partitioning estimate of gj,k described in Subsec-
tion 2.1.2. By g̃j,k = TAĝj,k we denote the truncated estimate (see (2.3)).

Under (A1)–(A4), we have due to Theorem 2.3

E‖g̃j,k − gj,k‖2L2(P∆,j−1) ≤ c̃
(
Σ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr
(3.39)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2BνR

−ν ,

where c̃ is a universal constant. It is worth noting that the expectation in the left-hand side
of (3.39) accounts for the averaging over the randomness in DtrNr . To explain this in more
detail, let (X∆,j∆)j=0,...,J be a “testing path” which is independent of the training paths
DtrNr . Then it holds

‖g̃j,k − gj,k‖2L2(P∆,j−1) ≡ ‖g̃j,k(·,DtrNr )− gj,k(·)‖2L2(P∆,j−1)

= E
[(
g̃j,k(X∆,(j−1)∆,DtrNr )− gj,k(X∆,(j−1)∆)

)2 | DtrNr] ,
hence,

E‖g̃j,k − gj,k‖2L2(P∆,j−1) = E
[(
g̃j,k(X∆,(j−1)∆,DtrNr )− gj,k(X∆,(j−1)∆)

)2]
, (3.40)

which provides an alternative form for the expression in the left-hand side of (3.39).

Next we estimate the variance of the random variable f(X∆,T )− M̃ int
∆,T , where

M̃ int
∆,T :=

J∑
j=1

d∑
k=1

g̃j,k(X∆,(j−1)∆,DtrNr )
m∑
i=1

σki(X∆,(j−1)∆)∆jW
i. (3.41)

Theorem 3.19. Let us assume supx∈Rd |σki(x)| ≤ σmax < ∞ for all k ∈ {1, . . . , d} and
i ∈ {1, . . . ,m}. Then we have under (A1)–(A4)

Var[f(X∆,T )− M̃ int
∆,T ] .

1
J

+ d2Tmσ2
max

{
c̃
(
Σ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2BνR

−ν

}
. (3.42)

In the case of piecewise polynomial regression, the estimator E given in (3.35) with “hat”
replaced by “tilde” is an unbiased estimator of E[f(X∆,T )], and, by (3.38), the upper bound
for its variance is 1

N times the last expression in (3.42).
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3.4 Complexity analysis

3.4.1 Integral approach

Below we present a complexity analysis which explains how we can asymptotically approach
the complexity order ε−2

√
|log(ε)| with ε being the precision to be achieved.5

For the integral approach we perform d regressions in the training phase and d evaluations
of g̃j,k in the testing phase (using the regression coefficients from the training phase) at each
time step. Therefore, the overall cost is of order

JSddcp,d max {cp,dNr, N} , (3.43)

where cp,d :=
(
p+d
p

)
. We have the following constraints

max
{

1
J2 ,

1
JN

,
Sdd2mcp,d log(Nr)

NrN
,

d2m

(p+ 1)!2N

(
Rd

S

)2(p+1)
,
d2mBν
NRν

}
. ε2, (3.44)

to ensure a MSE of order ε2. Note that the first term in (3.44) comes from the squared bias
of the estimator (due to (3.32) and E[M̃ int

∆,T ] = 0) and the remaining four ones come from
the variance of the estimator (see (3.42) and (3.35)).

Theorem 3.20. We obtain the following solution for the integral approach (provided that6

it holds 2(p+ 1) > d and ν > 2d(p+1)
2(p+1)−d)

J � ε−1, S � CS · ε−
2ν+4(p+1)

dν+2(p+1)(d+2ν) , R � CR · ε−
4(p+1)

dν+2(p+1)(d+2ν) , (3.45)

Nr � CNr · ε
− 2dν+4(p+1)(d+ν)
dν+2(p+1)(d+2ν)

√
|log(ε)|, N � CN · ε−

2dν+4(p+1)(d+ν)
dν+2(p+1)(d+2ν)

√
|log(ε)| � Nr,

where

CS :=
[
B

4(p+1)
ν d2ν+4(p+1)(ν+1)mν+2(p+1)

c
2ν+4(p+1)
p,d (p+ 1)!4ν

] 1
dν+2(p+1)(d+2ν)

,

CR :=
[
B
d+4(p+1)
ν (p+ 1)!2dm2(p+1)

c
4(p+1)
p,d d2(p+1)(d−2)

] 1
dν+2(p+1)(d+2ν)

,

CNr := cd,ν,p

[
B

2d(p+1)
ν d2dν+2(p+1)(dν+2d+2ν)mdν+2(p+1)(d+ν)

c
dν+2d(p+1)
p,d (p+ 1)!2dν

] 1
dν+2(p+1)(d+2ν)

,

CN := cd,ν,p

[
B

2d(p+1)
ν c

4ν(p+1)
p,d d2dν+2(p+1)(dν+2d+2ν)mdν+2(p+1)(d+ν)

(p+ 1)!2dν

] 1
dν+2(p+1)(d+2ν)

= CNrcp,d,

5Notice that the multilevel Monte Carlo (MLMC) algorithm can at best achieve the complexity of order
ε−2.

6When deriving the solution via Lagrange multipliers (cf. proof of Theorem 3.20) one can see that these
parameter values are not optimal if p ≤ d−2

2 or ν ≤ 2d(p+1)
2(p+1)−d (a Lagrange multiplier corresponding to a

“≤ 0” constraint is negative). Therefore, the recommendation is to choose p ∈ N and ν > 0 according to
p > d−2

2 and ν > 2d(p+1)
2(p+1)−d . The opposite choice is allowed as well (the method converges), but theoretical

complexity of the method would be then worse than that of the SMC.
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and cd,ν,p :=
√

2dν+4(p+1)(d+ν)
dν+2(p+1)(d+2ν) . Thus, we have for the complexity

Cint � JSdNr � JSdN � CC · ε−
5dν+2(p+1)(5d+4ν)
dν+2(p+1)(d+2ν)

√
|log(ε)|, (3.46)

where

CC := cd,ν,p

[
B

6d(p+1)
ν c

2(p+1)(4ν−d)−dν
p,d d5dν+2(p+1)(3dν+5d+4ν)m3dν+6(p+1)(d+ν)

(p+ 1)!6dν

] 1
dν+2(p+1)(d+2ν)

= dc2p,dC
d
SCNr = dcp,dC

d
SCN .

Remark 3.21. For the sake of comparison with the SMC and MLMC approaches, we recall
at this point that their complexities are

CSMC � ε−3 and CMLMC � ε−2

at best (referring to (1.5), we have α = 1 here).

(i) Complexity estimate (3.46) shows that one can asymptotically approach the complexity
order ε−2

√
|log(ε)|, when p, ν → ∞, i.e. if the coefficients gj,k are smooth enough and the

solution X of SDE (1.1) lives in a compact set.

(ii) For all p, ν with 2(p+ 1) > d and ν > 2d(p+1)
2(p+1)−d , Cint gives us a better complexity order

compared to Csmc, since we have in this case for the exponent of ε in (3.46)

5dν + 2(p+ 1)(5d+ 4ν)
dν + 2(p+ 1)(d+ 2ν) = 3− 2(ν(2(p+ 1)− d)− 2d(p+ 1))

dν + 2(p+ 1)(d+ 2ν) < 3.

(iii) We would have obtained the same complexity even when the variance in (3.21) were of
order ∆K with K > 1 (in particular using control variates of the form (3.31)). This is due
to the fact that the second constraint in (3.44) is the only inactive one and this would still
hold if the condition were 1

JKN
. ε2. Hence, it is not useful to derive a control variate with

a higher variance order for the Euler scheme.

(iv) Since the exponent of the base ε in (3.46) converges when d → ∞ for all p, ν, the
integral approach does not suffer from the curse of dimensionality7, which is mentioned in
Chapter 1.

(v) Let us also note that the constant CC in (3.46) tends to infinity (with exponential growth
in d) when p, ν →∞. Indeed, even if we ignore the constant Bν , we get

CC
p,ν→∞∝

[
c
2(p+1)(4ν−d)−dν
p,d

(p+ 1)!6dν

] 1
dν+2(p+1)(d+2ν)

∝
[
p8dpν

p6pdν

] 1
4pν

= p
d
2 .

This is a negative by-product of the piecewise polynomial regression. In Chapter 5 we will
present a complexity analysis under a more general framework, similar to Subsection 2.1.1.
Then we will find out criteria for which the constant converges when the corresponding
parameter tends to infinity.

7This statement also holds true for each of the novel algorithms presented below.
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3.4.2 Series approach

Below we present a complexity analysis for the series representation, defined in Subsec-
tion 3.1.2. Again we focus on the Euler scheme (3.5). Then we compare the result-
ing complexity with the one in (3.46). Similar to Section 3.3, we define ζJ,j,i as the i-
th component of the vector ζJ,j = (ζJ,j,1, . . . , ζJ,j,m)> := f(X∆,T )∆jW√

∆
and remark that

aj,ei(x) = E[ζJ,j,i|X∆,(j−1)∆ = x]. We will work under the following assumptions: there
exist h ∈ [1,∞] and positive constants Σ, A,Ch such that, for all J ∈ N, j ∈ {1, . . . , J} and
i ∈ {1, . . . ,m}, it holds:

(B1) supx∈Rd Var
[
ζj,i|X∆,(j−1)∆ = x

]
≤ Σ <∞,

(B2) supx∈Rd |aj,ei(x)| ≤ A
√

∆ <∞,

(B3) aj,ei is (p+ 1, Ch)-smooth w.r.t. the norm | · |h.

Remark 3.22. (i) Note the difference between (B2) and (A2) of Section 3.3, while (B1)
has the same form as (A1). This is due to (3.18), hence the additional factor

√
∆ in (B2).

(ii) A sufficient condition to ensure assumption (B1) is given by f being bounded (which is
not required for the integral approach), since

Var
[
ζJ,j,i|X∆,(j−1)∆ = x

]
≤ E

[
f2(X∆,T ) (∆jW

i)2

∆
∣∣X∆,(j−1)∆ = x

]
≤
√

3 · E
[
f4(X∆,T )|X∆,(j−1)∆ = x

]
.

(iii) Further, we get, by means of Theorem 2.5, (3.18) and (3.28), that assumption (B2)
is satisfied if all functions σki are bounded and all functions f, µk, σki, k ∈ {1, . . . , d},
i ∈ {1, . . . ,m}, are continuously differentiable with bounded partial derivatives.

In what follows the Nr training paths are denoted by

DtrNr :=
{

(Xtr,(n)
∆,j∆ )j=0,...,J : n = 1, . . . , Nr

}
, (3.47)

that is, we do not need to simulate paths for the discretised derivative processes δX∆,j∆.
Let âj,ei be the piecewise polynomial partitioning estimate of aj,ei described in Section 3.3.
By ãj,ei we denote the truncated estimate, which is defined as follows:

ãj,ei(x) = TA
√

∆âj,ei(x) =

âj,ei(x) if |âj,ei(x)| ≤ A
√

∆,

A
√

∆ sgn âj,ei(x) otherwise.
(3.48)

Under (B1)–(B3) and (A4), we have due to Lemma 2.3

E‖ãj,ei − aj,ei‖2L2(P∆,j−1) ≤ c̃
(
Σ +A2∆(logNr + 1)

) cp,dSd
Nr

(3.49)

+ 8C2
h

(p+ 1)!2d2− 2
h

(
R

S

)2p+2
+ 8A2∆BνR−ν ,
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where c̃ is a universal constant. Let us now estimate the variance of the random variable
f(X∆,T )− M̃ser

∆,T , where

M̃ser
∆,T :=

J∑
j=1

m∑
i=1

ãj,ei(X∆,(j−1)∆,DtrNr )
∆jW

i

√
∆

. (3.50)

Theorem 3.23. Under (B1)–(B3) and (A4), we have

Var[f(X∆,T )− M̃ser
∆,T ] .

1
J

+ Jm

{
c̃
(
Σ +A2∆(logNr + 1)

) cp,dSd
Nr

+ 8C2
h

(p+ 1)!2d2− 2
h

(
R

S

)2p+2
+ 8A2∆BνR−ν

}
. (3.51)

Let us study the complexity of the following “series approach”: in the training phase, we
simulate Nr independent training paths DtrNr and construct regression estimates ãj,ei(·,DtrNr )
for the coefficients aj,ei(·), i ∈ {1, . . . ,m}. In the testing phase, independently from DtrNr we
simulate N independent testing paths (X(n)

∆,j∆)j=0,...,J , n = 1, . . . , N , and build the Monte
Carlo estimator for Ef(XT ) as

1
N

N∑
n=1

(
f(X(n)

∆,T )− M̃ser,(n)
∆,T

)
. (3.52)

Therefore, the overall cost is of order

JSdmcp,d max {cp,dNr, N} . (3.53)

The expectation of the estimator in (3.52) equals Ef(X∆,T ), and the upper bound for the
variance is 1

N times the expression in (3.51). Hence, we have the following constraints

max
{

1
J2 ,

1
JN

,
JSdmcp,d
NrN

,
Jm

(p+ 1)!2N

(
Rd

S

)2(p+1)
,
mBν
NRν

}
. ε2, (3.54)

to ensure a MSE of order ε2 (due to E[Mser
∆,T ] = 0 as well as (3.51) and (3.52)). Note that

there is no longer a log-term in (3.54). This is due to the factor ∆ in (3.51) such that Σ is
of a higher order, compared to A2∆(logNr + 1).

Theorem 3.24. We obtain the following solution for the series approach (provided that8 it
holds 2(p+ 1) > d and ν > 2(p+1)

2(p+1)−d)

J � ε−1, S � CS · ε−
3ν+2(p+1)

dν+2(p+1)(d+2ν) , R � CR · ε−
2(p+1)−d

dν+2(p+1)(d+2ν) , (3.55)

Nr � CNr · ε
− 3dν+2(p+1)(2d+3ν)

dν+2(p+1)(d+2ν) , N � CN · ε−
3dν+2(p+1)(2d+3ν)
dν+2(p+1)(d+2ν) � Nr,

8Footnote 6 on page 32 applies.
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where

CS :=
[
B

4(p+1)
ν d4ν(p+1)mν+2(p+1)

c
2ν+4(p+1)
p,d (p+ 1)!4ν

] 1
dν+2(p+1)(d+2ν)

,

CR :=
[
B
d+4(p+1)
ν (p+ 1)!2dm2(p+1)

c
4(p+1)
p,d d2d(p+1)

] 1
dν+2(p+1)(d+2ν)

,

CNr :=
[
B

2d(p+1)
ν d2dν(p+1)mdν+2(p+1)(d+ν)

c
dν+2d(p+1)
p,d (p+ 1)!2dν

] 1
dν+2(p+1)(d+2ν)

,

CN :=
[
B

2d(p+1)
ν c

4ν(p+1)
p,d d2dν(p+1)mdν+2(p+1)(d+ν)

(p+ 1)!2dν

] 1
dν+2(p+1)(d+2ν)

= CNrcp,d.

Thus, we have for the complexity

Cser � JSdNr � JSdN � CC · ε−
7dν+2(p+1)(4d+5ν)
dν+2(p+1)(d+2ν) , (3.56)

where

CC := cd,ν,p

[
B

6d(p+1)
ν c

2(p+1)(4ν−d)−dν
p,d d6dν(p+1)m3dν+6(p+1)(d+ν)

(p+ 1)!6dν

] 1
dν+2(p+1)(d+2ν)

= mc2p,dC
d
SCNr = mcp,dC

d
SCN .

3.4.3 Discussion

(i) Complexity estimate (3.56) shows that one cannot go beyond the complexity order ε−2.5

in this case, no matter how large p, ν are. This is mainly due to the factor J within the
third constraint in (3.54) which does not arise in (3.44).

(ii) To get a better complexity order for Cser compared to CSMC , we need to choose p+1 > 2d
and ν > d(p+1)

p+1−2d , since we have for the exponent of ε in (3.56)

7dν + 2(p+ 1)(4d+ 5ν)
dν + 2(p+ 1)(d+ 2ν) = 3− 2(ν(p+ 1− 2d)− d(p+ 1))

dν + 2(p+ 1)(d+ 2ν) .

(iii) When comparing (3.56) with (3.46), one clearly sees that (3.46) always achieves a better
complexity for ν > 2(p+1)

2(p+1)−d (in terms of ε).

(iv) Similar to Section 3.4.1, we would have obtained the same complexity even when we
used a control variate with a higher variance order ∆K for some K > 1.

(v) Furthermore, from the computational point of view it is preferable to consider the
integral approach rather than the series approach, even though the control variates Mser

∆,T

and M int
∆,T are theoretically equivalent (cf. (3.20)). This is mainly due to the factor ∆jW

i

in aj,ei (see (3.11)), which is independent of X∆,(j−1)∆ and has zero expectation and thus
may lead to poor regression results. Regarding the integral approach, such a destabilising
factor is not present in gj,k.
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3.5 Numerical results

In this section, we consider the Euler scheme and compare the numerical performance of
the SMC, MLMC, series and integral approaches. For simplicity we implemented a global
regression (i.e. the one without truncation and partitioning, as a part of the general de-
scription in Section 3.2). Regarding the choice of basis functions, we use in both series and
integral approaches the same polynomials ψ(x) =

∏d
i=1 x

li
i , where l1, . . . ld ∈ {0, 1, . . . , p}

and
∑d
l=1 li ≤ p. In addition to the polynomials, we consider the function f as a basis func-

tion for the series approach and ∂f
∂xk

, k ∈ {1, . . . , d}, as a basis function for the estimation of
gj,k(x), that is, for the integral approach (since gj,k is “close to” ∂f

∂xk
for larger j, cf. (3.27)).

Hence, we have overall cp,d + 1 basis functions in each regression for both approaches.
The following results are based on program codes written and vectorised in MATLAB

and running on a Linux 64-bit operating system.

3.5.1 One-dimensional example

Here d = m = 1. We consider the following SDE

dXt =− 1
2 tanh (Xt) sech2 (Xt) dt+ sech (Xt) dWt, X0 = 0, (3.57)

for t ∈ [0, 1], where sech(x) := 1
cosh(x) . This SDE has an exact solution Xt = arsinh (Wt) .

Furthermore, we consider the function f(x) = sech(x) + 15 arctan(x), that is, we have

E [f (X1)] = E [sech (arsinh (W1))] = E

[
1√

1 +W 2
1

]
≈ 0.789640. (3.58)

We choose p = 3 (that is, 5 basis functions) and, for each ε = 2−i, i ∈ {2, 3, 4, 5, 6}, we set
the parameters J , Nr and N as follows (compare with the formulas in Section 3.4 for the
“limiting” case ν →∞ and ignore the constant Bν as well as the log-terms for the integral
approach):

J = ε−1, Nr = 256 ·
{
d0.6526 · ε−1.0588e integral approach,
d0.6342 · ε−1.5882e series approach,

N = 256 ·
{
d2.6102 · ε−1.0588e integral approach,
d2.5367 · ε−1.5882e series approach.

Regarding the SMC approach, the number of paths is set N = 256 · ε−2. The factor 256 is
here for stability purposes. As for the MLMC approach, we set the initial number of paths
for the first level (l = 0) equal to 103 as well as the “discretisation parameter” equal to 4
(leading to time steps of size 1

4l at level l) and use the algorithm described in [18]. Next
we compute the numerical root mean squared errors (RMSE) (the exact value is known,
see (3.58)) by means of 100 independent repetitions of the algorithm. As can be seen
from the first plot in Figure 3.1, the estimated numerical complexity is about RMSE−1.82

for the integral approach, RMSE−2.43 for the series approach, RMSE−1.99 for the MLMC
approach and RMSE−3.02 for the SMC approach, which we get by regressing the log-time
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(logarithmic computing time of the whole algorithm in seconds) vs. log-RMSE. Thus, the
complexity reduction works best with the integral approach.
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Figure 3.1. Numerical complexities of the integral, series, SMC and MLMC approaches in
the one- and five-dimensional case.

3.5.2 Five-dimensional example

Here d = m = 5. We consider the SDE

dXi
t = − sin

(
Xi
t

)
cos3 (Xi

t

)
dt+ cos2 (Xi

t

)
dW i

t , Xi
0 = 0, i ∈ {1, 2, 3, 4} ,

dX5
t =

4∑
i=1

[
−1

2 sin
(
Xi
t

)
cos2 (Xi

t

)
dt+ cos

(
Xi
t

)
dW i

t

]
+ dW 5

t , X5
0 = 0. (3.59)
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The solution of (3.59) is given by

Xi
t = arctan

(
W i
t

)
, i ∈ {1, 2, 3, 4} ,

X5
t =

4∑
i=1

arsinh
(
W i
t

)
+W 5

t ,

for t ∈ [0, 1]. Further, we consider the function

f(x) = cos
( 5∑
i=1

xi

)
− 20

4∑
i=1

sin (xi) ,

that is, we have

E [f (X1)] =
(
E
[
cos
(
arctan

(
W 1

1
)

+ arsinh
(
W 1

1
))])4 E [cos

(
W 5

1
)]
≈ 0.002069.

We again choose p = 3 (this now results in 57 basis functions) and consider the same values
of ε as above. Moreover, we set (compare again with the formulas in Section 3.4 for ν →∞
and ignore the the parameter Bν as well as the log-terms for the integral approach):

J = ε−1, Nr =
{
d40.0274 · ε−1.2381e integral approach,
4 · d4.9044 · ε−1.8571e series approach,

N =
{
d2241.5320 · ε−1.2381e integral approach,
4 · d274.6480 · ε−1.8571e series approach.

The number of paths for the SMC approach is set N = 256 ·ε−2, as in the previous example.
Regarding the MLMC approach, we again use time steps of size 1

4l at level l, but the
initial number of paths in the first level is increased to 104. As in the one-dimensional
case, we compute the numerical RMSE by means of 100 independent repetitions of the
algorithm. Our empirical findings are illustrated in the second plot in Figure 3.1. We observe
the numerical complexity RMSE−1.95 for the integral approach, RMSE−2.05 for the series
approach, RMSE−2.01 for the MLMC approach and RMSE−3.03 for the SMC approach. Even
though the complexity order of the series approach is better than that of the SMC approach
and close to that of MLMC approach, the series approach is practically outperformed by
the other approaches (see Figure 3.1; the multiplicative constant influencing the computing
time is obviously very big). However, the integral approach remains numerically the best
one also in this five-dimensional example.

3.6 Proofs

First of all, we require the following Lemma to prove Proposition 3.15:

Lemma 3.25. In case of the Euler scheme, it holds for J ≥ l ≥ j ≥ 0 and d = m = 1

δ2Xtj ,X∆,tj
(∆, tl) =

δ2X∆,tlδX∆,tj − δ2X∆,tjδX∆,tl
δX3

∆,tj
, (3.60)
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where δ2Xtj ,x(∆, tl) := ∂2Xtj ,x(∆,tl)
∂x2 , δXtj ,x(∆, tl) := ∂Xtj ,x(∆,tl)

∂x and Xtj ,x(∆, tl) denotes
the Euler discretisation, starting at time tj in x (analogous to Xs,x(t) for the exact solution).
(That is, while the present time point tl of the discretised process, l ∈ {0, . . . , J}, is used by
subscripts in the notation X∆,tl , it is used in brackets in the notation X∆,tj (∆, tl), j ≤ l).

Proof. We use the mathematical induction technique. First, for l = j we clearly have
δ2Xtj ,X∆,tj

(∆, tl) = 0. Regarding the inductive step, we assume (3.60) and further use (3.33)
as well as δX∆,X∆,tj

(∆, tl) = δX∆,tl
δX∆,tj

(see proof of Theorem 3.11) to derive

δ2X∆,X∆,tj
(∆, tl+1) = δ2X∆,X∆,tj

(∆, tl)Al+1 + δX2
∆,X∆,tj

(∆, tl)Bl+1

=
δ2X∆,tlδX∆,tj − δ2X∆,tjδX∆,tl

δX3
∆,tj

Al+1 +
δX2

∆,tl
δX2

∆,tj
Bl+1,

where

Aj := ∂

∂x
Φ∆

(
X∆,tj−1 ,

∆jW√
∆

)
= 1 + µ′(X∆,tj−1)∆ + σ′(X∆,tj−1)∆jW,

Bj := ∂2

∂x2 Φ∆

(
X∆,tj−1 ,

∆jW√
∆

)
= µ′′(X∆,tj−1)∆ + σ′′(X∆,tj−1)∆jW,

for j = 1, . . . , J (cf. (3.33)). Next we use

Al+1 =
δX∆,tl+1

δX∆,tl
,

Bl+1 =
δ2X∆,tl+1 − δ2X∆,tlAl+1

δX2
∆,tl

=
δ2X∆,tl+1δX∆,tl − δ2X∆,tlδX∆,tl+1

δX3
∆,tl

,

which gives us finally

δ2X∆,X∆,tj
(∆, tl+1) =

δ2X∆,tlδX∆,tj − δ2X∆,tjδX∆,tl
δX3

∆,tj
·
δX∆,tl+1

δX∆,tl

+
δX2

∆,tl
δX2

∆,tj
·
δ2X∆,tl+1δX∆,tl − δ2X∆,tlδX∆,tl+1

δX3
∆,tl

=
δ2X∆,tl+1δX∆,tj − δ2X∆,tjδX∆,tl+1

δX3
∆,tj

.

Note that it holds analogously for the non-discretised process δ2X (cf. formula (3.15) in [45],
which is of a similar form)

δ2Xs,Xs(t) = δ2XtδXs − δ2XsδXt

δX3
s

,

where 0 ≤ s ≤ t ≤ T .

Proof of Theorem 3.2

The proof uses the well-known fact that the system
J∏
j=1

m∏
r=1

Hkj,r

(
∆jW

r

√
∆

)
: k = (kj,r) ∈ NJ×m0


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is an orthonormal basis in L2(GJ), where the σ-field GJ = σ(∆jW : j = 1, . . . , J) is generated
by the Gaussian increments, and goes along the lines of the proof of Theorem 4.11. Note
that we rather prove Theorem 4.11, since we will achieve a better complexity based on the
representation there.

Proof of Theorem 3.4

For p ∈ NJ×m0 we define

cp = E

f(X∆,T )
J∏
j=1

m∏
i=1

Hpj,i

(
∆jW

i

√
∆

) .
Further, for j ∈ {1, . . . , J}, i ∈ {1, . . . ,m}, and k ∈ N, we define

Ij,i,k =
{
p ∈ NJ×m0 : pj,i = k, pj,r = 0∀r > i, pl,r = 0∀l > j, ∀r ∈ {1, . . . ,m}

}
.

The Wiener chaos expansion of f(X∆,T ) with respect to (∆jW )Jj=1 is given by (see e.g. [52])

f(X∆,T ) = E[f(X∆,T )] +
∞∑
k=1

∑
p∈NJ×m0
|p|=k

cp

J∏
j=1

m∏
i=1

Hpj,i

(
∆jW

i

√
∆

)
. (3.61)

Rearranging of the terms in (3.61) leads to (cf. proof of Theorem 4.11)

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

m∑
i=1

∞∑
k=1

Hk

(
∆jW

i

√
∆

) ∑
p∈Ij,i,k

[
cp

(
j−1∏
l=1

m∏
r=1

Hpl,r

(
∆lW

r

√
∆

))

·

(
i−1∏
r=1

Hpj,r

(
∆jW

r

√
∆

))]
.

Finally, we get for all j ∈ {1, . . . , J}, i ∈ {1, . . . ,m}, and k ∈ N

∑
p∈Ij,i,k

cp

(
j−1∏
l=1

m∏
r=1

Hpl,r

(
∆lW

r

√
∆

))(i−1∏
r=1

Hpj,r

(
∆lW

r

√
∆

))

=E
[
f(X∆,T )Hk

(
∆jW

i

√
∆

)∣∣∣∣ (∆lW )j−1
l=1 , (∆jW

r)i−1
r=1

]
=E

[
f(X∆,T )Hk

(
∆jW

i

√
∆

)∣∣∣∣X∆,(j−1)∆, (∆jW
r)i−1
r=1

]
= aj,k,i

(
X∆,(j−1)∆, (∆jW

r)i−1
r=1
)
,

which completes the proof.

Proof of Theorem 3.6

First of all, we derive

lim
t↗tj

u∆(t,X∆,tj−1 ,Wt −Wtj−1) (3.62)

= lim
t↗tj

E
[
u∆(tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0)
] ∣∣∣x=X∆,(j−1)∆, y=Wt−Wtj−1

=u∆

(
tj ,Φ∆

(
X∆,(j−1)∆,

∆jW√
∆

)
, 0
)

= u∆(tj , X∆,tj , 0).
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By means of Itô’s Lemma and the fact that u∆ satisfies the heat equation

m∑
i=1

∂2u∆

∂y2
i

= −1
2
∂u∆

∂t
(3.63)

due to its relation to the normal distribution, we then obtain

f(X∆,T )− E[f(X∆,T )] =u∆(T,X∆,T , 0)− u∆(0, x0, 0) (3.64)

=
J∑
j=1

(
u∆(tj , X∆,tj , 0)− u∆(tj−1, X∆,tj−1 , 0)

)
=

J∑
j=1

lim
t↗tj

(
u∆(t,X∆,tj−1 ,Wt −Wtj−1)− u∆(tj−1, X∆,tj−1 , 0)

)

=
J∑
j=1

m∑
i=1

lim
t↗tj

t∫
tj−1

∂u∆

∂yi
(s,X∆,tj−1 ,Ws −Wtj−1) dW i

s

=
J∑
j=1

tj∫
tj−1

∇yu∆(s,X∆,tj−1 ,Ws −Wtj−1) dWs.

Proof of Theorem 3.7

Below we simply write u∆,tj−1 rather than u∆(tj−1, X∆,tj−1 , 0). Let us consider the Taylor
expansion for ∂

∂yr
u∆(t,X∆,tj−1 ,Wt −Wtj−1) of order K ∈ N around (tj−1, X∆,tj−1 , 0), with

r ∈ {1, . . . ,m}, that is, for t ∈ [tj−1, tj), we set

TKj,r(t) :=
∑
|α|≤K

Dα
t,y

(
∂
∂yr

u∆,tj−1

)
α1! · · ·αm+1! (t− tj−1)α1(W 1

t −W 1
tj−1

)α2 · · · (Wm
t −Wm

tj−1
)αm+1 ,

(3.65)

where α ∈ Nm+1
0 and Dα

t,y is defined in (3.15). Via Taylor’s theorem we obtain

∂

∂yr
u∆(t,X∆,tj−1 ,Wt −Wtj−1)− TKj,r(t)

=
∑

|α|=K+1

 1∫
0

(1− z)KDα
t,y

(
∂

∂yr
u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))

)
dz

· (K + 1)!
α1! · · ·αm+1! (t− tj−1)α1(W 1

t −W 1
tj−1

)α2 · · · (Wm
t −Wm

tj−1
)αm+1

]
.
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Provided that (3.16) holds, we get

Var

 J∑
j=1

m∑
r=1

tj∫
tj−1

(
∂

∂yr
u∆(t,X∆,tj−1 ,Wt −Wtj−1)− TKj,r(t)

)
dW r

t


=

J∑
j=1

m∑
r=1

tj∫
tj−1

E

[(
∂

∂yr
u∆(t,X∆,tj−1 ,Wt −Wtj−1)− TKj,r(t)

)2
]
dt

.C2(K+1)
J∑
j=1

∑
|α|=K+1

tj∫
tj−1

E
[
(t− tj−1)2α1(W 1

t −W 1
tj−1

)2α2 · · · (Wm
t −Wm

tj−1
)2αm+1

]
dt

.(C2∆)K+1 K→∞−→ 0,

and thus TKj,r converges for K →∞ in L2(Ω× [0, T ]) to ∂u∆
∂yr

(t,X∆,tj−1 ,Wt−Wtj−1). More-
over, due to (3.63), the limit of TKj,r simplifies to (cf. (3.65))

∂u∆,tj−1

∂yr
+

m∑
i=1

∂2u∆,tj−1

∂yr∂yi
(W i

t −W i
tj−1

)

+ 1
2

m∑
i=1

∂3u∆,tj−1

∂yr∂y2
i

((W i
t −W i

tj−1
)2 − (t− tj−1))

+
m∑

i1,i2=1
i1<i2

∂3u∆,tj−1

∂yr∂yi1∂yi2
(W i1

t −W
i1
tj−1

)(W i2
t −W

i2
tj−1

)

+
[

1
6

m∑
i=1

∂4u∆,tj−1

∂yr∂y3
i

((W i
t −W i

tj−1
)3 − 3(W i

t −W i
tj−1

)(t− tj−1))

+ 1
2

m∑
i1,i2=1
i1<i2

∂4u∆,tj−1

∂yr∂y2
i1
∂yi2

((W i1
t −W

i1
tj−1

)2 − (t− tj−1))(W i2
t −W

i2
tj−1

)

+
m∑

i1,i2,i3=1
i1<i2<i3

∂4u∆,tj−1

∂yr∂yi1∂yi2∂yi3
(W i1

t −W
i1
tj−1

)(W i2
t −W

i2
tj−1

)(W i3
t −W

i3
tj−1

)


+ ...

=
∞∑
l=1

(t− tj−1)
l−1
2

∑
k∈Nm0∑m

i=1
ki=l−1

∂lu∆,tj−1

∂yr∂y
k1
1 · · · ∂y

km
m

m∏
i=1

Hki

(
W i
t−W

i
tj−1√

t−tj−1

)
√
ki!

.

To compute the stochastic integral
tj∫

tj−1

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) dWt

=
∞∑
l=1

m∑
r=1

tj∫
tj−1

(t− tj−1)
l−1
2

∑
k∈Nm0∑m

i=1
ki=l−1

∂lu∆,tj−1

∂yr∂y
k1
1 · · · ∂y

km
m

m∏
i=1

Hki

(
W i
t−W

i
tj−1√

t−tj−1

)
√
ki!

dW r
t ,
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we apply Itô’s Lemma w.r.t. the functions Fk(t, y1, . . . , ym) := tl/2
∏m
i=1

Hki

(
yi√
t

)
√
ki!

, where∑m
i=1 ki = l. Thus, we obtain

dFk(t− tj−1,W
1
t −W 1

tj−1
, . . . ,Wm

t −Wm
tj−1

) (3.66)

=(t− tj−1)
l−1
2

m∑
r=1

Hkr−1

(
W r
t −W

r
tj−1√

t−tj−1

)
√

(kr − 1)!

m∏
i=1
i 6=r

Hki

(
W i
t−W

i
tj−1√

t−tj−1

)
√
ki!

dW r
t .

This gives us finally

tj∫
tj−1

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) dWt

=
∞∑
l=1

∆l/2
∑
k∈Nm0∑m

i=1
ki=l

∂lu∆(tj−1, X∆,tj−1 , 0)
∂yk1

1 · · · ∂y
km
m

m∏
i=1

Hki

(
∆jW

i

√
∆

)
√
ki!

.

Proof of Theorem 3.8

Let us define the function Gl,j(x) for J ≥ l ≥ j ≥ 0, x ∈ Rd, as follows (cf. (2.12))

Gl,j(x) ≡ Φ∆,l ◦ Φ∆,l−1 ◦ . . . ◦ Φ∆,j+1(x), l > j, (3.67)

Gl,j(x) ≡ x, l = j,

where Φ∆,l(x) := Φ∆

(
x, ∆lW√

∆

)
for l = 1, . . . , J . Note that it holds (cf. (2.13) and (3.13))

u∆(tj , x, 0) = E [f(GJ,j(x))] . (3.68)

Similar to G we define the function G̃j(x, z), 0 ≤ j < J , x ∈ Rd, z := (z1, . . . , zJ−j) ∈
Rm×(J−j), zl := (z1

l , . . . , z
m
l )> ∈ Rm for l = 1, . . . , J − j, as follows

G̃j(x, z) := Φ̃∆,zJ−j ◦ . . . ◦ Φ̃∆,z1(x),

where Φ̃∆,zl(x) := Φ∆ (x, zl). Note that G and G̃ have the following relation

GJ,j(x) = G̃j

(
x,

1√
∆

(
∆j+1W,∆j+2W, . . . ,∆JW

))
, j < J. (3.69)

Let us represent
√

∆ ∂
∂yi

u∆(tj−1, x, 0), where j ∈ {1, . . . , J} and i ∈ {1, . . . ,m}, as a
(J − j + 1)m-dimensional integral, that is (cf. (3.69))

√
∆ ∂

∂yi
u∆(tj−1, x, 0) =

√
∆ ∂

∂yi
E
[
f

(
GJ,j

(
Φ∆

(
x,

∆jW + y√
∆

)))]
|y=0m

=
∫

R(J−j+1)m

√
∆ ∂

∂yi
f

(
G̃j−1

(
x,

(
z1 + y√

∆
, z2, . . . , zJ−j+1

)))
ϕ(J−j+1)m(z) dz |y=0m ,
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where ϕ(J−j+1)m denotes the (J − j + 1)m-dimensional standard normal density function.
Since it holds

√
∆ ∂

∂yi
f

(
G̃j−1

(
x,

(
z1 + y√

∆
, z2, . . . , zJ−j+1

)))
= ∂

∂zi1
f

(
G̃j−1

(
x,

(
z1 + y√

∆
, z2, . . . , zJ−j+1

)))
,

we obtain via integration by parts

√
∆ ∂

∂yi
u∆(tj−1, x, 0)

=
∫

R(J−j+1)m

∂

∂zi1
f
(
G̃j−1 (x, z)

)
ϕ(J−j+1)m(z) dz

=−
∫

R(J−j+1)m

f
(
G̃j−1 (x, z)

) ∂

∂zi1
ϕ(J−j+1)m(z) dz

=
∫

R(J−j+1)m

f
(
G̃j−1 (x, z)

)
zi1ϕ(J−j+1)m(z) dz

=E
[
f(GJ,j−1(x))∆jW

i

√
∆

]
= E

[
f(X∆,T )∆jW

i

√
∆

∣∣X∆,(j−1)∆ = x

]
= aj,ei(x).

Proof of Theorem 3.9

Via Taylor’s theorem we get

∂u∆(t,X∆,tj−1 ,Wt −Wtj−1)
∂yi

=
∂u∆(tj−1, X∆,tj−1 , 0)

∂yi
+ (t− tj−1)

1∫
0

∂2u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))
∂yi∂t

dz

+
m∑
r=1

(W r
t −W r

tj−1
)

1∫
0

∂2u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))
∂yi∂yr

dz. (3.70)

Due to (3.63), (3.70) simplifies to

∂u∆(t,X∆,tj−1 ,Wt −Wtj−1)
∂yi

=
∂u∆(tj−1, X∆,tj−1 , 0)

∂yi

− 2(t− tj−1)
1∫

0

m∑
r=1

∂3u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))
∂yi∂y2

r

dz

+
m∑
r=1

(W r
t −W r

tj−1
)

1∫
0

∂2u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))
∂yi∂yr

dz.
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Provided that u∆ has bounded partial derivatives in y of orders 2 and 3, we have

Var

 tj∫
tj−1

∂u∆(t,X∆,tj−1 ,Wt −Wtj−1)
∂yi

dW i
t −

∂u∆(tj−1, X∆,tj−1 , 0)
∂yi

∆jW
i


=

tj∫
tj−1

E

 1∫
0

m∑
r=1

(
(W r

t −W r
tj−1

)
∂2u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))

∂yi∂yr

−2(t− tj−1)
∂3u∆(tj−1(1− z) + tz,X∆,tj−1 , z(Wt −Wtj−1))

∂yi∂y2
r

)
dz

)2]
dt

.
m∑
r=1

tj∫
tj−1

E
[
(W r

t −W r
tj−1

)2 + 4(t− tj−1)2
]
dt . ∆2.

Thus, we finally obtain

Var
[
f(X∆,T )−M int

∆,T
]

=
J∑
j=1

Var

 tj∫
tj−1

∂u∆(t,X∆,tj−1 ,Wt −Wtj−1)
∂yi

dW i
t −

∂u∆(tj−1, X∆,tj−1 , 0)
∂yi

∆jW
i

 . ∆.

Proof of Theorem 3.11

Due to Theorem 3.6, it is sufficient to show

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) = E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj |Ft

]
σ(X∆,tj−1)

for t ∈ [tj−1, tj).
Let us derive a relation between ∇yu∆ and ∇xu∆. We have for t ∈ [tj−1, tj)

∇yu∆(t, x, y) = ∇yE
[
u∆

(
tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

(3.71)

= ∇xE
[
u∆

(
tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

σ(x).

Thus, the term ∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) in (3.64) takes the form

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) = E[∇xu∆(tj , X∆,tj , 0) |Ft ]σ(X∆,tj−1). (3.72)

Note that it holds

u∆(tj , x, 0) = E[f(Xtj ,x(∆, T ))], (3.73)

where Xtj ,x(∆, tl) denotes the Euler discretisation, starting at time tj in x (cf. Lemma 3.25).
Hence, we have for ∇xu∆

∇xu∆(tj , x, 0) = E[∇f(Xtj ,x(∆, T ))δXtj ,x(∆, T )],
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respectively

∇xu∆(tj , X∆,tj , 0) = E
[
∇f(Xtj ,X∆,tj

(∆, T ))δXtj ,X∆,tj
(∆, T )

∣∣Ftj ] ,
where δiXk

tj ,x(∆, tl) :=
∂Xktj,x

(∆,tl)
∂xi

with l ≥ j and i, k ∈ {1, . . . , d}. Below we simply write
X∆,tl and δX∆,tl rather than X0,x0(∆, tl) and δX0,x0(∆, tl).

Let us denote by

JΦ∆(x, y) :=


∂
∂x1 Φ1

∆(x, y) · · · ∂
∂xd

Φ1
∆(x, y)

...
. . .

...
∂
∂x1 Φd∆(x, y) · · · ∂

∂xd
Φd∆(x, y)

 (3.74)

the Jacobian matrix of the function Φ∆(x, y) w.r.t. the variable x. Regarding the discreti-
sation scheme for δX∆,j∆, we can use, alternatively to (3.24), the matrix form

δX∆,j∆ = AjδX∆,(j−1)∆ = AjAj−1 · · ·A1, (3.75)

where

Aj := JΦ∆

(
X∆,tj−1 ,

∆jW√
∆

)
.

for j = 1, . . . , J . This gives us for l ≥ j

δXtj ,X∆,tj
(∆, tl) = AlAl−1 · · ·Aj+1 = AlAl−1 · · ·A1 (AjAj−1 · · ·A1)−1 = δX∆,tlδX

−1
∆,tj .

Let us recall the function G in (3.67). We can derive

Xtj ,X∆,tj
(∆, tl) = Gl,j(X∆,tj ) = Gl,j(Gj,0(x0)) = Gl,0(x0) = X∆,tl , (3.76)

where again l ≥ j. Finally we have for t ∈ [tj−1, tj)

∇xu∆(tj , X∆,tj , 0) = E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj

∣∣Ftj ] ,
which gives us

∇yu∆(t,X∆,tj−1 ,Wt −Wtj−1) = E
[
E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj

∣∣Ftj ] |Ft ]σ(X∆,tj−1)

= E
[
∇f(X∆,T )δX∆,T δX

−1
∆,tj |Ft

]
σ(X∆,tj−1).

Note that it holds analogously for the non-discretised processes X and δX (cf. [45])

Xs,Xs(t) = Xt,

δXs,Xs(t) = δXt

δXs
,

where 0 ≤ s ≤ t ≤ T .
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Proof of Proposition 3.15

Since it holds for j = 0, 1, . . . , J (cf. (3.73))

u∆(tj , x, 0) = E[f(Xtj ,x(∆, T ))],

we have for the second derivative of u∆ w.r.t. x

∂2

∂x2u∆(tj , x, 0) = E[f ′′(Xtj ,x(∆, T ))(δXtj ,x(∆, T ))2 + f ′(Xtj ,x(∆, T ))δ2Xtj ,x(∆, T )].

Next, we have the following relation (similar to (3.72) for the first derivative)

∂2

∂y2u∆(tj−1, x, 0) = E
[
∂2

∂x2u∆(tj , X∆,tj , 0)
∣∣X∆,tj−1 = x

]
σ2(x).

Hence, we get for ∂2

∂y2u∆(tj−1, x, 0)

∂2

∂y2u∆(tj−1, x, 0) =E
[
f ′′(Xtj ,X∆,tj

(∆, T ))(δXtj ,X∆,tj
(∆, T ))2 (3.77)

+f ′(Xtj ,X∆,tj
(∆, T ))δ2Xtj ,X∆,tj

(∆, T )
∣∣X∆,tj−1 = x

]
σ2(x)

=E

[
f ′′(X∆,T )

(
δX∆,T

δX∆,tj

)2

+f ′(X∆,T )δ2Xtj ,X∆,tj
(∆, T )

∣∣X∆,tj−1 = x
]
σ2(x).

We complete the proof 3.15 by inserting (3.60) (from Lemma 3.25) into (3.77) for l = J .

Proof of Theorem 3.17

First of all, let us note that we may apply Theorem 2.5 here, since u∆(tj , x, 0) is an analogue
of the function qj(x), defined in (2.13) (cf. (3.13)). One can easily verify assumptions (2.14)
and (2.15) in Theorem 2.5 for K ∈ {1, 2, 3} when all the functions f, µk, σki, k ∈ {1, . . . , d},
i ∈ {1, . . . ,m}, are K times continuously differentiable with bounded partial derivatives up
to order K (cf. (3.5)).

(i) Assumption (A2) follows straightforwardly from (3.29) for K = 1. As for assump-
tion (A1), we use (3.76) to get for j ∈ {0, 1, . . . , J}

JGJ,j (X∆,tj ) = δX∆,tj (∆, T ) = δX∆,T δX
−1
∆,tj ,

where JGJ,j (x) denotes the Jacobian matrix of the function GJ,j (cf. (3.74)). This gives us

∇ (f ◦GJ,j) (X∆,tj ) = ∇f(GJ,j(X∆,tj ))JGJ,j (X∆,tj ) = ζJ,j ,
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where ζJ,j is defined on page 30. Then we obtain for k ∈ {1, . . . , d} and j ∈ {1, . . . , J}

Var
[
ζJ,j,k | X∆,tj−1 = x

]
≤ E

[
ζ2
J,j,k | X∆,tj−1 = x

]
= E

( d∑
s=1

∂

∂xs
f(GJ,j(X∆,tj ))

∂

∂xk
GsJ,j(X∆,tj )

)2

| X∆,tj−1 = x


≤ d

d∑
s=1

E

[(
∂

∂xs
f(GJ,j−1(x)) ∂

∂xk
GsJ,j−1(x)

)2
]

≤ d

d∑
s=1

√√√√E

[(
∂

∂xs
f(GJ,j−1(x))

)4
]
E

[(
∂

∂xk
GsJ,j−1(x)

)4
]
.

Hence, assumption (A1) is satisfied under the above assumptions for K = 1 (cf. ρk,sJ,4,1 in
the proof of Theorem 2.5).

(ii) As an extension of (3.71), we get

∂2

∂yi∂yr
u∆(t, x, y)

=
d∑

s,u=1
E
[

∂2

∂xs∂xu
u∆

(
tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

σsi(x)σur(x),

∂3

∂yi∂yr∂yo
u∆(t, x, y)

=
d∑

s,u,v=1
E
[

∂3

∂xs∂xu∂xv
u∆

(
tj ,Φ∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

σsi(x)σur(x)σvo(x),

where j ∈ {1, . . . , J}, t ∈ [tj−1, tj) and i, r, o ∈ {1, . . . ,m}. Applying Theorem 2.5 and
considering that all functions σk,i, k ∈ {1, . . . , d} i ∈ {1, . . . ,m}, are bounded, we get that
the partial derivatives in y up to order 3 are bounded, too.

Proof of Theorem 3.19

Using the martingale transform structure in (3.30) and (3.41) (recall footnote 4 on page 27)
together with the orthogonality of the system ∆jW

i, we get by (3.39)

Var[f(X∆,T )− M̃ int
∆,T ] = Var[f(X∆,T )−M int

∆,T ] + Var[M int
∆,T − M̃ int

∆,T ]

.
1
J

+ ∆
J∑
j=1

m∑
i=1

E‖
d∑
k=1

(g̃j,k − gj,k)σki‖2L2(P∆,j−1)

≤ 1
J

+ d∆
J∑
j=1

m∑
i=1

d∑
k=1

E‖(g̃j,k − gj,k)σki‖2L2(P∆,j−1)

≤ 1
J

+ d2Tmσ2
max

{
c̃
(
Σ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2BνR

−ν

}
.
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Proof of Theorem 3.20

Let us, for simplicity, first ignore the log(Nr)-term in (3.44) and consider only the terms
w.r.t. the variables J,Nr, N, S,R which shall be optimised, since the constants d,m, cp,d,
(p+1)!, Bν do not affect the terms on ε. Further, we consider the log-cost and log-constraints
rather than (3.43) and (3.44). Let us subdivide the optimisation problem into two cases:

(i) Nr . N . This gives us the Lagrange function

Lλ1,...,λ6(J,Nr, N, S,R) (3.78)

:= log(J) + log(N) + d log(S) + λ1(−2 log(J)− 2 log(ε))

+ λ2(− log(J)− log(N)− 2 log(ε))

+ λ3(d log(S)− log(Nr)− log(N)− 2 log(ε))

+ λ4(2(p+ 1)(log(R)− log(S))− log(N)− 2 log(ε))

+ λ5(−ν log(R)− log(N)− 2 log(ε)) + λ6(log(Nr)− log(N)),

where λ1, . . . , λ6 ≥ 0. Thus, considering of the conditions ∂L
∂J = ∂L

∂Nr
= ∂L

∂N = ∂L
∂S = ∂L

∂R

!= 0
gives us the following relations

λ1 = 1− λ2

2 ,

λ3 = 2(p+ 1)(ν(1− λ2)− d)− dν
dν + 2(p+ 1)(d+ 2ν) = λ6,

λ4 = dν(3− λ2)
dν + 2(p+ 1)(d+ 2ν) ,

λ5 = 2d(p+ 1)(3− λ2)
dν + 2(p+ 1)(d+ 2ν) .

The case λ1, . . . , λ6 > 0 is not feasible, since all constraints in (3.78) cannot be active, that
is, they cannot become zero simultaneously because of six (linearly independent) equalities
on five unknowns. Hence, we derive the solutions under λi = 0 for different i and observe
which one is actually optimal.

a) λ1 = 0 ⇒ λ3 = λ6 = − d(2(p+1)+ν)
dν+2(p+1)(d+2ν) < 0. Due to negative λ3, λ6, this case is not

optimal.

b) λ2 = 0 ⇒ λ1, λ4, λ5 > 0, λ3 = λ6 = 2(p+1)(ν−d)−dν
dν+2(p+1)(d+2ν) . Again, we make a case

distinction:

I. λ3 = λ6 = 0. From this condition, we get ν = 2d(p+1)
2(p+1)−d and 2(p + 1) > d. (The

latter guarantees that ν is positive). This gives us, due to λ1, λ4, λ5 > 0,

J � ε−1,

S �
[

1
Nε2

] 1
d

.

Hence, the complexity JSdN � ε−3 is no improvement compared to the SMC
approach.



Chapter 3. Regression-based variance reduction for strong approximation schemes 51

II. λ3 = λ6 > 0. From this condition, we get ν > 2d(p+1)
2(p+1)−d and 2(p+ 1) > d. (Again,

the second condition guarantees that ν is positive.) In this case, all constraints
apart from the second one in (3.78), corresponding to λ2, are active. Then we
obtain

J � ε−1,

S � ε−
2ν+4(p+1)

dν+2(p+1)(d+2ν) ,

N � ε−
2dν+4(p+1)(d+ν)
dν+2(p+1)(d+2ν) .

Here, the complexity JSdN � ε−
5dν+2(p+1)(5d+4ν)
dν+2(p+1)(d+2ν) is a better solution than the

previous one. Moreover, the remaining constraint 1
JN . ε2 is also satisfied under

this solution.

c) λ3 = λ6 = 0 ⇒ λ1, λ4, λ5 > 0, λ2 = 2(p+1)(ν−d)−dν
2(p+1)ν . The case λ2 = 0 is the same as

the last but one and thus gives us the complexity JSdN � ε−3. The case λ2 > 0 leads
to four active constraints in (3.78), namely the ones corresponding to λ1, λ2, λ4, λ5,
such that

J � ε−1,

S � ε−
ν+2(p+1)
2ν(p+1) ,

N � ε−1.

The complexity JSdN � ε−
dν+2(p+1)(d+2ν)

2ν(p+1) seems to be nice at the first moment. How-
ever, it does not satisfy both constraints corresponding to λ3, λ6. On the one hand, we
have for the third constraint Nr & ε−1− dν+2d(p+1)

2ν(p+1) . On the other hand, we have for the
sixth constraint Nr . ε−1. Hence, this is not an admissible solution.

d) λ4 = 0 ⇒ λ1 = −1. Since λ1 is negative, this case is not optimal.

e) λ5 = 0 ⇒ λ1 = −1. As for the previous one, this case is not optimal.

(ii) Nr & N . This gives us the Lagrange function

L̃λ1,...,λ6(J,Nr, N, S,R)

:= log(J) + log(Nr) + d log(S) + λ1(−2 log(J)− 2 log(ε))

+ λ2(− log(J)− log(N)− 2 log(ε))

+ λ3(d log(S)− log(Nr)− log(N)− 2 log(ε))

+ λ4(2(p+ 1)(log(R)− log(S))− log(N)− 2 log(ε))

+ λ5(−ν log(R)− log(N)− 2 log(ε)) + λ6(log(N)− log(Nr)).

Analogously to the procedure above we get the same optimal solution, that is

J � ε−1,

S � ε−
2ν+4(p+1)

dν+2(p+1)(d+2ν) ,

Nr � ε−
2dν+4(p+1)(d+ν)
dν+2(p+1)(d+2ν) .
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Thus, we have again for the complexity JSdNr � ε−
5dν+2(p+1)(5d+4ν)
dν+2(p+1)(d+2ν) .

Next we consider also the remaining terms cp,d, (p+ 1)!, Bν and arrive at (3.45)–(3.46) via
equalising all constraints in (3.44) apart from the second one as well as considering N � Nr
(provided that p > d−2

2 and ν > 2d(p+1)
2(p+1)−d ). Finally, we add the log-term concerning ε in the

parameters Nr, N to ensure that all constraints are really satisfied.
Let us additionally prove the statement in footnote 6 on page 32, i.e. that the complexity

of the integral approach would be worse than that of the SMC whenever at least one of the
above inequalities is violated. More precisely, the statement we are going to prove sounds
as follows. If either p ≤ d−2

2 (recall that p ∈ N0) or ν ≤ 2(p+1)d
2(p+1)−d (recall that ν > 0), then

the cost C of the integral algorithm given in (3.43) is worse than ε−3 regardless of the choice
of J , S, R, N and Nr such that (3.44) holds true.

We first remark that any choice of J , S, R, N , Nr such that R does not tend to infinity
as ε ↘ 0 results in C & ε−3. Indeed, in this case we see from the first and the fifth terms
in (3.44) that J & ε−1 and N & ε−2, hence C & JN & ε−3. Therefore, below we consider
without loss of generality only such choices of J , S, R, Nr, N , where R tends to infinity as
ε↘ 0, and discuss the following two cases.

Let p ≤ d−2
2 , that is, 2(p+ 1) ≤ d. Then we obtain from the fourth term in (3.44)

SdN & S2(p+1)N & ε−2R2(p+1) & ε−2

and hence, together with J & ε−1 (see the first term in (3.44)), we have for the cost

C & JSdN & ε−2J & ε−3.

Next, let p > d−2
2 , that is, 2(p+ 1) > d, and 0 < ν ≤ 2(p+1)d

2(p+1)−d . Then we get from the fourth
and the fifth terms in (3.44)

R2(p+1) . S2(p+1)Nε2,

R
2(p+1)d

2(p+1)−d & Rν & N−1ε−2.

Therefore,
S

2(p+1)d
2(p+1)−dN

d
2(p+1)−d ε

2d
2(p+1)−d & N−1ε−2.

This yields
S

2(p+1)d
2(p+1)−dN

2(p+1)
2(p+1)−d & ε−

4(p+1)
2(p+1)−d ,

and we deduce
SdN & ε−2.

Together with J & ε−1, we obtain for the cost

C & JSdN & Jε−2 & ε−3,

which completes the proof.

Proof of Theorem 3.23

The proof is similar to the one of Theorem 3.19.
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Proof of Theorem 3.24

The proof is similar to the one of Theorem 3.20.
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Chapter 4

Optimal control variates for
weak approximation schemes

This chapter is mainly based on the paper [7].

Below, we derive the analogue of representation (3.6) for so-called weak approximation
schemes, i.e. the schemes, where simple random variables are used in place of Gaussian
increments. We observe that optimal control variates contain a finite sum in this case,
in contrast to strong approximation schemes. Moreover, we present a recursive algorithm,
which shall lead to accurate regression estimates.

In recent years weak approximation schemes became quite popular. The weak Euler
scheme is a first order scheme with weak order of convergence α = 1, and has been studied
by many researchers. Milstein [43] showed the first order convergence of the weak Euler
scheme. The fact that the same weak convergence rate of the Euler scheme also holds
for certain irregular functions under a Hörmander type condition was proved by Bally and
Talay [5] using Malliavin calculus. The Itô-Taylor (weak Taylor) high-order scheme is a
natural extension of the weak Euler scheme. In the diffusion case, some new discretisation
schemes (also called Kusuoka type schemes) which are of order α ≥ 2 without the Romberg
extrapolation have been introduced by Kusuoka [39], Lyons and Victoir [41], Ninomiya
and Victoir [51], and Ninomiya and Ninomiya [50]. A general class of weak approximation
methods, comprising many well-known discretisation schemes, was constructed in Kohatsu-
Higa and Tanaka [57]. The main advantage of the weak approximation schemes is that simple
discrete random variables can be used to approximate multiple Wiener integrals arising in
higher order schemes.

In this chapter we focus on the weak schemes of first and second order.
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4.1 First order schemes

In this subsection we treat weak schemes of order 1. Let us consider a scheme, where
d-dimensional approximations X∆,j∆, j = 0, . . . , J , satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆(X∆,(j−1)∆, ξj), j = 1, . . . , J, (4.1)

for some functions Φ∆ : Rd+m → Rd, with ξj = (ξ1
j , . . . , ξ

m
j )>, j = 1, . . . , J , being m-

dimensional i.i.d. random vectors with i.i.d. coordinates such that

P
(
ξkj = ±1

)
= 1

2 , k = 1, . . . ,m.

A particular case is the weak Euler scheme (also called the simplified weak Euler scheme in
[38, Section 14.1]) of order 1, which is given by (3.5).

Theorem 4.1. The following representation holds

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

m∑
r=1

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)
r∏
i=1

ξsij , (4.2)

where we use the notation s = (s1, . . . , sr). Moreover, the coefficients aj,r,s : Rd → R can be
computed by the formula

aj,r,s(x) = E

[
f(X∆,T )

r∏
i=1

ξsij

∣∣∣∣∣ X∆,(j−1)∆ = x

]
(4.3)

for all j, r, and s as in (4.2).

Example 4.2. Let us recall the example in Subsection 3.1.1. In case of the simplified
weak Euler scheme it holds X∆,j∆ = X∆,(j−1)∆(1 + σ

√
∆ξj) and thus we have again the

representation (3.1). However, due to P(ξ2
j = 1) = 1 for all j ∈ {1, . . . , J}, we obtain

X2
∆,j∆−X2

∆,(j−1)∆(1+σ2∆) = σ
√

∆X2
∆,(j−1)∆

(
2ξj + σ

√
∆(ξ2

j − 1)
)

= 2σ
√

∆X2
∆,(j−1)∆ξj .

This gives us a simplified formula compared to (3.2), namely (cf. (4.2))

X2
∆,T − E

[
X2

∆,T
]

=
J∑
j=1

aj,1,1(X∆,(j−1)∆)ξj

with aj,1,1(x) = 2σ
√

∆x2(1 + σ2∆)J−j .

Next proposition shows the properties of the simplified Euler scheme combined with the
control variate

M
(1)
∆,T :=

J∑
j=1

m∑
r=1

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)
r∏
i=1

ξsij , (4.4)

where the coefficients aj,r,s(x) are given by (4.3). It is a combination of the above Theo-
rem 4.1 together with Theorem 2.1 in [44].
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Proposition 4.3. Assume that µ and σ in (1.1) are Lipschitz continuous with components
µk, σki : Rd → R, k = 1, . . . , d, i = 1, . . . ,m, being 4 times continuously differentiable with
their partial derivatives of order up to 4 having polynomial growth. Let f : Rd → R be 4
times continuously differentiable with partial derivatives of order up to 4 having polynomial
growth. Provided that (3.5) holds and that, for sufficiently large n ∈ N, the expectations
E|X∆,j∆|2n are uniformly bounded in J and j = 0, . . . , J , we have for this “simplified weak
Euler scheme” (cf. Proposition 3.14)

|E [f(XT )− f(X∆,T )]| ≤ c∆,

where the constant c does not depend on ∆. Moreover, it holds

Var
[
f(X∆,T )−M (1)

∆,T

]
= 0. (4.5)

Remark 4.4. (i) In order to use the control variate M (1)
∆,T in practice, we need to estimate

the unknown coefficients aj,r,s. Thus, practically implementable control variates M̃ (1)
∆,T have

the form (4.4) with some estimated functions ãj,r,s : Rd → R (similar to the control variates
in Chapter 3).

(ii) Notice that the weak Euler scheme is, in contrast to the (strong) Euler scheme with
Gaussian increments, not strongly convergent.9 However, the assumption on strong conver-
gence is not required in our setting. That is, we only need weak convergence and here we
have the same convergence order as for the Euler scheme (cf. Proposition 3.14).

4.1.1 Computation of coefficients

Coefficients (4.3) can be directly computed using various regression algorithms as discussed
in Subsection 2.1.1. From a computational point of view it is sometimes advantageous to
look for another representation which only involves a regression over one time step (note
that in (4.3) regression should be performed over J − j + 1 time steps). To this end, we
recall the functions (cf. (2.13))

qj(x) = E[f(X∆,T )|X∆,j∆ = x]. (4.6)

The next proposition contains backward recursion formulas for the functions qj as well as
the expressions for the coefficients (4.3) in terms of qj , j = 1, . . . , J .

Proposition 4.5. We have qJ ≡ f and for each j ∈ {1, . . . , J},

qj−1(x) =E
[
qj(X∆,j∆)|X∆,(j−1)∆ = x

]
= 1

2m
∑

y=(y1,...,ym)∈{−1,1}m
qj(Φ∆(x, y)). (4.7)

Moreover, the coefficients (4.3) can be expressed in terms of the functions qj , j = 1, . . . , J,
as

aj,r,s(x) = 1
2m

∑
y=(y1,...,ym)∈{−1,1}m

[
r∏
i=1

ysi

]
qj(Φ∆(x, y)) (4.8)

for all j, r and s = (s1, . . . , sr) as in (4.2).
9 One usually speaks about strong convergence when the approximations (X∆,j∆) are defined on the same

space as the solution (Xt) and we have the convergence in some Lp-space, e.g. lim∆↘0 E|X∆,T −XT |2 = 0.
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Remark 4.6. The advantage of the representation (4.8) over the original one consists in
the fact that all functions qj , j = 1, . . . , J, can be recursively computed using regressions
over one time step (based on the first equality in (4.7)) and without involvement of the
independent of X∆,(j−1)∆ centred random variables ξsij (cf. (4.3)), rendering the estimates
for qj more stable. If qj is approximated as a linear combination of Q basis functions, then
the cost of computing the coefficients in this combination by least squares regression on
Nr paths is of order NrQ2. Once qj is approximated, the cost of estimating aj,r,s(x) in a
given point x via (4.8) is of order 2m(c1 + c2Q), where the constant c1 describes the cost of
computing Φ∆(x, y) for given points x and y (this is dm in case of (3.5)), and the constant
c2 describes the cost of computing the value of a basis function at a point in Rd (this is
typically d).

4.1.2 Additional representation formula

Theorem 4.7. Alternatively to (4.2), we also have the following representation formula

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

m∑
r=1

aj,r(X∆,(j−1)∆, (ξij)r−1
i=1 )ξrj , (4.9)

where the coefficients aj,r : Rd+r−1 → R can be computed by the formula

aj,r(x, (yi)r−1
i=1 ) = E

[
f(X∆,T )ξrj

∣∣ X∆,(j−1)∆ = x, (ξij)r−1
i=1 = (yi)r−1

i=1
]

(4.10)

for j = 1, . . . , J and r = 1, . . . ,m.

Remark 4.8. Theorems 4.1 and 4.7 suggest two perfect control variates for scheme (4.1).
Compared with the control variate based on (4.2), the control variate based on (4.9) contains
a smaller number of coefficients to be computed, but these coefficients are functions of a
greater number of variables and thus it is numerically advantageous to use the control
variate (4.3) for implementation (cf. Remark 3.5 in case of strong schemes).

Proposition 4.9. An equivalent form of (4.10) is

aj,r
(
x, (yi)r−1

i=1
)

= 1
2m−r+1

∑
(yr+1,...,ym)∈{−1,1}m−r

[
qj(Φ∆(x, y))− qj(Φ∆(x, y))

]
, (4.11)

where

y := (y1, . . . , yr−1, 1, yr+1, . . . , ym), (4.12)

y := (y1, . . . , yr−1,−1, yr+1, . . . , ym) (4.13)

for all j ∈ {1, . . . , J} and r ∈ {1, . . . ,m}.

4.2 Second order schemes

Next we treat weak schemes of order 2. We consider a scheme, where d-dimensional approx-
imations X∆,j∆, j = 0, . . . , J , satisfy X∆,0 = x0 and

X∆,j∆ = Φ∆(X∆,(j−1)∆, ξj , Vj), j = 1, . . . , J, (4.14)
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for some functions Φ∆ : Rd+m+m×m → Rd. Here,

(S1) ξj = (ξkj )mk=1 are m-dimensional random vectors,

(S2) Vj = (V klj )mk,l=1 are random m×m-matrices,

(S3) the pairs (ξj , Vj), j = 1, . . . , J , are i.i.d.,

(S4) for each j, the random elements ξj and Vj are independent,

(S5) for each j, the random variables ξkj , k = 1, . . . ,m, are i.i.d. with

P
(
ξkj = ±

√
3
)

= 1
6 , P

(
ξkj = 0

)
= 2

3 ,

(S6) for each j, the random variables V klj , 1 ≤ k < l ≤ m, are i.i.d. with

P
(
V klj = ±1

)
= 1

2 ,

(S7) V lkj = −V klj , 1 ≤ k < l ≤ m, j = 1, . . . , J ,

(S8) V kkj = −1, k = 1, . . . ,m, j = 1, . . . , J .

Hence, the matrices Vj can be generated by means of m(m−1)
2 i.i.d. random variables.

That is, relating to the framework in Section 2.2, we have m̃-dimensional random vectors
ξ̃j := ((ξij)i=1,...,m, (V ilj )1≤i<l≤m) with m̃ = m+ m(m−1)

2 = m(m+1)
2 . Notice that the random

vectors in Section 4.1 are not useful here, since they do not satisfy specific moment conditions
(cf. Section 14.2 in [38]). In contrast, the random vectors ξj , introduced in this section,
agree in the first five moments with the standard normal distributed ones, which is sufficient.

Remark 4.10. In order to obtain an order 2 weak scheme in the multidimensional case, we
need to incorporate additional random elements Vj into the structure of the scheme. This is
the reason why we now consider (4.14) instead of (4.1). For instance, to get the simplified
order 2 weak Taylor scheme of [38, Section 14.2] in the multidimensional case, we need to
define the functions Φ∆(x, y, z), x ∈ Rd, y ∈ Rm, z ∈ Rm×m, as explained below. First we
define the function Σ: Rd → Rd×d by the formula

Σ(x) = σ(x)σ(x)> (4.15)

and remark that the coordinates of Σ and Φ∆ are denoted by Σkl(x) and Φk∆(x, y, z) for
k, l = 1, . . . , d. Let us introduce the operators Lr, r = 0, . . . ,m, that act on sufficiently
smooth functions g : Rd → R as follows:

L0g(x) :=
d∑
k=1

µk(x) ∂g
∂xk

(x) + 1
2

d∑
k,l=1

Σkl(x) ∂2g

∂xl∂xk
(x),

Lrg(x) :=
d∑
k=1

σkr(x) ∂g
∂xk

(x), r = 1, . . . ,m. (4.16)
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The r-th coordinate Φr∆, r = 1, . . . , d, in the simplified order 2 weak Taylor scheme of [38,
Section 14.2] is now given by the formula

Φr∆(x, y, z) = xr +
m∑
k=1

σrk(x) yk
√

∆ (4.17)

+

µr(x) + 1
2

m∑
k,l=1

Lkσrl(x)(ykyl + zkl)

∆

+ 1
2

m∑
k=1

[
L0σrk(x) + Lkµr(x)

]
yk ∆3/2 + 1

2L
0µr(x) ∆2,

provided the coefficients µ and σ of (1.1) are sufficiently smooth. We will need to work
explicitly with (4.17) at some point, but all results in this subsection assume structure (4.14)
only.

Let us define the index sets

I1 = {1, . . . ,m}, I2 =
{

(k, l) ∈ I2
1 : k < l

}
and the system

A = {(U1, U2) ∈ P(I1)× P(I2) : U1 ∪ U2 6= ∅} ,

where P(I) denotes the set of all subsets of a set I. For any U1 ⊆ I1 and o ∈ {1, 2}U1 , we
write o as o = (or)r∈U1 . Below we use the convention that a product over the empty set is
always one.

Theorem 4.11. It holds

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

aj,o,U1,U2(X∆,(j−1)∆)
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj ,

(4.18)

where the coefficients aj,o,U1,U2 : Rd → R can be computed by the formula

aj,o,U1,U2(x) = E

f(X∆,T )
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

∣∣∣∣∣∣X∆,(j−1)∆ = x

 . (4.19)

Combining Theorem 4.11 with Theorem 2.1 in [44] we obtain the following result, which
provides a bound for the discretisation error and a perfect control variate for the discretised
quantity.

Proposition 4.12. Assume, that µ and σ in (1.1) are Lipschitz continuous with components
µk, σki : Rd → R, k = 1, . . . , d, i = 1, . . . ,m, being 6 times continuously differentiable with
their partial derivatives of order up to 6 having polynomial growth. Let f : Rd → R be 6
times continuously differentiable with partial derivatives of order up to 6 having polynomial
growth. Provided that (4.17) holds and that, for sufficiently large n ∈ N, the expectations
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E|X∆,j∆|2n are uniformly bounded in J and j = 0, . . . , J , we have for this “simplified second
order weak Taylor scheme”

|E [f(XT )− f(X∆,T )]| ≤ c∆2,

where the constant c does not depend on ∆. Moreover, we have Var
[
f(X∆,T )−M (2)

∆,T

]
= 0

for the control variate

M
(2)
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

aj,o,U1,U2(X∆,(j−1)∆)
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj , (4.20)

where the coefficients aj,o,U1,U2(x) are defined in (4.19).

4.2.1 Computation of coefficients

Similar to the case of first order schemes, one can derive an alternative representation for
the coefficients (4.19) making their computation more efficient and stable. The next result
contains backward recursions for the functions qj of (4.6) and for aj,o,U1,U2 of (4.19).

Proposition 4.13. We have qJ ≡ f and, for each j ∈ {1, . . . , J},

qj−1(x) = E[qj(X∆,j∆)|X∆,(j−1)∆ = x] (4.21)

= 1
2
m(m−1)

2

1
6m

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

∑
(zuv)1≤u<v≤m∈{−1,1}

m(m−1)
2

4
∑m

i=1
I(yi=0)qj(Φ∆(x, y, z)),

and, for all j ∈ {1, . . . , J}, (U1, U2) ∈ A and o ∈ {1, 2}U1 , it holds

aj,o,U1,U2(x) = 1
2
m(m−1)

2

1
6m

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

∑
(zuv)1≤u<v≤m∈{−1,1}

m(m−1)
2

(4.22)

·4
∑m

i=1
I(yi=0) ∏

r∈U1

Hor (yr)
∏

(k,l)∈U2

zkl qj(Φ∆(x, y, z)),

where y = (y1, . . . , ym) and z = (zuv) is the m×m-matrix with zvu = −zuv, u < v, zuu = −1.

4.2.2 Additional representation formula

We now introduce the following ordering on I2: for (ki, li) ∈ I2, i = 1, 2, we say

(k1, l1) ≺ (k2, l2) ⇐⇒ k1 < k2 or (k1 = k2 and l1 < l2).

Theorem 4.14. We have the following representation

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

[ 2∑
k=1

m∑
r=1

aj,k,r(X∆,(j−1)∆, (ξij)r−1
i=1 )Hk(ξrj ) (4.23)

+
∑

(k,l)∈I2

bj,k,l(X∆,(j−1)∆, ξj , (V rsj )(r,s)∈I2,(r,s)≺(k,l))V klj

]
,
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where the coefficients aj,k,r can be computed by the formula

aj,k,r(x, (yi)r−1
i=1 ) = E

[
f(X∆,T )Hk(ξrj )

∣∣X∆,(j−1)∆ = x, (ξij)r−1
i=1 = (yi)r−1

i=1
]
, (4.24)

x ∈ Rd, yi ∈ R,

for j = 1, . . . , J , k = 1, 2, r = 1, . . . ,m, and the coefficients bj,k,l are given by the formula

bj,k,l(x, y, (zrs)(r,s)∈I2,(r,s)≺(k,l)) = E
[
f(X∆,T )V klj

∣∣X∆,(j−1)∆ = x, ξj = y, (4.25)

(V rsj )(r,s)∈I2,(r,s)≺(k,l) = (zrs)(r,s)∈I2,(r,s)≺(k,l)

]
,

x ∈ Rd, y ∈ Rm, zrs ∈ R,

for j = 1, . . . , J and (k, l) ∈ I2.

Again, representations (4.18) and (4.23) suggest two perfect control variates for scheme (4.14).

Proposition 4.15. Let us fix j ∈ {1, . . . , J} and r ∈ {1, . . . ,m}. An equivalent form
of (4.24) is

aj,1,r(x, (yi)r−1
i=1 ) = 1

2
m(m−1)

2

√
3

6m−r+1

∑
(yr+1,...,ym)∈{−

√
3,0,
√

3}m−r

∑
(zkl)1≤k<l≤m∈{−1,1}

m(m−1)
2

·4
∑m

i=r+1
I(yi=0) [

qj(Φ∆(x, y, z))− qj(Φ∆(x, y, z))
]
,

aj,2,r(x, (yi)r−1
i=1 ) = 1

2
m(m−1)

2

√
2

6m−r+1

∑
(yr+1,...,ym)∈{−

√
3,0,
√

3}m−r

∑
(zkl)1≤k<l≤m∈{−1,1}

m(m−1)
2

·4
∑m

i=r+1
I(yi=0) [

qj(Φ∆(x, y, z)) + qj(Φ∆(x, y, z))− 2qj(Φ∆(x, y◦, z))
]
,

where

y = (y1, . . . , yr−1,
√

3, yr+1, . . . , ym),

y = (y1, . . . , yr−1,−
√

3, yr+1, . . . , ym),

y◦ = (y1, . . . , yr−1, 0, yr+1, . . . , ym)

and z = (zkl) is the m×m-matrix with zlk = −zkl, k < l, zkk = −1.
Let us now fix j ∈ {1, . . . , J} and (k, l) ∈ I2. Denote by ck,l the cardinality of the set

Ck,l = {(r, s) ∈ I2 : (k, l) ≺ (r, s)}. An equivalent form of (4.25) is

bj,k,l(x, y, (zrs)(r,s)∈I2,(r,s)≺(k,l)) = 1
2ck,l+1

∑
(zr′s′ )(r′,s′)∈Ck,l

[qj(Φ∆(x, y, z))− qj(Φ∆(x, y, z))] ,

where z = (zrs) and z = (zrs) are the m ×m-matrices with the elements zrs, (r, s) ∈ I2,
(r, s) 6= (k, l), zkl = 1, zkl = −1, and with zsr = −zrs, zrr = −1.

4.3 Error bounds for piecewise polynomial regression

In the previous sections we have given several representations for perfect control variates.
For the sake of clarity, we focus on second order schemes and representation (4.18) with coef-
ficients given by (4.19). As in Section 3.3, we focus on the piecewise polynomial partitioning
estimates.



Chapter 4. Optimal control variates for weak approximation schemes 63

4.3.1 Summary of the algorithm

The algorithm consists of a training and a testing phase (cf. algorithms in Chapter 3). In
the training phase, we simulate Nr independent training paths

DtrNr =
{

(Xtr,(n)
∆,j∆ )j=0,...,J : n = 1, . . . , Nr

}
and construct regression estimates âj,o,U1,U2(·,DtrNr ) for the coefficients aj,o,U1,U2(·). In the
testing phase, we simulate N independent testing paths (X(n)

∆,j∆)j=0,...,J , n = 1, . . . , N ,
independently from DtrNr , and build the Monte Carlo estimator for E[f(XT )] as

E = 1
N

N∑
n=1

(
f(X(n)

∆,T )− M̂ (2),(n)
∆,T

)
, (4.26)

where (cf. (4.20))

M̂
(2),(n)
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

âj,o,U1,U2(X(n)
∆,(j−1)∆,D

tr
Nr )

∏
r∈U1

Hor (ξ
r,(n)
j )

∏
(k,l)∈U2

V
kl,(n)
j .

(4.27)

This gives us

E[E ] = E[f(X∆,T )], (4.28)

Var[E ] = 1
N

Var
[
f(X(1)

∆,T )− M̂ (2),(1)
∆,T

]
. (4.29)

Let us fix some j ∈ {1, . . . , J}, (U1, U2) ∈ A, o ∈ {1, 2}U1 , set

ζJ,j,o,U1,U2 := f(X∆,T )
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

and remark that aj,o,U1,U2(x) = E[ζJ,j,o,U1,U2 |X∆,(j−1)∆ = x]. We assume that, for some
constant h ∈ [1,∞] and some positive constants Σ, A,Ch, ν, Bν , it holds:

(A1) supx∈Rd Var[ζJ,j,o,U1,U2 |X∆,(j−1)∆ = x] ≤ Σ <∞,

(A2) supx∈Rd |aj,o,U1,U2(x)| ≤ A
√

∆ <∞,

(A3) aj,o,U1,U2 can be extended to Rd in a (p+ 1, Ch)-smooth way w.r.t. the norm | · |h,

(A4) P(|X∆,(j−1)∆|∞ > R) ≤ BνR−ν for all R > 0.

Remark 4.16. Due to representation (4.22), the smoothness of the coefficient functions
aj,o,U1,U2 is related to the smoothness of the one step conditional distribution of X∆,j∆,
given X∆,(j−1)∆ = x, for any j = 1, . . . , J (recall the first equality in (4.21)), and to the
smoothness in x of the mapping Φ∆ from (4.14). In the case when the mapping Φ∆ is given
by (4.17), its smoothness in x is related to the smoothness of the coefficients µ and σ.

Let âj,o,U1,U2 be the piecewise polynomial partitioning estimate of aj,o,U1,U2 described in
the beginning of this section. By ãj,o,U1,U2 = TA

√
∆âj,o,U1,U2(x) we denote the truncated
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estimate (cf. (3.48)). We again emphasise that, in fact, ãj,o,U1,U2(x) = ãj,o,U1,U2(x,DtrNr ),
that is, the estimates ãj,o,U1,U2 of the functions aj,o,U1,U2 depend on the simulated training
paths.

Under (A1)–(A4), we have, due to Lemma 2.3,

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) ≤ c̃
(
Σ +A2 ∆(logNr + 1)

) (p+d
d

)
Sd

Nr
(4.30)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2 ∆BνR−ν ,

where c̃ is a universal constant and P∆,j−1 denotes the distribution of X∆,(j−1)∆.
Similar to the L2-errors in Chapter 3, the expectation in the left-hand side of (4.30)

accounts for the averaging over the randomness in DtrNr , hence,

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) (4.31)

=E
[(
ãj,o,U1,U2(X∆,(j−1)∆,DtrNr )− aj,o,U1,U2(X∆,(j−1)∆)

)2]
,

which provides an alternative form for the expression in the left-hand side of (4.30).
We now estimate the variance of the random variable f(X∆,T )− M̃ (2)

∆,T , where

M̃
(2)
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

ãj,o,U1,U2(X∆,(j−1)∆,DtrNr )
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj . (4.32)

Using the martingale transform structure in (4.20) and (4.32) together with the orthonor-
mality (in L2) of the system

∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2
V klj , we get by (4.30)

Var[f(X∆,T )− M̃ (2)
∆,T ] = Var[M (2)

∆,T − M̃
(2)
∆,T ] (4.33)

=
J∑
j=1

∑
(U1,U2)∈A

∑
o∈{1,2}U1

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1)

≤ J
(

3m2
m(m−1)

2 − 1
){

c̃
(
Σ +A2 ∆(logNr + 1)

) (p+d
d

)
Sd

Nr

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2 ∆BνR−ν

}
.

Similar to Chapter 3, the estimator E given in (4.26) with “hat” replaced by “tilde” is an
unbiased estimator of E[f(X∆,T )], and, by (4.29), the upper bound for its variance is 1

N

times the last expression in (4.33).

4.4 Complexity analysis

Below we present a complexity analysis, which explains how we can go beyond the complexity
order ε−2 with ε being the precision to be achieved.10

We will consider two variants of the Monte Carlo approach with regression-based control
variate. The first algorithm, which is abbreviated below as RCV approach (“RCV” stands

10Recall that the MLMC algorithm can at best achieve the complexity of order ε−2.
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for “Regression-based Control Variate”), is the algorithm described in detail in Section 4.3.
Here the estimates ãj,o,U1,U2 needed in (4.32) are constructed via regressions based on (4.19).
In the second algorithm, which we call recursive RCV (RRCV) approach, we construct in
the training phase regression-based estimates q̃j of the functions qj backwards in time via
regressions based on the first equality in (4.21). Given the approximations q̃j(·,DtrNr ) of
the functions qj(·), we construct in the testing phase the approximations of the values
ãj,o,U1,U2(X(n)

∆,(j−1)∆,D
tr
Nr

) on the testing paths via (4.22) with qj(·) replaced by q̃j(·,DtrNr ).
Then, again, the values of the control variate on the testing paths are computed via (4.32),
and the Monte Carlo estimator for Ef(XT ) is computed as in (4.26).

4.4.1 Complexity analysis of the RCV approach

The overall cost of the algorithm (training and testing phase) is of order

C � JSd max {Nr, N} , (4.34)

provided that we only track the parameters J,Nr, N, S that tend to infinity when ε ↘ 0.
Further, we have the following constraints

max
{

1
J4 ,

JSd

NrN
,
J

N

(
R

S

)2(p+1)
,

1
RνN

}
. ε2, (4.35)

provided that we, in addition to J,Nr, N, S, track the parameter R, which also tends to
infinity when ε ↘ 0. Note that the first term in (4.35) comes from the squared bias of the
estimator and the remaining three ones come from the variance of the estimator (see (4.33)
and (4.26)).

Theorem 4.17. We obtain the following solution

J � ε− 1
2 , S � ε−

5ν+6(p+1)
2dν+4(p+1)(2ν+d) , R � ε−

6(p+1)−d
2dν+4(p+1)(2ν+d) , Nr � N � ε−

5dν+2(p+1)(5ν+4d)
2dν+4(p+1)(2ν+d) ,

(4.36)

provided that p > d−2
2 and ν > 2d(p+1)

2(p+1)−d .
11 As a result the complexity order is given by

CRCV � JSdNr � JSdN � ε−
11dν+2(p+1)(7ν+8d)
2dν+4(p+1)(2ν+d) . (4.37)

4.4.2 Complexity of the RRCV approach

In the training phase, the cost of approximating all functions qj is of order NrJSd. In the
testing phase, the coefficients ãj,o,U1,U2 are computed via direct summation in (4.22) (with
qj replaced by their approximations q̃j) at a cost of order NJSd, and, finally, the control
variate is computed via (4.32) on all testing paths at a cost of order NJ . Therefore, the
overall cost is of order JSd max {Nr, N}, which is the same as for the RCV approach. (In
the latter formula we ignore the cost constituents of smaller orders.)

11Compare with footnote 3.20 on page 32.
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We now establish the constraints that are pertinent to the RRCV approach. The re-
gressions are now performed for the functions qj . Pertinent assumptions are in the spirit
of (A1)–(A4) with different bounds in (A1) and (A2): the conditional variance in such
regressions over one time step is typically of order ∆, that is

sup
x∈Rd

Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
= O(∆)

for j ∈ {1, . . . , J}. Hence we require the bound Σ∆ in the analogue of (A1); while in the
analogue of (A2) and for the truncated estimate we require only the constant bound A, that
is

sup
x∈Rd

|qj−1(x)| = O(1), j ∈ {1, . . . , J} .

As for the regression error, instead of (4.30) we get

E‖q̃j − qj‖2L2(P∆,j) ≤ c̃
(
Σ∆ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr
(4.38)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2BνR

−ν ,

where c̃ is a universal constant.
The following theorem shows a connection between the above assumptions (A1) and (A2)

and assumptions on the functions f, µ, σ for the second order weak scheme.

Theorem 4.18. (i) Suppose that the function f is bounded. Then we obtain the bound-
edness of Var[ζJ,j,o,U1,U2 |X∆,(j−1)∆ = x] and qj−1(x) for all x ∈ Rd and j ∈ {1, . . . , J}.
In particular, assumption (A1) for the RCV approach and assumption (A2) for the RRCV
approach are satisfied.

(ii) Suppose that

a) f is continuously differentiable with bounded partial derivatives,

b) all functions µk, σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, are bounded and three times
continuously differentiable with bounded partial derivatives up to order 3.

Then we get that aj,o,U1,U2(x) is of order
√

∆ and Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
is of

order ∆. In particular, assumption (A2) for the RCV approach and assumption (A1) for
the RRCV approach are satisfied.

Remark 4.19. (i) For the weak Euler scheme with Φ∆ given by (3.5) we can derive similar
results as in Theorem 4.18. More precisely, it is sufficient to have the following assumptions
(cf. Theorem 3.17):

c) f is bounded and continuously differentiable with bounded partial derivatives,

d) all functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, are bounded and continuously differ-
entiable with bounded partial derivatives,

e) all functions µk, k ∈ {1, . . . , d}, are continuously differentiable with bounded partial
derivatives.
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That is, we require less smoothness on σki and µk. In addition, we do not need to have
bounded functions µk.

(ii) As a generalisation of Theorem 4.18, it is natural to expect that assumption (A3) (see
page 63) is satisfied with a sufficiently large constant Ch > 0 if all the functions µk, σki are
bounded and all the functions f, µk, σki are (p + 4) times continuously differentiable with
bounded partial derivatives up to order p+ 4. In case of the weak Euler scheme, we expect
to require boundedness only on σki and smoothness as well as bounded partial derivatives
only up to order p+ 2 (cf. Remark 3.18).

Regarding the RRCV approach, it turns out that

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) ≤ E‖q̃j − qj‖2L2(P∆,j), (4.39)

for all j, o, U1 and U2. To prove (4.39), we use (4.31) and the similar formula involving
qj and q̃j . As in (4.31), we consider a testing path (X∆,j∆)j=0,...,J which is independent of
DtrNr . Since ãj,o,U1,U2(·,DtrNr ) is given by (4.22) with qj(·) replaced by q̃j(·,DtrNr ), it holds

ãj,o,U1,U2(X∆,(j−1)∆,DtrNr ) = E

 q̃j(X∆,j∆,DtrNr )
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

∣∣∣∣∣∣X∆,(j−1)∆,DtrNr

 .
Furthermore, we have

aj,o,U1,U2(X∆,(j−1)∆) = E

qj(X∆,j∆)
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

∣∣∣∣∣∣X∆,(j−1)∆,DtrNr

 .
The latter formula remains true also without conditioning on DtrNr , but this (seemingly
superfluous) conditioning is helpful in the following calculation:(

ãj,o,U1,U2(X∆,(j−1)∆,DtrNr )− aj,o,U1,U2(X∆,(j−1)∆)
)2 (4.40)

≤E
[(
q̃j(X∆,j∆,DtrNr )− qj(X∆,j∆)

)2∣∣∣X∆,(j−1)∆,DtrNr
]

· E


∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

2
∣∣∣∣∣∣∣X∆,(j−1)∆,DtrNr


=E

[(
q̃j(X∆,j∆,DtrNr )− qj(X∆,j∆)

)2∣∣∣X∆,(j−1)∆,DtrNr
]
.

We arrive at (4.39) by taking expectations in (4.40) and using (4.31) together with the
similar formula for qj and q̃j . Finally, we get an upper bound for the variance in the RRCV
approach by the same calculation as in (4.33) using (4.38) and (4.39) (instead of (4.30)),
and the resulting upper bound is the same as in (4.33) except for that A2∆ is replaced by
A2, while Σ is replaced by Σ∆. Thus, in the case of the RRCV approach, our constraints
are

max
{

1
J4 ,

JSd logNr
NrN

,
J

N

(
R

S

)2(p+1)
,

J

RνN

}
. ε2, (4.41)

where we again only track the parameters J,Nr, N, S,R.
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Theorem 4.20. We obtain the following solution

J � ε− 1
2 , S � ε−

5ν+10(p+1)
2dν+4(p+1)(2ν+d) , R � ε−

5(p+1)
2dν+4(p+1)(2ν+d) ,

Nr � N � ε−
5dν+10(p+1)(ν+d)
2dν+4(p+1)(2ν+d)

√
|log (ε)|,

provided that p > d−2
2 and ν > 2d(p+1)

2(p+1)−d . Thus, we have for the complexity

CRRCV � JSdNr � JSdN � ε−
11dν+2(p+1)(7ν+11d)

2dν+4(p+1)(2ν+d)
√
|log (ε)|. (4.42)

4.4.3 Discussion

For the sake of comparison with the SMC and MLMC approaches, we recall at this point
that their complexities are

CSMC � ε−2.5 and CMLMC � ε−2

at best (we are considering the second order scheme). Complexity estimates (4.37) and (4.42)
show that one can go beyond the complexity order ε−2, provided that

p >
7d− 2

2 , ν >
8d(p+ 1)

2(p+ 1)− 7d

in case of the RCV approach and

p >
7d− 2

2 , ν >
14d(p+ 1)

2(p+ 1)− 7d

in case of the RRCV approach. Both in (4.37) and (4.42) the power of ε converges to −1.75
as p, ν → ∞ (the log-term is ignored). Notice that, while d and m are fixed, p and ν are
free parameters in our algorithms, which can be chosen large, provided the smoothness in
µ, σ and f allows that. Therefore, whenever it is possible to take arbitrarily large p and ν,
the complexity of our scheme can be reduced to ε−1.75−δ for arbitrarily small δ > 0.

Let us remark that we obtain such a complexity for piecewise polynomial regression
with the second order weak scheme. A natural question is to perform a similar complexity
analysis also for the weak Euler scheme. We then get the complexities (cf. complexity (3.56)
of the series approach in Chapter 3)

O
(
ε−

7dν+2(p+1)(4d+5ν)
dν+2(p+1)(d+2ν)

)
for the RCV approach and

O
(
ε−

7dν+2(p+1)(7d+5ν)
dν+2(p+1)(d+2ν)

√
|log(ε)|

)
(4.43)

for the RRCV approach, which tend to order ε−2.5 in the limit as p, ν →∞ (provided that
we ignore the log-term for the RRCV approach). That is, both the RCV and the RRCV
approaches with the weak Euler scheme cannot outperform the MLMC approach as well
as the SMC approach with the second order scheme (but they still outperform the SMC
approach with the Euler or the weak Euler scheme because the complexity of the latter
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is ε−3). Still, both the RCV and the RRCV approaches might be useful also with the weak
Euler scheme (and also the series approach with the Euler scheme), provided we choose basis
functions other than those in piecewise polynomial regression (recall the last paragraph in
Section 3.2).

Obviously, the complexity estimate (4.37) of the RCV approach gives us a better order
compared to the one of the RRCV approach (4.42) (due to the factor J which arises in
the last expression of the maximum term (4.41) but not in (4.35)). However, the larger is
the parameter ν, the closer are both complexities to each other (provided that we ignore
the log-term). As we mentioned in Sections 4.1.1 and 4.2.1, from the computational point
of view it is preferable to consider the RRCV approach rather than the RCV one, since
we perform regressions over only one time step in RRCV. In addition, in case of the RCV
approach, there are destabilising factors

∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2
V klj in the estimation of

aj,o,U1,U2 , which are independent of X∆,(j−1)∆ and have zero expectation and thus may lead
to poor regression results. Regarding the RRCV approach, such destabilising factors are not
present in the regression for qj .

4.5 Numerical results

In this section, we consider weak schemes of second order and compare the numerical perfor-
mance of the SMC, MLMC, RCV and RRCV approaches. As in Section 3.5, we implemented
a global regression. In what follows it is convenient to have notations for the following con-
stant cm = 3m2

m(m−1)
2 . Regarding the choice of basis functions, we use in both RCV and

RRCV approaches the same polynomials ψ(x) =
∏d
i=1 x

li
i , where l1, . . . ld ∈ {0, 1, . . . , p} and∑d

l=1 li ≤ p. In addition to the polynomials, we consider the function f as a basis function.
Hence, we have again overall c̃p,d basis functions in each regression, where c̃p,d := cp,d + 1
(recall that cp,d =

(
p+d
d

)
). As for the MLMC approach, we use the same simulation results

as in Section 3.5.

4.5.1 One-dimensional example

Here d = m = 1. We consider the example from Subsection 3.5.1. Again, we choose p = 3
(that is, 5 basis functions) and, for each ε = 2−i, i ∈ {2, 3, 4, 5, 6}, we set the parameters
J , Nr and N as follows (compare with the formulas in Section 4.4 for the “limiting” case
ν →∞ and ignore the log-terms for the RRCV approach):

J =
⌈
ε−0.5⌉ , Nr = cNr · dε−1.3235e, cNr =

{
64 RRCV
32 RCV

, N = 128 · dε−1.3235e.

Regarding the SMC approach, the number of paths is setN = 32·ε−2. The factors 32, 64 and
128 are here for stability purposes. We use different constants for the training and testing
paths due the fact that, if we also track the constants c̃p,d and cm, we will have the cost
of order Jc̃p,d(cm− 1) max {Nr c̃p,d, N} for the RCV approach and Jc̃p,d max {Nr c̃p,d, Ncm}
for the RRCV approach (cf. (4.34)). Since we get from Theorems 4.17 and 4.20 that both
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components in the maximum term are of the same order in the optimal solution, we choose
the constants such that Nr c̃p,d ≈ N in case of the RCV approach and Nr c̃p,d ≈ Ncm

in case of the RRCV approach. Next we compute the numerical RMSE by means of 100
independent repetitions of the algorithm. As can be seen from the first plot in Figure 4.1, the
estimated numerical complexity is about RMSE−1.41 for the RRCV approach, RMSE−1.66

for the RCV approach, RMSE−1.99 for the MLMC approach and RMSE−2.53 for the SMC
approach, which we get again by regressing the log-time vs. log-RMSE. Thus, the complexity
reduction works best with the RRCV approach.
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Figure 4.1. Numerical complexities of the RRCV, RCV, SMC and MLMC approaches in
the one- and five-dimensional case.

4.5.2 Five-dimensional example

Here d = m = 5. We consider the example from Subsection 3.5.2. Note that we do not need
to consider random variables V klj in the second order weak scheme, since Lkσrl(x) = 0 for
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k 6= l (see (4.17) and (3.59)). This gives us a smaller constant c̃m := 3m = 243 compared
to cm = 248832 and hence a smaller number of terms for the control variate (the factor
2
m(m−1)

2 ≡ 1024 is no longer present). We again choose p = 3 (this now results in 57 basis
functions), consider the same values of ε as above (and, in addition, consider the value
ε = 2−7 for the SMC approach to obtain a similar computing time as for the RCV, RRCV
and MLMC approaches). Moreover, we set

J =
⌈
ε−0.5⌉ , Nr = cNr · dε−1.5476e, cNr =

{
512 RRCV
32 RCV

,

N = cN · dε−1.5476e, cN =
{

128 RRCV
1024 RCV

(similar to the previous example we consider the limiting case ν →∞, ignore the log-terms
for the RRCV approach and consider the relations Nr c̃p,d ≈ N in case of the RCV approach
and Nr c̃p,d ≈ Nc̃m in case of the RRCV approach). The number of paths for the SMC
approach is set N = 512 · ε−2. Since the estimated variance of f(X∆,T ) is much higher than
in the previous example, we use a higher constant here for the SMC approach. This is due
to the fact that we get N & Var [f(X∆,T )] ε−2 from the condition Var

[
1
N

∑N
n=1 f(X(n)

∆,T )
]

=
Var[f(X∆,T )]

N . ε2. As in the one-dimensional case, we compute the numerical RMSE by
means of 100 independent repetitions of the algorithm. Our empirical findings are illustrated
in the second plot in Figure 4.1. We observe the numerical complexities RMSE−1.70 for the
RRCV approach, RMSE−1.80 for the RCV approach, RMSE−2.01 for the MLMC approach
and RMSE−2.67 for the SMC approach. Even though the complexity order of the RCV
approach is better than those of the MLMC and SMC approaches, the RCV approach is
practically outperformed by the other approaches (see Figure 4.1; the multiplicative constant
influencing the computing time is obviously very big). However, the RRCV approach remains
numerically the best one also in this five-dimensional example.

4.6 Proofs

Proof of Theorem 4.1

The proof is similar to the one of Theorem 4.11.

Proof of Proposition 4.5

Let G0 be the trivial σ-field and Gj = σ(ξ1, . . . , ξj), j = 1, . . . , J . It follows from (4.1) that
the process (X∆,j∆)Jj=0 is Markov with respect to (Gj)Jj=0. By the Markov property, we
have

qj(X∆,j∆) ≡ E[f(X∆,T )|X∆,j∆] = E[f(X∆,T )|Gj ],
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hence, by the tower property of conditional expectation,

qj−1(x) = E[qj(Φ∆(X∆,(j−1)∆, ξj))|X∆,(j−1)∆ = x] = 1
2m

∑
y=(y1,...,ym)∈{−1,1}m

qj(Φ∆(x, y)),

where in the last equality we use independence between X∆,(j−1)∆ and ξj . This proves (4.7).
We now apply intermediate conditioning with respect to Gj in (4.3) and arrive at

aj,r,s(x) = E

[
qj(Φ∆(X∆,(j−1)∆, ξj))

r∏
i=1

ξsij

∣∣∣∣∣ X∆,(j−1)∆ = x

]
,

which implies (4.8) due to the independence between X∆,(j−1)∆ and ξj .

Proofs of Theorems 4.7 and 4.14

The proofs are similar to the one of Theorem 3.4.

Proof of Proposition 4.9

As in the proof of Proposition 4.5, G0 denotes the trivial σ-field and Gj = σ(ξ1, . . . , ξj),
j = 1, . . . , J . By conditioning with respect to Gj in (4.10), we have

aj,r(x, (yi)r−1
i=1 ) = E

[
qj(X∆,j∆)ξrj

∣∣ X∆,(j−1)∆ = x, (ξij)r−1
i=1 = (yi)r−1

i=1
]

= E
[
qj

(
Φ∆

(
x,
(
y1, . . . , yr−1, ξ

r
j , ξ

r+1
j , . . . , ξmj

)>))
ξrj

]
,

which implies (4.11).

Proof of Theorem 4.11

Let G0 denote trivial σ-field, and, for j = 1, . . . , J , define the σ-field Gj = σ(ξ1, V1, . . . , ξj , Vj).
Since each of the random variables ξrj , j = 1, . . . , J , r ∈ I1 can take 3 different values,
each of the random variables V klj , (k, l) ∈ I2, can take 2 different values and |I1| = m,
|I2| = m(m−1)

2 , L2(GJ) is a (3m2
m(m−1)

2 )J -dimensional vector space. A simple calculation
reveals that, for any fixed j = 1, . . . , J , the system {

∏
r∈I1

Hor
j
(ξrj )

∏
(k,l)∈I2

(V klj )s
kl
j : orj ∈

{0, 1, 2} , sklj ∈ {0, 1}} is orthonormal in L2(GJ). Due to independence of ξ1, V1 . . . , ξJ , VJ ,
the system { J∏

j=1

∏
r∈I1

Hor
j
(ξrj )

∏
(k,l)∈I2

(V klj )s
kl
j : orj ∈ {0, 1, 2} , sklj ∈ {0, 1}

}
(4.44)

is orthonormal in L2(GJ), and therefore, linear independent. The cardinality of system (4.44)
is (3m2

m(m−1)
2 )J , i.e. equals the dimension of L2(GJ). Hence, linear independent sys-

tem (4.44) is an orthonormal basis in L2(GJ). We have E|f(X∆,T )|2 < ∞ because X∆,T

takes finitely many values. Therefore, f(X∆,T ) belongs to L2(GJ) and can be written

f(X∆,T ) =
∑

ō∈{0,1,2}mJ

∑
s̄∈{0,1}

m(m−1)
2 J

cōs̄

J∏
j=1

∏
r∈I1

Hor
j
(ξrj )

∏
(k,l)∈I2

(V klj )s
kl
j ,
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where ō = (o1
1, . . . , o

1
J , . . . , o

m
1 , . . . , o

m
J ), s̄ = (s12

1 , . . . , s
12
J , s

13
1 , . . . , s

13
J , . . . , s

(m−1)m
1 , . . . , s

(m−1)m
J ).

Note that cōs̄ = E[f(X∆,T )
∏J
j=1

∏
r∈I1

Hor
j
(ξrj )

∏
(k,l)∈I2

(V klj )s
kl
j ], in particular, c0̄0̄ =

Ef(X∆,T ). Rearranging the terms in the expression for f(X∆,T ) we rewrite it as

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

∑
(U1,U2)∈A

∑
p∈{1,2}U1

Aj,p,U1,U2

∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj (4.45)

with Gj−1-measurable random variables Aj,p,U1,U2 . Let us now multiply both sides of the
last equality by

∏
r∈U0

1
Hp0

r
(ξrj0)

∏
(k,l)∈U0

2
V klj0 , with some j0 ∈ {1, . . . , J}, (U0

1 , U
0
2 ) ∈ A,

p0 ∈ {1, 2}U
0
1 and calculate conditional expectations of the resulting expressions given Gj0−1.

Notice that, with jh < j0 and jg > j0, we have

E

 ∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 |Gj0−1

 = E

 ∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0

 = 0,

E

Ajh,p,U1,U2

∏
r∈U1

Hpr (ξrjh)
∏

(k,l)∈U2

V kljh
∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 |Gj0−1


=Ajh,p,U1,U2

∏
r∈U1

Hpr (ξrjh)
∏

(k,l)∈U2

V kljh · E

 ∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 |Gj0−1

 = 0,

E

Ajg,p,U1,U2

∏
r∈U1

Hpr (ξrjg )
∏

(k,l)∈U2

V kljg
∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 |Gj0−1


=E

E
Ajg,p,U1,U2

∏
r∈U1

Hpr (ξrjg )
∏

(k,l)∈U2

V kljg
∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 | Gjg−1

 | Gj0−1

 = 0,

E

Aj0,p,U1,U2

∏
r∈U1

Hpr (ξrj0)
∏

(k,l)∈U2

V klj0
∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0 | Gj0−1


=Aj0,p,U1,U2E

 ∏
r∈U1

Hpr (ξrj0)
∏

(k,l)∈U2

V klj0
∏
r∈U0

1

Hp0
r
(ξrj0)

∏
(k,l)∈U0

2

V klj0


=Aj0,p,U1,U2δp,p0δU1,U0

1
δU2,U0

2
,

where δ·,· is the Kronecker delta. Thus, the coefficients Aj,p,U1,U2 in (4.45) are given by

Aj,p,U1,U2 = E[f(X∆,T )
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj |Gj−1]. (4.46)

Let us now prove that

E[f(X∆,T )
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj |Gj−1] = E[f(X∆,T )
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj |X∆,(j−1)∆].

(4.47)

In what follows we use the functions qj from (4.6) and notice that, by the Markov property
of (X∆,j∆)j=0,...,J with respect to (Gj), which is due to (4.14), we also have

qj(X∆,j∆) = E[f(X∆,T )|Gj ]. (4.48)
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Let us set

h(X∆,(j−1)∆, ξj , Vj) =
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj qj(X∆,j∆) (4.49)

and notice that, due to (4.14), this is indeed a function ofX∆,(j−1)∆, ξj and Vj only. Further,
let us set

g (x) = E [h (x, ξj , Vj)] . (4.50)

Using the tower property of conditional expectations together with (4.48), (4.49) and (4.50),
we get

E[f(X∆,T )
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj |Gj−1] = E[
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj E[f(X∆,T )|Gj ] |Gj−1]

= E[h(X∆,(j−1)∆, ξj , Vj)|Gj−1] = g(X∆,(j−1)∆),
(4.51)

where the last equality is due to the facts that X∆,(j−1)∆ is Gj−1-measurable and the pair
(ξj , Vj) is independent of Gj−1. Moreover, applying (4.51), we also obtain

E[f(X∆,T )
∏
r∈U1

Hpr (ξrj )
∏

(k,l)∈U2

V klj |X∆,(j−1)∆] = E[g(X∆,(j−1)∆)|X∆,(j−1)∆] = g(X∆,(j−1)∆).

(4.52)

Comparing (4.51) and (4.52), we arrive at (4.47). Together with (4.46) and (4.45), this
proves (4.18) and (4.19).

Proof of Proposition 4.13

The proof is similar to the one of Proposition 4.5.

Proof of Proposition 4.15

The proof is similar to the one of Proposition 4.9.

Proofs of Theorems 4.17 and 4.20

The proofs are similar to the one of Theorem 3.20.

Proof of Theorem 4.18

(i) The boundedness of

qj−1(x) = E
[
f(X∆,T ) | X∆,(j−1)∆ = x

]
and

Var
[
ζJ,j,o,U1,U2 | X∆,(j−1)∆ = x

]
= Var

f(X∆,T )
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj | X∆,(j−1)∆ = x


follows straightforwardly, when f is bounded.
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(ii) Let us first focus on assumption (A2) for the RCV approach and denote

pm(y) := 4
∑m

i=1
I(yi=0)

2
m(m−1)

2 6m
,

go,U1,U2(y, z) :=
∏
r∈U1

Hor (yr)
∏

(k,l)∈U2

zkl.

Then we have for aj,o,U1,U2 (see (4.22))

aj,o,U1,U2(x) =
∑

(y1,...,ym)∈{−
√

3,0,
√

3}m

(zuv)1≤u<v≤m∈{−1,1}
m(m−1)

2

pm(y)go,U1,U2(y, z)qj(Φ∆(x, y, z)), (4.53)

Let us denote

Φ̃∆(x, y, z) := Φ∆(x, y, z)− µ∆(x),

µ∆(x) := x+ µ(x)∆ + 1
2L

0µ(x) ∆2,

where L0 is defined in (4.16). Consider the Taylor expansion of the function qj(Φ∆(x, y, z))
around µ∆(x), that is

qj(Φ∆(x, y, z)) = qj(µ∆(x)) +
d∑
k=1

Φ̃k∆(x, y, z)
1∫

0

∂

∂xk
qj(µ∆(x) + tΦ̃∆(x, y, z)) dt. (4.54)

Inserting (4.54) into (4.53) gives us

aj,o,U1,U2(x) (4.55)

=
∑

(y1,...,ym)∈{−
√

3,0,
√

3}m

(zuv)1≤u<v≤m∈{−1,1}
m(m−1)

2

pm(y)go,U1,U2(y, z)
d∑
k=1

Φ̃k∆(x, y, z)
1∫

0

∂

∂xk
qj(µ∆(x) + tΦ̃∆(x, y, z)) dt,

due to

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

(zuv)1≤u<v≤m∈{−1,1}
m(m−1)

2

pm(y)go,U1,U2(y, z) = E

 ∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

 = 0.

Obviously, Φ̃k∆(x, y, z) is of order
√

∆ under the assumptions that (cf. (4.17))

f) all functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, are bounded and twice continuously
differentiable with bounded partial derivatives up to order 2,

g) all functions µk, k ∈ {1, . . . , d}, are bounded and continuously differentiable with
bounded partial derivatives.

Note that the assumptions a) and b) in Theorem 4.18 contain the above assumptions f)
and g). Next we apply Theorem 2.5 and get that qj is continuously differentiable with
bounded partial derivatives for all j ∈ {1, . . . , J}, when all functions Φk∆, k ∈ {1, . . . , d}, are
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continuously differentiable with bounded partial derivatives. It turns out that this conditions
on Φk∆ are satisfied under assumptions a) and b) (cf. (4.17)). This gives us that aj,o,U1,U2 is
of order

√
∆ for all j, o, U1, U2.

Let us proceed with assumption (A1) for the RRCV approach. We have (cf. (4.21))

Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
= E

[
q2
j (X∆,j∆) | X∆,(j−1)∆ = x

]
−
(
E
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

])2
=

∑
(y1,...,ym)∈{−

√
3,0,
√

3}m

(zuv)1≤u<v≤m∈{−1,1}
m(m−1)

2

pm(y)q2
j (Φ∆(x, y, z))

−


∑

(y1,...,ym)∈{−
√

3,0,
√

3}m

(zuv)1≤u<v≤m∈{−1,1}
m(m−1)

2

pm(y)qj(Φ∆(x, y, z))


2

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)(1− pm(y))q2
j (Φ∆(x, y, z))

−
∑

y,ỹ∈{−
√

3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ)qj(Φ∆(x, y, z))qj(Φ∆(x, ỹ, z̃)). (4.56)

In (4.54) we have derived that qj(Φ∆(x, y, z)) has the form

qj(Φ∆(x, y, z)) = µ∆(x) +
√

∆h∆(x, y, z),

where h∆(x, y, z) is O(1) for all y ∈ {−
√

3, 0,
√

3}m, z ∈ {−1, 1}
m(m−1)

2 under the assump-
tions a) and b). Hence, we get

Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
=

∑
y∈{−

√
3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)(1− pm(y))(µ∆(x) +
√

∆h∆(x, y, z))2

−
∑

y,ỹ∈{−
√

3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ)(µ∆(x) +
√

∆h∆(x, y, z))(µ∆(x) +
√

∆h∆(x, ỹ, z̃)),

such that it is sufficient to show∑
y∈{−

√
3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

2pm(y)(1− pm(y))h∆(x, y, z)

=
∑

y,ỹ∈{−
√

3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ)(h∆(x, y, z) + h∆(x, ỹ, z̃))
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to obtain Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
= O(∆). Notice that it clearly holds∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)(1− pm(y))−
∑

y,ỹ∈{−
√

3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ) = 0.

(For instance, replace qj(x) in (4.56) by 1 which gives us zero variance.) We have∑
y,ỹ∈{−

√
3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ)h∆(x, y, z)

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)h∆(x, y, z)
∑

ỹ∈{−
√

3,0,
√

3}m

z̃∈{−1,1}
m(m−1)

2
ỹ 6=y,z̃ 6=z

pm(ỹ)

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)h∆(x, y, z)
(
1− P

(
ξj = y, (V ilj )1≤i<l≤m = (zil)1≤i<l≤m

))

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)h∆(x, y, z)(1− pm(y)).

Analogously, we have∑
y,ỹ∈{−

√
3,0,
√

3}m

z,z̃∈{−1,1}
m(m−1)

2
y 6=ỹ,z 6=z̃

pm(y)pm(ỹ)h∆(x, ỹ, z̃) =
∑

ỹ∈{−
√

3,0,
√

3}m

z̃∈{−1,1}
m(m−1)

2

pm(ỹ)h∆(x, ỹ, z̃)(1− pm(ỹ))

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)h∆(x, y, z)(1− pm(y)),

which completes the proof.
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Chapter 5

Stratified regression for weak
approximation schemes

This chapter is mainly based on the paper [10].
Below, we further enhance the performance of the RRCV algorithm by combining it

with stratification (see e.g. [21]). The idea of the resulting stratified RCV (SRCV) algorithm
is based on partitioning of the state space into a collection of sets A1, . . . ,AK and then
performing conditional regressions separately on each set. It turns out that by choosing
A1, . . . ,AK to be the level sets of the discrete-valued random variables used in the weak
approximation scheme, we can achieve a further variance reduction effect as compared to
the original approach in Chapter 4.

5.1 SRCV approach and its differences with RCV and
RRCV ones

In Subsection 5.1.1 we consider weak schemes of order 1. In this setting we introduce the
SRCV algorithm and explain how it compares to the RRCV one. In Subsection 5.1.2 we
briefly discuss the case of weak schemes of order 2.

5.1.1 SRCV algorithm for first order schemes

First of all, we derive an equivalent reformulation of Theorem 4.1.

Theorem 5.1. It holds

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

∑
k∈{0,1}m\{0m}

aj,k(X∆,(j−1)∆)
m∏
i=1

(ξij)ki , (5.1)

where k = (k1, . . . , km). Moreover, the coefficients aj,k : Rd → R can be computed by the



80 5.1. SRCV approach and its differences with RCV and RRCV ones

formula

aj,k(x) = E

[
f(X∆,T )

m∏
i=1

(ξij)ki
∣∣∣∣∣ X∆,(j−1)∆ = x

]
(5.2)

for all j and k as in (5.1).

Hence, the optimal control M (1)
∆,T , introduced in Chapter 4, can also be representated

through the functions aj,k, that is

M
(1)
∆,T =

J∑
j=1

∑
k∈{0,1}m\{0m}

aj,k(X∆,(j−1)∆)
m∏
i=1

(ξij)ki . (5.3)

The next result is similar to Proposition 4.5.

Proposition 5.2. We have qJ ≡ f and, for each j ∈ {2, . . . , J},

qj−1(x) =E
[
qj(X∆,j∆)|X∆,(j−1)∆ = x

]
= 1

2m
∑

y∈{−1,1}m
qj(Φ∆(x, y)). (5.4)

Moreover, for all j ∈ {1, . . . , J} and k = (ki) ∈ {0, 1}m \{0m}, the functions aj,k(x) in (5.2)
can be expressed in terms of the functions qj(x) as follows:

aj,k(x) = 1
2m

∑
y=(y1,...,ym)∈{−1,1}m

[
m∏
i=1

ykii

]
qj(Φ∆(x, y)). (5.5)

The first equality in (5.4) shows that we can recursively approximate the functions qj(x)
via regressions over one time step only (the regression for approximating aj,k in case of the
RCV approach is performed over J − j + 1 time steps). This gives the RRCV algorithm
in Chapter 4: first compute regression-based approximations q̃j(x) of the functions qj(x)
(via regressions over one time step based on the first equality in (5.4)), then obtain approx-
imations ãj,k(x) of the functions aj,k(x) via (5.5) with qj being replaced by q̃j , and, finally,
construct the control variate M̃ (1)

∆,T using (5.3) with aj,k(x) being replaced by ãj,k(x).
To introduce the SRCV algorithm, we first define functions hj,y, for all j ∈ {1, . . . , J}

and y ∈ {−1, 1}m, by the formula

hj,y(x) := qj(Φ∆(x, y)) = E[qj(X∆,j∆)|X∆,(j−1)∆ = x, ξj = y] (5.6)

(the second equality is straightforward) and observe that the knowledge of these functions
for some j and all y provides us with the functions qj−1 and aj,k, k ∈ {0, 1}m \ {0m}, via
the second equality in (5.4) and via (5.5). Inspired by this observation together with the
second equality in (5.6), we arrive at the idea of the stratified regression: approximate each
function hj,y(x) via its projection on a given set of basis functions ψ1(x), . . . , ψQ(x). In
detail, the SRCV algorithm consists a training and a testing phase.

Training phase of the SRCV algorithm: First, simulate a sufficient number Nr of (inde-
pendent) training paths of the discretised diffusion. Let us denote the set of these Nr paths
by (cf. (3.47))

DtrNr =
{

(Xtr,(n)
∆,j∆ )j=0,...,J : n = 1, . . . , Nr

}
. (5.7)
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Next, proceed as follows.
Step 1. Set j = J , q̃j = f . Compute the values q̃j(Xtr,(n)

∆,j∆ ) on all training paths
(n = 1, . . . , Nr).

Step 2. For all y ∈ {−1, 1}m, construct regression-based approximations h̃j,y of the
functions hj,y (via regressions over one time step based on the second equality in (5.6) with
qj being replaced by q̃j). In fact, only training paths with ξj = y are used to construct h̃j,y.

Step 3. Using the approximations h̃j,y for all y ∈ {−1, 1}m, via (5.5) compute the
coefficients β1, . . . , βQ in the representations

∑Q
i=1 βiψi for the approximations ãj,k, k ∈

{0, 1}m\{0m}. Note that the cost of computing each ãj,k(x) at any point x will be of orderQ.
Furthermore, again using h̃j,y for all y ∈ {−1, 1}m, compute the values q̃j−1(Xtr,(n)

∆,(j−1)∆) on
all training paths (n = 1, . . . , Nr) via the second equality in (5.4).

Step 4. If j > 1, set j = j − 1 and go to step 2.
Thus, after the training phase is completed, we have the approximations ãj,k(x) of aj,k(x)

for all j ∈ {1, . . . , J} and k ∈ {0, 1}m \ {0m}. Let us emphasise that, in fact,

ãj,k(x) = ãj,k(x,DtrNr ), (5.8)

that is, our approximations are random and depend on the simulated training paths.
Testing phase of the SRCV algorithm: Simulate N testing paths (X(n)

∆,j∆)j=0,...,J , n =
1, . . . , N , that are independent from each other and from the training paths and construct
the Monte Carlo estimate

1
N

N∑
n=1

[
f
(
X

(n)
∆,T

)
− M̃ (1),(n)

∆,T

]
, (5.9)

where M̃ (1),(n)
∆,T is given by (cf. (5.3)).

M̃
(1),(n)
∆,T :=

J∑
j=1

∑
k∈{0,1}m\{0m}

ãj,k(X(n)
∆,(j−1)∆,D

tr
Nr )

m∏
i=1

(ξi,(n)
j )ki . (5.10)

Remark 5.3. Let us briefly discuss the main differences between the RRCV and SRCV
algorithms. In the training phase of the RRCV algorithm the functions qj , j ∈ {1, . . . , J},
are approximated recursively via regressions using the first equality in (5.4) (the second
equality in (5.4) is not used at all), and the approximations are linear combinations of Q
basis functions ψ1, . . . , ψQ. This allows to get the control variate in the testing phase via
the formula like (5.10) with the coefficients ãj,k constructed on the testing paths via (5.5)
with approximated in the training phase functions qj . On the contrary, in the training
phase of the SRCV algorithm regressions are based on the second equality in (5.6), and
we get approximations for all functions hj,y (≡ qj(Φ∆(·, y))), j ∈ {1, . . . , J}, y ∈ {−1, 1}m,
where the approximations h̃j,y are again linear combinations of Q basis functions ψ1, . . . , ψQ

(notice that what we now need from (5.4) is the second equality but not the first one).
Having the approximations h̃j,y, we get the approximations of the functions ãj,k via (5.5)
as linear combinations of ψ1, . . . , ψQ already in the training phase, while the testing phase
is completely described by (5.9)–(5.10). Let us compare the computational costs of the
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RRCV and SRCV algorithms. For the sake of simplicity we restrict our attention to the
case of “large” parameters12 J , Q, Nr and N as well as at the “big” constant13 cm := 2m

ignoring other constants such as e.g. d or m. As for the RRCV algorithm, J regressions
with Nr training paths and Q basis functions result in the cost of order JQ2Nr, while the
cost of the testing phase is of order14 JQcmN , which results in the overall cost of order
JQmax{QNr, cmN}. Regarding the SRCV algorithm, we perform Jcm regressions with
Q basis functions in the training phase, but have in average NrP(ξj = y) (≡ Nr/cm),
y ∈ {−1, 1}m, training paths in each regression, which again results in the cost of order
JQ2Nr, while in the testing phase we now have the cost of order JQ(cm − 1)N . This
gives us the overall cost of order JQmax{QNr, (cm − 1)N}, which is the same order as for
the RRCV algorithm. Finally, regarding the quality of the regressions in the RRCV and
SRCV approaches, it is to expect that the regressions in the SRCV algorithm, which are
based on the second equality in (5.6), achieve better approximations than the regressions in
the RRCV algorithm, provided there are enough training paths and the basis functions are
chosen properly, because we have

Var[qj(X∆,j∆)|X∆,(j−1)∆ = x, ξj = y] = Var[qj(Φ∆(x, y))] = 0. (5.11)

The latter property implies the absence of the statistical error while approximating hj,y.
This is well illustrated by the plots in Figure 5.2 on page 91 (the plots are performed for
the example of Subsection 5.3.1).

5.1.2 SRCV algorithm for second order schemes

Let us recall the index set

I2 =
{

(k, l) ∈ {1, . . . ,m}2 : k < l
}

and use the notation

U =
{

(o, r) ∈ {0, 1, 2}m × {0, 1}I2 : oi 6= 0 for some i or rkl 6= 0 for some k, l
}
,

where oi, i = 1, . . . ,m (resp. rkl, (k, l) ∈ I2), denote the coordinates of o (resp. r). The
following result is an equivalent reformulation of Theorem 4.11.

12We need to have J →∞, Q→∞, Nr →∞, N →∞ in order to make both the discretisation and the
statistical error tend to zero (see Section 5.2 for more details).

13In contrast to J , Q, Nr and N , the value cm := 2m is fixed, but can be relatively big (compared to
other involved constants such as e.g. d or m). Notice that cm is the number of scenarios that the random
variables ξj can take, and it comes into play via formulas like (5.10) (J(cm − 1) summands) or (5.5) (cm
summands).

14Naive implementation of the testing phase in the RRCV algorithm via (5.5) and (4.4) gives the cost
order JQcm(cm− 1)N . To get JQcmN , one should implement (5.5) on the testing paths in two steps: first,
for all n ∈ {1, . . . , N}, j ∈ {1, . . . , J} and y ∈ {−1, 1}m, compute the values q̃j(Φ∆(X(n)

∆,(j−1)∆, y)) (the cost
is NJcmQ); then, using these values, for all n ∈ {1, . . . , N}, j ∈ {1, . . . , J} and k ∈ {0, 1}m \{0m}, compute
ãj,k(X(n)

∆,(j−1)∆) via (5.5) (the cost is NJ(cm − 1)cm). In this way, the maximal cost order is JQcmN .
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Theorem 5.4. The following representation holds

f(X∆,T ) = Ef(X∆,T ) +
J∑
j=1

∑
(o,r)∈U

aj,o,r(X∆,(j−1)∆)
m∏
i=1

Hoi(ξij)
∏

(k,l)∈I

(V klj )rkl , (5.12)

the coefficients aj,o,r : Rd → R are given by the formula

aj,o,r(x) = E

f(X∆,T )
m∏
i=1

Hoi(ξij)
∏

(k,l)∈I2

(V klj )rkl

∣∣∣∣∣∣X∆,(j−1)∆ = x

 (5.13)

for all j ∈ {1, . . . , J} and (o, r) ∈ U .

Thus, with

M
(2)
∆,T :=

J∑
j=1

∑
(o,r)∈U

aj,o,r(X∆,(j−1)∆)
m∏
i=1

Hoi(ξij)
∏

(k,l)∈I2

(V klj )rkl , (5.14)

we have E
[
M

(2)
∆,T

]
= 0 and Var

[
f(X∆,T )−M (2)

∆,T

]
= 0 in the case of second order schemes.

Next, we set (cf. proof of Theorem 4.18)

pm(y) = 4
∑m

i=1
I(yi=0)

6m2
m(m−1)

2

. (5.15)

Notice that pm(y) = P(ξj = y, Vj = z) for all z ∈ {−1, 1}I2 . The next result is similar to
Proposition 4.13.

Proposition 5.5. We have qJ ≡ f and, for each j ∈ {2, . . . , J},

qj−1(x) =E
[
qj(X∆,j∆)|X∆,(j−1)∆ = x

]
=

∑
y∈{−

√
3,0,
√

3}m

∑
z∈{−1,1}I2

pm(y) qj(Φ∆(x, y, z)).

(5.16)

Moreover, for all j ∈ {1, . . . , J} and (o, r) ∈ U , the functions aj,o,r(x) of (5.13) can be
expressed in terms of the functions qj(x) as

aj,o,r(x) =
∑

y∈{−
√

3,0,
√

3}m

∑
z∈{−1,1}I2

pm(y)
m∏
i=1

Hoi(yi)
∏

(k,l)∈I2

zrklkl

 qj(Φ∆(x, y, z)), (5.17)

where oi and yi, i = 1, . . . ,m, denote the coordinates of o and y, while rkl and zkl, (k, l) ∈ I2,
are the coordinates of r and z.

Similar to (5.6), we define functions hj,y,z, for all j ∈ {1, . . . , J}, y ∈ {−
√

3, 0,
√

3}m and
z ∈ {−1, 1}I2 , by the formula

hj,y,z(x) := qj(Φ∆(x, y, z)) = E[qj(X∆,j∆)|X∆,(j−1)∆ = x, ξj = y, Vj = z]. (5.18)

The SRCV algorithm for second order schemes now relies on Proposition 5.5 and on (5.18)
in the same way as the one for first order schemes relies on Proposition 5.2 and on (5.6).
The whole discussion in the end of Subsection 5.1.1, and, in particular, the formula

JQmax{QNr, (cm − 1)N}

for the overall cost order of the SRCV algorithm, apply also in the case of second order
schemes, where we only need to change the value of cm: here cm := 3m2m(m−1)/2.
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5.2 Complexity analysis

In this section we extend the complexity analysis presented in Chapter 4 to the case of the
stratified regression algorithm. Below we only sketch the main results for the second order
schemes. We make the following assumptions:

(A1) All functions hj,y,z(x) of (5.18) are uniformly bounded, i.e. there is a constant A > 0
such that supx∈Rd |hj,y,z(x)| ≤ A <∞.

(A2) The functions hj,y,z (x) can be well approximated by the basis functions ψ1, . . . , ψQ,
in the sense that there are constants κ > 0 and Dκ > 0 such that

inf
g∈ΨQ

∫
Rd

(hj,y,z (x)− g (x))2 P∆,j−1(dx) ≤ Dκ

Qκ
,

where P∆,j−1 denotes the distribution ofX∆,(j−1)∆ and ΨQ := span ({ψ1, . . . , ψQ}) (cf. (2.6)).

Remark 5.6. A sufficient condition for assumption (A1) is boundedness of f . Moreover,
in the case of piecewise polynomial regression, (A2) is satisfied with κ = 2ν(p+1)

d(ν+2(p+1)) (see
Remark 2.4).

Below we present an L2-upper bound for the estimation error on step 2 of the training
phase of the SRCV algorithm (see page 81). To this end, we need to describe more precisely,
how exactly the regression-based approximations h̃j,y,z are constructed:

(A3) Let functions ĥj,y,z(x) be obtained by regression (based on the second equality in (5.18))
onto the set of basis functions {ψ1, . . . , ψQ}, while the approximations h̃j,y,z(x) on step 2 of
the training phase of the SRCV algorithm be the truncated estimates, which are defined as
truncated estimates h̃j,y,z(x) = TAĥj,y,z(x) (A is the constant from (A1)).

Under (A1)–(A3), we have (cf. (2.4))

E‖h̃j,y,z − hj,y,z‖2L2(P∆,j−1) ≤ c̃ A
2(logNr + 1) Q

Nrpm(y) + 8Dκ

Qκ
, (5.19)

where c̃ is a universal constant and pm(y) is given in (5.15). Note that it holds log pm(y) < 0,
what is also used to obtain (5.19) from (2.4). As in the previous chapters, the expectation
in the left-hand side of (5.19) means averaging over the randomness in DtrNr .

The next step is to provide an upper bound for the regression-based estimates of the
coefficients aj,o,r, which are constructed on step 3 of the training phase of the SRCV algo-
rithm.

Lemma 5.7. Under (A1)–(A3), we have

E‖ãj,o,r − aj,o,r‖2L2(P∆,j−1) ≤ cmc̃ A
2(logNr + 1) Q

Nr
+ 8Dκ

Qκ
Cm,o, (5.20)

where Cm,o :=
∑
y∈{−

√
3,0,
√

3}m cm2
m(m−1)

2 [pm(y)
∏m
i=1Hoi(yi)]

2.



Chapter 5. Stratified regression for weak approximation schemes 85

Let (X∆,j∆)j=0,...,J be a testing path, which is independent of the training paths DtrNr .
We now define

M̃
(2)
∆,T :=

J∑
j=1

∑
(o,r)∈U

ãj,o,r(X∆,(j−1)∆,DtrNr )
m∏
i=1

Hoi(ξij)
∏

(k,l)∈I2

(V klj )rkl (5.21)

(cf. (5.14)) and bound the variance Var[f(X∆,T ) − M̃
(2)
∆,T ] from above.15 With the help

of (5.19) and Lemma 5.7 we now derive the main result of this section:

Theorem 5.8. Under (A1)–(A3), it holds

Var[f(X∆,T )− M̃ (2)
∆,T ] ≤ J

(
(cm − 1) cmc̃ A2(logNr + 1) Q

Nr
+ 8Dκ

Qκ
c̃m

)
,

where c̃m = cm −
( 3

2
)m.

5.2.1 Complexity of the SRCV approach

Let us study the complexity of the SRCV approach. The overall cost is of order

JQmax {NrQ, (cm − 1)N} .

We have the following constraints

max
{

1
J4 ,

JQ log(Nr)cm(cm − 1)
NrN

,
JDκc̃m
QκN

}
. ε2,

where the first term comes from the squared bias of the estimator and the remaining two
ones come from the variance of the estimator (see Theorem 5.8 as well as footnote 15 on
page 85).

Theorem 5.9. Provided that16 κ > 1, we obtain the following solution

J � ε− 1
2 , Q �

[
c̃2mD

2
κ

cm

] 1
2(κ+1)

ε−
5

4(κ+1) , Nr � (cm − 1)
√
cmε

− 5
4
√
|log (ε)|,

N � NrQ

cm − 1 �
[
cκmc̃

2
mD

2
κ

] 1
2(κ+1) ε−

5κ+10
4(κ+1)

√
|log (ε)|.

Thus, we have for the complexity

C � JNrQ2 � JNQ(cm − 1) �
[
(cm − 1)2(κ+1)cκ−1

m c̃4mD
4
κ

] 1
2(κ+1)

ε−
7κ+17
4(κ+1)

√
|log (ε)|. (5.22)

Remark 5.10. (i) Complexity estimate (5.22) shows that one can go beyond the com-
plexity order ε−2, provided that κ > 9, and that we can, similar to the RCV and RRCV
approaches, achieve the complexity order ε−1.75−δ, for arbitrarily small δ > 0, provided κ is
large enough.17

15Notice that the variance of the SRCV estimate 1
N

∑N

n=1

[
f

(
X

(n)
∆,T

)
− M̃(2),(n)

∆,T

]
with N testing paths

is 1
N

Var[f(X∆,T )− M̃(2)
∆,T ].

16 Recall that in the case of piecewise polynomial regression we have κ = 2ν(p+1)
2d(p+1)+dν (see Remark 5.6).

Let us note that in the previous chapters it is required to choose the parameters p and ν according to
p > d−2

2 and ν > 2d(p+1)
2(p+1)−d , which implies that κ > 1, for κ expressed via p and ν by the above formula.

17Here, we can also derive a connection to the piecewise polynomial regression, that is, when p, ν → ∞,
then κ→∞, too.



86 5.3. Numerical results

(ii) Let us recall Remark 3.21, where we observed that the constant within the complexity
in case of piecewise polynomial regression tends to infinity. Here the analogue constant
in (5.22) is

[
(cm − 1)2(κ+1)cκ−1

m c̃4mD
4
κ

] 1
2(κ+1) . Suppose that Dκ grows exponentially in κ

with base d, i.e., there exists some positive constant γ, such that

Dκ � dγκ as κ→∞. (5.23)

(For the piecewise polynomial regression (5.23) is not satisfied.) Then we get

lim
κ→∞

[
(cm − 1)2(κ+1)cκ−1

m c̃4mD
4
κ

] 1
2(κ+1) � c3/2m d2γ ,

that is, we have a finite constant in the limiting case. However, in terms of m this limit is
of exponential growth, hence the problem of exponentially growing constants in dimension-
ality (EGCD) still arises. Note that this property is also present for the RCV and RRCV
approaches, since the control variates contain (cm − 1) terms. As for the series and integral
approaches (from Chapter 3) as well as the truncated RCV and truncated SRCV approaches,
which will be explained in Subsection 7.2.1, the EGCD problem does not arise under the
assumption (5.23), since the control variates are truncated to only m, respectively O(m2)
terms.

5.3 Numerical results

In this section, we present several numerical examples showing the efficiency of the SRCV
approach. It turns that even the weak Euler scheme (3.5) already shows the advantage of the
new methodology over the standard Monte Carlo (SMC) as well as over the original RCV
and RRCV approaches in terms of variance reduction effect. Regarding the choice of basis
functions, we use for the RCV, RRCV and SRCV approaches polynomials of degree ≤ p,
that is, ψl(x) =

∏d
i=1 x

li
i , where l = (l1, . . . ld) ∈ {0, 1, . . . , p}d and

∑d
l=1 li ≤ p. In addition

to the polynomials, we consider the function f as a basis function. We choose J = 100,
Nr = 105, N = 107, p = 1 in all examples. Hence, we have overall Q =

(
p+d
d

)
+1 = d+2 basis

functions in each regression. Then we compute the estimated variances for the SMC, RCV,
RRCV and SRCV approaches. More precisely, when speaking about “variance” below (e.g.
in Tables 5.1, 5.2 and 5.3) we mean sample variance of one summand f(X(n)

∆,T ) − M̃ (1),(n)
∆,T

(see (5.9)) in the case of RCV, RRCV and SRCV, while, in the case of SMC, the sample
variance of f(X(n)

∆,T ) is meant. Thus, we analyse the variance reduction effect only, since
the bias is the same for all these methods. To measure the numerical performance of a
variance reduction method, we look at the ratio of variance vs. computational time, i.e., for
the SRCV, we look at

θSRCV := VarSRCV

VarSMC
· TimeSRCV

TimeSMC
,

where VarSRCV and TimeSRCV denote the variance and the overall computational time of
the SRCV approach (VarSMC and TimeSMC have the similar meaning). The smaller θSRCV

is, the more profitable is the SRCV algorithm compared to the SMC one. We similarly
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define θRCV and θRRCV (each of the regression-based algorithms is compared with the SMC
approach).

5.3.1 Geometric Brownian motion (GBM) with high volatility

Here d = m = 1 (Q = 3). We consider the following SDE

dXt =rXtdt+ σXtdWt, X0 = 1, (5.24)

for t ∈ [0, 1], where r = −1 and σ = 4. Furthermore, we consider the function f(x) = x2.
In the following, we plot the empirical cumulative distribution function (ECDF) of the
“log-scaled sample”, which is

log(1 + fi − fmin)− log(1 + f̄ − fmin)

for the SMC approach, and

log(1 + ui − umin)− log(1 + ū− umin)

for the RCV, and RRCV and SRCV approaches, where

fn := f(X(n)
∆,T ), un := fn − M̃ (1),(n)

∆,T , n ∈ {1, . . . , N} ,

fmin := min
n=1,...,N

fn, umin := min
n=1,...,N

un, f̄ := 1
N

N∑
n=1

fn, ū := 1
N

N∑
n=1

un.

The results for such a log-scaled sample are illustrated in Table 5.1. As can be also seen
from the first plot in Figure 5.1 (ECDFs of the SRCV and SMC), the variance reduction
works absolutely fine for SRCV. Most of the sample values produced by SMC are much
smaller than the corresponding mean value, whereas the deviation w.r.t. the mean ū is very
small for the SRCV approach. The main problem of the SMC approach in this case is
that almost all paths tend to zero so that the small number of outliers is not sufficient to
reach the (large) expectation E[f(X∆,T )], i.e. N has to be increased a lot to approach the
expectation. In contrast, for the SRCV approach all paths (paths close to zero as well as
outliers) are “shifted” close to the expectation and thus we obtain a very small variance.
We only plot the ECDFs of the SRCV and SMC in Figure 5.1, since the ECDFs of the RCV
and RRCV look visually very similar to that for SRCV. The difference is, however, revealed
in the “Min” and “Max” columns of the Table 5.1. That is, the RCV and RRCV algorithms
produce several outliers which result in that the RCV and RRCV do not give us any variance
reduction effect! One reason for this significant difference between the algorithms is given
by the plots in Figure 5.2, where we illustrate the regression results for the RCV, RRCV
and SRCV algorithms at the last time point, which means the first regression task. Here,
we have accurate estimates only for the SRCV (cf. the discussion around (5.11)).

5.3.2 High-dimensional geometric Brownian motion

We consider the following SDE for d = m = 10 (Q = 12):

dXi
t = rXi

tdt+ σiXi
tA

idWt, t ∈ [0, 1] , i = 1, . . . , 10,
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Approach Min Max Variance Time (sec) θ

SRCV -0.5 0.2 6.3 · 10−8 30.5 1.32 · 10−23

RRCV -25.4 1.7 2.7 · 1016 65.3 12.38
RCV -27.8 0.1 1.4 · 1017 30.0 28.57
SMC -10.6 15.9 9.6 · 1015 15.1 1

Table 5.1. Results of the algorithms for a quadratic function f under a GBM model.

where Xi
0 = 1, σi = 2∀i, r = 0.05 and Ai :=

(
Ai,1 · · ·Ai,10

)
, AAT = (ρik)i,k=1,...,10 with

ρik = ρki ∈ [−1, 1] and ρik = 1 for i = k (that is, AiW , i = 1, . . . , 10, are correlated
Brownian motions). For i < k we choose

ρik =


0.9 if i = 1, k = 2, −0.95 if i = 3, k = 4,
0.5 if i = 5, k = 6, −0.9 if i = 7, k = 8,
0.8 if i = 9, k = 10, 0 otherwise.

In this example, we illustrate the performances of the algorithms by means of the function
f (x) = max

{
maxi∈{1,...,10} x

i − 1, 0
}
. For saving a lot of computing time, we use the

“simplified control variate”

˜̃M (1)
∆,T :=

J∑
j=1

m∑
i=1

ãj,ei(X∆,(j−1)∆,DtrNr )ξ
i
j

rather than M̃
(1)
∆,T for RCV and SRCV (cf. (3.10) in case of the strong schemes). This

simplification already takes much of the variance reduction power into account, while signif-
icantly reduces the number of summands needed to construct the control variate (m = 10
vs. cm− 1 = 2m− 1 = 1023 summands in the second sum above). For the SRCV algorithm,
this results in the cost order NJmQ instead of NJ(cm − 1)Q in the testing phase (1011 vs.
1013 in this example). Such a reduction in computational time due to using ˜̃M (1)

∆,T applies
also to the RCV algorithm, but does not apply to the RRCV algorithm. Namely, with ˜̃M (1)

∆,T

the testing phase of the RRCV algorithm would now cost NJcmQ+NJmcm (in the second
summand we now have the factor m instead of cm − 1, cf. footnote 14 on page 82), which is
still of order 1013 in the present example. Therefore, we do not consider the RRCV approach
in this example. The results for the log-scaled sample are illustrated in Table 5.2. Again,
the SRCV approach achieves a much smaller variance compared to the SMC and RCV (see
the second plot in Figure 5.1).

Approach Min Max Variance Time (sec) θ

SRCV -5.8 2.0 14.6 573.9 0.13
RCV -10.4 0.7 11271.0 288.2 51.50
SMC -1.9 7.2 448.9 140.5 1

Table 5.2. Results of the algorithms for a Call-on-max-option under a high-dimensional
GBM.
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5.3.3 High-dimensional Heston model

We consider the following SDE for d = m = 9 (Q = 11) (cf. [28]):

dXi
t = rXi

tdt+ σiXi
t

√
X9
tA

idWt, i = 1, . . . , 8,

dX9
t = λ

(
v̄ −X9

t

)
dt+ η

√
X9
tA

9dWt,

where t ∈ [0, 1], Xi
0 = 1, σi = 1 for i = 1, . . . , 8 as well as X9

0 = 4, r = 0.05, λ = 0.1, v̄ = 4,
η = 1 and Ai :=

(
Ai,1 · · ·Ai,9

)
, AAT = (ρik)i,k=1,...,9. Here, for i < k we choose

ρik =


0.9 if i = 1, k = 2, −0.95 if i = 3, k = 4,
0.5 if i = 5, k = 6, −0.9 if i = 7, k = 8,
−0.2 if i ∈ {1, 2, 3, 5, 6, 7} , k = 9, 0.2 if i ∈ {4, 8} , k = 9,
0 otherwise.

One might think about X1, . . . , X8 as price process of 8 stocks, while the CIR process X9

is their common stochastic volatility. Notice that Feller’s condition for X9 is not satisfied
( 2λv̄
η2 = 0.8 < 1), that is, 0 is accessible boundary point for X9 (with reflecting boundary

behaviour). The discretised process (X9
∆,j∆)j=0,...,J can become negative. We, therefore,

use the following discretisation scheme (see e.g. [2])

Xi
∆,j∆ = Xi

∆,(j−1)∆

(
1 + r∆ + σi

√(
X9

∆,(j−1)∆

)+
Ai
√

∆ξj

)
,

X9
∆,j∆ = X9

∆,(j−1)∆ + λ

(
v̄ −

(
X9

∆,(j−1)∆

)+
)

∆ + η

√(
X9

∆,(j−1)∆

)+
A9
√

∆ξj ,

where i ∈ {1, . . . , 8} and x+ := max {x, 0}. Here, we consider the function f (x) =
max

{
maxi∈{1,...,8} xi − 1, 0

}
and, as in Subsection 5.3.2, use the simplified control vari-

ate ˜̃M (1)
∆,T (we again exclude the RRCV approach). The results for the log-scaled sample

are illustrated in Table 5.3. We get that the ECDF for the SRCV approach has a similar
form as the one from Subsection 5.3.2 (see the third plot in Figure 5.1). Notice that the
values of the estimators lie in all cases around 4.6 (SMC: 4.62, RCV: 4.59, SRCV: 4.60).
Nevertheless, in the case of the SRCV approach 75.5% of the paths are located within the
interval (3, 6), whereas in case of the SMC approach this holds for only 13.0% of the paths
and in case of the RCV approach for only 9.9%. This is a further indication of a better
numerical performance of the SRCV approach.

Approach Min Max Variance Time (sec) θ

SRCV -6.4 2.6 50.1 444.7 0.09
RCV -10.2 1.0 3208.8 328.6 4.33
SMC -1.7 9.8 1478.8 164.5 1

Table 5.3. Results of the algorithms for a Call-on-max-option in a high-dimensional Heston
model.

Below we illustrate the results of Subsections 5.3.1–5.3.3.
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Figure 5.1. top: Subsection 5.3.1, centre: Subsection 5.3.2, bottom: Subsection 5.3.3 (each
referring to the ECDF of the log-scaled sample for SRCV and SMC).
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Figure 5.2. top: RCV, centre: RRCV, bottom: SRCV (each referring to the first regression
task in Subsection 5.3.1).
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5.4 Proofs

Proof of Lemma 5.7

Let us first recall that 2m(m−1)/2pm(y) = P(ξj = y) =
∏m
i=1 P(ξij = yi) (cf. (5.15)). Formu-

las (5.17) and (5.19) as well as (
∑cm
i=1 bi)2 ≤ cm

∑cm
i=1 b

2
i yields

E‖ãj,o,r − aj,o,r‖2L2(P∆,j−1)

≤ cm
∑

y∈{−
√

3,0,
√

3}m

∑
z∈{−1,1}I2

pm(y)
m∏
i=1

Hoi(yi)
∏

(k,l)∈I2

zrklkl

2

E‖h̃j,y,z − hj,y,z‖2L2(P∆,j−1)

≤ cm2
m(m−1)

2
∑

y∈{−
√

3,0,
√

3}m

[
m∏
i=1

Hoi(yi)
]2(

c̃ A2(logNr + 1)Qpm(y)
Nr

+ 8Dκpm(y)2

Qκ

)

= cmc̃ A
2(logNr + 1) Q

Nr
E

[
m∏
i=1

Hoi(ξij)
]2

+ 8Dκ

Qκ

∑
y∈{−

√
3,0,
√

3}m
cm2

m(m−1)
2

[
pm(y)

m∏
i=1

Hoi(yi)
]2

= cmc̃ A
2(logNr + 1) Q

Nr
+ 8Dκ

Qκ
Cm,o,

where in the last equality we used that ξ1
j , . . . , ξ

m
j are independent and all Hoi(ξij) have unit

L2-norm.

Proof of Theorem 5.8

It holds

Var[f(X∆,T )− M̃ (2)
∆,T ] = Var[M (2)

∆,T − M̃
(2)
∆,T ]

= EVar[M (2)
∆,T − M̃

(2)
∆,T |D

tr
Nr ] + VarE[M (2)

∆,T − M̃
(2)
∆,T |D

tr
Nr ].

Due to the martingale transform structure in (5.14) and (5.21), we have

E[M (2)
∆,T − M̃

(2)
∆,T |D

tr
Nr ] = 0.

Together with the fact that the system
{∏m

i=1Hoi(ξij)
∏

(k,l)∈I2
(V klj )rkl : (o, r) ∈ U

}
is or-

thonormal in L2, we get

Var[f(X∆,T )− M̃ (2)
∆,T ] =

J∑
j=1

∑
(o,r)∈U

E‖ãj,o,r − aj,o,r‖2L2(P∆,j−1). (5.25)

With the expression Cm,o of Lemma 5.7 we compute∑
(o,r)∈U

Cm,o =
∑

o∈{0,1,2}m

∑
r∈{0,1}I2

Cm,o −
∑

y∈{−
√

3,0,
√

3}m
cm2

m(m−1)
2 pm(y)2

=
∑

o∈{0,1,2}m
2
m(m−1)

2 Cm,o −
∑

y∈{−
√

3,0,
√

3}m
cm2

m(m−1)
2 pm(y)2

:=α− β,
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where α (resp. β) denotes the first (resp. second) big sum in the above expression. Let us
compute α and β. Recalling that

2m(m−1)/2pm(y) = P(ξj = y) =
m∏
i=1

P(ξij = yi),

we get

α = cm
∑

o∈{0,1,2}m

∑
y∈{−

√
3,0,
√

3}m

m∏
i=1

[
P(ξij = yi)Hoi(yi)

]2

= cm

 ∑
o1∈{0,1,2}

∑
y1∈{−

√
3,0,
√

3}

[
P(ξ1

j = y1)Ho1(y1)
]2m

= cm,

where the last equality follows by a direct calculation. Recalling that cm = 3m2m(m−1)/2

(we consider second order schemes), we obtain

β = 3m
∑

y∈{−
√

3,0,
√

3}m

m∏
i=1

P(ξij = yi)2 = 3m
 ∑
y1∈{−

√
3,0,
√

3}

P(ξ1
j = y1)2

m

=
(

3
2

)m
.

Thus, ∑
(o,r)∈U

Cm,o = cm −
(

3
2

)m
= c̃m.

The last expression together with Lemma 5.7 and (5.25) yields the result.

Proof of Theorem 5.9

The proof is similar to the one of Theorem 3.20.
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Chapter 6

Complexity reduction of the
dual nested Monte Carlo
methods

This chapter is mainly based on the paper [8].
Next we focus on the pricing of Bermudan options, respectively American options, via

dual nested Monte Carlo methods.

6.1 Setup

In contrast to European options that may be exercised only at a fixed date, an American
option grants its holder the right to select the time at which to exercise the option. A
general class of American option pricing problems can be formulated through an Rd-valued
(Ft)-Markov process (Xt)0≤t≤T with a deterministic starting point X0 = x0 ∈ Rd defined
on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P). Let us recall that each Ft is a σ-algebra
of subsets of Ω, and Fs ⊆ Ft ⊆ F for s ≤ t. We first consider options admitting a finite set
of exercise opportunities 0 = t0 < t1 < t2 < . . . < tJ = T, called Bermudan options, with
corresponding Markov chain

Xj := Xtj , j = 0, . . . , J.

This option pays gj(Xj), if exercised at time tj , j = 0, . . . , J , for some known functions
g0, . . . , gJ mapping Rd into [0,∞). Below we assume that gj(Xj) ∈ L2 for all j. Let Tj
denote the set of stopping times taking values in {j, j + 1, . . . , J}. As a standard result
in the theory of contingent claims, the equilibrium price v∗j (x) of the Bermudan option at
time tj in state x, given that the option was not exercised prior to tj , is its value under the
optimal exercise policy

v∗j (x) = sup
τ∈Tj

E[gτ (Xτ )|Xj = x], x ∈ Rd.
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Clearly, any given stopping rules τj ∈ Tj are generally suboptimal and give us lower bounds

vj(x) := E[gτ (Xτ )|Xj = x] ≤ v∗j (x), j = 0, . . . , J.

An interval on the true price would be completed if an upper bound could be generated
from any given exercise policy. The dual approach proposed in Rogers [55] and Haugh
and Kogan [27] is based on the following simple observation. For any 0 ≤ i ≤ J and any
supermartingale (Yj)i≤j≤J with Yi = 0, it holds

v∗i (Xi) = sup
τ∈Ti

E [gτ (Xτ )|Fi] ≤ sup
τ∈Ti

E [gτ (Xτ )− Yτ |Fi]

≤ E
[

max
i≤j≤J

(gj(Xj)− Yj) |Fi
]

(6.1)

(we now use the shorthand Fj := Ftj ). Therefore the right-hand side of (6.1) provides an
upper bound for v∗i (Xi). It can be derived that both inequalities in (6.1) are equalities for
the martingale part of the Doob-Meyer decomposition of the price process (v∗j (Xj))i≤j≤J

Y ∗i = 0, Y ∗j =
j∑

l=i+1
(v∗l (Xl)− E [v∗l (Xl)|Fl−1]) , j = i+ 1, . . . , J.

In fact, Y ∗ satisfies the following even stronger almost sure identity

v∗i (Xi) = max
i≤j≤J

(
gj(Xj)− Y ∗j

)
, a.s. (6.2)

(also see [56]). The duality representation provides a simple way to estimate the Snell
envelope from above, using approximations (vi(Xi)) for the value functions (v∗i (Xi)). Let Y
be a martingale defined via

Y0 = 0, Yj =
j∑
l=1

(vl(Xl)− E [vl(Xl)|Fl−1]) , j = 1, . . . , J. (6.3)

Then, for i = 0, we get that

V0 := v0(x0) = E
[

max
0≤j≤J

(gj(Xj)− Yj)
]

(6.4)

is an upper bound for V ∗0 := v∗0(x0). The properties of the dual upper bound were thor-
oughly studied in Chen and Glasserman [13] and Belomestny et al [12]. Throughout we
are going to use nonparametric regression algorithms to construct some computationally
efficient approximations for the conditional expectations involved in (6.3). Nonparametric
regression algorithms like that of Longstaff and Schwartz (see e.g. [40]) have become among
the most successful and widely used methods for approximating the values of American-style
(Bermudan) options, in particular for high-dimensional problems. Due to their popularity,
the analysis of the convergence properties of these types of Monte Carlo algorithms is a
problem of fundamental importance in applied probability and mathematical finance, see
e.g. Clément, Lamberton and Protter [14], Zanger [61] and references therein. Here we rig-
orously analyse the convergence properties of the proposed regression algorithm and derive
its complexity. Moreover we illustrate its performance in the case of the max-call Bermudan
options.
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6.2 Nested simulations approach

The nested simulation approach for computing V0 relies on the approximation of the inner
expectations in (6.4) via (conditional) Monte Carlo. This approach was first proposed in
Andersen and Broadie [3] for the computation of the dual upper bound (6.4). Let us describe
this method in more details. Fix some natural numbers Nd, N and consider the estimate

VN,Nd = 1
N

N∑
n=1

[
max

0≤j≤J

(
gj(X(n)

j )− Yj,n,Nd
)]
,

where

Yj,n,Nd =
j∑
l=1

(
vl(X(n)

l )− 1
Nd

Nd∑
nd=1

vl(X(nd,n)
l )

)
, j = 0, . . . , J,

(
∑0

1 := 0), (X(1)
l , . . . , X

(N)
l ) is a sample from the distribution of Xl and for any fixed

n, the sample X(1,n)
l , . . . , X

(Nd,n)
l is drawn from the conditional distribution of Xl given

Xl−1 = X
(n)
l−1.

Theorem 6.1. We have for the estimator VN,Nd

EVN,Nd ≥ V0,

i.e. it gives us an upper bound for V0 and hence for V ∗0 . Moreover it holds

E
[
|VN,Nd − V0|2

]
≤ 4

J∑
l=1

E[Var [vl(Xl)|Xl−1]]
Nd

(
1 + 1

N

)
+

E
[
|v∗l (Xl)− vl(Xl)|2

]
N

 .

(6.5)

The bound (6.5) is very informative, as it not only gives an error estimate for VN,Nd ,
but also shows ways to improve it. While the second term on the r.h.s. of (6.5) can be
reduced by making the bound vl closer to v∗l , the first can be made smaller by reducing
the magnitude of the conditional variances Var [vl(Xl)|Xl−1] . Since the cost of computing
VN,Nd is of order NNd (recall that J is fixed for now), the overall complexity of the estimate
VN,Nd is of order ε−4.

Let us mention two relevant modifications of the nested dual algorithm proposed in the
literature. Firstly, in Belomestny et al [6] an algorithm not involving sub-simulation was
suggested, where an approximation for the Doob martingale was constructed using the mar-
tingale representation theorem and some approximation of the true price process. However,
this method requires an additional discretisation of stochastic integrals and suffers from
some instability for small discretisation steps. Secondly, a multilevel-type algorithm was de-
veloped in Belomestny et al [12], which has a similar performance, in terms of complexity, as
the algorithm described here, but works under very different conditions (e.g. the algorithm
in [12] does not take advantage of the smoothness properties of the involved conditional
expectations).

In the next section we present a regression-based approach, which will result in a signif-
icant reduction of the complexity (see the discussion right after (6.26)).
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6.3 Variance reduction via regression

Suppose that for some ∆ > 0, the time approximations X∆,l∆, l = 1, . . . , L, with L =
bT/∆c ≥ J satisfy the following recurrence relations (cf. (2.11))

X∆,l∆ = Φl(X∆,(l−1)∆, ξl), l = 1, . . . , L, (6.6)

for some i.i.d. random vectors ξl ∈ Rm with distribution µ and some Borel-measurable
functions Φl : Rd+m → Rd. By (Gl)l=0,...,L we denote the filtration with G0 = triv generated
by (ξl)l=1,...,L. Let (φk)k∈Z+ be a complete orthonormal system in L2(Rm, µ) with φ0 ≡ 1,
i.e.,

E[φi(ξ)φj(ξ)] = δij , i, j ∈ Z+.

In particular, the random variables φk(ξ), k ≥ 1, are centered. Notice that the (normalised)
Hermite polynomials Hk are a special case of such orthonormal systems. Let us fix some
j < p in {0, 1, . . . , L}.

Theorem 6.2. It holds for any function f with E[|f(X∆,p∆)|2] <∞

f(X∆,p∆) = E [f(X∆,p∆)|X∆,j∆] +
∑
k≥1

p∑
l=j+1

ap,l,k(X∆,(l−1)∆)φk(ξl), (6.7)

where the series on the r.h.s. converges in L2 sense. The coefficients in (6.7) can be computed
via

ap,l,k(x) = E
[
f(X∆,p∆)φk (ξl)|X∆,(l−1)∆ = x

]
for l = 1, . . . , L and k ∈ N.

Identity (6.7) implies that

Var [f(X∆,p∆)−Mj,p|X∆,j∆] = 0, E[Mj,p|Gj ] = 0, a.s.

with

Mj,p =
∑
k≥1

p∑
l=j+1

ap,l,k(X∆,(l−1)∆)φk(ξl) (6.8)

and hence Mj,p is an optimal control variate. In order to use control variate Mj,p, we need
to compute the coefficients ap,l,k. This can be done by using regression in the following way:
first we generate Nr discretised paths X(n)

∆,1∆, . . . , X
(n)
∆,L∆, n = N + 1, . . . , N + Nr, of the

process X and then solve the least squares optimisation problems

âp,l,k = arg min
ψ∈span(ψ1,...,ψQ)

N+Nr∑
n=N+1

∣∣∣f(X(n)
∆,p∆)φk(ξ(n)

j )− ψ(X(n)
∆,(j−1)∆)

∣∣∣2 ,
for l = j + 1, . . . , p, where ψ1, . . . , ψQ is a set of basis functions on Rd. Furthermore, we
truncate the summation in (6.8) to get an implementable version of the control variate Mj,p

M̂j,p,K =
K∑
k=1

p∑
l=j+1

âp,l,k(X∆,(l−1)∆)φk(ξl). (6.9)
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To make clear how to understand (6.9), we remark that the random vectors ξl, l = 1, . . . , L,
in (6.9) are independent of the Nr training paths (X(n)

∆,l∆) used to obtain the regression-
based estimates âp,l,k, while the testing path (X∆,l∆) in the argument of âp,l,k in (6.9) is
constructed via those random vectors ξl according to (6.6) (and hence is independent of the
training paths).

Let us note that EM̂j,p,K = 0 due to the martingale transform structure in (6.9) (recall
that Eφk(ξl) = 0 for k ≥ 1), i.e. M̂j,p,K is indeed a valid control variate in that it does not
introduce any bias. The properties of such a control variate are summarised in the following
theorem.

Theorem 6.3. Consider some j < p in {0, 1, . . . , L}. Suppose that the function f is uni-
formly bounded by a constant F . By ãp,l,k we denote the truncated at the level F estimate
(cf. (2.3))

ãp,l,k(x) = TF âp,l,k(x) =

âp,l,k(x) if |âp,l,k(x)| ≤ F,

F sgn âp,l,k(x) otherwise,
(6.10)

and by M̃j,p,K the control variate defined like in (6.9) but with âp,l,k replaced by ãp,l,k.
Furthermore, assume that for some β ≥ 0 and Bβ > 0

∞∑
k=1

kβ
p∑

l=j+1
E[a2

p,l,k(X∆,(l−1)∆)] ≤ Bβ (6.11)

and the set of basis functions ψ1, . . . , ψQ is chosen in such a way that

p∑
l=j+1

inf
ψ∈span(ψ1,...,ψQ)

E
[∣∣ap,l,k(X∆,(l−1)∆)− ψ(X∆,(l−1)∆)

∣∣2] ≤ DκQ
−κ

for some constants κ ≥ 0 and Dκ > 0 (cf. (2.6) in Subsection 2.1.1). Then

E
[
Var

[
f(X∆,p∆)− M̃j,p,K

∣∣X∆,j∆
]]
≤ c̃F 2(p− j)KQ(log(Nr) + 1)

Nr

+BβK
−β + 8DκKQ

−κ

with some universal constant c̃, where

M̃j,p,K =
K∑
k=1

p∑
l=j+1

ãp,l,k(X∆,(l−1)∆)φk(ξl).

6.4 Dual upper bounds with reduced complexity

Next we apply the results of the previous section to the nested simulations of dual upper
bounds. For the sake of clarity assume that the exercise times coincide with the discretisation
time grid for some ∆ > 0, i.e. L = J . Instead of V0, which is constructed in (6.4) via the
exact process, we are now going to estimate its analogue V∆,0 constructed via the discretised
process

V∆,0 = E
[

max
0≤j≤J

(gj(X∆,j∆)− Y∆,j∆)
]

(6.12)
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with Y∆,j∆ =
∑j
l=1
(
vl(X∆,l∆)− E

[
vl(X∆,l∆)|X∆,(l−1)∆

])
. For any j = 1, . . . , J, we need

to compute the conditional expectations E
[
vj(X∆,j∆)|X∆,(j−1)∆

]
. Due to (6.7) we have the

following representation

vj(X∆,j∆) = E
[
vj(X∆,j∆)|X∆,(j−1)∆)

]
+
∑
k≥1

aj,k(X∆,(j−1)∆)φk(ξj), (6.13)

where

aj,k(x) = E
[
vj(X∆,j∆)φk (ξj)|X∆,(j−1)∆ = x

]
, (6.14)

provided E
[
v2
j (X∆,j∆)

]
<∞. Representation (6.13) implies that

Var[vj(X∆,j∆)−Mj |X∆,(j−1)∆] = 0 a.s. (6.15)

for

Mj =
∑
k≥1

aj,k(X∆,(j−1)∆)φk(ξj), (6.16)

and hence the first term on the r.h.s. of (6.5) is zero. Of course, the control variates
M1, . . . ,MJ cannot be used directly, since the coefficients al,k are unknown. So first we
estimate the coefficients al,k by a preliminary regression using Nr discretised paths of the
process X and Q basis functions (see Section 6.3). In this way we construct the estimated
and truncated version of the control variate Ml given by

M̂l,K =
K∑
k=1

âl,k(X∆,(l−1)∆)φk(ξl). (6.17)

Now fix some natural numbers Nd, N and consider the dual estimate

V̂N,Nd,K = 1
N

N∑
n=1

[
max

0≤j≤J

(
gj(X(n)

∆,j∆)− Ŷj,n,Nd,K
)]
, (6.18)

where

Ŷj,n,Nd,K =
j∑
l=1

(
vl(X(n)

∆,l∆)− 1
Nd

Nd∑
nd=1

(
vl(X(nd,n)

∆,l∆ )− M̂ (nd,n)
l,K

))
(6.19)

with

M̂
(nd,n)
l,K =

K∑
k=1

âl,k(X(n)
∆,(l−1)∆)φk(ξ(nd,n)

l ). (6.20)

We now can prove the following result.

Proposition 6.4. Assume that all functions vj , j = 1, . . . , J, are uniformly bounded by a
constant F . By ãj,k we denote the truncated at the level F estimate defined as in (6.10),
and by M̃l,K (resp. M̃ (nd,n)

l,K , Ỹj,n,Nd,K , ṼN,Nd,K) the quantities defined like in (6.17) (resp.
(6.20), (6.19), (6.18)) but with “hats” replaced by “tildes”. Suppose that the coefficients (aj,k)
defined in (6.14) satisfy, for all j = 1, . . . , J ,

∞∑
k=1

kβ E[a2
j,k(X∆,(j−1)∆)] ≤ Bβ (6.21)
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with some β ≥ 0 and Bβ > 0 and that the basis functions ψ1, . . . , ψQ are chosen in such a
way that, for all j = 1, . . . , J and k ∈ N,

inf
ψ∈span(ψ1,...,ψQ)

E
[∣∣aj,k(X∆,(j−1)∆)− ψ(X∆,(j−1)∆)

∣∣2] ≤ DκQ
−κ (6.22)

with some κ ≥ 0 and Dκ > 0. Then it holds

E
[
|ṼN,Nd,K − V∆,0|2

]
≤ 4J
Nd

(
1 + 1

N

)[
c̃F 2K

Q(log(Nr) + 1)
Nr

+BβK
−β + 8DκKQ

−κ
]

+ 4
N

J∑
l=1

E
[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
(6.23)

with some universal constant c̃.

Remark 6.5. Notice that in case of weak approximation schemes we do not need to in-
troduce the parameter β in (6.21), since the optimal control variate Mj in (6.16) is a finite
sum. Thus, in the complexity analyses below we can find a relation to weak schemes by
considering the case β →∞.

6.4.1 Complexity analysis for Bermudan options

Proposition 6.4 allows us to carry out complexity analysis of our algorithm. First note that
the overall cost of computing the estimator ṼN,Nd,K is of order

JK max
{
NrQ

2, NQ,NNd
}
, (6.24)

where the first term in (6.24) comes from the computation of the regression coefficients, the
second one from the computation of ãl,k(X(n)

∆,(l−1)∆) and the last one from the computation of
M̃

(nd,n)
l,K (other terms involved in the computation are dominated by one of these quantities).

Given β > 0 and κ > 0 as in Proposition 6.4, we have the following constraints

max
{
JKQ log(Nr)

NrNd
,
JBβ
KβNd

,
JDκK

QκNd
,
J

N

}
. ε2 (6.25)

to ensure the condition E
[
|ṼN,Nd,K − V∆,0|2

]
. ε2.

Notice that we are interested in getting the order of complexity in ε as ε↘ 0. To this end,
we need to determine the parameters N , Nr, Nd, K and Q via ε in such a way that the order
of complexity of ṼN,Nd,K (given by (6.24)) is minimal under the constraint (6.25). Since
Bβ , Dκ and J are constants, they can be dropped from (6.24) and (6.25). Straightforward
but lengthy calculations now show that the overall complexity of ṼN,Nd,K is bounded from
above by

CJ,β,κ ε
− 4(β+1)(κ+3)+4κ

(β+1)(κ+3)+βκ
√
| log ε|, (6.26)

where the constant CJ,β,κ does not depend on ε. Moreover, the dependence structure in
CJ,β,κ on the parameters β, κ and J is given by the formula CJ,β,κ = cJ2B

3/(1+β)
β D

3/(3+κ)
κ

with some universal constant c. We, finally, discuss the complexity estimate (6.26):

Remark 6.6. (i) We require to choose β > 1 in order to be better than the standard nested
simulations approach discussed in Section 6.2 because 4(β+1)(κ+3)+4κ

(β+1)(κ+3)+βκ < 4 whenever β > 1.
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(ii) We can achieve the complexity order ε−2−δ, for arbitrarily small δ > 0, whenever the
parameters β and κ are sufficiently large.

(iii) In the limiting case κ = 0, i.e., if the approximation error in (6.22) does not converge
to 0 (e.g. due to an inappropriate choice of basis functions), we end up with the complexity
of the standard nested approach of order ε−4.

(iv) While the control variates in the previous chapters lead to a variance reduction in
comparison with Var [f(X∆,T )] (and the remaining MSE term, namely the squared bias
(E [f(XT )− f(X∆,T )])2, is of the same order as for the SMC approach), the present control
variates M̃ (nd,n)

l,K (cf. (6.20)) with nd ∈ {1, . . . , Nd}, n ∈ {1, . . . , N}, l ∈ {1, . . . , j}, j ∈
{1, . . . , J}, lead to a reduction in comparison with the terms

E
[
Var

[
vl(X∆,l∆)|X∆,(l−1)∆

]]
, (6.27)

which are a part of the overall error for the standard approach, but mainly affect the bias
(cf. proof of Theorem 6.1). More precisely, the better the estimation of the control variates
works, the smaller are the terms (cf. proof of Proposition 6.4)

E
[
Var

[
vl(X∆,l∆)− M̃l,K |X∆,(l−1)∆

]]
compared to (6.27). This leads to a reduction of both the bias and the variance. However,
while the bias tends to zero for optimal control variates (cf. (6.15) and (6.41)), the variance
is only slightly reduced (cf. (6.42)) and still depends on the remaining error terms, namely

E
[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
,

which are not affected by the control variates (see (6.5) and (6.23)).

In the next subsection we present the complexity analysis for the case of an increasing
number of exercise dates J →∞. We also take the discretisation error into account, which
is the order (in J , J →∞) of the difference between the upper bound V0 for the (continuous
time) American option price and the upper bounds V∆,0 for the Bermudan option prices
with ∆ = T/J .

6.4.2 Complexity analysis for American options

To approximate an upper bound V0 for a true American (rather than Bermudan) option, we
now let J tend to infinity. We shall compare the complexities of the standard approach (the
one of Section 6.2 applied to the discretised process) and of the regression-based approach
(the one described in the beginning of Section 6.4).

Standard approach: Set ∆ = T/J, then the estimate for V∆,0 of (6.12) is

V∆,N,Nd = 1
N

N∑
n=1

[
max

0≤j≤J

(
gj(X(n)

∆,j∆)− Y∆,j∆,n,Nd

)]
,
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where

Y∆,j∆,n,Nd =
j∑
l=1

(
vl(X(n)

∆,l∆)− 1
Nd

Nd∑
nd=1

vl(X(nd,n)
∆,l∆ )

)
, j = 0, . . . , J.

The analogue of (6.5) takes the form

E
[
|V∆,N,Nd − V∆,0|2

]
≤

4
∑J
l=1 E[Var

[
vl(X∆,l∆)|X∆,(l−1)∆

]
]

Nd

(
1 + 1

N

)

+
4
∑J
l=1 E

[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
N

. (6.28)

Since we are considering American options in this section, the estimate V∆,N,Nd can be
viewed as an estimate for V0 rather than for V∆,0, i.e. this is E

[
|V∆,N,Nd − V0|2

]
that should

be of order ε2 in the complexity analysis. Therefore, we need an assumption about the order
of the discretisation error V∆,0−V0. It seems reasonably general to assume that it is of order

1√
J
. However, the discretisation error might be of a different order in specific situations (see

[15]). That is why we impose a more general assumption:

(A1) V∆,0 − V0 is of order J−α as J →∞ with some α > 0.

We also need an assumption on the order of the second term on the right-hand side of (6.28)
(which is also present in (6.23)):

(A2)
∑J
l=1 E

[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
is of order Jq as J →∞ with some q ∈ [0, 1].

A typical-to-expect situation here is q = 1. Another interesting variant is q = 0: here the
strategy is to use better and better approximations vl for v∗l at each time point l = 1, . . . , J,
as J grows (see, e.g., Zanger [61] for bounds on E

[
‖v∗l − vl‖2

]
.) Finally, as for the first term

on the right-hand side of (6.28) it is reasonable to assume only that

(A3)
∑J
l=1 E[Var

[
vl(X∆,l∆)|X∆,(l−1)∆

]
] is of order J as J →∞.

The overall cost of computing the estimate V∆,N,Nd is of order JNdN . Thus, we need to
minimise this cost order under the constraint

max
{

1
J2α ,

J

Nd
,
Jq

N

}
. ε2,

which ensures that E
[
|V∆,N,Nd − V0|2

]
. ε2 (see (6.28) and (A1)–(A3)). This leads to the

complexity of V∆,N,Nd of order ε−4− 2+q
α . For instance, in the case α = 1/2, q = 1 (resp.

α = 1/2, q = 0) we get the complexity O(ε−10) (resp. O(ε−8)).

Regression-based approach: We suppose that the assumptions of Proposition 6.4 are
satisfied uniformly in J ∈ N and again assume (A1) and (A2) (as for (A3), we do not need
it here). The cost of computing ṼN,Nd,K is of order

JK max
{
NrQ

2, NQ,NNd
}
.
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We need to minimise this under the constraints

max
{

1
J2α ,

JKQ log(Nr)
NrNd

,
JBβ
KβNd

,
JDκK

QκNd
,
Jq

N

}
. ε2,

which ensures that E
[
|ṼN,Nd,K − V0|2

]
. ε2 (see (6.23) and (A1)–(A2)). Straightforward

but lengthy calculations show that the overall complexity of ṼN,Nd,K is bounded from above
by

Cβ,κ ε
− (4α+2+q)(β+1)(κ+3)+(β+4α+1+q)κ

α(β+1)(κ+3)+αβκ
√
| log ε|, (6.29)

where the constant Cβ,κ does not depend on ε. Moreover, the dependence on β and κ is
described by the formula Cβ,κ = cB

3/(1+β)
β D

3/(3+κ)
κ with some universal constant c. We,

finally, discuss the complexity estimate (6.29):

Remark 6.7. (i) We again require to choose β > 1 in order to be better than the standard
approach discussed above, because, as a straightforward calculation shows,

(4α+ 2 + q)(β + 1)(κ+ 3) + (β + 4α+ 1 + q)κ
α(β + 1)(κ+ 3) + αβκ

< 4 + 2 + q

α

whenever β > 1.

(ii) We can achieve the complexity order ε−2− 3+q
2α −δ, for arbitrarily small δ > 0, when-

ever the parameters β and κ are sufficiently large. In particular, this gives us O(ε−6−δ)
(resp. O(ε−5−δ)) when α = 1/2, q = 1 (resp. α = 1/2, q = 0), which is to be compared with
O(ε−10) (resp. O(ε−8)) in the case of the standard approach.

6.5 Examples and discussion of conditions

Suppose that the process (Xt)t∈[0,T ] solves the SDE (1.1) in the one-dimensional case d =
m = 1. Consider the Euler discretisation scheme, which is of the form

X∆,j∆ = X∆,(j−1)∆ + µ(X∆,(j−1)∆) ∆ + σ(X∆,(j−1)∆) ξj
√

∆, j = 1, . . . , J,

where ξ1, . . . , ξJ are independent N(0, 1) random variables. In this case, we have Φ∆ given
by (3.5) and the orthonormal system (φk)k∈Z+ in L2 (R, N(0, 1)) can be chosen to be the
system of normalised Hermite polynomials φk = Hk. Then the coefficients aj,k are given by
formula

aj,k(x) = 1√
k!
E
[
vj

(
x+ µ(x) ∆ + σ(x) ξ

√
∆
)
Hk(ξ)

]
(6.30)

with ξ ∼ N(0, 1). To get more insight into the behaviour of aj,k in k, we need to know the
structure of the approximations vj . While we did not assume anything on their structure
until now, in practice one often models vj as linear combinations of some basis functions,
e.g. polynomials (for instance, in the Longstaff-Schwartz algorithm with a polynomial basis).
Let us now verify the assumption (6.21) in a couple of particular examples.

Example 6.8. Let

vj(y) =
p∑
i=0

αj,iy
i, j = 1, . . . , J
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(think of polynomial basis functions). Since, with ξ ∼ N(0, 1), Hk(ξ) is orthogonal in L2 to
all polynomials in ξ of degree less than k, it follows from (6.30) that

aj,k ≡ 0 whenever k ≥ p+ 1.

Then, for any β > 0, there is an appropriate constant Bβ > 0 such that, for all j = 1, . . . , J ,

∞∑
k=1

kβ E[a2
j,k(X∆,(j−1)∆)] =

p∑
k=1

kβ E[a2
j,k(X∆,(j−1)∆)] ≤ Bβ .

(Notice that, since the coefficients µ and σ of the SDE are globally Lipschitz, all polynomial
moments of the Euler discretisation are finite, hence all E

[
a2
j,k(X∆,(j−1)∆)

]
are finite.)

Thus, assumption (6.21) is satisfied and, moreover, we can take arbitrarily large β > 0 (at
a cost of possibly getting large Bβ).

Example 6.9. Let now

vj(y) =
p∑

l=−p
αj,l exp{ihly}, j = 1, . . . , J,

that is, at each time step j = 1, . . . , J our approximations vj are trigonometric polynomials
with period 2π/h, for some given h > 0. With ξ ∼ N(0, 1) we have

aj,k(x) = 1√
k!
E
[
vj

(
x+ µ(x)∆ + σ(x)

√
∆ ξ
)
Hk(ξ)

]
= 1√

k!

p∑
l=−p

αj,l exp {ihl(x+ µ(x)∆)}E
[
exp

{
ihlσ(x)

√
∆ ξ
}
Hk(ξ)

]
.

Using the definition of the Hermite polynomials and integrating by parts k times, we compute

E [exp{iaξ}Hk(ξ)] = (ia)k exp
{
−a

2

2

}
.

Hence,

|aj,k(x)| ≤ hk∆k/2
√
k!

p∑
l=−p

|αj,l| lk |σ(x)|k exp
{
−h

2l2σ2(x)∆
2

}
.

Assuming for simplicity that σ is bounded, we get

|aj,k(x)| ≤
√
Kj Ck

k!

with some positive constants Kj and C. Hence, for any β > 0 and for all j = 1, . . . , J ,

∞∑
k=1

kβ E[a2
j,k(X∆,(j−1)∆)] ≤

[
max

j=1,...,J
Kj

] ∞∑
k=1

kβ Ck

k! =: Bβ <∞.

Thus, provided σ is bounded, for arbitrarily large β > 0, there exists an appropriate Bβ > 0
such that assumption (6.21) is satisfied.
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6.6 Numerical results

As can be easily seen, the optimal solution for the parameter N is of the same order (w.r.t. ε)
both in the standard and in the regression-based approaches. Therefore, let us ignore the
error term

4
N

J∑
l=1

E
[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
(6.31)

in (6.23) and (6.28). Hence, we are interested in the remaining “variance terms”

E[Var
[
vl(X∆,l∆)|X∆,(l−1)∆

]
] (6.32)

and
E
[
Var

[
vl(X∆,l∆)− M̃l,K |X∆,(l−1)∆

]]
, (6.33)

for l = 1, . . . , J , respectively. In terms of the numerical implementation, we will choose N
large enough so that (6.31) does not really affect the overall error. That is, we now consider
J and N as fixed parameters.

Standard approach with fixed J and N : We recall that the overall cost of computing the
estimator V∆,N,Nd is of order JNdN . Since we consider only the variance terms, we set
Nd � ε−2 to ensure that (see (6.28))

4
Nd

(
1 + 1

N

) J∑
l=1

E[Var
[
vl(X∆,l∆)|X∆,(l−1)∆

]
] . ε2. (6.34)

Thus, we have for the complexity

Cstandard � JNdN � ε−2. (6.35)

Regression-based approach with fixed J and N : The overall cost of computing the esti-
mator ṼNd,N,K is of order

JK max
{
NrQ

2, NNd
}
. (6.36)

Notice that, since N is considered to be fixed, the term NQ (cf. (6.24)) is dominated by
NrQ

2. We have the constraints

max
{
JKQ log(Nr)

NrNd
,
JBβ
KβNd

,
JDκK

QκNd

}
. ε2 (6.37)

to ensure the condition

4
Nd

(
1 + 1

N

) J∑
l=1

E
[
Var

[
vl(X∆,l∆)− M̃l,K |X∆,(l−1)∆

]]
. ε2. (6.38)

Then, the resulting complexity bound is given by

Cregression . CJ,N,β,κ ε
− 2(β+1)(κ+3)+2κ

(β+1)(κ+3)+βκ
√
| log ε|, (6.39)

where CJ,N,β,κ = cJ3/2N1/2B
3/(1+β)
β D

3/(3+κ)
κ with some universal constant c. Notice that

the complexity in (6.39) is better than that in (6.35) whenever β > 1. Moreover, we can
achieve the complexity order ε−1−δ in (6.39), for arbitrarily small δ > 0, whenever the
parameters β and κ are sufficiently large.
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Remark 6.10. Clearly, for every finite N , we also have the error term (6.31) in both
approaches. However, since our control variates M̃l,K are aimed at reducing only the other
error term (from (6.32) to (6.33)), it is useful in the numerical experiments to fix a sufficiently
large N in order to make the error (6.31) very small. This allows us to focus on the reduction
effect of the variance terms only (and thus mainly on the reduction effect of the bias, see
Remark 6.6).

In constructing the numerical experiments below, for the regression-based approach, we
need to choose several values of ε and the values of Nr, Nd, K and Q for each value of ε. To
this end, we use the “limiting formulas” as β, κ→∞. Ignoring the remaining constants as
well as the log-term for Nr, those “limiting formulas” give us Nr = O(ε−1), Nd = O(ε−1),
K = O(1) and Q = O(1). In more detail, we choose the parameters for each ε = 2−i,
i ∈ {2, 3, 4, 5, 6}, as follows:

N = 5 · 104, K = 1, Q = d+ 2, Nd = 8 · ε−1, Nr = 256 · ε−1.

As for the basis functions, we use polynomials of d variables up to degree 1 as well as the
function f (altogether Q = d + 2 basis functions). Regarding the standard approach, we
choose for each ε = 2−i, i ∈ {2, 3, 4, 5}, the parameters via

N = 5 · 104, Nd = 2 · ε−2.

Notice that we use less values for ε in case of the standard approach, since the computing
time for ε = 2−5 in the standard approach is already much higher than that in the regression-
based approach for ε = 2−6, with comparable values of the estimated root mean squared
errors

√
E [|V∆,N,Nd − V∆,0|2] and

√
E
[
|ṼN,Nd,K − V∆,0|2

]
. In addition, we implement the

multilevel approach from [12] in the following way: set L = − log2(ε) − 2 for ε = 2−i,
i ∈ {2, 3, 4, 5} and choose (Nd)l = 48 · 4l and Nl = 216−l for l = 0, . . . , L. Run the multilevel
algorithm until the level L is reached. Thus, the cost is of order

∑L
l=0(Nd)lNl = O(2L) =

O(ε−1), similar to the one of the regression-based approach.
Below, we compute the numerical complexities, given 500 independent simulations, and

compare it with the theoretical ones, namely, O(ε−2) for the standard approach and O(ε−1)
for the multilevel and regression-based approaches (“limiting formulas” as β, κ→∞). Note
that we compute the regression estimates for vj(x) by means of the algorithm of Tsitsiklis
and Van Roy (see [58] and [59]), given 5 · 104 independent paths and (d+1)(d+2)

2 + 1 basis
functions (polynomials of d variables up to degree 2 as well as the function f) for all the
standard, regression-based and multilevel approaches. Further, due to practical purposes,
we do not allow to exercise at time t = 0, which gives us a modified price, namely

V∆,0 = E
[

max
1≤j≤J

(gj(X∆,j∆)− Y∆,j∆)
]
.

6.6.1 Two-dimensional example

We consider the following SDE for d = m = 2 (Q = 4)

dXi
t = (r − δi)Xi

tdt+ σiXi
tdW

i
t , t ∈ [0, 1] , i = 1, 2,
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where r = 0 and xi0 = 100, σi = 0.2, δi = 0.02, for i = 1, 2. Hence, X1
t and X2

t are
two independent geometric Brownian motions. Further, we consider the Bermudan max-
call option with strike price 100 and 20 exercise opportunities (J = 20), that is, gj (x) =
max {max {x1, x2} − 100, 0}, x = (x1, x2), for all j. The “true” upper bound V∆,0 ≈ 12.57
is estimated as the mean value of 100 independent computations of V∆,N,Nd with N = Nd =
5 · 104.

As can be seen from the first plot in Figure 6.1, the estimated numerical complexity is
about RMSE−0.84 for the regression-based approach, RMSE−1.31 for the standard approach
and RMSE−0.94 for the multilevel approach. (We speak about numerically estimated RMSEs
here.) The reason for the somewhat unexpected slope 1.31 in the standard approach is that,
in this numerical example, the numerical MSE turned out to be strictly smaller than the left-
hand side of (6.34), which is of course possible in specific examples. (Indeed, from the plot
corresponding to the standard approach we get RMSE � ε2/1.31, that is, MSE � ε4/1.31,
which is smaller than const/Nd � ε2.) We see that the regression-based approach works
nicely, and we can save much computing time as compared to the standard and multilevel
approaches to obtain similar accuracies.

6.6.2 Five-dimensional example

We consider the following SDE for d = m = 5 (Q = 7)

dXi
t = (r − δi)Xi

tdt+ σiXi
tA

idWt, t ∈ [0, 1] , i = 1, . . . , 5,

where r = 0, xi0 = 100, σi = 0.2, δi = 0.02 ∀i, and Ai :=
(
Ai,1 · · ·Ai,5

)
, AAT =

(ρik)i,k=1,...,5 with ρik = ρki ∈ [−1, 1] and ρik = 1 for i = k (that is, AiW , i = 1, . . . , 5, are
correlated Brownian motions). For i < k we choose

ρik =


0.9 if i = 1, k = 2, −0.5 if i = 3, k = 4,
0.2 if i ∈ {1, 2, 3} , k = 5, −0.2 if i = 4, k = 5,
0 otherwise.

Again, we consider the Bermudan max-call option with strike price 100, but with only 10
exercise opportunities (J = 10), that is, gj (x) = max

{
maxi∈{1,...,5} xi − 100, 0

}
, for all j,

and estimate the upper bound V∆,0 ≈ 21.07 via 100 independent simulations of V∆,N,Nd

with N = Nd = 5 · 104.
Our empirical findings are illustrated in the second plot in Figure 6.1. We observe the

numerical complexities of order RMSE−0.76 for the regression-based approach, RMSE−1.22

for the standard approach and RMSE−0.79 for the multilevel approach. Even though the
numerical complexities of the regression-based and multilevel approaches are close to each
other, we observe that the computing time in case of the regression-based approach is much
smaller than the multilevel one, whereas the RMSEs are in a similar region. As in the
previous example, the regression-based approach shows a significant complexity reduction
effect and outperforms the standard and multilevel approaches numerically.
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Figure 6.1. Numerical complexities of the regression-based, standard and multilevel ap-
proaches in the two- and five-dimensional case.

6.7 Proofs

Proof of Theorem 6.1

In what follows, conditioning on X(n)
· is a shorthand for conditioning on σ(X(n)

j , 0 ≤ j ≤ J).
We set

Y
(n)
j := E

[
Yj,n,Nd |X

(n)
·

]
and observe that

Y
(n)
j =

j∑
l=1

(
vl(X(n)

l )− E[vl(X(n)
l )|X(n)

l−1]
)
, j = 0, . . . , J,
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in particular, the process (Y (n)
j ) has the same distribution as (Yj). Further, we have

E
[
VN,Nd |X

(n)
·

]
= 1
N

N∑
n=1

E
[

max
0≤j≤J

(
gj(X(n)

j )− Yj,n,Nd
)
|X(n)
·

]

≥ 1
N

N∑
n=1

max
0≤j≤J

E
[
gj(X(n)

j )− Yj,n,Nd |X
(n)
·

]
= 1
N

N∑
n=1

max
0≤j≤J

(
gj(X(n)

j )− Y (n)
j

)
,

which implies the required inequality EVN,Nd ≥ V0 by taking expectations of both sides.
We now introduce the filtrations F (n)

j = σ(X(n)
1 , . . . , X

(n)
j ) (F (n)

0 = triv) and F (n)
j =

σ(X(n)
1 , . . . , X

(n)
j , X

(m,n)
1 , . . . , X

(m,n)
j ,m = 1, . . . ,M) (F (n)

0 = triv). Next we have

E
[
(VN,Nd − V0)2] = (E [VN,Nd − V0])2 + Var [VN,Nd ] (6.40)

=
(
E

[
VN,Nd −

1
N

N∑
n=1

max
0≤j≤J

(
gj(X(n)

j )− Y (n)
j

)])2

+ Var [VN,Nd ] .

For the first term in (6.40), that is the squared bias, we obtain

(E [VN,Nd − V0])2

≤E

(VN,Nd − 1
N

N∑
n=1

max
0≤j≤J

(
gj(X(n)

j )− Y (n)
j

))2
≤ 1
N

N∑
n=1

E

[(
max

0≤j≤J

(
gj(X(n)

j )− Yj,n,Nd
)
− max

0≤j≤J

(
gj(X(n)

j )− Y (n)
j

))2
]

≤ 1
N

N∑
n=1

E max
0≤j≤J

[(
Yj,n,Nd − Y

(n)
j

)2
]
,

where we used ( 1
N

∑N
n=1 an)2 ≤ 1

N

∑N
n=1 a

2
n in the first inequality and

|max
j
aj −max

j
bj | ≤ max

j
|aj − bj |

in the second one. Since (Yj,n,Nd−Y
(n)
j ) is an (F (n)

j )-martingale, Doob’s L2 inequality yields

E max
0≤j≤J

[(Yj,n,Nd − Y
(n)
j )2] ≤ 4E[(YJ,n,Nd − Y

(n)
J )2],

such that we get

(E [VN,Nd − V0])2 ≤ 4
N

N∑
n=1

E
[(
YJ,n,Nd − Y

(n)
J

)2
]
.
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Proceeding as follows

E
[(
YJ,n,Nd − Y

(n)
J

)2
]

= E
[
Var

[
YJ,n,Nd |X

(n)
·

]]
= E

[
Var

[
J∑
l=1

1
Nd

Nd∑
nd=1

vl(X(nd,n)
l )

∣∣∣∣∣X(n)
·

]]

= E

[
J∑
l=1

1
Nd

Var
[
vl(X(n)

l )|X(n)
l−1

]]

= 1
Nd

J∑
l=1

E [Var [vl(Xl)|Xl−1]] ,

we obtain the upper bound

(E [VN,Nd − V0])2 ≤ 4
Nd

J∑
l=1

E [Var [vl(Xl)|Xl−1]] . (6.41)

Next, due to the almost sure property of the Doob martingale

Y
∗,(1)
j :=

j∑
l=1

(
v∗l (X(1)

l )− E
[
v∗l (X(1)

l )|X(1)
l−1

])
,

we derive

Var [VN,Nd ] = 1
N

Var
[

max
0≤j≤J

(
gj(X(1)

j )− Yj,1,Nd
)]

= 1
N

Var
[

max
0≤j≤J

(
gj(X(1)

j )− Yj,1,Nd
)
− max

0≤j≤J

(
gj(X(1)

j )− Y ∗,(1)
j

)]
≤ 1
N

E max
0≤j≤J

[(
Y
∗,(1)
j − Yj,1,Nd

)2
]
,

for the second term in (6.40). Again using Doob’s L2 inequality together with the fact that
martingale differences are uncorrelated, we get

Var [VN,Nd ] ≤ 4
N

E
[(
Y
∗,(1)
J − YJ,1,Nd

)2
]

= 4
N

Var
[
Y
∗,(1)
J − YJ,1,Nd

]
= 4
N

J∑
l=1

Var
[
v∗l (X(1)

l )− vl(X(1)
l )− E

[
v∗l (X(1)

l )|X(1)
l−1

]
+ 1
Nd

Nd∑
nd=1

vl(X(nd,1)
l )

]

= 4
N

J∑
l=1

E

[
Var

[
v∗l (X(1)

l )− vl(X(1)
l ) + 1

Nd

Nd∑
nd=1

vl(X(nd,1)
l )|X(1)

l−1

]]

= 4
N

J∑
l=1

(
E
[
Var

[
v∗l (X(1)

l )− vl(X(1)
l )|X(1)

l−1

]]
+ E

[
Var

[
1
Nd

Nd∑
nd=1

vl(X(nd,1)
l )|X(1)

l−1

]])

= 4
N

J∑
l=1

(
E [Var [v∗l (Xl)− vl(Xl)|Xl−1]] + 1

Nd
E [Var [vl(Xl)|Xl−1]]

)
.

Finally, we use

E [Var [v∗l (Xl)− vl(Xl)|Xl−1]] ≤ E
[
(v∗l (Xl)− vl(Xl))2

]
,
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which gives us

Var [VN,Nd ] ≤ 4
N

J∑
l=1

(
E
[
(v∗l (Xl)− vl(Xl))2

]
+ 1
Nd

E [Var [vl(Xl)|Xl−1]]
)
. (6.42)

Proof of Theorem 6.2

The expansion obviously holds for p = 1 and j = 0. Indeed, due to the orthonormality and
completeness of the system (φk), we have

f(X∆,∆) = E [f(X∆,∆)] +
∑
k≥1

a1,1,k(x0)φk(ξ1)

with

a1,1,k(x0) = E [f(X∆,∆)φk (ξ1)] ,

provided E
[
|f(X∆,∆)|2

]
< ∞. Denote Gj = σ(ξ1, . . . , ξj), j = 1, 2, . . ., and set G0 = triv.

Suppose that (6.7) holds for p = q and all j < q. Let us prove it for p = q + 1. Again due
to the orthonormality and completeness of the system (φk), we get by conditioning on Gq,

f(X∆,p∆) = E [f(X∆,p∆)|X∆,q∆] +
∑
k≥1

ap,q+1,k(X∆,q∆)φk(ξq+1), (6.43)

where

ap,q+1,k(x) = E [f(X∆,p∆)φk(ξq+1)|X∆,q∆ = x] ,

which is the required statement in the case j = q. Notice that we used

E [f(X∆,p∆)φk(ξq+1)| Gq] = E [f(X∆,p∆)φk(ξq+1)|X∆,q∆] , k ∈ N0,

in (6.43), which can be shown analogously as in the proof of Theorem 4.11. Now the r.v.
E [f(X∆,p∆)|X∆,q∆] is Gq-measurable and square integrable. Hence

E [f(X∆,p∆)|X∆,q∆] = E [f(X∆,p∆)|X∆,j∆] +
∑
k≥1

q∑
l=j+1

ap,l,k(X∆,(l−1)∆)φk(ξl)

for j < q with

ap,l,k(X∆,(l−1)∆) = E [E [f(X∆,p∆)| Gq]φk(ξl)| Gl−1] = E [f(X∆,p∆)φk(ξl)| Gl−1]

= E
[
f(X∆,p∆)φk(ξl)|X∆,(l−1)∆

]
.

Proof of Theorem 6.3

It holds

E
[
Var

[
f(X∆,p∆)− M̃j,p,K

∣∣X∆,j∆
]]

= E
[∣∣Mj,p − M̃j,p,K

∣∣2] .
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We have

E
[∣∣Mj,p − M̃j,p,K

∣∣2] = E


∣∣∣∣∣∣
∞∑

k=K+1

p∑
l=j+1

ap,l,k(X∆,(l−1)∆)φk(ξl)

∣∣∣∣∣∣
2


+ E


∣∣∣∣∣∣
K∑
k=1

p∑
l=j+1

(
ap,l,k(X∆,(l−1)∆)− ãp,l,k(X∆,(l−1)∆)

)
φk(ξl)

∣∣∣∣∣∣
2


=
∞∑

k=K+1

p∑
l=j+1

E
[
a2
p,l,k(X∆,(l−1)∆)

]
+

K∑
k=1

p∑
l=j+1

E
[(
ap,l,k(X∆,(l−1)∆)− ãp,l,k(X∆,(l−1)∆)

)2]
.

It follows from (2.4)

E
[(
ap,l,k(X∆,(l−1)∆)− ãp,l,k(X∆,(l−1)∆)

)2]
≤c̃F 2Q(log(Nr) + 1)

Nr
+ 8 inf

ψ∈span(ψ1,...,ψQ)
E
[∣∣ap,l,k(X∆,(l−1)∆)− ψ(X∆,(l−1)∆)

∣∣]2
for some universal constant c̃, since

Var
[
f(X∆,p∆)φk (ξl)|X∆,(l−1)∆ = x

]
≤ F 2

and ∣∣E [f(X∆,p∆)φk (ξl)|X∆,(l−1)∆ = x
]∣∣ ≤ F.

Proof of Proposition 6.4

By the same calculation as the one leading to (6.5) (see the proof of Theorem 6.1), we get

E
[
|ṼN,Nd,K − V∆,0|2

]
≤ 4
Nd

(
1 + 1

N

) J∑
l=1

E
[
Var

[
vl(X∆,l∆)− M̃l,K |X∆,(l−1)∆

]]
+ 4
N

J∑
l=1

E
[
|v∗l (X∆,l∆)− vl(X∆,l∆)|2

]
. (6.44)

It remains to apply Theorem 6.3 to the first term on the right-hand side.
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Chapter 7

Outlook

The approaches described in the previous chapters motivate the question if it is possible to
obtain a further reduction of the complexity (in particular a better complexity order than
ε−1.75). In the following sections we specify some ideas how the algorithms for strong and
weak schemes can be generalised or enhanced.

7.1 Scheme with Gaussian increments and weak conver-
gence of second order

Consider a m̃-dimensional Brownian motion (Wt)t∈[0,T ], where m̃ := m(m+1)
2 , and define

∆jW = Wj∆ −W(j−1)∆, j = 1, . . . , J . Further, define

∆jW
y :=

(
∆jW

1, . . . ,∆jW
m
)> ∈ Rm,

∆jW
z :=

(
∆jW

m+1, . . . ,∆jW
m̃
)> ∈ R

m(m−1)
2 ,

as well as the m×m-matrix W̃j = (W̃ il
j )i,l=1,...,m with entries W̃ ii

j = −
√

∆ for i = 1, . . . ,m,
W̃ 12
j = ∆jW

m+1, W̃ 13
j = ∆jW

m+2, . . . , W̃
(m−1)m
j = ∆jW

m̃ and W̃ li
j = −W̃ il

j for l > i.
Regarding the discretisation, we use the function Φ∆(x, y, z) from (4.17), but in this case
with Gaussian instead of discrete increments, that is

X∆,j∆ = Φ∆

(
X∆,(j−1)∆,

∆jW
y

√
∆

,
W̃j√

∆

)
. (7.1)

Below we simply write

X∆,j∆ = Φ∆

(
X∆,(j−1)∆,

∆jW
y

√
∆

,
∆jW

z

√
∆

)
=: Φ(2)

∆

(
X∆,(j−1)∆,

∆jW√
∆

)
(7.2)

rather than (7.1), since we even know all entries of W̃j , when ∆jW
z is known. Our aim is

to find out criteria, by means of an example, that justify a weak convergence of order 2 for
this scheme, analogously to the second order weak scheme.

Example 7.1. Consider the following SDE for d = 1, m = 2 and t ∈ [0, 1]

dXt = sin(Xt) dW 1
t + cos(Xt) dW 2

t , X0 = 0.
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Further, consider the function f(x) = x2. Via Itô’s formula, we can derive the expectation

E [f(XT )] =
T∫

0

E
[
sin2(Xt) + cos2(Xt)

]
dt = T = 1.

The function Φ∆ in (7.2) has the following form in this example

Φ∆(x, y, z) = x+
√

∆(sin(x)y1 + cos(x)y2)
(

1− ∆
4 +

√
∆
2 (cos(x)y1 − sin(x)y2)

)
− ∆z

2 .

(7.3)

Hence, in contrast to previous examples with m > 1 (see e.g. Section 3.5.1), the variable
z ∈ R

m(m−1)
2 in Φ∆(x, y, z) is present here. Notice that z is introduced for the second order

weak scheme, since we need to approximate the integrals

Y 12
∆,j :=

tj∫
tj−1

W 1
s dW

2
s ,

Y 21
∆,j :=

tj∫
tj−1

W 2
s dW

1
s ,

which arise from the Itô-Taylor expansion (cf. [38]) of the Itô process

XT = X0 +
T∫

0

µ(Xt) dt+
T∫

0

σ(Xt) dWt = X0 +
J∑
j=1

 tj∫
tj−1

µ(Xt) dt+
tj∫

tj−1

σ(Xt) dWt

 .

In case of the second order weak scheme, the approximations for Y 12
∆,j and Y 21

∆,j are given
through (cf. (4.14) and (4.17))

Ỹ 12
∆,j := ∆

2 (ξ1
j ξ

2
j + V 12

j ),

Ỹ 21
∆,j := ∆

2 (ξ1
j ξ

2
j − V 12

j ),

where ξj and Vj are defined in Section 4.2. Notice that it is not sufficient to approximative
Y 12

∆,j and Y 21
∆,j by means of ξ1

j , ξ
2
j only (see e.g. the moment conditions below). Therefore,

we need to include Vj as an additional random variable which is independent of ξ1
j , ξ

2
j .

Regarding our setting in this section, we have the approximations

˜̃Y 12
∆,j := 1

2(∆jW
1∆jW

2 + ∆jW
3
√

∆),

˜̃Y 21
∆,j := 1

2(∆jW
1∆jW

2 −∆jW
3
√

∆).

One can easily show that the following relations hold for the first three moments

E
[
Y il∆,j

]
= E

[
Ỹ il∆,j

]
= E

[ ˜̃Y il∆,j

]
= 0,

E
[(
Y il∆,j

)2] = E
[(
Ỹ il∆,j

)2] = E
[( ˜̃Y il∆,j

)2
]

= ∆2

2 ,

E
[(
Y il∆,j

)3] = E
[(
Ỹ il∆,j

)3] = E
[( ˜̃Y il∆,j

)3
]

= 0,
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where i, l ∈ {1, 2}, i 6= l. Moreover, it holds for the covariances

Cov
[
Y 12

∆,j , Y
21
∆,j
]

= Cov
[
Ỹ 12

∆,j , Ỹ
21
∆,j
]

= Cov
[ ˜̃Y 12

∆,j ,
˜̃Y 21
∆,j

]
= 0.

For the fourth moments, we have

E
[(
Y il∆,j

)4] = 7∆4

4 > E
[( ˜̃Y il∆,j

)4
]

= 9∆4

8 > E
[(
Ỹ il∆,j

)4] = ∆4.

That is, for both the approximation with Gaussian increments and the approximation with
discrete random variables, we have a deviation to the “true” fourth moment. Since we
cannot see a reason why it should only work for the second order weak scheme, we expect
that the scheme described at the beginning of this section will give us a weak convergence
of second order, too (provided that the functions f, µ, σ are smooth enough, cf. Proposi-
tion 4.12). Below we estimate the weak convergence order in this example numerically via
simulation. For each ∆ = 2−i (and thus J = 2i), i = 0, 1, 2, 3, simulate N = 107 indepen-
dent paths via (7.2) and (7.3). Based on 500 independent repetitions of the SMC approach,
compute the estimator for E [f(X∆,T )]. Then we have an estimator for the bias, that is
E [f(XT )− f(X∆,T )], and get the estimated weak convergence order by regressing log |Bias|
vs. log(∆). To illustrate the importance of including the random variables ∆jW

3, which
we insert for the variable z in Φ∆(x, y, z), we additionally run a similar simulation with a
modified function

Φ̃∆(x, y) := x+
√

∆(sin(x)y1 + cos(x)y2)
(

1− ∆
4

)
+ ∆

2 sin(x) cos(x)(y2
1 − y2

2).

Note that it holds (cf. (4.17))

Φ∆ (x, y, z)− Φ̃∆ (x, y) =∆
2 (L1σ12(x)(y1y2 + z) + L2σ11(x)(y1y2 − z))

=∆
2
(
− sin2(x)(y1y2 + z) + cos2(x)(y1y2 − z)

)
,

where σ11(x) = sin(x), σ12(x) = cos(x) and the operators L1,L2 are defined in (4.16). Hence,
in Φ̃∆ we ignore the terms of Φ∆, where the variable z and thus the random variable ∆jW

3

is used. As can be seen from Figure 7.1, we observe numerical weak convergence orders
of 2.02 for the complete scheme with Φ∆ (what we expected) and 1.06 for the incomplete
scheme with Φ̃∆ (actually no better order compared to the Euler scheme (3.5)).

Next, we want to derive control variates based on the scheme (7.2). As in Chapter 3, we
focus on series and integral approaches and assume that we actually achieve weak conver-
gence of second order for this scheme.

7.1.1 Series approach

Since the results in Subsection 3.1.2 are not restricted to the Euler scheme and only require
the structure (3.4), we can apply our above setting there. More precisely, we use the function
Φ(2)

∆ (x, y), where y ∈ Rm̃ (see (7.2)), to obtain

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

∑
k∈Nm̃\{0m̃}

aj,k(X∆,(j−1)∆)
m̃∏
i=1

Hki

(
∆jW

r

√
∆

)
.
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Figure 7.1. Comparison of schemes with Gaussian increments.

Hence, we apply the results in Subsection 3.1.2 for a m̃-dimensional Brownian motion rather
than a m-dimensional one. Note that it will not be sufficient to derive a control variate
which gives us a variance of order ∆ as in (3.21). If this was the case, we would have got
the condition under N testing paths 1

NJ . ε2 and thus for the cost C & NJ & ε−2 which
is no improvement compared to the integral approach. Let us recall Remark 3.13. Similar
to the control variates defined in (3.31) we assume to obtain under some assumptions on
f, µ, σ for the variance

Var
[
f(X∆,T )−Mser,(2)

∆,T

]
. ∆2, (7.4)

where

M
ser,(2)
∆,T :=

J∑
j=1

2∑
l=1

∑
k∈Nm̃0∑m̃

i=1
ki=l

aj,k(X∆,tj−1)
m̃∏
i=1

Hki

(
∆jW

i

√
∆

)
. (7.5)

Notice that the number of terms for computing the control variate Mser,(2)
∆,T is O(Jm̃2) =

O(Jm4). For the series approach in Chapter 3 which is based on the Euler scheme, we
have O(Jm) terms.

When performing a complexity analysis, we get the same complexity as for the RCV
approach (for second order weak schemes) in Chapter 4, that is

C � ε−
11dν+2(p+1)(7ν+8d)
2dν+4(p+1)(2ν+d)

in the case of piecewise polynomial regression. This is due to the fact that we have the same
constraints as in (4.35) (apart from the additional one 1

J2N . ε2, which comes from (7.4),
and is the only inactive one, similar to the condition 1

JN . ε2 in Chapter 3, cf. Remark 3.21
on page 33). Hence, on the one hand we can achieve a better complexity order than the
integral approach in Chapter 3, because we can go beyond the complexity order ε−2 for
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sufficient large p, ν. On the other hand the achieved complexity is not better than for the
RCV and RRCV approaches (for each of the three approaches we get a complexity of order
ε−1.75 when p, ν → ∞). Moreover, we will have the same numerical problems as for the
RCV and original series approaches (cf. Subsection 3.4.3). Consequently, there is no reason
why one should prefer this series approach based on the control variate Mser,(2)

∆,T to the
numerically more stable RRCV approach (and also SRCV approach).

7.1.2 Integral approach

In this subsection we will not go so much into detail as in Section 3.1.3. Below we just give
a description how one could theoretically achieve a complexity of order ε−1.5−δ for arbitrary
small δ > 0. Consider again the scheme (7.2) with function Φ(2)

∆ (x, y). Let us now introduce
the function u∆ : [0, T ]× Rd+m̃ → R via

u∆(t, x, y) ≡ E
[
u∆

(
tj ,Φ(2)

∆

(
x,
y +Wtj −Wt√

∆

)
, 0
)]

, t ∈ [tj−1, tj),

u∆(T, x, 0) ≡ f(x).

Suppose that we can obtain a similar representation formula as in (3.17), that is

f(X∆,T ) = E[f(X∆,T )] +
J∑
j=1

∞∑
l=1

∆l/2
∑
k∈Nm̃0∑m̃

i=1
ki=l

∂lu∆(tj−1, X∆,tj−1 , 0)
∂yk1

1 · · · ∂y
km̃
m̃

m̃∏
i=1

Hki

(
∆jW

i

√
∆

)
√
ki!

under some assumptions on f, µ, σ. Moreover, suppose that it holds for the variance

Var
[
f(X∆,T )−M int,(2)

∆,T

]
. ∆2,

where the control variate

M
int,(2)
∆,T :=

J∑
j=1

2∑
l=1

∆l/2
∑
k∈Nm̃0∑m̃

i=1
ki=l

∂lu∆(tj−1, X∆,tj−1 , 0)
∂yk1

1 · · · ∂y
km̃
m̃

m̃∏
i=1

Hki

(
∆jW

i

√
∆

)
√
ki!

is under some conditions equivalent to Mser,(2)
∆,T in (7.5). In contrast to the series approach

in Subsection 7.1.1 we cannot straightforwardly implement M int,(2)
∆,T . While we have con-

ditional expectation formulas for the functions aj,k, we do not have for the derivatives
∂lu∆(tj−1,X∆,tj−1 ,0)

∂y
k1
1 ···∂y

km̃
m̃

. Note that the conditional expectation formulas for the integral ap-
proach in Chapter 3 are all based on the Euler scheme. Since we need to consider the
second derivatives of u∆ w.r.t. y, we also have to simulate the second derivative processes
δ2X (cf. the one-dimensional case in Subsection 3.1.4) so that the dimension of the simulated
processes is d+ d2 + d3. In Chapter 3 we only have to simulate X and δX for the integral
approach which leads to dimension d+ d2. It is natural to expect that the discretisation of
δX has the form (cf. (3.24))

δiX∆,tj =
d∑
k=1

δiXk
∆,tj−1

∂

∂xk
Φ(2)

∆

(
X∆,tj−1 ,

∆jW√
∆

)
,
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where i ∈ {1, . . . , d}, j ∈ {1, . . . , J}, δiX∆,tj ∈ Rd and δX∆,0 = Id. Regarding the one-
dimensional case d = m = 1, we expect the following discretisation for δ2X (cf. (3.33))

δ2X∆,tj = δ2X∆,tj−1

∂

∂x
Φ(2)

∆

(
X∆,tj−1 ,

∆jW√
∆

)
+ δX2

∆,tj−1

∂2

∂x2 Φ(2)
∆

(
X∆,tj−1 ,

∆jW√
∆

)
.

However, to implement M int,(2)
∆,T , one still has to derive conditional expectation formulas for

∂lu∆(tj−1,X∆,tj−1 ,0)

∂y
k1
1 ···∂y

km̃
m̃

, where only the processes X, δX, δ2X are involved. Provided that those
were available, we would have obtained the complexity of order

C � ε−
9dν+2(p+1)(9d+6ν)
2dν+4(p+1)(d+2ν)

√
|log(ε)| (7.6)

for piecewise polynomial regression. That is, for p, ν →∞ the complexity tends to the order
ε−1.5 (the log-term is ignored). Similar to the integral approach in Chapter 3 we would
have assumptions that the conditional variances and conditional expectations are bounded
by some constants (cf. assumptions (A1)–(A2) in Subsection 3.4.1). Then we would get,
due to

E

(∆l/2
m̃∏
i=1

Hki

(
∆jW

i

√
∆

))2 = ∆l,

where
∑m̃
i=1 ki = l ∈ {1, 2}, that the variable J , which comes from the number of terms for

the control variate M int,(2)
∆,T , is not present in the variance (cf. the proof of Theorem 3.19 on

page 31)
Var

[
M

int,(2)
∆,T − M̃ int,(2)

∆,T

]
.

Here M̃ int,(2)
∆,T denotes the estimated control variate. This would lead to the following con-

straints (cf. (3.44))

max
{

1
J4 ,

1
J2N

,
Sd log(Nr)
NrN

,
1
N

(
R

S

)2(p+1)
,

1
NRν

}
. ε2,

from which we would get the complexity order (7.6). (Note that the cost of the algorithm is
still O(JSd max {Nr, N}).) In contrast, for the series approach in Subsection 7.1.1 we are
not able to avoid J completely. This is due to the assumption that the conditional variance
is bounded (cf. assumption (B1) in Subsection 3.4.2)

sup
x∈Rd

Var
[
f(X∆,T )

m̃∏
i=1

Hki

(
∆jW

i

√
∆

) ∣∣X∆,tj−1 = x

]
≤ Σ, (7.7)

where Σ > 0, which gives us the constraints (cf. (3.54))

max
{

1
J4 ,

1
J2N

,
JSd

NrN
,
J

N

(
R

S

)2(p+1)
,

1
NRν

}
. ε2. (7.8)

If the bound in (7.7) was of the form Σ∆, we would have obtained the same limiting complex-
ity ε−1.5 for p, ν →∞. (Note that the factor J is only of importance in the third constraint
in (7.8) for the limiting case p, ν →∞.) However, an upper bound of order ∆ is not realistic
so that we can only assume the boundedness by a constant Σ. (Counterexample for smooth
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and bounded functions: d = m = 1, J = 1, ∆ = T , µ(x) = 0, σ(x) = 1, f(x) = cos(x), hence
XT = X∆,T = WT and Var

[
f(X∆,T )WT√

∆

]
= E

[
cos2(WT )W

2
T

∆

]
= 1

2 (1 + e−2∆(1 − 4∆)) =
O(1).) Indeed, we also have such a condition for the integral approach (similar to assumption
(A1) in Subsection 3.4.1). But in this case we estimate other functions, namely ∂lu∆(tj−1,x,0)

∂y
k1
1 ···∂y

km̃
m̃

instead of aj,k(x). When comparing this functions, the factor ∆l/2 (see (3.18)) eliminates
the factor J as mentioned above.

7.2 Extensions for weak schemes

7.2.1 Computational enhancements

A comparison of the control variates in Chapters 3–5 points out that the number of terms
in the control variates for weak schemes is higher than for strong schemes. In particular, we
have O(Jm) terms for the series approach, which is related to the Euler scheme (cf. (3.10)),
and O(J(2m − 1)) terms for the weak Euler scheme (cf. (4.4)). This is due to the fact
that we use an optimal control variate for the weak Euler scheme, resulting in zero variance
(cf. (4.5)), while for the Euler scheme we truncate the series at some level, resulting in a
variance of order ∆ (cf. Theorem 3.9).

It is possible to derive truncated control variates with less terms for weak schemes, too.
The idea is as follows: show that it holds for the weak Euler scheme, under some assumptions
on the functions f, µ, σ,

sup
x∈Rd

|aj,r,s(x)| . ∆, r ≥ 2, (7.9)

where aj,r,s is defined in (4.3). We deduce (7.9) by considering higher order Taylor expansion
for qj(Φ∆(x, y)), when r ≥ 2 (cf. proof of Theorem 4.18, where we used an expansion of
zero order for the second order weak scheme). That is, we have for any y ∈ {−1, 1}m

qj(Φ∆(x, y)) (7.10)

=qj(x+ µ(x)∆) +
√

∆
d∑
k=1

∂

∂xk
qj(x+ µ(x)∆)

m∑
i=1

σki(x)yi

+ ∆
d∑

k,l=1
(2− δk,l)

1∫
0

(1− t) ∂2

∂xk∂xl
qj(x+ µ(x)∆ + t

√
∆σ(x)y) dt

m∑
i=1

σki(x)yi
m∑
i=1

σli(x)yi,

where δ·,· is the Kronecker delta. This gives us for r ≥ 2 (cf. (4.8))

aj,r,s(x) = 1
2m

∑
y∈{−1,1}m

qj(Φ∆(x, y))
r∏
o=1

yso

= ∆
2m

d∑
k,l=1

(2− δk,l)
∑

y∈{−1,1}m

(
m∑
i=1

σki(x)yi
m∑
i=1

σli(x)yi
r∏
o=1

yso

·
1∫

0

(1− t) ∂2

∂xk∂xl
qj(x+ µ(x)∆ + t

√
∆σ(x)y) dt

 ,
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due to (cf. (7.10))

1
2m

∑
y∈{−1,1}m

yi

r∏
o=1

yso = E

[
ξij

r∏
o=1

ξsoj

]
= 0 (7.11)

for all i ∈ {1, . . . ,m}. (Note that (7.11) does not hold for r = 1.) Applying Theorem 2.5, we
obtain (7.9), provided that all functions σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, are bounded and
all functions f, µk, σki are twice continuously differentiable with bounded partial derivatives
up to order 2.

In Chapter 4 we derived upper bounds of order
√

∆ for all r ∈ {1, . . . ,m} (see assump-
tion (A2) on page 63 for the second order weak scheme), which was sufficient to get a com-
plexity reduction to order ε−2.5 at best for the weak Euler scheme (see Subsection 4.4.3).
However, when applying the following control variate with only O(Jm) terms (cf. (4.4)
and (3.10))

M
(1),trunc
∆,T :=

J∑
j=1

m∑
i=1

aj,1,ei(X∆,(j−1)∆)ξij , (7.12)

where the superscript “trunc” comes from “truncated”, we get (cf. (3.21))

Var
[
f(X∆,T )−M (1),trunc

∆,T

]
= Var

 J∑
j=1

m∑
r=2

∑
1≤s1<...<sr≤m

aj,r,s(X∆,(j−1)∆)
r∏
i=1

ξsij

 . ∆.

(7.13)

Note that the assumption (A2) on page 63 would have led to a variance of order 1 for
such a control variate (i.e. the resulting complexity was worse then the one for SMC,
namely O(ε−3)). As for the stricter condition (7.9) and thus a variance of order ∆ in (7.13),
we obtain the same complexity order in terms of ε as for the control variate (4.4) withO(J(2m−
1)) terms. That is, theoretically we have neither an improvement, nor a detriment. Never-
theless, from numerical point of view, we can save a lot of computing time for large m when
using (7.12), without losing too much variance reduction effect. As a generalisation of (7.9),
it is natural to expect that it holds, under additional smoothness conditions on f, µ, σ,

sup
x∈Rd

|aj,r,s(x)| . ∆r/2, r ∈ {1, . . . ,m} .

However, we would still obtain a variance of order ∆, as in (7.13).
As for the second order weak scheme, we expect to get

sup
x∈Rd

|aj,o,U1,U2(x)| ≤ ∆|U2|+|K2|+ 1
2 |K1|, (7.14)

where aj,o,U1,U2 is defined in (4.19) and K1 := {r ∈ U1 : or = 1}, K2 := {r ∈ U1 : or = 2}.
Here, a reasonable truncated control variate, including O(Jm(m + 1)) = O(Jm2) terms,
would have the form (cf. (4.20))

M
(2),trunc
∆,T :=

J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|≤1

∑
o∈{1,2}U1

aj,o,U1,U2(X∆,(j−1)∆)
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj ,

(7.15)
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such that

Var
[
f(X∆,T )−M (2),trunc

∆,T

]
(7.16)

= Var


J∑
j=1

∑
(U1,U2)∈A

|U2|+|K2|+ 1
2 |K1|>1

∑
o∈{1,2}U1

aj,o,U1,U2(X∆,(j−1)∆)
∏
r∈U1

Hor (ξrj )
∏

(k,l)∈U2

V klj

 . ∆2.

Again, we expect to get a control variate, that is (7.15), which saves a lot of computing time
without getting a worse complexity order. Hence, we can also achieve a complexity of or-
der ε−1.75 at best by using the control variate (7.15), provided that (7.14) holds. Let us note
that a variance of order ∆ instead of ∆2 in (7.16) would result in a worse complexity than
for the control variate (4.20) with O(J(3m2

m(m−1)
2 − 1)) terms, namely worse than O(ε−2).

We also notice that a control variate similar to (7.15) with O(Jm2) terms should also result
in the case of Gaussian increments, where we mentioned in (7.5) and (7.15) “more conser-
vative” control variates with O(Jm4) terms, that is, under some less strict assumptions.

Let us remark that the above control variates M (1),trunc
∆,T (weak Euler scheme) and

M
(2),trunc
∆,T (second order weak scheme) will significantly reduce the computing time for the

RCV and SRCV approaches, while the reduction is not so big for the RRCV approach (see
the discussion in Subsection 5.3.2, where we intuitively also used a truncated control variate).
Regarding the SRCV approach, the truncation leads to cost of order JQmax

{
NrQ,Nm

2}
(cf. Remark 5.3). Even though in the training phase there is another cost term of order
JQcmm

2, the factor cm (2m in case of the weak Euler scheme and 3m2
m(m−1)

2 in case of the
second order weak scheme) is no longer present in the highest order cost terms (in contrast
to the truncated RRCV approach, where the cost is still of order JQmax {NrQ,Ncm}). As
a consequence, the EGCD problem, mentioned in Remark 5.10, cannot be avoided in the
truncated RRCV approach (as for the RCV and SRCV approaches, it may be theoretically
possible, see Section 7.4).

To illustrate the truncation effect on the truncated RCV approach, we recall the example
in Subsection 4.5.2 with d = m = 5. Again we perform global regressions, but in this case we
set p = 2, that is, we have cp,d + 1 = 22 basis functions in each regression. Under the same
ε-values as in Subsection 4.5.2 we choose (compare with the formulas in Subsection 4.4.1 for
the “limiting” case ν →∞)

J =
⌈
ε−0.5⌉ , Nr = 128 · dε−1.6176e, N = 2048 · dε−1.6176e.

The constants inNr andN are chosen such that they nearly satisfy the relationNr(cp,d+1) ≈
N . Similar to Subsection 4.5.2 we estimate the numerical complexity for the RCV approach
(based on the “complete control variate” (4.20)) by means of 100 independent simulations
and compare it with the ones of the SMC and MLMC approaches, for which we use the same
output as before. In addition, we perform analogous simulations for the RCV approach
based on the truncated control variate (7.15). Note that we again do not consider the
random vectors Vj ∈ R

m(m−1)
2 in both cases, since they do not affect the discretisation

scheme (4.17). This gives us only m(m+3)
2 = 20 terms in (7.15) compared to (3m − 1) = 242
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terms in (4.20). As can be seen from Figure 7.2, the estimated numerical complexity is
about RMSE−1.91 for the RCV approach with complete control variate and RMSE−1.82 for
the RCV approach with truncated control variate. Beyond the numerical complexities we
observe that the truncation effect for the RCV approach is huge. While we have again poor
results for the complete control variate (i.e. in this region of ε-values the RCV approach
is numerically outperformed by the SMC and MLMC ones), the approach with truncated
control variate works best (even better than the SMC and MLMC approaches).

-10 -8 -6 -4 -2 0
0

5

10

15

Figure 7.2. Numerical complexities of the RCV, SMC and MLMC approaches with and
without truncation.

More details of the above truncation results can be found in [11].

7.2.2 Further complexity reduction for the RRCV approach

Regarding the complexity analysis of the RRCV approach for the second order weak scheme
in Section 4.4.2, we used the inequality (4.39) to obtain an upper bound for E‖ãj,o,U1,U2 −
aj,o,U1,U2‖2L2(P∆,j−1) by means of E‖q̃j − qj‖2L2(P∆,j). Note that we perform regressions for
the estimation of functions qj in case of the RRCV approach. By means of (4.39), we
obtain (4.40), that is

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) ≤ c̃
(
Σ∆ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr
(7.17)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2BνR

−ν ,

where c̃ is a universal constant. When comparing (7.17) with the upper bound for the RCV
approach, namely (4.30), we observe that the first term, including the constant Σ, is of
a better order in case of the RRCV approach (due to assumption (A1)) and the second
term, including the constant A2, is of a better order in case of the RCV approach (due to
assumption (A2)). Let us for simplicity first assume that the set of chosen basis functions
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ψ1, . . . , ψQ is optimal, such that

inf
g∈ΨQ

‖qj − g‖2L2(P∆,j) = 0,

where ΨQ = span ({ψ1, . . . , ψQ}). Then the upper bound (7.17) simplifies to (cf. (2.5))

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) ≤ c̃
(
Σ∆ +A2(logNr + 1)

) (p+d
d

)
Sd

Nr
(7.18)

for the RRCV approach. That is, even though we have optimal basis functions, the upper
bound in (7.18) is O(1).

Let us consider the Taylor expansion for the estimated function ãj,o,U1,U2(x) in case of
the RRCV approach. Similar to the expansion for aj,o,U1,U2 (see (4.55)), we get (by means
of (4.22), with a being replaced by ã and q being replaced by q̃)

ãj,o,U1,U2(x) (7.19)

=
∑

y∈{−
√

3,0,
√

3}m

z∈{−1,1}
m(m−1)

2

pm(y)go,U1,U2(y, z)
d∑
k=1

Φ̃k∆(x, y, z)
1∫

0

∂

∂xk
q̃j(µ∆(x) + tΦ̃∆(x, y, z)) dt,

where go,U1,U2 , pm(y), Φ̃∆(x, y, z) and µ∆ are defined on page 75. As in the proof of
Theorem 4.18, we get that the function Φ̃∆ is of order

√
∆, provided that all functions

σki, k ∈ {1, . . . , d}, i ∈ {1, . . . ,m}, are bounded and twice continuously differentiable with
bounded partial derivatives up to order 2, and provided that all functions µk, k ∈ {1, . . . , d},
are bounded and continuously differentiable with bounded partial derivatives. That is,
under the additional assumption that all basis functions ψ1, . . . , ψQ (and thus q̃j , too) are
continuously differentiable with bounded partial derivatives, we obtain that ãj,o,U1,U2 is of
order

√
∆ (similar to aj,o,U1,U2). Note that the above condition on the basis functions is

satisfied for the piecewise polynomial partitioning approach, since we perform regressions
on compact sets, on which the polynomials are both smooth and bounded.

Apparently, the inequality (4.39) is too strict when deriving an upper bound for the
RRCV approach. There is evidence that E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) should be of
order ∆, given perfect basis functions. Indeed, the estimated function q̃j is only O(1), but
due to the structure within ãj,o,U1,U2 (see again (4.22)), the O(1) terms will be removed
such that there remain only O(

√
∆) terms (under the above assumptions). Note that this

argumentation does not necessarily apply to the SRCV approach, since the estimates of
the functions qj(Φ∆(x, y, z)) result from different paths for different y, z. Hence, it is not
clear how far the O(1) terms will be removed in this case. As for the RCV approach, it is
reasonable that the upper bound in (4.30) is O(1) (also under optimal basis functions), due
to the variance assumption (A1) on page 63.

As an generalisation, we expect intuitively an upper bound of the form (cf. (7.17))

E‖ãj,o,U1,U2 − aj,o,U1,U2‖2L2(P∆,j−1) ≤ c̃
(
Σ∆ +A2∆(logNr + 1)

) (p+d
d

)
Sd

Nr
(7.20)

+ 8C2
h

(p+ 1)!2d2−2/h

(
Rd

S

)2p+2
+ 8A2∆BνR−ν
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for the RRCV approach, if the set of basis functions is not optimal.
Provided that (7.20) holds, we would derive a complexity of order (cf. (7.6))

ε−
6dν+(p+1)(6ν+9d)
dν+2(p+1)(2ν+d)

√
|log (ε)|, (7.21)

which tends to ε−1.5 when p, ν →∞ (the log-term is ignored). Compared to the complexity
in (4.42) (derived under the inequality (4.39)), the one in (7.21) would give us indeed further
complexity reduction.

As for the weak Euler scheme, we would obtain a complexity of order (cf. complex-
ity (3.46) of the integral approach in Chapter 3)

ε−
8dν+2(p+1)(4ν+5d)
dν+2(p+1)(2ν+d)

√
|log (ε)|,

which tends to ε−2 when p, ν → ∞ and when we ignore the log-term again. Similar to the
second order weak scheme, we have an improvement compared to the complexity under the
inequality (4.39), which cannot go beyond O(ε−2.5) (see (4.43)).

7.3 Nonhomogeneous stochastic differential equations

Consider the following (nonhomogeneous) Itô stochastic differential equation (cf. (1.1))

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x0 ∈ Rd, (7.22)

where the functions µ : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×m also depend on the
variable t ∈ [0, T ]. Note that the articles [45] and [49], mentioned in Chapter 1 concerning
the (homogeneous) SDE (1.1), have already dealt with this subject. It turned out that the
optimal control variate has a similar form as in (1.8), namely

M∗T :=
T∫

0

∇xu(t,Xt)σ(t,Xt) dWt, (7.23)

where
∇xu(t, x) = E [∇f(XT )δXT |Xt = x ] δX−1

t ,

and the derivative processes (δXi
t)t∈[0,T ] ∈ Rd, i ∈ {1, . . . , d}, come from the SDEs (cf. [45])

dδiXt =
d∑
k=1

δiXk
t

[
∂µ(t,Xt)
∂xk

dt+ ∂σ(t,Xt)
∂xk

dWt

]
, δiXk

0 =
{

1, i = k

0, i 6= k
. (7.24)

Below we describe which form the above mentioned discretisation schemes have in case of
nonhomogeneous SDEs.

7.3.1 (Weak) Euler scheme

As in Chapter 3, we consider independent Gaussian increments ∆jW
i, i = 1, . . . ,m, j =

1, . . . , J , for the Euler scheme such that

X∆,tj = Φ∆

(
tj−1, X∆,tj−1 ,

∆jW√
∆

)
, j = 1, . . . , J. (7.25)
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The function Φ∆ : [0, T ]× Rd+m → Rd is given as follows

Φ∆(t, x, y) = x+ µ(t, x)∆ + σ(t, x)
√

∆y. (7.26)

As for the integral approach, the discretisation scheme for the derivative processes is given
through (cf. (3.24))

δiX∆,tj = δiX∆,tj−1 +
d∑
k=1

δiXk
∆,tj−1

[
∂µ(tj−1, X∆,tj−1)

∂xk
∆ +

∂σ(tj−1, X∆,tj−1)
∂xk

∆jW

]
.

(7.27)

Hence, the Euler scheme works similarly to the one for homogeneous SDEs. It is natural
to expect representations of the same form as in (3.6) and (3.17), which result in control
variates as in (3.10) (series approach) and (3.30) (integral approach), where σ(X∆,tj−1) is
replaced by σ(tj−1, X∆,tj−1). Thus, under additional assumptions, i.e. smoothness on the
functions µ, σ in the variable t, we should obtain similar complexity reduction effects.

In case of the weak Euler scheme, we have

X∆,tj = Φ∆(tj−1, X∆,tj−1 , ξj), j = 1, . . . , J, (7.28)

with Φ∆ given by (7.26) and the i.i.d. random vectors ξj follow the same distribution as in
Section 4.1. Analogously, we expect to obtain a control variate as in (4.4).

7.3.2 Second order weak scheme

The weak scheme of second order has the following form

X∆,tj = Φ∆(tj−1, X∆,tj−1 , ξj , Vj), j = 1, . . . , J, (7.29)

where the independent random variables ξij , i ∈ {1, . . . ,m}, and V ilj , 1 ≤ i < l ≤ m, follow
the same distribution as in Subsection 4.2. Let us denote by Σ: [0, T ] × Rd → Rd×d the
following function (cf. (4.15))

Σ(t, x) = σ(t, x)σ(t, x)>,

which also depends on the time t in contrast to the homogeneous case. Moreover, we define
(cf. (4.16) and [38, Section 5.3])

L0g(t, x) := ∂

∂t
g(t, x) +

d∑
k=1

µk(t, x) ∂g
∂xk

(t, x) + 1
2

d∑
k,l=1

Σkl(t, x) ∂2g

∂xl∂xk
(t, x), (7.30)

Lrg(t, x) :=
d∑
k=1

σkr(t, x) ∂g
∂xk

(t, x), r = 1, . . . ,m,

i.e. the operator L0 also contains the derivative w.r.t. the variable t. The r-th coordinate
Φr∆, r = 1, . . . , d, in the simplified order 2 weak Taylor scheme of is now given by the formula
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(cf. (4.17))

Φr∆(t, x, y, z) = xr +
m∑
k=1

σrk(t, x) yk
√

∆ (7.31)

+

µr(t, x) + 1
2

m∑
k,l=1

Lkσrl(t, x)(ykyl + zkl)

∆

+ 1
2

m∑
k=1

[
L0σrk(t, x) + Lkµr(t, x)

]
yk ∆3/2 + 1

2L
0µr(t, x) ∆2.

Similar to the (weak) Euler scheme we expect to obtain, under additional assumptions on
the functions f, µ and σ, a control variate of the form (4.20).

7.4 Open questions

Beyond the ideas mentioned above, there are some open questions concerning the previous
chapters, which may be of interest for future research:

(i) Error propagation for the RRCV and SRCV approaches.
Strictly speaking, we did not entirely consider the implemented algorithms in case of the
RRCV and SRCV approaches for the complexity analysis. Apart from the fact that we
implemented a global regression instead of piecewise polynomial partitioning connected with
truncation, the recursion and its error propagation is not present. That is, the estimation
at time tj−1, j ∈ {1, . . . , J}, depends on the regression estimates at time tj . For instance,
assumption (A1) for the RRCV approach, which is given as follows

sup
x∈Rd

Var
[
qj(X∆,j∆) | X∆,(j−1)∆ = x

]
= O(∆)

in Chapter 4, should have the form

sup
x∈Rd

Var
[
q̃j(X∆,j∆) | X∆,(j−1)∆ = x

]
= O(∆),

where q̃j is the estimate of the function qj . Hence, it is an interesting goal to include the
overall error propagation in the complexity analyses for the RRCV and SRCV approaches.
Is it then possible to derive as good complexities as in Chapters 4 and 5?

(ii) EGCD problem.
Which algorithms will, in contrast to piecewise polynomial partitioning, satisfy assump-
tions (2.6) and (5.23), such that the integral, series, truncated RCV and truncated SRCV
approaches do not suffer from the EGCD problem (similar to the SMC and MLMC ap-
proaches)?

(iii) More efficient algorithms for the pricing of Bermudan options.
In Chapter 6 we have implemented an analogue of the series approach in Chapter 3. Since re-
gressions for approaches of that types (i.e. with factors of independent and zero-expectation
random variables within the conditional expectation) may become instable, it is natural to
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expect that there are algorithms which are numerically more stable and convincing for the
dual nested Monte Carlo method, too (even though the results in Section 6.6 are satisfying).

(iv) Extension to further path dependent options.
To what extent can optimal control variates be derived for Barrier options (e.g. based
on [20] and [22]), Asian options, etc.? For a detailed overview of financial derivatives, see
e.g. [26], [31] and [60].

(v) Control variates for “tamed” Euler schemes.
Will our derived control variates also work for tamed Euler schemes (see [32] and [34]), which
are useful in cases where the Euler scheme does not converge (cf. [33])?

(vi) When to use which algorithm?
In theory, the complexity analysis leads to a solution, where both parts of the MSE, namely
the squared bias and the variance, are of the same order ε2. Numerically, not only the
order, but also the value itself, is of interest. That is, there are examples, where the MSE
is dominated by the squared bias (and the variance is much smaller) and vice versa. In
our experiments we observed (for all methods apart from the dual nested Monte Carlo one,
where mainly the bias is reduced, see Remark 6.6) that our variance reduction approaches
based on control variates (in particular the RRCV, SRCV and integral ones) work mostly
fine compared to the SMC and MLMC approaches, when the MSE is dominated by the
variance (that is, the variance is much bigger than the squared bias). In this case, the
variance reduction leads to a significant reduction of the MSE. For the contrary situation,
when the squared bias is much bigger, variance reduction is still nice, but does not really
affect the overall error (MSE) and thus our approaches might perform less efficiently than
the SMC and MLMC ones. Note that the bias cannot be estimated directly in general (as in
the chosen examples in this work), since the “true” value E [f(XT )] is not known (otherwise,
we would not need to run simulations). Hence, it would be very interesting to find out
criteria, in which situations it is advantageous to use our approaches and when should one
rather prefer the MLMC or SMC approaches.
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