
The Process Checklist Generator:
Establishing Paper-based Process Support

Marcel Bankau, Michaela Baumann, Michael Heinrich Baumann?,
Stefan Schönig, and Stefan Jablonski

University of Bayreuth,
Universitätsstraße 30, 95447 Bayreuth, Germany

{firstname.surname}@uni-bayreuth.de

Abstract. When enterprises are determined to introduce process man-
agement, they usually aim at IT system supported execution of pro-
cesses. In constrast to this common tendency of process technology, we
provide a straightforward, quickly viable alternative to IT-based process
support at a reasonable effort: the Process Checklist. The paper-based
scheme we introduce follows classical checklist concepts and builds upon
the checklist idea in order to reach the same objectives as IT systems:
task coordination, execution guidance, traceability. Therefore, the Pro-
cess Checklist Generator (PCG) presented in this demo allows users to
quickly transform process models given in the standard BPMN notation
into Process Checklists. With this tool, we show how meaningful process
support can be established quickly.

Keywords: Process Modeling, Process Checklist, Paper-based Process
Execution, Step-by-Step Guidance, Demo Track

1 Introduction

In nearly all industries, process models are a common tool to provide description,
standardization, and execution support of complex applications in management,
IT, production, etc. Besides classical workflow management systems (WfMSs)
[1], a new and simple way of business process execution support was established
a few years ago: the Process Checklist [2]. Common checklists are often used as
reminders only [3] and are, due to their construction, not suitable for process
guidance [4]. However, Process Checklists extend the concept of checklists in a
way that paper-based step-by-step guidance through process models is achieved
[2, 5]. In [5], Process Checklists are motivated and defined, common checklists are
discussed in detail, the transformation of Business Process Model and Notation
(BPMN)1 models into Process Checklists and their enactment are described, and
their power of applicability is evaluated. The work at hand focuses on the auto-
mated creation of paper-based Process Checklists. For this, the Process Checklist

? The work of M. H. Baumann is supported by a scholarship of “Hanns-Seidel-Stiftung
e. V. (HSS),” funded by “Bundesministerium für Bildung und Forschung (BMBF).”

1 Business Process Model and Notation 2.0, http://www.bpmn.org, access: 2017-06-05

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EPub Bayreuth

https://core.ac.uk/display/95416309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Bankau et al.

Fig. 1. Example BPMN model

Process model
in XML

graphical BPMN
model (PDF)

print
paper based
not executable

XML parser (i)

sequencing and
ordering (ii)

checklist vector

automated LATEX
code generation (iii) PDF print

paper-based
executable

manual LATEX
code revision

electronic
WfMS

not paper-based
executable

≈

≈

Fig. 2. From an XML BPMN model to execution.

Generator (PCG) is presented. The PCG uses BPMN models, like the example
model of Fig. 1, in its XML representation to set up a LATEX file from which a
PDF is created.

2 Overview and Demo Guidelines

The PCG is a simple tool that transforms a BPMN model to a sequential list of
tasks. A sequence of the performed steps is given in Fig. 2 taking the left path. In
the following, we provide an overview of the way of working and the results of the
PCG. The exemplary process shown in Fig. 1 is the basis for the demonstration.
Even though the process model is very small, the generated Process Checklist
will provide the reader a general understanding of its functionality. The demo UI
needs the path to the BPMN file as input from the user. The user can also specify
the name of the output PDF file and the header, i.e., the name of the Process
Checklist. The Process Checklist itself is structured as proposed by Baumann et
al. [2, 5]. As mentioned before, we use the simplified process model from Fig. 1



The Process Checklist Generator (PCG) 3

1 Tasks 1 Example Document

Person 1

(name)

(date, signature)

2 XOR
Question 1

Second Option: 3

First Option: 5

Person 1

(name)

(date, signature)

3 Example Document Optional Task 2 Processed Document

Person 1

(name)

(date, signature)

4 XOR end go to 6

Person 1

(name)

(date, signature)

5 Optional Task 1

Person 1

(name)

(date, signature)

6 Last Task

Person 1

(name)

(date, signature)

7

Person 1

(name)

(date, signature)

Process
finished; Checklist back

to checklist owner

Fig. 3. The Process Checklist for the process model shown in Fig. 1.

for demonstration purposes. The accompanying Process Checklist is shown in
Fig. 3. The program is written in Python and the PDF is generated with LATEX.
The procedure of the Process Checklist generation can be divided into three
major parts:

(i) the parsing of the BPMN file
(ii) the sorting of the order of the Process Checklist items using algorithms
(iii) the (automated) generation of the LATEX file

When parsing the BPMN file, all information from the file is stored in mem-
ory. Amongst others, this includes the names of the participating agents, all
tasks and gateways, their edges, and specific events. Even though the BPMN
model language has a specific syntax, the process models used for this demo
were exclusively built using the Camunda Modeler2. Since the parsing is heavily

2 Camunda Modeler, https://camunda.org/bpmn/tool, access: 2017-06-05



4 M. Bankau et al.

dependent on the XML tags, it is questionable whether models generated by
other tools might parse correctly.

During the second part of the generation program, the order in which the
tasks should be performed is determined. The algorithm starts to queue the
sequential tasks beginning from the START event until a diverging gate is en-
countered. In the example process model from Fig. 1 this would correspond to
the node after the task “Task 1”. Once such a node with multiple outgoing
edges is reached, the algorithm determines the corresponding converging gate,
which has multiple incoming edges. The Process Checklist item for a diverging
gate contains information for the user where to jump next. This is depicted in
Fig. 3, Point 2. The order in which the tasks inside this gate pair are queued is
ordered path by path. This means the algorithm (arbitrarily) chooses the outgo-
ing edges from the gate one after another and queues the tasks on the respective
paths. This process is iterative, which allows us to generate Process Checklists
for nested gates. Besides the order of the tasks explicitly mapped by the pro-
cess model, we insert additional steps into the Process Checklist. These steps
help the user to navigate through the Process Checklist. For example, we insert
END points after finished paths between gate pairs (Fig. 3, Point 4). The point
contains a GOTO instruction where the user has to continue with the Process
Checklist. Further, an END point is added to the Process Checklist to signal the
user that the Process Checklist is completed. If the process model has a case
where the next designated task was already performed, the Process Checklist
gets another additional node where the user is required to restart the Process
Checklist beginning with the original next task. For example such a case could
be encountered if a proposal needs external approval and has to be revised and
resubmitted if not approved (cf. [5], Sec. 4.5.1). In the third and final step, all
tasks are written to a LATEX file using a LATEX library for Python3. Each differ-
ent type of node (i.e., tasks, events, gates, . . . ) have their own LATEX template.
These templates dynamically compose the boxes (as shown in Fig. 3) using the
stored information about the nodes. For example a diverging XOR gate has,
besides the description, all different path choices listed (Fig. 3, Point 2). Clearly,
each choice is accompanied by the number where the user has to continue the
Process Checklist.

3 Conclusion, Maturity, and Future Work

Most process models are stored digitally and their execution is possible only via
electronic and cost-intensive workflow management systems. Printed versions are
graphical representations only and therefore not suitable for process execution,
e.g., they do not provide any step-by-step guidance. The presented PCG is a
simple way to transform digital (resp. graphical) information about a process
model into an easy-to-use paper-based Process Checklist.

Even though the tool works quite well, some improvements could be done:
Since process models can contain quite large procedures, it would be very useful

3 PyLaTeX, https://github.com/JelteF/PyLaTeX, access: 2017-06-05



The Process Checklist Generator (PCG) 5

for the user to be able to split large process models into multiple shorter Pro-
cess Checklists. This could be implemented by providing the user with choices
where to split the Process Checklist after the parsing of the BPMN file. Such
choices could include separate Process Checklists for each path of an AND gate
or for each part between milestone events. Another improvement concerning
AND gates would be to implement the dynamic sequential transformation pro-
posed in [2, 5] to determine an execution order of parallel paths at runtime. A
second area of improvement is the extension of the set of supported events, since
now only the most important events can be mapped. However, not all kinds
of events make sense in the context of Process Checklists, so more theoretical
work and interviews with practitioners have to be made. At the moment, the
PCG supports input files from the Camunda Modeler only. This is caused (even
though the BPMN language is standardized) by slightly varying syntaxes used
by different modeling software. It would be desirable to improve the robustness
of the parser by including a wider range of XML tags (which are the basis of the
BPMN code).

The fundamental functions of the algorithm are very sound. However, the
graphical presentation of the Process Checklist is not yet optimized, e.g., the
formatting of the control points the number of displayed options is limited. In
extreme cases, boxes may be overfilled. Currently, we add extra checklist items
to the model, though not all additional items are needed, for instance, the last
END node for a XOR gate is not needed, since the user can simply continue with
the next task (see Fig. 3, Points 5 and 6). The usage of the PCG is very easy
and straight forward. It can be used by either a GUI or the command line. This
offers an easy-to-use method for normal use-cases, but also a way to integrate
the PCG into automated workflows. Generally, the PCG is operated by one user.

The PCG is also available as a python package. More information and in-
stall instructions as well as a screencast demonstrating the usage of the PCG is
available at http://checklists.kppq.de.

References

1. Van Der Aalst, Wil, and Van Hee, Kees Max: Workflow management: models, meth-
ods, and systems. MIT press. (2004)

2. Baumann, Michaela, Baumann, Michael H., Schönig, Stefan, and Jablonski, Stefan:
Enhancing Feasibility of Human-Driven Processes by Transforming Process Models
to Process Checklists. In: Enterprise, Business-Process and Information Systems
Modeling, 124-138. Springer Berlin Heidelberg. (2014)

3. Wolff, Alan M., Taylor, Sally A., and McCabe, Janette F.: Using checklists and re-
minders in clinical pathways to improve hospital inpatient care. In: Medical Journal
of Australia 181, 428-431. (2004)

4. Reijers, Hajo A., Henrik, Leopold, and Recker, Jan: Towards a Science of Checklists.
In: Proceedings of the 50th Hawaii International Conference on System Sciences.
(2017)

5. Baumann, Michaela, Baumann, Michael H., Schönig, Stefan, and Jablonski, Stefan:
The Process Checklist. In: Enterprise Modelling and Information Systems Architec-
tures, 12, 1-1 (2017)


