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Zusammenfassung v

Zusammenfassung

In der vorliegenden Dissertation werden regressionsbasierte Monte-Carlo-Verfahren fiir dis-
kretisierte Diffusionsprozesse vorgestellt. Diese Verfahren beinhalten die Konstruktion von
geeigneten Kontrollvariaten, die zu einer signifikanten Reduktion der Varianz fiihren. Da-
durch kann die Komplexitit des Standard-Monte-Carlo-Ansatzes (673 fiir Schemen erster
Ordnung und £~2% fiir Schemen zweiter Ordnung) im besten Fall reduziert werden auf eine
Ordnung von =% fiir ein beliebiges § € [0,0.25), wobei ¢ die zu erzielende Genauigkeit
bezeichnet. In der Komplexitiatsanalyse werden sowohl die Fehler, die auch beim Standard-
Monte-Carlo-Ansatz auftreten (Diskretisierungs- und statistischer Fehler), als auch die aus
der Schéitzung bedingter Erwartungswerte mittels Regression resultierenden Fehler bertick-
sichtigt. Dariiber hinaus werden verschiedene Algorithmen hergeleitet, die zwar zu einer
dhnlichen theoretischen Komplexitét fithren, jedoch numerisch gesehen bei der Regressions-
schiatzung unterschiedlich stabil und genau sind. Die Effektivitdt dieser Algorithmen wird
anhand von numerischen Beispielen veranschaulicht und mit anderen bekannten Metho-
den verglichen. Zudem werden geeignete Kontrollvariaten fiir die Bewertung von Bermuda-
Optionen sowie amerikanischen Optionen basierend auf einer dualen Monte-Carlo-Methode
hergeleitet. Auch hierbei ergibt sich eine signifikante Komplexitédtsreduktion, sofern die zu-

grunde liegenden Funktionen gewisse Glattheitsannahmen erfiillen.
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Chapter 1

Introduction

Monte Carlo methods belong to the class of algorithms, which use random simulations, and
have become quite popular in various applications. In particular, realisations of random
variables are generated via a “pseudorandom number generator” to solve specific problems,
e.g. the estimation of an integral via averaging those realisations. In terms of a practical
implementation, a random number generator is represented by a non-random sequence of
real numbers between 0 and 1, initialised by a changing seed. Obviously, simulations on
a different set of random numbers lead to different outputs. The more samples are drawn
from the distribution, the smaller becomes the variance (statistical error) of the estimator.
Since Monte Carlo methods are easily implementable, they can provide the evaluation of
very complicated quantities in a simple way. The usual measure of “goodness” of a Monte
Carlo algorithm, its numerical complezity, is defined as the minimal cost, in terms of the
desired accuracy ¢, needed to achieve mean squared error (MSE) at most of order 2. Let us
consider the example of numerical integration via Monte Carlo simulation. Here the MSE
converges to zero when the number of samples tends to infinity. More precisely, the MSE is
of order 1/N, where N is the number of samples. The requirement that the MSE is at most
of order €2 necessitates that N should be of order e 2. The cost being of order N is then

2 and is not affected by the dimensionality

also of order e~2. Thus, the complexity here is €~
of the problem, that describes the number of variables over which we shall compute the
integral in this case. In contrast, many deterministic (non-random) approaches, such as
the rectangle and trapezoid methods, become too expensive and thus inefficient, as the
dimensionality increases. In such approaches the complexity is typically of the form e~¢¢,
where c is a positive constant and d is the dimension. This phenomenon of the complexity
growing exponentially in the dimensionality (with the basis e~!, where we recall that ¢ is
the desired accuracy) is often called “curse of dimensionality” (see e.g. [21]). Thus, Monte
Carlo methods are especially useful in high-dimensional situations, since they do not suffer
from the curse of dimensionality.

Typically one does not use Monte Carlo methods in its plain form, but rather considers
variance reduction methods. The aim of such a variance reduction is to reduce the statistical

error of the plain Monte Carlo method, leading to an acceleration of the convergence (see



e.g. [46]). Clearly, a reduction of the variance is desirable, since it shall also reduce the
complexity: either, for similar cost one shall achieve a smaller error, or, to achieve similar
errors, less cost shall be required.

For a detailed overview of Monte Carlo methods, including several variance reduction
techniques, see e.g. [19], [21], [23] and [46].

Main goal. The starting point of this thesis is the problem to compute the expecta-
tion E[f(X7)], where T is a fixed time horizon, f is a given continuous function on R?
and (X¢)se[o,7) is a d-dimensional diffusion process, defined on a filtered probability space
(4 F, (Ft)eepo,m),P), with natural filtration (F;)icpo,r), by the It6 stochastic differential
equation (SDE)

dX; = u(X,)dt + o(X;)dW,;, Xo=1x9 € R, (1.1)

with (W;)ie[o,7) being a standard m-dimensional (F;)¢c[o,7]-Brownian motion. The functions
p:RT — R? and o: R? — RY*™ are assumed to be Lipschitz continuous, such that the
SDE (1.1) has a strong solution, and pathwise uniqueness holds. In fact, the expectation

E [f(X7)] can alternatively be computed by solving the following parabolic Cauchy problem:

%Jrcu:o on [0,T) x RY, (1.2)
w(T,z) = f(z) for x € RL (1.3)

Here, L is the differential operator associated with the equation (1.1)

d ou 1 & 9%u
(Lu)(t,x) = Zm(fc)%(t, z) + 5 Z (UUT)ij(f)M(tal’)’

where o7 denotes the transpose of o. Under appropriate conditions on p, o and f, the
solution of the Cauchy problem (1.2)—(1.3) is unique in the class of solutions satisfying
certain growth conditions, and the following Feynman-Kac stochastic representation (see
Section 5.7 in [37], which is based on [16] and [36]) holds

u(t, z) = E[f(X¢..(T))],

where X, , denotes the solution started at time ¢ in point x. Moreover we have (see e.g.
Newton [49])

u(t, X;) = E[f(X7)|X:],  as.

for t € [0, T, where we simply write X; rather than X ., (¢). That is, for the computation of
E [f(X7)] = u(0,x0) one can use both Monte Carlo and deterministic algorithms. However,
the deterministic approach related becomes inefficient for high dimensional problems (d, m >
5).

The standard Monte Carlo (SMC) approach for estimating E[f(Xr)] consists of three

steps: first an approximation X for Xp is constructed via a time discretisation of the
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equation (1.1), since the exact distribution of X is usually not known. Next N independent
copies of the approximation X7 are generated and finally a Monte Carlo estimate Vy is

defined as an average of the values of f at simulated points

Vi = NZf( (”)). (1.4)

As for the complexity of the SMC approach, we would like to have
E|(Vw -Elf(X0)] 5 &%

where € is again the accuracy to be achieved. Rewriting the MSE leads to two types of
errors: a discretisation error (below we will rather write “bias”) E[f(X7)] — E[f(Xr)] and
a Monte Carlo (statistical) error, which result from the substitution of E[f(X7)] with the

sample average V. More precisely, it holds

E[(Vw — E[f(X2)])*] = (E[Viv = £(X2)])? + Var[Vi]

= (E[f(X7) - f(XT)])2 + W'

A discretisation scheme has (numerically) weak convergence of order o > 0 if, for all func-
tions f that belong to a certain class, it holds |E[f(X7)] — E[f(Xr)]| < ch®, where h
denotes the norm of the partition (in case of an equidistant partition its grid size) of [0, T
on which the discretisation scheme is constructed, and c is a positive constant that does not
depend on h (but depends on f). As a consequence, the complexity of the SMC approach

is, independently of the dimensionalities d and m, of order
Csmc < Eizié. (15)

If the solution of (1.1) at point T" could be computed at cost one, then the complexity would

have been of order 2

. Regarding the weak convergence, in the literature they consider
somewhat different classes of functions for different discretisation schemes. For instance, for
a popular method of discretisation, the so called Fuler scheme, the class of functions f is
typically the class of four times continuously differentiable functions with partial derivatives
of order four having polynomial growth (then the functions themselves have polynomial
growth).

From now on we focus on a specific variance reduction approach, namely the method
of control variates, which are very useful in our setting, since they can be conveniently
constructed. In particular, one looks for a random variable ¢ with E¢ = 0, that can be

simulated, such that the variance of the difference f(X7) — ¢ is significantly reduced, i.e.,
Var[f(X7) — € < Var[f(X7)].

Then one uses the sample average
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instead of (1.4) to approximate E[f(X7)].

As for the construction of potential control variates, it holds (cf. [49])

F(X7) = E[f(X7)] + Mz, as. (1.7)
where
M= / Voult, X)) o(Xy) dW, (1.8)
0

and where V u(t,z) denotes the gradient of u w.r.t. x.

The use of control variates for solving (1.1) via Monte Carlo path simulation approach
was initiated by Newton [49] and further developed in Milstein and Tretyakov [45]. Since
the function w(t,z) is unknown, the control variate M7 cannot be directly computed. This
is why Milstein and Tretyakov [45] proposed to use regression for getting a preliminary
approximation for u(¢, x) in a first step. In fact, the construction of the appropriate control
variates in the above two papers essentially relies on the identity (1.7) implying that the

zero-mean random variable M7 can be viewed as an optimal control variate, since
Var[f(Xp) — M7] = Var[Ef(X7)] = 0.

However, due to the fact that we only can simulate from the distribution of the discretised
process and not from the exact one, we will derive proper control variates reducing the
variance of f(X7) rather than the one of f(Xr). As a by-product our control variates can
be computed in a rather simple and constructive way. More importantly, we are able to get
a sufficient convergence order of the resulting variance to zero at low cost, which leads to
a significant complexity reduction as compared to the SMC algorithm. Another prominent
example of Monte Carlo algorithms with this property is the multilevel Monte Carlo (MLMC)
algorithm of [18], where one uses a telescoping sum to estimate E[f(X7)] at different levels,
that is, with different number of time steps. It turned out that the complexity of the MLMC
algorithm can at best reduced down to order e 2. Further interesting approaches that reduce
the complexity via deterministic quadrature-based algorithms can be found in [47] and [48].
Our aim is to derive an efficient algorithm with complexity rate better than e~2. This is
achieved by using regression-type algorithms for the construction of control variates. As
opposite to the SMC approach, our method takes advantage of the smoothness in u, o
and f (which is needed for nice convergence properties of regression methods) and hence is
especially efficient for smooth problems.

This dissertation is organised in the following way: in Chapter 2 we focus on regression
estimates and smoothness conditions on general discretisation schemes. Chapter 3 describes
the construction of control variates for schemes with Gaussian increments. The construction
of control variates for weak approximation schemes is discussed in Chapter 4, where the
schemes of first and second order are analysed. Chapter 5 contains a stratified regression-
based variance reduction approach for weak schemes. Control variates for the pricing of

early-exercise options are conducted in Chapter 6. Finally, we give an outlook in Chapter 7.
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Chapter 2

Setup

In this chapter we derive connections and results which will be very important in the sequel.
In Section 2.1 we focus on Monte Carlo regression estimates. More precisely, we sum-
marise regression error bounds for both a general framework and a specific approach, namely
the piecewise polynomial regression. As for a detailed overview of regression approaches,
see e.g. [24], [25], [35] and [54].
Section 2.2 presents a technical result in terms of a general class of discretisation schemes.

For an overview of various discretisation schemes, see e.g. [4], [29], [30], [32] and [38].

2.1 Regression estimates and its convergence rates

This section is partly based on the paper [7].
We consider a (d + 1)-dimensional random vector (X,Y) where X is R-valued and Y
is R-valued. Suppose that we want to find an approximation which is “close to” the R-valued

function
a(z) =E[Y|X = x]. (2.1)

Below we present Monte Carlo algorithms which give us regression estimates for a. Moreover,

we present L2-upper bounds of the regression error.

2.1.1 Monte Carlo regression

Let us choose ) real-valued functions 1, ...,1%¢ on R? and simulate a big number! N, of
samples from the distributions of X and Y. In what follows these N, samples are denoted
by Dn,:

Dy, = {(X<">,Y<">) n = 1,...,NT}.

n the complexity analyses in the chapters below we show how large N is required to be in order to

provide an estimate within some given tolerance.



6 2.1. Regression estimates and its convergence rates

Let 8 = (B1,...,Bq) be a solution of the following least squares optimisation problem:

N, Q 2
argmingego » [V = Brah(X™)
k=1

n=1

Define an estimate for the function a via
Q
a(z) = a(z,Dn,) = > _ Prbi(x), = €RE
k=1

The intermediate expression d(x, Dy, ) in the above formula emphasises that the estimates
a of the functions a are random in that they depend on the simulated samples. The cost of
computing 3 is of order N, Q?, since 3 is of the form 3 = B~!b with

1 &
By = A ;wk (X)) gy (X ™) (2.2)
and

N,.
]' - n n
by ::E;wk(ﬂ Ny ™),

where k,l € {1,...,Q}.
In what follows, we use the notation Py for the distribution of X. In particular, we will

work with the corresponding L2-norm:

19l2p. = / ¢*(z) Px (dr) = E[¢* (X)]
Rd

We assume that, for some positive constants X and A, it holds
(A1) sup,epa VarlY|X =z] < ¥ < o0,
(A2) sup,cpa |a(z)] < A < oco.
Next we denote by a the truncated regression estimate, which is defined as follows:

B . a(z) if |a(z)] < A,
a(x) := Taa(x) :== (2.3)
Asgna(z) otherwise.

We again emphasise that, in fact, a(x) = a(z, Dy,.), that is, the estimates a of the functions
a depend on the simulated samples.
Under (A1)-(A2) we obtain the following L?-upper bound

~ 2 ~ 2 Q . 2
Ella — al|72py) < (2 + A%(log N, + 1)) A + 8g1€{1lij lla = gllZ2 @) (2.4)
where Ug := span ({91, ...,%¢}) and ¢ > 0 is a universal constant (cf. Theorem 11.3 in [24]).

Remark 2.1. When applying Theorem 11.3 in [24], we obtain actually
- . Q . N
Ella — a||%2(PX) < émax {%, A%} (log N, + 1)M + 8g.lgr\lny lla — 9”%2(1&5{)- (2.5)

However, the maximum in (2.5) is in fact a sum of two terms A%(log N, + 1) and X so that

the logarithm is only included in one term (see proof of Theorem 11.3 in [24]).
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Let us introduce the assumption that the function a can be well approximated by the

functions from W¢ in the sense that there are constants x > 0 and D, > 0 such that

Dy

i —ql? < ==, )
o= gllEey) < o (26)

Note that this is a natural condition to be satisfied for good choices of ¥g.
In what follows, we perform a detailed analysis for the specific choice of the basis func-

tions, which leads to the so-called piecewise polynomial partitioning estimates.

2.1.2 Error bounds for piecewise polynomial regression

There are different ways to choose the basis functions 1, ...,%g. In this section we describe
piecewise polynomial partitioning estimates and present L2-upper bounds for the estimation
error. We fix some p € N, which will denote the maximal degree of polynomials involved in
our basis functions. The piecewise polynomial partitioning estimate of a works as follows:
consider some R > 0 and an equidistant partition of [—R, R]d in S¢ cubes Ki,...,Kga,
where S € N denotes the number of equidistant subintervals of [—R, R]. Further, con-
sider the basis functions v 1, ..., ¥k, , With k € {1, cee Sd} and ¢p g = (p‘gd) such that
Yr,1(), ..., ke, ,(x) are polynomials with degree less than or equal to p for € K} and
Yri(r) = ... = Y, (x) = 0 for x ¢ K. Then we obtain the least squares regression
estimate G(z) for z € R? as described in Subsection 2.1.1, based on Q = S, 4 = O(S%p?)
basis functions. In particular, we have a(z) = 0 for any = ¢ [—R, R]”. We note that the
cost of computing @ is O(N,.S%p??) rather than O(N,.52?p??) due to a block diagonal matrix
structure of B in (2.2). An equivalent approach, which leads to the same estimator a(z),
is to perform separate regressions for each cube Ki,..., Kgs. Here, the number of basis
functions at each regression is of order p? so that the overall cost is of order N,S%p??, too.

For x = (x1,...,74) € R and h € [1, 00), we will use the notations

d 1/h
o= (R ll) el = ol
1=

)

Let us define the operator D¢ as follows

P
Dog(a) : 0'“lg(x)

= T 3x§td ) (2.7)

where g is a real-valued function, o € N¢ and |-| means the cardinality of a set. For s € Ny,
C > 0 and h € [1,00], we say that a function g: R? — R is (s + 1,C)-smooth w.r.t. the

norm |-|, whenever, for all a with |a| = 2?21 a; = s, we have
|D%g(x) = Dg(y)| < Clz —yln, =,y €RY,

i.e. the function D%g¢ is globally Lipschitz with the Lipschitz constant C' with respect to the
norm | - |, on R? (cf. Definition 3.3 in [24]). We assume that, for some constant h € [1, o0]

and some positive constants Cj, v, B,,, it holds:

(A3) ais (p+ 1,Ch)-smooth w.r.t. the norm | - |5,
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(A4) P(|X|o > R) < B,R™ for all R > 0.

Remark 2.2. Let us note that it is only a matter of convenience which h to choose in (A3)

because all norms | - |, are equivalent.

Let @ be the piecewise polynomial partitioning estimate of a described in the beginning of

this section. By @ = T'4a we denote again the truncated estimate.

Lemma 2.3. Under (A1)-(A4), we have

(P-‘rd) gd
Ella — al72@y) <& (X + A*(log Ny + 1)) dT (2.8)
8C2 Rd\?PH)
— [ — 8A*B,R™Y,
MRS ( g ) *
where ¢ > 0 is again a universal constant.
Remark 2.4. Notice that the terms in the second line of (2.8) are of order
R 2(p+1)

(S) +R7Y, (2.9)

provided that we only track R and S and ignore the remaining parameters, such as p.? Let
us assume that both terms in (2.9) are of the same order. Then we get R = O(S%)
and thus R = O(S _%) Together with the fact that the overall number of basis
functions Q is of order S%, we have R™Y = O(Qiﬁ). Hence, when in the framework
of the piecewise polynomial regression approach the assumptions (A3)—(A4) are satisfied,

then the assumption (2.6) in Subsection 2.1.1 is satisfied with

_ 2w(p+1)
T A +2p 1) (2.10)

The only difference between the frameworks in Subsections 2.1.1 and 2.1.2 is that the
cost in the more general framework in Subsection 2.1.1 is of order N,Q?, while the cost in
case of the piecewise polynomial regression is O(N,p??S?) = O(N,p?Q), that is O(N,.Q) for
fixed p.

Below we focus on discretisation schemes for the It6 process (X¢):epo,77- In particular,
using the notation (2.1), Y is related to a real-valued function which is evaluated at the
discretised process at some time t;, and X is given by the discretised process at some time
t;, where 0 <t; <t; <T.

2.2 Smoothness theorem for a general setting of dis-

cretisation schemes

To begin with, let J € N denote the time discretisation parameter, we set A := % and

consider discretisation schemes defined on the grid {jA:j=0,...,J}.

2In the complexity analyses in the chapters below we need to have R, S — oo to make the statistical

error tend to zero, whereas the remaining parameters are fixed.
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Let us consider a scheme, where d-dimensional approximations Xa ja, j = 0,...,J,

satisfy Xa o = zo and

Xaja=Pa (Xa-naré), i=1,...,J, (2.11)

for some Borel measurable functions @ : R¥*™ — R?, where m > m, and for m-dimensional
iid. random vectors &; = (f}, o
and Var [5;] =1foralli=1,...,m,7=1,...,J. Moreover, let Gy be the trivial o-field

and G; = o(&1,...,&), 7 =1,...,J. In the chapters below we will focus on different kinds

,f}h)—r with independent coordinates satisfying E [f;] =0

of discretisation schemes, resulting in different convergence behaviour.

We now define the function Gj ;(x) for J >1> 35 >0,z € R9, as follows

Gl’j(x) = CI)A,Z o q)A,lfl 0...0 @A’j+1(.’lﬁ), [ > j, (2.12)

Gjx)=z, =74,

where ®a j(z) = P (x,&) for I =1,...,J. By (I)l&l? k € {1,...,d}, we denote the k-th
component of the function ®4 ;. Note that it holds

gj(z) = E[f(Xar)|Xaa =2] =E[f(G;,;(z))] (2.13)

with f introduced in Chapter 1.
In the next theorem we present some smoothness conditions on ¢;, which will be used

several times in the chapters below.

Theorem 2.5. Let K € {1,2,3}. Suppose that f is K times continuously differentiable with
bounded partial derivatives up to order K, ®a(-,&) is K times continuously differentiable
(for any fized £), and that, for anyn € N, 1 > j, k€ {1,...,d}, « € Nd with 1 < |a| < K,
it holds

14 AnA), o] = ap =1
Gz”é 1+ 4.8, ol = o (2.14)

E | (D@} 141 (Gry(2)))"
‘ [( Ag1(Gr(@)) B, A, (Jaf > 1)V (ar #1)

with probability one for some constants A,, > 0, B,, > 0. Moreover, suppose that for any
ni,na €N, a,a €Nd 1< |a| <K, 1< |a| <K, a+#a, it holds

[E [ (D04 141 (Gr(@) ™ (D70K 11 (G (2)))™

G]| < Cormatd  (215)

for some constants Cy, n, > 0. Then we obtain for all j € {0,...,J} that q; is K times

continuously differentiable with bounded partial derivatives up to order K.

2.3 Proofs

First of all, we require the following multivariate generelisation of Lemma 11.1 in [24] to

prove Lemma 2.3:
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Lemma 2.6. Let a: [0,1) = R be a (p+ 1,C)-smooth function w.r.t. the norm |-|,,, where
deN, h €[l,00] and p € Ng. Further, let g be a piecewise polynomial of degree less than

or equal to p w.r.t. an equidistant partition of [0, 1]d in 8% cubes. Then it holds

C d p+1
sup |a(x) —9(@)| £ —F——< | =5 . 2.16
2w e o = gy (5) (2.16)

Proof. Consider the Taylor expansion of the function a up to the degree p around
€ (0,1)%

n 9"m (2 d .
HZO 11+§d n(ll,...,ld>le—[1($i—zi) 7
where (11,.7.,1(,,) = ﬁ is the multinomial coefficient. The remainder term has the form
1 | p+l o (2+t:c—z d
a(x) —ap (x Zj/ (1—1t)" (h,...,ld) 5. L oxk H '_Zz
0 bt +ld p+1 L 1

At first, we will focus on the case p > 0. For g = a,, we have

a(z) —g(z) = a(z) — ap—1 (x) — ! Z ( P )%()ﬁ(m—z‘)li
g Pt p! e l,...,la) ozl 8xfidl 1 L
1
-t oot = (7 )<8pa<z+t<x—z>> oy )
(p—1! ) bt Ty N la ozl - 9ly ozl .- 9zly
d
H(.ﬁi— ) dt]
i=1

Since a is (p + 1, C)-smooth, we obtain

C / p—1 p a ol
a(m)—g(mﬂsM|x—z|h0/t<1—t> DR R R

li+...+la=p
C e
(p +1 (Z |z — L|> < m |z — Z|ID+1 art=1/m, (2.17)

As for the remaining case p = 0, (2.17) also holds due to the (p + 1, C)-smoothness assump-

tion.

Next, we consider the equidistant partitioning of [0, 1]¢ into S¢ cubes Ky, ..., K g« with
Ufil Kj = [0,1]%. Let yx be the midpoint of K. We then have SUP,epe, |7 — Yrlp = %
for all k € {1, cee Sd}. This finally yields (2.16). O

Proof of Lemma 2.3

The first term in (2.8) comes directly from the first term in (2.4) with @ being replaced by
(pji'd) S?. Define the set

Vg p 1= span ({wk,l’ oWk, at R E {1, .. .,Sd}}) .
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We split the integral in (2.5) into two parts:

la = glli2e) = / (a(z) - g())* Px (dx) + / a*(z) Px (dw), (2.18)

[-R,R]¢ R4\ [-R,R]¢

since g(z) = 0 for z ¢ [-R,R]* and g € Vg p. The second integral in (2.18) refers to the
case | X|oo > R, where we simply use Assumptions (A2) and (A4) to get

/ 0 (z) Px(dz) < sup |a(@)[2 P(|X|w > R)
T d
R4\[-R,R]% o

< A’B,R7".

Regarding the first integral in (2.18), we obtain by Lemma 2.6

in / (a(0) - g(2))* Px(da) < inf  sup la(z) — gla)?

g€¥s p 9€¥s.p pc[-R,R]?

[_RvR]d
_ C}2L @ 2p+2
S @2 p+nr S '

Notice that, since we consider [~R, R]* instead of [0,1], the expression ;= in (2.16) is

Rd

replaced by % because sup,¢ g, v — yxl, = " with yr being the midpoint of K. O

Proof of Theorem 2.5

Let us begin with the case K = 1. We have for some k,r € {1,...,d}
d d
9 9 ok 9 s
oz, Gl+1,j(37) = E oz, (I)A’IH(Gl’j(x))axr l,j(x) = ;:1%

s=1

and G;H (@) = 3%‘1’2 (x,&j+1), where Giyyjand @3, s € {1,...,d}, denote the s-th
component of the functions Gi41,; and ®. Hence
<SE [+ 2wy + (d—1)72)

<aa Giraale )>2 =

7,8 a S "
Py = E Kaxr l+1,j($)) } )

then, due to the assumptions (2.14) and (2.15), we get for [ =j+1,...,J — 1,

E

Denote

pl+1 01 < (14 A2A)pp 2 1t Z (Cl 1A Pl,’§,1 +pp5q) + (d—1)B2Apy’s 1)
s#k

Further, denote

Pling = Zpl-i-l n,1»

then we get

Prir21 < (1+A2A)pro 1 +2(d—1)Cr1Ap o + (d— 1)232AP£2,1-
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This gives us
P1T+1,2,1 <(1+ HIA)/’IT,M

for some constant k; > 0, leading to

Pros < (1+ ﬁlA)l—f—lpgﬂm, l=j+1,...,J—1, (2.19)

2
Pi121 = ZE ( )) ] :
which is bounded due to (2.14). Together with (2.19) we obtain the boundedness of {7, , :
J € N} and hence the boundedness of

where

) SN )
pa )] £ B[ GG
2
< Z l(f GJJ( ))> p9,82,1
for all r € {1,...,d}, since f is assumed to be continuously differentiable with bounded

partial derivatives.
Let us proceed with the case K = 2. We have, due to (ZZ=1 ap)™ < dnl ZZ=1 ay,

()]

< E v+ ) (4907 +6(d — Din? +4(d — 1) 92 + (d — 1)%41)
s#k

and thus, due to 4a3b < 3a* 4+ b* and 2a°b? < a* + b?,

Jk k ] r.k ,8
p?+1,4,1 < (1+AA pl 4 1+ Z (03 1A( 39?,4,1 + PZ4,1) +3(d - 1)02,2A(P1,4,1 + p;471)
s#k

+(d — 1)201,3A(plr,’z’f,1 + 3/’;,75,1) +(d—1)° BiAppy A 1)
This gives us

Plera1r < (1+A4A)pr 41 +4(d—1)C51Ap7 41 +6(d — 1>202,2Aﬂzr,471
+4(d = 1)°Cr3Ap; 40 + (d = 1) BaAp] 4 ;.

Hence, we obtain
Pre1a1 < (14 K2A)pryq,

for some constant ko > 0, leading to

piar < (14 K2A) 7 e l=G+1..,J -1,

( AN §g+1)>41 :

where

P;+1,4 1= Z E
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Next, we have for some k,o,7 € {1,...,d}
0? k d 0 1 92
MGHLJ'(I) = ; EqJAJH(GW(:C))MGlJ(x)

a S a u
+SUZ D107, 8 Al+1(Gl,J( ))T%Gz,j(ﬂf)aﬁ% 1)

d
Z 15+ Z 72,s,u
=1 s,u=1
2 2
and T?a% G‘;_‘_Lj(x) = T?a% D% (2,&54+1). Hence
02 2
E|l—GF, .
((%‘Tﬁxo L (x))
d d
< E e+ @mams+(@d=1nt) +2 Y motsutd Y m3.
s#k s,u,v=1 s,u=1

Denote

7,0,5 82 s "
Piiing = =E [(890 O Gl+1,j($)> ] )
then we get, due to

E(XY 2] <2VEXVENVTVEZ] <E[X*] + VENIVE[Z]

<E[X?]+ (E[Y'] +E[27).

as well as assumptions (2.14) and (2.15),

7,0,k 7,0,k 7,0,8 7,0,8
Piins < (L+AD)p)gy +) (Ol APy +P755) + (d = 1)B2Apz,2,2)
s#k

+ Z Ci11A (Pzrgzv"‘ (P;,’Zl"‘szl))

s,u,v=1

+d2ZBQ (pl41+PlZ1>

s, u=1

Further, denote
d
p;fl,n,Q = Zl P;fi?n,zv
then we get for [ =j+1,...,J -1,
p;f1,2,2 < (1+ A2A)P1T:20,2 +2(d - 1)C1, 1AP1 22T (d—1) B2AP1 2,2

1 1, . o
+d3Cy 1A (Pl 2215 (Pl 41t P4 1)) + d4BQA§ (Praq1+ Pl,4,1) .

This gives us

pl+1 22> < (1+K3A)pys 22t k1A,
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for some constants k3, k4 > 0, leading to

pl22 (14 rgA) =7~ 1/’;4(-)122"‘“57 l=j+1,...,J-1,

where x5 > 0 and

d 82 2
P12 = Z]E [(M‘DZ ($75j+1)) ] .
s=1 T o
Thus, we obtain the boundedness of

& g .
axraxoqj(l')' < ZE‘Msf(GJJ(x))M)GSJJ(x)

s=1
d o i) i)
+Z:E G 1 (Gs(0) e (0) -G )

IA
M=
&
1
/—\

PGyl >>)Z] e

02 2 — —
(ax o) | i

for all r,0 € {1,...,d}, since f is assumed to be twice continuously differentiable with

+ZE

s, u=1

bounded partial derivatives up to order 2.
Let us proceed with the final case K = 3. We have

(%Gﬁl,j(@) 61

< E v+ ) (6787 +15(d — 1)yy2 +20(d — 1)*9iy2 + 15(d — 1)°43 v
s#k

E

+6(d — 1)* 1 + (d — 1)°49)]

and thus, due to 6a°b < 5a% + b%, 3a%b? < 2a5 + b5 and 2a3b3 < ab + 6,

Sk k
Pirien = (1+Asd)ps,

+ 3 (Coa Gy + 1)+ 5(d = DCa2ACOTE + piig,)
s#k

+10(d — 1)* CB3A(P161 +p151) +5(d -1)° C24A(pl61+2pl61)
+(d — 1)4C175A(p;’é€,1 + 5/’;}?,1) +(d— ) B6Apl 6 1)

This gives us

Plrie1r < (1+AcA)prg1 +6(d—1)C51A0p7671 +15(d — 1)204,2Aplr,6,1
+20(d — 1)*C3 30p] 6.1 + 15(d — 1)*Coapj g1 + 6(d — 1)°C1 5Ap] 6.4
+(d = 1)°BsApjg.1-



Chapter 2. Setup 15

Hence, we obtain
Plr+1,6,1 <(1+ "%A)Plr,(i,l

for some constant kg > 0, leading to

p;’,ﬁ,l S (1+H6A)l7j71p;+1,6,1’ l :j+]—7"'7‘]7 ]-7

where
6
Pit1,61 = ZE l(q’a x §g+1)) ]

Moreover, we have

)

< B[54 ) (8707 + 28(d — 1)y +56(d — 1)*3272 + 70(d — 1)* 2
s#k
+56(d — 1)* 32 + 28(d — 1)°9;298 + 8(d — 1)°yy] + (d = 1)74%)]

and thus, due to 8a7b < 7a® + b%, 4a5b% < 3a® + b8, 8a®b3 < 5a® + 308 and 2a*b* < ¥ + 18,

< (14 AsA)ppE,

+> (C7,1A(7Pzr,’§,1 +pia1) +7(d— 1)Cs2A(3p] % 1 + s 1)
s#k

.k
Pry1,8.1

+7(d—1)°C5 3A(Gp) %, +3p1m1) +35(d — 1) CaaA(p§, + pp'sy)
+7(d— 1) C5A(3p)8 | + 575 ) +7(d—1)°CasAlp] s 1 + 3p)51)
+(d — 1)601,7A(p?§,1 +7pgq) + (d— 07 BsApg 1)

This gives us
Plrig1 < (1+AgA)prgs +8(d—1)Cr1Apg; +28(d — 1)206,2AP?,8,1
+56(d — 1)*Cs, 3Ap; g1+ 70(d - 1)404,4Apf,8,1
+56(d — 1)°Cs 5Ap] 81+ 28(d — 1)602-,6Aplr,8,1
+8(d—1)7 C17Ap[ g1+ (d — 1)SBSAP1T,8,1-
Hence, we obtain
Priis1 < (1 +K7A)p 515

for some constant k7 > 0, leading to
Proa <+ rrA) 00 gy, I=j+1..J -1,

where

Pit1,81 = ZE l( (z €g+1)>8] :
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Moreover, we have

2 :
E (M)GlJrl,j(x))

< Bty 4D (408 ims +6(d— i und o+ 4(d — 1) nuent  + (d—1)%n1 )

s#k
d d
+ > (4dPn] a2 + 6d%07 03 0 Ad 3 ) A0 M
s,u,v=1 s,u

and thus, due to 4a3bc < 3a* + % (bS —i—cg), 2a2b%c2 < a* + % (b8 —|—cs) and 4ab®c® <
)
r,0,k 7,0,k
Priias < (1+AdA)p s

r,0,k 7,0,8 7,0,k 7,0,8
+Z (03,1A 3ppae +p1an) +3(d—1)Co2A(p))y +pyy5)
s#k

+(d = 1)2C1 3 AG]TE + 3p03) + (d = 1) Baddp]93 )

d
1
s <d203,1A <3p;j4°;; (o + pZ’;1>>
1

S,u,v=

’I"O'U 1 7,8 o, u
+3d°Cy 0 (Pz 12T 5 5 (Pz7’8,1 + Pz,é,1>>
d4C A 7,0,V § 7,5 0,u
+a C13A | oy + 5 \PLs.1 + 03,1

d
1
+d° Y Bidg (ersa + ot

s, u=1

This gives us

Pzrf1,4,2 < (1+A4A)pl42 +4(d - 1)Cs, 1APl42 +6(d—1)°Cy 2Apl42
+4(d - 1) C13Ap1 41 + (d— 1)4B4AP1 4,2

7,0 1 T (e}
+d°C3 1A (3Pl7’4,2 + 3 (pisa + Pl,8,1>>
1
+3d°Cy 0 A <Pl 12T 5 (Pz 8,1t 0ls 1)>

7,0 3
+d"Cy 3A <pl)’4’2 + =

1
5 (Pf,8,1 + P?,sg)) + dSB4A§ (Pf,s,l + P?,s,l) .

Hence, we obtain

Pii1ae S (L +RsA)p) 5 + Ko,

for some constants kg, kg > 0, leading to

pl42 (1+KJ8A)IJ 1p;£142+"€10) l:.7+177']_17
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where k19 > 0 and

7,0
Pit142 = Z I

(55 <x7£j+1>)4] .

Next, we have for some k,o0,r,z € {1,...,d}
02,02,02, Gl“’j(x)
d
0 3 s
= Z37‘1’2,1+1(Gl,j($))m01,j($)
s=1 S T o z

d
0? 92, 9 2 o .
+ Zl prz,lﬂ(Gz,j(w)) (lej(x)(%GlJ(x)JrG () —

x .
0z, 0z, 92,0,  WIN o, b

0 s 0? u
G 0) G o))

S, u=

Y kGG o)L 6L )
et 18x58xu8x Al“ Lt Oz, W g, IV g, I

- Z¢15+ Z ¢2su+ Z w?)suv

s,u=1 s,u,v=1

foid 8
and 0x,.0x,0x ., G;-HJ(x) 0, 0x,0x ., (I) (x §J+1) Hence

bE . ?
<8xr8x08xz Gling (:c))

d
< Elwiwz(2w1,w1,s+<d—1>wis)+2 > it

s#k s,u,v=1

E

d d d
Z wl,ww&s,u,v +2d2 Z 1/’5,5,u +2d3 Z ¢§,s,u,v‘| .

s,u,v,w=1 s, u=1 s,u,v=1

Denote

7,0,2,8 83 3 "
Piying = KWGHLJ‘(@")) } ;

then we get, due to 3a2b%c? < a® + b + c® and

E[XYZU] <2VE[X2]YE[YVE[Z°]VE[US] <E[X?] + {E[YOV/E[Z5]VE[UF]

<E[X] 43 €[] +E[Z) +E V7)),
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as well as the assumptions (2.14) and (2.15),

p;flekS < (1 + AsA p;7§737 + Z (Cl 1A p : ’, z,k + p;":;:;,S) + (d - 1)32Ap;‘:20:§,s)
s#k

+ Z CllA(ﬁSQZU (P141+Pl41+Pl41+P142 + P10 er?zf;))

s,u,v=1
7,0,Z,W 1

+ Z CiaA (s <pl61+pl61+p161)

s,u,v,w=1

7,2,8

d
+3d° Z B2A<Pz41+9141+9141+P142 + 04

s,u=1

S+ o0y

Pet)

+d° Z ByAz (Pl61+P161+P7(§)1)

s,u,v=1

Further, denote
T7,0,2 T7,0,2,8
P23 = Pi41,2,35
then we get

Piins < (L4 AD)pss +2(d = 1)CiAprss + (d = 1)*Balp)y;

+d*Cy 1A

1
+0°Cua (55 5 (s + s+ ol + 015+ 015+ 40) )
(g5 +3

2
T 1 T O V4
’ 3 (Pl,6,1 + P61+ Pl,6,1)>

+3d* B A (p;,zl,l +Plaq tPiar Pt Pt Plo,fg)

1 ‘s O V4
+dﬁB2A§ (Pioa +Pl6a +Pica) -

This gives us

P e s < (L K11A)p 55 + K12,
for some constants k11, k12 > 0, leading to
pz’g:gz S (1 + HllA)lijilp;"ﬁfzg + K13, l = ] + 13 ceey J - 17

where k13 > 0 and

2
p;-ilfQ,S ZE l(axrazoaxz (x,€j+1)> ] .
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Thus, we obtain the boundedness of

83
m(b‘(w)
ZE F(Gas@) TG, ()
7@ 02,02,0x, 77
d
9?2 02 . o . 92 . o
+S;1E‘ax58xuf(GJ’j(x)) (8%8% GJ,j(QT)aimZGJ,j(x) + 3200 GJ7j(a:)a—%GJ7j(a;)

d 92 .
+87erJ,j(JC)mGJ,j (x)) '

93 0 o o
G (C13(0) G o) oG () G, 0)

d 2
a 7,0,2,8
< ZJE Kax f(GJ,m))) ]pm
s=1 s
d
+ (axs o ) ] (\/pﬁiépﬁﬁQ/pffiipﬁw\/p“lpgjg)
s,u=1
2
l 8:0 8x ox (GJ’j(w))) ]m
S, U, V= 1 u v
for all r,0,2z € {1,...,d}, since f is assumed to be three times continuously differentiable

with bounded partial derivatives up to order 3. O
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Chapter 3

Regression-based variance
reduction for strong

approximation schemes

This chapter is mainly based on the paper [9].

Below we present control variates for schemes with Gaussian increments. In particu-
lar, we consider the Euler discretisation scheme® and derive truncation errors for specific
control variates. Then we perform error and complexity analyses for two regression-based
approaches, where the above-mentioned control variates are involved. Finally, we illustrate
numerical results, in which we compare the performance of the novel algorithms with well-

established ones.

3.1 Construction of control variates

To begin with, let us note that elements of R? (resp. R'*?) are understood throughout as
column-vectors (resp. row-vectors). Generally, most vectors in what follows are column-
vectors. However, gradients of functions and some vectors defined via them are row-vectors.
Next we define A;W := Wja — W(;_1ya for j € {1,...,J}, and by AW i e {l,...,m},
we denote the i-th component of the vector A;W. Further, for k € N, Hy: R — R stands

for the (normalised) k-th Hermite polynomial, i.e.

N

-k 2 ab .
Hy(x) ::( )eT T, zelk

VE! ok ©

Notice that Hy =1, Hy(z) = z, Ha(x) = %(12 —1). To motivate a general construction of

optimal control variates, let us first look at an example.

3abbreviation for Euler-Maruyama discretisation scheme, see [42]
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3.1.1 Motivating example
Consider a simple one-dimensional SDE (d = m = 1)
dX; = o X dW,, t€][0,T],
with X¢ = ¢, and its Euler discretisation (Xa ja)j=o,...s, where X o = o and
Xaja = Xa-na(l+oA;W), j=1,...,J

Suppose that f(x) = 22, that is, we would like to approximate u(0, o) = E[X?2]. It is easy

to see that IE[XKT] =22 (1 +02A)’ and using a telescoping sum trick, we derive
J . .
X3, -E[X3,] = (ngA(l +02A) T~ X2 j_pa(l+ U2A)H+1) .31
j=1

Xaja—Xa G-1a
mece A ”/ = J—J we get
Si o XA (i—1)A g

XA ja = XA -nal+A0%) =20X3 ; 1)a AW + 0" X3 (; 1ya (AW = A).
As a result
J
A AW
X3r—E[XZr] =) (“Jl Xa-na)H < ~ > +a;j2(Xa,j-1a)Ha < \}K ))

j=1

(3.2)

with a;1(z) = 20VA2%(1 4+ 0?A)’ 77 and a;a(x) = 202Az?(1 + 02A)7 7. Notice that
representation (3.2) has a very simple form. Furthermore, the coefficients a;1 and a; 2 can

be represented as conditional expectations

AW

ajp(z) =E [XA o+ Hy ( %

)‘XA] 1)A—£C:|, k:1,2.

Thus, the control variate

J o2
Mn = ZZ (X H AW 3.3
AT : ajk(Xa,j—1)a) Hr A ) (3.3)

j=1k=1

is a perfect control variate, as it satisfies Var[Xin — Ma 1] = 0. The above example en-
courages us to look for control variates of the form (3.3), where the coefficients a; 1 () have
the form of conditional expectations, which in turn can be computed by regression methods.
As we will see in the next sections, such perfect control variates can be constructed in the

general case.

Remark 3.1. The control variate in (3.3) is a sum over all time steps. At this point
it is, therefore, unclear whether the variance reduction achieved in the proposed method
outweighs the additional computational work required to implement such a control variate.
After the detailed description of our algorithm we will present the complexity analysis, which
shows that, given the precision € to be achieved, implementing such a control variate results

in less total computational work, provided several parameters are chosen a proper way.
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3.1.2 Series representation

Let us consider a scheme, where d-dimensional approximations Xa ja, 7 =0, ..., J, satisfy

Xa,0 =20 and

AW )

XA,jA =Pp <XA,(]'—1)A7\}Z> y )= 13"'3J7 (34)
for some Borel measurable functions ®: R¥*™ — R?, That is, relating to the framework
in Section 2.2, we have m = m and use standard normal distributed increments 5; = Ayg : ,
i=1,...,m. Clearly, the (strong) Euler scheme with ® given by

Da(x,y) =z + p(@)A + o(z)VAy. (3.5)

is a special case of this setting.

Theorem 3.2. Let f: R? — R be a Borel measurable function such that it holds E|f(Xa 1)|? <

o0o. Then we have the representation

J m 7
FXar) =Bf(Xar)+> Y. an(Xag-na) ] He, <A\J/I%/ ) ; (3.6)

J=1 keN™\ {0, } i=1

where k = (k1,...,km) and 0, := (0,...,0) € R™ (in the second summation), and the

coefficients a; . RT — R are given by the formula

a;i(z) =E

f(XA,T)ﬁHki (Aj/l%ﬂ> ‘XA,(jl)A = x] ; (3.7)

i=1

forallje{l,...,J} and k € N™\ {0,,}.

Remark 3.3. (i) Representation (3.6) shows that we have a perfect control variate, namely

J m ;
AW
Mar:=> Y an(Xag-na) ][] He < \]/E ), (3.8)
=1

Jj=1 k:EN""\{OnL}

for the random variable f(Xa 1), i.e. Var[f(Xar) — Mar]=0.

(ii) Representation (3.6) can be viewed as a discrete-time analogue of the Clark-Ocone
formula. See e.g. [1] (Gaussian increments), [53] (Bernoulli increments) and the references
therein for representations of similar types. Our form (3.6) is aimed at constructing control

variates via regression methods.

(iii) A comparison of (3.3) and (3.6) gives rise to the question whether our motivating
example fits the framework (3.6). The answer is affirmative: a straightforward calculation
using the facts that f(z) = 22 in the motivating example and that, for & > 3, Hy (A\}%V) is
orthogonal to all polynomials in A;W of degree two reveals that a;; = 0 whenever k > 3

in the situation of our motivating example.
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Theorem 3.4. Alternatively to (3.6), we also have the following representation formula

J oo m i
FXar) =E[f(Xar)]+ DD > asei(XaG-na, (AW)iZ)) Hy (AjW ) . (39)
G=1 k=1 i=1 VA

where the coefficients a; 1 ; can be computed by the formula

AW . .
(s ()i = E[f(XA,ﬂHk( &VAY)|XA,@_M=@<AJ-WT>;i=<yr>;ﬁ].

Remark 3.5. Compared with the control variate based on (3.6), the one based on (3.9)

contains a smaller number of coefficients to be computed, but these coefficients are functions
of a greater number of variables (provided that we would truncate both sums on k at some
level).

From the computational point of view, it is unprofitable to use the control variate based
on (3.9), since the matrix B (cf. (2.2)), containing the basis functions for a regression, changes
even for one fixed j € {1,..., J} due to the additional conditioning on (A,;W")'Z} = (y.)'Z].
This results in a high computational effort, whereas we can use the same matrix for one fixed

J when using (3.6) (only conditioning on X (j—1)a = ).

Let us introduce the following “truncated” control variate

Aj W
667
MKy = ZZ% ei(Xa,(-1)a) == (3.10)
j=11:i=1 \/Z

where e; denotes the i-th unit vector in R™ and a;, is given by (cf. (3.7))

A W?
aje(z) = E |:f(XA,T) \J/E | XaG—na=2|. (3.11)

Note that the superscript “ser” comes from “series”.
In the next subsection we will derive another control variate, which is theoretically equiv-

alent to MX7.

3.1.3 Integral representation

Below we assume E|f(Xa 7)| < 0. Let us introduce the function ua: [0,7] x R&™ — R

Yy + Wt]‘ - Wt
UA(t,.I‘,y) =E |:UA <t37¢)A (Z‘, ﬂ) ,0):| 5 te [tj_l,tj), (312)

via

where t; := JT, j€{0,...,J}. Note that it holds
ua(ty, z,0) =E [f(Xar) | Xay, =1]. (3.13)
Theorem 3.6. The following representation holds

f(Xar)=E[f(Xar) +Z /v un(t, Xa, o Wi — Wi, _,) dWr, (3.14)

Jj= 1,5]71

where Vyun(t, z,y) € R1™ denotes the gradient of ua w.r.t. y.
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Let us define the operator (cf. (2.7))

N olel
D ty - 3ta1 3yf‘2 .. -8y?{"+1 : (3'15)
for a € NB”‘H. Next, we derive a connection between the series and integral representations.

Theorem 3.7. Provided that it holds
«@ 6 K
Dt,y yru (t, x, Z') < (C (3.16)

foral KeN, la|=K,re{l,...,m}, t€[tj_1,tj), i €{l,....,J}, 2 € RL y € R™ and

for some constant C > 0, we have

SN 5UA(J 1 XA, 0:0) 17 H’“T(A\]}g>
fXan) =B (Xan)+ 387 3 —ammee = [T —

j=11=1 keNG' vy Oyt

(3.17)

whenever 0 < A < % (The series converge in L?.) Consequently, we obtain for | =

ik €N

Al/? ) 6luA(tj_1,x,0)
VEL - VER! gk oyl

Let us recall the control variate M7 in (3.10). We get from Theorem 3.8 that M A s

= a,; (). (3.18)

equivalent to the following control variate

znt J " 8U/A ] 17XAtJ 19 )A WZ 319
AT ZZ y; J : (3.19)

(Note that the superscript “int” comes from “integral”.) Next, we derive that the equivalence
of M3 and M4, also holds without assumption (3.16).

Theorem 3.8. We have fori € {1,...,m}

Qj,e; ('T) = \/Zi

ayiuA(tj_l,CC,O). (320)

Let us study the order of the truncation error, which arises from replacing the control
variate Ma r in (3.8) (including infinite number of terms) by MZ‘}, respectively M7

(including finite number of terms).

Theorem 3.9. Provided that the function ua(t,z,y) has bounded partial derivatives in y
of orders 2 and 3, it holds

Var [f(XAJ“) Mmt } Var [f(XA,T) Mse’”] S A (3.21)

Below we focus on the Euler scheme (3.5) and assume that all the functions f, pg, oki, k €

{1,...,d}, i € {1,...,m}, are continuously differentiable. Let us define by I the identity
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) k
matrix of size d and by (5’X§’I (t) := 8X5;(t)

and s < t. Similar to the process X;, we simply write §’X/}" rather than §'X§, (t) for
t € [0,7] and define the matrix

the “derivative processes” for i,k € {1,...,d}

i

sixt oo s}
60X, = : : e Rxd
stxg ... sixg
as well as the vectors 0'X, := (8°X},..., §iX;i)T eR? forie{1,...,d}.

Remark 3.10. Note that §°X; satisfies the following SDE

d .
iv i ou(Xy) 0o (Xy) ivk ) L 1=k
ddXt_;de[ o dt + Por th}, 5X§—{0’ itk (3.22)
and it holds (cf. (1.7) and [45])
T
F(Xr) = E[f(X1)] +/E[Vf(XT)5XT X, 16X, o (X,) dW,. (3.23)
0

Regarding the Euler discretisation dXa ja = (6iX27jA)i,k:17wd of §X;, we have

aU(XA t'fl)
A L)
8xk + &rk

d
Op(Xae,
[ (Katyo) AW (3.24)

0 Xna, =0Xnu, , + > 6OXK, |
k=1

. . . T
where 6Xa 0 = Ig and §'Xay, = ((VXi £ .,(VXi tj) e R? fori e {1,...,d}.

As for Theorem 3.6, we can derive the following result.

Theorem 3.11. It holds for the Euler scheme

g4
F(Xor) =B+ Y [ E[VF(Xan)0Xa06X5h, 1F:] oXar, ) aie. (325)
j:ltj71

Remark 3.12. Fort =t¢;_1, j € {1,...,J}, we obtain from (3.25) (cf. (3.14))

V,ua(tj_1,2,0) = E [v F(Xar)6XarsX3Y |Xay,_, = x] o(z). (3.26)
Note that we may write (3.26) by means of expectations conditioned on Xa ¢, , instead of
Fi,_,, since (Xa,;)j=o,...,7, is a Markov chain. ‘
Let us define the function g;: R* — R4, j € {1,...,J}, through
95(2) = (g51(®), - 91.0(®)) i= B |V [(Xar)0Xar0X5 ) [Xag,, =2|,  (3.27)

such that we have (cf. (3.26))

Vyua(tj—1,z,0) = g;(x)o(x). (3.28)
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Note that it also holds (see the proof of Theorem 3.11)
gij(x) =E [Voua(ty, Xay,,0) | Xay,_, =], (3.29)

where V, ua(t,x,y) denotes the gradient of ua w.r.t. z. We get that the control variate
Mmt can be expressed by means of function g;, that is (cf. (3.19) and (3.28))

M~

MK?%“ = gj(XAvtj—l)U(XA’tj—l)AjW

1

<.
Il

d m
Zgj’k XA,tj,l) ngi(XA,tj,l)AjWi- (330)
1 k=1 =1

M=

<.
Il

Remark 3.13. (i) Note that there will appear more precise assumptions on the functions

f, 1,0 in Section 3.3 which ensure the assumption on ua in Theorem 3.9.

(ii) Moreover, the control variate MA", in (3.30) differs from the one suggested in [45] only
in an index concerning the inverted matrix, i.e. we have 5X;1tj inside of g;(Xa,_,) rather
than the ]-'tj_l—measurable random variable 5X£1tj_1' In case of the exact solution, one

obtains from a discretisation of the stochastic integral in (3.23)
J
S E[VF(Xr)6X7 | Xy, ] 6X, " o(Xy, ) AW
j=1

as an analogue of M4'%..

(iii) In order to use the control variate M4 in practice, we need to estimate the unknown
coeflicients g; 5. Thus, practically 1mplementable control variates M mt have the form (3.30)
with some estimated functions g; s : R? — R. Notice that they remain Vahd control variates,

i.e. we still have E[M}".] = 0, which is due to the martingale transform structure* in (3.30).

(iv) It is natural to expect that, under some additional conditions, a generalisation of The-

orem 3.9 has the form
Var [£(Xa ) = ME5O] = Var [(Xaz) - ME7)]

where K € N and

. AW
Mmt(K ;—ZJ:iAW Z Olun(t— laXAtJ 10 HHkr( \/‘K) (3.31)
T

J=11=1 kENT Oy -+

Z:L:lkr:l
J K m AT
eer,(K . ZZ Z aj,k(XA,tj_l)HHkr< \J/Z >

j=11=1 keNy r=1

E:n:1 by =l

4This phrase means that the discrete-time process M = (Ml)l:()

<.

,,,,, 7, where My = 0 and M; is defined
like the right-hand side of (3.30) but with Ej:1 being replaced by 22:1 and g; r by §; x is a martingale,

which is a straightforward calculation.
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However, on the one hand we will observe below that control variates based on the direct
estimation of a;j (in particular MZCZL(K)) are numerically not convincing. On the other

(K)

hand, for the implementation of an approximation for MZAMT with K > 1, one has to

l .
derive conditional expectation formulas for % as for K =1, that is (3.26) (note
Y17 OYm

that M. = MZLtT’(l) and MZT. = Mze;(l)). In the one-dimensional case d = m = 1, we

will derive such a representation for K = 2 in Subsection 3.1.4.

Regarding the convergence of the Euler scheme, we have the following result (cf. Theo-
rem 2.1 in [44]).

Proposition 3.14. Assume that p and o in (1.1) are Lipschitz continuous with components
pr, oki: RY - R, k=1,...,d,i=1,...,m, being 4 times continuously differentiable with
their partial derivatives of order up to 4 having polynomial growth. Let f: R¢ — R be 4
times continuously differentiable with partial derivatives of order up to 4 having polynomial
growth. Then, for the Euler scheme (3.5), we have

[E[f(X7) = fF(Xar)]l < e, (3.32)

where the constant ¢ does not depend on A.

Notice that the assumption that, for sufficiently large n € N, the expectations E|Xa ;a |2n
are uniformly bounded in J and j = 0,...,J (cf. Theorem 2.1 in [44]) is automatically
satisfied for the Euler scheme because u and o, being globally Lipschitz, have at most linear

growth.

3.1.4 Second order derivatives in the one-dimensional case

Let us consider the case d = m = 1 and define the “second derivative process” §%X; ,(t) :=
w. Note that it holds 62}52’5(” = %Xg;(t), where 0 X ,(¢) is defined in Chapter 1.
Below we simply write 62X, rather than 62X ., (t). The following SDE holds for §2X;

(cf. [45])

do* X, = 2 X (/' (Xp) dt 4 o' (X3) dWy) + S X2 (W' (Xy) dt + o (X;) dWy), 62X = 0.
Regarding the Euler discretisation 52XA7,5J for 62X; we have for j =1,...,J

X, =0°Xau, (L4 1/ (Xay, )A+ 0 (Xag, )A;W) (3.33)
+ 6XZ,t]-,1(:u‘H(XA-¢j—1)A + O-H(XAytj—l)A.jW)‘
Proposition 3.15. We obtain for the second derivative of the function uan w.r.t. y

62uA
Oy

XA T0XA, — 62X as,0XA T

(tj_l,a:,O) =K f/(XA7T) (5X2 )

(3.34)

X2
+f//(XA,T)5X2A7T ’XA,tj,1 =X 0'2(33).
Aty
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Consequently, in the one-dimensional case we have derived conditional expectation for-
mulas for the first and second derivatives of ua w.r.t. y and thus could implement an
approximation of the control variate

J 2 2
(2 0 9] AW —A
MlAnT( ) _ Z (8(tj17 XA,tj_l , O)AjW + ﬁ(tjflv XA,t]‘_l , 0)% .
=\ y
However, below we will not consider control variates including second order derivatives of ua
(note that this will be justified in Section 3.4).

3.2 Generic regression algorithm

In the previous sections we have given several representations for the control variates. For
the sake of clarity, we focus on the control variate given by (3.30), that is, we estimate the

functions g;x in (3.27) via regression.

3.2.1 Summary of the algorithm

The algorithm of the “integral approach” consists of two phases: “training phase” and

“testing phase”. In the training phase, we simulate N, independent “training paths”
DYy = {( ) XY gy in = 1,...,NT}

and construct regression estimates g (-, D} ) for the coefficients g; x(-), k € {1,...,d} (cf.
Subsection 2.1.1). (Note that the superscript “tr” comes from “training”) In the testing
phase, independently from D% we simulate N independent “testing paths” (X(An; A)J=0,0 T s

n=1,...,N, and build the Monte Carlo estimator for Ef(Xr) as

N
_1 (n) \ _ ypint,(n)
£ = 2 () -, (3.35)
where (cf. (3.30))
J d m
Srint,(n A n n i,(n

NG =3T3 g (KR, ) D owa( XK AW (3.36)

j=1k=1 i=1

Due to the martingale transform structure in (3.36) (recall footnote 4 on page 27), we have

E (N34 |DY, | = 0, hence BE|DY, | = BIF(X{y) — ML DY, | = ELf(Xa,r)], and we
obtain

Var[€] = E[Var(E|Dy )] + Var[E(E|DR )] = [Var(5|Dtr )]
- i ‘ Srint,
= N]E [Var {f(X(Al,)T) - MA}(I)‘DRHH N Var {f(X(Al,)T) _ MA}(I)} .

Summarising, we have
E[€] = E[f(Xa,1)]; (3.37)

1 N
Varl] = — Var { Fx) - Mgf';“)} . (3.38)
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Notice that the result of (3.38) indeed requires the computations above and cannot be stated
right from the outset because the summands in (3.35) are dependent (through DY; ).

This concludes the description of the generic regression algorithm for constructing the
control variate. Further details, such as bounds for the right-hand side of (3.38), depend
on a particular implementation, i.e. on the quality of the chosen basis functions. In what

follows, we focus on the piecewise polynomial partitioning estimates.

3.3 Error bounds for piecewise polynomial regression

Below we use the notation Pp ;1 for the distribution of XA (;_1)a. In particular, we will

work with the corresponding L?-norm:
91326, 1y = [ @) Paymalde) = B [¢7 (Xago1a)]
Rd

We now define (1 as the k-th component of the vector

Crg = (Crgts - Crga) = VF(Xar)dXard XA

and remark that g; x () = E[(s, x| Xa,j—1)a = z]. In what follows, we consider the following
assumptions: there exist h € [1,00] and positive constants X, A, Cj,, v, B, such that, for all
JeN, je{l,...,J} and k € {1,...,d}, it holds:

(A1) sup,ega Var [(rk Xa,—1a = 2] < T < oo,
(A2) supgepa |gjk(7)] < A < oo,

(A3) gk is (p+1,Ch)-smooth w.r.t. the norm |- |5,
(A4) P(|Xa,(j—1)aleo > R) < B,R™ for all R > 0.

Remark 3.16. As we mentioned in Subsection 2.1.2; it is only a matter of convenience
which h to choose in (A3) because all norms | - |, are equivalent. Moreover, since p and
o are assumed to be globally Lipschitz, hence have linear growth, then, given any v > 0,
(A4) is satisfied with a sufficiently large B, > 0. In other words, (A4) is needed only to

introduce the constant B,,, which appears in the formulations below.

In the next theorem we present, based on Theorem 2.5, sufficient conditions in terms of

the functions f, 4 and o that imply the preceding assumptions for the Euler scheme.

Theorem 3.17. (i) Let all functions f, pk,ori, k € {1,...,d}, i € {1,...,m}, be continu-
ously differentiable with bounded partial derivatives. Then (A1) and (A2) hold.

(i) Moreover, if all functions oy; are bounded and all functions f, p, ok are 3 times con-
tinuously differentiable with bounded partial derivatives up to order 3, then the function
ua(t,z,y) has bounded partial derivatives in y up to order 3. In particular, (3.21) holds

true.
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Remark 3.18. As a generalisation of Theorem 3.17, it is natural to expect that assump-
tion (A3) is satisfied with a sufficiently large constant Cj > 0 if all the functions f, g, ok
are (p+2) times continuously differentiable with bounded partial derivatives up to order p+2

(might be proven by di Bruno’s formula, see e.g. [17]).

Let g, be the piecewise polynomial partitioning estimate of g; described in Subsec-

tion 2.1.2. By §;r = Tag;r we denote the truncated estimate (see (2.3)).
Under (A1)—(A4), we have due to Theorem 2.3

p-‘rd) qd

‘%2(PAJ,1) <é(S+ A*(log N, + 1)) %

Ellgj.x — gjk (3.39)
8C? (Rd

2p+2
2 —v
T TR S) +8ATBRT,

where ¢ is a universal constant. It is worth noting that the expectation in the left-hand side
of (3.39) accounts for the averaging over the randomness in DY . To explain this in more
detail, let (XA ja)j=0,...s be a “testing path” which is independent of the training paths
DY; . Then it holds

1350 = 95|72 n 1) = 1556CDR) = G361 2, 1)
=K [(gj,k(XA,(j—l)thz@) 9ik(Xa,G—1)a )) 2 ] ,

hence,
_ _ ” 2
E[lgjx — gj,k||%2(m,j,1) =E {(gj,k(XA,(jfl)Aapg\fT.) = gik(Xa,j—1)a)) } ; (3.40)

which provides an alternative form for the expression in the left-hand side of (3.39).

Next we estimate the variance of the random variable f(Xa r) — Mg’f}, where

d m
MY = ZZ Gj.k XA,(jfl)Aapf\?,,)ZUki(XA,(jfl)A)AjWi~ (3.41)
j=1k=1 i=1
Theorem 3.19. Let us assume sup,cpa |0ki(2)] < Omax < 00 for all k € {1,...,d} and

i€{l,...,m}. Then we have under (A1)-(A4)

(p+d) Sd

1
Var[f(Xa 1) — Mmt 7S =+ dQTmamaX {E (E + Ag(logNr + 1)) N

J
8C2 Rd\ " o
— | — 8A“B,R™"Y ;. 3.42
+(p+ 1)!2d2—2/h S + ( )
In the case of piecewise polynomial regression, the estimator £ given in (3.35) with “hat”
replaced by “tilde” is an unbiased estimator of E[f(Xa r)], and, by (3.38), the upper bound

for its variance is + times the last expression in (3.42).
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3.4 Complexity analysis

3.4.1 Integral approach

Below we present a complexity analysis which explains how we can asymptotically approach
the complexity order 5_2\/m with € being the precision to be achieved.®

For the integral approach we perform d regressions in the training phase and d evaluations
of §; r in the testing phase (using the regression coefficients from the training phase) at each

time step. Therefore, the overall cost is of order
Jdecml max {cp ¢Ny, N}, (3.43)

where ¢, 4 := (p;d). We have the following constraints

J2JN’ N, N "+ 1N\ 'S " NRv

{1 1 Smeyqlog(N,)  d®m (Rd)““” d*mB,
max S —_—

} <e?, (3.44)

to ensure a MSE of order £2. Note that the first term in (3.44) comes from the squared bias
of the estimator (due to (3.32) and IE[MK”T] = 0) and the remaining four ones come from
the variance of the estimator (see (3.42) and (3.35)).

Theorem 3.20. We obtain the following solution for the integral approach (provided thatS

. 2d(p+1)
it holds 2(p+1) > d and v > 2(p+1)—d
o 2vdd(p+l) o Aet)
J = 5*1’ S=(Cg-e wrwin@rz) | Rx<Cp e @rerarz) (3.45)

_ 2dv+4(p+1)(d+v) _ 2dv+4(p+1)(d+v)
N, =< CNT L e dvF2(ptD)(d+2v) 4 /\log(s) , N =< Cp - &~ @F2indty) |10g(5) = er

where
Og = B‘Vl(zﬂrl)d2u+4(p+1)(u+1)my+2(p+1)] T AT
612:;4(p+1)(p 1) ,
Cr:= By (p 4 1)!2dm2(17+1)] TG |
A 2(p+1)(d-2)
Bl2ld(P+1)d2du+2(p+1)(du+2d+2u)mdu+2(p+1)(d+y) TTIGTD @I
CN, == Cdup sz/d-‘rzd(p-i,-l)(p e ] ’

= CNTCp,Lh

1
Bgd(p+1)c;1)u;p+1)dzdu+2(p+1)(du+2d+2u)mdu+2(p+1)(d+u) dvF2(pF1)(d+2v)
Cy = Cd,v,p :

(p + 1)1

5Notice that the multilevel Monte Carlo (MLMC) algorithm can at best achieve the complexity of order

e—2

6When deriving the solution via Lagrange multipliers (cf. proof of Theorem 3.20) one can see that these
2d(p+1)
2(p+1)—d
“< 0” constraint is negative). Therefore, the recommendation is to choose p € N and v > 0 according to
d—2 2d(p+1)
p > 5 and v > m

complexity of the method would be then worse than that of the SMC.

parameter values are not optimal if p < % or v < (a Lagrange multiplier corresponding to a

The opposite choice is allowed as well (the method converges), but theoretical
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and ¢4,y p = %. Thus, we have for the complexity
Cins = JSUN, = JSUN = Cp - e~ rstrntasss | /log(e)], (3.46)
where
Bgd(p+1)Cifsﬂ)(4V—d)—dVd5du+2(p+1)(3du+5d+4u)msdu+6(p+1)(d+u) TGO
Ce = Cdup (p + 1)16dv

=dc} ,C4CN, = dcyaCECN.

Remark 3.21. For the sake of comparison with the SMC and MLMC approaches, we recall

at this point that their complexities are

3 2

Csmc <e 2 and Cyryme <&

at best (referring to (1.5), we have a = 1 here).

(i) Complexity estimate (3.46) shows that one can asymptotically approach the complexity
order £72,/|log(e)|, when p,v — oo, i.e. if the coefficients g; 5 are smooth enough and the
solution X of SDE (1.1) lives in a compact set.

2d(p+1)
2(p+1)—d>

compared to Cgpe, since we have in this case for the exponent of € in (3.46)

(ii) For all p,v with 2(p+1) > d and v > Cint gives us a better complexity order

5dv +2(p+1)(5d +4v) g_ 2w2(p+1)—d)—2d(p+1)) <3
dv+2(p+1)(d+2v) dv+2(p+1)(d+2v) '

(iii) We would have obtained the same complexity even when the variance in (3.21) were of
order AX with K > 1 (in particular using control variates of the form (3.31)). This is due
to the fact that the second constraint in (3.44) is the only inactive one and this would still
ﬁ < £2. Hence, it is not useful to derive a control variate with
a higher variance order for the Euler scheme.

hold if the condition were

(iv) Since the exponent of the base € in (3.46) converges when d — oo for all p,v, the
integral approach does not suffer from the curse of dimensionality”, which is mentioned in
Chapter 1.

(v) Let us also note that the constant C¢ in (3.46) tends to infinity (with exponential growth

in d) when p,v — co. Indeed, even if we ignore the constant B,,, we get

1
2(p+1)(4v—d)—dv | dvt2(p+1)(d+2v) 1
o P r—o0 cpd depu Ipv 4
L 0000000000 = p2
¢ X <p+ 1)!6du pﬁpdu p

This is a negative by-product of the piecewise polynomial regression. In Chapter 5 we will
present a complexity analysis under a more general framework, similar to Subsection 2.1.1.
Then we will find out criteria for which the constant converges when the corresponding

parameter tends to infinity.

"This statement also holds true for each of the novel algorithms presented below.



34 3.4. Complexity analysis

3.4.2 Series approach

Below we present a complexity analysis for the series representation, defined in Subsec-
tion 3.1.2. Again we focus on the Euler scheme (3.5). Then we compare the result-

ing complexity with the one in (3.46). Similar to Section 3.3, we define (;;, as the i-
VA
aje,(z) = E[(1,ilXa,(j—1)a = x]. We will work under the following assumptions: there

exist h € [1,00] and positive constants 3, A, C}, such that, for all J €N, j € {1,...,J} and
i€ {l,...,m}, it holds:

th component of the vector (;; = (Cj1,-- .,<J7j7m)—r = f(Xar) and remark that

(B1) sup,era Var [(i|Xa,j-na = 2] < < o0,
(Bz) SUPgcRrd ‘a]',Ei (l’)‘ < 14\/Z < o0,
(B3) aj, is (p+ 1,Cy)-smooth w.r.t. the norm | - |p.

Remark 3.22. (i) Note the difference between (B2) and (A2) of Section 3.3, while (B1)
has the same form as (A1). This is due to (3.18), hence the additional factor v'A in (B2).

(ii) A sufficient condition to ensure assumption (B1) is given by f being bounded (which is

not required for the integral approach), since

AW'L 2
Var [(5iXa,-1)a = 2] <E [fQ(XA,ﬂ(JA) [ Xa-na==

< \/3 -E [f4(Xar)|Xa -1a = 2]

(iii) Further, we get, by means of Theorem 2.5, (3.18) and (3.28), that assumption (B2)
is satisfied if all functions oy; are bounded and all functions f, g, ok, k € {1,...,d},

i € {1,...,m}, are continuously differentiable with bounded partial derivatives.

In what follows the IV, training paths are denoted by
Dy, = {(XZ:J(‘Z))]':O,“.,J n=1,... ,Nr}, (3.47)

that is, we do not need to simulate paths for the discretised derivative processes d.Xa ja.
Let a;,., be the piecewise polynomial partitioning estimate of a; ., described in Section 3.3.

By a;., we denote the truncated estimate, which is defined as follows:

Gy (2) = Ty ety o () = 4 2500 if 6., ()] < AVA, (3.48)
j.es AVATIei A\/ngndj,ei(x) otherwise.

Under (B1)—(B3) and (A4), we have due to Lemma 2.3

- ~ Cp.aS?
Elldje;, — aje, H%Z(PA,]‘—l) <é (E + AQA(log N, + 1)) Cp,d” (3.49)

T

2 2p+2
+ L B +8A4%AB,R7Y,
(p+1)12@> = \ S
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where ¢ is a universal constant. Let us now estimate the variance of the random variable
f(Xar)— MR, where

L& AW
M :Z aj.e,(Xa,(j—1)a, DN,) \J/Z - (3.50)

j=1:i=1
Theorem 3.23. Under (B1)-(B3) and (A4), we have

1

d
Var[f(Xar) — MXG] S = Jm{E(Z—l—AzA(logNr—i—l))chS

T

2 2p+2
8Ch <R> +8A2AB,,R”}. (3.51)

~

<

(p+1)12d2—#% \ S

Let us study the complexity of the following “series approach”: in the training phase, we
simulate N, independent training paths D%T and construct regression estimates a;, (-, D%r)
for the coefficients a; ., (), ¢ € {1,...,m}. In the testing phase, independently from Df\’,”r we
simulate N independent testing paths (X(A’H;;A)j:(],_“”], n =1,...,N, and build the Monte
Carlo estimator for Ef(Xr) as

1N
= Z (rx§op) = w55, (3.52)
Therefore, the overall cost is of order
JS*mey g max {cp aNy, N} . (3.53)

The expectation of the estimator in (3.52) equals Ef(Xa 1), and the upper bound for the

variance is % times the expression in (3.51). Hence, we have the following constraints

d 2(p+1)
e 1 ’ 1 JS%Mmepq Jm id 7 mB, < 52, (3.54)
J2" JN’ N.N " (p+1)1N \ S NRY

to ensure a MSE of order 2 (due to E[MX7] = 0 as well as (3.51) and (3.52)). Note that
there is no longer a log-term in (3.54). This is due to the factor A in (3.51) such that ¥ is
of a higher order, compared to A2A(log N,. + 1).

Theorem 3.24. We obtain the following solution for the series approach (provided that® it
holds 2(p +1) > d and v > 2&+D_)

2(p+1)—d
1 _ 3v+2(p+1) _ 2(p+1)—d
J=xe !, 8§=Cg-e @R2ety@t), Rx(Cpg-g wr2eiDrzy) (3.55)
_ 3dv+2(p+1)(2d+3v) _ 3dv+2(p+1)(2d+3v)
NT = CNT . g TdvFz(pFD)(d+2v) , N = CN e dvR2(ptD)(d+2v) NT,

8Footnote 6 on page 32 applies.



36 3.4. Complexity analysis

where
c _B‘Ul(p+1)d4u(p+1)my+2(p+1) TEGT D@
s = 2w+ A(pt1 ’
Cpd D (p + 1)1
_ 1
o [BEY (g 1) ] EECOEE
R-= 4(p+1) :
i Cp d2d(p+1)
o 'Bzd(p+1)d2du(p+1)mdu+2(p+1)(d+u) TR
N, = )
e 2P0 (4 1)1
'Bzd(p+1)C4Vd(p+1)dzdu(p+1)mdu+2(p+1)(d+y) TGO
. P, _
On = (p + 1)!2dv ] =N, Cpa-
Thus, we have for the complexity
d d _ 7dv+2(p+1)(4d+5v)
Coer X JSUN, < JS*N =< C¢ - & “@H2iD@tw) (3.56)
where
Bgd(p+1)C2(s+1)(4v—d)—dvd6du(p+1)m3du+6(p+1)(d+u) TGO
o P,
Oc = Cd,v,p (p + 1)!6,1,, ‘|

= mc;ngvCNr =mcy aCECN.

3.4.3 Discussion

(i) Complexity estimate (3.56) shows that one cannot go beyond the complexity order ¢ ~2-5

in this case, no matter how large p,v are. This is mainly due to the factor J within the
third constraint in (3.54) which does not arise in (3.44).

(ii) To get a better complexity order for Cge,- compared to Csarc, we need to choose p+1 > 2d

d(p+1)
p+1—-2d°

Tdv +2(p+1)(4d +5v) 3 2w(p+1—2d) —d(p—l—l)).

and v >

since we have for the exponent of ¢ in (3.56)

dv+2(p+1)(d+2v) dv+2(p+1)(d+2v)

(iii) When comparing (3.56) with (3.46), one clearly sees that (3.46) always achieves a better

2(p+1)

Spr)—d (in terms of ).

complexity for v >

(iv) Similar to Section 3.4.1, we would have obtained the same complexity even when we

used a control variate with a higher variance order A¥ for some K > 1.

(v) Furthermore, from the computational point of view it is preferable to consider the
integral approach rather than the series approach, even though the control variates M7
and M’A"EF are theoretically equivalent (cf. (3.20)). This is mainly due to the factor A;W?
in aj., (see (3.11)), which is independent of XA (j_1)a and has zero expectation and thus
may lead to poor regression results. Regarding the integral approach, such a destabilising

factor is not present in g; .



Chapter 3. Regression-based variance reduction for strong approzimation schemes 37

3.5 Numerical results

In this section, we consider the Euler scheme and compare the numerical performance of
the SMC, MLMC, series and integral approaches. For simplicity we implemented a global
regression (i.e. the one without truncation and partitioning, as a part of the general de-
scription in Section 3.2). Regarding the choice of basis functions, we use in both series and

i where ly,...14 € {0,1,...,p}

70

integral approaches the same polynomials ¥(z) = Hle x
and Zle l; < p. In addition to the polynomials, we consider the function f as a basis func-
tion for the series approach and aank, k € {1,...,d}, as a basis function for the estimation of
gj.k(x), that is, for the integral approach (since g,  is “close to” ;TJ; for larger j, cf. (3.27)).
Hence, we have overall ¢, 4 + 1 basis functions in each regression for both approaches.

The following results are based on program codes written and vectorised in MATLAB

and running on a Linux 64-bit operating system.

3.5.1 One-dimensional example

Here d = m = 1. We consider the following SDE
1
dX; =— 3 tanh (X;) sech? (X;) dt + sech (X;) dW;, Xo =0, (3.57)

for t € [0, 1], where sech(x) := m This SDE has an exact solution X; = arsinh (W;).

Furthermore, we consider the function f(x) = sech(z) + 15 arctan(x), that is, we have

1
VIR

We choose p = 3 (that is, 5 basis functions) and, for each ¢ = 27%, i € {2,3,4,5,6}, we set

E[f (X1)] = E [sech (arsinh (W;))] = E ~ 0.789640. (3.58)

the parameters J, N, and N as follows (compare with the formulas in Section 3.4 for the
“limiting” case ¥ — oo and ignore the constant B, as well as the log-terms for the integral

approach):

0.6526 - ¢~ 1:0588

[ 1 integral approach,
[0.6342 - e~ 15882  geries approach,
[ |
[ |

J=¢ 1 NT:256-{
N=256-{

Regarding the SMC approach, the number of paths is set N = 256 - 2. The factor 256 is
here for stability purposes. As for the MLMC approach, we set the initial number of paths

2.6102 - ¢—1.0588
2.5367 - £~ 15882

integral approach,

series approach.

for the first level (I = 0) equal to 10 as well as the “discretisation parameter” equal to 4
(leading to time steps of size % at level 1) and use the algorithm described in [18]. Next
we compute the numerical root mean squared errors (RMSE) (the exact value is known,
see (3.58)) by means of 100 independent repetitions of the algorithm. As can be seen
from the first plot in Figure 3.1, the estimated numerical complexity is about RMSE 182
for the integral approach, RMSE ™23 for the series approach, RMSE % for the MLMC
approach and RMSE 3% for the SMC approach, which we get by regressing the log-time
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(logarithmic computing time of the whole algorithm in seconds) vs.

complexity reduction works best with the integral approach.

one-dimensional example

3.5. Numerical results

10 : , i : .
x X
6f *, X ]
£ 4} * ]
g - - logz(RMSE—l.SZ-'IS) R
\;cg ol K integral ]
Ee) _._.10g2 (RMSE—2.43[]4)
-series
0. log, (RMSE 30173) J
X SMC _"
-2 [l—log, (RMSE 19917 |
MLMC W
iy -12 -10 -8 -6 4 2
log,(RMSE)
five-dimensional example
16 . i ; .
*
12 * |
— \%\
£ N ]
£ |[-log,(RMSE ) R
\;cg SK-integral SR .
S 4 rl-log,(RMSE~2511) R % e 1
-series }( -
........ log, (RMSE 30260
0 r|x SMC ' |
_]Og2 (RMSE—Q.[]OS?)
MLMC
- -10 -8 -6 -4 2 0
log,(RMSE)

log-RMSE. Thus, the

Figure 3.1. Numerical complexities of the integral, series, SMC and MLMC approaches in

the one- and five-dimensional case.

3.5.2 Five-dimensional example

Here d = m = 5. We consider the SDE

dX; = —sin (X]) cos® (X}) dt + cos® (X]) AW/,

XS =0,

i€{1,2,3,4},

4
dX} = Z [—; sin (X;) cos? (XZ) dt + cos (Xtv) AW} | +dwy,  Xg =0.
i=1

(3.59)
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The solution of (3.59) is given by
X} = arctan (W}), i€ {1,2,3,4},

4
XP = Zarsinh (Wti) + W7,
i=1
for ¢ € [0, 1]. Further, we consider the function

5 4
f(z) = cos (Z xz> —-20 Z sin (z;) ,
i=1 i=1

that is, we have
E[f (X1)] = (E [cos (arctan (W} ) + arsinh (Wll))])4 E [cos (W7)] & 0.002069.

We again choose p = 3 (this now results in 57 basis functions) and consider the same values
of £ as above. Moreover, we set (compare again with the formulas in Section 3.4 for v — oo

and ignore the the parameter B, as well as the log-terms for the integral approach):

J—ecl N = { [40.0274 - e~ 123817 integral approach,

4-[4.9044 - e~18571]  gseries approach,

] [2241.5320- 712317 integral approach,
| 4-[274.6480 - e~ 1-8571]  series approach.

The number of paths for the SMC approach is set N = 256 -2, as in the previous example.
Regarding the MLMC approach, we again use time steps of size 4% at level [, but the
initial number of paths in the first level is increased to 10%. As in the one-dimensional
case, we compute the numerical RMSE by means of 100 independent repetitions of the
algorithm. Our empirical findings are illustrated in the second plot in Figure 3.1. We observe
the numerical complexity RMSE 1% for the integral approach, RMSE ™% for the series
approach, RMSE 2! for the MLMC approach and RMSE %% for the SMC approach. Even
though the complexity order of the series approach is better than that of the SMC approach
and close to that of MLMC approach, the series approach is practically outperformed by
the other approaches (see Figure 3.1; the multiplicative constant influencing the computing
time is obviously very big). However, the integral approach remains numerically the best

one also in this five-dimensional example.

3.6 Proofs

First of all, we require the following Lemma to prove Proposition 3.15:

Lemma 3.25. In case of the Euler scheme, it holds for J >1>j>0andd=m =1

P Xn 60X —0°Xa,0XA

X1, xa,, (A1) = (3.60)
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where 52th,1(A,tl) = “t’é’iw, 0Xt, o(Aty) = Mt”’g%w and Xy, (A, t;) denotes

the Euler discretisation, starting at time t; in x (analogous to X 4(t) for the exact solution,).
(That is, while the present time point t; of the discretised process, | € {0, ..., J}, is used by

subscripts in the notation Xa y,, it is used in brackets in the notation Xa ¢, (A1), j <1).

Proof. We use the mathematical induction technique. First, for [ = j we clearly have
02Xy, x4, (A t;) = 0. Regarding the inductive step, we assume (3.60) and further use (3.33)

as well as 5XA7XM], (A ) = g;ﬁ:’ (see proof of Theorem 3.11) to derive
t

0" XA X, (A tigr) = 0°Xa xa, (A t) Ay +0X3 v, (At) B

52XA tlaXA t; 52XA tj(SXA t 6XZ
= 2 2an0tA, LOTAN g A
5X2,tj +1 + 6XZ B +1,
where
0 AW
Aj = %(DA <XA,tj17 \}Z) =1+ ,UII(XA,tj,l)A + U,(XA,tj,l)AjVVy
0? AW
Bj = @(I)A <XA,tj1; \;E) = ,LLH(XA,tjil)A + O—N(XA,tj,l)AjVVy
for j=1,...,J (cf. (3.33)). Next we use
6XA t
A _ JIE!
I+1 75XA,1€1 )
B _ 62XA,tl+1 - 52XA,tlAl+1 _ 52XA,tl+16XA,tl - 62XA,tl5XA,tl+1
+1 = 5Xi’tl - 5Xi’tl ’

which gives us finally

P Xan0Xan, — 0 Xa,0Xan 0Xau,,

62XA,XA,¢_7. (A7 tl-‘rl) =

5X3, X as,
6X2 ., . XAt 0XAw — 02 XA, 0XA 0,
0XR,, 5X32
XA 06X, — 0P XA 0X A,
N SXZX ., ’

Note that it holds analogously for the non-discretised process §2X (cf. formula (3.15) in [45],
which is of a similar form)

_2X0X, — 82 X,0X,
B 5X3 ’

62X, x. (1)
where 0 < s <t <T. O

Proof of Theorem 3.2

The proof uses the well-known fact that the system

J m
AWT
[TTT . (25 ) k= () e g

j=1r=1
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is an orthonormal basis in L?(G ), where the o-field G; = o(A;W : j = 1,...,J) is generated
by the Gaussian increments, and goes along the lines of the proof of Theorem 4.11. Note
that we rather prove Theorem 4.11, since we will achieve a better complexity based on the

representation there. O

Proof of Theorem 3.4

NJX’” we define

o—E | rcan T[] 5 (AWZ)

j=1li=1

For p €

Further, for j € {1,...,J}, 1 € {1,...,m}, and k € N, we define

NJXm.

“k—{pe jﬂ»:k:,pj,r:OVr>i,pl,r:0Vl>j,Vr€{1,...,m}}.

The Wiener chaos expansion of f(Xa ) with respect to (A, W) 1 is given by (see e.g. [52])

f(Xar) =E[f(Xar)] +Z > cpHﬁHpﬂ (A W) (3.61)

k= 1p€NJ><m j=1li=1
lp|=k

Rearranging of the terms in (3.61) leads to (cf. proof of Theorem 4.11)

J m

s et 323 S (A 5 [ (T (2))

j=11i=1 k=1 PELj ik
. 1—1 | (AJ r) .
TI:II P\ VA

Finally, we get for all j € {1,...,J}, i€ {l,...,m},and k €N

> o (I () (I ()

I

PELin =1
[ (70 )| @it i)
E l:f(XA,T)Hk (A\J/Igl> ’ XA (—na, (A;W)iZ } = aj ;i (Xa,-na, (A;W)ZY),

which completes the proof.

Proof of Theorem 3.6

First of all, we derive

t].}(I?J UA(t XA i1 Wt — Wtjfl) (362)
Yy + Wt. - Wt
_t1>‘n? E |:uA(tJa LN ( \/JE) ’0):| r=Xa, -2, y=We=Ws,

AW
=una <tj7‘1’A (XA,(j—l)Av \;Z) 70> = ua(tj, Xay;,0).
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By means of It6’s Lemma and the fact that ua satisfies the heat equation

m a9
yo i 10ua (3.63)

due to its relation to the normal distribution, we then obtain

f(Xar) = E[f(Xar)] =ua(T, Xar,0) — ua(0,z0,0) (3.64)

J
= Z (UA(tjv XA,tj ) 0) - uA(tjfla XA,tj_l ) 0))

= Z hm (UA(thA,tj,17Wt - Wtjfl) - UA(tj—17XA,tj,150))

jzlt/‘t]

J m tauA .
“3t [ G Xan bW aw

Jj=11i=1 tiq

g 4
:Z /VyUA(S,AXA)tJA,VV‘S Wt] ) dWs 0
j=1

Proof of Theorem 3.7

Below we simply write ua ¢;, rather than ua(tj_1, Xay, ,,0). Let us consider the Taylor
expansion for uA(t XAt Wi =Wy, ) of order K € N around (tj_1, Xa;_,,0), with
red{l,... 7m}, that is, for t € [t;_1,t;), we set

K Da ( ’LLA ti- 1) a1 1 1 ao m m « 1
T55.(t) = Z 1 (t = b)) Wy =W, )% (WY = W ),
a|<K

| ol !
(3.65)
where a € NJ"™ and Dy, is defined in (3.15). Via Taylor’s theorem we obtain
9 K
ayr UA(t XA N7 1th - Wtj—l) - T;,r@)
/ 0
/ KDOL (ayuA(tj_l(l — Z) + tZ7XA,tj,172(Wt — Wtjl))) dz
loo|= K+1 0 T
(K+1
o l X Pt —t) " (W =W )02 (W — WtTl)am“} :
10 Omy1-
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Provided that (3.16) holds, we get

J m ty
0
Var ZZ / (5‘yruA(t XA We — Wtj,l) _le,(r(t)) AWT

J m 4 P 2
:Z Z / E l(ay UA(taXA,tj,th - Wtj—l) - Eﬁ(t)) ] dt
g=lr=1," "

<oy Z > / t* tjo1) 2 (W = W )% (W) — WtTfl)QaMl} dt
=1 laj=K+1,”

S(CQA)KH Kjo 0,

and thus TK converges for K — oo in L*(Q x [0,7]) to a“A A (2, Xa,
over, due to (3.63), the limit of TJKT simplifies to (cf. (3.65))

Wi —Ws,_,). More-

j—17

aUAt 28UAt

0y 0y Ul Wtzj—l)

%

N i i \2
T3 ZZ:: W((Wt —Wi )7 = (t—tj-1))

- 831%@.7 i i i i
* 2 Gy gy W W W =W )

1 OMuny, ; j i '
620 g (Wi = Wi ) = 8w = W)t = 1;-))

1 84UA iti—1 i1 i1 \2 i 12
+5 Z m((w Wi )T =t —t—)) (W2 =W )

un, i i i i i i
+ Z ﬁ(th - Wtjl,l)(WtQ - Wtf,l)(Wts - Wtf,l)
11 <i9<i3

+ ...

o I Sl | e A

= j—1 P kla T 0 .
=1 keNT YroY, Ym" 1 )

" ki=l-1

To compute the stochastic integral

tj
/ Vy’U,A(t, XA,tj,ﬂWt - Wtj_1) th
tj—1
i (er)
—zz N s e
= _71 o 8k1---8km \/F to
1=1r=1,"7 keN] Yrd Ym® i i

S kit
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He (Y
we apply Ito’s Lemma w.r.t. the functions Fy(t,y1,...,ym) = /21", b gcf>, where
>, ki = 1. Thus, we obtain
AFy(t —tj1, W =W W =W ) (3.66)

W W Wi-wi
-1 —tj—1 —tj—1
=(t—t;-1)F Y 11 AWy .
r=1 V (kr - 1)! Vki!

i=1
iET

This gives us finally

~
S

VyUA(ta XA,tj,l Wi — Wtj_l ) AWy

tj71
AW?
> o i, Xae ., 0) 15 Hy, ( ' )
Sy Y un( ]kll Aty )H x/'Z . 0
1=1 keNg Oyy* -+ Oymi” i=1 k!

Proof of Theorem 3.8

Let us define the function Gy () for J > 1> j > 0, z € RY, as follows (cf. (2.12))

Gl’j(l‘) = (I)A,l o (I)A,lfl 0...0 @A,j+1($), > j, (367)

Gj(x)=z, =74,

where ®a ;(z) == Pa (x, A\}g) for i =1,...,J. Note that it holds (cf. (2.13) and (3.13))

ua(ty, ©,0) = E[f(Gr;(x))]- (3.68)

Similar to G we define the function G'j(x,z), 0<j<J,xeRy z:=(z,.. L Zj—j) €

R™X=0) o= (2}, 2T € R™ for 1 =1,...,J — j, as follows

Gj(z,z) = ‘i)A,ZJ,]- o...0 (i)Am (),

where @4 ., (z) := ®a (z,2). Note that G and G have the following relation

1
VA

Let us represent \/Za%iuA(tj_l,x,O), where j € {1,...,J} and i € {1,...,m}, as a
(J — j + 1)m-dimensional integral, that is (cf. (3.69))

3= 5 (0 0 () o

Yi
9 ~ Yy
= \/Zafyf ijl z,| 21+ ﬁ’ 25y BT—j+1 SD(J—j+1)m(Z) dz |y:om )

R(J—j+1)m

G.],j(x) = éj ((E, (Aj+1VV, Aj+2VV,...,AJW)> 5 ] < J. (369)
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where ¢(;_;1)m denotes the (J — j + 1)m-dimensional standard normal density function.

Since it holds

o .
\% A@f (Gj—l (30, <Z1 + %,22, . -,ZJ—j+1>)>
0 ~ Yy
:Bizif (Gjl (% (Zl + ﬁ,zb .- ~7ZJj+1)>) ,

we obtain via integration by parts

\/KiUA(tj—la T, O)

y;
0 -
= / 04 (ijl (z, z)) O—j+1ym(2) dz
21
R(J—i+1)m
~ 0
= f (ijl (z, 2)) W@(J—j—&-l)m(z) dz
21
R(J—j+1)m
= / f (ijl (z, Z)) z{‘P(J—jH)m(Z) dz
R(J—i+1)m

AW .
| (G ) | =B 1) 2 [Xa oy = | =0 (0) 0
Proof of Theorem 3.9
Via Taylor’s theorem we get
auA(t XA ti— 17Wt - Wtj,l)
y;
1
auA(J 1,XAt] 1,0 (t—t; /82UA -1 (1—2)+tz, XAtJ . (Wt_Wtj,ID "
e 1) dy;0t
0
1
m 52 (1—2)+tz, X (W — W,
Sy - wy / ualtirt=2) +te Xag, o 2 = W, ) o (3.70)
r=1 o ) 0y; 0y

Due to (3.63), (3.70) simplifies to

0uA(t XAtJ 17Wt_Wtj,1)
y;
auA(] 1, XAt;_1,0)
Oy

1
/Zm:a ua(tji—1(1 —2) + tz, XAt 1 (Wt_Wtjfl)) dx
0

0y 0y?

8yi ayr

1
m 0? ti_1(1— tz, XAt Wy — Wy,
JrZ(W[* )/ ua(tj—1(1—z) +tz, Xas, o, 2(Ws t; 1)) o,
0



46 3.6. Proofs

Provided that ua has bounded partial derivatives in y of orders 2 and 3, we have

tj

Oun(t,Xas Wy — Wy  Oua(tio1, Xay, .0 .
Var / un(t, X, o We t; l)th"— ua(tj—1, Xa, . )Asz
yi 0y;
tji—1
il Pusltya(1-2) ( )
m ua(tj—1(1 —2z) +t2, Xay, ,2(Wy =Wy, |
— E W’I" _ Wr Y] J
/ /z_; (( E- W) 0y 0y,
tji—1 o
Dunlti—1(1—2) +tz, Xay, ,,2(Wy =Wy, ) 2
—2(t —t;j_1) J Dy’ ! i1 > dz> dt

tj
<> / E [(W[ — Wl )P At —t0)? | dt S A%

r=1 i1
Thus, we finally obtain
Var [f(XAvT) - K‘H

tj

J
Oun(t, Xar, W, —W,  ua(tj1, Xar, 1,0 |
=3 Var / wall Xawy o We = Woy o) gyys _ Qualtion Xa 000 5 i < 4,
j=1

0y; Oy

tji—1

Proof of Theorem 3.11

Due to Theorem 3.6, it is sufficient to show
Vyualt,Xag, W= W, ) = E[VF(Xar)iXardXh 1B | o(Xay, )

for t € [tj,htj).

Let us derive a relation between Vyua and Vyua. We have for t € [t;_1,t;)

Y + Wtj - Wt
Vyua(t,z,y) = V,E |:UA (tj,q)A (x, \/K) ,0)} (3.71)

= .8 [us (1. (0 ) o) ot

Thus, the term Vyuna(t, Xa ¢, ,, Wi — Wy, _,) in (3.64) takes the form
Vyua(t, Xa,_ o, Wi =Wy, ) = E[Veua(ty, Xag,,0) [Filo(Xa,_ ). (3.72)
Note that it holds
ualty, z,0) = E[f (X, 2(A,T))) (3.73)

where Xy, (A, ;) denotes the Euler discretisation, starting at time ¢; in z (cf. Lemma 3.25).

Hence, we have for V ua

Vaouna(ty, z,0) = E[V (X, (A, T))0 Xy, (A, T)],
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respectively
Voualty, Xas,,0) = E [VF(Xe,xa,, (A T)6Xe, x40, (AT F ]

i vk 8thj,m(A»tl) . . . . .
where 6" Xy’ (A, t)) := —4—— with I > jand ¢,k € {1,...,d}. Below we simply write
Xay, and 0 XAy, rather than Xg 4, (A, ¢) and 6Xo 4, (A, t;).

Let us denote by
%q)lA(xvy) T %q)lA(Ivy)
Ton(T,y) = : : (3.74)
22r®A(z,y) - 52 PA(z.y)

the Jacobian matrix of the function ®a (z,y) w.r.t. the variable z. Regarding the discreti-

sation scheme for 6.Xa ja, we can use, alternatively to (3.24), the matrix form

SXaja = A;0Xa na = AjA; - Ay, (3.75)
where
AW
Aji=TJa, <XA,t31a h)

for y=1,...,J. This gives us for [ > j
OX1, a0, (A1) = AyAL - Ajy = QA g Ay (AjA - AT = 60X, 0X 40
Let us recall the function G in (3.67). We can derive
Xt) Xa, (A ty) =G j(Xae,;) = Grj(Gho(w0) = Gro(zo) = Xy, (3.76)
where again [ > j. Finally we have for ¢t € [t;_1,t;)
Voua(ty, Xag,,0) = E [Vf(Xar)6Xaro X5} |7 ]

which gives us

Vyua(t, Xag, o We =Wy, ) =E[B[VF(Xar)iXardX3) |7, | 1R ] o(Xas, )

_E [Vf(XA,T)(SXA,T(SX;}tJ_ \}‘t] o(Xau, o).

Note that it holds analogously for the non-discretised processes X and X (cf. [45])

X x,(t) =Xy,
0 X
5X3»Xs (t) - 5XS7

where 0 < s <t <T. O
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Proof of Proposition 3.15

Since it holds for 7 =0,1,...,J (cf. (3.73))
ua(ty, ,0) = E[f (X, = (A, T))];

we have for the second derivative of ua w.r.t. x

2

ua(t@,0) = B[ (X1, o (A T)0Xe, a(A, TN + /(X1 0 (A, T))6 X, (A, T,

Next, we have the following relation (similar to (3.72) for the first derivative)
2 82 9
a—yzuA(tj,hx,O) =FE [WUA(tj,XA’t].,O) ‘XA,tj_l =z |o°(x).
2
Hence, we get for g—y?uA(tj,l,x,O)

32

aiyguA(tjflﬂ T, 0) =E |:f//(th1XA,tj (Aa T))(athaXA,tj (Av T))2 (3’77)

(X, Xy (B TNE X, xa 0 (AT [ X,y = 2| 0(@)

f//(XA’T) <(5XA1t

+F(Xa )8 X, xa 0, (A T) [ Xag,, = | o).

=E

We complete the proof 3.15 by inserting (3.60) (from Lemma 3.25) into (3.77) for i = J. O

Proof of Theorem 3.17

First of all, let us note that we may apply Theorem 2.5 here, since ua (¢, x,0) is an analogue
of the function g;(x), defined in (2.13) (cf. (3.13)). One can easily verify assumptions (2.14)
and (2.15) in Theorem 2.5 for K € {1,2,3} when all the functions f, pg, ok, k € {1,...,d},
i€ {l,...,m}, are K times continuously differentiable with bounded partial derivatives up
to order K (cf. (3.5)).

(i) Assumption (A2) follows straightforwardly from (3.29) for K = 1. As for assump-
tion (A1), we use (3.76) to get for j € {0,1,...,J}

Te,,(Xar,) = 0Xa 4, (A T) = 6Xa76X3), .
where Jg, ,(x) denotes the Jacobian matrix of the function G ; (cf. (3.74)). This gives us

V(foGrj)(Xar)=VIiGri(Xa))Ta,,(Xar)=Crjs
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where (;; is defined on page 30. Then we obtain for k € {1,...,d} and j € {1,...,J}

Var [Crjn | Xag,_, = ]

< E [C?,j,k | Xa, ., = JJ]

2
0
( 0z G]J XAt ))aka?],j(XA,tj)> |XA,tj—1 =

< dZE[({f GJ,j_1<z>>aia3,j_1<x>>2]
< di | (5 (Gayle >>)4 E (%Gamm)ﬂ.

Hence, assumption (A1) is satisfied under the above assumptions for K = 1 (cf. pf“,’i , in

the proof of Theorem 2.5).

(ii) As an extension of (3.71), we get

92
6y8y UA(Lx’y)
d
o y+ W, — W,
= E t. [0 JU T 0 y . ’
S%::l [E)xs@xuUA(p A (33, JA ), )} 05i(x)our(T)
83
a1
d
o y+ W, — W,
:S’uzﬂ)::lE {muﬁ (tja (0N (CC, \/Z) 70)] USi(x)o-ur(x)Uyo<.’L‘)’

where j € {1,...,J}, t € [tj—1,t;) and i,7,0 € {1,...,m}. Applying Theorem 2.5 and
considering that all functions oy 4, k € {1,...,d} i € {17 ...,m}, are bounded, we get that

the partial derivatives in y up to order 3 are bounded, too. O

Proof of Theorem 3.19

Using the martingale transform structure in (3.30) and (3.41) (recall footnote 4 on page 27)
together with the orthogonality of the system A;W?*, we get by (3.39)

Var[f(Xar) — Mmt 7] = Var[f(Xa,T) — M”Lt L]+ Var[M mt Mmt t]

m d

J
1 N
S+A > D EID G5k — 9i)okill Toea, )

j=1i=1 k=1

N

J m d
1
< j+dAZZZE”(g]’ 95, )Uk1||L2(PAJ 1)
j=11i=1 k=1
e1s
< = 4 dTmo?, { (S + A%(log N, + 1))

j max Nr

8C2 AN I
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Proof of Theorem 3.20

Let us, for simplicity, first ignore the log(N,)-term in (3.44) and consider only the terms
w.r.t. the variables J, N, N, S, R which shall be optimised, since the constants d,m, ¢, q4,
(p+1)!, B, do not affect the terms on £. Further, we consider the log-cost and log-constraints

rather than (3.43) and (3.44). Let us subdivide the optimisation problem into two cases:
(i) N, < N. This gives us the Lagrange function

Ly, . .2 (J,N.,N,S, R) (3.78)
:=1log(J) + log(N) + dlog(S) + A (—21log(J) — 21log(e))

+ Aa(—log(J) — log(N) — 2log(e))

+ A3(dlog(S) — log(N,) —log(N) — 2log(e))
+ A1(2(p + 1)(log(R) — log(5)) — log(N) — 2log(e))
+ A5 (v log(R) —log(N) — 2log(e)) + Ae(log(N;) — log(N)),

—_— ‘s oL _ 0L _ 8L _ 9L _ oL L
where Aq,...,A¢ > 0. Thus, considering of the conditions 75 = N, — 9N — 95 — 9oR —

gives us the following relations

1— X
)\1 = Ta
2p+ D(w(1 — A2) —d) — dv
Az = = D¢,
dv+2(p+1)(d+2v)
)\4 _ dl/(3 - )\2)
dv+2(p+1)(d+2v)’
_ 2d(p+1)(B =)
ST dv+20p+ 1) (d+2v)
The case A1, ..., A¢ > 0 is not feasible, since all constraints in (3.78) cannot be active, that

is, they cannot become zero simultaneously because of six (linearly independent) equalities
on five unknowns. Hence, we derive the solutions under \; = 0 for different 7 and observe

which one is actually optimal.

a) M1 =0 = A3 =X = 7% < 0. Due to negative A3, A\g, this case is not

optimal.

b) Aa =0 = A, A\, A5 >0, A3 = A = %. Again, we make a case

distinction:

I. A3 = XA¢ = 0. From this condition, we get v = % and 2(p+ 1) > d. (The

latter guarantees that v is positive). This gives us, due to A1, Ag, A5 > 0,

J=e 1,

1 14
s< L]

3

Hence, the complexity JS?N = £73 is no improvement compared to the SMC

approach.
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IT. A3 = A¢ > 0. From this condition, we get v > % and 2(p + 1) > d. (Again,
the second condition guarantees that v is positive.) In this case, all constraints
apart from the second one in (3.78), corresponding to Ao, are active. Then we

obtain

~

)

7

2v+4(p+1)
S =e du+2<p+1><d+2u)

(

_ 2dv+4(pt1)(d+v)
N = g~ w2t D(dtar)

. d _ 5dv42(p+1)(5dtdv) .
Here, the complexity JS*N =< & d+2+DE@+2v)  is a better solution than the

previous one. Moreover, the remaining constraint ﬁ < €2 is also satisfied under

this solution.

) M3=X=0= A, A\, A5 >0, Ao = W. The case Ay = 0 is the same as

the last but one and thus gives us the complexity JS?N =< e~3. The case Ay > 0 leads

to four active constraints in (3.78), namely the ones corresponding to Ap, Ag, Ay, As,

such that
J=et,
_ vt2(pt1)
S = 2v(pFD)
N =<e L,
: d _ dv2(p i) (dt2n) .
The complexity JSN < ¢ 2v(p+1) seems to be nice at the first moment. How-

ever, it does not satisfy both constraints corresponding to A3, A¢. On the one hand, we
have for the third constraint N, 2 5_1_%. On the other hand, we have for the
sixth constraint N, < e~!. Hence, this is not an admissible solution.

d) Ay =0 = X; = —1. Since \; is negative, this case is not optimal.

e) As =0 = Ay = —1. As for the previous one, this case is not optimal.

(ii) N, 2 N. This gives us the Lagrange function

..... r6 (S Nr, N, S, R)

::log(J) + log(N,.) + dlog(S) + A1 (—21log(J) — 21og(e))

+ Ao(—log(J) — log(N) — 2log(e))

+ A3(dlog(S) — log(N,) — log(N) — 2log(e))

+ M(2(p + 1)(log(R) — log(S)) — log(N) — 2log(e))
(-

+ As(—vlog(R) — log(IN) — 2log(e)) + As(log(N) — log(IN;.)).

Analogously to the procedure above we get the same optimal solution, that is

J=e 1,

_ 2utda(ptl)
S =e¢ dv+2(p+1)(d+2v) |

_ 2dv+4(p+1)(d+v)
Nr = g dvt2(p+l)(d+2v) |
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. . _ 5dv+2(p+1)(5d+4v)
Thus, we have again for the complexity JSIN, =< ¢~ @Dt
Next we consider also the remaining terms ¢y q, (p + 1)!, B, and arrive at (3.45)—(3.46) via
equalising all constraints in (3.44) apart from the second one as well as considering N =< N,
(provided that p > % and v > %
parameters N,., N to ensure that all constraints are really satisfied.

). Finally, we add the log-term concerning ¢ in the

Let us additionally prove the statement in footnote 6 on page 32, i.e. that the complexity
of the integral approach would be worse than that of the SMC whenever at least one of the
above inequalities is violated. More precisely, the statement we are going to prove sounds
as follows. If either p < 452 (recall that p € Ny) or v < % (recall that v > 0), then
the cost C of the integral algorithm given in (3.43) is worse than £ ~2 regardless of the choice
of J, S, R, N and N, such that (3.44) holds true.

We first remark that any choice of J, S, R, N, N,. such that R does not tend to infinity
as € \( 0 results in C > £73. Indeed, in this case we see from the first and the fifth terms
in (3.44) that J > 7! and N > e72, hence C > JN > £=3. Therefore, below we consider
without loss of generality only such choices of J, S, R, N,, N, where R tends to infinity as
€ \( 0, and discuss the following two cases.

Let p < 952, that is, 2(p + 1) < d. Then we obtain from the fourth term in (3.44)

SdN > 52(p+1)N > 5—2R2(p+1) > 5_2
and hence, together with J > 7! (see the first term in (3.44)), we have for the cost

C>JSIN >e72] >3,

2(p+1)d

Next, let p > %, that is, 2(p+1) > d,and 0 < v < pr)—d-

and the fifth terms in (3.44)

Then we get from the fourth

R+ < g2(p+1) N2,

2(p+1)d v 1 —9
R3win-d > R¥ > N~ 12,

Therefore,
2(p+1)d d 2d 1 2
S +D—d N2ZptD—dc2(ptl)—d Z N~ e~

This yields
2(p+1)d 2(p+1) _ _4A(pt1)
S2eFD—d N2GFD—d > ¢~ 2e+h)—d

and we deduce
SIN >e72,
Together with J > e~!, we obtain for the cost

C>JSIN > Je=2 > 73,

which completes the proof. O

Proof of Theorem 3.23

The proof is similar to the one of Theorem 3.19. O
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Proof of Theorem 3.24

The proof is similar to the one of Theorem 3.20. O
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Chapter 4

Optimal control variates for

weak approximation schemes

This chapter is mainly based on the paper [7].

Below, we derive the analogue of representation (3.6) for so-called weak approximation
schemes, i.e. the schemes, where simple random variables are used in place of Gaussian
increments. We observe that optimal control variates contain a finite sum in this case,
in contrast to strong approximation schemes. Moreover, we present a recursive algorithm,

which shall lead to accurate regression estimates.

In recent years weak approximation schemes became quite popular. The weak Euler
scheme is a first order scheme with weak order of convergence o = 1, and has been studied
by many researchers. Milstein [43] showed the first order convergence of the weak Euler
scheme. The fact that the same weak convergence rate of the Euler scheme also holds
for certain irregular functions under a Hérmander type condition was proved by Bally and
Talay [5] using Malliavin calculus. The It6-Taylor (weak Taylor) high-order scheme is a
natural extension of the weak Euler scheme. In the diffusion case, some new discretisation
schemes (also called Kusuoka type schemes) which are of order o > 2 without the Romberg
extrapolation have been introduced by Kusuoka [39], Lyons and Victoir [41], Ninomiya
and Victoir [51], and Ninomiya and Ninomiya [50]. A general class of weak approximation
methods, comprising many well-known discretisation schemes, was constructed in Kohatsu-
Higa and Tanaka [57]. The main advantage of the weak approximation schemes is that simple
discrete random variables can be used to approximate multiple Wiener integrals arising in

higher order schemes.

In this chapter we focus on the weak schemes of first and second order.
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4.1 First order schemes

In this subsection we treat weak schemes of order 1. Let us consider a scheme, where

d-dimensional approximations Xa ja, j =0,...,J, satisfy Xa o = 29 and
Xaja =Pa(Xa,-vasé), j=1...,J, (4.1)
for some functions ®a: R¥*™ — R with ¢ = (fjl ...,f}")—r, j =1,...,J, being m-

dimensional i.i.d. random vectors with i.i.d. coordinates such that
IP>(§’“—i1)—1 k=1
P = =3 =1,...,m.

A particular case is the weak Euler scheme (also called the simplified weak Euler scheme in
[38, Section 14.1]) of order 1, which is given by (3.5).

Theorem 4.1. The following representation holds

J m T

fXar)=Ef(Xar)+ Z Z Z ajrs(Xa,-1)a) H & (4.2)
J=1r=11<s1<...<s.<m i=1

where we use the notation s = (s1,..., ;). Moreover, the coefficients a; . s: R4 — R can be

computed by the formula

T

fxan) [[&

i=1

ajrs(z) =E

XA (j—na = 1?] (4.3)

for all j, r, and s as in (4.2).

Example 4.2. Let us recall the example in Subsection 3.1.1. In case of the simplified
weak Euler scheme it holds Xa ja = Xa j—1)a(l + O’\/ij) and thus we have again the
representation (3.1). However, due to P(¢F = 1) =1 for all j € {1,...,J}, we obtain

XX ja—XA jopa(l+0%A) = o VAXE ;1A (253' +oVA(E - 1)) =20VAXR (;_1)as-

This gives us a simplified formula compared to (3.2), namely (cf. (4.2))

J
Xar—E[XZ 7] =) aj11(Xag-1a)é

j=1
with a;11(2) = 20V Az?(1 + 02A)7 7.

Next proposition shows the properties of the simplified Euler scheme combined with the

control variate

J

M =33 > aes(Xagona) [I€ (4.4)

J=1r=11<s:1<...<s5.<m i=1

where the coefficients a; , s(x) are given by (4.3). It is a combination of the above Theo-
rem 4.1 together with Theorem 2.1 in [44].
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Proposition 4.3. Assume that pn and o in (1.1) are Lipschitz continuous with components
pr, oki: RE =R, k=1,...,d,i=1,...,m, being 4 times continuously differentiable with
their partial derivatives of order up to 4 having polynomial growth. Let f: R¢ — R be 4
times continuously differentiable with partial derivatives of order up to 4 having polynomial
growth. Provided that (3.5) holds and that, for sufficiently large n € N, the expectations
E|Xa jal|?" are uniformly bounded in J and j =0, ...,J, we have for this “simplified weak
Euler scheme” (cf. Proposition 3.14)

[E[f(X1) = f(Xar)]] < cA,

where the constant ¢ does not depend on A. Moreover, it holds
Var [ F(Xar)— Mm =0. (4.5)

Remark 4.4. (i) In order to use the control variate MX)T in practice, we need to estimate

the unknown coefficients a; . s. Thus, practically implementable control variates ME)T have
the form (4.4) with some estimated functions @, ,: R? — R (similar to the control variates
in Chapter 3).

(ii) Notice that the weak Euler scheme is, in contrast to the (strong) Euler scheme with
Gaussian increments, not strongly convergent.® However, the assumption on strong conver-
gence is not required in our setting. That is, we only need weak convergence and here we

have the same convergence order as for the Euler scheme (cf. Proposition 3.14).

4.1.1 Computation of coefficients

Coefficients (4.3) can be directly computed using various regression algorithms as discussed
in Subsection 2.1.1. From a computational point of view it is sometimes advantageous to
look for another representation which only involves a regression over one time step (note
that in (4.3) regression should be performed over J — j + 1 time steps). To this end, we
recall the functions (cf. (2.13))

qi(z) = E[f(Xa,7)|Xa ja = 2] (4.6)

The next proposition contains backward recursion formulas for the functions g; as well as

the expressions for the coefficients (4.3) in terms of ¢;, j =1,...,J.

Proposition 4.5. We have q; = f and for each j € {1,...,J},

1
gj-1(z) =E[g;(Xaja)|Xa (-1)a = 7] = om > 7 (®a(z,y)).  (47)
y=(y1,-ym)€{~1,1}"
Moreover, the coefficients (4.3) can be expressed in terms of the functions q;, j =1,...,J,
as

;(Palz,y)) (4.8)

s =5 Y [H "

y=(Y1,-.,ym)€{—1,1}" Li=1

forall j, r and s = (s1,...,8;) as in (4.2).

9 One usually speaks about strong convergence when the approximations (X A,ja) are defined on the same

space as the solution (X¢) and we have the convergence in some LP-space, e.g. lima,0 E|Xa 1 — Xr|? = 0.
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Remark 4.6. The advantage of the representation (4.8) over the original one consists in
the fact that all functions ¢;, 7 = 1,...,J, can be recursively computed using regressions
over one time step (based on the first equality in (4.7)) and without involvement of the
independent of Xa (j_1)a centred random variables &' (cf. (4.3)), rendering the estimates
for g; more stable. If ¢; is approximated as a linear combination of @) basis functions, then
the cost of computing the coefficients in this combination by least squares regression on
N, paths is of order N,Q?. Once q; is approximated, the cost of estimating a;, () in a
given point x via (4.8) is of order 2™ (¢ + ¢2@), where the constant ¢; describes the cost of
computing ®a (z,y) for given points x and y (this is dm in case of (3.5)), and the constant
¢y describes the cost of computing the value of a basis function at a point in R? (this is

typically d).

4.1.2 Additional representation formula

Theorem 4.7. Alternatively to (4.2), we also have the following representation formula

J m
f(Xar)=Ef(Xar)+ Z Z ajr(Xa -1, (€)IZHE, (4.9)

j=1r=1

where the coefficients a;,: R4T"=1 — R can be computed by the formula
ajr (@, (yi)iz)) =B [f(Xam)& | Xag-na =, (€)i2] = (v:)iZi] (4.10)
forg=1,....J andr=1,...,m.

Remark 4.8. Theorems 4.1 and 4.7 suggest two perfect control variates for scheme (4.1).
Compared with the control variate based on (4.2), the control variate based on (4.9) contains
a smaller number of coefficients to be computed, but these coefficients are functions of a
greater number of variables and thus it is numerically advantageous to use the control

variate (4.3) for implementation (cf. Remark 3.5 in case of strong schemes).

Proposition 4.9. An equivalent form of (4.10) is

i (e, )i=)) = g > PCINTS ) R INCRY)) CREY

(yr,~+1>~--7ym)€{—171}’”_T

where

—~

4.12)
4.13)

= (yla s Yr—1, 17y7‘+1a s 7ym)7

—~

Y
g = (yh...,yr717_17yr+1;-~-7ym)

forallje{l,...,J} andr € {l,...,m}.

4.2 Second order schemes

Next we treat weak schemes of order 2. We consider a scheme, where d-dimensional approx-

imations Xa ja, j =0,...,J, satisfy Xa o= z0 and

XA,jA ZCDA(XA,(j—l)Aagjv‘/j)7 .] = 17"'a‘]7 (414)
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for some functions ® : R&tm+tmxm _ Rd. Here,
(S1) & = (€F)p, are m-dimensional random vectors,
(82) V; = (ijl)Zflzl are random m X m-matrices,

(S3) the pairs (¢;,V;), j=1,...,J, are iid,

(S4) for each j, the random elements &; and V; are independent,

(Sh) for each j, the random variables {;“, k=1,...,m, are i.i.d. with
k 1 k 2
P(e=+v3) =7, P(g=0)=1,

(S6) for each j, the random variables V}, 1 < k <1 <m, are i.i.d. with

1
PV =+1) =3,

(ST) Vi ==V 1<k<i<m,j=1,...,J,

(S8) VikF=—1,k=1,....m, j=1,...,J.

Hence, the matrices V; can be generated by means of W i.i.d. random variables.
That is, relating to the framework in Section 2.2, we have 7-dimensional random vectors
Ej = ((ﬁ;)izlv___ﬂn, (‘/jil)lfi<l§7n) with m = m+ m(";l) = m(";rl). Notice that the random

vectors in Section 4.1 are not useful here, since they do not satisfy specific moment conditions

(cf. Section 14.2 in [38]). In contrast, the random vectors ;, introduced in this section,

agree in the first five moments with the standard normal distributed ones, which is sufficient.

Remark 4.10. In order to obtain an order 2 weak scheme in the multidimensional case, we
need to incorporate additional random elements V; into the structure of the scheme. This is
the reason why we now consider (4.14) instead of (4.1). For instance, to get the simplified
order 2 weak Taylor scheme of [38, Section 14.2] in the multidimensional case, we need to
define the functions ®a(z,y,2), r € RY y € R™, 2 € R™*™  as explained below. First we
define the function ¥: RY — R%*? by the formula

S(z) = o(x)o (@) (4.15)

and remark that the coordinates of ¥ and ®A are denoted by Xy (z) and ®% (z,y,2) for
k,l = 1,...,d. Let us introduce the operators L", r = 0,...,m, that act on sufficiently

smooth functions ¢g: R? — R as follows:

d dg 1 & 0%g
0 ,7 1
L(x) = kgﬂ pr () pr () + 2 EIZI Sri(x) D00, (),
d 99
L7g(x) := g Ukr(x)a—xk(x), r=1,...,m. (4.16)
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The r-th coordinate ®,, r = 1,...,d, in the simplified order 2 weak Taylor scheme of 38,

Section 14.2] is now given by the formula

O (2,y,2) =2+ Y opi(@) ys VA (4.17)
k=1

1 m
+ | pr(x) + 5 Z Crop(@) (yeyn + 211) | A

>

w
Il
-

1 — 1
+ 5 Z [coark(x) + 'ckﬂr(m)] Yk A3/? + EEONT(-T) AQ»

provided the coefficients p and o of (1.1) are sufficiently smooth. We will need to work
explicitly with (4.17) at some point, but all results in this subsection assume structure (4.14)

only.
Let us define the index sets
i ={1,....m}, Iy={(k1)eI} k<l}
and the system
A={(Uy,U3) € P(Th) x P(Zz) : Uy UUs # 0},

where P(Z) denotes the set of all subsets of a set Z. For any U; C Z; and o € {1,2}V1, we
write o as 0 = (0,),cv,. Below we use the convention that a product over the empty set is

always one.

Theorem 4.11. It holds

fXar) =EfXar)+>. > > Govmn(Xag-na) [[ Ho. &) [ v

§=1 (U1,Uz)€A 0€{1,2}V1 rel, (k,1)EUS
(4.18)

where the coefficients a;.o,v, .U, : R? — R can be computed by the formula

aj707U17U2($) =K f(XA,T) H Hor(%ﬂ) H ijl XA’(jfl)A =x]| . (4.19)
rel; (k,1)eUs

Combining Theorem 4.11 with Theorem 2.1 in [44] we obtain the following result, which
provides a bound for the discretisation error and a perfect control variate for the discretised

quantity.

Proposition 4.12. Assume, that ;1 and o in (1.1) are Lipschitz continuous with components
Py Opi: RY 5 R, k=1,...,d,i=1,...,m, being 6 times continuously differentiable with
their partial derivatives of order up to 6 having polynomial growth. Let f: R — R be 6
times continuously differentiable with partial derivatives of order up to 6 having polynomial
growth. Provided that (4.17) holds and that, for sufficiently large n € N, the expectations
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E|XAJA|2" are uniformly bounded in J and 7 = 0,...,J, we have for this “simplified second

order weak Taylor scheme”
[E[f(X1) — f(Xa1)]| <cA?

where the constant ¢ does not depend on A. Moreover, we have Var {f(XAyT) - M(AQ)T] =0

for the control variate
J
2
M( 21" = Z Z Z aj,o,Ul,UZ(XAy(j,l)A) H HOT,(ST H Vkl (420)
Jj=1(U1,Uz2)€Ao0e{1,2}V1 rel; (k,1)eU>

where the coefficients a; o.u, u,(x) are defined in (4.19).

4.2.1 Computation of coefficients

Similar to the case of first order schemes, one can derive an alternative representation for
the coefficients (4.19) making their computation more efficient and stable. The next result

contains backward recursions for the functions ¢; of (4.6) and for a;, v,,u, of (4.19).

Proposition 4.13. We have q; = f and, for each j € {1,...,J},

gj—1(7) = Elg;(Xa ja)|Xa,—1)a = 7] (4.21)
1 1 I(yi=
=2 G > > 42 =0 g (D p (2,1, 2)),
W) VB0 (0 )y cogme 1)

and, for all j € {1,...,J}, (U1,Us) € A and o € {1,2}Y1, it holds

1 1
aj.0,U,,U,(T) = Q,H(TU &m Z Z (4.22)
’ (Y15e-rYm ) E{—V3,0,V/3}™ m(m=1)

(Zuv)1<u<v<m€{—1,1}

.4Zi:1 I(yi=0) H Hor (yr) H Zkl Qj(q)A (2177 Y, Z))7

reU; (k,1)eU2

wherey = (Y1, .-, Ym) and z = (zyy) i the mXm-matrizc with z,, = —2Zyy, U < V, Zyy = —1.

4.2.2 Additional representation formula
We now introduce the following ordering on Zy: for (k;,l;) € o, i = 1,2, we say

(kl,ll) =< (kQ,lQ) <~ ki <kyor (kl =kyand [; < lg)

Theorem 4.14. We have the following representation

2 m
f(Xar) =Ef(Xar) Z ZZ @ (Xa -1y, (€)= Hi(&)) (4.23)

j=1 Lk=1r=1

+ Y bika(Xa o1& (V) et s <) Vi |
(k,1)ET,
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where the coefficients a; i can be computed by the formula
ajer(®, (v)izt) = B [ f(Xar) Hy(€))] Xa,-1a =, ()2 = W)iZ1] (4.24)
r e R4, i € R,
forj=1,...,J,k=1,2,r=1,...,m, and the coefficients b; ;. ; are given by the formula

bi k1 (T, Y, (Zrs) (r,5) €T, (r8)< (k1)) = ]E[f(XA,T)VjM | XA j—1ya =2,& =y, (4.25)
(Vi) r8)eTa,(ry5)< (ko) = (2rs) (r,6)€Ta, (ry) < (k1) |
reRY yeR™, 2z, €eR,

forj=1,...,J and (k1) € Is.
Again, representations (4.18) and (4.23) suggest two perfect control variates for scheme (4.14).

Proposition 4.15. Let us fir 7 € {1,...,J} and r € {1,...,m}. An equivalent form
of (4.24) is

1 V3
r—1
aj1 (@, (1i)iz) = JEED G T > >
(yr+17---yym)e{—\/gv(),\/g}"””'( m(m=1)

zp1)1<k<i<m€{—1,1} 7 2
" I(y;=0 _
.421‘,:7‘+1 (¥:=0) [4;(Pa(z,7,2) — ¢;(Palz,y,2))]

1 V2
-1
ajﬂ,r(xa (yz)le) - 27n('m.71) Ggm—r+1 Z Z
: (Ur+1,eeym ) E{=VEO,VE} T m(m 1)

2p1)1<k<i<m€{—1,1}

.4Zi:r+1 I(y:=0) [qj(<I>A(z,y, 2)) + q;(Palz,y,2)) — 2¢;(Pa(z, Yo, z))] ,

where
T= (Wi Y1, V3,155 Ym),
Y= U1, V3, Y15, Ym)s
Yo = (Y151 Ur—1,0,Yrs1, -+, YUm)
and z = (z;) is the m x m-matriz with zj, = —zg1, k <1, zkp = —1.

Let us now fix j € {1,...,J} and (k,1) € Zo. Denote by ci, the cardinality of the set
Cry={(r,s) € Lo : (k,1) < (r,s)}. An equivalent form of (4.25) is

1 _
bt (&Y, (205) (ry8)€Za () < (k1) = G 3T > [9;(®a(z,y,7)) — q;(Pa(z,y,2))],
(orr e atrccr s
>rs

where Z = (Z7°) and z = (2"%) are the m x m-matrices with the elements z.s, (r,s) € Io,

(r,s) # (k,1), 2" = 1, 2F' = —1, and with 24 = —2ps, 2pr = —1.

4.3 Error bounds for piecewise polynomial regression

In the previous sections we have given several representations for perfect control variates.
For the sake of clarity, we focus on second order schemes and representation (4.18) with coef-
ficients given by (4.19). As in Section 3.3, we focus on the piecewise polynomial partitioning

estimates.
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4.3.1 Summary of the algorithm

The algorithm consists of a training and a testing phase (cf. algorithms in Chapter 3). In

the training phase, we simulate V,. independent training paths
N (1 P

and construct regression estimates a; ,v,,u, (-, P¥. ) for the coefficients a; o v, v, (-). In the

testing phase, we simulate N independent testing paths (X(A"; A)ji=0

......

independently from DY , and build the Monte Carlo estimator for E[f(Xr)] as

1 N
= (Fx &) — M), (4.26)

n:l

where (cf. (4.20))

M(2 Z Z Z j.0,0,,Us ( (A(] 1)A,Dt’“ HHm )(n H ‘/j/cl,(n).

§=1 (Uy,Uz) €A 0€{1,2}U1 rels (k,1)EU,
(4.27)
This gives us
E[E] = E[f(Xa,r)], (4.28)
1 «
Var[€] = < Var [ £ - Mgm . (4.29)

Let us fix some j € {1,...,J}, (U1,U2) € A, 0 € {1,2}[]1, set

CJ»jaO,U17U2 = f(XA,T) H Hor(fjr-) H V;—kl

reU; (k,1)eUs

and remark that a; . v,,v,(%) = E[Csj.0,0,,0./XA,(j—1)a = ©]. We assume that, for some

constant h € [1,00] and some positive constants X, A, Cp,, v, B,, it holds:

(A1) sup,ega Var[(s j o0, 0./ Xa,—1)a = 2] <X < 00,

(A2) sup,epa |aj.0.0,.0, ()] < AVA < 0,

(A3) aj.,u,,0, can be extended to R? in a (p + 1, Cj,)-smooth way w.r.t. the norm | - |p,
(A4) P(|Xaj—1)alee > R) < B,R" for all R > 0,

Remark 4.16. Due to representation (4.22), the smoothness of the coefficient functions
aj.0,U,,U, is related to the smoothness of the one step conditional distribution of X ;a,
given Xa (j_na =, for any j = 1,...,J (recall the first equality in (4.21)), and to the
smoothness in z of the mapping ®A from (4.14). In the case when the mapping @ is given

by (4.17), its smoothness in x is related to the smoothness of the coefficients p and o.

Let a;,0,u,,u, be the piecewise polynomial partitioning estimate of a; o 17, v, described in

the beginning of this section. By a;.0.0,,v, = T,/x0j.0,0,,0,(z) We denote the truncated
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estimate (cf. (3.48)). We again emphasise that, in fact, a;.0,v, v,(z) = @j0.0,,0, (7, DY ),

that is, the estimates @; . v, v, of the functions a; . v, v, depend on the simulated training

paths.
Under (A1)-(A4), we have, due to Lemma 2.3,
(P+d>Sd
Ellaj.0,00,0, = @j,0,01,U, ||2L2(n:>A,j,1) <E(X+ A*A(log N, + 1)) dT (4.30)
8C2 Rd\*"*?
— | = 8A? AB,R™"
e (5) 7

where ¢ is a universal constant and P ;_; denotes the distribution of Xa j_1)a-
Similar to the L2-errors in Chapter 3, the expectation in the left-hand side of (4.30)

accounts for the averaging over the randomness in Df\’,’r, hence,
~ 2
Ellaj,o,u,,0s = @j0,00, Uzl 22(p5 ;1) (4.31)
=F |(a X DYy X ?
=E | (@),0,00,0:(Xa,-1)8, DR,) = @jo0,01,02(Xa,j-1)4)) | -

which provides an alternative form for the expression in the left-hand side of (4.30).

We now estimate the variance of the random variable f(Xa r) — M(A2)T, where

J
M=) Y Gen(Xag-na DR [ Ho (&) ] Vi (4.32)

j=1(U1,Uz2)€A0e{1,2}V1 rel; (k,1)eU2

Using the martingale transform structure in (4.20) and (4.32) together with the orthonor-
mality (in L?) of the system [],cp, Ho, (£]) [ixnevs VI, we get by (4.30)

Var[f(Xar) — MOy = Var[ME) — MS) (4.33)

J
=> > > Elajon.v — Gounllizes, )

j=1(U1,Uz2)€A 0e{1,2}V1

m(m— phd)gd
< (3m2™5 - 1) {a (S + A2 Alog N, + 1)) (i)
N,
8C2 Rd\*"*? )
S —— SA2AB,R™ .
Ty neE ( g ) *

Similar to Chapter 3, the estimator £ given in (4.26) with “hat” replaced by “tilde” is an
unbiased estimator of E[f(Xa )], and, by (4.29), the upper bound for its variance is +

times the last expression in (4.33).

4.4 Complexity analysis

Below we present a complexity analysis, which explains how we can go beyond the complexity

2 with € being the precision to be achieved.'°

order e~
We will consider two variants of the Monte Carlo approach with regression-based control

variate. The first algorithm, which is abbreviated below as RCV approach (“RCV” stands

10Recall that the MLMC algorithm can at best achieve the complexity of order 2.
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for “Regression-based Control Variate”), is the algorithm described in detail in Section 4.3.
Here the estimates @;,o,v,,v, needed in (4.32) are constructed via regressions based on (4.19).
In the second algorithm, which we call recursive RCV (RRCV) approach, we construct in
the training phase regression-based estimates §; of the functions g; backwards in time via
regressions based on the first equality in (4.21). Given the approximations qj(.,D%T) of
the functions g;(-), we construct in the testing phase the approximations of the values
0,0, ,Us (X(Arfzj_l)A,D}f\’,"T) on the testing paths via (4.22) with ¢;(-) replaced by §;(-, DY ).
Then, again, the values of the control variate on the testing paths are computed via (4.32),
and the Monte Carlo estimator for Ef(X7) is computed as in (4.26).

4.4.1 Complexity analysis of the RCV approach
The overall cost of the algorithm (training and testing phase) is of order
C = JS%max {N,, N}, (4.34)

provided that we only track the parameters J, N,., N, S that tend to infinity when e “\, 0.

Further, we have the following constraints

1 Jse g (R\**Y )
max{ﬂ’]\W’N(S) "RUN Se, (4.35)

provided that we, in addition to J, N,., N, S, track the parameter R, which also tends to
infinity when e N\, 0. Note that the first term in (4.35) comes from the squared bias of the

estimator and the remaining three ones come from the variance of the estimator (see (4.33)
and (4.26)).

Theorem 4.17. We obtain the following solution

1 o 5ut6(pt]) ___ 6lp+1)—d _ 5dv+2(p+1)(5v+4d)
J = 575’ S =€ 2du+4(12+1)(21/+d), R = e 2du+4(p+1)(2u+d)7 Nr = N = e 2dvFa(p+1)(2v+d) ,
(4.36)
. d—2 2d(p+1) 11 : S
provided that p > 5= and v > St —d" As a result the complexity order is given by

11dv+42(p+1)(7v+8d)

Crov = JSUN, < JSIN < ¢~ 2dv+itrn@~d | (4.37)

4.4.2 Complexity of the RRCV approach

In the training phase, the cost of approximating all functions g; is of order N,.JS?. In the
testing phase, the coefficients @, . 17, v, are computed via direct summation in (4.22) (with
g; replaced by their approximations §;) at a cost of order NJ S?, and, finally, the control
variate is computed via (4.32) on all testing paths at a cost of order NJ. Therefore, the
overall cost is of order JS?max {N,, N}, which is the same as for the RCV approach. (In

the latter formula we ignore the cost constituents of smaller orders.)

1 Compare with footnote 3.20 on page 32.
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We now establish the constraints that are pertinent to the RRCV approach. The re-
gressions are now performed for the functions g;. Pertinent assumptions are in the spirit
of (A1)-(A4) with different bounds in (Al) and (A2): the conditional variance in such
regressions over one time step is typically of order A, that is

sup Var [qj(XAJA) \ XA, j-na = ;1:] =0(4A)

zERC

for j € {1,...,J}. Hence we require the bound XA in the analogue of (A1); while in the
analogue of (A2) and for the truncated estimate we require only the constant bound A, that
is
sup gj—1(x)| =0(Q), je{l,....J}.
As for the regression error, instead of (4.30) we get
p+d) qd

Ellg; — gil 2@, ;) <€ (EA + A%(log N, + 1)) (dT (4.38)
8C2 Rd\ "
—— 5 | & 8A’B,R™,
" (p + 1)12d2—2/h ( S ) +
where ¢ is a universal constant.
The following theorem shows a connection between the above assumptions (A1) and (A2)

and assumptions on the functions f, u, o for the second order weak scheme.

Theorem 4.18. (i) Suppose that the function f is bounded. Then we obtain the bound-
edness of Var[(yj.o,u,, 51 XA (j—1)a = @] and gj_1(z) for all x € R and j € {1,...,J}.
In particular, assumption (A1) for the RCV approach and assumption (A2) for the RRCV

approach are satisfied.
(ii) Suppose that

a) f is continuously differentiable with bounded partial derivatives,

b) all functions pg,ori, k& € {1,...,d}, i € {1,...,m}, are bounded and three times

continuously differentiable with bounded partial derivatives up to order 3.

Then we get that ajo.u, v,(z) is of order VA and Var [4;(Xaja) | Xa,j—1)a =] is of
order A. In particular, assumption (A2) for the RCV approach and assumption (A1) for
the RRCV approach are satisfied.

Remark 4.19. (i) For the weak Euler scheme with ®A given by (3.5) we can derive similar
results as in Theorem 4.18. More precisely, it is sufficient to have the following assumptions
(cf. Theorem 3.17):

c¢) f is bounded and continuously differentiable with bounded partial derivatives,

d) all functions oy;, k € {1,...,d}, i € {1,...,m}, are bounded and continuously differ-

entiable with bounded partial derivatives,

e) all functions pg, k € {1,...,d}, are continuously differentiable with bounded partial

derivatives.
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That is, we require less smoothness on oj; and pg. In addition, we do not need to have

bounded functions py,.

(ii) As a generalisation of Theorem 4.18, it is natural to expect that assumption (A3) (see
page 63) is satisfied with a sufficiently large constant Cj, > 0 if all the functions pyg, ox; are
bounded and all the functions f, g, ox; are (p + 4) times continuously differentiable with
bounded partial derivatives up to order p + 4. In case of the weak Euler scheme, we expect
to require boundedness only on o; and smoothness as well as bounded partial derivatives

only up to order p + 2 (cf. Remark 3.18).

Regarding the RRCV approach, it turns out that

El|aj,0,01,02 = @jo,01,0: | T2en 1) S Eldj = aillT2es ) (4.39)

for all j, o, U; and Us. To prove (4.39), we use (4.31) and the similar formula involving
g; and §;. Asin (4.31), we consider a testing path (Xa ja);=o,....; which is independent of
DY . Since aj,0,0,,0, (-, Dy, is given by (4.22) with g;(-) replaced by §;(-, D ), it holds

dj 001,05 (Xa -1 PN,) =B | §(Xa 0, DR) [ Hoo (&) T] V| XaG-1a: DR,
relU, (k,1)eU2

Furthermore, we have

ajouy, U5 (Xa,i—na) = E | ¢;(Xaja) H H,, (&) H VI XA —1)a. DR
rel, (k,1)eUs

The latter formula remains true also without conditioning on DY , but this (seemingly

superfluous) conditioning is helpful in the following calculation:

- - 2
(@4.0,01,02(Xa,j-1)8, DN.) = 0,010 (Xa,j-1)4)) (4.40)
N , 2 .
<E | (§(Xa8:DF,) — 4;(Xaa)) ‘Xm(jfmap?vr}
2

E|| ] Bo.&) ] V'] | Xag-va. DR,
relU; (k‘,l)eUQ

~ 2
=E [(%‘(XA,]'A’D%,.) - q;(Xa;a)) ‘XAV(J'A)A,D%,} :

We arrive at (4.39) by taking expectations in (4.40) and using (4.31) together with the
similar formula for ¢; and g;. Finally, we get an upper bound for the variance in the RRCV
approach by the same calculation as in (4.33) using (4.38) and (4.39) (instead of (4.30)),
and the resulting upper bound is the same as in (4.33) except for that A2A is replaced by
A?, while ¥ is replaced by YA. Thus, in the case of the RRCV approach, our constraints

are

1 JS%logN, J (R\*®™V
o J2 08 (0 < g2 441
max{J4, v (3) wE e (1.41)

where we again only track the parameters J, N,., N, S, R.
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Theorem 4.20. We obtain the following solution

50410(p+1) 5(p+1)

1 v U\pT) —_—°\P7)
Jxe72, Sxeg WWFGFO@FD, R xg 2vHIpIDEFD |
_ 5dv+10(p+1) (v+d)
N, < N = g™ 210D+ /|log ()],

2d(p+1)

provided that p > d%Q and v > ptT)—d" Thus, we have for the complexity

11dv+42(p+1)(7v+11d)

Crrev =< JSIN, < JSIN =< ¢~ 2avrarne+a /|log (). (4.42)

4.4.3 Discussion

For the sake of comparison with the SMC and MLMC approaches, we recall at this point

that their complexities are

2.5

~ T — g2
CSMCAS and CML]V[CAE

at best (we are considering the second order scheme). Complexity estimates (4.37) and (4.42)
show that one can go beyond the complexity order ¢~2, provided that

7d —2 8d(p+1
N (p+1)

> - -
b= Vo) —1d

in case of the RCV approach and

7d -2 14d(p+1)

P> VS —1d

in case of the RRCV approach. Both in (4.37) and (4.42) the power of € converges to —1.75
as p,v — oo (the log-term is ignored). Notice that, while d and m are fixed, p and v are
free parameters in our algorithms, which can be chosen large, provided the smoothness in
u, o and f allows that. Therefore, whenever it is possible to take arbitrarily large p and v,
the complexity of our scheme can be reduced to e ~17°=9 for arbitrarily small § > 0.

Let us remark that we obtain such a complexity for piecewise polynomial regression
with the second order weak scheme. A natural question is to perform a similar complexity
analysis also for the weak Euler scheme. We then get the complexities (cf. complexity (3.56)

of the series approach in Chapter 3)
_ 7dv+42(p+1)(4d+5v)
) (5 dvF2(p+1)(d+2v) )

for the RCV approach and

o (57—73513551381*25?) |10g(g)|) (4.43)
for the RRCV approach, which tend to order e =2 in the limit as p, v — oo (provided that
we ignore the log-term for the RRCV approach). That is, both the RCV and the RRCV
approaches with the weak Euler scheme cannot outperform the MLMC approach as well
as the SMC approach with the second order scheme (but they still outperform the SMC

approach with the Euler or the weak Euler scheme because the complexity of the latter
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is €72). Still, both the RCV and the RRCV approaches might be useful also with the weak
Euler scheme (and also the series approach with the Euler scheme), provided we choose basis
functions other than those in piecewise polynomial regression (recall the last paragraph in
Section 3.2).

Obviously, the complexity estimate (4.37) of the RCV approach gives us a better order
compared to the one of the RRCV approach (4.42) (due to the factor J which arises in
the last expression of the maximum term (4.41) but not in (4.35)). However, the larger is
the parameter v, the closer are both complexities to each other (provided that we ignore
the log-term). As we mentioned in Sections 4.1.1 and 4.2.1, from the computational point
of view it is preferable to consider the RRCV approach rather than the RCV one, since
we perform regressions over only one time step in RRCV. In addition, in case of the RCV
approach, there are destabilising factors [[,cp, Ho, (§7) [111)er, VFlin the estimation of
@j,0,U,,Uy> Which are independent of Xa (;_1)a and have zero expectation and thus may lead
to poor regression results. Regarding the RRCV approach, such destabilising factors are not

present in the regression for g;.

4.5 Numerical results

In this section, we consider weak schemes of second order and compare the numerical perfor-
mance of the SMC, MLMC, RCV and RRCV approaches. As in Section 3.5, we implemented
a global regression. In what follows it is convenient to have notations for the following con-

m(m—1

stant ¢, = 3M27 2 . Regarding the choice of basis functions, we use in both RCV and
RRCV approaches the same polynomials ¢ (z) = H?Zl zti wherely,...15 € {0,1,...,p} and
27:1 l; < p. In addition to the polynomials, we consider the function f as a basis function.
Hence, we have again overall ¢, 4 basis functions in each regression, where ¢, 4 := cpq + 1
(recall that ¢, 4 = (P zd)). As for the MLMC approach, we use the same simulation results

as in Section 3.5.

4.5.1 One-dimensional example

Here d = m = 1. We consider the example from Subsection 3.5.1. Again, we choose p = 3
(that is, 5 basis functions) and, for each ¢ = 27% i € {2,3,4,5,6}, we set the parameters
J, N, and N as follows (compare with the formulas in Section 4.4 for the “limiting” case
v — oo and ignore the log-terms for the RRCV approach):
0.5 —1.3235 64 RRCV —1.3235
J=[e%], Ny=cn,-[e 1, cNT_{?)Q ROV N =128 [¢ 1.

Regarding the SMC approach, the number of paths is set N = 32-¢~2. The factors 32, 64 and
128 are here for stability purposes. We use different constants for the training and testing
paths due the fact that, if we also track the constants ¢, 4 and c,,, we will have the cost
of order Jé, q(¢m — 1) max {N,¢, 4, N} for the RCV approach and Jé, g max {N,¢p 4, Ncp, }
for the RRCV approach (cf. (4.34)). Since we get from Theorems 4.17 and 4.20 that both
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components in the maximum term are of the same order in the optimal solution, we choose
the constants such that N,.¢,q =~ N in case of the RCV approach and N,é, 4 ~ Ncp
in case of the RRCV approach. Next we compute the numerical RMSE by means of 100
independent repetitions of the algorithm. As can be seen from the first plot in Figure 4.1, the
estimated numerical complexity is about RMSE™'*! for the RRCV approach, RMSE 166
for the RCV approach, RMSE™'%? for the MLMC approach and RMSE™2?? for the SMC
approach, which we get again by regressing the log-time vs. log-RMSE. Thus, the complexity
reduction works best with the RRCV approach.

one-dimensional example

8 T T T T T T
6 - E
al * _
° *
= 2f * 1
S ||-log,(RMSE %)
= ol[¥RRCV |
9 -—log, (RMSE~1-661)
RCV
2 log, (RMSE~25307) X 1
X SMC
-4 '—logZ(RMSE’l"%”) >< ]
MLMC
-6 n n 1 1 1 1
14 -12 -10 -8 -6 -4 -2 0
log,(RMSE)
five-dimensional example
16 T T T T T T
14 % jL\ i
12t % N 1
/g 10 + :
o |pKRRCV %
S 6 {-log,(RMSE %) AR
-RCV +
4 e lOgZ(RMSE—Q.fﬁL?) i
X SMC X
2 H—log, (RMSE~20057) .
MLMC b%
0 1 1 1 1 1 1
-12 -10 -8 -6 -4 -2 0 2

log,(RMSE)

Figure 4.1. Numerical complexities of the RRCV, RCV, SMC and MLMC approaches in

the one- and five-dimensional case.

4.5.2 Five-dimensional example

Here d = m = 5. We consider the example from Subsection 3.5.2. Note that we do not need

to consider random variables ijl in the second order weak scheme, since L¥o,(z) = 0 for
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k # 1 (see (4.17) and (3.59)). This gives us a smaller constant ¢&,, := 3™ = 243 compared
to ¢y, = 248832 and hence a smaller number of terms for the control variate (the factor
27 = 1024 is no longer present). We again choose p = 3 (this now results in 57 basis
functions), consider the same values of ¢ as above (and, in addition, consider the value
e = 277 for the SMC approach to obtain a similar computing time as for the RCV, RRCV

and MLMC approaches). Moreover, we set

512 RRCV
J=[e05] N, =cy -[e 1546 oy = 7
[e7%°] N[ 1, ew, 5 ROy
128 RRCV
N =cn-[e154767 o =
vl 1 en 1024 RCV

(similar to the previous example we consider the limiting case ¥ — oo, ignore the log-terms
for the RRCV approach and consider the relations N,.¢, 4 = NN in case of the RCV approach
and N,ép 4 ~ Né, in case of the RRCV approach). The number of paths for the SMC
approach is set N = 512-e72. Since the estimated variance of f(Xa 7) is much higher than
in the previous example, we use a higher constant here for the SMC approach. This is due
to the fact that we get N > Var [f(Xa,7)] =2 from the condition Var |+ Zgzl f(X(A")T)} =

w < €2, As in the one-dimensional case, we compute the numerical RMSE by

means of 100 independent repetitions of the algorithm. Our empirical findings are illustrated
in the second plot in Figure 4.1. We observe the numerical complexities RMSE ™" for the
RRCV approach, RMSE ™% for the RCV approach, RMSE 2% for the MLMC approach
and RMSE 257 for the SMC approach. Even though the complexity order of the RCV
approach is better than those of the MLMC and SMC approaches, the RCV approach is
practically outperformed by the other approaches (see Figure 4.1; the multiplicative constant
influencing the computing time is obviously very big). However, the RRCV approach remains

numerically the best one also in this five-dimensional example.

4.6 Proofs

Proof of Theorem 4.1

The proof is similar to the one of Theorem 4.11. O

Proof of Proposition 4.5

Let Gy be the trivial o-field and G; = o(&1,...,&;), j =1,...,J. It follows from (4.1) that
the process (XAJA)}']:O is Markov with respect to (gj)jzo. By the Markov property, we

have

4j(Xaja) = E[f(Xa 1) Xa ja] = E[f(Xar)|G;],
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hence, by the tower property of conditional expectation,
1
qj-1(2) = E[g;(®a(Xa,-na: &)IXa,g-na = 2] = 5 > 7 (®a(z,y)),
y=(y1,.-,ym)E{-1,1}"

where in the last equality we use independence between Xa (j_1)a and ;. This proves (4.7).

We now apply intermediate conditioning with respect to G; in (4.3) and arrive at

ajrs(@) = E | ¢;(®a(Xag-a &) [ | Xag-1a = m] ;
i=1
which implies (4.8) due to the independence between Xa (j_1)a and &;. O
Proofs of Theorems 4.7 and 4.14
The proofs are similar to the one of Theorem 3.4. O

Proof of Proposition 4.9

As in the proof of Proposition 4.5, Gy denotes the trivial o-field and G; = o(&1,...,&;),
j=1,...,J. By conditioning with respect to G; in (4.10), we have

ajr(z, (9)iZ)) = E[q;(Xaja)&) | Xag-na ==, (€)=} = (Wi)i—}]
=K |:q] ((I)A (xv (yla s 7yrfla€;ﬂ€;+17 s a§§n)T)> 5;:| )

which implies (4.11). O

Proof of Theorem 4.11

Let Gy denote trivial o-field, and, for j =1, ..., J, define the o-field G; = o (&1, V4,...,&;, Vj).

Since each of the random variables &7, j = 1,...,J, r € I; can take 3 different values,
each of the random variables V', (k,l) € Iy, can take 2 different values and |Z;| = m,
|Zo| = W, L2(G,) is a (32" )7 _dimensional vector space. A simple calculation

. P
reveals that, for any fixed j = 1,...,J, the system {[], ¢z, Ho;_(gjr) [Lpez, (ijm) ;o) €
{0,1,2}, sg?l € {0,1}} is orthonormal in L?(Gs). Due to independence of &, Vi ..., &5, V7,
the system

J
{H T Ho&) I (V)5 :0f € f0,1,2} s} e{o,l}} (4.44)

Jj=1rel, (k€T

is orthonormal in L?(G ), and therefore, linear independent. The cardinality of system (4.44)
is (SmQW)J, i.e. equals the dimension of L?(G;). Hence, linear independent sys-
tem (4.44) is an orthonormal basis in L?(G;). We have E|f(Xa r)|? < oo because Xa 7

takes finitely many values. Therefore, f(Xa 1) belongs to L?(G;) and can be written

J
fKar) = > > eI #s) TT v,

0€{0,1,2}mJ se{0.1} m(w;ﬂ) 7 j=1lrel, (k,1)EZ>
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= _ (1 1 m my = 12 12 13 13 (m—1)m (m—=1)m
where 0 = (01,...,05,...,07", ..., 07),8 = (817, ..., 85,817, 85,8 sy Sy ).

J skt . .
Note that czz = E[f(Xa 1) szl HTGI1 O;( %) ]_[(k’l)ez2 (ijl) i'], in particular, cg5 =
Ef(Xa r). Rearranging the terms in the expression for f(Xa r) we rewrite it as

J
fXar) =Bf(Xar)+Y., Y. oo A [ He ) I v (445)

Jj=1(U;,U2)€A pef{1,2}V1 rel, (k,1)€US
with G;_;1-measurable random variables A;, y, v,. Let us now multiply both sides of the
last equality by [],. cvo Hpo 0 (o) [k 1ye Ul Vo, with some j° € {1,...,J}, (U, U9) € A,
0
p’ e {1, Z}Ul and calculate conditional expectations of the resulting expressions given G;, 1.

Notice that, with 5" < 5% and j9 > j°, we have

E| I o I VFIGo| =E| ] He&o) I VH| =0,
L reU? (k,1)eu? reuy (k,1)eUs
E Ay [ Ho @) [T VA TT He€o) [ VHIG0—s
L rel; (k,l)eU2 reuy? (k,1)eUu?
:Aj’l»P,U1,U2 H H, v(g;h) H Vﬁ'l H H H V |gj0—1 =0,
relU (k,1)eUs rev? (k,1)eud
E|Ajspvrvs [ Ho &) [T VE TI Heo&o) T VEIGj0-
i retl; (k,1)EU, reu? (kl eu?
=E [E Ajg7p7U17U2 H H T( H Vkl H H H V0l|gjg 1 |g30—1 =0,
i reU; (k,1)eU2 reu? (k,eud
E|Ajopuvivs [ Ho &) T VE TI Heo&o) T VEIGjos
i reU; (kl YeUs reyy? (k,l)eUO
=Ajo p,u,,0,E H Hy, (&o) H Vglgl H Hypo (&5o) H Vﬁ)l
rels (k,l)eUs reuy? (k,1)eu?

=A50,p,01,Us 6p,p°5U1,U? 5U2,U§ )

where 6. . is the Kronecker delta. Thus, the coefficients A; , 7, v, in (4.45) are given by

Ajpurvs = E[f(Xar) H Hy, (£5) H VHIGa]. (4.46)
relU; (k,l)EUQ
Let us now prove that

Elf(Xar) [ Ho.&) I V1G] =ElfXar) [ &) I VHIXag-val

rel; (k l €Uy relU; (k,l)€U2
(4.47)

In what follows we use the functions ¢; from (4.6) and notice that, by the Markov property
of (XA jA)j=o,....; with respect to (G;), which is due to (4.14), we also have

3j(Xaja) = E[f(Xa1)|G]- (4.48)
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Let us set

hXaG-0a: &, Vi) = [ B &) T[] Vi'ei(Xaja) (4.49)
rel; (k}7l)€U2

and notice that, due to (4.14), this is indeed a function of Xa (;_1)a, §; and V; only. Further,

let us set
g(z) =E[h(z,§,Vj)]. (4.50)

Using the tower property of conditional expectations together with (4.48), (4.49) and (4.50),

we get

Elf(Xar) [T Ho (&) TT VMIG- =EI]] He () TI VFMEL(Xar)IG5]1G-1]

relU; (k,1)eUs rel; (k,1)eU,

= E[h(Xa,-1)a,&5 Vi)lGi-1] = 9(Xa,i-1)a),
(4.51)

where the last equality is due to the facts that X (j_1)a is §;—1-measurable and the pair
(&;,V;) is independent of G;_1. Moreover, applying (4.51), we also obtain
E[f(Xa,T) H Hy, (&) H VXA Gnal = Elg(Xa,-na)lXa,-nal = 9(Xa,-1)a)-

relU; (k},l)GUz
(4.52)

Comparing (4.51) and (4.52), we arrive at (4.47). Together with (4.46) and (4.45), this
proves (4.18) and (4.19). O

Proof of Proposition 4.13

The proof is similar to the one of Proposition 4.5. O

Proof of Proposition 4.15

The proof is similar to the one of Proposition 4.9. O

Proofs of Theorems 4.17 and 4.20

The proofs are similar to the one of Theorem 3.20. O

Proof of Theorem 4.18
(i) The boundedness of
g-1(z) =E [f(Xar)| Xa,G-1a = 2]

and

Var [Crj.0,00,05 | Xa,(j—1)a = 2] = Var | f(Xar) H H,, (&) H VH | Xag-na=1
rel; (k,1)eUs

follows straightforwardly, when f is bounded.
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(ii) Let us first focus on assumption (A2) for the RCV approach and denote

42?;1 I(yi=0)
Pm(y) = T om0
27 =2 6™
gO7U1,U2(yvz) = H HO'V*(yT) H Zkl-
rel; (k,1)€U2
Then we have for a;, v,.u, (see (4.22))
0,012 (T) = Z Pm(Y)9o,01,05 (Y, 2) 45 (Pa(z, Y, 2)), (4.53)

(ylv~~vym)€{_\/§10»\/§}m

m(m—1)
(Zuv)i<u<v<m€{—1,1} 7 2

Let us denote

@A(I,y, Z) = q)A(xaya Z) - :LLA(x)a

1
pa(@) =2 + p@)A + S L) A%

where £° is defined in (4.16). Consider the Taylor expansion of the function ¢;(®a(z,y, z))
around pa (), that is

J 1
9 y
0(@a(e,0.2) = (ua@) + Y B0 2) [ 5o (ualo) +tdalzy2)de (450)
k=1 0
Inserting (4.54) into (4.53) gives us
j,0,01,U5(7) (4.55)
d I P
= Z (y 9o,Uq,Us yv Z I Y, 2 /kaqj + t(I)A(‘T Y,z )) dt 3
(W15e-ym) E{—V/3,0,/3}™ k=1 0

m(m—1)
(Z’uv)1§u<v§7n€{7171

due to

> Po(¥)govy 02 (y:2) =B | [[ Hoo(6)) [ V| =0

W1, ym)E{—V3,0,/3}™ rely (k,[)eU2
m(m—1)
(Zuv)i<u<v<m€{—1,1} 7 2

Obviously, ®k (,y, 2) is of order v/A under the assumptions that (cf. (4.17))
f) all functions oy, k € {1,...,d}, i € {1,...,m}, are bounded and twice continuously
differentiable with bounded partial derivatives up to order 2,
g) all functions pi, & € {1,...,d}, are bounded and continuously differentiable with

bounded partial derivatives.

Note that the assumptions a) and b) in Theorem 4.18 contain the above assumptions f)
and g). Next we apply Theorem 2.5 and get that ¢; is continuously differentiable with
bounded partial derivatives for all j € {1,...,J}, when all functions ®%, k € {1,...,d}, are
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continuously differentiable with bounded partial derivatives. It turns out that this conditions
on ®% are satisfied under assumptions a) and b) (cf. (4.17)). This gives us that a; .1, v, is
of order VA for all j,0, Uy, Us.

Let us proceed with assumption (A1) for the RRCV approach. We have (cf. (4.21))

Var [;(Xaja) | Xa,-1a = 7]
= E[¢}(Xa48)| Xag-na =] = (E[0(Xa,8)| Xag-na =2])°

= > Pm(9)4}(Pa (2,9, 2))
(1) E{—VEO,VT}™

m(m—1)

(Zuv)i<u<v<m€{—1,1} 7 2

- > pm(¥)¢;(Pa(z,y,2))
(W1reees ym)E{*\@O,\/g(}m :
m(m—1

(Zuv)1<u<v<m€{—1,1

= > Pu()(1 = ()} (24 (2,9, 2))
ye{7ﬂ70’2/§}71:
m(m—1

ze{—-1,1} 7 2

- > P (¥)Pm (§)4; (Pa (2, Y, 2))g;(Pa(, 7, ). (4.56)
v,5€{—V3,0,v/3}™
z,ze{—l,l}im(";m
Y#G,2F£Z

In (4.54) we have derived that ¢;(®a(x,y, z)) has the form

4 (®a(2,y,2)) = pa(@) + VAha(2,y,2),

m(m—1)

where ha(z,y,2) is O(1) for all y € {—/3,0,/3}™,2 € {—1,1}— =~ under the assump-

tions a) and b). Hence, we get

Var [¢;(Xaja) | Xa,j—1)a = 7]

= > Pm(¥)(1 = pim () (pa (z) + VARA(z,y, 2))°
ye{—v3,0,V/3}™

m(m=—1)

ze{—-1,1}" 2

- Z pm(y)pm(g) (/’LA(SU) + \/EhA(aj, Y, Z))(:“A(x) + \/ZhA(w7 Zj, 2));

y,5€{—V3,0,V/3}™
m(m—1)
z,2€{-1,1}— 2
Y#Y,2F£Z

such that it is sufficient to show

Yo 21— pu(y)hale,y,2)
vE{—VEOVE}"

m(m=—1)

ze{—-1,1}7 2

= > P ()P (§) (ha (2, Y, 2) + ha(, 7, 2))
y,7€{—3,0,v/3}™

- m(m=1)
z,ze{-1,1} " 2
y7#Y,2FZ
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to obtain Var [¢;(Xa ja) | Xa j—1)a = 2] = O(A). Notice that it clearly holds

2

ye{—v3,0,V/3}™"

m(m=1)

ze{—-1,1}" =2

2

y,9€{—V3,0,V3}"™
m(m—1)
z,ze{-1,1} 7 2
Y#G,2F#E

Pm(Y) (1 = pm(y)) — Pm(y)Pm () = 0.

(For instance, replace ¢;(x) in (4.56) by 1 which gives us zero variance.) We have

by

Pm(Y)Pm (9)ha(z,y, 2)

v,5€{—V3,0,V/3}™

m(m—1)

z,ze{—-1,1}7 2
Y#Y,2#Z

>

ye{—3,0,V/3}™
m(m—1)
ze{-1,1}— 2

>

ye{—v3,0,V3}™

m(m=1)
ze{-1,1} 2

>

ye{_\/g707\/§}m,

m(m—1)

ze{-1,1} " 2

Analogously, we have

2

¥,9€{~V3,0,V3}™
m(m—1)
z,ze{—-1,1} 7 2
Y#7,27%

which completes the proof.

Pm(Y)Pm(§)ha(z, 7, Z)

Pm ()

2

g€{—V3,0,V/3}™

m(m—1)
ze{-1,1}" 2
J#Y,2# %

pm(W)ha(z,y,2) (1 =P (& =y, (V]zz

Pm(Y)ha(z,y,2)

Ji<i<icm = (zit)1<i<i<m))

P (Y)ha(z,y,2)(1 = pm(y)).

2

ge{-v3,0,V3}™
m(m—1)

ze{-1,1}7 2

>

ye{—V3,0,V3}™
m(m—1)

ze{—-1,1}7 2

pm(g)hA(‘T’ ga 2)(1 - pm(g))

pm(Y)ha(z,y,2)(1 = pm(y)),
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Chapter 5

Stratified regression for weak

approximation schemes

This chapter is mainly based on the paper [10].

Below, we further enhance the performance of the RRCV algorithm by combining it
with stratification (see e.g. [21]). The idea of the resulting stratified RCV (SRCV) algorithm
is based on partitioning of the state space into a collection of sets Aj,..., Ax and then
performing conditional regressions separately on each set. It turns out that by choosing
Ai,..., Ak to be the level sets of the discrete-valued random variables used in the weak
approximation scheme, we can achieve a further variance reduction effect as compared to

the original approach in Chapter 4.

5.1 SRCYV approach and its differences with RCV and
RRCYV ones

In Subsection 5.1.1 we consider weak schemes of order 1. In this setting we introduce the
SRCV algorithm and explain how it compares to the RRCV one. In Subsection 5.1.2 we

briefly discuss the case of weak schemes of order 2.

5.1.1 SRCYV algorithm for first order schemes

First of all, we derive an equivalent reformulation of Theorem 4.1.
Theorem 5.1. [t holds
J m )
f(Xar)=BEf(Xar)+ Y > a1 (Xa,-na) [JED*, (5.1)

§=1ke{0,1}m\{0,n} =1

where k = (k1,...,km). Moreover, the coefficients aj: R? — R can be computed by the
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formula

ajk(r) = l (Xar) ﬁ

for all j and k as in (5.1).

XA j 1)A—$] (52)

Hence, the optimal control M(Al)T, introduced in Chapter 4, can also be representated

through the functions a; s, that is

J m
Mr =3 > awXagona) [T (5.3)
=1

J=1ke{0,13"\{0m }

The next result is similar to Proposition 4.5.

Proposition 5.2. We have g5 = f and, for each j € {2,...,J},

1
gj-1(2) =E[q;(Xa ja)[Xa -1)a = 2] = om > 4(®alzy). (5.4)
ye{—l,l}m

Moreover, for all j € {1,...,J} and k = (k;) € {0,1}"\ {0}, the functions a; y(x) in (5.2)

can be expressed in terms of the functions q;(x) as follows:

ajk(x) = 2% > [H yf] 7;(®a(z,y)). (5.5)

y=(y1,-,ym)€{-1,1} Li=1

The first equality in (5.4) shows that we can recursively approximate the functions g;(z)
via regressions over one time step only (the regression for approximating a; , in case of the
RCV approach is performed over J — j 4+ 1 time steps). This gives the RRCV algorithm
in Chapter 4: first compute regression-based approximations §;(z) of the functions g;(z)
(via regressions over one time step based on the first equality in (5.4)), then obtain approx-
imations @; () of the functions a; () via (5.5) with ¢; being replaced by §;, and, finally,
construct the control variate M(AI)T using (5.3) with a; () being replaced by a; ().

To introduce the SRCV algorithm, we first define functions h;,, for all j € {1,...,J}
and y € {—1,1}™, by the formula

hjy(®) == q;(®a(z,y)) = Elg;(Xa ;a)lXa -1)a =2, = Y] (5.6)

(the second equality is straightforward) and observe that the knowledge of these functions
for some j and all y provides us with the functions ¢;_1 and a;, k € {0,1}™ \ {0,,}, via
the second equality in (5.4) and via (5.5). Inspired by this observation together with the
second equality in (5.6), we arrive at the idea of the stratified regression: approximate each
function h;,(x) via its projection on a given set of basis functions ¥1(z),...,¢g(z). In
detail, the SRCV algorithm consists a training and a testing phase.

Training phase of the SRCV algorithm: First, simulate a sufficient number N, of (inde-
pendent) training paths of the discretised diffusion. Let us denote the set of these N, paths
by (cf. (3.47))

DY = {(XZ:J(‘Z))J’ZO,‘..,J n=1,.. ~7Nr} . (5.7)

r
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Next, proceed as follows.

Step 1. Set j = J, §; = f. Compute the values cjj(XZ’J(.Z)) on all training paths
(n=1,...,N,).

Step 2. For all y € {—1,1}™, construct regression-based approximations ﬁj,y of the
functions h; , (via regressions over one time step based on the second equality in (5.6) with
g; being replaced by ;). In fact, only training paths with £; = y are used to construct ﬁjy

Step 3. Using the approximations izj,y for all y € {—1,1}™, via (5.5) compute the
coefficients f31,..., 8¢ in the representations 252:1 Bi; for the approximations a;r, k €
{0,1}™\{0,,, }. Note that the cost of computing each a; x(x) at any point = will be of order Q.
Furthermore, again using h;,, for all y € {—1,1}", compute the values c]j_l(XZ’((;Lll)A) on
all training paths (n = 1,..., N,) via the second equality in (5.4).

Step 4. If j > 1, set j = j — 1 and go to step 2.

Thus, after the training phase is completed, we have the approximations a; ,(x) of a; x(z)
forall j € {1,...,J} and k € {0,1}™ \ {0,,}. Let us emphasise that, in fact,

aj(x) = a;x(z, Dy, ), (5.8)

that is, our approximations are random and depend on the simulated training paths.
Testing phase of the SRCV algorithm: Simulate N testing paths (X(ATT;.A)]-:07,,_,J, n =
1,..., N, that are independent from each other and from the training paths and construct

the Monte Carlo estimate
N
n “r(1),(n
LS [y -] »

where M( ) ™) g given by (cf. (5.3)).

m

MR Z S a(Xa D) TTE ™) (5.10)
J=1ke{0,1}\{0s } =1

Remark 5.3. Let us briefly discuss the main differences between the RRCV and SRCV
algorithms. In the training phase of the RRCV algorithm the functions ¢;, j € {1,...,J},
are approximated recursively via regressions using the first equality in (5.4) (the second
equality in (5.4) is not used at all), and the approximations are linear combinations of @
basis functions v, ...,%¢. This allows to get the control variate in the testing phase via
the formula like (5.10) with the coefficients @ constructed on the testing paths via (5.5)
with approximated in the training phase functions g;. On the contrary, in the training
phase of the SRCV algorithm regressions are based on the second equality in (5.6), and
we get approximations for all functions h;, (= ¢;(®a(-,v))), j € {1,...,J}, y € {-1,1}",
where the approximations Bj,y are again linear combinations of ) basis functions ¥1,...,%¢g
(notice that what we now need from (5.4) is the second equality but not the first one).
Having the approximations }Nljvy, we get the approximations of the functions @, via (5.5)
as linear combinations of 1, ...,%¢ already in the training phase, while the testing phase

is completely described by (5.9)—(5.10). Let us compare the computational costs of the
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RRCV and SRCV algorithms. For the sake of simplicity we restrict our attention to the
case of “large” parameters'? J, Q, N, and N as well as at the “big” constant'® ¢, := 2™
ignoring other constants such as e.g. d or m. As for the RRCV algorithm, J regressions
with NV, training paths and @ basis functions result in the cost of order JQ?N,, while the
cost of the testing phase is of order'* JQc,, N, which results in the overall cost of order
JQmax{@QN,,c,,N}. Regarding the SRCV algorithm, we perform Je,, regressions with
@ basis functions in the training phase, but have in average N,P({; = y) (= Nr/cm),
y € {=1,1}™, training paths in each regression, which again results in the cost of order
JQ?N,., while in the testing phase we now have the cost of order JQ(c,, — 1)N. This
gives us the overall cost of order JQ max{QN,, (¢, — 1)N}, which is the same order as for
the RRCV algorithm. Finally, regarding the quality of the regressions in the RRCV and
SRCV approaches, it is to expect that the regressions in the SRCV algorithm, which are
based on the second equality in (5.6), achieve better approximations than the regressions in
the RRCV algorithm, provided there are enough training paths and the basis functions are

chosen properly, because we have

Var(q;(Xa ja)|Xa,(j—1)a = 2,&5 = y] = Var[g;(®a(z,y))] = 0. (5.11)

The latter property implies the absence of the statistical error while approximating h; .
This is well illustrated by the plots in Figure 5.2 on page 91 (the plots are performed for
the example of Subsection 5.3.1).

5.1.2 SRCYV algorithm for second order schemes

Let us recall the index set
Iy ={(k,)e{l,....m}*  k<l}
and use the notation
U={(o,r) €{0,1,2}"™ x {0,1}*> : 0; # 0 for some i or 7y # 0 for some k, {},

where 0;, i = 1,...,m (resp. rg, (k,l) € Zy), denote the coordinates of o (resp. r). The

following result is an equivalent reformulation of Theorem 4.11.

12We need to have J — 0o, @ — 0o, Ny — 00, N — oo in order to make both the discretisation and the

statistical error tend to zero (see Section 5.2 for more details).
13In contrast to J, Q, N, and N, the value ¢, := 2™ is fixed, but can be relatively big (compared to

other involved constants such as e.g. d or m). Notice that ¢, is the number of scenarios that the random
variables &; can take, and it comes into play via formulas like (5.10) (J(¢m — 1) summands) or (5.5) (¢m

summands).

14Naive implementation of the testing phase in the RRCV algorithm via (5.5) and (4.4) gives the cost
order JQcm (¢m —1)N. To get JQcm N, one should implement (5.5) on the testing paths in two steps: first,
forallme {1,...,N},j€{1,...,J} and y € {—1,1}"™, compute the values qj((bA(X(Art)(jfl)A’ y)) (the cost
is NJemQ); then, using these values, for allm € {1,...,N}, 5 € {1,...,J} and k € {0,1}™\ {Op, }, compute

djak(X(An,zj—l)A) via (5.5) (the cost is NJ(cm — 1)cm). In this way, the maximal cost order is JQcm N.
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Theorem 5.4. The following representation holds

J m

FXar) =EfXan) + > S ajorXagna) [[Ha(€) T vF)™,  (5.12)

J=1 (o,r)eU i=1 (k)ET
the coefficients a; o : R? — R are given by the formula

m

Qjor(@) =B | f(Xar) [[Ho(&) ] V)™ |Xag-va=2 (5.13)

i=1 (k.1)ET>
forallje{l,...,J} and (o,7) € U.

Thus, with

m

J
2 % T
My = Z > orXag-na) [T Ha€) T (v, (5.14)
=1 (or)eu i=1 (k,1)ET,
we have E [M(AQ)T] = 0 and Var {f(XAwT) - M(AQ)T} = 0 in the case of second order schemes.
Next, we set (cf. proof of Theorem 4.18)
4271 L I(yi=0)
Pm(y) = T (5.15)
62
Notice that p,,(y) = P(&; = y,V; = 2) for all z € {—1,1}*2. The next result is similar to

Proposition 4.13.

Proposition 5.5. We have g5 = f and, for each j € {2,...,J},

g-1(x) =E[¢;(Xa )| Xa,g-npa=2]= > > o) ¢i(@a(z,y,2)).
ye{—v3,0,V/3}m z€{-1,1}72
(5.16)
Moreover, for all j € {1,...,J} and (o,7) € U, the functions a;or(x) of (5.13) can be
expressed in terms of the functions g;(x) as

m

aj,o,r(x) = Z Z Pm(Y) H Ho, (yi) H ZZ?Z Qj(CI)A(x» y,2)), (5.17)
ye{—v3,0,/3}m z€{-1,1}72 i=1 (k,1)EL:
where o; and y;, i = 1,...,m, denote the coordinates of o and y, while ri; and zx;, (k,1) € Ia,

are the coordinates of r and z.
Similar to (5.6), we define functions h;,, ., for all j € {1,...,J}, y € {—V/3,0,+/3}™ and

z € {~1,1}%2, by the formula
jy,=(x) = ¢;(®a(z,y,2)) = Elg;(Xa ja) XA -2 =2,§ =y, V; = 2]. (5.18)

The SRCV algorithm for second order schemes now relies on Proposition 5.5 and on (5.18)
in the same way as the one for first order schemes relies on Proposition 5.2 and on (5.6).

The whole discussion in the end of Subsection 5.1.1, and, in particular, the formula
JQmax{QN,, (¢, — 1)N}

for the overall cost order of the SRCV algorithm, apply also in the case of second order

schemes, where we only need to change the value of ¢,,: here ¢, := 3m2m(m=1)/2,
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5.2 Complexity analysis

In this section we extend the complexity analysis presented in Chapter 4 to the case of the
stratified regression algorithm. Below we only sketch the main results for the second order

schemes. We make the following assumptions:

(A1) All functions hj, .(z) of (5.18) are uniformly bounded, i.e. there is a constant A > 0
such that sup,cpa |hj ()] < A < oo.

(A2) The functions hj, . (z) can be well approximated by the basis functions ¢1,...,v%q,

in the sense that there are constants x > 0 and D, > 0 such that

. 2 D,
. . <
ouf [ By (2) =9 (@) Paja(de) < B0,

where Pa ;1 denotes the distribution of Xa (j_1)a and ¥q := span ({91, ...,%q}) (cf. (2.6)).

Remark 5.6. A sufficient condition for assumption (Al) is boundedness of f. Moreover,

2v(p+1)

in the case of piecewise polynomial regression, (A2) is satisfied with k = T2

Remark 2.4).

(see

Below we present an L2-upper bound for the estimation error on step 2 of the training
phase of the SRCV algorithm (see page 81). To this end, we need to describe more precisely,

how exactly the regression-based approximations ﬁj,y,z are constructed:

(A3) Let functions ﬁjyy,z (x) be obtained by regression (based on the second equality in (5.18))
onto the set of basis functions {11, ...,%¢q}, while the approximations %, .(z) on step 2 of
the training phase of the SRCV algorithm be the truncated estimates, which are defined as

truncated estimates h;, . (x) = Tahj, () (A is the constant from (A1)).

Under (A1)-(A3), we have (cf. (2.4))

7 ~ Q 8Dn
Ellhy,- — hj7y7z||2L2(]P’A7j_1) < cAz(log Ny + I)N P (y) + Qs

(5.19)

where ¢ is a universal constant and p,, (y) is given in (5.15). Note that it holds log p,,(y) < 0,
what is also used to obtain (5.19) from (2.4). As in the previous chapters, the expectation
in the left-hand side of (5.19) means averaging over the randomness in Dt&.

The next step is to provide an upper bound for the regression-based estimates of the
coeflicients a; o, which are constructed on step 3 of the training phase of the SRCV algo-

rithm.

Lemma 5.7. Under (A1)-(A3), we have

- N 8D
Eldjor — a00l2aps , ) < cmé A2(log N, + 1)% + "geCrme: (5.20)

m(m—1)

m 2
where Cro =3 c_va0,v3m m2 2 [Pm(y) [ Ho, (yi)]™
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Let (XA ja)j=o,...,; be a testing path, which is independent of the training paths D}f\’,’r.

We now define

m

J
MO =3 jor(Xagova D) [ Ho ) T (vFH™ (5.21)

j=1 (o,r)eU i=1 (k,1)ETs

(cf. (5.14)) and bound the variance Var[f(Xa r) — M(AZ)T] from above.!> With the help

of (5.19) and Lemma 5.7 we now derive the main result of this section:

Theorem 5.8. Under (A1)-(A3), it holds

- D,
Var[f(Xar) — MYy < J ((cm — 1) emé A% (log N, + 1)NQ + SQH am> ,

where ¢, = Cpy — (%)m

5.2.1 Complexity of the SRCV approach
Let us study the complexity of the SRCV approach. The overall cost is of order
JQmax {N,Q, (¢, —1)N}.

We have the following constraints

1 JQl — ¢
maxd | Qlog(Ny)em(em 1)7 Dyl | &2,
J4 NN O°N [~

where the first term comes from the squared bias of the estimator and the remaining two
ones come from the variance of the estimator (see Theorem 5.8 as well as footnote 15 on

page 85).

Theorem 5.9. Provided that'® k > 1, we obtain the following solution

1
&2 D217
J=et, Qx[cmﬂ cTET N, < (em — Dy/ame /0B @]

Cm

N. 1 _ 5k410
N =< Qo [cf,e2, D2] 77D ¢ 1) v/ |log (¢)].

Cm — 1

Thus, we have for the complexity

_ TR417
e~ 3FD 4/ |log (€)]. (5.22)

1
2(r+1)
m m

C= JN,Q? = JNQ(cp —1) = [(cm — 1)k r1gt i

Remark 5.10. (i) Complexity estimate (5.22) shows that one can go beyond the com-
plexity order ¢~2, provided that x > 9, and that we can, similar to the RCV and RRCV
approaches, achieve the complexity order e~17°=9 for arbitrarily small § > 0, provided & is

large enough.!”

15Notice that the variance of the SRCV estimate % Z:;l [f (XXL)T) — ]\;[(;)q’fn)} with N testing paths

.1 (2
is & Var[f(Xa,r) — MS ]
16 Recall that in the case of piecewise polynomial regression we have x = % (see Remark 5.6).
Let us note that in the previous chapters it is required to choose the parameters p and v according to
d—2 2d(p+1)
p > 5 and v > 2(p+l)—d’
17Here, we can also derive a connection to the piecewise polynomial regression, that is, when p,v — oo,

which implies that x > 1, for k expressed via p and v by the above formula.

then kK — oo, too.
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(ii) Let us recall Remark 3.21, where we observed that the constant within the complexity

in case of piecewise polynomial regression tends to infinity. Here the analogue constant
1

in (5.22) is [(c — 1)205F Ve el DA+ Suppose that D, grows exponentially in

with base d, i.e., there exists some positive constant -, such that
D, =xd" ask— oo. (5.23)

(For the piecewise polynomial regression (5.23) is not satisfied.) Then we get

1
: 2(k+1) =14 pd|20++tD  3/2 524
ﬁhﬂn;o (em — 1) oy cmDK] = 2d?,

that is, we have a finite constant in the limiting case. However, in terms of m this limit is
of exponential growth, hence the problem of exponentially growing constants in dimension-
ality (EGCD) still arises. Note that this property is also present for the RCV and RRCV
approaches, since the control variates contain (¢, — 1) terms. As for the series and integral
approaches (from Chapter 3) as well as the truncated RCV and truncated SRCV approaches,
which will be explained in Subsection 7.2.1, the EGCD problem does not arise under the
assumption (5.23), since the control variates are truncated to only m, respectively O(m?)

terms.

5.3 Numerical results

In this section, we present several numerical examples showing the efficiency of the SRCV
approach. It turns that even the weak Euler scheme (3.5) already shows the advantage of the
new methodology over the standard Monte Carlo (SMC) as well as over the original RCV
and RRCV approaches in terms of variance reduction effect. Regarding the choice of basis
functions, we use for the RCV, RRCV and SRCV approaches polynomials of degree < p,
that is, ¢y (x) = H?Zl zki where I = (Iy,...14) € {0,1,... ,p}* and Zld:l l; < p. In addition
to the polynomials, we consider the function f as a basis function. We choose J = 100,
N, =10°, N =107, p = 1 in all examples. Hence, we have overall = (p‘gd) +1 = d+2 basis
functions in each regression. Then we compute the estimated variances for the SMC, RCV,
RRCV and SRCV approaches. More precisely, when speaking about “variance” below (e.g.
in Tables 5.1, 5.2 and 5.3) we mean sample variance of one summand f (X(ATfT) - Mgﬁ)T’(n)
(see (5.9)) in the case of RCV, RRCV and SRCV, while, in the case of SMC, the sample
variance of f (X(AW)T) is meant. Thus, we analyse the variance reduction effect only, since
the bias is the same for all these methods. To measure the numerical performance of a
variance reduction method, we look at the ratio of variance vs. computational time, i.e., for
the SRCV, we look at

Varsrcv Timegrcv

Osrov = .
VarSMc TlmeSMc ’

where Varggrcy and Timegrcy denote the variance and the overall computational time of

the SRCV approach (Vargye and Timegye have the similar meaning). The smaller sgcy
is, the more profitable is the SRCV algorithm compared to the SMC one. We similarly
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define Orcv and Orrey (each of the regression-based algorithms is compared with the SMC

approach).

5.3.1 Geometric Brownian motion (GBM) with high volatility
Here d =m =1 (Q = 3). We consider the following SDE

dXt :TXtdt + O'Xttha XO = 1? (524)

for t € [0,1], where 7 = —1 and ¢ = 4. Furthermore, we consider the function f(z) = 22

In the following, we plot the empirical cumulative distribution function (ECDF) of the

“log-scaled sample”, which is

log(1 + fi = funin) —10g(1 + f = fuin)
for the SMC approach, and

log(1 + w; — Umin) — log(1l + & — Umin)
for the RCV, and RRCV and SRCV approaches, where

fn = f(X(An,)T), Up = fn — M(Al7)jl(n)7 ne{l,...,N},

n=1,..., n=1,...,

N N
. . a 1 _ 1
fmin = mlanna Umin ‘= mlnNU’ru f = N E 1fn7 U= N § 1un-
n= n=

The results for such a log-scaled sample are illustrated in Table 5.1. As can be also seen
from the first plot in Figure 5.1 (ECDFs of the SRCV and SMC), the variance reduction
works absolutely fine for SRCV. Most of the sample values produced by SMC are much
smaller than the corresponding mean value, whereas the deviation w.r.t. the mean u is very
small for the SRCV approach. The main problem of the SMC approach in this case is
that almost all paths tend to zero so that the small number of outliers is not sufficient to
reach the (large) expectation E[f(Xa 7)], i.e. N has to be increased a lot to approach the
expectation. In contrast, for the SRCV approach all paths (paths close to zero as well as
outliers) are “shifted” close to the expectation and thus we obtain a very small variance.
We only plot the ECDFs of the SRCV and SMC in Figure 5.1, since the ECDFs of the RCV
and RRCV look visually very similar to that for SRCV. The difference is, however, revealed
in the “Min” and “Max” columns of the Table 5.1. That is, the RCV and RRCV algorithms
produce several outliers which result in that the RCV and RRCV do not give us any variance
reduction effect! One reason for this significant difference between the algorithms is given
by the plots in Figure 5.2, where we illustrate the regression results for the RCV, RRCV
and SRCV algorithms at the last time point, which means the first regression task. Here,

we have accurate estimates only for the SRCV (cf. the discussion around (5.11)).

5.3.2 High-dimensional geometric Brownian motion
We consider the following SDE for d = m = 10 (Q = 12):

dX; =rX}dt+ o' X]AdW,;, te[0,1], i=1,...,10,
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Approach | Min | Max | Variance | Time (sec) | 6

SRCV 0.5 |02 |63-107% 305 1.32-10723
RRCV -25.4 | 1.7 | 2.7-10'® | 65.3 12.38

RCV -27.8 | 0.1 1.4-10'7 | 30.0 28.57

SMC -10.6 | 15.9 | 9.6-10" | 15.1 1

Table 5.1. Results of the algorithms for a quadratic function f under a GBM model.

where X§ = 1, 0! = 2Vi, r = 0.05 and A’ := (Ai*1 . --A“O), AAT = (pik)s s,

pik = pri € [-1,1] and py, = 1 for i = k (that is, AW, i = 1,...,10, are correlated

Brownian motions). For i < k we choose

09 ifi=1k=2, —-0.95 ifi=3, k=4,
pik =14 05 ifi=5 k=06, —0.9 ifi="7 k=38,
0.8 ifi=9, k=10, 0 otherwise.

In this example, we illustrate the performances of the algorithms by means of the function
f(z) = max{max,;e{ly___ylo} b — 170}. For saving a lot of computing time, we use the
“simplified control variate”

J m

M(Al,)T =33 e (Xa-1)a, DN )E,
j=11i=1

rather than M(Al’)T for RCV and SRCV (cf. (3.10) in case of the strong schemes). This
simplification already takes much of the variance reduction power into account, while signif-
icantly reduces the number of summands needed to construct the control variate (m = 10
V8. ¢ — 1 = 2™ — 1 = 1023 summands in the second sum above). For the SRCV algorithm,
this results in the cost order NJmQ instead of NJ(c,, — 1)@ in the testing phase (10! vs.
103 in this example). Such a reduction in computational time due to using ]\Zlg)T applies
also to the RCV algorithm, but does not apply to the RRCV algorithm. Namely, with ]\:4(Al)T
the testing phase of the RRCV algorithm would now cost NJ¢,,Q + NJmc,, (in the second
summand we now have the factor m instead of ¢, — 1, cf. footnote 14 on page 82), which is
still of order 10'2 in the present example. Therefore, we do not consider the RRCV approach
in this example. The results for the log-scaled sample are illustrated in Table 5.2. Again,
the SRCV approach achieves a much smaller variance compared to the SMC and RCV (see
the second plot in Figure 5.1).

Approach | Min | Max | Variance | Time (sec) | 6
SRCV -5.8 2.0 14.6 573.9 0.13
RCV -104 | 0.7 11271.0 288.2 51.50
SMC -1.9 7.2 448.9 140.5 1

Table 5.2. Results of the algorithms for a Call-on-max-option under a high-dimensional
GBM.
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5.3.3 High-dimensional Heston model
We consider the following SDE for d =m =9 (Q = 11) (cf. [28]):
dX! =rX}dt+ aixgﬁAith, i=1,...,8,
dX) =X(v—X})dt+ n\/XT“’Agth,
where t € [0,1], X§ =1,0' =1fori=1,...,8 as well as XJ =4, 7 = 0.05, A\ = 0.1, v = 4,

.....

0.9 ifi=1k=2, 095 ifi=3 k=4,
J s ifi=s5 k=6, 0.9 ifi=7 k=S8,
PEZN 02 ifie{1,2,3,56,7), k=0, 0.2 ifie{4,8), k=09,
0 otherwise.

One might think about X',..., X8 as price process of 8 stocks, while the CIR process X°
is their common stochastic volatility. Notice that Feller’s condition for X is not satisfied
(2;\—25 = 0.8 < 1), that is, 0 is accessible boundary point for X° (with reflecting boundary
behaviour). The discretised process (XX7jA)j:07'”7J can become negative. We, therefore,

use the following discretisation scheme (see e.g. [2])
i i i 9 t
Xija=Xagona|l+rato (XA,(],_DA) AVAE; |,

+ +
X2 ja=XR Gopa+A (U - <XZ,(J>1)A> ) At (Xg,(j—l)A) AVAE,

where i € {1,...,8} and zT := max{z,0}. Here, we consider the function f(z) =
max {max;e(1,.. s} 2' — 1,0} and, as in Subsection 5.3.2, use the simplified control vari-
ate ]\Zf(Al’)T (we again exclude the RRCV approach). The results for the log-scaled sample
are illustrated in Table 5.3. We get that the ECDF for the SRCV approach has a similar
form as the one from Subsection 5.3.2 (see the third plot in Figure 5.1). Notice that the
values of the estimators lie in all cases around 4.6 (SMC: 4.62, RCV: 4.59, SRCV: 4.60).
Nevertheless, in the case of the SRCV approach 75.5% of the paths are located within the
interval (3, 6), whereas in case of the SMC approach this holds for only 13.0% of the paths
and in case of the RCV approach for only 9.9%. This is a further indication of a better

numerical performance of the SRCV approach.

Approach | Min | Max | Variance | Time (sec) | 6
SRCV -6.4 2.6 50.1 444.7 0.09
RCV -10.2 | 1.0 3208.8 328.6 4.33
SMC -1.7 9.8 1478.8 164.5 1

Table 5.3. Results of the algorithms for a Call-on-max-option in a high-dimensional Heston

model.

Below we illustrate the results of Subsections 5.3.1-5.3.3.
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Figure 5.1. top: Subsection 5.3.1, centre: Subsection 5.3.2, bottom: Subsection 5.3.3 (each
referring to the ECDF of the log-scaled sample for SRCV and SMC).
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Figure 5.2. top: RCV, centre: RRCV, bottom: SRCV (each referring to the first regression
task in Subsection 5.3.1).
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5.4 Proofs

Proof of Lemma 5.7

Let us first recall that 2m("=1/2p, . (y) = P(¢; = y) = [[I2, P(§} = yi) (cf. (5.15)). Formu-
las (5.17) and (5.19) as well as (357, b:)? < ¢ Y sy b2 yields

Ellaj,o,r — ajor T2, 1)

2
<em Y Yo e[ Hew) T 2if'| Elhiye = higelioes, )
ye{—v3,0,V3}m z€{-1,1}72 i=1 (k,1)EZ>
2
m(m=1) A Qpm(y) | 8Dwpm (y)2
<cm2 2 Z l H,,(y ( 2(log N, +1) N + o~
ye{—v3,0,v/3}m Li=1
2
m 8D, m(m=1) A
= ¢ A%(log Ny + 1 [H ()| + 5 Yoo 2™ [ m(y) [T Ho, (yz-)]
i=1 ye{—v3,0,V3}™ i=1
= cchz(logN + ) Q 8 mm
QR
where in the last equality we used that & ]1, ..., &" are independent and all H,, (f;) have unit
L?-norm. O

Proof of Theorem 5.8
It holds
Var[f(Xar) — MEy) = Var[MY) — ML)
2 ~r(2 r 2 “r(2 T
= EVar[M{)y — MDY, ] + Var EIMC), — MDY 1.
Due to the martingale transform structure in (5.14) and (5.21), we have

B[ML — ML [DR,) = 0.

Together with the fact that the system {H:":l Ho, (&) I pyez, (VD™ = (0,7) € U} is or-

thonormal in L2, we get

J
2 ~
Var[f(Xar) = M =3 Y Eldjor — ajorliaes,_ (5.25)
J=1 (o,r)eU

With the expression C,, , of Lemma 5.7 we compute

Z Cm o — Z Z C'm,o - Z CmZWPm(y)Q

(o,r)EU 0€{0,1,2}™ re{0,1}%2 ye{—3,0,V/3}m™
m(m—1) m(m—1)
= Y 27T Cue— > em2 T pu(y)
0€{0,1,2}™ ye{—V3,0,V3}m

::OZ—,B,
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where « (resp. ) denotes the first (resp. second) big sum in the above expression. Let us
compute o and 3. Recalling that

m

i=1

we get

a=cm ) > [B(¢} = i) Ho, (1))
0e{0,1,2}™ ye{f\/io’\/g}m i=1

—en | Y S PE =y H, )] | =
01€{0,1,2} y, €{—/3,0,V3}

where the last equality follows by a direct calculation. Recalling that ¢, = 37m2m(m—1)/2

(we consider second order schemes), we obtain

m

s=r Y IMEg-wr-o | L mg-w?) =(3)

ye{-Vv3,0,V3}m i=1 y16{-v3,0,V3}
Thus,
Z Cm,o =Cm — <2> = Cmp-
(o,7)eU
The last expression together with Lemma 5.7 and (5.25) yields the result. O

Proof of Theorem 5.9

The proof is similar to the one of Theorem 3.20. O



94

5.4. Proofs



Chapter 6. Complezity reduction of the dual nested Monte Carlo methods 95

Chapter 6

Complexity reduction of the
dual nested Monte Carlo

methods

This chapter is mainly based on the paper [8].
Next we focus on the pricing of Bermudan options, respectively American options, via

dual nested Monte Carlo methods.

6.1 Setup

In contrast to European options that may be exercised only at a fixed date, an American
option grants its holder the right to select the time at which to exercise the option. A
general class of American option pricing problems can be formulated through an R%-valued
(Fi)-Markov process (X;)o<i<7 with a deterministic starting point Xo = o € R? defined
on a filtered probability space (2, F, (F¢)o<t<,P). Let us recall that each F; is a o-algebra
of subsets of 2, and Fy C F; C F for s < t. We first consider options admitting a finite set
of exercise opportunities 0 = tg < t1 < ty < ... < ty = T, called Bermudan options, with

corresponding Markov chain
Xj=Xg,, j=0,...,J

This option pays g;(X;), if exercised at time ¢;, j = 0,...,J, for some known functions
go, - - -, gy mapping R? into [0,00). Below we assume that g;(X;) € L? for all j. Let T;
denote the set of stopping times taking values in {j,7 + 1,...,J}. As a standard result

*

J
time ¢; in state x, given that the option was not exercised prior to ¢;, is its value under the

in the theory of contingent claims, the equilibrium price v*(z) of the Bermudan option at

optimal exercise policy

U;('r) = sup E[gT(XT)|Xj =z|, z€ R?.
TET;
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Clearly, any given stopping rules 7; € 7; are generally suboptimal and give us lower bounds
vj(z) = Elg- (X-)|X; = 2] <vj(x), j=0,...,J.

An interval on the true price would be completed if an upper bound could be generated
from any given exercise policy. The dual approach proposed in Rogers [55] and Haugh
and Kogan [27] is based on the following simple observation. For any 0 < ¢ < J and any
supermartingale (Y;)i<;<s with ¥; = 0, it holds

v; (Xi) = sup E[g-(X;)|F] < sup E [g-(X-) — Y7|F]
T€T; T€T;

<E Jpax, (9;(X5) = Y;) | Fi (6.1)

(we now use the shorthand F; := F3;). Therefore the right-hand side of (6.1) provides an
upper bound for v}(X;). It can be derived that both inequalities in (6.1) are equalities for
the martingale part of the Doob-Meyer decomposition of the price process (v (X;))i<j<s
J
Yr=0, Y=Y ((X)-EWj(X)|Fal), j=it+l,....J
l=i+1

In fact, Y* satisfies the following even stronger almost sure identity

vf (X;) = max (g;(X;) —Y"), a.s. (6.2)

i<j<J !
(also see [56]). The duality representation provides a simple way to estimate the Snell

envelope from above, using approximations (v;(X;)) for the value functions (v;(X;)). Let Y

be a martingale defined via

J

Yo=0, Y;=> (u(X)-E[(X)|Fia]), j=1,....J (6.3)
1=1
Then, for ¢ = 0, we get that
Vo :=vo(z0) = E L??;‘J (9;(X;) = Y;) (6.4)
is an upper bound for Vj := v{(xg). The properties of the dual upper bound were thor-

oughly studied in Chen and Glasserman [13] and Belomestny et al [12]. Throughout we
are going to use nonparametric regression algorithms to construct some computationally
efficient approximations for the conditional expectations involved in (6.3). Nonparametric
regression algorithms like that of Longstaff and Schwartz (see e.g. [40]) have become among
the most successful and widely used methods for approximating the values of American-style
(Bermudan) options, in particular for high-dimensional problems. Due to their popularity,
the analysis of the convergence properties of these types of Monte Carlo algorithms is a
problem of fundamental importance in applied probability and mathematical finance, see
e.g. Clément, Lamberton and Protter [14], Zanger [61] and references therein. Here we rig-
orously analyse the convergence properties of the proposed regression algorithm and derive
its complexity. Moreover we illustrate its performance in the case of the max-call Bermudan

options.
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6.2 Nested simulations approach

The nested simulation approach for computing Vj relies on the approximation of the inner
expectations in (6.4) via (conditional) Monte Carlo. This approach was first proposed in
Andersen and Broadie [3] for the computation of the dual upper bound (6.4). Let us describe

this method in more details. Fix some natural numbers Ny, N and consider the estimate

N
1 (n)
VN.Ng = N 5_1 L@J?QCJ (gj(Xj ) — 5/},7L7Nd>:| ,

where

J Ny
1 " :
Yjnn, = Z (’UI(XI(")) N, Z vz(Xl( Ldm)) . j=0,...,J,

=1 ndzl

(Z? = 0), (Xl(l), e 7XZ(N)) is a sample from the distribution of X; and for any fixed

1,n Na,n
() x (N

n, the sample X
X =x".

is drawn from the conditional distribution of X; given

PR

Theorem 6.1. We have for the estimator Vi n,
EVn N, = Vo,

i.e. it gives us an upper bound for Vi, and hence for V. Moreover it holds

Var [v,(X;)| X;_1]] (1 . 1> . E [Iv?‘(Xz) - Ul(Xl)|2]

J
E[
PRGN B v v

(6.5)

The bound (6.5) is very informative, as it not only gives an error estimate for Vy n,,
but also shows ways to improve it. While the second term on the r.h.s. of (6.5) can be
reduced by making the bound v; closer to v/, the first can be made smaller by reducing
the magnitude of the conditional variances Var [v;(X;)|X;—1]. Since the cost of computing
V., is of order NNy (recall that J is fixed for now), the overall complexity of the estimate
VNN, is of order e~

Let us mention two relevant modifications of the nested dual algorithm proposed in the
literature. Firstly, in Belomestny et al [6] an algorithm not involving sub-simulation was
suggested, where an approximation for the Doob martingale was constructed using the mar-
tingale representation theorem and some approximation of the true price process. However,
this method requires an additional discretisation of stochastic integrals and suffers from
some instability for small discretisation steps. Secondly, a multilevel-type algorithm was de-
veloped in Belomestny et al [12], which has a similar performance, in terms of complexity, as
the algorithm described here, but works under very different conditions (e.g. the algorithm
in [12] does not take advantage of the smoothness properties of the involved conditional
expectations).

In the next section we present a regression-based approach, which will result in a signif-

icant reduction of the complexity (see the discussion right after (6.26)).
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6.3 Variance reduction via regression

Suppose that for some A > 0, the time approximations Xaa, I = 1,...,L, with L =
|T/A] > J satisty the following recurrence relations (cf. (2.11))

XA,IA = (PZ(XA,(Z—l)Aagl)? I= 17"‘7La (66)

for some i.i.d. random vectors & € R with distribution p and some Borel-measurable
functions ®;: R¥*™ — R?. By (G))1—o..... we denote the filtration with Gy = triv generated
by (&)i=1,....- Let (¢x)rez, be a complete orthonormal system in L*(R™, 1) with ¢ = 1,

ie.,
E[pi(§)¢;(§)] = dij, 4,7 € Zy.

In particular, the random variables ¢ (£), k > 1, are centered. Notice that the (normalised)
Hermite polynomials Hj are a special case of such orthonormal systems. Let us fix some
j<pin{0,1,...,L}.

Theorem 6.2. It holds for any function f with IEHf(XA,pA)F] < 00
P
F(Xapa) =E[f(Xapa) Xajal + > > apir(Xaa-1)a)ok(&), (6.7)
E>11=j+1
where the series on the r.h.s. converges in L? sense. The coefficients in (6.7) can be computed
via
ap, (@) = E [ f(Xapa)dr (&) Xa,q-1a = 7]

forl=1,...,L and k € N.

Identity (6.7) implies that

Var [f(Xapa) — M p|Xa ja] =0, E[M;,

G;jl=0, as.

with

P
Mjp = Z Z ap1 k(XA 1-1)a)Pk(&1) (6.8)

k>11=5+1

and hence M; ;, is an optimal control variate. In order to use control variate M; ,, we need

3sps
to compute the coefficients ayp ;. This can be done by using regression in the following way:
first we generate N, discretised paths ng)lA, . ,X(A?)LA, n=N+1,...,N + N,, of the
process X and then solve the least squares optimisation problems

N+N,.

ap1k = arg min Z
Ppespan(YPi,...,0qQ) n=N+1

2
S o™ = (X a)| s

for il = j+1,...,p, where 91,...,9¢q is a set of basis functions on R¢. Furthermore, we

truncate the summation in (6.8) to get an implementable version of the control variate M ,

K p
M;p k= Z Z ap1 k(XA 1-1)a) k(&) (6.9)

k=11=j+1
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To make clear how to understand (6.9), we remark that the random vectors &, =1,..., L,
in (6.9) are independent of the N, training paths (X(Anz A) used to obtain the regression-
based estimates @y, while the testing path (Xa ja) in the argument of a,; in (6.9) is
constructed via those random vectors £ according to (6.6) (and hence is independent of the
training paths).

Let us note that EM; ,, = 0 due to the martingale transform structure in (6.9) (recall
that E¢y (&) = 0 for k > 1), i.e. M;, x is indeed a valid control variate in that it does not
introduce any bias. The properties of such a control variate are summarised in the following

theorem.

Theorem 6.3. Consider some j < p in {0,1,...,L}. Suppose that the function f is uni-
formly bounded by a constant F'. By Gy 1 we denote the truncated at the level F' estimate
(cf. (2.3))

_ R ap,1,k(x) if apk(z)| < F,

dpap(r) = Tpapi(r) = " ' (6.10)

Fsgnayi(x) otherwise,

and by M;, x the control variate defined like in (6.9) but with Gy replaced by Gy k-
Furthermore, assume that for some 8 >0 and Bg > 0

) P
Z K’ E[ai,l,k(XA,(l—l)A)] < Bg (6.11)
k=1 I=j+1
and the set of basis functions in,...,1q is chosen in such a way that
P ' , -
2l Bl ans) —vKanalf] £ 92

for some constants k > 0 and D,; > 0 (cf. (2.6) in Subsection 2.1.1). Then
Q(log(N,) +1)
KX\ )
N,
+BsK? + 8D, KQ™"

E [Var [ f(Xapa) — Mjp x| Xajal] <eF*(p —j)

with some universal constant ¢, where

K

P
Mipk =Y Y dpir(Xaq-1)a)dr(&)

k=11=j+1
6.4 Dual upper bounds with reduced complexity

Next we apply the results of the previous section to the nested simulations of dual upper
bounds. For the sake of clarity assume that the exercise times coincide with the discretisation
time grid for some A > 0, i.e. L = J. Instead of Vj, which is constructed in (6.4) via the
exact process, we are now going to estimate its analogue Va ¢ constructed via the discretised

process

Vao=E|max (g;(Xaja) = Ya;a) (6.12)
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with YA,jA = Z{:l (UZ(XA,ZA) —E [UZ(XA,IA)‘XA7(1—1)A])- For any j = 1, ey J, we need
to compute the conditional expectations E [v;(Xa ja)|Xa,j—1)a] - Due to (6.7) we have the

following representation

v;(Xaja) =E [v;(Xa a)| Xag-va)] + Y aj6(Xa,G-1a)0x(&), (6.13)
k>1
where
aji(z) = E [vj(Xaja)or (§)] Xa g-1a = 2], (6.14)

provided E [’UJQ (Xa,ja)] < oo. Representation (6.13) implies that

Var[v;(Xa ja) — Mj|Xa j-1)a] =0 a.s. (6.15)
for
My =3 a;(Xa g-na) (&), (6.16)
k>1

and hence the first term on the r.h.s. of (6.5) is zero. Of course, the control variates
My, ..., M; cannot be used directly, since the coefficients a;; are unknown. So first we
estimate the coeflicients a; ;, by a preliminary regression using N, discretised paths of the
process X and @ basis functions (see Section 6.3). In this way we construct the estimated
and truncated version of the control variate M; given by

K

Mg = Zdz,k(XA,(z—l)A)¢k(§l)~ (6.17)
k=1

Now fix some natural numbers N4, N and consider the dual estimate

N
A 1 (n) A
VNNLK = 5 nz::l [O@jaé (gj(XMA) - n,nwd,K)] : (6.18)
where
, : (n) 1 (nam)y _ pyp(nam)
Yjn Ny K :Z ”l(XA,lA) "N, Z (Ul(XAjA )_Mz,Kd’ ) (6.19)
=1 ng=1
with

K
NS =3 (XL )on (€. (6.20)
k=1

We now can prove the following result.

Proposition 6.4. Assume that all functions v;, j = 1,...,J, are uniformly bounded by a
constant F. By a; we denote the truncated at the level F' estimate defined as in (6.10),
and by M i (resp. Ml(f;(d’"), Yjn Ny VNN, i) the quantities defined like in (6.17) (resp.
(6.20), (6.19), (6.18)) but with “hats” replaced by “tildes”. Suppose that the coefficients (a; 1)
defined in (6.14) satisfy, for all j=1,...,J,

> kP Ela2 (XA -1)a)] < Bs (6.21)
k=1
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with some B > 0 and Bg > 0 and that the basis functions ¥n,...,¢q are chosen in such a
way that, for all j =1,...,J and k € N,

2
inf E[a- Xa(ipa) — b(Xa (i }SDH - 6.22
B |ajk(Xa,j—1ya) — (XA —1)a)] Q (6.22)

with some k > 0 and D, > 0. Then it holds

y 4J 1\ [ 2, QUog(Ny) +1) - _
E —Vaol’] < 14— ) e S8 T L g8 4 8D, KQ"
[IVN.Nok — Vaol?] < N, ( + N) {c N, + Bg +8D,.KQ
4 J
* _ 2
+ ﬁgﬂf “Uz (Xa,a) = v(Xaa) ] (6.23)

with some universal constant C.

Remark 6.5. Notice that in case of weak approximation schemes we do not need to in-
troduce the parameter 3 in (6.21), since the optimal control variate M in (6.16) is a finite
sum. Thus, in the complexity analyses below we can find a relation to weak schemes by

considering the case [ — oo.

6.4.1 Complexity analysis for Bermudan options

Proposition 6.4 allows us to carry out complexity analysis of our algorithm. First note that

the overall cost of computing the estimator VN’ N,k is of order
JK max {N,Q*, NQ, NN}, (6.24)

where the first term in (6.24) comes from the computation of the regression coefficients, the
second one from the computation of dl7k(X(Anzl—1) ) and the last one from the computation of
M, l(;g’n) (other terms involved in the computation are dominated by one of these quantities).

Given 8 > 0 and x > 0 as in Proposition 6.4, we have the following constraints

KQlog(N,) JBs JD.K

~

N,N, 'KPN; Q"Nyg' N
to ensure the condition E [|VN,Nd7K — VA,O\Q] < €2,

Notice that we are interested in getting the order of complexity in € as € ~\, 0. To this end,
we need to determine the parameters N, N,., Ny, K and @ via € in such a way that the order
of complexity of Vi n,.x (given by (6.24)) is minimal under the constraint (6.25). Since
Bg, D,, and J are constants, they can be dropped from (6.24) and (6.25). Straightforward

but lengthy calculations now show that the overall complexity of VN7 N,k is bounded from

above by
A(B4D) (+3)+dn
Cypre  GIDetaTes /|logel, (6.26)
where the constant C; 3, does not depend on €. Moreover, the dependence structure in
Cj.,x on the parameters 3, x and J is given by the formula Cj 3, = cJQBg/(Hﬁ)Di/(MK)

with some universal constant c. We, finally, discuss the complexity estimate (6.26):

Remark 6.6. (i) We require to choose 8 > 1 in order to be better than the standard nested

4(B41)(r+3)+4r

D) +5n < 4 whenever 8> 1

simulations approach discussed in Section 6.2 because
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ii) We can achieve the complexity order e =279, for arbitrarily small § > 0, whenever the
p y » y ,

parameters 5 and k are sufficiently large.

(iii) In the limiting case k = 0, i.e., if the approximation error in (6.22) does not converge
to 0 (e.g. due to an inappropriate choice of basis functions), we end up with the complexity

of the standard nested approach of order ¢ *.

(iv) While the control variates in the previous chapters lead to a variance reduction in
comparison with Var [f(Xa r)] (and the remaining MSE term, namely the squared bias
(E[f(Xr)— f(XAvT)])2, is of the same order as for the SMC approach), the present control
variates ]\}[l(yf;(d»”) (cf. (6.20)) with ng € {1,...,Ng}, n € {1,...,N}, 1 € {1,...,4}, j €

{1,...,J}, lead to a reduction in comparison with the terms
E [Var [UZ(XA,lA)|XA7(l—1)AH s (627)

which are a part of the overall error for the standard approach, but mainly affect the bias
(cf. proof of Theorem 6.1). More precisely, the better the estimation of the control variates

works, the smaller are the terms (cf. proof of Proposition 6.4)
E [Var [v/(Xaa) — My k| XA 1-1)a] ]

compared to (6.27). This leads to a reduction of both the bias and the variance. However,
while the bias tends to zero for optimal control variates (cf. (6.15) and (6.41)), the variance

is only slightly reduced (cf. (6.42)) and still depends on the remaining error terms, namely
E [|U1*(XA,ZA) —u(Xaua)l’|,
which are not affected by the control variates (see (6.5) and (6.23)).

In the next subsection we present the complexity analysis for the case of an increasing
number of exercise dates J — co. We also take the discretisation error into account, which
is the order (in J, J — 00) of the difference between the upper bound Vj for the (continuous

time) American option price and the upper bounds Va ¢ for the Bermudan option prices
with A =T/J.

6.4.2 Complexity analysis for American options

To approximate an upper bound Vj for a true American (rather than Bermudan) option, we
now let J tend to infinity. We shall compare the complexities of the standard approach (the
one of Section 6.2 applied to the discretised process) and of the regression-based approach

(the one described in the beginning of Section 6.4).

Standard approach: Set A =T/ J, then the estimate for Va ¢ of (6.12) is

N
1 3 (n)
Vanyg =y [oglyang (gj (Xaja) = YA’jA’"’Nd)] ’

n=1
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where

J Na
n 1 ng,n .
YA’jA’n’Nd = Z (Ul(X(A}A) o Nd Z /Ul(X(A,?A ))> ’ J= 07 ceey J

=1 ’ndzl

The analogue of (6.5) takes the form

45 EVar [v;(Xa1a)| XA 1 1
E [[Vany, — Vaol?] < izt E[Var [u(Xaa)1Xa,q-1)a]] (1+N)

Ny

Ay E [W(XA,IA) — Uz(XA,lA)ﬂ
+ N .

(6.28)

Since we are considering American options in this section, the estimate Va n,n, can be
viewed as an estimate for Vj rather than for Va o, i.e. this is E [|Va n,n, — Vo|?] that should
be of order €2 in the complexity analysis. Therefore, we need an assumption about the order
of the discretisation error Va o —Vp. It seems reasonably general to assume that it is of order
%. However, the discretisation error might be of a different order in specific situations (see

[15]). That is why we impose a more general assumption:
(A1) Va,o—Vy is of order J~* as J — oo with some o > 0.

We also need an assumption on the order of the second term on the right-hand side of (6.28)

(which is also present in (6.23)):
(A2) 7 E [|of (Xaua) — UZ(XA,ZA)F} is of order J9 as J — oo with some ¢ € [0, 1].

A typical-to-expect situation here is ¢ = 1. Another interesting variant is ¢ = 0: here the
strategy is to use better and better approximations v; for v} at each time point [ =1,...,J,
as J grows (see, e.g., Zanger [61] for bounds on E [||vj — v;||?] .) Finally, as for the first term

on the right-hand side of (6.28) it is reasonable to assume only that
(A3) 22}:1 E[Var [v;(Xa,a)| XA, 1-1)a]] is of order J as J — occ.

The overall cost of computing the estimate Va n n, is of order JNyN. Thus, we need to
minimise this cost order under the constraint

1 J J? 9
maX{JQMNd,N} Se

which ensures that E [|[Va v n, — Vol?] < €2 (see (6.28) and (A1)—(A3)). This leads to the
complexity of Va n n, of order e4=%*. For instance, in the case « = 1/2, ¢ = 1 (resp.

a=1/2, ¢ =0) we get the complexity O(c~1) (resp. O(e7%)).

Regression-based approach: We suppose that the assumptions of Proposition 6.4 are
satisfied uniformly in J € N and again assume (Al) and (A2) (as for (A3), we do not need

it here). The cost of computing VN} N, K is of order

JK max {N,Q*, NQ, NNy} .
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We need to minimise this under the constraints

- { 1 JKQlog(N,) JBs JD.K J } <2

~ )

J2e? N.Ny ’K*BNd7 Q”Nd’ N

which ensures that E [|[Vy n, x — Vo|?] < &2 (see (6.23) and (A1)—(A2)). Straightforward
but lengthy calculations show that the overall complexity of ‘N/N, N, Kk is bounded from above
by

_ (dat249) (B+1) (n43) +(BHdatita)n
Cgre a(BFD(rT3)Fabr v |logel, (6.29)

where the constant Cg, does not depend on €. Moreover, the dependence on 5 and « is

= B3/ p3/ 3+

described by the formula Cj . with some universal constant c. We,

finally, discuss the complexity estimate (6.29):

Remark 6.7. (i) We again require to choose # > 1 in order to be better than the standard
approach discussed above, because, as a straightforward calculation shows,

da+2+q)(B+1)(k+3)+(B+4a+1+4+q)k

a(B+1)(k+3) + afk <4

2+
L2+4
«

whenever g > 1.

2-%:1=9 for arbitrarily small § > 0, when-

(ii) We can achieve the complexity order £~
ever the parameters 3 and s are sufficiently large. In particular, this gives us O(e7%7?)
(resp. O(¢7°7%)) when o = 1/2, ¢ = 1 (resp. a = 1/2, ¢ = 0), which is to be compared with

O(e719) (resp. O(¢7®)) in the case of the standard approach.

6.5 Examples and discussion of conditions

Suppose that the process (X;)icjo,7] solves the SDE (1.1) in the one-dimensional case d =

m = 1. Consider the Euler discretisation scheme, which is of the form
Xaja = Xag-na +u(Xa,-1a) A+ 0o(Xa,-1)a) & VA, j=1,...,J

where &, ...,&; are independent N(0, 1) random variables. In this case, we have ®A given
by (3.5) and the orthonormal system (¢y)rez, in L? (R, N(0,1)) can be chosen to be the
system of normalised Hermite polynomials ¢, = Hj,. Then the coeflicients a; , are given by
formula

os4(x) = <8 [uy (14 ) A+ o(@) € VA) Hi(9)] (6.30)

with £ ~ N(0,1). To get more insight into the behaviour of a; j in k, we need to know the
structure of the approximations v;. While we did not assume anything on their structure
until now, in practice one often models v; as linear combinations of some basis functions,
e.g. polynomials (for instance, in the Longstaff-Schwartz algorithm with a polynomial basis).

Let us now verify the assumption (6.21) in a couple of particular examples.
Example 6.8. Let

p
viy) = iy’ j=1,...,J
=0



Chapter 6. Complezity reduction of the dual nested Monte Carlo methods 105

(think of polynomial basis functions). Since, with & ~ N(0,1), Hy(¢) is orthogonal in L? to
all polynomials in £ of degree less than k, it follows from (6.30) that

ajr =0 whenever k> p+ 1.

Then, for any 3 > 0, there is an appropriate constant Bg > 0 such that, forall j =1,...,J,

[e'e) b

> K Ela} (XA g-1a)l = YK Elaf 4 (Xa,-1)a)] < Bg.

k=1 k=1
(Notice that, since the coefficients u and o of the SDE are globally Lipschitz, all polynomial
moments of the Euler discretisation are finite, hence all E [aik(XA’(j,l)A)} are finite.)
Thus, assumption (6.21) is satisfied and, moreover, we can take arbitrarily large 5§ > 0 (at

a cost of possibly getting large Bg).

Example 6.9. Let now

P
vi(y) = Z ajiexp{ihly}, j=1,...,J,
l=—p
that is, at each time step j = 1,...,J our approximations v; are trigonometric polynomials
with period 27 /h, for some given h > 0. With £ ~ N(0, 1) we have

1
ajk(z) = N

1

NG i ajexp {ihl(z + p(z)A)} E [exp {ihla(m)\/zﬁ} Hk(f)} .

S —

E {vj (:c + p(z)A + U(CU)\/ZE) Hk(ﬁ)}

Using the definition of the Hermite polynomials and integrating by parts k times, we compute

a

2
B lexp{ia) (€)= (ia)* exp { -5 }.

Hence,
hrAkRZ L . h2202(x)A
. < . SN Sl O
oss(@) < 7 3 el oo exp { -5
Assuming for simplicity that o is bounded, we get
K;Ck
jaj ()] < /7L

with some positive constants K; and C. Hence, for any 5 >0 and forall j =1,...,J,

;k Eloj 1 (Xa g-na)l < | max K, 2 Bp < o0

Thus, provided o is bounded, for arbitrarily large 5 > 0, there exists an appropriate Bg > 0
such that assumption (6.21) is satisfied.
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6.6 Numerical results

As can be easily seen, the optimal solution for the parameter N is of the same order (w.r.t. €)
both in the standard and in the regression-based approaches. Therefore, let us ignore the

error term
J

% Y E [|vl*(XA,lA) - (XMA)F} (6.31)
=1

in (6.23) and (6.28). Hence, we are interested in the remaining “variance terms”

E[Var [v;(Xaa)|Xa,0-1)a]] (6.32)

and
E [Var [UZ(XAJA) - MZ,K|XA,(1—1)AH ) (6.33)
for I =1,...,J, respectively. In terms of the numerical implementation, we will choose N

large enough so that (6.31) does not really affect the overall error. That is, we now consider

J and N as fixed parameters.

Standard approach with fized J and N: We recall that the overall cost of computing the
estimator VA n,n, is of order JNgN. Since we consider only the variance terms, we set
Ny = 72 to ensure that (see (6.28))

J

4 1

Fd (1 + N) Z]E[Var [UZ(XA,IA)|XA,(Z—1)AN S 62. (634)
=1

Thus, we have for the complexity
Cstanda'rd = JNdN = 5_2- (635)
Regression-based approach with fixred J and N: The overall cost of computing the esti-
mator VNd,N,K is of order
JK max {N,Q*, NNy} . (6.36)

Notice that, since N is considered to be fixed, the term NQ (cf. (6.24)) is dominated by
N, @Q?. We have the constraints

JKQlog(N,) JBs JD.K 9
<
max { NN, KN, QN | S (6.37)
to ensure the condition
4 1\ < 5
ﬁd (1 + N) ZE [Var [UZ(XA,IA) — Ml,K|XA,(l—1)AH 5 62. (638)
=1

Then, the resulting complexity bound is given by

2(B+1)(r+3)+2k

Cregression 5 CJ,N,ﬁ,H g BID(=+3)+8x \V4 |10g€\, (639)

_ CJ3/2Nl/QBg/(lﬁLB)Di/(SJrN)

where Cy N, with some universal constant c. Notice that

the complexity in (6.39) is better than that in (6.35) whenever 8 > 1. Moreover, we can

—1-6

achieve the complexity order ¢ in (6.39), for arbitrarily small 6 > 0, whenever the

parameters § and k are sufficiently large.
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Remark 6.10. Clearly, for every finite N, we also have the error term (6.31) in both
approaches. However, since our control variates J\;[l’ x are aimed at reducing only the other
error term (from (6.32) to (6.33)), it is useful in the numerical experiments to fix a sufficiently
large N in order to make the error (6.31) very small. This allows us to focus on the reduction
effect of the variance terms only (and thus mainly on the reduction effect of the bias, see
Remark 6.6).

In constructing the numerical experiments below, for the regression-based approach, we
need to choose several values of ¢ and the values of N,., N4, K and @ for each value of €. To
this end, we use the “limiting formulas” as 8,k — oo. Ignoring the remaining constants as
well as the log-term for N,., those “limiting formulas” give us N, = O(e™!), Ny = O(e7 1),
K = O(1) and @ = O(1). In more detail, we choose the parameters for each ¢ = 27%
i€{2,3,4,5,6}, as follows:

N=5-10", K=1, Q=d+2, Ny=8-¢! N,=256-¢"%

As for the basis functions, we use polynomials of d variables up to degree 1 as well as the
function f (altogether @ = d + 2 basis functions). Regarding the standard approach, we

choose for each ¢ = 277 i € {2,3,4,5}, the parameters via
N=5-10% Ny;=2-e2

Notice that we use less values for € in case of the standard approach, since the computing
time for € = 27° in the standard approach is already much higher than that in the regression-
based approach for e = 276, with comparable values of the estimated root mean squared
errors \/E Va,n,n, — Va,ol?] and \/IE [|‘~/N,Nd7K — VA70|2]. In addition, we implement the
multilevel approach from [12] in the following way: set L = —logy(e) — 2 for ¢ = 27%
i € {2,3,4,5} and choose (Ng); = 48-4! and N; = 215~ for [ = 0,..., L. Run the multilevel
algorithm until the level L is reached. Thus, the cost is of order ZZL:O (NN, = O(2F) =

O(e71), similar to the one of the regression-based approach.

Below, we compute the numerical complexities, given 500 independent simulations, and
compare it with the theoretical ones, namely, O(e~2) for the standard approach and O(e~!)
for the multilevel and regression-based approaches (“limiting formulas” as 8, kK — c0). Note
that we compute the regression estimates for v;(x) by means of the algorithm of Tsitsiklis
and Van Roy (see [58] and [59]), given 5 - 10* independent paths and (dH)QM + 1 basis
functions (polynomials of d variables up to degree 2 as well as the function f) for all the
standard, regression-based and multilevel approaches. Further, due to practical purposes,

we do not allow to exercise at time ¢ = 0, which gives us a modified price, namely
=E i(Xain)—Ya, .
Va0 Dax) (9;(Xa,58) = Yaja)
6.6.1 Two-dimensional example

We consider the following SDE for d =m =2 (Q = 4)

dX; = (r— 0" X{dt + o' X[ dW/}, te€0,1], i=12,
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where 7 = 0 and z} = 100, o' = 0.2, 6° = 0.02, for i = 1,2. Hence, X} and X} are
two independent geometric Brownian motions. Further, we consider the Bermudan max-
call option with strike price 100 and 20 exercise opportunities (J = 20), that is, g; (z) =
max {max {1, z2} — 100,0}, z = (21, x2), for all j. The “true” upper bound Va ¢ ~ 12.57
is estimated as the mean value of 100 independent computations of Va n n, With N = Ng =
5-10%

As can be seen from the first plot in Figure 6.1, the estimated numerical complexity is
about RMSE %4 for the regression-based approach, RMSE 13! for the standard approach
and RMSE~%* for the multilevel approach. (We speak about numerically estimated RMSEs
here.) The reason for the somewhat unexpected slope 1.31 in the standard approach is that,
in this numerical example, the numerical MSE turned out to be strictly smaller than the left-
hand side of (6.34), which is of course possible in specific examples. (Indeed, from the plot
corresponding to the standard approach we get RMSE =< £2/1:31 that is, MSE =< ¢%/1:31
which is smaller than const/N; =< £2.) We see that the regression-based approach works
nicely, and we can save much computing time as compared to the standard and multilevel

approaches to obtain similar accuracies.

6.6.2 Five-dimensional example
We consider the following SDE ford=m =5 (Q =7)
dX} = (r — 6 Xidt + o' X[ A"dW,, te0,1], i=1,...,5,

where r = 0, xj = 100, o' = 0.2, 6 = 0.02 Vi, and A® := (Aivln-A"f’), AAT =
(pik)“c:1 5 with pi = pri € [-1,1] and pj, = 1 for ¢ = k (that is, AW, i=1,...,5, are

correlated Brownian motions). For ¢ < k we choose

.....

09 ifi=1k=2, —0.5 ifi=3, k=4,
pik =2 02 ifie{l1,2,3}, k=5 —02 ifi=4, k=5,

0 otherwise.

Again, we consider the Bermudan max-call option with strike price 100, but with only 10
exercise opportunities (J = 10), that is, g; (z) = max {maxie{17.__,5} T;— 1()0,()}, for all 7,
and estimate the upper bound Va o ~ 21.07 via 100 independent simulations of VA n n,
with N = Ny = 5-10%

Our empirical findings are illustrated in the second plot in Figure 6.1. We observe the
numerical complexities of order RMSE %7 for the regression-based approach, RMSE 1?2
for the standard approach and RMSE™%™ for the multilevel approach. Even though the
numerical complexities of the regression-based and multilevel approaches are close to each
other, we observe that the computing time in case of the regression-based approach is much
smaller than the multilevel one, whereas the RMSEs are in a similar region. As in the
previous example, the regression-based approach shows a significant complexity reduction

effect and outperforms the standard and multilevel approaches numerically.
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Figure 6.1. Numerical complexities of the regression-based, standard and multilevel ap-

proaches in the two- and five-dimensional case.

6.7 Proofs

Proof of Theorem 6.1

In what follows, conditioning on X™ is a shorthand for conditioning on U(X](n), 0<j<J).

We set

and observe that

J
v =37 (X)) = Blu(X™)IX™M]) . G =0,

y®™ = [Yj ol Xﬁn)}

=1
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in particular, the process (Yj(n)) has the same distribution as (Y;). Further, we have

] L35 o ) e

) = Vi X

%
S
(1=
o
=
Q
"’
&
&
e
z

which implies the required inequality EVy n, > Vi by taking expectations of both sides.

We now introduce the filtrations ]-';n) = U(Xl(n),...7X](-n)) (F™ = triv) and f;n) =

(n)

G(Xl(n)a-~-an('n)le(mm)w-.,Xj(m’n),m =1,...,M) (Fy, = triv). Next we have

E [(VN,Nd — Vo)Q] = (E [VN,Nd — Vo])2 + Var [VN,Nd] (640)

:<E

For the first term in (6.40), that is the squared bias, we obtain

N

2
1 (n)y _ y(m
Vi, = 3 Z masx (g,(X") =Y ||+ Var[Vay, ]

E VN,Nd_

(E[ Vol)
1 N (n) (n) :
<E VN’N‘i—NZO<3<J (QJ(X )_Y] )

thz

( max (gg (X(")) - Yj,n,Nd) — max (gj(XJ(-”)) _ Yj(n)>)2‘|

0<5<J 0<5<J

S O
n
S Z(E%Knm )]
1 N 1 N 2 . . .
where we used (% Y _1 @n)? < & D,_q a2 in the first inequality and

|m]axaj fmjaxbj\ < m]ax|aj — by

in the second one. Since (Y; ., n, —Yj(")) is an (f(.n)

p )-martingale, Doob’s L? inequality yields

E max [(Yjn, — Y,")?] < 4E[(Yonn, — Y3™)2),

0<5<T

such that we get

N
<WWM—%W<;ZFRnMMJ#Y}
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Proceeding as follows

E [(YM Ny — Y}"))z] ) _Var [YJ,m N, \X.(”)H

=E | Var Z Z X(nd’") X(n)]l
L nd 1
o
=E\> N {”l (Xl(n)”Xz(”)l”
Li=1
1
=N > E([Var [v(X)]X1-1]],
412
we obtain the upper bound
4
(E[Vi,n, — Vo))* < N, > E [Var [o(X0)[ X -1]] - (6.41)
1=1

Next, due to the almost sure property of the Doob martingale
1) : (1) Wy D)
v =37 (o () — E i (xlxb )
1=1

we derive

1
Var Vi = gy Vor e, (06") ~ Vi)

_ 1 (1) (1) %,(1)
—NVar [o?fgx (gJ(X )- YJ’I’N‘i>_ I?a<XJ<g](X )Y )

1 *(1) 2
NEO?%XJ [(YJ B Yj’l’Nd) ’

for the second term in (6.40). Again using Doob’s L? inequality together with the fact that

IN

martingale differences are uncorrelated, we get
4 « 2 4 ¥
Var [Viyy,] < 1-E [(YJ’(” - YJ,LNd) ] — - Var [YJ’(” - YJ}LNJ

Var

[
2|
M~

N
Il
-

Ng
o () —u(x") — B [or XX ] + Z ]

E | Var

I
2]
M~

Ng
1 (n
Uz*(Xl(l)>_U( (1)>+ N, Z ul(X o ‘Xl(l H

Nid S (Xf"d’”ﬂXfﬂ] D

nd:l

Il
—

ndzl

Var

I
2]~
M=

<E [Var [vl*(Xl(l)) - Ul(Xl(l)”Xl(i)lH +E

1

[
2|
M~

(IE [Var [v] (X;) — vi( X)) | Xi—1]) + NLdE [Var [vl(Xl)|Xl_1]]) :

~

1

Finally, we use

E [Var [vf (X1) = 0(X0)| Xi-]] < E (0] (X)) = w(X0))°] |
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which gives us

J
Var [Viy.n,] < ;; (]ET (07 () — w(X0))?] + NidE[Var [w(xl)|xl_1]}> L (6.42)

Proof of Theorem 6.2

The expansion obviously holds for p =1 and j = 0. Indeed, due to the orthonormality and

completeness of the system (¢y), we have

F(Xan) =Ef(Xaa)+ > av1x(@o) o)

k>1
with
ar k(o) = E[f(Xa a)ox (&1)],

provided E [\f(XAA)ﬂ < oo. Denote G; = o(&1,...,&5), 7 = 1,2,..., and set Gy = triv.
Suppose that (6.7) holds for p = ¢ and all j < ¢. Let us prove it for p = ¢+ 1. Again due

to the orthonormality and completeness of the system (¢y), we get by conditioning on G,

F(Xapa) =E[f(Xapa) Xagal + D apgr1n(Xaqa)drEor), (6.43)
k>1

where
apg+1,k(2) = E[f(Xapa)ou(€qt1)| Xa,ga = 2],

which is the required statement in the case j = q. Notice that we used

E[f(Xapa)or(€e1) Gyl = E[f(Xapa)or(g+1)] Xagal, k€N,

in (6.43), which can be shown analogously as in the proof of Theorem 4.11. Now the r.v.

E[f(Xapa)| Xa qal] is Gg-measurable and square integrable. Hence

E[f(Xapa)l Xagal =E[f(Xapa)l Xajal + > D apin(Xaq-1)a)dr(&)
k>11=j+1
for j < ¢ with
apk(Xa,a-1a) = E[E[f(Xapa)lGgl ¢k(&)| Gi—1] = E [ f(Xa,pa)pr(&)] Gi-1]
=E[f(Xapa)or(&) Xa g-1)a] - O

Proof of Theorem 6.3

It holds

E [Var [f(XA,pA) - Mj,p,K‘ XAJAH =E “MJGP - Mj,p,Klz] .
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We have

2

00 p
E [|Mj7p - Mj,p,K|2} =E || Y Y apis(Xag-na)or&)

k=K+11=j+1

K p
+E DD D (apuw(Xag—1a) = apis(Xa,g-1)a)) ¢x(&)
k=11=j+1

Z Z [ap.1.0(Xa,q-1)a)]

k= K+1l_]+1

+ Z Z [ apk(Xa,a-1)4) — ap,l,k(XA,(lfl)A))z} -

k=1l=j+1
It follows from (2.4)
~ 2
E |:(ap Le(Xa,a—1)a) = Gpik(Xa,a-1)a)) }

2 Q(log(N,) +1) . 2
F2—+8 inf E||la XA (1— — U(XA (-
N e e [|apik(Xa g-1a) = ¥(Xa,q-1)a)|]

for some universal constant ¢, since

Var [ f(Xapa)on (6)] Xaq-na =] < F?

and

|E [ f(Xapa)tr (&) Xa,q-1a = ]| < F. O

Proof of Proposition 6.4

By the same calculation as the one leading to (6.5) (see the proof of Theorem 6.1), we get

- 4 1 -
E [|[VN, Nk — Vaol?] < N, <1 + > ZE [Var [vi(Xa1a) — My x| XA -1)a]]
4 J
+~ > E [|ul*(XMA) - vl(XAJA)\Q] . (6.44)

=1

It remains to apply Theorem 6.3 to the first term on the right-hand side. O
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Chapter 7

Outlook

The approaches described in the previous chapters motivate the question if it is possible to
obtain a further reduction of the complexity (in particular a better complexity order than
e~ 175). In the following sections we specify some ideas how the algorithms for strong and

weak schemes can be generalised or enhanced.

7.1 Scheme with Gaussian increments and weak conver-

gence of second order

Consider a 7m-dimensional Brownian motion (W;):cjo,7], where m := % and define

AW =Wia = Wii_nya, j =1,...,J. Further, define

)

AW = (AW AW e R,

A]‘Wz = (Aij+1, ey Aij)T € Rm(ngil) ,
as well as the m X m-matrix Wj = (Wfl)iylzlywm with entries WJ” =—VAfori=1,...,m,
W2 = AW LW = AW W™ = AW and WE = W for | > .
Regarding the discretisation, we use the function ®a(z,y,z) from (4.17), but in this case
with Gaussian instead of discrete increments, that is
AWY W )

XA (Gi—A, ——, —F—= 7.1
A,(G-1)A \/E VA (7.1)

Xain = ®a <

Below we simply write

AWY AWZ AW

rather than (7.1), since we even know all entries of W;, when A;W# is known. Our aim is

to find out criteria, by means of an example, that justify a weak convergence of order 2 for

this scheme, analogously to the second order weak scheme.

Example 7.1. Consider the following SDE for d = 1, m =2 and t € [0, 1]

dX; = sin(X;) dW,' + cos(X;) dW2,  Xo = 0.
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Further, consider the function f(z) = 22. Via Itd’s formula, we can derive the expectation

~

E[f(X7)] = [ E [sin®(X;) + cos®(Xy)] dt =T = 1.

Ot~

The function @ in (7.2) has the following form in this example

da(z,y,2) =z + VA(sin(z)y; + cos(z)ys) <1 - % + @(cos(:z:)yl - sin(x)y2)> - %
(7.3)

Hence, in contrast to previous examples with m > 1 (see e.g. Section 3.5.1), the variable
m(m—1)

z€R 7z in ®a(x,y, 2) is present here. Notice that z is introduced for the second order

weak scheme, since we need to approximate the integrals

tj
12 . 1 2
YAJ = Wg dWy,

tj—1
tj
21 2 1
Y2, = / W2dw?,
ti—1

which arise from the It6-Taylor expansion (cf. [38]) of the Itd process

T T tj tj

XT:Xo—i—/u(Xt)dt—ir/a(Xt)th:X0+2J: /,u(Xt)dt—i— / o (X)) dW,
0 =\

0 j—1 tj—1

In case of the second order weak scheme, the approximations for YA% and YR!; are given
through (cf. (4.14) and (4.17))

~ A
Yah =5

g6 +V7),
~ A
YA2,1J = §(§]1£J2 - ‘/}12)3
where &; and V; are defined in Section 4.2. Notice that it is not sufficient to approximative
YAl?j and Yﬁ}j by means of fjl,sz only (see e.g. the moment conditions below). Therefore,

we need to include Vj as an additional random variable which is independent of &}, &7

Regarding our setting in this section, we have the approximations
= 1
VA% = (AW AW+ AWEVA),

VEL = (A WA W — A;WEVA).

1
2
One can easily show that the following relations hold for the first three moments

E[vi,] =E[V4,] =E[V4,] =0,

E [(Yﬁl,j)g} =E [(Y/ﬁj)g] =E {(:ﬁj)?} =0,
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where 4,1 € {1,2}, i # . Moreover, it holds for the covariances

Cov [VAZ,YZ!] = Cov [VA%, V2] = Cov [VA%,72)] = 0.

SA
For the fourth moments, we have
w[0d)] = 5 > m (7)) - 5 > e[ ] -

That is, for both the approximation with Gaussian increments and the approximation with
discrete random variables, we have a deviation to the “true” fourth moment. Since we
cannot see a reason why it should only work for the second order weak scheme, we expect
that the scheme described at the beginning of this section will give us a weak convergence
of second order, too (provided that the functions f,u,o are smooth enough, cf. Proposi-
tion 4.12). Below we estimate the weak convergence order in this example numerically via
simulation. For each A = 27% (and thus J = 2¢), i = 0, 1,2, 3, simulate N = 107 indepen-
dent paths via (7.2) and (7.3). Based on 500 independent repetitions of the SMC approach,
compute the estimator for E[f(Xa r)]. Then we have an estimator for the bias, that is
E[f(Xr) — f(Xa 1)], and get the estimated weak convergence order by regressing log |Bias|
vs. log(A). To illustrate the importance of including the random variables A; W3, which
we insert for the variable z in ®(z,y, 2), we additionally run a similar simulation with a

modified function

iDA(x,y) =+ \/Z(sin(x)yl + cos(z)ya) (1 — ﬁ) + %sin(m) cos(z)(y7 — y3).

Note that it holds (cf. (4.17))

Pa (2,y,2) — Pa(z,y) = (51012(@@13}2 +2)+ Ezall(x)(yly2 —z))

| > ro| >

(= sin® (@) (y1y2 + 2) + cos* (@) (g2 — 2)) ,

where 011 (z) = sin(z), o12(x) = cos(x) and the operators L1, £? are defined in (4.16). Hence,
in dA we ignore the terms of ®, where the variable z and thus the random variable A; w3
is used. As can be seen from Figure 7.1, we observe numerical weak convergence orders
of 2.02 for the complete scheme with ® (what we expected) and 1.06 for the incomplete

scheme with ®a (actually no better order compared to the Euler scheme (3.5)).

Next, we want to derive control variates based on the scheme (7.2). As in Chapter 3, we
focus on series and integral approaches and assume that we actually achieve weak conver-

gence of second order for this scheme.

7.1.1 Series approach

Since the results in Subsection 3.1.2 are not restricted to the Euler scheme and only require
the structure (3.4), we can apply our above setting there. More precisely, we use the function
@g)(x, y), where y € R™ (see (7.2)), to obtain

J m r
FXar) =E[f(Xam)]+>_ D, au(Xag-na) [[ Hx (AjW ) -

j=1 keN™\ {0, } i=1
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Figure 7.1. Comparison of schemes with Gaussian increments.

Hence, we apply the results in Subsection 3.1.2 for a m-dimensional Brownian motion rather
than a m-dimensional one. Note that it will not be sufficient to derive a control variate
which gives us a variance of order A as in (3.21). If this was the case, we would have got
the condition under N testing paths 15 < €2 and thus for the cost C 2 NJ 2 e~2 which
is no improvement compared to the integral approach. Let us recall Remark 3.13. Similar
to the control variates defined in (3.31) we assume to obtain under some assumptions on

f, u, o for the variance
Var [ f(Xar) — Mgf;@)} < A2, (7.4)

where

ser,(2) L3 - A]Wz
MY =30 ajXae) [THe (=5 ) (7.5)

j=11=1 kENg‘ =1

Notice that the number of terms for computing the control variate Mzeﬁr’@) is O(Jm?) =
O(Jm*). For the series approach in Chapter 3 which is based on the Euler scheme, we
have O(Jm) terms.
When performing a complexity analysis, we get the same complexity as for the RCV
approach (for second order weak schemes) in Chapter 4, that is
11dv+2(p+1)(Tv+8d)

C = g 2dv¥a(p+1)(2v+d)

in the case of piecewise polynomial regression. This is due to the fact that we have the same

constraints as in (4.35) (apart from the additional one 25 < €2, which comes from (7.4),

and is the only inactive one, similar to the condition JLN < % in Chapter 3, cf. Remark 3.21

on page 33). Hence, on the one hand we can achieve a better complexity order than the

integral approach in Chapter 3, because we can go beyond the complexity order ¢~2 for
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sufficient large p,v. On the other hand the achieved complexity is not better than for the
RCV and RRCV approaches (for each of the three approaches we get a complexity of order
1™ when p,v — o0). Moreover, we will have the same numerical problems as for the
RCYV and original series approaches (cf. Subsection 3.4.3). Consequently, there is no reason
why one should prefer this series approach based on the control variate MZ?;(Q) to the

numerically more stable RRCV approach (and also SRCV approach).

7.1.2 Integral approach

In this subsection we will not go so much into detail as in Section 3.1.3. Below we just give
a description how one could theoretically achieve a complexity of order e~1-°~9 for arbitrary
small § > 0. Consider again the scheme (7.2) with function ¢(Az) (z,y). Let us now introduce
the function ua: [0,7] x R™ — R via

W, — W,
ua(t,z,y) =E [uA (tj,q>f) (x%) ,0)] L e [ti—1,ty),

UA(T7x70) = f(x)

Suppose that we can obtain a similar representation formula as in (3.17), that is

J oo m AJ'Wi
un(tj—1 XAt ’“( VA )
/2 Jj—1> 17
f(XA,T) XA T + Z A ZA 8 k1 . J U kll
j=11=1 kueNan 1 1=1

under some assumptions on f, i, c. Moreover, suppose that it holds for the variance
int,(2
Var [ F(Xar) - M )] < A2,

where the control variate

I 2 dualti1, X n Hi (%75
mt 1/2 A\lLj—1, AAt; 1’ i A

=2 D A Y RN I i

j=1i=1 keNg % i=1 v

™ k=l
i=1

is under some conditions equivalent to Mzm}@) in (7.5). In contrast to the series approach

int,(2)

in Subsection 7.1.1 we cannot straightforwardly implement M, 7*'. While we have con-

ditional expectation formulas for the functions a;;, we do not have for the derivatives
dua(tj—1,Xa, t;_1:0)
oYyt Dy,

proach in Chapter 3 are all based on the Euler scheme. Since we need to consider the

Note that the conditional expectation formulas for the integral ap-

second derivatives of ua w.r.t. y, we also have to simulate the second derivative processes
82X (cf. the one-dimensional case in Subsection 3.1.4) so that the dimension of the simulated
processes is d 4+ d? + d>. In Chapter 3 we only have to simulate X and X for the integral
approach which leads to dimension d + d?. It is natural to expect that the discretisation of
0X has the form (cf. (3.24))

0 AW
5 XAt = 262 AtJ 187q)(2) (XA’tj17\}Z> 5

k=1
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where i € {1,...,d}, j € {1,...,J}, 6iXA,tj € R? and 6Xa = I4. Regarding the one-

dimensional case d = m = 1, we expect the following discretisation for 62X (cf. (3.33))

9 52 AW > o AW
52XA,tj:52XA,tj,1%<I><A> <XA,tj1,\}Z>+6Xiytj_1W¢<A> Xat, s \}Z .

, one still has to derive conditional expectation formulas for

However, to implement MZ";’(Q)

8lUA(tj717XA‘tj7170)
ayllcl ”,ay:;r"n
were available, we would have obtained the complexity of order

, where only the processes X, 05X, 62X are involved. Provided that those

9dv+2(p+1)(9d+6v)

C < g™ 2vFeI@Fw) /|log(e)] (7.6)

for piecewise polynomial regression. That is, for p, v — oo the complexity tends to the order

6_1'5

(the log-term is ignored). Similar to the integral approach in Chapter 3 we would
have assumptions that the conditional variances and conditional expectations are bounded

by some constants (cf. assumptions (A1)—(A2) in Subsection 3.4.1). Then we would get,

- 2
a AW
E AWHH;Q( ’ )) = Al
( S\ VA

where E:h:l k; =1 € {1,2}, that the variable J, which comes from the number of terms for

the control variate MZtT’@), is not present in the variance (cf. the proof of Theorem 3.19 on

due to

page 31)
Var [MZ;(Q) - ]\ZZE‘F’@)} .

Here MZ”T’@) denotes the estimated control variate. This would lead to the following con-
straints (cf. (3.44))

11 Shog(N,) 1 (R 1 | _,
max § =7, ’ s At \ @ ) €,
J4 J2N N.N N\ S NRv | ™

from which we would get the complexity order (7.6). (Note that the cost of the algorithm is

still O(JSYmax {N,, N}).) In contrast, for the series approach in Subsection 7.1.1 we are
not able to avoid J completely. This is due to the assumption that the conditional variance

is bounded (cf. assumption (B1) in Subsection 3.4.2)

sup Var
R

<, (7.7)

o AW
f(XA,T)HHki ( J > ‘XAJj,l =X
i=1 \/Z

where ¥ > 0, which gives us the constraints (cf. (3.54))

1 1 Js? J (R\**"V 1
) - 2= < g2
max{ﬂ’ J2N'N,N' N (s) "NRv [~ (7.8)

If the bound in (7.7) was of the form XA, we would have obtained the same limiting complex-

ity e 1% for p,v — oco. (Note that the factor J is only of importance in the third constraint
in (7.8) for the limiting case p,v — co.) However, an upper bound of order A is not realistic

so that we can only assume the boundedness by a constant ¥. (Counterexample for smooth
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and bounded functions: d=m=1,J=1,A=T, u(z) =0, o(x) =1, f(x) = cos(x), hence
X7 = Xar = Wr and Var [f(XA,T)%} —E [COSQ(WT)WT% = L1+ e 221 —4A)) =
0O(1).) Indeed, we also have such a condition for the integral approach (similar to assumption

(A1) in Subsection 3.4.1). But in this case we estimate other functions, namely %ﬁ;fﬁ
1/ O0Y s,
instead of a; x(x). When comparing this functions, the factor A2 (see (3.18)) eliminates

the factor J as mentioned above.

7.2 Extensions for weak schemes

7.2.1 Computational enhancements

A comparison of the control variates in Chapters 3—5 points out that the number of terms
in the control variates for weak schemes is higher than for strong schemes. In particular, we
have O(Jm) terms for the series approach, which is related to the Euler scheme (cf. (3.10)),
and O(J(2™ — 1)) terms for the weak Euler scheme (cf. (4.4)). This is due to the fact
that we use an optimal control variate for the weak Euler scheme, resulting in zero variance
(cf. (4.5)), while for the Euler scheme we truncate the series at some level, resulting in a
variance of order A (cf. Theorem 3.9).

It is possible to derive truncated control variates with less terms for weak schemes, too.
The idea is as follows: show that it holds for the weak Euler scheme, under some assumptions
on the functions f, u, o

sup |a;rs(x)] S A, r>2, (7.9)
rcRd

where a; , s is defined in (4.3). We deduce (7.9) by considering higher order Taylor expansion
for ¢;(®a(z,y)), when r > 2 (cf. proof of Theorem 4.18, where we used an expansion of

zero order for the second order weak scheme). That is, we have for any y € {—1,1}""

7;(®alz,y)) (7.10)

d
0
=q;(z + p(x +\/Zza7kqg v+ p(x Zam

=1
1 52
A (2-90 1—t)=———q; A+t y)dt i)Y ()Y,
8 - [0z Tate s sV Soom St oo
0
where 0. . is the Kronecker delta. This gives us for r > 2 (cf. (4.8))

r

wre@) = 5 S a(@ale) [ v,

ye{-1,1}m o=1
AL m ,
= 5w Z (2 = 0k,u) Z (Z oki(2)y; Z o ()Y H Ys,
k=1 ye{-1,13™ \i=1 i=1 o=1

L 2
: /(1 - t)ﬁqj(:r + () A+ VAo ()y)dt | |
0
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due to (cf. (7.10))

LY wlln-k

ye{-1,1}m o=l

3 H 55"] =0 (7.11)

for alli € {1,...,m}. (Note that (7.11) does not hold for r = 1.) Applying Theorem 2.5, we
obtain (7.9), provided that all functions oy;, k € {1,...,d}, i € {1,...,m}, are bounded and
all functions f, uy, og; are twice continuously differentiable with bounded partial derivatives
up to order 2.

In Chapter 4 we derived upper bounds of order VA for all r € {1,...,m} (see assump-
tion (A2) on page 63 for the second order weak scheme), which was sufficient to get a com-

~25 at best for the weak Euler scheme (see Subsection 4.4.3).

plexity reduction to order e
However, when applying the following control variate with only O(Jm) terms (cf. (4.4)

and (3.10))

J
Mg’)T,trunc = Zzaj,l,ei(XA,(j—nA)ﬁ}, (7.12)

j=1i=1
where the superscript “trunc” comes from “truncated”, we get (cf. (3.21))

r

J m
Var | f(Xar1) — M(A{)z’fmm} Z Z Z ajrs(Xa,j—1)a) H§; <A.
j=1r=21

1<s51<...<s-<m =1

(7.13)

Note that the assumption (A2) on page 63 would have led to a variance of order 1 for
such a control variate (i.e. the resulting complexity was worse then the one for SMC,
namely O(73)). As for the stricter condition (7.9) and thus a variance of order A in (7.13),
we obtain the same complexity order in terms of € as for the control variate (4.4) with O(J(2™—
1)) terms. That is, theoretically we have neither an improvement, nor a detriment. Never-
theless, from numerical point of view, we can save a lot of computing time for large m when
using (7.12), without losing too much variance reduction effect. As a generalisation of (7.9),
it is natural to expect that it holds, under additional smoothness conditions on f, u, o

sup |aj,s(z)| S A2 re{l,...,m}.

z€R4
However, we would still obtain a variance of order A, as in (7.13).

As for the second order weak scheme, we expect to get
f;lﬂ@ |6j.0.0,.0, ()] < AlUzIFIK2IF3 1K (7.14)

where a; 0., v, is defined in (4.19) and Ky := {r € Uy : 0, = 1}, Ky := {r € Uy : 0, = 2}.
Here, a reasonable truncated control variate, including O(Jm(m + 1)) = O(Jm?) terms,
would have the form (cf. (4.20))

2) trunc_ Z Z Z ot Us XA G-1)A H H gr H ijkl’

j=1 (U1,U2)€A oe{1,2}V1 rel; (k,1)eU,
|Uz|+|KC2 |+ 5 K1 ]<1

(7.15)
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such that

Var [ f(Xar) - MR (7.16)

J
:VaI‘ Z Z Z aj,o,Ul,Uz(XA,(jfl)A) H Hor(g;d) H ‘/jkl 5 Az.

j=1 (U1,U2)€A 0€{1,2}U1 reU; (k,1)eU2
|U2 |+ |K2 |+ 5 K1 >1

Again, we expect to get a control variate, that is (7.15), which saves a lot of computing time

without getting a worse complexity order. Hence, we can also achieve a complexity of or-

der 717 at best by using the control variate (7.15), provided that (7.14) holds. Let us note

that a variance of order A instead of A? in (7.16) would result in a worse complexity than
m(m=1)

for the control variate (4.20) with O(J(3™27 2~ — 1)) terms, namely worse than O(e~2).

We also notice that a control variate similar to (7.15) with O(Jm?) terms should also result

in the case of Gaussian increments, where we mentioned in (7.5) and (7.15) “more conser-

vative” control variates with O(Jm?) terms, that is, under some less strict assumptions.
(1),trunc

Let us remark that the above control variates M, 7. (weak Euler scheme) and
Mf)jltrunc (second order weak scheme) will significantly reduce the computing time for the

RCV and SRCV approaches, while the reduction is not so big for the RRCV approach (see
the discussion in Subsection 5.3.2; where we intuitively also used a truncated control variate).
Regarding the SRCV approach, the truncation leads to cost of order J@Q max {NTQ, N m2}
(cf. Remark 5.3). Even though in the training phase there is another cost term of order

m(m—

JQc,,m?, the factor ¢, (2™ in case of the weak Euler scheme and 3m2~ 2 2 in case of the

second order weak scheme) is no longer present in the highest order cost terms (in contrast
to the truncated RRCV approach, where the cost is still of order JQ max {N,Q, N¢,, }). As
a consequence, the EGCD problem, mentioned in Remark 5.10, cannot be avoided in the
truncated RRCV approach (as for the RCV and SRCV approaches, it may be theoretically
possible, see Section 7.4).

To illustrate the truncation effect on the truncated RCV approach, we recall the example
in Subsection 4.5.2 with d = m = 5. Again we perform global regressions, but in this case we
set p = 2, that is, we have ¢, 4 + 1 = 22 basis functions in each regression. Under the same
e-values as in Subsection 4.5.2 we choose (compare with the formulas in Subsection 4.4.1 for

the “limiting” case v — 00)
J =[], N, =128 [¢10176] N = 2048 . [¢~ 161767,

The constants in IV,. and N are chosen such that they nearly satisfy the relation N, (¢ 4+1) =
N. Similar to Subsection 4.5.2 we estimate the numerical complexity for the RCV approach
(based on the “complete control variate” (4.20)) by means of 100 independent simulations
and compare it with the ones of the SMC and MLMC approaches, for which we use the same
output as before. In addition, we perform analogous simulations for the RCV approach
based on the truncated control variate (7.15). Note that we again do not consider the
random vectors V; € R™% in both cases, since they do not affect the discretisation
scheme (4.17). This gives us only w = 20 terms in (7.15) compared to (3™ — 1) = 242
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terms in (4.20). As can be seen from Figure 7.2, the estimated numerical complexity is
about RMSE™!?! for the RCV approach with complete control variate and RMSE™'%2 for
the RCV approach with truncated control variate. Beyond the numerical complexities we
observe that the truncation effect for the RCV approach is huge. While we have again poor
results for the complete control variate (i.e. in this region of e-values the RCV approach
is numerically outperformed by the SMC and MLMC ones), the approach with truncated
control variate works best (even better than the SMC and MLMC approaches).

15 ; ——
X,
0}
= =
\? ——log,(RMSE 177%) *
¥ -RCV o SR
5 |- - log, (RMSE 151 K X, N
SKRCV truncated N
-------- log,(RMSE26713) ~
X SMC H,
—log, (RMSE~200°7)
MLMC b%
0 1 1 1 1
-10 -8 6 4 2 0

log,(RMSE)

Figure 7.2. Numerical complexities of the RCV, SMC and MLMC approaches with and

without truncation.

More details of the above truncation results can be found in [11].

7.2.2 Further complexity reduction for the RRCV approach

Regarding the complexity analysis of the RRCV approach for the second order weak scheme
in Section 4.4.2, we used the inequality (4.39) to obtain an upper bound for E||a 0.1, v, —
aj707U17U2||%2(PA1j_1) by means of E||g; — qj||2L2(PAJ). Note that we perform regressions for
the estimation of functions ¢; in case of the RRCV approach. By means of (4.39), we
obtain (4.40), that is

(a5

N (7.17)

E”dj’O,Ul,Uz = Qj,0,U1,Us ||%2(PA,J-,1) <é (ZA + AQ(lOg N, + 1))

8C2 (Rd

2p+2
2 —v
t T IRE S) +8A%B,R™",

where ¢ is a universal constant. When comparing (7.17) with the upper bound for the RCV
approach, namely (4.30), we observe that the first term, including the constant %, is of
a better order in case of the RRCV approach (due to assumption (Al)) and the second
term, including the constant A2, is of a better order in case of the RCV approach (due to

assumption (A2)). Let us for simplicity first assume that the set of chosen basis functions
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Y1,...,%q is optimal, such that
- 2
glergQ g = gllz2e, ;) =0
where g = span ({¢1,...,%¢}). Then the upper bound (7.17) simplifies to (cf. (2.5))

p+d
E||(~lj707U1,U2 — Qj,0,U1,Us ||%2(PAJ‘71) <c (EA + Az(log N, + 1)) % (7.18)

T

for the RRCV approach. That is, even though we have optimal basis functions, the upper
bound in (7.18) is O(1).

Let us consider the Taylor expansion for the estimated function a; . v, v, () in case of
the RRCV approach. Similar to the expansion for a;, v, v, (see (4.55)), we get (by means
of (4.22), with a being replaced by @ and ¢ being replaced by §)

&]}07U17U2(x) (719)
d I P
= Z Pm (y Yo,U1,Us y7 Z .’E Y, % /67 +t(I)A(x Y,z ))d
ye{_\/g707\/§}m k=1 0
ze{—1,1}m(n2l_1)

where go.v, .0, Pm(y), ®alz,y,2) and pa are defined on page 75. As in the proof of
Theorem 4.18, we get that the function A is of order VA, provided that all functions
oki, k € {1,...,d}, i € {1,...,m}, are bounded and twice continuously differentiable with
bounded partial derivatives up to order 2, and provided that all functions py, k € {1,...,d},
are bounded and continuously differentiable with bounded partial derivatives. That is,
under the additional assumption that all basis functions 1, ..., %¢g (and thus §;, too) are
continuously differentiable with bounded partial derivatives, we obtain that a;, v, v, is of
order VA (similar to aj.o0,U,,U,)- Note that the above condition on the basis functions is
satisfied for the piecewise polynomial partitioning approach, since we perform regressions
on compact sets, on which the polynomials are both smooth and bounded.

Apparently, the inequality (4.39) is too strict when deriving an upper bound for the
RRCV approach. There is evidence that E|G;.0v,,u, — ajyo,U17U2||%2(PA,j,1) should be of
order A, given perfect basis functions. Indeed, the estimated function ¢; is only O(1), but
due to the structure within @, y, v, (see again (4.22)), the O(1) terms will be removed
such that there remain only O(v/A) terms (under the above assumptions). Note that this
argumentation does not necessarily apply to the SRCV approach, since the estimates of
the functions ¢;(®a(z,y, 2)) result from different paths for different y, z. Hence, it is not
clear how far the O(1) terms will be removed in this case. As for the RCV approach, it is
reasonable that the upper bound in (4.30) is O(1) (also under optimal basis functions), due
to the variance assumption (A1) on page 63.

As an generalisation, we expect intuitively an upper bound of the form (cf. (7.17))

p+d
El|aj,0,00,05 = Qo010 7285, 1) < E(EA+ A2A(log N, + 1)) % (7.20)
8C? Rd\*+? ) ~
(2 8A2AB,R™
TR0 < g > M
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for the RRCV approach, if the set of basis functions is not optimal.
Provided that (7.20) holds, we would derive a complexity of order (cf. (7.6))

6dv+(p+1)(6v+9d)
e~ wretrneta /|log (¢)], (7.21)
which tends to e71® when p, v — oo (the log-term is ignored). Compared to the complexity
in (4.42) (derived under the inequality (4.39)), the one in (7.21) would give us indeed further
complexity reduction.

As for the weak Euler scheme, we would obtain a complexity of order (cf. complex-

ity (3.46) of the integral approach in Chapter 3)
5*—83513253353513?) llog (¢)],

2 when p, v — oo and when we ignore the log-term again. Similar to the

which tends to e~
second order weak scheme, we have an improvement compared to the complexity under the
inequality (4.39), which cannot go beyond O(e=2?) (see (4.43)).

7.3 Nonhomogeneous stochastic differential equations

Consider the following (nonhomogeneous) Ité stochastic differential equation (cf. (1.1))
dX; = u(t, X;) dt + o(t, X)) dW;, X =9 € RY, (7.22)

where the functions p: [0,7] x R? — R? and o: [0,7] x R? — R¥*™ also depend on the
variable ¢ € [0,T]. Note that the articles [45] and [49], mentioned in Chapter 1 concerning
the (homogeneous) SDE (1.1), have already dealt with this subject. It turned out that the

optimal control variate has a similar form as in (1.8), namely
T
M = / Vaoult, X)) o(t, X)) dWi, (7.23)
0

where
Vou(t,z) =E[Vf(Xr)0X1|X: = 2] 06X, !,

and the derivative processes (0X{):c0,r] € R, i € {1,...,d}, come from the SDEs (cf. [45])

d
ds'Xy =Y ' X}

{8u(t,Xt) o (t, Xy) 1, i=k
k=1

dt + aw,|, §'xk= . 7.24
Dy, dxr, t] 0 {o, itk (7.24)

Below we describe which form the above mentioned discretisation schemes have in case of
nonhomogeneous SDEs.

7.3.1 (Weak) Euler scheme

As in Chapter 3, we consider independent Gaussian increments A; W, i = 1,...,m, j =
1,...,J, for the Euler scheme such that

AW .
XA,tj :(I)A <tj—1’XA7tj17\}E> 5 j = 1,...,]. (725)
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The function ®5: [0,7] x R¥*™ — R9 is given as follows
DAt x,y) = &+ p(t, 2)A + o(t, z)VAy. (7.26)

As for the integral approach, the discretisation scheme for the derivative processes is given
through (cf. (3.24))

aﬂ(tj—l’XAijJA + 8G(tj—1aXA,tj71)
8$k 89%

d
0 Xau, =06Xan,_, +» 6XK, | { AW

k=1
(7.27)

Hence, the Euler scheme works similarly to the one for homogeneous SDEs. It is natural
to expect representations of the same form as in (3.6) and (3.17), which result in control
variates as in (3.10) (series approach) and (3.30) (integral approach), where o(Xa, ) is
replaced by o(tj_1, XA, ,). Thus, under additional assumptions, i.e. smoothness on the
functions p, o in the variable ¢, we should obtain similar complexity reduction effects.

In case of the weak Euler scheme, we have
XA,tj - (I)A(tj—laXA,tjfugj)a .7 = 17"'7‘]? (728)

with @A given by (7.26) and the i.i.d. random vectors &; follow the same distribution as in

Section 4.1. Analogously, we expect to obtain a control variate as in (4.4).

7.3.2 Second order weak scheme

The weak scheme of second order has the following form
XA,tj :(I)A(tj—laXA,tj,lvfﬁ‘/j)v Jj= 17"-5<]a (729)

where the independent random variables 5;-, i€ {l,...,m}, and Vj“7 1 <i <l <m, follow
the same distribution as in Subsection 4.2. Let us denote by ¥: [0,7] x R — R¥*9 the
following function (cf. (4.15))

E(ta JE) = O’(t, x)a(t, I)Ta

which also depends on the time ¢ in contrast to the homogeneous case. Moreover, we define
(cf. (4.16) and [38, Section 5.3])

[.:Og(t, 33) = a7

Il
3

d
)
Lrglt,x) = okT(t,x)a—Ji(t,x), r
k=1

i.e. the operator £° also contains the derivative w.r.t. the variable ¢. The r-th coordinate

@\, r=1,...,d, in the simplified order 2 weak Taylor scheme of is now given by the formula
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(cf. (4.17))
@Z(t,:my,z) :xr+zork(t7x> yk\/Z (731)
k=1
S
= A
+ oty ) + 2 k%:l/: ori(t, ) (yyr + 21)

1 m
+§Z E ori(t, x) +£ - (t, x)] ykA3/2+ Lour(t :c)A
k=1
Similar to the (weak) Euler scheme we expect to obtain, under additional assumptions on

the functions f, u and o, a control variate of the form (4.20).

7.4 Open questions

Beyond the ideas mentioned above, there are some open questions concerning the previous

chapters, which may be of interest for future research:

(i) Error propagation for the RRCV and SRCV approaches.
Strictly speaking, we did not entirely consider the implemented algorithms in case of the
RRCV and SRCV approaches for the complexity analysis. Apart from the fact that we
implemented a global regression instead of piecewise polynomial partitioning connected with
truncation, the recursion and its error propagation is not present. That is, the estimation
at time ¢;_1, j € {1,...,J}, depends on the regression estimates at time ¢;. For instance,
assumption (A1) for the RRCV approach, which is given as follows

sup Var [¢;(Xa ja)| Xa,—na =z] = 0(A)

zERd

in Chapter 4, should have the form

sup Var [§;(Xaja) | Xa,j—1a = z] = O(A),
zeR

where §; is the estimate of the function g;. Hence, it is an interesting goal to include the
overall error propagation in the complexity analyses for the RRCV and SRCV approaches.

Is it then possible to derive as good complexities as in Chapters 4 and 57

(il) EGCD problem.

Which algorithms will, in contrast to piecewise polynomial partitioning, satisfy assump-
tions (2.6) and (5.23), such that the integral, series, truncated RCV and truncated SRCV
approaches do not suffer from the EGCD problem (similar to the SMC and MLMC ap-

proaches)?

(iii) More efficient algorithms for the pricing of Bermudan options.
In Chapter 6 we have implemented an analogue of the series approach in Chapter 3. Since re-
gressions for approaches of that types (i.e. with factors of independent and zero-expectation

random variables within the conditional expectation) may become instable, it is natural to
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expect that there are algorithms which are numerically more stable and convincing for the

dual nested Monte Carlo method, too (even though the results in Section 6.6 are satisfying).

(iv) Extension to further path dependent options.

To what extent can optimal control variates be derived for Barrier options (e.g. based
on [20] and [22]), Asian options, etc.? For a detailed overview of financial derivatives, see
e.g. [26], [31] and [60].

(v) Control variates for “tamed” Euler schemes.
Will our derived control variates also work for tamed Euler schemes (see [32] and [34]), which

are useful in cases where the Euler scheme does not converge (cf. [33])?

(vi) When to use which algorithm?

In theory, the complexity analysis leads to a solution, where both parts of the MSE, namely
the squared bias and the variance, are of the same order 2. Numerically, not only the
order, but also the value itself, is of interest. That is, there are examples, where the MSE
is dominated by the squared bias (and the variance is much smaller) and vice versa. In
our experiments we observed (for all methods apart from the dual nested Monte Carlo one,
where mainly the bias is reduced, see Remark 6.6) that our variance reduction approaches
based on control variates (in particular the RRCV, SRCV and integral ones) work mostly
fine compared to the SMC and MLMC approaches, when the MSE is dominated by the
variance (that is, the variance is much bigger than the squared bias). In this case, the
variance reduction leads to a significant reduction of the MSE. For the contrary situation,
when the squared bias is much bigger, variance reduction is still nice, but does not really
affect the overall error (MSE) and thus our approaches might perform less efficiently than
the SMC and MLMC ones. Note that the bias cannot be estimated directly in general (as in
the chosen examples in this work), since the “true” value E [f(X7)] is not known (otherwise,
we would not need to run simulations). Hence, it would be very interesting to find out
criteria, in which situations it is advantageous to use our approaches and when should one
rather prefer the MLMC or SMC approaches.
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