
AN IMPROVEMENT OF THE JOHNSON BOUND FOR SUBSPACE CODES

ABSTRACT. Subspace codes, i.e., subset of a finite-field Grassmannian, are applied in
random linear network coding. Here we give improved upper bounds based on the Johnson
bound and a connection to divisible codes, which is presented in a purely geometrical way.
This complements a recent approach for upper bounds on the maximum size of partial
spreads based on projective qr-divisible codes.

1. INTRODUCTION

Let Fq be the finite field with q elements, where q > 1 is a prime power. By Fv
q we

denote the v-dimensional vector space Fq, where v ≥ 1. The set of all subspaces of Fv
q,

ordered by the incidence relation⊆, is called (v−1)-dimensional projective geometry over
Fq and denoted by PG(v− 1,Fq) = PG(Fv

q). It forms a finite modular geometric lattice
with meet X ∧Y = X ∩Y , join X ∨Y = X +Y , and rank function X 7→ dim(X). We will
use the term k-subspace to denote a k-dimensional vector subspace of Fv

q. The set of all
k-subspaces of V = Fv

q will be denoted by
[V

k

]
q and has a cardinality given by the Gaussian

binomial coefficient[
v
k

]
q

:=

{
(qv−1)(qv−1−1)···(qv−k+1−1)

(qk−1)(qk−1−1)···(q−1) if 0≤ k ≤ v;

0 otherwise.

The geometry PG(v−1,Fq) serves as input and output alphabet of the so-called linear
operator channel (LOC) – a model for information transmission in coded packet networks
subject to noise [16]. The relevant metrics on the LOC are given by the subspace distance
dS(X ,Y ) := dim(X +Y )− dim(X ∩Y ) = 2 · dim(X +Y )− dim(X)− dim(Y ), which can
also be seen as the graph-theoretic distance in the Hasse diagram of PG(v−1,Fq), and the
injection distance dI(X ,Y ) := max{dim(X),dim(Y )}−dim(X ∩Y ). A set C of subspaces
of Fv

q is called a subspace code. The minimum (subspace) distance of C is given by d =

min{dS(X ,Y ) | X ,Y ∈ C ,X 6= Y}. If all elements of C have the same dimension, we
call C a constant-dimension code. For a constant-dimension code C we have dS(X ,Y ) =
2dI(X ,Y ) for all X ,Y ∈ C , so that we can restrict attention to the subspace distance, which
has to be even. By Aq(v,d;k) we denote the maximum possible cardinality of a constant-
dimension-k code in Fv

q with minimum subspace distance at least d. Like in the classical
case of codes in the Hamming metric, the determination of the exact value or bounds for
Aq(v,d;k) is an important problem. In this paper we will present some improved upper
bounds. For a broader background we refer to [8, 9] and for the latest numerical bounds to
the online tables at http://subspacecodes.uni-bayreuth.de [11].

For a subspace U ≤ Fv
q, the orthogonal subspace with respect to some fixed non-dege-

nerate bilinear form will be denoted U⊥. It has dimension dim(U⊥) = v− dim(U). For
U,W ≤ Fv

q, we get that dS(U,W ) = dS(U⊥,W⊥). So, Aq(v,d;k) = Aq(v,d;v− k) and we
can assume 0 ≤ k ≤ v− k in the following. If d > 2k, then Aq(v,d;k) = 1. Otherwise we
have Aq(v,2;k) =

[v
k

]
q. Things get more interesting for v,d ≥ 4 and k ≥ 2.

Let C be a constant-dimension-k code in Fv
q with minimum distance d. For every point

P, i.e., 1-subspace, of Fv
q we can consider the quotient geometry PG(Fv

q/P) to deduce that
at most Aq(v− 1,d;k− 1) elements of C contain P. Since Fv

q contains
[v

1

]
q points and

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/95416334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 AN IMPROVEMENT OF THE JOHNSON BOUND FOR SUBSPACE CODES

every k-subspace contains
[k

1

]
q points, we obtain

Aq(v,d;k)≤

⌊[v
1

]
q ·Aq(v−1,d;k−1)[k

1

]
q

⌋
=

⌊
(qv−1) ·Aq(v−1,d;k−1)

qk−1

⌋
, (1)

which was named Johnson type bound II in [26]. Recursively applied, we obtain

Aq(v,d;k)≤

⌊
qv−1
qk−1

·

⌊
qv−1−1
qk−1−1

·

⌊
· · · ·

⌊
qv′+1−1

qd/2+1−1
·Aq(v′,d;d/2)

⌋
. . .

⌋⌋⌋
, (2)

where v′ = v− k+d/2. In the case d = 2k we speak of a partial k-spread and a k-spread
if the code additionally has cardinality

[v
1

]
q/
[k

1

]
q. From the work of Segre in 1964 [22,

§VI] we know that k-spreads exist if and only if k divides v. Upper bounds for partial k-
spreads are due to Beutelspacher [2] and Drake & Freeman [7] and date back to 1975 and
1979, respectively. Starting from [17] several recent improvements have been obtained.
Currently the tightest upper bounds, besides k-spreads, are given by and list of 21 sporadic
1-parametric series and the following two theorem stated in [18]:

Theorem 1. For integers r≥ 1, t ≥ 2, u≥ 0, and 0≤ z≤
[r

1

]
q/2 with k =

[r
1

]
q+1−z+u>

r we have Aq(v,2k;k)≤ lqk +1+ z(q−1), where l = qv−k−qr

qk−1 and v = kt + r.

Theorem 2. For integers r ≥ 1, t ≥ 2, y ≥ max{r,2}, z ≥ 0 with λ = qy, y ≤ k, k =[r
1

]
q +1− z > r, v = kt + r, and l = qv−k−qr

qk−1 , we have Aq(v,2k;k)≤

lqk +

⌈
λ − 1

2
− 1

2

√
1+4λ (λ − (z+ y−1)(q−1)−1)

⌉
.

The special case z = 0 in Theorem 1 covers the breakthrough Aq(kt + r,2k;k) = 1+
∑

t−1
s=1 qsk+r for 0 < r < k and k >

[r
1

]
q by Năstase and Sissokho [21] from 2016, which

itself covers the result of Beutelspacher. The special case y = k in Theorem 2 covers the
result by Drake & Freeman. A contemporary survey of the best known upper bounds for
partial spreads can be found in [15].

Using the tightest known upper bounds for the sizes of partial k-spreads, there are only
two explicitly known cases for d < 2k where Inequality (2) can be improved: A2(6,4;3) =
77 < 81 [14] and 257 ≤ A2(8,6;4) ≤ 272 < 289 [13]. For the details how the proposed
upper bounds for constant-dimension codes relate to Inequality (2) we refer the interested
reader to [1, 12]. The two mentioned improvements of Inequality (2) are based on extensive
integer linear programming computations. In contrast to that, the improvements in this
article are based on a self-contained theoretical argument and do not need any external
computations.

The remaining part of this paper is organized as follows. In Section 2 we consider
multisets P of points in Fv

q with #P ≡ #(P ∩H) for every hyperplane H of Fv
q. The set

of possible cardinalities is completely characterized in Theorem 4 and used to conclude
upper bounds for Aq(v,d;k) in Theorem 3. While it is possible to formulate the entire
approach in geometrical terms, the underlying structure can possibly be best understood in
terms of qr-divisible linear codes and the linear programming method, which is the topic
of Section 3. We draw a short conclusion in Section 4.

2. MAIN RESULT

Taking Fv
q as the ambient space, we call every 1-subspace a point and every (v− 1)-

subspace a hyperplane. Given a multiset of subspaces of Fv
q, we obtain a corresponding

multiset P of points by replacing each subspace by its set of points. For each point P we
denote the multiplicity of P in P by w(P). We write #P = ∑P∈Fv

q
w(P) and #(P ∩H) =

∑P∈H w(P) for each hyperplane H.
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Lemma 1. For a non-empty multiset of subspaces of Fv
q with mi subspaces of dimension i

let P be the corresponding multiset of points. If mi = 0 for all 0≤ i < k, where k≥ 2, then

#P ≡ #(P ∩H) (mod qk−1).

Proof. We have #P = ∑
v
i=0 mi

[v
i

]
q. For an i-subspace U of Fv

q the dimension formula
gives dim(U ∩H) ∈ {i−1, i}. So for the (multi-)set P ′ of points corresponding to U , we
get that #(P ′ ∩H) is either

[v
i

]
q or

[ v
i−1

]
q
. This implies #(P ′ ∩H) ≡

[v
i

]
q (mod qi−1).

Summing up yields the proposed result. �

Definition 1. Let P be a multiset of points in Fv
q and 1 ≤ r < v be an integer. If #P ≡

#(P ∩H) (mod qr) for every hyperplane H, then P is called qr-divisible.

If we speak of a qr-divisible multiset, we mean a multiset of points in Fv
q for a suitable

dimension v ∈ N>0.

Corollary 1. Let C be a constant-dimension-k code in Fv
q, where k ≥ 2. Then, the corre-

sponding multiset of points is qk−1-divisible.

Note that Corollary 1 does not depended on the minimum distance of the code. It will
be invoked indirectly by the following complement-type construction.

Lemma 2. If a multiset of points P in Fv
q is qr-divisible with r < v and satisfies wP(P)≤ t

for all points P in Fv
q, then the multiset P with wP(P) = t−wP(P) is also qr-divisible.

Proof. We have #P =
[v

1

]
qt−#P and #(P ∩H) =

[v−1
1

]
qt−#(P ∩H) for every hyper-

plane H. Thus, the result follows from
[v

1

]
q ≡

[v−1
1

]
q (mod qr), which holds for r < v. �

Theorem 3. Let m =
[v

1

]
q ·Aq(v−1,d;k−1)−

[k
1

]
q ·
⌊
[v1]q·Aq(v−1,d;k−1)

[k1]q

⌋
+
[k

1

]
q ·δ for some

δ ∈ N0. If no qk−1-divisible multiset of points in Fv
q of cardinality m exists, then

Aq(v,d;k)≤

⌊[v
1

]
q ·Aq(v−1,d;k−1)[k

1

]
q

⌋
−δ −1.

Proof. Let C be a code with cardinality
⌊
[v1]q·Aq(v−1,d;k−1)

[k1]q

⌋
−δ and matching parameters.

Let P be the corresponding multiset of points and t = Aq(v− 1,d;k− 1). Then we can
apply Corollary 1 and Lemma 2 to deduce that P is qk−1-divisible with cardinality m,
which is a contradiction. �

In view of Theorem 3 it is worthwhile to study the possible cardinalities of qr-divisible
multisets of points.

Lemma 3. Let P be a non-empty qr-divisible multiset of points, then there exists a hyper-
plane H with #(P ∩H)< #P/q.

Proof. Assume that P lives in Fv
q for a certain dimension v. Summing over all hyperplanes

gives ∑H̄≤Fv
q

#(P ∩ H̄) = #P ·
[v−1

1

]
q, so that we obtain #P ·

[v−1
1

]
q/
[v

1

]
q < #P/q on

average. Choosing a hyperplane H that minimizes #(P ∩H) completes the proof. �

Lemma 4. If P1 and P2 are qr-divisible multisets, then there exists a qr-divisible multiset
of cardinality #P1 +#P2.

Proof. Let P1 ∈ Fv1
q and P2 ∈ Fv2

q . Embed both multisets in Fmax{v1,v2}
q and consider their

union/sum, which gives a qr-divisible multiset. �
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For each r ∈ N>0 the qr-fold duplicate of a point is a qr-divisible multiset of cardi-
nality qr and each (r+1)-subspace corresponds to a qr-divisible (multi)-set of cardinality[r+1

1

]
q = qr+1−1

q−1 . By the previous lemma there exist qr-divisible multisets of cardinality

a1qr + a2
[r+1

1

]
q for each a1,a2 ∈ N0. Since qr and

[r+1
1

]
q are coprime, for each pair of

parameters q and r there only exists a finite set of cardinalities that cannot be attained by
qr-divisible multisets. For r ∈ N>0 and 0≤ i≤ r, we set

sq
i,r = qr−i · q

i+1−1
q−1

=
i

∑
j=0

qr− j = qr +qr−1 + · · ·+qr−i. (3)

Lemma 5. There exists a q1-divisible multiset of points of cardinality n if and only if there
are non-negative integers a0,a1 with n = a0q+a1(q+1) = a0sq

0,1 +a1sq
1,1.

Proof. If a0,a1 ∈N0 with n= a0q+a1(q+1) exist, then the existence of a suitable multiset
is clear from Lemma 4 and the constructions above. Assume the contrary, so that n < q2

and we can uniquely write n = b1q+ b0 with b1,b0 ∈ N0, 0 ≤ b1 < q, and 0 ≤ b0 < q.
Additionally, we observe b1 > b0 since we may set a1 = b0 and a0 = b0− b1. For a q1-
divisible multiset of points of cardinality n we can apply Lemma 3 in order to deduce the
existence of a hyperplane H with #(P∩H)< #P/q = n/q, so that #(P∩H)≤ b1. Since
#(P ∩H)≡ b0 (mod q) and b1 < b0 this is impossible. �

Theorem 4. There exists a qr-divisible multiset of points of cardinality n if and only if
there are non-negative integers a0, . . . ,ar with n = ∑

r
i=0 ais

q
i,r.

Proof. We prove by induction on r, where the case r = 1 is provided by Lemma 5. Given
r > 1 we can apply the induction hypothesis to deduce the existence of qr−1-divisible
multisets of cardinality sq

i,r−1 = sq
i,r/q for each 0≤ i≤ r−1. Taking q copies of these, we

obtain qr-divisible multisets of cardinality sq
i,r for 0 ≤ i ≤ r− 1. A qr-divisible multiset

of cardinality sq
r,r is given by an (r+ 1)-subspace. So, it remains to show that if n cannot

be written as n = ∑
r
i=0 ais

q
i,r with non-negative integers ai, then no qr-divisible multiset

of cardinality n exists. To this end assume that P is a qr-divisible multiset of cardinality
n > 0. From Lemma 3 we conclude the existence of a hyperplane H with b := #(P∩H)<
#P/q. Since P ∩H is qr−1-divisible we can use the induction hypothesis to deduce the
existence of non-negative integers e0, . . . ,er−1 with b = ∑

r−1
i=0 eis

q
i,r−1. Due to qsq

i,r−1 =

qsq
0,r−1 + sq

i−1,r−1 for 1 ≤ i ≤ r− 1 we can assume ei ≤ q− 1 for all 1 ≤ i ≤ r− 1. Write
e0 = xq+y, where x,y ∈N0 and y≤ q−1. Since #(P ∩H)≡ #P (mod qr) we can write
n = b− xqr + cqr for some uniquely determined c ∈ N0. Setting t = y+∑

r−1
i=1 ei and using

sq
i,r−1 +qr = sq

i+1,r for 0≤ i≤ r−1, sq
0,r = qr we conclude that

n = b− xqr + cqr = (c− t)sq
0,r + ysq

1,r +
r

∑
i=2

sq
i,r.

Thus, c≤ t−1 since we assume that n cannot be written as n = ∑
r
i=0 ais

q
i,r. However,

n = b− xqr + cqr ≤ b− xqr + tqr−qr = bq+ ysq
0,r−1 +

r−1

∑
i=1

eis
q
i,r−1−qr

≤ bq+(q−1)
r−1

∑
i=0

sq
i,r−1−qr = bq−1 < bq,

which contradicts Lemma 3. �

As an example we apply Theorem 3 in order to deduce an upper bound for A2(9,6;4).
Since A2(8,6;3) = 34, we have m = 4+15δ . Using Theorem 4 we can easily check that
there is no 23-divisible multiset of cardinality 4+1 ·15 = 19. As we can write 34 = 1 ·8+
1 ·12+1 ·14+0 ·15, there exists a 23-divisible multiset of cardinality 4+2 ·15 = 34. So,
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choosing δ = 1, we obtain the improved upper bound A2(9,6;4)≤
⌊ 511·34

15

⌋
−2 = 1156 <

1158. Combining this with the Johnson bound from Inequality (1) we obtain A2(10,6;5)≤⌊ 1023·1156
31

⌋
= 38148 < 38214.

In our application of bounds for Aq(v,d;k) we have the additional requirement, that the
qk−1-divisible multiset of points of cardinality m in Theorem 3 has to embedded in Fv

q, i.e.,
there is a restriction on the dimension of the ambient space. However, the constructive
part of the proof of Theorem 4 shows that if a qr-divisible multiset of cardinality n exists,
then there also exists at least one qr-divisible multiset of cardinality n in Fr+1

q . Since
r+1 = k ≤ v, the information on the dimension gives no proper restriction.

Algorithmically the criterion of Theorem 4 can be quickly checked recursively using
base q representations.

Lemma 6. Let r ∈N>0 and n = ∑
m
i=0 eiqi > 0 with ei ∈N0 and ei < q for all 0≤ i≤m. If j

is the smallest index with e j 6= 0 and j < r, then there exist non-negative integers a0, . . . ,ar
with n = ∑

r
i=0 ais

q
i,r if and only if n− e j · sq

r− j,r can be written in such a way. Moreover,
n− e j · sq

r− j,r is divisible by q j+1.

Proof. If there exist non-negative integers c0, . . . ,cr with n− e j · sq
r− j,r = ∑

r
i=0 cis

q
i,r, then

we can choose ai = ci for i 6= r− j and ar− j = cr− j + e j. For the other direction let there
be non-negative integers a0, . . . ,ar with n = ∑

r
i=0 ais

q
i,r. Due to qsq

i,r = qsq
0,r + sq

i−1,r for
1≤ i≤ r we can assume 0≤ ai ≤ q−1 for all 1≤ i≤ r.

Now, we recursively show that ar−i = 0 for all 0 ≤ i < j. Since n is divisible by q j it
is divisible by qi+1. As sq

h,r is divisible by qi+1 for all 0 ≤ h < r− i and ar−h = 0 for all
0≤ h < i, also ar−is

q
r−i,r is divisible by qi+1 so that q divides ar−i. Thus, we have ar−i = 0.

Since ar−i = 0 for all 0≤ i < j and suffices to show ar− j = e j, which follows from

e jq j ≡ n =
r− j

∑
i=0

ais
q
i,r ≡ ar− js

q
r− j,r ≡ ar− jq j (mod q j+1)

and 0≤ e j,ar− j ≤ q−1. Additionally, n− e j · sq
r− j,r is divisible by q j+1. �

Algorithm 1
Data: field size q, cardinality n
Result: Either representation n = ∑

r
i=0 er−is

q
i,r with ai ∈ N0 or

n =−mq j +∑
j−1
i=0 eis

q
r−i,r, ei ∈ N0, ei < q, m ∈ N>0.

for i← 0 to r do
ei← 0

end
m← n
for j← 0 to r−1 do

if m < 0 then
m← (−1) ·m
return

end
e j← m−q · bm/qc
m← (m− e j · sq

r− j,r− j)/q
end
er← m

Since sq
r− j,r = q j ·sq

r− j,r− j, Algorithm 1 either computes a representation n = ∑
r
i=0 ais

q
i,r,

with ai = er−i or it computes a representation n = −mq j +∑
j−1
i=0 eis

q
r−i,r with m ∈ N>0.

Since −mqr can obviously not be written as m = ∑
r
i=0 a′is

q
i,r with non-negative integers a′i,
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the latter representation is a certificate for the fact that there are no non-negative integers
ai with n = ∑

r
i=0 ais

q
i,r using Lemma 6.

As an example we apply Theorem 3 in order to deduce an upper bound for A3(11,6;4).
Since A3(10,6;3) = 2269, we have m = 17+ 40δ . For δ = 3 we obtain m = 137 =: n
and Lemma 6 refers back to 137− 2 · 40 = 57, 57− 1 · 39 = 18, and 18− 2 · 36 = −54,
i.e., Algorithm 1 computes the representation 137 = −2 · s3

0,3 + 2 · s3
1,3 + 1 · s3

2,3 + 2 · s3
3,3.

Thus, no 33-divisible multiset of cardinality 137 exists and A3(11,6;4)≤
⌊
(311−1)·2269

34−1

⌋
−

4 = 5024299 < 5024303. For n = 17+ 4 · 40 = 177 we can read of the representation
177 = 1 ·27+2 ·36+2 ·39+0 ·40.

In analogy to the Frobenius Coin Problem, cf. [4], we define F(q,r) as the smallest
positive integer such that a qr-divisible multisets with cardinality n exists for all integers
n > F(q,r).

Proposition 1. For every prime power q and r ∈ N>0 we have F(q,r) = r ·qr+1− qr+1−1
q−1 .

Proof. Since r ·qr+1− qr+1−1
q−1 =−qr+∑

r
i=1(q−1)si,r Lemma 6 ends with−qr after r steps,

i.e., Algorithm 1 provides this certificate of non-existence of the desired sum-representation,
so that F(q,r) ≥ r · qr+1− qr+1−1

q−1 . For the other direction let n = m+∑
j−1
i=0 eis

q
r−i,r be the

certificate for non-existence from Algorithm 1 for some 0≤ j < r. Then m < 0 and q j|m,
so that m≤−q j. Using ei ≤ q−1 for 0≤ i < j we conclude

n ≤ −r j +
j−1

∑
i=0

eisr−i,r ≤−q j +(q−1)
j−1

∑
i=0

sr−i,r

≤ −qr +(q−1)
r−1

∑
i=0

sr−i,r =−qr +(q−1)
r

∑
i=1

si,r = r ·qr+1− qr+1−1
q−1

,

which completes the proof. �

Actually, we can analyze our previous example for general q using Algorithm 1:

Proposition 2. For all prime powers q≥ 2 we have Aq(11,6;4)≤ q14 +q11 +q10 +2q7 +

q6 +q3 +q2−2q+1 = (q2−q+1)(q12 +q11 +q8 +q7 +q5 +2q4 +q3−q2−q+1).

Proof. Since 10≡ 1 (mod 3) we have A2(10,6;3) = q7 +q4 +1 and

(q11−1)(q7 +q4 +1)
q4−1

= q14 +q11 +q10 +2q7 +q6 +q3 +q2−1+
q2 +2q+2

q3 +q2 +q+1
,

so that m = q2 +2q+2+(q3 +q2 +q+1)δ in Theorem 3. Since

(q2 +2q+2)+(2q−3) · (q3 +q2 +q+1)

= −2 ·q3 +(q−1) · (q3 +q2)+1 · (q3 +q2 +q)+(q−1) · (q3 +q2 +q+1)

Lemma 6 and Theorem 4 tell us that we can choose δ = 2q−3 in Theorem 3, which gives
the proposed upper bound. �

We remark that our choice of δ is maximal since

m = (q2 +2q+2)+(2q−2) · (q3 +q2 +q+1)

= (q−2) ·q3 +(q−1) · (q3 +q2)+2 · (q3 +q2 +q)+0 · (q3 +q2 +q+1),

i.e., a q3-divisible multiset of cardinality m exists. In fact we have m > F(q,r) in our
parametric example. In general we always have δ ≤ (q−1)r−1.



AN IMPROVEMENT OF THE JOHNSON BOUND FOR SUBSPACE CODES 7

3. DIVISIBLE CODES AND THE LINEAR PROGRAMMING METHOD

It is well-known (see, e.g., [23, 6, Prop. 1]) that the relation C→ C , associating with a
full-length linear [n,v] code C over Fq the n-multiset C of points in PG(v−1,Fq) defined
by the columns of any generator matrix, induces a one-to-one correspondence between
classes of (semi-)linearly equivalent spanning multisets and classes of (semi-)monomially
equivalent full-length linear codes. The importance of the correspondence lies in the fact
that it relates coding-theoretic properties of C to geometric or combinatorial properties of
C via

w(aG) = n−#{1≤ j ≤ n;a ·g j = 0}= n−#(C ∩a⊥), (4)

where w denotes the Hamming weight, G = (g1| . . . |gn) ∈ Fv×n
q a generating matrix of C,

a ·b = a1b1 + · · ·+ avbv, and a⊥ is the hyperplane in PG(v− 1,Fq) with equation a1x1 +
· · ·+avxv = 0.

A linear code C is said to be ∆-divisible (∆ ∈ Z>1) if all nonzero codeword weights
are multiples of ∆. They have been introduced by Ward in 1981, see [24] and [25] for a
survey. So, given a qr-divisible multiset P in Fv

q of cardinality n there is a corresponding
qr-divisible linear [n,k] code C, where k ≤ v.

The famous MacWilliams Identities, [19]
n−i

∑
j=0

(
n− j

i

)
A j = qk−i ·

i

∑
j=0

(
n− j
n− i

)
A⊥j for 0≤ i≤ n, (5)

relate the weight distributions (Ai), (A⊥i ) of the (primal) code C and the dual code C⊥ =

{y ∈ Fn
q;x1y1 + · · ·+ xnyn = 0 for all x ∈ C}. Since the Ai and A⊥i count codewords of

weight i, they have to be non-negative integers. In our context we have A0 = A⊥0 = 1,
A⊥1 = 0, and Ai = 0 for all i that are not divisible by qr. Treating the remaining Ai and A⊥i
as non-negative real variable one can check feasibility via linear programming, which is
known as the linear programming method for the existence of codes, see e.g. [5, 3].

As demonstrated in e.g. [15], the average argument of Lemma 3 is equivalent to the
linear programming method applied to the first two MacWilliams Identities, i.e., i = 0,1.
So, the proof of Theorem 4 shows that invoking the other Equations gives no further re-
strictions for the possible lengths of divisible codes. This is different in the case of partial
k-spreads, i.e., the determination of Aq(v,2k;k). Here the multisets of points in Corollary 1
are indeed sets that correspond to projective linear codes, which are characterized by the
additional condition d(C⊥) ≥ 3, i.e., A⊥2 = 0. The upper bound of Năstase and Sissokho
can be concluded from the first two MacWilliams Identities, i.e., the average argument of
Lemma 3. Theorem 2 is based on the first three MacWilliams Identities while also the forth
MacWilliams Identity is needed for the mentioned 21 sporadic 1-parametric series listed in
[18]. The characterization of the possible lengths of qr-divisible projective linear codes is
more difficult than in the non-projective case of Theorem 4. For the corresponding Frobe-
nius number the sharpest upper bound in the binary case q = 2 is F(2,r) ≤ 22r−2r−1−1
and it is unclear whether a 23-divisible projective linear code of length 59 exists [10].

4. CONCLUSION

We have presented a connection between qr-divisible linear codes and upper bounds for
constant-dimension codes, which improves the best known upper bounds in many cases.
The framework of qr-divisible linear codes covers constant-dimension codes and partial
spreads, while the latter substructures call for projective linear codes as a special subclass
of qr-divisible linear codes. Here, we have characterized all possible lengths of qr-divisible
codes. This problem is open in the case of projective qr-divisible linear codes. It is very
likely that more sophisticated methods from coding theory, beyond the pure application of
the linear programming method, are needed in order to decide the non-existence question
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in a few more cases.1 If the possible qr-divisible codes are classified for the parameters of
a desired constant-dimension code, one may continue the analysis and look at the union of
the k-dimensional codewords and their restrictions. Using the language of minihypers, the
authors of [20] have obtained some extendability results for constant-dimension codes. It
seems worthwhile to compare and possibly combine both methods.
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[9] M. Greferath, M. Pavčević, N. Silberstein, and A. Vazquez-Castro, editors. Network Coding and Subspace

Designs. Springer, 2017.
[10] D. Heinlein, T. Honold, M. Kiermaier, S. Kurz, and A. Wassermann. Projective divisible binary codes.

In The Tenth International Workshop on Coding and Cryptography, pages 1–10, 2017. arXiv preprint
1703.08291.

[11] D. Heinlein, M. Kiermaier, S. Kurz, and A. Wassermann. Tables of subspace codes. University of Bayreuth,
2015. available at http://subspacecodes.uni-bayreuth.de.

[12] D. Heinlein and S. Kurz. Asymptotic bounds for the sizes of constant dimension codes and an improved
lower bound. In 5th International Castle Meeting on Coding Theory and Applications, pages 1–30, 2017.
arXiv preprint 1705.03835.

[13] D. Heinlein and S. Kurz. A new upper bound for subspace codes. In The Tenth International Workshop on
Coding and Cryptography, pages 1–9, 2017. arXiv preprint 1703.08712.

[14] T. Honold, M. Kiermaier, and S. Kurz. Optimal binary subspace codes of length 6, constant dimension 3
and minimum distance 4. Contemp. Math., 632:157–176, 2015.

[15] T. Honold, M. Kiermaier, and S. Kurz. Partial spreads and vector space partitions. In Greferath et al. [9],
chapter 7. arXiv preprint 1611.06328.

[16] R. Koetter and F. Kschischang. Coding for errors and erasures in random network coding. IEEE Transactions
on Information Theory, 54(8):3579–3591, Aug. 2008.

[17] S. Kurz. Improved upper bounds for partial spreads. Designs, Codes and Cryptography, published online
on Oct 25, 2016, doi:10.1007/s10623-016-0290-8.

[18] S. Kurz. Packing vector spaces into vector spaces. The Australasian Journal of Combinatorics, 68(1):122–
130, 2017.

[19] F. J. MacWilliams. A theorem on the distribution of weights in a systematic code. The Bell System Technical
Journal, 42(1):79–94, 1963.
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