
Faculty for Mathematics, Physics, and Computer Science

MASTER’S THESIS
in Mathematics

Rank Metric Codes

submitted by

Miriam Schmidt
Mat.-No. 1204821

March 30, 2016

— corrected version —

Supervisor: Prof. Dr. Michael Stoll
Advisor: Dr. Michael Kiermaier
Second Assessor: apl. Prof. Dr. Alfred Wassermann





Acknowledgments

I would like to express my gratitude to my advisor Michael Kiermaier for the useful com-
ments, remarks, and inspirations throughout this thesis. His door was always open and
whenever I had a question, I got appropriate help.

I also want to thank Kai-Uwe Schmidt for providing his unpublished LP-bounds. Last
but not least, I would like to thank my husband Alexander for guarding my back throughout
the process of writing this thesis.

i



ii



Contents

Acknowledgments i

Contents iii

List of Algorithms v

List of Tables v

List of Figures v

1 Introduction 1

2 Preliminaries 3

3 Bounds for the Size of Maximum Codes 4
3.1 Unrestricted Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.1 Partial Spread Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Isometries of Matrix Spaces and Isomorphisms of Rank Metric Codes 11
4.1 Unrestricted Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Connection to Graph Automorphisms . . . . . . . . . . . . . . . . . . . . . . 15

5 Automorphism Groups of Codes 19

6 Constructions 21
6.1 Two Series of Hermitian Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 An Orderly Generation Approach . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Maximum Code in H2(F4) with d = 2 . . . . . . . . . . . . . . . . . . 27
6.2.2 Maximum Code in H2(F9) with d = 2 . . . . . . . . . . . . . . . . . . 27
6.2.3 The Isomorphism Classes of Maximum Codes in H2(F16) with d = 2 . 30
6.2.4 Maximum Code in S3(F2) with d = 2 . . . . . . . . . . . . . . . . . . . 43

6.3 An Algorithm Using Cliquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 Maximum Code in H2(F25) with d = 2 . . . . . . . . . . . . . . . . . . 48
6.3.2 Improvement of the Method . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Heuristic Clique Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 56
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



Appendix 59

A Partial Spreads and Partial Ovoids in Classical Polar Spaces 59

B Numbering of the Matrices 59
B.1 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2 Hermitian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References 62

Affirmation 67

iv



List of Algorithms

1 Orderly Algorithm by Royle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
- Procedure Augment(Sk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Algorithm for classification of maximum codes, based on Algorithm 1. . . . . . 25
- Procedure IsIsomorphic(C1, C2; (ΓM, π)). . . . . . . . . . . . . . . . . . . . . . 45
3 Algorithm for classification of maximum codes based on Cliquer. . . . . . . . . 46
4 Heuristic clique search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

List of Tables

1 LP-bounds compared to the upper bounds of Theorem 3.3. . . . . . . . . . . 6
2 Upper and lower bounds for maximum code sizes in Sn(Fq) . . . . . . . . . . 7
3 Upper and lower bounds for maximum code sizes in Hn(Fq2) . . . . . . . . . 11
4 Number of representatives (#Sk) and computing time seperately for each set

size k in all completed and aborted cases. . . . . . . . . . . . . . . . . . . . . 26
5 Construction of C15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Computation time of CliquerFindAllMaximumCliques(∆

(S)
H2(F25),2) for one

starting configuration S of each of the sizes 4 to 6 and deduced estimated
total computation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Distribution of the computation time of CliquerFindAllMaximum-

Cliques(∆
(S)
H2(F25),2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Sizes of the largest codes found heuristically in comparison to the lower and
upper bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Improvements on lower bounds for the maximum code size. . . . . . . . . . . 57

List of Figures

1 Illustration of the workaround for graphs with colored edges in nauty. . . . . 17
2 Number of representatives for each set size k in all completed and aborted cases 26
3 Stucture of maximum code in H2(F9). . . . . . . . . . . . . . . . . . . . . . . 28
4 Stucture of maximum code in H2(F16), type 1. . . . . . . . . . . . . . . . . . 31
5 Stucture of maximum code in H2(F16), type 2. . . . . . . . . . . . . . . . . . 32
6 The lines of a pentagram as elements of F5. . . . . . . . . . . . . . . . . . . . 33
7 Stucture of maximum code in H2(F16), type 3. . . . . . . . . . . . . . . . . . 35
8 Stucture of maximum code in H2(F16), type 6. . . . . . . . . . . . . . . . . . 40
9 Stucture of maximum code in H2(F16), type 7. . . . . . . . . . . . . . . . . . 42
10 Stucture of maximum code in H2(F25). . . . . . . . . . . . . . . . . . . . . . . 50
11 Illustration of the improvement strategy for Algorithm 3. . . . . . . . . . . . 52
12 Optimal and best heuristical code sizes for codes in H2(Fq2) with minimum

distance ≥ 2 in comparison to the function 2q2. . . . . . . . . . . . . . . . . . 57
B.1 The order of matrix entries used in the numbering of symmetric matrices . . 60
B.2 The order of matrix entries used in the numbering of Hermitian matrices . . 61

v



vi



1 Introduction

A problem in transmitting or storing information is that the transmission can be disturbed
or the storage medium can be damaged. Bad weather or a scratch in a CD are only two
examples of many. This is often referred to having a “noisy channel”.

The common solution to this problem is to translate the message into a sequence of code-
words which differ enough from each other that a certain number of errors in transmission
can be corrected or at least recognized. To tell when codewords differ enough, a concept of
distance suitable for the transmission channel or storage medium is needed.

The set of codewords is called a code and the minimum distance of a code is the minimal
pairwise distance of codewords. This minimum distance is a measurement of how many
errors a code can recognize or correct. The main goal is to find—in a fixed space of possible
codewords—a code that contains as many codewords as possible while having a minimum
distance as large as possible. The most common example for measuring distance in coding
theory is the Hamming distance dH which counts the number of entries in which two vectors
(or more general: strings) differ. This distance is suitable, for example, for binary symmetric
channels where vectors of Fn2 are transmitted and there is a certain probability that a “0” is
flipped into a “1” or vice versa.

If there is not a single point-to-point connection but a network which, in general, has
multiple sources and several sinks, for example, in the distribution of software updates,
network coding is used to improve the information flow. Here, subspace codes [35, 37, 61] are
an appropriate choice. Instead of vectors, they consist of subspaces of a given vector space
and are equipped, for example, with the subspace metric

dS(U, V ) = dim(U) + dim(V )− 2 dim(U ∩ V )

or with the injection distance

dI(U, V ) = max{dim(U),dim(V )} − dim(U ∩ V ).

When all codewords of a subspace code have the same dimension, the code is called constant
dimension code. In this important case, dS(U, V ) = 2 dI(U, V ).

Such constant dimension codes can be constructed, for example, from rank metric codes.
These are codes consisting of matrices and equipped with the rank metric

drk(A,B) = rk(A−B).

This metric is first introduced by Loo-Keng Hua (in 1945 for symmetric matrices [31] and
in 1951 for general matrices [32, Section 7]) as “arithmetic distance” and introduced into
coding theory by Delsarte [13] in 1978 and Gabidulin [21] in 1985.

To construct a constant dimension code from a rank metric code, a subspace Λ(A) of
Fm+n
q is generated by the rows of the n × (n + m) matrix (In | A) composed as a block

matrix from the identity matrix In and an element A of the rank metric code in Fn×mq . This
mapping is injective and it holds that

dS(Λ(A),Λ(B)) = 2 dI(Λ(A),Λ(B)) = 2 drk(A,B).

This construction is first proposed in 2003 for linear authentication codes in [66] and redis-
covered by Kschischang and Kötter in 2008 in [37].
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Additionally, rank metric codes have an application in space-time coding [23] and in the
GPT (Gabidulin, Paramonov, Tretjakov) cryptosystem [24, 22].

Also rank metric codes with certain additional properties are of interest, for example,
containing linear subcodes of symmetric matrices improves the error correcting capability of
linear rank metric codes [25].

In odd characteristic, from a rank metric code Y consisting only of symmetric matrices
in Fn×nq , two codes C1(Y ), C2(Y ) ⊂ Fq

n−1
q , both classical codes in Hamming metric, of size

#Y and qm ·#Y , respectively, can be constructed [56]. For this, functions f : Fnq → Fq with

f(0) = 0 are identified with vectors in Fq
n−1
q which contain the function values f(v) for all

v 6= 0. Then C1(Y ) is defined to consist of the quadratic forms associated with the matrices in
Y and C2(Y ) is defined as C2(Y ) = {a+b | a ∈ C1(Y ), b ∈ L} where L denotes the set of linear
forms on Fnq . The codes C1(Y ) and C2(Y ) thus are subcodes of the shortened generalized
second-order Reed-Muller code, that is, the code resulting when taking all codewords of the
generalized second-order Reed-Muller code GRM(2,m) whose first entry is zero and omitting
the first entry (cf. also [58]). In [56, Section 5], it is described how the distance enumerators
of C1(Y ) and C2(Y ) which are polynomials defined by

βCi(Y )(z) =
1

#Ci(Y )

∑
b,c∈Ci(Y )

zdH(b,c)

can be obtained from a property of the rank distance code Y which is called inner distri-
bution. In the case of F2, there exists a similar construction of subsets of ZRM(2,m)/ZRM(1,m)

where ZRM(d,m) refers to quaternary Reed–Muller codes of order d [54, 55, 58].
Rank metric codes of skew-symmetric matrices have been studied in [14] and rank metric

codes of Hermitian matrices in [57].
Those rank metric codes—which are also referred to as rank codes, matrix codes, or rank

distance codes—are subject of this thesis, in particular codes consisting only of symmetric
or Hermitian matrices over finite fields. The aim is—given a prescribed matrix space and a
fixed number as lower bound for the minimum distance—to classify codes which reach the
maximum possible size and to improve lower bounds for this maximum code size in cases
where the exact maximum size has not been determined.

The thesis is structured as follows:
Section 2 contains the fundamental concepts needed to understand this thesis.
Section 3 summarizes known upper and lower bounds for the size of maximum codes. The

subsections on symmetric and Hermitian matrices are mainly based on the works [55, 56, 57]
by Kai-Uwe Schmidt.

Section 4 is based on the book “Geometry of Matrices” [65] by Zhe-Xian Wan which
summarizes results mainly by him and his teacher Loo-Keng Hua. It is dedicated to the
groups of isometries of matrix spaces and develops a concept of isomorphism for rank metric
codes. This section also provides a way to put this concept into practice.

Based on the results of Section 4, Section 5 deals with the determination of automorphism
groups of codes.

Section 6 contains the main part of this thesis. Here, constructions for symmetric and
Hermitian codes are provided. This is subdivided into four subsections. In the first sub-
section, two new infinite series of Hermitian codes are described of which one improves the
lower bounds for all spaces of Hermitian n× n matrices over finite fields where n ≥ 4 is an
even number when the minimum distance is two. In the next two subsections, two exact
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algorithms are presented which are able to find and classify maximum codes. It is shown
that the best known lower bound for the size of maximum codes in the space of Hermitian
2 × 2 matrices over the field F25 actually already coincides with the maximum code size
for this case. Besides classification, it is also an aim to find “nice” representatives of each
isomorphism class and give (geometric) interpretations. In the last subsection, a heuristic
approach is applied to cases where the search space becomes too big for the presented exact
algorithms. By this, the lower bounds can be increased in some further particular cases.

In Section 7, the results of this thesis are summarized and further work is inspired.

2 Preliminaries

Very generally, a code C can be defined as a subset of a metric space (M,d).
If #C > 1, then the minimum distance of C is d(C) = min{d(c1, c2) | c1 6= c2 ∈ C}. If

#C ≤ 1, we set d(C) =∞.

Definition 2.1. Let F be a field and letM⊂ Fm×n be a set of matrices. For two matrices
A,B ∈M, we define their rank distance to be

drk(A,B) = rk(A−B).

As observed, for example, in [21], the rank distance is indeed a metric onM. Subsets of
(M,drk) are called rank metric codes and are the subject of this thesis. Consequently, from
now on by code we mean rank metric code and distance refers to the rank distance.

By
Sn(F ) =

{
(mi,j)1≤i,j≤n ∈ Fn×n | mi,j = mj,i ∀1 ≤ i, j,≤ n

}
,

we denote the set of symmetric n× n matrices over the field F .
A nontrivial involution of a field F is a field automorphism of order 2, or, in other words,

a field automorphism a : F → F with a = a for all a ∈ F which not equals idF . For a field
F with a fixed nontrivial involution a : F → F , we define by

Hn(F ) =
{

(mi,j)1≤i,j≤n ∈ Fn×n | mi,j = mj,i ∀1 ≤ i, j,≤ n
}

the set of Hermitian n× n matrices.
It is well known (see, e.g., [27]) that the automorphism group of Fpn , p prime, is cyclic

of order n and generated by the Frobenius automorphism σ : Fpn → Fpn , x 7→ xp. This
means that the finite field with q = pn elements possesses a nontrivial involution if and only
if 2 | n, that is, if q is a square. In this case, the nontrivial involution is unique and given
by σn/2 = a : Fq → Fq, x 7→ x

√
q.

Transposition of a matrix M is denoted by MT. Whenever a field automorphism is
applied to a matrix, we mean applying it to every matrix entry.

Furthermore, In stands for the n× n-identity matrix, N = {1, 2, 3, . . . }, and Fq denotes
the field with q elements. For non-prime fields, the following representations are used:

F4 = F2[x]/(x2+x+1) F16 = F2[x]/(x4+x3+x2+x+1)

F9 = F3[x]/(x2+1) F25 = F5[x]/(x2+3)

The residue class of x is denoted by X.
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Throughout this thesis, #S denotes the cardinality of a set S and 2S its power set.
A graph Γ = (V,E) consists of a (finite) vertex set V and a set E ⊂

(
V
2

)
= {e ⊂ V |

#e = 2} of edges. We say that the edge {i, j} connects the vertices i and j or that i and j
are adjacent. A clique C in the graph Γ is a subset of the vertex set V such that {i, j} ∈ E
for all i, j ∈ C.

In this thesis, we are searching for codes of maximum possible size amongst all codes in a
given matrix space with minimum distance at least a fixed number. So we want to introduce
the terms maximal and maximum as they are commonly used in graph theory [4, p. xvi]:

Definition 2.2. Let S be a set and T ⊂ 2S be a collection of subsets of S. Then A ∈ T is
called

• maximal if there is no B ∈ T with A ( B and

• maximum if #B ≤ #A for all B ∈ T .

Definition 2.3. A (left) group action of a group G on a set X is a map

G×X → X, (g, x) 7→ g.x

with the property that

1. e.x = x ∀x ∈ X where e is the identity element of G and

2. (gh).x = g.(h.x) ∀g, h ∈ G, x ∈ X.

We denote the G-orbit of x ∈ X by G.x = {g.x | g ∈ G} and, additionally, g.Y =
{g.y | y ∈ Y } for Y ⊂ X. The set of all G-orbits is a partition of X. For Y ⊂ X, the
setwise stabilizer is defined as GY = {g ∈ G | g.y ∈ Y ∀y ∈ Y }. It is a subgroup of G. For
singletons, we use the abbreviation Gx = G{x}.

Definition 2.4. Cf., e.g., [20, section 1.1.1], [29, p. 36ff.]. Let G be a group acting on the
set X. A transversal is a set containing exactly one representative from each G-orbit of X.

For a fixed transversal T , a map τ : X → G with the property that τ(x).x ∈ T for all
x ∈ X is called canonicalizing (also: canonizing) map with respect to T . The element τ(x).x
is called canonical representative of the orbit G.x.

3 Bounds for the Size of Maximum Codes

Throughout this section, let 2 ≤ d ≤ n be natural numbers.

3.1 Unrestricted Matrices

Theorem 3.1 (Delsarte). [13, Thm. 5.4] Let C ⊂ Fm×nq be a code with minimum distance
≥ d. Without loss of generality, let m ≤ n (otherwise transpose). Then

#C ≤ q(m−d+1)n.
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For the case of linear codes, this bound can also be found in the work of Gabidulin [21]
and Roth [52].

A code reaching this bound is called maximum rank distance (MRD) code. The bound
itself is, for example, referred to as the Singleton bound for codes with the rank metric (see
[26]) or Singleton-like bound (see [40]).

In [21, Section 4], Gabidulin presents a class of linear MRD codes in vector representation
(he deals with codes in Fnqm instead of Fm×nq —which is equivalent) for all d ≤ m ≤ n and any
finite field Fq. So does Roth in [52] independently. In [13], Delsarte also gives a construction
for linear MRD codes, though from the perspective of bilinear forms. Both constructions
are essentially the same (see, e.g., [10, Section 5]) and commonly known as Gabidulin codes.

In [39], Kshevetskiy and Gabidulin present a new construction for MRD codes that
includes the construction of [21] as a special case. Other constructions for MRD codes
different from Gabidulin codes are given in [11], [48], and [60].

Since the size of maximum codes in Fm×nq is clear in all cases, this thesis will concentrate
on symmetric and Hermitian matrices.

3.2 Symmetric Matrices

3.2.1 Upper Bounds

Theorem 3.2 (K.-U. Schmidt). [55, Cor. 7], [56, Lemma 3.5] Let C ⊂ Sn(Fq) be a code
with minimum distance ≥ d. Then

#C ≤


q(n+1)(n−d+2)/2, n, d even,

qn(n−d+3)/2, n odd and d even,

q(n+1)(n−d+1)/2, n even and d odd,

qn(n−d+2)/2, n, d odd.

The proof in the case of even characteristic can be found in [55, Cor. 7] and is based
on the work of Delsarte and Goethals on alternating bilinear forms [14]. The case of odd
characteristic is treated in [56, Lemma 3.5] for odd d and can be easily derived for even d
since a code with minimum distance ≥ d is also a code with minimum distance ≥ d−1. The
key idea of both proofs is the use of association schemes as pioneered by Delsarte [12]. For
a survey on association schemes in coding theory, see, e.g., [15].

In the case of odd characteristic and even d this bound can be improved as follows:

Theorem 3.3 (K.-U. Schmidt). [56, Prop. 3.7] Let q be an odd prime power and C ⊂ Sn(Fq)
be a code with minimum distance ≥ d with d even. Then

#C ≤

q
(n+1)(n−d+2)/2 · 1+q−n+d−1

q+1 , n even,

qn(n−d+3)/2 · 1+q−n+1

q+1 , n odd.

Since in the case d = 2, the bound of Theorem 3.2 equals the number qn(n+1)/2 of sym-
metric matrices, there is also a slight but easy improvement possible in the case where q is
even.

Proposition 3.4. Let C ⊂ Sn(Fq) be a code with minimum distance ≥ 2. Then

#C ≤ qn(n+1)/2 − qn + 1.

5



Table 1: LP-bounds calculated by K.-U. Schmidt [59] compared to the (rounded down)
upper bounds for the size of codes in Sn(Fq) given in Theorem 3.3.

n = 5, d = 4 n = 7, d = 6 n = 7, d = 4

q = 3 q = 5 q = 3 q = 5 q = 3 q = 5

Theorem 3.3 14944 1630208 1197382 1017317708 2618675528 79477945963541
LP-bound [59] 10044 1304791 798984 813869792 2328242882 76299072265609

Proof. Since Sn(Fq) is an additive group, we can assume without loss of generality that the
zero matrix is an element of C. This means that there must not be any matrices of rank one
in C. By [41], the number of symmetric n× n matrices of rank 1 is qn − 1. Thus the claim
follows.

There also can be considered Delsarte’s linear programming (LP) bound [12] which (ac-
cording to current knowledge) has to be calculated for each triple (q, n, d) separately. K.-U.
Schmidt conjectures [59] that this LP-bound equals q5− q4 + 2q3−2q2 + q in the case n = 3,
d = 2 and q odd. He verified this formula for all odd prime powers q ≤ 113. This would
improve the bound of Theorem 3.3 by the additive term q − 2, as can be easily shown by
polynomial division. Additionally, he calculated some values for q = 3 and q = 5 as shown in
Table 1. In those cases, the LP-bound improves the bound given by Theorem 3.3 additively
by approximately 

q8 − q7, n = 5, d = 2,

q12 − q11, n = 7, d = 6,

q18 − q17, n = 7, d = 4,

where q ∈ {3, 5}. When n and d are even and q is odd, K.-U. Schmidt expects the LP-bound
to coincide with the bound of Theorem 3.3 [56, remark after Prop. 3.7].

3.2.2 Lower Bounds

The most obvious way to obtain lower bounds on the maximum size of codes is to explicitly
give a code of a certain size. In the case of codes in Sn(Fq), K.-U. Schmidt does this by
constructing additive codes.

Theorem 3.5 (K.-U. Schmidt). [55, Thm. 12 and Thm. 16], [56, Thm. 4.1 and Thm. 4.4]
There exists an additive code C ⊂ Sn(Fq) with minimum distance d and

#C =

{
q(n+1)(n−d+1)/2, n− d odd,

qn(n−d+2)/2, n− d even.

The construction for q even is given in [55] and for odd characteristic in [56]. Both
constructions use the trace function

Tr: Fqm → Fq, Tr(x) =
m−1∑
k=0

xq
k

6



Table 2: Upper and lower bounds for the maximum code size in Sn(Fq) with minimum
distance at least an even number d for some small values of n, q, and d < n.

n = 3, d = 2 n = 4, d = 2 n = 5, d = 4 n = 5, d = 2

q = 2 q = 3 q = 4 q = 5 q = 7 q = 8 q = 9 q = 2 q = 3 q = 2 q = 3 q = 4 q = 2

lower bound 22a 90b 256c 625c 2401c 4096c 6561c 256c 6561c 64c 729c 4096c 4096c

upper bound 22a 201d 4033e 2705d 15001d 261633e 53793d 1009e 15309f 1024g 10044d 1048576g 32737e

a [36], b [58], c Theorem 3.5, d [59], e Proposition 3.4, f Theorem 3.3, g Theorem 3.2

and symmetric bilinear forms

Bλ : Fqm × Fqm → Fq, Bλ(x, y) = Tr

(
λ0xy +

t∑
j=1

λj

(
xq

s·j
y + xyq

s·j
))

,

where 0 ≤ t ≤ m−1
2 , λ ∈ Ft+1

qm , and s = 1 in the case of characteristic 2 or s coprime to m in
the case of odd characteristic.

Actually, in case of odd characteristic, these are the largest possible additive codes in
Sn(Fq) [56, Thm. 3.3] where additive means forming an additive subgroup of the ambient
matrix space. For not necessarily additive codes, the upper and lower bound coincide in the
case where d is odd (or d = n) but K.-U. Schmidt leaves it an open problem ([55, Section 5],
[56, remark after Prop. 3.7]) whether larger non-additive codes exist in the case where d is
even and d < n. This is answered by M. Kiermaier [36] who found that the maximum code
size in S3(F2) is 22 (d = 2) and that there exists a code with minimum distance d = 2 in
S3(F3) of size 90 (cf. [58, slide 15]). The largest additive codes in those cases are of size 16
and 81, respectively. Further new lower bounds for the size of maximum codes in Sn(Fq) are
produced in section 6.4.

For some small values of n, q, and d < n, where d even, Table 2 summarizes the in each
case best lower and upper bounds of those presented up to this point for the maximum code
size of codes in Sn(Fq) with minimum distance ≥ d.

3.3 Hermitian Matrices

3.3.1 Partial Spread Sets

Definition 3.6. [28, Section 1] Let F be a field. U ⊂ Fn×n is called partial spread set if

1. rk(A−B) = n ∀A,B ∈ U,A 6= B and

2. rk(A) = n ∀A ∈ U,A 6= 0.

As we can see, the case where we are looking for maximum codes in Hn(Fq2) with
minimum rank distance d = n can be viewed as the problem of finding maximal partial
spread sets in Hn(Fq2). Those are closely related to partial spreads in the Hermitian polar
space H(2n− 1, q2) [28]. For definitions of polar geometry, see appendix A.

In [28], we find the following lemma.

Lemma 3.7. [28, Lemma 1] There exists a partial spread set in Hn(Fq2) of size N if and
only if there exists a partial spread in H(2n− 1, q2) of size N + 1.
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The connection of partial spreads and partial spread sets can be traced back to [6,
Section 5].

Additionally, partial spreads in H(3, q2) correspond to partial ovoids in the elliptic
quadric Q−(5, q) (see, e.g., [28, p. 14]), so we can use known bounds for those too.

However, the concepts of isomorphism of partial spreads and partial ovoids do not coin-
cide with the notion of isomorphism of codes introduced in Section 4. Indeed, all maximum
partial spreads in H(3, 9) are isomorphic (see [18, Section 4]) as well as all maximum codes in
H2(F9) with minimum distance 2 are (see section 6.2.2). On the other side, there are only 3
non-isomorphic maximum partial ovoids in Q−(5, 4) (see [8, Table 1]) but 7 non-isomorphic
maximum codes in H2(F16) as we will see in section 6.2.3.

3.3.2 Upper Bounds

Theorem 3.8 (K.-U. Schmidt). [57, Thm. 1, Thm. 2] Let C ⊂ Hn(Fq2) be a code with
minimum distance ≥ d. Then

#C ≤


qn(n−d+1), d odd,

(−1)n+1 · qn(n−d+1) · ((−q)n−d+2−1)+(−q)n((−q)n−d+1−1)
(−q)n−d+2−(−q)n−d+1 , d even.

In the case where n = d odd, this bound is already proven by Vanhove in 2009 in [63]
in the context of partial spreads. In the case where n even, K.-U. Schmidt conjectures that
this bound coincides with the LP-bound [57, remark after Thm. 2].

By means of Lemma 3.7, we can use the upper bounds for partial spreads collected in
the work of Ihringer [33] for the case n = d:

Theorem 3.9 (De Beule, Klein, Metsch, Storme). [9, Thm. 4.2] Let S be a partial spread
of H(2n− 1, q2) where n is even. Then

#S ≤

{
1
2(q3 + q + 2), n = 2

q2n−1 − q3n/2(√q − 1), n ≥ 4
.

If n = 4 and q = 2, 3 or if n > 4, this bound can be improved by the following theorem.

Theorem 3.10 (Ihringer). [33, Thm. 1.5] Let S be a partial spread of H(2n− 1, q2), n > 1.
Then

#S ≤ q2n−1 − q q
2n−2 − 1

q + 1
.

Summing up the best upper bounds known to Ihringer in 2014 for a partial spread of
H(2n−1, q2), n even, and using Lemma 3.7, we gain the following upper bounds for the size
of a code C ⊂ Hn(Fq2), n even, with minimum distance n (see [33, table on p. 3]):

#C ≤



1
2(q3 + q), n = 2, q 6= 4,

24, n = 2, q = 4 (taken from [8]),

q2n−1 − q q
2n−2−1
q+1 − 1, n = 4, q ≤ 3,

q2n−1 − q3n/2(√q − 1)− 1, n = 4, q > 3,

q2n−1 − q q
2n−2−1
q+1 − 1, n > 4.
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The bound 24 in the case n = 2, q = 4 comes from an exhaustive computer search in
[8] which has shown that the largest size of a maximal partial ovoid in Q−(5, 4) is 25. In
the same article, we come across another bound which is better in a few cases than those
gathered by Ihringer and is already known since 1995: In a quadric, a cap is the same as a
partial ovoid (comparing the definitions in [8] and [2]), so we can use the following result of
Blokhuis and Moorhouse.

Theorem 3.11 (Blokhuis, Moorhouse). [2, Thm. 1.3] If S is any cap on a nondegenerate
quadric in PG(n, pe), then

#S ≤
((

p+ n− 1

n

)
−
(
p+ n− 3

n

))e
+ 1.

Applying this theorem to Q−(5, q) we gain the following corollary.

Corollary 3.12. Let C ⊂ H2(Fq2) be a code with minimum distance 2 and q = pe with p
prime. Then

#C ≤
((

p+ 4

5

)
−
(
p+ 2

5

))e
=

(
(p+ 2)(p+ 1)2p

12

)e
.

Proof. Since a cap, that is, a partial ovoid, in Q−(5, q) corresponds to a partial spread in
H(3, q2), we only have to subtract one from the bound of Theorem 3.11 and substitute n = 5
to obtain the bound for the size of C using Lemma 3.7. The equality is a straightforward
computation:(

p+ 4

5

)
−
(
p+ 2

5

)
=

5∏
j=1

p+ 4 + 1− j
j

−
5∏

k=1

p+ 2 + 1− k
k

=
p(p+ 1)(p+ 2)

5!
·
(
(p+ 3)(p+ 4)− (p− 2)(p− 1)

)
=
p(p+ 1)(p+ 2)

5!
·
(
10p+ 10

)
=
p(p+ 1)2(p+ 2)

12
.

Proposition 3.13. The bound of Corollary 3.12 is stronger than 1
2(q3 + q) if and only if

p ≤ 7 and 
e ≥ 3, if p ≤ 3,

e ≥ 4, if p = 5,

e ≥ 34, if p = 7.

Proof. Define BKMS(p, e) = 1
2(p3e + pe) and BM(p, e) =

(
(p+2)(p+1)2p

12

)e
.

For p > 7, we have p ≥ 11 and so

BM(p, e) =

(
p+ 2

12

)e
(p2 + 2p+ 1)epe

> (p2 + 1)epe

> BKMS(p, e).
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So in this case, the bound of De Beule, Klein, Metsch, and Storme is tighter for any e.
For p ≤ 7, we want to show that BKMS(p,e)

BM(p,e) is monotonically increasing in e and that the
smallest value for e such that the fraction is greater than 1 is 3 resp. 4 resp. 34. For this, we
define the functions

fp : N→ Q, e 7→ BKMS(p, e)

BM(p, e)

for p ∈ {2, 3, 5, 7}:

f2(e) =
1

2

((
4

3

)e
+

(
1

3

)e)
, f2(2) ≈ 0.944, f2(3) ≈ 1.204

f3(e) =
1

2

((
27

20

)e
+

(
3

20

)e)
, f3(2) ≈ 0.923, f2(3) ≈ 1.232

f5(e) =
1

2

((
25

21

)e
+

(
1

21

)e)
, f5(3) ≈ 0.844, f5(4) ≈ 1.004

f7(e) =
1

2

((
49

48

)e
+

(
1

48

)e)
, f7(33) ≈ 0.987, f7(34) ≈ 1.008

We can see, that the fractions fp(e) are of the form

1

2

((a
b

)e
+
(c
b

)e)
with a, b, c ∈ N, a − b ≥ c. For the proof of the monotonicity, we can neglect the factor 1

2
and use that e can only take natural numbers:

2fp(e+ 1) =
(a
b

)e+1
+
(c
b

)e+1

=
a

b

(a
b

)e
+
c

b

(c
b

)e
=
(a
b

)e
+
a− b
b

(a
b

)e
+
c

b

(c
b

)e
use a− b ≥ c

≥
(a
b

)e
+
c

b

(a
c

)e (c
b

)e
+
c

b

(c
b

)e
use a > c, e ≥ 1

≥
(a
b

)e
+
c

b
· a
c

(c
b

)e
+
c

b

(c
b

)e
=
(a
b

)e
+
a+ c

b

(c
b

)e
use a+ c ≥ 2c+ b > b

>
(a
b

)e
+
(c
b

)e
= 2fp(e)

So for q ≤ 7, the bound of Blokhuis and Moorhouse is better exactly for the values of e that
are proposed.

3.3.3 Lower Bounds

In [57, Section 4], K.-U. Schmidt gives constructions for additive codes C ⊂ Hn(Fq2) with

minimum distance d and #C = qn(n−d+1) for the cases n− d odd [57, Thm. 4] and n and d
both odd [57, Thm. 5]. He also mentions that linear codes of cardinality qn with minimum
distance n in Hn(Fq2) are easy to obtain from Theorem 3.5 (since Sn(Fq) ↪→ Hn(Fq2) via
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Table 3: Upper and lower bounds for the maximum code size in Hn(Fq2) with minimum
distance at least an even number d for some small numbers n and q.

n = 2, d = 2 n = 3, d = 2 n = 4, d = 4 n = 6, d = 6

q = 2 q = 3 q = 4 q = 5 q = 7 q = 8 q = 9 q = 11 q = 13 q = 16 q = 2 q = 2 q = 3 q = 2

lower bound 5a 15a 24b 47b 97b 125b 145b 215b 272b 271c 64d 16e 81e 64e

upper bound 5f 15f 24b 65f 175f 216g 369f 671f 1105f 1296g 176h 86i 1641i 1366i

a [9], b [8], c [28], d [57], e Theorem 3.5, [17], f Theorem 3.9, g Corollary 3.12, h Theorem 3.8, i Theorem 3.10

Fq ↪→ Fq2) or are constructed, for example, in [17, Thm. 4]. This means that the bound of
Theorem 3.8 is tight for d odd. Since a code with minimum distance d + 1 is a fortiori a
code with minimum distance at least d, we have a code of cardinality at least qn(n−d) in the
case d < n with d, n both even. K.-U. Schmidt leaves it an open problem if, in general, there
exist additive codes of size qn(n−d+1) when d < n both even and how to construct them [57,
remark after Thm. 5]. In this thesis, a construction for maximum (meaning of size qn(n−1)

[57, Thm. 1]) additive codes with d = 2 is provided in Theorem 6.1.
It is also known (see, e.g., [9, Remark 4.4]) that the bound of Theorem 3.9 is tight for

n = 2 and q = 2, 3 and, as already mentioned in section 3.3.2, that there is a code of size 24
in H2(F16).

Gow et al. [28] give a construction for partial spread sets in H2(Fq2) of size q2 + q − 1.
By heuristic search, Cimráková and Fack found partial ovoids of size 48 in Q−(5, 5), of

size 98 in Q−(5, 7), of size 126 in Q−(5, 8), of size 146 in Q−(5, 9), of size 216 in Q−(5, 11),
and of size 273 in Q−(5, 13) (see [8, Table 2]) which leads to lower bounds for the maximum
code size in H2(Fq2), d = 2, for q ∈ {5, 7, 8, 9, 11, 13}.

For some small values of n, q, and d ≤ n, where d even, Table 3 summarizes the in each
case best lower and upper bounds of those presented up to this point for the maximum code
size of codes in Hn(Fq2) with minimum distance ≥ d.

4 Isometries of Matrix Spaces and Isomorphisms of Rank
Metric Codes

The matrix spaces of unrestricted, symmetric, or Hermitian matrices come with natural
symmetries to which this section is dedicated. This leads to a concept of isomorphism which
will be used for classifying codes in Sections 6.2 and 6.3.

Definition 4.1. Let M⊂ Fm×nq . We shall call two rank metric codes C1, C2 ⊂M isomor-
phic if there is a bijective map f : M →M from the ambient space M to itself that is an
isometry in terms of the rank distance and fulfills f(C1) = C2.

For a map f to be an isometry in terms of distance d, we actually only demand that
d(a, b) = d(f(a), f(b)) for all a and b. Note that at least Berger [1] uses a stricter definition
for the rank distance as he additionally demands (semi-)linearity.

This section shows that the isometries of unrestricted, symmetric, and Hermitian matrices
can be described by matrices. Also a possibility to compute the group of isometries in those
cases using a graph automorphism program is explained.

The following lemma is useful in all three cases.
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Lemma 4.2. Let M⊂ Fm×nq and f : M→M a bijective map. If f preserves rank distance
one, then so does f−1.

Proof. Cf. [65, p. 302]. The map

f × f : M×M→M×M, (A,B) 7→ (f(A), f(B))

is bijective and—since drk(f(A), f(B)) = 1 if drk(A,B) = 1—it maps the set

∆1 = {(A,B) ∈M×M | drk(A,B) = 1}

to itself. Thanks to the finiteness of M ×M, this yields that (f × f)|∆1 : ∆1 → ∆1 is
surjective. So if we have A,B ∈ M with drk(A,B) = 1, then drk(f−1(A), f−1(B)) = 1 as
claimed.

4.1 Unrestricted Matrices

Proposition 4.3. Cf. [65, Cor. 3.6]. For a bijection f : Fm×nq → Fm×nq to be an isometry in
terms of the rank distance, it is sufficient to demand that it preserves rank distance one.

Proof. Cf. [65, p. 91ff.]. Let A,B ∈ Fm×nq with drk(A,B) = d. Then there are matrices

S ∈ GLm(Fq), T ∈ GLn(Fq) such that S(A − B)T =

(
Id 0
0 0

)
(see, e.g., [65, Prop. 1.17]).

Then it holds for the matrices Ci = A−S−1

(
Ii 0
0 0

)
T−1, i = 0, . . . , d, that drk(Ci−1, Ci) = 1,

i = 1, . . . , d. Hence, according to the hypothesis, drk(f(Ci−1), f(Ci)) = 1, i = 1, . . . , d. Since
C0 = A and Cd = B, it follows that

drk(f(A), f(B)) = rk

(
d∑
i=1

(
f(Ci−1)− f(Ci)

))

≤
d∑
i=1

rk
(
f(Ci−1)− f(Ci)

)
= drk(A,B).

By Lemma 4.2, we also have that f−1 preserves rank distance one, so we can use the same
argument for f−1 and conclude that

drk(A,B) = drk(f−1(f(A)), f−1(f(B))) ≤ drk(f(A), f(B)) ≤ drk(A,B).

Now that we know that in fact, we are looking for rank distance one preserving bijections,
we can use the Fundamental Theorem of Rectangular Matrices. It can be found in the more
general setting of matrices over division rings in the book of Wan [65].

Theorem 4.4 (Fundamental Theorem of Rectangular Matrices). See, e.g., [65, Thm. 3.4].
Let m,n ∈ N≥2, and f : Fm×nq → Fm×nq be a bijective map such that f and f−1 both preserve
rank distance one. Then there are matrices P ∈ GLm(Fq), Q ∈ GLn(Fq), and R ∈ Fm×nq

and an automorphism σ of Fq such that if m 6= n, then

f(X) = Pσ(X)Q+R ∀X ∈ Fm×nq (1)
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and if m = n, then either f is of the form (1) or

f(X) = Pσ(XT)Q+R ∀X ∈ Fm×nq . (2)

Conversely, any map of the form (1) or (2) is bijective and preserves rank distance one.

The proof uses the concept of maximal sets of rank 1 and maximal sets of rank 2 (for
definitions, see [65, Def. 3.3 and Def. 3.5] ). Reproducing this (long) proof is beyond the
scope of this thesis. The interested reader is referred to [65, p. 106ff.].

4.2 Hermitian Matrices

The case of Hermitian matrices is similar to that of unrestricted matrices.

Proposition 4.5. See, e.g., [65, Cor. 6.6]. For a bijection f : Hn(Fq2) → Hn(Fq2) to be
an isometry in terms of the rank distance, it is sufficient to demand that it preserves rank
distance one.

Proof. Cf. [65, p. 91ff.]. Let A,B ∈ Hn(Fq2) with drk(A,B) = d. Then there is a matrix
Q ∈ GLn(Fq2) such that

Q
T

(A−B)Q =


a1

. . .
ad

0
. . .

0


with ai ∈ Fq, i = 1, . . . , d (see, e.g., [65, Prop. 1.32]). Thus it holds for the matrices

Ci = A−
(
Q

T
)−1


a1

. . .
ai

0
. . .

0

Q−1,

i = 0, . . . , d, that drk(Ci−1, Ci) = 1, i = 1, . . . , d, and that Ci ∈ Hn(Fq2), i = 0, . . . , d. The
rest of the proof is analogous to the proof of Proposition 4.3.

The Fundamental Theorem of Hermitian Matrices is also stated in [65] in the more general
context of division rings D possessing an involution a : D → D fulfilling some properties. It
is asserted in [65, Example 1.2] that it holds for D = Fq2 with a = aq.

Theorem 4.6 (Fundamental Theorem of Hermitian Matrices). [65, Thm. 6.4] Let q be a
power of a prime, n ∈ N≥2, and f : Hn(Fq2) → Hn(Fq2) a bijective map such that f and
f−1 both preserve rank distance one. Then there are matrices P ∈ GLn(Fq2), H ∈ Hn(Fq2),
a ∈ F∗q, and an automorphism σ of Fq2 such that

f(X) = aP
T
σ(X)P +H ∀X ∈ Hn(Fq2). (3)

Conversely, any map of the form (3) and its inverse preserves rank distance one.

The proof is similar to that of Theorem 4.4 and is also omitted. It can be found in [65,
p. 323ff.] for the case n ≥ 3 and in [65, p. 348ff.] for the case n = 2.
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4.3 Symmetric Matrices

For symmetric matrices, there exists a fundamental theorem too, but this case is more
complicated.

Theorem 4.7 (Fundamental Theorem of Symmetric Matrices). [65, Thm. 5.4] Let F be any
field, n ∈ N≥2, and f : Sn(F ) → Sn(F ) a bijective map such that f and f−1 both preserve
rank distance one. If Sn(F ) 6= S3(F2), then there are a ∈ F ∗, matrices P ∈ GLn(F ),
S ∈ Sn(F ), and an automorphism σ of F such that

f(X) = aPTσ(X)P + S ∀X ∈ Sn(F ). (4)

If Sn(F ) = S3(F2) then f can additionally be a composition of maps of form (4) and the
following extra bijective map f̃ :

f̃ : S3(F2)→ S3(F2),



x11 x12 x13

x12 x22 0

x13 0 x33

 7→
x11 x12 x13

x12 x22 0

x13 0 x33


x11 x12 x13

x12 x22 1

x13 1 x33

 7→
x11 + 1 x12 + 1 x13 + 1

x12 + 1 x22 1

x13 + 1 1 x33


(5)

Conversely, the map f̃ and all maps of the form (4) preserve rank distance one and so do
their inverses.

The proof is similar to that for unrestricted or Hermitian matrices, but more complicated
and treats the cases

• char(F ) 6= 2,

• char(F ) = 2 and F 6= F2,

• F = F2 and n 6= 3, and

• F = F2 and n = 3

separately. It can be found in [65, p. 231ff., p. 252ff., p. 270ff., and p. 276ff.]. The difficulties
of the proof are linked with the fact that the statement of Proposition 4.3 and Proposition 4.5
is not true for symmetric matrices in general which becomes clear by the following:

The map f̃ preserves rank distance one (see [65, Lemma 5.34]), but is not an isometry in
terms of the rank distance as one can see in the following example taken from [65, p. 275]:

The zero matrix and

0 0 0
0 0 1
0 1 0

 obviously have rank distance 2 whereas their images under

f̃ ,

0 0 0
0 0 0
0 0 0

 and

1 1 1
1 0 1
1 1 0

, have rank distance 3.

Proposition 4.8. Any map of form (4) is an isometry in terms of the rank distance.
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In the book of Wan, it is proven that maps f : Sn(F )→ Sn(F ) such that both f and f−1

preserve rank distance one are isometries in terms of the rank distance in the cases where
char(F ) 6= 2 (see [65, Cor. 5.6]) and where F = F2 and 2 ≤ n 6= 3 (see [65, Lemma 5.31]).
Here we give a different simple proof for the general case. However, this proof is entirely
built on the explicit description in form (4) while in [65], the proof of Theorem 4.7 uses on
the statements of [65, Lemma 5.31 and Cor. 5.6].

Proof. Let X,Y ∈ Sn(F ) arbitrary. Then

f(X)− f(Y ) =
(
aPTσ(X)P + S

)
−
(
aPTσ(Y )P + S

)
= aPT

(
σ(X)− σ(Y )

)
P

= aPTσ(X − Y )P.

Since σ is a field automorphism, rk(X − Y ) = rk(σ(X − Y )). The matrices P and PT

are invertible, so rk(PTσ(X − Y )P ) = rk(σ(X − Y )). This implies that drk(f(X), f(Y )) =
drk(X,Y ) because a ∈ F ∗.

Actually, those are the only isometries also in the case of S3(F2) as the following theorem
states.

Theorem 4.9. [65, Prop. 5.32] If f is an isometry of S3(F2), f is of form (4).

This is proven together with the case F = F2, n 6= 3 of Theorem 4.7 in [65, p. 270ff.].
Summing up, we can state now the converse of Proposition 4.8:

Theorem 4.10. Let F be any field, n ∈ N≥2, and f : Sn(F )→ Sn(F ) an isometry in terms
of the rank distance. Then there are a ∈ F ∗, matrices P ∈ GLn(F ), S ∈ Sn(F ), and an
automorphism σ of F such that

f(X) = aPTσ(X)P + S ∀X ∈ Sn(F ).

Proof. This follows directly from Theorem 4.7 and Theorem 4.9 together with the fact that
any isometry (and its inverse map) in particular preserves rank distance one.

4.4 Connection to Graph Automorphisms

Since it is a nontrivial problem to determine whether two codes are isomorphic, we want
to use nauty [44]—which is a well known tool to find graph isomorphisms—to do this for
us. For this, we have to translate the matrix spaces Fm×nq , Sn(Fq), and Hn(Fq2) into graphs
in a way that asserts that the group of isometries of the matrix space is isomorphic to the
automorphism group of the associated graph. For testing whether two codes are isomorphic,
the graph associated to the ambient space—which has to be the same for both codes—is
“colored” (a formal definition is given below) for both codes separately. This way, the vertices
corresponding to code matrices are distinguishable for nauty. Two codes are isomorphic then
if and only if the associated colored graphs are isomorphic. The algorithm used by nauty is
described in [42] and [45].

Definition 4.11. [44, Section 1] A graph automorphism is a permutation of the vertices of
a graph such that two vertices i, j are adjacent if and only if their images are adjacent.
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Definition 4.12. [45, Section 2.1] Let Γ be a graph with vertex set V . A coloring of Γ is
a surjective function π : V → {1, . . . , k} for some k ∈ N. This means that the colors of the
vertices are represented by natural numbers.

A cell of π is the set of vertices with some given color, that is, the preimage π−1(j) of
some given j ∈ {1, . . . , k}.

A colored graph (Γ, π) is a graph Γ together with a coloring π of Γ.

Definition 4.13. Cf. [45, Section 2.2] An automorphism of a colored graph (Γ, π) is a graph
automorphism g with the property that π(g(v)) = π(v) for all vertices v of Γ.

This means that an automorphism of a colored graph preserves the colors of the vertices.
The automorphisms of a graph Γ (of a colored graph (Γ, π)) form a group under composi-

tion. The automorphism group of a colored graph is denoted by Aut(Γ, π). In the uncolored
case or if the coloring is clear from the context, this group is denoted by Aut(Γ).

Let M be one of the sets Fm×nq ,Hn(Fq2),Sn(Fq) except for S3(F2). Then the bijections
of M preserving rank distance one are exactly the isometries of M (see Proposition 4.3,
Proposition 4.5, and Theorem 4.7 together with Proposition 4.8) and thus the isometries of
M match the graph automorphisms of the following graph ΓM consisting of:

• #M vertices which are numbered by 0, . . . ,#M− 1,

• edges connecting vertices i and j for all 0 ≤ i, j ≤ #M− 1 with drk(Mi,Mj) = 1
(for the numbering of the matrices which is used for the calculations in this thesis, see
appendix B)

To harmonize the subsequent notation, we equip graph ΓM with the trivial coloring

π : {0, . . . ,#M− 1} → {1}.

This correspondence between maps that preserve rank distance one and automorphisms of
the graph where two vertices are adjacent if and only if the corresponding matrices have rank
distance one is easy to justify: Let g be a graph automorphism of ΓM and let Mi,Mj ∈ M
with drk(Mi,Mj) = 1 corresponding to the adjacent vertices i and j. Those vertices are
mapped by g to two adjacent vertices g(i) and g(j), which again correspond to matrices
Mg(i) and Mg(j) with drk(Mg(i),Mg(j)) = 1. Hence the bijection onM induced by g preserves
rank distance one. The other direction is just the same.

Now let M = S3(F2). We are interested in creating a graph such that the graph au-
tomorphisms correspond to the isomorphisms of S3(F2) to determine the group of graph
automorphisms with nauty [45]. To achieve this graph, every matrix is represented by a
vertex and the vertices corresponding to matrices with rank distance one are connected with
one kind of edges while the vertices corresponding to matrices with rank distance two are
connected by another kind of edge. Then the vertices that are not adjacent automatically
correspond to matrices with rank distance three.

This graph has the desired property that its graph automorphisms (which preserve the
color of the edges) correspond exactly to the isometries of S3(F2), but nauty can not handle
graphs with different types of edges. Since nauty can handle different types (colors) of
vertices instead, the user guide of nauty recommends the following workaround [44, p.58]
which is illustrated in Figure 1: For every vertex in the original graph, there are two vertices
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Figure 1: Illustration of the workaround for graphs with colored edges in nauty as rec-
ommended by the nauty user guide [44]: Edges of different colors (graph on the left) are
represented as edges in different layers (graph on the right).

A B C D A1 B1 C1 D1

A2 B2 C2 D2

in the new graph—partitioned in two layers with different vertex colors. Each two vertices
arising from the same original vertex are connected by an edge. Then the original edges of
the first and second color are inserted between the corresponding vertices of the first and
second layer, respectively, of the new graph. Then the action of the new automorphism group
on the first layer of the new graph is the same as the action of the original automorphism
group on the original graph.

Following those instructions, we gain the following nauty-compatible graph (ΓS3(F2), π)
consisting of:

• 2 ·#S3(F2) = 128 vertices, numbered by 0, . . . , 127,

• a coloring π : {0, . . . , 127} → {1, 2} with

π(v) =

{
1, v < 64

2, v ≥ 64
,

• edges connecting vertices i and i+ 64 for all i = 0, . . . , 63,

• edges connecting vertices i and j for all 0 ≤ i, j ≤ 63 with drk(Mi,Mj) = 1, and

• edges connecting vertices i+ 64 and j + 64 for all 0 ≤ i, j ≤ 63 with drk(Mi,Mj) = 2.

We can use this graph ΓS3(F2) to confirm Theorem 4.9: Computing Aut(ΓS3(F2)) with
nauty reveals that this graph has an automorphism group of size 10752—which is exactly
# GL3(F2) ·#S3(F2)— generated by the permutations g0, . . . , g4 where

g0 =(1, 2)(5, 6)(9, 10)(13, 14)(16, 32)(17, 34)

(18, 33)(19, 35)(20, 36)(21, 38)(22, 37)(23, 39)

(24, 40)(25, 42)(26, 41)(27, 43)(28, 44)(29, 46)

(30, 45)(31, 47)(49, 50)(53, 54)(57, 58)(61, 62)
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(65, 66)(69, 70)(73, 74)(77, 78)(80, 96)(81, 98)

(82, 97)(83, 99)(84, 100)(85, 102)(86, 101)(87, 103)

(88, 104)(89, 106)(90, 105)(91, 107)(92, 108)(93, 110)

(94, 109)(95, 111)(113, 114)(117, 118)(121, 122)(125, 126),

g1 =(8, 25)(9, 24)(10, 27)(11, 26)(12, 29)(13, 28)

(14, 31)(15, 30)(32, 36)(33, 37)(34, 38)(35, 39)

(40, 61)(41, 60)(42, 63)(43, 62)(44, 57)(45, 56)

(46, 59)(47, 58)(48, 52)(49, 53)(50, 54)(51, 55)

(72, 89)(73, 88)(74, 91)(75, 90)(76, 93)(77, 92)

(78, 95)(79, 94)(96, 100)(97, 101)(98, 102)(99, 103)

(104, 125)(105, 124)(106, 127)(107, 126)(108, 121)(109, 120)

(110, 123)(111, 122)(112, 116)(113, 117)(114, 118)(115, 119),

g2 =(1, 2, 7)(3, 5, 6)(9, 10, 15)(11, 13, 14)(16, 32, 48)

(17, 34, 55)(18, 39, 49)(19, 37, 54)(20, 36, 52)(21, 38, 51)

(22, 35, 53)(23, 33, 50)(24, 40, 56)(25, 42, 63)(26, 47, 57)

(27, 45, 62)(28, 44, 60)(29, 46, 59)(30, 43, 61)(31, 41, 58)

(65, 66, 71)(67, 69, 70)(73, 74, 79)(75, 77, 78)(80, 96, 112)

(81, 98, 119)(82, 103, 113)(83, 101, 118)(84, 100, 116)(85, 102, 115)

(86, 99, 117)(87, 97, 114)(88, 104, 120)(89, 106, 127)(90, 111, 121)

(91, 109, 126)(92, 108, 124)(93, 110, 123)(94, 107, 125)(95, 105, 122),

g3 =(2, 8)(3, 9)(4, 16)(5, 17)(6, 24)(7, 25)

(12, 18)(13, 19)(14, 26)(15, 27)(22, 28)(23, 29)

(34, 40)(35, 41)(36, 48)(37, 49)(38, 56)(39, 57)

(44, 50)(45, 51)(46, 58)(47, 59)(54, 60)(55, 61)

(66, 72)(67, 73)(68, 80)(69, 81)(70, 88)(71, 89)

(76, 82)(77, 83)(78, 90)(79, 91)(86, 92)(87, 93)

(98, 104)(99, 105)(100, 112)(101, 113)(102, 120)(103, 121)

(108, 114)(109, 115)(110, 122)(111, 123)(118, 124)(119, 125), and

g4 =(0, 1)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11)(12, 13)

(14, 15)(16, 17)(18, 19)(20, 21)(22, 23)(24, 25)(26, 27)

(28, 29)(30, 31)(32, 33)(34, 35)(36, 37)(38, 39)

(40, 41)(42, 43)(44, 45)(46, 47)(48, 49)(50, 51)

(52, 53)(54, 55)(56, 57)(58, 59)(60, 61)(62, 63)

(64, 65)(66, 67)(68, 69)(70, 71)(72, 73)(74, 75)(76, 77)

(78, 79)(80, 81)(82, 83)(84, 85)(86, 87)(88, 89)(90, 91)

(92, 93)(94, 95)(96, 97)(98, 99)(100, 101)(102, 103)

(104, 105)(106, 107)(108, 109)(110, 111)(112, 113)(114, 115)

(116, 117)(118, 119)(120, 121)(122, 123)(124, 125)(126, 127).
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Here the additional vertices of the second color are written in gray.
A simple brute force computer calculation shows that the generators gi correspond to

maps
fi : S3(F2)→ S3(F2), X 7→ Pi

TXPi + Si, i = 0, . . . , 4,

where

P0 =

0 1 0
1 0 0
0 0 1

,P1 =

1 0 0
0 1 0
1 0 1

, P2 =

0 1 0
1 1 0
0 0 1

, P3 =

1 0 0
0 0 1
0 1 0

,P4 =

1 0 0
0 1 0
0 0 1

,
S0 = S1 = S2 =S3 =

0 0 0
0 0 0
0 0 0

 , and S4 =

1 0 0
0 0 0
0 0 0

 .

This means that any isometry of S3(F2) can be written in the form (4) which is the statement
of Theorem 4.9.

5 Automorphism Groups of Codes

To understand the structure of a code, it is useful to consider its automorphism group as it
gives information about the symmetries of the code.

Definition 5.1. LetM⊂ Fm×nq and C ⊂ M be a code inM. Denote the group of isometries
from M to itself by Aut(M). The automorphism group of C (with respect to M) AutM(C)
is defined to be the setwise stabilizer of C in Aut(M). If the ambient spaceM is clear from
the context, we simply write Aut(C).

By definition, the automorphism group of a code depends on the ambient space if only
because it consists of maps from the ambient space to itself. That is, AutM1(C) 6= AutM2(C)
whenever C ⊂ M1,M2 andM1 6=M2. This is not surprising but one should note that even
the restriction of those automorphism groups to the code are not isomorphic in general, that
is,

{f |C : C → C | f ∈ AutM1(C)} � {g|C : C → C | g ∈ AutM2(C)}.

The following examples shows this:
Let C ⊂ S2(F3) ⊂ F2×2

3 ,

C =

{
A =

(
0 0
0 0

)
, B =

(
1 0
0 1

)
, C =

(
1 0
0 2

)}
.

From section 4, particularly from formulas (1) and (4), it is clear that every isometry of
S2(F3) can be extended to an isometry of F2×2

3 . But there exist isometries of F2×2
3 such that

there exists no isometry of S2(F3) that acts in the same way on C. Consider the map

f : F2×2
3 → F2×2

3 , X 7→
(

1 0
0 2

)
·X ·

(
1 0
0 1

)
.

This is an isometry of F2×2
3 such that f(C) = C. More precisely, it holds that f(A) = A,

f(B) = C, f(C) = B. So it is to show that there is no isometry g of S2(F3) such that
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g(A) = A, g(B) = C, and g(C) = B. We know from section 4.3 that such a map has the

form g(X) = α

(
a c
b d

)
X

(
a b
c d

)
+ S with α ∈ F∗3 = {1, 2}. By g(A) = A, it is determined

that S is the zero matrix. Assume α = 1. Then the equations(
a c
b d

)(
1 0
0 1

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 2

)
(6)

and (
a c
b d

)(
1 0
0 2

)(
a b
c d

)
=

(
a2 + 2c2 ab+ 2cd
ab+ 2cd b2 + 2d2

)
=

(
1 0
0 1

)
(7)

follow from g(B) = C and g(C) = B. Note that in F3, squares can only equal 0 or 1. So
it follows from a2 + 2c2 = 1—which follows from equation (7)—that a 6= 0, c = 0. Equation
(6) implies that b2 + d2 = 2 which means that neither b nor d can be 0. Together with a 6= 0
and c = 0, it follows that ab+ cd 6= 0 which is a contradiction to equation (6).

Now assume that α = 2. Then g(B) = C and g(C) = B result in

2 ·
(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 2

)
and

2 ·
(
a2 + 2c2 ab+ 2cd
ab+ 2cd b2 + 2d2

)
=

(
1 0
0 1

)
which—equations multiplied by 2—implies that(

a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
2 0
0 1

)
(8)

and (
a2 + 2c2 ab+ 2cd
ab+ 2cd b2 + 2d2

)
=

(
2 0
0 2

)
(9)

hold. Using the same reasoning as above, the bottom right matrix entry of equation (9)
implies that b = 0, d 6= 0 and from the top left matrix entry of expression (8) it follows that
a, c 6= 0. Putting these together results in ab + cd 6= 0 which is a contradiction to (8) and
since α ∈ {1, 2}, it is proved that there exists no isometry g of S2(F3) such that g|C = f |C
even though C ⊂ S2(F3).

As checking whether two codes are isomorphic, it is also a nontrivial problem to determine
the automorphism group of a code. This problem can be outsourced to nauty in a similar
way since the automorphism group AutM(C) can be identified in a natural way with the
automorphism group of the colored graph (ΓM, πC) where (ΓM, π) is the colored graph
associated to the ambient space M and

πC(i) =

{
1, Mi ∈ C
π(i) + 1, Mi /∈ C

is a coloring that distinguishes the vertices corresponding to code matrices from the re-
maining vertices. Nauty provides a set of generators of the automorphism group. Those
generators are translated into a matrix representation of form (3) or (4) using a simple brute
force computer calculation.
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Magma [5] is a useful tool for analyzing the automorphism groups of the classified codes.
For instance, it is used to find “nicer” sets of generators—meaning smaller or better illus-
tratable.

6 Constructions

For constructing codes, different approaches—depending on the problem size—are used and
described in this section. Firstly, two series of Hermitian codes are presented of which one
improves the general lower bound on the maximum code size when 2 = d < n, n even.
Secondly, two different exact algorithms for finding the maximum code size are described
which entail a classification of maximum codes. The first exact algorithm is a successive
execution of an orderly algorithm while the second one utilizes Cliquer. The resulting code
representatives are converted using maps from Section 4 in order to obtain “nicer” represen-
tatives. Since the exact algorithms are unsuitable for larger fields or matrix sizes, the last
subsection is dedicated to a heuristic clique search approach.

6.1 Two Series of Hermitian Codes

Theorem 6.1. C = {(mi,j)1≤i,j≤n ∈ Hn(Fq2) | mi,i = 0 ∀1 ≤ i ≤ n} is an additive code with

minimum distance 2 of size qn(n−1) in Hn(Fq2).

Proof. It is obvious that C is an additive subgroup of Hn(Fq2) and that #C = qn(n−1). So
there is only to show that rk(M) ≥ 2 for all M ∈ C \ {0}. Let M = (mi,j)1≤i,j≤n ∈ C \ {0}.
Then there are k and l (k < l) such that mk,l = a 6= 0. Thus, the submatrix Mk,l =

(mi,j)i,j∈{k,l} =

(
0 a
a 0

)
has rank 2 and therefore M has rank at least 2.

Theorem 6.1 shows that K.-U. Schmidt’s upper bound for additive codes [57, Thm. 1] is
tight not only if n or d is odd or if n = d but also in the case d = 2. However, it remains
unknown whether the bound is tight for 4 ≤ d < n both even.

Theorem 6.2. Let D =

{(
1 a
a 0

)
| a ∈ F∗q2

}
. Then C =

{(
0 0
0 0

)
,

(
1 0
0 1

)}
∪D is a code

in H2(Fq2) with minimum distance 2 of size q2 + 1.

Proof. This is obvious since the difference matrices

(
1 0
0 1

)
,

(
1 a
a 0

)
,

(
0 a
a −1

)
, and(

0 a− b
a − b 0

)
have full rank for all a, b ∈ F∗q2 , a 6= b.

In case of F4, this construction is optimal; additionally, we have the following statement:

Theorem 6.3. The construction from Theorem 6.2 can not be augmented.

Proof. Let M =

(
g b

b h

)
∈ Hn(Fq2) be an arbitrary Hermitian matrix and Da =

(
1 a
a 0

)
.

Consider det(M −Da) = (g − 1)h− (b− a)(b− a). If g = 1 or h = 0, then either b 6= 0, so
we can choose a = b and found a matrix Db ∈ D ⊂ C with drk(M,Db) < 2, or b = 0, so M
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has rank distance less than 2 to the zero or identity matrix. So assume g 6= 1 and h 6= 0.
Then (g − 1)h ∈ F∗q and since the norm map x 7→ xx is a surjective group homomorphism

from F∗q2 to F∗q (see, e.g., [46, Thm. 1.4.9]), there are q2−1
q−1 = q + 1 elements x ∈ F∗q2 such

that xx = (g−1)h. Hence, there are q+1 different choices for a such that det(M −Da) = 0,
and at least q of them are in F∗q2 , so we again found a matrix in D that prevents M from
augmenting the code C.

In [28, Thm. 17], a similar construction of maximal partial spread sets in H2(Fq2) of size
N is given for every integer N in the interval [q2, q2 + q − 1].

6.2 An Orderly Generation Approach

One way to gain a classification of maximum codes with minimum distance ≥ d in the matrix
spaceM is the orderly generation approach. The aim of this approach is to reject isomorphic
copies as early as possible in the generation process. The setting is as follows:

Definition 6.4. See, e.g., [53, p. 106]. A property P of sets is called hereditary if whenever
S satisfies property P then also all subsets of S satisfy property P.

Let G be a group acting on the set V . Let P be a hereditary property of subsets of V
which is independent of the group action, that is, a subset X of V fulfills P if and only if
g.X fulfills P for all g ∈ G. We denote Mk = {X ⊂ V | #X = k and X fullfills P}. Then
G acts on each set Mk by

G×Mk →Mk, (g,X) 7→ g.X

which we call the induced group action of G on Mk. Let Sk ⊂ Mk be a transversal. An
orderly algorithm creates a transversal Sk+1 ⊂ Mk+1 from Sk by taking advantage of total
orders on each set Mk which are mutually compatible in some sense. The theory of orderly
generation was developed by Read [50] in a very general context.

In the following, the orderly algorithm by Royle [53] is presented in Algorithm 1. It is a
specialized and simplified version of the general framework by McKay [43] and is completely
sufficient for our purpose. In this algorithm, the underlying orders are not obvious but they
are implicitly contained in a function θ : 2V → 2V satisfying

1. θ(X) is an orbit of GX on X for all X ⊂ V and

2. θ(g.X) = g.θ(X) for all g ∈ G and all X ⊂ V .

The correctness of Algorithm 1 is proven by the following theorem.

Theorem 6.5. See [53, Thm. 2.1]. Let G be a group acting on a set V , P a hereditary prop-
erty of subsets of V that is independent of the group action, and Sk a set containing precisely
one representative from each G-orbit on k-sets of V that have property P. Additionally, let
θ : 2V → 2V be a function satisfying

1. θ(X) is an orbit of GX on X for all X ⊂ V and

2. θ(g.X) = g.θ(X) for all g ∈ G and all X ⊂ V .

Then the set Sk+1 as defined by Algorithm 1 has the stated properties, that is, it contains
precisely one representative from each G-orbit on (k + 1)-sets of V that have property P.
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Algorithm 1: Orderly Algorithm by Royle, see [53, p. 7].

Input: Set V ,
group G acting on V ,
function θ : 2V → 2V satisfying properties 1 and 2,
hereditary property P that is independent of the group action,
set Sk containing precisely one representative from each G-orbit on k-sets of
V that have property P

Output: Set Sk+1 containing precisely one representative from each G-orbit on
(k + 1)-sets of V that have property P

1 Sk+1 ← ∅;
2 foreach X ∈ Sk do
3 foreach orbit representative x of GX on V \X do
4 if x ∈ θ(X ∪ {x}) and X ∪ {x} has property P then
5 Sk+1 ← Sk+1 ∪ {X ∪ {x}};
6 end

7 end

8 end
9 return Sk+1;

In [53], Royle does not explicitly demand that P should be independent of the group
action, but otherwise this search for representatives makes no sense.

Theorem 6.5 means that Algorithm 1 is an orderly algorithm (see [53, p. 107]). Here
the map θ takes responsibility that the set Sk+1 contains exactly one representative of each
isomorphism class.

Proof. See, [53, p. 107]. Let X ′ ⊂ V be a set of cardinality k+ 1 satisfying property P. We
have to show that Sk+1 contains exactly one isomorphic copy of X ′.

First we show that Sk+1 contains at least one isomorphic copy of X ′. Let x ∈ θ(X ′).
Since θ(X ′) ⊂ X ′, X = X ′ \ {x} has cardinality k. Remember that P is hereditary, so
X satisfies P. Therefore there is a set Y in the same G-orbit as X contained in Sk, say
Y = g.X.

Augmenting Y , at some stage, we consider an element y ∈ V that is in the same orbit
under GY as g.x, that is, there is an element g′ ∈ G such that y = (g′g).x and Y = g′.Y =
(g′g).X. Then Y ∪ {y} = (g′g).X ′, so Y ∪ {y} satisfies property P and from x ∈ θ(X ′)
follows

y = (g′g).x ∈ (g′g).θ(X ′) = θ((g′g).X ′) = θ(Y ∪ {y}).

This means that Y ∪ {y} = (g′g).X ′ is contained in Sk+1.
Now suppose that Sk+1 contains at least two different isomorphic copies Y ′ and Z ′ of X ′,

that is, Y ′ = g.X ′ and Z ′ = h.X ′ for some g, h ∈ G. Then there exist y ∈ Y ′ and z ∈ Z ′ such
that Y ′ is augmented from Y = Y ′ \ {y} ∈ Sk and Z ′ is augmented from Z = Z ′ \ {z} ∈ Sk.
Hence y ∈ θ(Y ′) and z ∈ θ(Z ′). Reformulating this gives that g−1.y and h−1.z both are in
θ(X ′), so there is an element f ∈ GX′ such that

g−1.y = (fh−1).z. (10)
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Now we see that

Y = g.(X ′ \ {g−1.y})
= g.(X ′ \ {(fh−1).z})
= (gf).(X ′ \ {h−1.z})
= (gfh−1).Z.

So Z is an isomorphic copy of Y and since Y, Z ∈ Sk, this means that Y = Z and gfh−1 ∈
GY . Together with (10), this means that y and z are in the same orbit under GY which is
a contradiction to line 3 of Algorithm 1.

Procedure Augment(Sk;M, (ΓM, π), d).

1 G← Aut(ΓM, π);
2 Sk+1 ← ∅;
3 forall the X ∈ Sk do
4 forall the v ∈M \X do
5 if v has the lowest label in its orbit under GX then
6 if drk(v, v′) ≥ d for all v′ ∈ X then
7 if v is in the same orbit under GX∪{v} as the vertex with canonical

label 0 then
8 Sk+1 ← Sk+1 ∪ {X ∪ {v}};
9 end

10 end

11 end

12 end

13 end
14 return Sk+1;

We now want to use this orderly algorithm to find all isomorphism classes of maxi-
mum codes with a minimum distance at least a fixed number d in a matrix space M ∈
{Fm×nq ,Sn(Fq),Hn(Fq2)}. For this, we need to specify V , G, P, and θ.

As set V and group G, we use the vertex set of the colored graph (ΓM, π) described in
section 4.4 and its automorphism group. The property P is a pairwise rank distance of at
least d, which is obviously hereditary. In case M = S3(F2), we additionally demand that
the set is a subset of the vertices of the first color. It remains to define the map θ such that
it fulfills properties 1 and 2 required by Theorem 6.5.

Royle describes in [53, p. 107] how θ can be defined in the case that V is the vertex
set of a graph Γ and G is the automorphism group of Γ. For this, we need to know that—
besides determining the automorphism group of a graph—nauty can perform an operation
called canonical labeling. A canonical labeling of a (colored) graph is a renumeration of
the vertices in a manner that is independent of the initial labeling and such that isomorphic
graphs become identical by canonical labeling (see [44, p. 3]). There are different possibilities
to define a canonical labeling; the one used by nauty is designed to be computed efficiently,
see, e.g., [53, p. 106]. In addition, the coloring (remember Definition 4.12) of a canonical
colored graph as produced by nauty has the property to be nondecreasing, see [44, p 3].
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Algorithm 2: Algorithm for classification of maximum codes, based on Algorithm 1.

Input: Matrix set M∈ {Fm×nq ,Sn(Fq),Hn(Fq2)},
lower bound d for the minimum distance

Output: Maximum code size m and set Sm containing precisely one representative of
each isomorphism class of maximum codes

1 Create colored graph (ΓM, π);
2 S0 ← {∅};
3 k ← 0;
4 while Sk 6= ∅ do
5 Sk+1 ← Augment(Sk;M, (ΓM, π), d);
6 k ← k + 1;

7 end
8 return (k − 1, Sk−1);

With this knowledge, Royle defines θ in the following way: For a fixed set X ∈ 2V , equip
graph Γ with the coloring

π(v) =

{
1, v ∈ X
2, v /∈ X

and label this colored graph canonically using nauty. Let v be the vertex of Γ that is
mapped to 0 by canonical labeling. Then define θ(X) to be the orbit of GX which contains
v. Procedure Augment() is the adaption of Algorithm 1. Algorithm 2 executes Procedure
Augment() repeatedly, each with the output of the preceding step and starting with S0 = ∅.

Algorithm 1 and therefore Procedure Augment() can be parallelized by partitioning the
input set Sk and combining the output sets. Using this, the implementation of Algorithm
2 is split up via Bash script into 8 processes. Anyway, it turns out that this approach
is pointless in almost all symmetric and Hermitian cases. Table 4 lists the cardinality of
Sk and the computation time on an Intel Core i7 3770 for each single augmentation step
for each completed and three aborted calculations. The calculation time in the case M =
H2(F16) adds up to approximately 15 hours. In Figure 2, the values of #Sk are plotted
for the completely computed runs (black lines) and the aborted ones (gray lines). Note the
logarithmic scale. The dashed continuation of case H2(F25) is an estimation based on the
augmentation of two of the 55,691,107 representatives of size eight. On the basis of those
two computation times which amount to approximately 11.5 and 49.5 hours it is estimated
that the total computation time of this case would reach 200,000 years.

In the following, the codes classified by the orderly algorithm are described in detail. At

this, a code of size N is denoted by CN and by C(i)
N if there is more than one isomorphism

class. Orbits that are significant for the description of the code are denoted by OM , where M

is the length of the orbit, or O(j)
M if there is more than one interesting orbit of that length.

Since Hn(Fq2) is a vector space over Fq (but not over Fq2), in case q > 2, it makes
sense to say that matrices are collinear or to speak about lines. It should be noted that
collinearity is invariant under the action of AutM(C) if M∈ {Fm×nq ,Sn(Fq),Hn(Fq2)} since
the automorphisms then are of the form (1), (2), (3), or (4).

25



Table 4: Number of representatives (#Sk) and computing time in seconds seperately for
each set size k in all completed (on the left) and aborted (on the right) cases.

k H2(F4) H2(F9) H2(F16) S3(F2) H2(F25) H3(F4) S3(F3)

# repr. time # repr. time # repr. time # repr. time # repr. time # repr. time # repr. time

1 1 0 1 0 1 0 1 0 1 1 1 2 1 3
2 1 0 1 0 1 0 3 0 1 1 2 6 3 4
3 1 0 3 0 4 1 10 0 6 2 7 6 31 5
4 2 0 9 0 21 0 65 0 89 2 107 6 1467 10
5 1 0 24 0 140 1 280 0 2317 11 3646 17 147559 203
6 – – 51 1 1473 1 1304 0 80105 159 215129 370 ?? ??
7 80 0 13275 5 4575 1 2395603 3566 11732851 17996
8 97 0 93442 31 12762 2 55691107 82018 ?? ??
9 83 0 489215 170 27103 4 ?? ??

10 43 0 1900458 706 44940 7
11 16 0 5477871 2205 57069 10
12 7 0 11750349 5140 56194 11
13 2 1 18757108 8949 42183 10
14 1 0 22235145 11472 24183 6
15 1 0 19450778 10945 10335 3
16 – – 12424803 7695 3421 1
17 5705868 3937 847 1
18 1848255 1452 180 0
19 412293 386 38 0
20 61675 75 9 0
21 6157 11 2 0
22 471 2 1 0
23 41 0 – –
24 7 1
25 – –

Figure 2: Number of representatives for each set size k in all completed (black) and aborted
(gray) cases. The dashed continuation is an estimate.
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6.2.1 Maximum Code in H2(F4) with d = 2

In H2(F4), the maximum code size is 5 and there exists only one isomorphism class. One
representative

C5 =

{
M4 =

(
1 0
0 0

)
,M8 =

(
0 0
0 1

)
,M13 =

(
1 1
1 1

)
,M14 =

(
1 1 +X
X 1

)
,M15 =

(
1 X

1 +X 1

) }
consists of all five rank-1-matrices.

The size of the automorphism group is 120, there are three orbits: The zero matrix is
a fixed point, the second orbit consists of the code (5 rank-1-matrices) and the third orbit
consists of the 10 rank-2-matrices.

The automorphism group is generated by the two maps

g1 : H2(F4)→ H2(F4), C 7→ P1
T
· C · P1 with P1 =

(
0 X
1 1

)
and

g2 : H2(F4)→ H2(F4), C 7→ C.

The restrictions of the automorphisms to the code, generated by

g1|C5 =(M4,M8,M13,M14,M15) and

g2|C5 =(M14,M15),

form the full symmetric group on the 5 elements of the code.

6.2.2 Maximum Code in H2(F9) with d = 2

In H2(F9), a maximum code with minimum distance 2 is of size 15 and there is only one
isomorphism class of maximum codes. Via the connection given by Lemma 3.7, this confirms
the result of Ebert and Hirschfeld [18, Section 4] who found that a maximum partial spread
in H(3, 9) has size 16.

The following set constitutes a representative of a maximum code:

C15 =

{
M9 =

(
1 0
0 0

)
, M22 =

(
2 1 + 2X

1 +X 0

)
, M26 =

(
2 2 +X

2 + 2X 0

)
,

M27 =
(

0 0
0 1

)
, M50 =

(
2 2 + 2X

2 +X 1

)
, M52 =

(
2 1 +X

1 + 2X 1

)
,

M59 =
(

0 2 + 2X
2 +X 2

)
, M61 =

(
0 1 +X

1 + 2X 2

)
, M67 =

(
1 1 + 2X

1 +X 2

)
,

M71 =
(

1 2 +X
2 + 2X 2

)
, M72 =

(
2 0
0 2

)
, M73 =

(
2 1
1 2

)
,

M74 =
(

2 2
2 2

)
, M75 =

(
2 2X
X 2

)
, M78 =

(
2 X

2X 2

) }
The 15 matrices of C15 lie on 15 lines, such that every matrix lies on three lines and every

line goes through three matrices. Figure 3 is a stellar realization (cf., e.g., [3, fig. 2]) of this
configuration known as Cremona-Richmond configuration. This geometrical configuration is
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Figure 3: Stucture of maximum code in H2(F9).
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described in detail in [51]. Richmond shows that if one chooses six points in general linear
position, that is, such that no five of them lie in one hyperplane, from a four-dimensional
space (according to [16, 38], Richmond means projective space), then the intersection points
of a line through two points and a space through the remaining four points (he calls those
intersection points diagonal points) lie by threes on 15 lines. For the history of the Cremona-
Richmond configuration, see [3, chapter 6].

By the relation of section 3.3.1, the code C15 corresponds to a maximal partial spread in
H(3, 9) which is related to the Kummer surface (see [18, Sections 4, 5]). We remark that a
connection between the Kummer surface and the Cremona-Richmond configuration is also
given in [19] in a different context.

The automorphism group of C15 has size 720 and is generated by the following two maps:

g1 : H2(F9)→ H2(F9), C 7→ P1
T
· C · P1 with P1 =

(
1 +X 2X
1 +X 1 +X

)
g2 : H2(F9)→ H2(F9), C 7→ P2

T
· C · P2 + I2 with P2 =

(
0 1 +X

2 + 2X 0

)
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Their restrictions to C15 are as follows:

g1|C15 = (M26,M59,M61,M22,M72) (M9,M50,M75,M78,M52) (M27,M74,M67,M71,M73)

g2|C15 = (M26,M71) (M59,M50) (M61,M52) (M22,M67)

Applying g1 to C15 as illustrated in Figure 3 means rotating the figure by 72◦. The second
generator g2 is not visualizable that nice. However, the fixed points of g2|C15 are M72 and
those six matrices that together form the three lines through M72, namely M9 and M27, M73

and M74, and M75 and M78.
Outside of the code, there is an orbit O6 of length 6. The representative of the maximum

code is chosen such that O6 contains the zero matrix and the identity matrix.

O6 =

{
M0 =

(
0 0
0 0

)
,M13 =

(
1 1 + 2X

1 +X 0

)
,M17 =

(
1 2 +X

2 + 2X 0

)
,

M32 =
(

0 2 + 2X
2 +X 1

)
,M34 =

(
0 1 +X

1 + 2X 1

)
,M36 =

(
1 0
0 1

) }
Looking at the restrictions of g1 and g2 to O6,

g1|O6 = (M13,M34,M32,M17,M36)

and

g2|O6 = (M0,M36) ,

one can see that the restriction of the automorphism group to O6 is the symmetric group
on 6 elements.

This orbit of length 6 attracts our attention since Richmond’s construction starts with
six points. Indeed, it turns out that the fifteen matrices of the code are determined by the
orbit of length 6 in the following way: Choose two matrices of O6 (note that

(
6
2

)
= 15), put

a line through these two matrices, and the third point on each of these lines is exactly one
element in the code C15. Equivalently, one can construct the points of C15 by intersecting a
line through two matrices of O6 with the space trough the remaining four matrices of O6.
This accords exactly with Richmond’s construction. Which matrix of C15 lays on which line
through matrices of O6 is illustrated in Table 5.

When partitioning O6 = {Ma1 ,Ma2}∪{Mb1 ,Mb2}∪{Mc1 ,Mc2} into three sets of size two,
the three matrices Ma,Mb,Mc ∈ C15 which are the third points on a line through each two
matrices of one subset are collinear. Since there are exactly 15 possibilities of partitioning
O6 in sets of 2, this corresponds precisely to the 15 lines of C15.

Table 5: Construction of C15: The matrices of O6 to put a line through to obtain a matrix
in the code C15 are marked with an “X”.

Matrix M9 M22 M26 M27 M50 M52 M59 M61 M67 M71 M72 M73 M74 M75 M78

li
es

o
n

li
n

e
th

ro
u

g
h

m
a
tr

ic
es

M0 X X X X X
M13 X X X X X
M17 X X X X X
M32 X X X X X
M34 X X X X X
M36 X X X X X
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6.2.3 The Isomorphism Classes of Maximum Codes in H2(F16) with d = 2

In H2(F16), the maximum size of a code with minimum distance 2 is 24 and there are seven
isomorphism classes of maximum codes. Figures 4, 5, 7, 8, and 9 show collinearity (as thin
lines) and full lines (as thick lines) in the codes of type 1, 2, 3, 6, and 7. In those figures,
additionally, the orbits of the automorphisms groups are shaded in gray. Type 4 contains no
collinear points and type 5 only a single full line. For each type a representative is described
in detail in the following.

Type 1: The automorphism group of C(1)
24 is of size 12 and has one orbit O4 of length 4 out-

side the code. The representative can be chosen such thatO4 = {M0,M16,M32,M48} consists

of the matrices of the form

(
a 0
0 0

)
, where a ∈ {0, 1, X2 +X3, 1 +X2 +X3} = F4 ⊂ F16.

The code C(1)
24 itself is partitioned in two orbits of length 12:

O(1)
12 =

{
M1 =

(
0 1
1 0

)
, M2 =

(
0 1 +X +X2 +X3

X 0

)
,

M6 =
(

0 1 +X +X2

X +X2 0

)
, M8 =

(
0 X2

X3 0

)
,

M12 =
(

0 X2 +X3

X2 +X3 0

)
, M13 =

(
0 1 +X2 +X3

1 +X2 +X3 0

)
,

M23 =
(

1 X +X2

1 +X +X2 0

)
, M31 =

(
1 X

1 +X +X2 +X3 0

)
,

M41 =
(
X2 +X3 1 +X2

1 +X3 0

)
, M43 =

(
X2 +X3 X +X3

1 +X +X3 0

)
,

M51 =
(

1 +X2 +X3 X +X2 +X3

1 +X 0

)
, M53 =

(
1 +X2 +X3 1 +X3

1 +X2 0

) }
and

O(2)
12 =

{
M74 =

(
0 1 +X +X3

X +X3 1

)
, M81 =

(
1 1
1 1

)
,

M91 =
(

1 X +X3

1 +X +X3 1

)
, M110 =

(
X2 +X3 1 +X

X +X2 +X3 1

)
,

M128 =
(

0 0
0 X2 +X3

)
, M131 =

(
0 X +X2 +X3

1 +X X2 +X3

)
,

M137 =
(

0 1 +X2

1 +X3 X2 +X3

)
, M158 =

(
1 1 +X

X +X2 +X3 X2 +X3

)
,

M197 =
(

0 1 +X3

1 +X2 1 +X2 +X3

)
, M199 =

(
0 X +X2

1 +X +X2 1 +X2 +X3

)
,

M217 =
(

1 1 +X2

1 +X3 1 +X2 +X3

)
, M225 =

(
X2 +X3 1

1 1 +X2 +X3

) }
.

The orbit O(1)
12 consists of three full lines whereas the second orbit O(2)

12 considered sep-

arately contains no collinear points (see Figure 4). Outside of the code C(1)
24 , there are

further 19 orbits of size 12 additionally to the already mentioned orbit O4.

The automorphism group Aut(C(1)
24 ) is generated by the maps

g1 : H2(F16)→ H2(F16), C 7→ P1
T
· σ(C) · P1 + S1

with P1 =

(
1 +X +X3 0

1 +X2 1

)
and S1 =

(
1 0
0 0

)
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Figure 4: Stucture of maximum code in H2(F16), type 1.
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where σ : F16 → F16, x 7→ x2 is the Frobenius automorphism and

g2 : H2(F16)→ H2(F16), C 7→ P2
T
· C · P2 + S2

with P2 =

(
1 0

X +X3 1 +X2

)
and S2 =

(
1 +X2 +X3 0

0 0

)
.

Magma tells that Aut(C(1)
24 ) is isomorphic to the dicyclic group Dic3

∼= C3 o C4 where Cn

denotes the cyclic group of order n. The restrictions of the generators to O4 and C(1)
24 are as

follows:

g1|O4 =(M0,M16,M48,M32),

g2|O4 =(M0,M48)(M16,M32),

g1|C(1)24

=(M1,M43,M31,M53)(M2,M13,M8,M41)(M6,M23,M12,M51)

(M74,M81,M110,M91)(M128,M199,M158,M217)(M131,M225,M137,M197),

g2|C(1)24

=(M1,M41,M12,M31,M13,M6)(M2,M43,M23,M8,M53,M51)

(M74,M137,M217,M110,M131,M199)(M81,M158,M225,M91,M128,M197).

Type 2: Aut(C(2)
24 ) decomposes C(2)

24 into the following orbits: Two fixed points—the rep-

resentative is chosen such that those are the zero matrix M0 =

(
0 0
0 0

)
and the identity
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Figure 5: Stucture of maximum code in H2(F16), type 2.
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matrix M80 =

(
1 0
0 1

)
—, an orbit

O2 =

{
M176 =

(
1 +X2 +X3 0

0 X2 +X3

)
, M224 =

(
X2 +X3 0

0 1 +X2 +X3

) }
,

of length 2 and two orbits of length 10, namely

O(1)
10 =

{
M3 =

(
0 X +X2 +X3

1 +X 0

)
, M5 =

(
0 1 +X3

1 +X2 0

)
,

M6 =
(

0 1 +X +X2

X +X2 0

)
, M7 =

(
0 X +X2

1 +X +X2 0

)
,

M9 =
(

0 1 +X2

1 +X3 0

)
, M10 =

(
0 1 +X +X3

X +X3 0

)
,

M11 =
(

0 X +X3

1 +X +X3 0

)
, M12 =

(
0 X2 +X3

X2 +X3 0

)
,

M13 =
(

0 1 +X2 +X3

1 +X2 +X3 0

)
, M14 =

(
0 1 +X

X +X2 +X3 0

) }
and

O(2)
10 =

{
M17 =

(
1 1
1 0

)
, M18 =

(
1 1 +X +X2 +X3

X 0

)
,

M20 =
(

1 X3

X2 0

)
, M24 =

(
1 X2

X3 0

)
,

M31 =
(

1 X
1 +X +X2 +X3 0

)
, M65 =

(
0 1
1 1

)
,

M66 =
(

0 1 +X +X2 +X3

X 1

)
, M68 =

(
0 X3

X2 1

)
,

M72 =
(

0 X2

X3 1

)
, M79 =

(
0 X

1 +X +X2 +X3 1

) }
.
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Figure 6: The lines of the pentagram of Figure 5 resp. Figure 9 as elements of F5.
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The matrices in O(1)
10 form five full lines and the zero matrix lies on further five lines

spanned by matrices of O(1)
10 as Figure 5 shows. However, the other orbits of C(2)

24 contain no
collinear points.

Outside of the code, there are each two orbits of lengths 2, 4, and 5, five orbits of
length 10, and eight orbits of length 20.

The automorphism group Aut(C(2)
24 ) has order 40 and is generated by the three maps g1, g2,

and g3 with

gi : H2(F16)→ H2(F16), C 7→ Pi
T
· σi(C) · Pi

with P1 =

(
X2 +X + 1 0

0 1

)
, P2 =

(
X 0
0 1

)
, and P3 =

(
0 1
1 0

)
where σ1 = idF16 is the identity on F16, σ2 : F16 → F16, x 7→ x2 is the Frobenius automor-
phism, and σ3 : F16 → F16, x 7→ x is the conjugation.

Their restrictions to C(2)
24 are the following:

g1|C(2)24

=(M3,M6,M12,M7,M14)(M5,M10,M11,M9,M13)

(M17,M18,M20,M24,M31)(M65,M66,M68,M72,M79)

g2|C(2)24

=(M3,M10,M12,M5)(M6,M9)(M7,M11,M14,M13)

(M17,M18,M24,M20)(M65,M66,M72,M68)

(M176,M224)

g3|C(2)24

=(M17,M65)(M18,M66)(M20,M68)(M24,M72)(M31,M79)

(M176,M224)

In Figure 5, g1 acts as a rotation by 72◦ of the pentagram and the pentagonal orbit, g2
2
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as a reflection with respect to the vertical axis of the pentagram and the inner pentagon,
and g3 as the transposition of the inner and the outer pentagon and the two matrices of O2.

Magma tells that Aut(C(2)
24 ) is isomorphic to C2 × (F5 oF∗5) where C2 is the cyclic group

of order 2 and F5 o F∗5 is the Frobenius group of order 20. The group of the restrictions of

the automorphisms to the orbit O(1)
10 is isomorphic to F5 o F∗5 and generated by g1|O(1)

10

and

g2|O(1)
10

. If one identifies the lines of the pentagram of Figure 5 with F5 as done in Figure 6,

the actions of those two restrictions on the lines of the pentagram correspond to the actions
of “+1” and “·2”. This means that we can identify F5oF∗5 explicitly with the affine general
linear group AGL1(F5).

Type 3: The decomposition of C(3)
24 into orbits under its automorphism group also contains

two fixed points that were chosen to be the zero matrix M0 =

(
0 0
0 0

)
and the identity matrix

M80 =

(
1 0
0 1

)
. Besides them, this code contains seven orbits of length 2, namely

O(1)
2 =

{
M3 =

(
0 X +X2 +X3

1 +X 0

)
, M12 =

(
0 X2 +X3

X2 +X3 0

) }
,

O(2)
2 =

{
M5 =

(
0 1 +X3

1 +X2 0

)
, M10 =

(
0 1 +X +X3

X +X3 0

) }
,

O(3)
2 =

{
M7 =

(
0 X +X2

1 +X +X2 0

)
, M14 =

(
0 1 +X

X +X2 +X3 0

) }
,

O(4)
2 =

{
M11 =

(
0 X +X3

1 +X +X3 0

)
, M13 =

(
0 1 +X2 +X3

1 +X2 +X3 0

) }
,

O(5)
2 =

{
M22 =

(
1 1 +X +X2

X +X2 0

)
, M70 =

(
0 1 +X +X2

X +X2 1

) }
,

O(6)
2 =

{
M31 =

(
1 X

1 +X +X2 +X3 0

)
, M79 =

(
0 X

1 +X +X2 +X3 1

) }
,

and

O(7)
2 =

{
M41 =

(
X2 +X3 1 +X2

1 +X3 0

)
, M137 =

(
0 1 +X2

1 +X3 X2 +X3

) }
and two orbits of length 4 which are

O(1)
4 =

{
M33 =

(
X2 +X3 1

1 0

)
, M40 =

(
X2 +X3 X2

X3 0

)
,

M129 =
(

0 1
1 X2 +X3

)
, M136 =

(
0 X2

X3 X2 +X3

) }
and

O(2)
4 =

{
M50 =

(
1 +X2 +X3 1 +X +X2 +X3

X 0

)
, M52 =

(
1 +X2 +X3 X3

X2 0

)
,

M194 =
(

0 1 +X +X2 +X3

X 1 +X2 +X3

)
, M196 =

(
0 X3

X2 1 +X2 +X3

) }
.

Those matrices are arranged in lines as Figure 7 shows. Note that, although it looks
differently, the matrices M0 and M7 lie on a different line with M5 as the matrices M40 and
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Figure 7: Stucture of maximum code in H2(F16), type 3.
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M52. The same applies to the lines through M0, M14, and M10 and through M10, M129, and
M194.

Outside of the code, there are further 14 fixed points, 41 orbits of length 2, and 34 orbits

of length 4. The overall 16 fixed points of Aut(C(3)
24 ) are exactly the matrices

(
a b

b a

)
with

a ∈ F4 = {0, 1, X2 +X3, 1 +X2 +X3} and b ∈ {0, X, 1 +X +X2, 1 +X2} = X · F4.
The automorphism group has order 4 and is isomorphic to the Klein four-group C2×C2.

It is generated by the two maps

g1 : H2(F16)→ H2(F16), C 7→ P1
T
· C · P1 with P1 =

(
0 X2

1 0

)
and

g2 : H2(F16)→ H2(F16), C 7→ P2
T
· C · P2 with P2 =

(
0 1
1 0

)
.

In Figure 7,

g1|C(3)24

=(M3,M12)(M5,M10)(M7,M14)(M11,M13)

(M22,M70)(M31,M79)(M33,M136)(M40,M129)(M41,M137)(M50,M196)(M52,M194)

acts as a reflection with respect to the vertical axis while

g2|C(3)24

=(M22,M70)(M31,M79)(M33,M129)(M40,M136)(M41,M137)(M50,M194)(M52,M196)

interchanges the two lower spikes.

Type 4: The code C(4)
24 contains no collinear points at all. Aut(C(4)

24 ) partitions it into an
orbit

O4 =

{
M0 =

(
0 0
0 0

)
, M18 =

(
1 1 +X +X2 +X3

X 0

)
,

M66 =
(

0 1 +X +X2 +X3

X 1

)
, M80 =

(
1 0
0 1

) }
of length 4 and an orbit of length 20, namely

O20 =

{
M37 =

(
X2 +X3 1 +X3

1 +X2 0

)
, M55 =

(
1 +X2 +X3 X +X2

1 +X +X2 0

)
,

M103 =
(

X2 +X3 X +X2

1 +X +X2 1

)
, M117 =

(
1 +X2 +X3 1 +X3

1 +X2 1

)
,

M129 =
(

0 1
1 X2 +X3

)
, M132 =

(
0 X3

X2 X2 +X3

)
,

M138 =
(

0 1 +X +X3

X +X3 X2 +X3

)
, M141 =

(
0 1 +X2 +X3

1 +X2 +X3 X2 +X3

)
,

M147 =
(

1 X +X2 +X3

1 +X X2 +X3

)
, M150 =

(
1 1 +X +X2

X +X2 X2 +X3

)
,

M152 =
(

1 X2

X3 X2 +X3

)
, M159 =

(
1 X

1 +X +X2 +X3 X2 +X3

)
,

M195 =
(

0 X +X2 +X3

1 +X 1 +X2 +X3

)
, M198 =

(
0 1 +X +X2

X +X2 1 +X2 +X3

)
,
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M200 =
(

0 X2

X3 1 +X2 +X3

)
, M207 =

(
0 X

1 +X +X2 +X3 1 +X2 +X3

)
,

M209 =
(

1 1
1 1 +X2 +X3

)
, M212 =

(
1 X3

X2 1 +X2 +X3

)
,

M218 =
(

1 1 +X +X3

X +X3 1 +X2 +X3

)
, M221 =

(
1 1 +X2 +X3

1 +X2 +X3 1 +X2 +X3

) }
.

Outside of C(4)
24 , there are each one orbits of lengths 4, 8, 20, and 80 and three orbits of

length 40.

The automorphism group Aut(C(4)
24 ) has order 160 and—according to Magma—is iso-

morphic to D4 × (F5 o F∗5) where D4 is the dihedral group of order 8 and (F5 o F∗5) is the
Frobenius group of order 20. It is generated by the maps

g1 : H2(F16)→ H2(F16), C 7→ P1
T
· σ(C) · P1

with P1 =

(
1 +X 1 +X2 +X3

1 +X +X3 X2 +X3

)
,

g2 : H2(F16)→ H2(F16), C 7→ P2
T
· C · P2 + S2

with P2 =

(
1 0
X 1

)
and S2 =

(
1 1 +X +X2 +X3

X 0

)
,

and

g3 : H2(F16)→ H2(F16), C 7→ P3
T
· σ(C) · P3 + S3

with P3 =

(
1 0
X2 X

)
and S3 =

(
1 0
0 1

)
,

where σ : F16 → F16, x 7→ x2 is the Frobenius automorphism. Restricting those generators

to C(4)
24 gives

g1|C(4)24

=(M37,M159,M138,M198)(M55,M141,M152,M212)(M103,M221,M200,M132)

(M117,M207,M218,M150)(M129,M147)(M195,M209),

g2|C(4)24

=(M0,M18)(M37,M55)(M129,M132)(M138,M159)(M141,M152)

(M147,M150)(M195,M212)(M198,M209)(M200,M207)(M218,M221),

and

g3|C(4)24

=(M0,M80,M18,M66)(M37,M103,M55,M117)(M129,M138,M150,M159)

(M132,M141,M147,M152)(M195,M218,M212,M207)(M198,M221,M209,M200).

Type 5: The only difference between C(5)
24 and C(4)

24 is that the matrices M18 and M66 are

replaced by M160 and M240, such that the orbit O4 forms a line in C(5)
24 . The orbits

O4 =

{
M0 =

(
0 0
0 0

)
, M80 =

(
1 0
0 1

)
,

M160 =
(
X2 +X3 0

0 X2 +X3

)
, M240 =

(
1 +X2 +X3 0

0 1 +X2 +X3

) }

37



and

O20 =

{
M37 =

(
X2 +X3 1 +X3

1 +X2 0

)
, M55 =

(
1 +X2 +X3 X +X2

1 +X +X2 0

)
,

M103 =
(

X2 +X3 X +X2

1 +X +X2 1

)
, M117 =

(
1 +X2 +X3 1 +X3

1 +X2 1

)
,

M129 =
(

0 1
1 X2 +X3

)
, M132 =

(
0 X3

X2 X2 +X3

)
,

M138 =
(

0 1 +X +X3

X +X3 X2 +X3

)
, M141 =

(
0 1 +X2 +X3

1 +X2 +X3 X2 +X3

)
,

M147 =
(

1 X +X2 +X3

1 +X X2 +X3

)
, M150 =

(
1 1 +X +X2

X +X2 X2 +X3

)
,

M152 =
(

1 X2

X3 X2 +X3

)
, M159 =

(
1 X

1 +X +X2 +X3 X2 +X3

)
,

M195 =
(

0 X +X2 +X3

1 +X 1 +X2 +X3

)
, M198 =

(
0 1 +X +X2

X +X2 1 +X2 +X3

)
,

M200 =
(

0 X2

X3 1 +X2 +X3

)
, M207 =

(
0 X

1 +X +X2 +X3 1 +X2 +X3

)
,

M209 =
(

1 1
1 1 +X2 +X3

)
, M212 =

(
1 X3

X2 1 +X2 +X3

)
,

M218 =
(

1 1 +X +X3

X +X3 1 +X2 +X3

)
, M221 =

(
1 1 +X2 +X3

1 +X2 +X3 1 +X2 +X3

) }
(which is exactly the same as O20 of type 4) are (re)printed for the sake of completeness.

Outside of C(5)
24 , there are three orbits of length 4—one of them coinciding with the orbit

of length 4 outside of C(4)
24 —, seven orbits of length 20, and two orbits of length 40.

The automorphism group Aut(C(4)
24 ) has order 80 and Magma states that it is isomorphic

to the semidirect product (C2 × C2)o (F5 o F∗5) of the Klein four-group and the Frobenius
group of order 20.

The generators of Aut(C(4)
24 ) are

g1 : H2(F16)→ H2(F16), C 7→ P1
T
· σ(C) · P1 + S1

with P1 =

(
0 X2

1 0

)
and S1 =

(
1 +X2 +X3 0

0 1 +X2 +X3

)
,

and

g2 : H2(F16)→ H2(F16), C 7→ P2
T
· σ(C) · P2 + S2

with P2 =

(
1 +X 1 +X3

X +X3 1 +X

)
and S2 =

(
1 0
0 1

)
,

where σ : F16 → F16, x 7→ x2 is the Frobenius automorphism. The action of these generators

on C(5)
24 is given by

g1|C(5)24

=(M0,M240,M80,M160)(M37,M55,M117,M103)(M129,M200,M212,M159)

(M132,M207,M209,152)(M138,M198,M221,M147)(M141,M195,M218,M150)

and

g2|C(5)24

=(M0,M80)(M37,M200,M141,M147)(M55,M218,M159,M129)(M103,M138,M207,M209)

(M117,M152,M221,M195)(M132,M198)(M150,M212).
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Type 6: C(6)
24 consists of two fixed points—again chosen to be the zero matrix M0 =

(
0 0
0 0

)
and the identity matrix M80 =

(
1 0
0 1

)
—,three orbits of length 2

O(1)
2 =

{
M10 =

(
0 1 +X +X3

X +X3 0

)
, M14 =

(
0 1 +X

X +X2 +X3 0

) }
O(2)

2 =

{
M20 =

(
1 X3

X2 0

)
, M68 =

(
0 X3

X2 1

) }
O(3)

2 =

{
M176 =

(
1 +X2 +X3 0

0 X2 +X3

)
, M224 =

(
X2 +X3 0

0 1 +X2 +X3

) }
,

two orbits of length 4

O(1)
4 =

{
M5 =

(
0 1 +X3

1 +X2 0

)
, M6 =

(
0 1 +X +X2

X +X2 0

)

M11 =
(

0 X +X3

1 +X +X3 0

)
, M12 =

(
0 X2 +X3

X2 +X3 0

) }
O(2)

4 =

{
M3 =

(
0 X +X2 +X3

1 +X 0

)
, M7 =

(
0 X +X2

1 +X +X2 0

)

M9 =
(

0 1 +X2

1 +X3 0

)
, M13 =

(
0 1 +X2 +X3

1 +X2 +X3 0

) }
,

and one orbit of length 8

O8 =

{
M34 =

(
X2 +X3 1 +X +X2 +X3

X 0

)
, M40 =

(
X2 +X3 X2

X3 0

)
,

M49 =
(

1 +X2 +X3 1
1 0

)
, M63 =

(
1 +X2 +X3 X

1 +X +X2 +X3 0

)
,

M130 =
(

0 1 +X +X2 +X3

X X2 +X3

)
, M136 =

(
0 X2

X3 X2 +X3

)
,

M193 =
(

0 1
1 1 +X2 +X3

)
, M207 =

(
0 X

1 +X +X2 +X3 1 +X2 +X3

) }
under its automorphism group. The collinearity of those matrices is shown in Figure 8.

Outside of C(6)
24 , there are two further fixed points, seven orbits of length 2, 20 orbits of

length 4, and 17 orbits of length 8. The all in all four fixed points do not lie on one line but
fulfill that their sum is the zero matrix. This property is independent of the representative
since a different representative always arises by application of a map of form (4), 4 · S = 0
in characteristic 2, and the rest of the map can be placed outside brackets.

The automorphism group is isomorphic to C2×C4 and thereby has order 8. It is generated
by the two maps g1 and g2,

gi : H2(F16)→ H2(F16), C 7→ Pi
T
· σi(C) · Pi

with P1 =

(
X 0
0 1

)
and P2 =

(
0 1
1 0

)
,

where σ1 : F16 → F16, x 7→ x8 and σ2 : F16 → F16, x 7→ x.
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Figure 8: Stucture of maximum code in H2(F16), type 6.
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The restrictions of those generators to C(6)
24 are

g1|C(6)24

=(M3,M13,M7,M9)(M5,M6,M11,M12)(M10,M14)

(M34,M63,M40,M49)(M130,M207,M136,M193)(M176,M224)

and

g2|C(6)24

=(M20,M68)(M34,M130)(M40,M136)(M49,M193)(M63,M207)(M176,M224).

In Figure 8, g2
1 acts by reflecting each of the three spikes with respect to its vertical axis

while g2 interchanges the two bottom spikes and the points 176 and 224.

Type 7: The code C(7)
24 contains two fixed points M0 =

(
0 0
0 0

)
and M80 =

(
1 0
0 1

)
again.

The remaining orbits inside C(7)
24 are

O2 =

{
M160 =

(
X2 +X3 0

0 X2 +X3

)
, M240 =

(
1 +X2 +X3 0

0 1 +X2 +X3

) }
,

O(1)
10 =

{
M33 =

(
X2 +X3 1

1 0

)
, M34 =

(
X2 +X3 1 +X +X2 +X3

X 0

)
,

M36 =
(
X2 +X3 X3

X2 0

)
, M40 =

(
X2 +X3 X2

X3 0

)
,

M47 =
(

X2 +X3 X
1 +X +X2 +X3 0

)
, M193 =

(
0 1
1 1 +X2 +X3

)
,

M194 =
(

0 1 +X +X2 +X3

X 1 +X2 +X3

)
, M196 =

(
0 X3

X2 1 +X2 +X3

)
,

M200 =
(

0 X2

X3 1 +X2 +X3

)
, M207 =

(
0 X

1 +X +X2 +X3 1 +X2 +X3

) }
,

and

O(2)
10 =

{
M227 =

(
X2 +X3 X +X2 +X3

1 +X 1 +X2 +X3

)
, M229 =

(
X2 +X3 1 +X3

1 +X2 1 +X2 +X3

)
,

M230 =
(
X2 +X3 1 +X +X2

X +X2 1 +X2 +X3

)
, M231 =

(
X2 +X3 X +X2

1 +X +X2 1 +X2 +X3

)
,

M233 =
(
X2 +X3 1 +X2

1 +X3 1 +X2 +X3

)
, M234 =

(
X2 +X3 1 +X +X3

X +X3 1 +X2 +X3

)
,

M235 =
(

X2 +X3 X +X3

1 +X +X3 1 +X2 +X3

)
, M236 =

(
X2 +X3 X2 +X3

X2 +X3 1 +X2 +X3

)
,

M237 =
(

X2 +X3 1 +X2 +X3

1 +X2 +X3 1 +X2 +X3

)
, M238 =

(
X2 +X3 1 +X

X +X2 +X3 1 +X2 +X3

) }
.

The matrices of O(2)
10 form five full lines while O2 forms a line together with the fixed

points. The matrices of O(1)
10 all lie on a line through a matrix of O2 and a matrix of O(2)

10 as
Figure 9 shows.

Outside of C(7)
24 , we have two further fixed points that do not lie on a line with M0 and M80

but fulfill that the sum of all four fixed points is the zero matrix. Additionally, there are
five orbits of length 2, four orbits of length 5, and 20 orbits of length 20 outside of the code.

41



Figure 9: Stucture of maximum code in H2(F16), type 7.
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The automorphism group of C(7)
24 has size 20 and is generated by the two maps

g1 : H2(F16)→ H2(F16), C 7→ P1
T
· C · P1 with P1 =

(
X 0
0 1

)
and

g2 : H2(F16)→ H2(F16), C 7→ P2
T
· σ(C) · P2 with P2 =

(
0 1
X 0

)
where σ(x) = x8 ∀x ∈ F16. According to Magma, Aut(C(7)

24 ) is isomorphic to the Frobenius
group F5 o F∗5. The restrictions of the generators to the code are

g1|C(7)24

=(M230,M236,M231,M238,M227)(M229,M234,M235,M233,M237)

(M207,M193,M194,M196,M200)(M36,M40,M47,M33,M34)

and

g2|C(7)24

=(M230,M233)(M236,M229,M227,M234)(M231,M235,M238,M237)

(M207,M47)(M36,M193,M34,M200)(M40,M196,M33,M194)

(M160,M240).

In Figure 9, g1 acts as a rotation by 72◦ and g2
2 as a reflection with respect to the vertical

axis. Considering the edges of the pentagram instead and identifying them with elements of
F5 in the way Figure 6 shows (as we already did analyzing type 2), g1 corresponds to “+1”
and g2 to “·2”.

6.2.4 Maximum Code in S3(F2) with d = 2

For the case S3(F2), the implementation of Algorithm 2 had to be adjusted such that it is
using the special graph ΓS3(F2) described on page 17. It then delivered the result that a
maximum code in S3(F2) with d = 2 has size 22 (which is already found by Kiermaier [36]
as previously mentioned in section 3.2.2) and all maximum codes are isomorphic.

The automorphism group Aut(C22) has order 168 and, according to Magma, is a simple
group. Every simple group of order 168 is isomorphic to GL3(F2) (see, e.g., [64]) and so is
Aut(C22).

The action of Aut(C22) partitions C22 into one fixed point and one orbit of length 21.
After moving the fixed point to the zero matrix, we gain a representative consisting exactly

of the zero matrix M0 =

0 0 0
0 0 0
0 0 0

 and the set of the 21 non-alternate rank-2-matrices

O21 =

{
M3 =

1 0 0
0 1 0
0 0 0

 , M5 =

1 1 0
1 0 0
0 0 0

, M6 =

0 1 0
1 1 0
0 0 0

,
M9 =

1 0 0
0 0 0
0 0 1

, M10 =

0 0 0
0 1 0
0 0 1

, M15 =

1 1 0
1 1 0
0 0 1

,
M17 =

1 0 1
0 0 0
1 0 0

, M21 =

1 1 1
1 0 0
1 0 0

, M24 =

0 0 1
0 0 0
1 0 1

,
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M27 =

1 0 1
0 1 0
1 0 1

, M30 =

0 1 1
1 1 0
1 0 1

, M34 =

0 0 0
0 1 1
0 1 0

,
M38 =

0 1 0
1 1 1
0 1 0

, M40 =

0 0 0
0 0 1
0 1 1

, M43 =

1 0 0
0 1 1
0 1 1

,
M45 =

1 1 0
1 0 1
0 1 1

, M51 =

1 0 1
0 1 1
1 1 0

, M55 =

1 1 1
1 1 1
1 1 0

,
M56 =

0 0 1
0 0 1
1 1 1

, M61 =

1 1 1
1 0 1
1 1 1

, M62 =

0 1 1
1 1 1
1 1 1


}

Besides the fixed point and the orbit O21 within the code, Aut(C22) has an orbit of
length 7 consisting of the rank-1-matrices, an orbit of length 7 consisting of the alternate
rank-2-matrices, and an orbit of length 28 consisting of the rank-3-matrices outside of C22.

The automorphism group of C22 then is generated by the three maps g1, g2, and g3 where

gi : S3(F2)→ S3(F2), C 7→ Pi
T · C · Pi

with P1 =

0 1 0
1 0 0
0 0 1

 , P2 =

1 0 0
0 0 1
0 1 0

 , and P3 =

1 1 0
0 1 0
0 0 1

 ,

so the automorphism group consists exactly of the maps C 7→ PT ·C ·P with P ∈ GL3(F2).
In other words, the automorphism group of C22 is the stabilizer subgroup of the isometries
of S3(F2) with respect to the zero matrix.

The restrictions of the generators to C22 are

g1|C22 =(M5,M6)(M9,M10)(M17,M34)(M21,M38)

(M24,M40)(M27,M43)(M30,M45)(M61,M62),

g2|C22 =(M3,M9)(M5,M17)(M6,M24)(M15,M27)

(M34,M40)(M38,M56)(M45,M51)(M55,M61),

and

g3|C22 =(M3,M5)(M9,M15)(M17,M55)(M21,M51)

(M24,M56)(M27,M61)(M30,M62)(M43,M45).

6.3 An Algorithm Using Cliquer

Since the orderly algorithm computes intermediate sets with strongly increasing size, another
algorithm is discussed which does not have this drawback. In this, a set of C-routines, called
Cliquer [47], is used. Cliquer can be used to find all maximum cliques in a given graph but
also has a wider range of application, see, e.g., [47].

The key idea of Cliquer is a branch-and-bound approach. For description of the underly-
ing algorithm, see [67, algorithm 2]. Cliquer can be used with different predefined orderings
of vertices, e.g., the greedy vertex coloring which seems to perform well in many cases (see,
e.g., [47, Section 2.4] which is based on discussion in [67]).

To translate the problem of finding maximum codes with minimum distance at least
a fixed number d in a space of matrices M ⊂ Fm×nq into a maximum clique problem, we
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generate a graph ∆M,d with vertices 0, . . . ,#M− 1 that has an edge connecting vertices i
and j if and only if drk(Mi,Mj) ≥ d. This graph ∆M,d is not to be confused with the graph
ΓM described in section 4.4.

But passing the whole graph ∆M,d to Cliquer would take too much time consumption
and also the provided source code is not parallelized. So the idea is to use a “hybrid
approach” as suggested by Royle (see [53, Section 2]). Instead of ∆M,d, Cliquer is given the

induced subgraph ∆
(S)
M,d consisting of all vertices adjacent to a predefined small clique S.

Note that, if the vertices of ∆
(S)
M,d are relabeled with consecutive numbers, they have to be

translated back into vertices of ∆M,d at the end of calculation. Using Cliquer on ∆
(S)
M,d for

each possible clique S with a fixed small size would imply that all maximum cliques are

found—possibly besides cliques S ∪ S′, where S′ is a maximum clique in ∆
(S)
M,d, that are

maximal but nevertheless not maximum in ∆M,d.
Since we are only interested in non-isomorphic codes, it is sufficient to restrict ourself to

starting configurations that are not isomorphic in the sense of Definition 4.1. These starting
configurations are created with the orderly algorithm. At the end, it is necessary to check
all maximum codes for isomorphism.

Procedure IsIsomorphic(C1, C2; (ΓM, π)): Canon() refers to the canonical labeled
graph computed by nauty.

1 forall the v in the vertex set of ΓM do
2 for i← 1 to 2 do
3 if v ∈ Ci then
4 πi(v)← 1;
5 else
6 πi(v)← π(v) + 1;
7 end

8 end

9 end
10 if Canon(ΓM, π1)=Canon(ΓM, π2) then
11 return true;
12 else
13 return false;
14 end

Algorithm 3 consolidates the whole approach. Up to line 10, the orderly algorithm is
applied to generate the starting configurations. If the size of the starting configurations is
chosen larger than the maximum code size, the result is output and the algorithm terminated

in line 8. In lines 11 to 18, for each starting configuration S, the graph ∆
(S)
M,d is created and

passed to Cliquer for solving the problem of finding all maximum cliques. The maximum
clique size is increased by s and the vertices of S are added to each clique found. If s is
chosen appropriate, lines 11 to 18 contain the main effort of this algorithm. Since the starting

configurations S and thus the subgraphs ∆
(S)
M,d are independent, this part is quite easy to

parallelize. In lines 19 and 20, the maximum code size is determined and all cliques of that
size are combined in the set M . In lines 21 to 32, one representative of each isomorphism
class is added to the set Sm which is subsequently returned along with m. The test for
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Algorithm 3: Algorithm for classification of maximum codes, based on Cliquer [47].
Here CliquerFindAllMaximumCliques() stands for the procedure which is outsourced
to Cliquer and returns a pair (m,M) where m is the maximum clique size and M is
the set of all maximum cliques in the input graph.

Input: Matrix set M∈ {Fm×nq ,Sn(Fq),Hn(Fq2)},
lower bound d for the minimum distance,
size of starting configurations s

Output: Maximum code size m and set Sm containing precisely one representative of
each isomorphism class of maximum codes

1 Create colored graph (ΓM, π);
2 S0 ← {∅};
3 k ← 0;
4 while k < s do
5 Sk+1 ← Augment(Sk;M, (ΓM, π), d);
6 k ← k + 1;
7 if Sk = ∅ then
8 return (k − 1, Sk−1);
9 end

10 end
11 forall the S ∈ Ss do

12 Create graph ∆
(S)
M,d;

13 (mS ,MS)← CliquerFindAllMaximumCliques(∆
(S)
M,d);

14 mS ← mS + s;
15 forall the C ∈MS do
16 C ← C ∪ S;
17 end

18 end
19 m← max{mS | S ∈ Ss};
20 M ←

⋃
S:mS=mMS ;

21 Sm ← ∅;
22 forall the C ∈M do
23 b←true;
24 forall the T ∈ Sm do
25 if IsIsomorphic(C, T ; ΓM) then
26 b← false;
27 end

28 end
29 if b then
30 Sm ← Sm ∪ {C};
31 end

32 end
33 return (m,Sm);
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Table 6: Computation time of CliquerFindAllMaximumCliques(∆
(S)
H2(F25),2) for one starting

configuration S of each of the sizes 4 to 6 and deduced estimated total computation time.

k = #S time (min) #Sk extrapolated total time

4 1487 89 92 days
5 39 2317 63 days
6 6 80105 361 days

isomorphism is done using Procedure IsIsomorphic(). This procedure equips the graph
(ΓM, π) with two different new colorings

π1(v) =

{
1, v ∈ C1

π(v) + 1, v /∈ C1

and

π2(v) =

{
1, v ∈ C2

π(v) + 1, v /∈ C2

and tests the colored graphs (ΓM, π1) and (ΓM, π2) for isomorphism.
To get an idea how big the starting cliques S should be in the case M = H2(F25),

the graph ∆
(S)
M,d is passed to cliquer for each one clique S of the sizes 4, 5, and 6. Then

the resulting computing time on an Intel Core i7 3770 is multiplied by the number of non-
isomorphic cliques of that size (taken from Table 4). The results are listed in Table 6. Due
to inaccuracy in the first time measurement, start sets of size 4 are used instead of start sets
of size 5. Table 6 contains the corrected data.

Though the extrapolated total computation time takes a minimum at #S = 5, it is
not sure that this would be really the best choice. This is mainly due to the fact that
the computation time varies widely for different starting configurations of the same size as
we will see below. Additionally, the computation time is lengthened when 8 processes are
computing at the same time (by a factor of 1.66 for the set of size 4 tested).

In the caseM = H2(F25), d = 2, 88 of the 89 starting configurations led to the maximum
clique size of 47. The distribution of the computation time of CliquerFindAllMaximum-

Cliques(∆
(S)
H2(F25),2) is described in Table 7. Besides the maximum size of 47—which was

already known to be a lower bound [8]—, Algorithm 3 revealed that all maximum cliques are
isomorphic in this case. One representative of this isomorphism class is analyzed in section
6.3.1.

Table 7: Distribution (quantiles, maximum, and average) of the computation time in hours

of CliquerFindAllMaximumCliques(∆
(S)
H2(F25),2) for all starting configurations S of size 4

leading to the overall maximum clique size.

Q10 Q25 Q50 Q75 Q90 Q95 Q99 max av.

30 42 54 93 121 180 203 489 74
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An attempt to apply Algorithm 3 toM = H3(F4), d = 2 with parameter s = 4 has been
aborted after nearly three weeks. By then, the largest clique found by Cliquer in 44 of the

107 graphs ∆
(S)
H3(F4),2 is of size 84. Adding the 4 start vertices, this gives a code of size 88.

As we will see in Section 6.4, this calculation has been far away from completion since a
maximum code in H3(F4) with minimum distance ≥ 2 has size at least 120.

6.3.1 Maximum Code in H2(F25) with d = 2

The code C47 consists of one fixed point under its automorphism group—which is chosen to

be the zero matrix M0 =

(
0 0
0 0

)
—, three orbits

O(1)
6 =

{
M1 =

(
0 1
1 0

)
, M4 =

(
0 4
4 0

)
,

M180 =
(

2 4X
X 1

)
, M195 =

(
2 X

4X 1

)
,

M580 =
(

3 4X
X 4

)
, M595 =

(
3 X

4X 4

) }
,

O(2)
6 =

{
M85 =

(
3 3X

2X 0

)
, M90 =

(
3 2X

3X 0

)
,

M135 =
(

0 3X
2X 1

)
, M140 =

(
0 2X

3X 1

)
,

M477 =
(

4 2
2 3

)
, M478 =

(
4 3
3 3

) }
,

and

O(3)
6 =

{
M105 =

(
4 4X
X 0

)
, M120 =

(
4 X

4X 0

)
,

M380 =
(

0 4X
X 3

)
, M395 =

(
0 X

4X 3

)
,

M551 =
(

2 1
1 4

)
, M554 =

(
2 4
4 4

) }
of length 6, two orbits

O(1)
8 =

{
M7 =

(
0 2 + 4X

2 +X 0

)
, M8 =

(
0 3 + 4X

3 +X 0

)
,

M22 =
(

0 2 +X
2 + 4X 0

)
, M23 =

(
0 3 +X

3 + 4X 0

)
,

M177 =
(

2 2
2 1

)
, M178 =

(
2 3
3 1

)
,

M577 =
(

3 2
2 4

)
, M578 =

(
3 3
3 4

) }
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and

O(2)
8 =

{
M11 =

(
0 1 + 3X

1 + 2X 0

)
, M14 =

(
0 4 + 3X

4 + 2X 0

)
,

M16 =
(

0 1 + 2X
1 + 3X 0

)
, M19 =

(
0 4 + 2X

4 + 3X 0

)
,

M351 =
(

4 1
1 2

)
, M354 =

(
4 4
4 2

)
,

M401 =
(

1 1
1 3

)
, M404 =

(
1 4
4 3

) }
of length 8, and one orbit

O12 =

{
M62 =

(
2 2 + 3X

2 + 2X 0

)
, M63 =

(
2 3 + 3X

3 + 2X 0

)
,

M67 =
(

2 2 + 2X
2 + 3X 0

)
, M68 =

(
2 3 + 2X

3 + 3X 0

)
,

M225 =
(

4 0
0 1

)
, M280 =

(
1 4X
X 2

)
,

M295 =
(

1 X
4X 2

)
, M450 =

(
3 0
0 3

)
,

M512 =
(

0 2 + 3X
2 + 2X 4

)
, M513 =

(
0 3 + 3X

3 + 2X 4

)
,

M517 =
(

0 2 + 2X
2 + 3X 4

)
, M518 =

(
0 3 + 2X

3 + 3X 4

) }
of length 12. The matrices of O(1)

8 are all of the form(
3 2
2 4

)
+ α

(
0 1
1 0

)
+ β

(
2 X

4X 1

)
+ γ

(
2 4X
X 1

)
where α, β, γ ∈ {0, 1}. This is a parallelepiped whose space diagonals intersect at the zero

matrix M0. The orbit O(2)
8 arises from O(1)

8 by central dilation with scaling center M0

and scale factor 3. The matrices of O(1)
6 are obtained as the centers of the faces of the

parallelepiped O(2)
8 . Shifting O(1)

6 by

(
2 0
0 4

)
yields O(3)

6 and O(2)
6 results from O(3)

6 by

central dilation with scaling center M0 and scale factor 1
3 = 2. Finally, the twelve matrices of

O12 can be constructed from the twelve edges of the bipyramids O(1)
6 and O(3)

6 by intersecting

the lines through the end points of one edge of O(1)
6 and the respective opposite end points

of the corresponding edge of O(3)
6 , for example, M518 is the intersection point of the line

through M580 and M551 and the line through M1 and M380.
Outside of C47, there are further four fixed points that are all multiples (with coefficients

in F∗5) of

(
4 0
0 3

)
which is the midpoint of O(2)

6 . The matrix

(
2 0
0 4

)
= 3 ·

(
4 0
0 3

)
is the

center of O(3)
6 and

(
1 0
0 2

)
= 4 ·

(
4 0
0 3

)
—where the factor 4 can be thought of as 3

2 with

regard to the construction of O12 and figure 10—is the center of O12. Besides, there are
seven orbits of length 6, eight orbits of length 8, nine orbits of length 12, and fifteen orbits
of length 24.
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Figure 10: Stucture of maximum code in H2(F25).
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In Figure 10, the orbits in C47 are illustrated as octahedra, cubes, and cuboctahedron
in view of the automorphism group Aut(C47) which has order 48 and is isomorphic to the
symmetry group of a cube. It is generated by the three maps

gi : H2(F25)→ H2(F25), C 7→ Pi
T
· σi(C) · Pi

with P1 =

(
0 3X
X 0

)
, P2 =

(
2 +X 4 + 3X
3 +X 3X

)
,

and P3 =

(
2 +X 4X

2X 2 + 4X

)
where σ1 : F25 → F25, x 7→ x, and σ2 = σ3 = idF25 .

In Figure 10, those maps act simultaneous on O(2)
6 , O(3)

6 , O12, and the union of the three

orbits O(1)
6 , O(1)

8 , and O(2)
8 in the following way:

g1|C47 =(M1,M4)(M180,M595)(M195,M580)

(M85,M140)(M90,M135)(M477,M478)

(M105,M395)(M120,M380)(M551,M554)

(M7,M23)(M8,M22)(M177,M578)(M178,M577)

(M11,M19)(M14,M16)(M351,M404)(M354,M401)

(M62,M518)(M63,M517)(M67,M513)(M68,M512)(M225,M450)(M280,M295)

is a point reflection,

g2|C47 =(M1,M595,M4,M180)

(M85,M477,M140,M478)

(M105,M551,M395,M554)

(M7,M8,M578,M577)(M22,M177,M178,M23)

(M11,M401,M404,M14)(M16,M19,M354,M351)

(M62,M450,M63,M295)(M67,M68,M513,M512)(M225,M517,M280,M518)

is a rotation by 90◦ with respect to the vertical axis, and

g3|C47 =(M1,M195,M180)(M4,M580,M595)

(M85,M477,M90)(M135,M140,M478)

(M105,M551,M120)(M380,M395,M554)

(M7,M578,M22)(M8,M23,M177)

(M11,M16,M354)(M14,M401,M19)

(M62,M280,M513)(M63,M450,M68)(M67,M518,M295)(M225,M512,M517)

is a rotation by 120◦ with respect to the space diagonal axis which runs from the front
bottom left to the back top right.

6.3.2 Improvement of the Method

It is desirable to exclude a part of the starting configurations without affecting the cor-
rectness of the result—not only because the computation time of CliquerFindAllMaximum-

Cliques(∆
(S)
M,d) varies widely but also since the total computation time is approximately
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linear in the number of starting configurations. This motivates us to develop a criterion for
a starting configuration to be negligible.

Figure 11 illustrates the idea in a simple example: There are four starting configurations

S1, . . . , S4 of size 2. The computation of CliquerFindAllMaximumCliques(∆
(Si)
M,d) is already

completed for i ∈ {1, 3, 4} and we want to decide whether we can neglect the starting
configuration S2. For this, Procedure Augment() is applied twice to S2 (to be more precise,
it is first applied to ({S2};M, (ΓM , π), d) and then to (T ;M, (ΓM , π), d) where T is the
result of the first execution) to obtain all starting configurations of size 4 which result from
S2 in the orderly generation. Then we check if each of these configurations of size 4 contains
a subset of size 2 which is isomorphic to one of the starting configurations S1, S3 or S4.

Figure 11: Illustration of the improvement strategy for Algorithm 3.
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Since this is the case, we in fact can exclude S2 without influencing the classification result.
This can be explained in the following way: It is permissible to mix the sizes of the starting
configurations as long as all leaves of a subtree of the orderly generation tree are used as

starting configurations since the results of CliquerFindAllMaximumCliques(∆
(S)
M,d) for all

leaves S include the results of Algorithm 2. In our example, this means that we could use S1,
S3, S4 and the five shown sets of size 4 as starting configurations. But each of the starting
configurations of size 4 can be neglected since any clique arising from them contains a subset
of size 2 which is isomorphic to Si, i ∈ {1, 3, 4}, and thus is isomorphic to a (subset of a)
clique arising from this set Si.

Transferring this rule to the general case where the sets in Sk are used as starting con-
figurations, gives the following criterion: Let S ∈ Sk be a starting configuration of size k
and let T be the set of configurations of size m > k obtained by subsequently applying
Procedure Augment() to S. Then S can be neglected if every set in T contains a sub-
set of size k which is isomorphic to a configuration S̃ ∈ Sk for which the computation of

CliquerFindAllMaximumCliques(∆
(S̃)
M,d) is already completed.

Since the excluded configurations can be considered completed, we can use already ex-
cluded configurations of size k for the isomorphism tests additionally to those configurations

S ∈ Sk for which the computation of CliquerFindAllMaximumCliques(∆
(S)
M,d) is already

completed. There is a chance that configurations can be neglected this way that otherwise
could not.

There are also different further developments of this idea. If one starting configuration
can not be excluded completely, either the augmented sets which prevent the set from being
excluded can be used as starting configurations instead or they can be augmented further
to see if they can be excluded then.

In the case H2(F25), the starting configuration which had by far the longest computation
time could be excluded by augmenting to size 6.

6.4 Heuristic Clique Search

Since the possibilities of the algorithms described in sections 6.2 and 6.3—which are capable
of proving the maximum code size including classification—are exhausted quickly, the prob-
lem is approached heuristically too. The aim is to at least increase the lower bounds for the
maximum code size.

Algorithm 4 is a heuristic approach that seizes the idea of the DLS-MC (dynamic local
search for the maximum clique problem) algorithm from [49]. Again, it is used that the
problem of finding maximum codes can be translated into a maximum clique problem. The
strategy is to first expand a clique as long as possible (improvement phase) and then exchange
single vertices in the hope of being able to add vertices again (plateau search phase).

In order to prevent the algorithm from cycling, there is a flag for each vertex which can
take the values “available” and “unavailable” and a vertex is set “unavailable” if it is selected
during the plateau search phase.

For each non-empty clique C in a graph with vertex set V , there are defined two sets:

NI(C) = {v ∈ V \ C | v is adjacent to all vertices of C}

is the set of vertices the current clique C can be expanded by and

NL(C) = {v ∈ V \ C | v is adjacent to all vertices of C except for one}
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is the set of vertices that can be used to exchange one single vertex in C.

Algorithm 4: Heuristic clique search seizing the idea of DLS-MC [49].

Input: graph Γ with vertex set V
Output: increasing numbers m and cliques of size m

1 m← 0;
2 set all vertices “available”;
3 C ← {random(V )};
4 initialize NI(C) and NL(C);
5 repeat
6 while NI(C) 6= ∅ do
7 v ← random(NI(C));
8 C ← C ∪ {v};
9 update NI(C) and NL(C);

10 end
11 if #C > m then
12 m← #C;
13 output (m, C);
14 end
15 nC∩C′ ← #C;
16 while {w ∈ NL(C) | w available} 6= ∅ and nC∩C′ > 0 do
17 v ← random({w ∈ NL(C) | w available});
18 set v “unavailable”;
19 w ← vertex in C not adjacent to v;
20 C ← (C \ {w}) ∪ {v};
21 update NI(C) and NL(C);
22 nC∩C′ ← nC∩C′ − 1;
23 if NI(C) 6= ∅ then
24 goto line 6;
25 end

26 end
27 v ← random(V \ C);
28 C ← {w ∈ C | w adjacent to v} ∪ {v};
29 update NI(C) and NL(C);
30 set all vertices “available”;

31 until forever ;

Algorithm 4 proceeds as follows: At the beginning, the size of the largest clique found so
far is initialized with 0 and all vertices are set “available”. Then the clique C is initialized
with a set containing only one random vertex. The rest of the algorithm is an infinite loop
and can be terminated at any time. In the improvement phase (lines 6 to 10), successively
random vertices of the set NI(C) are added to the clique C until C is maximal. After each
change of C, the sets NI(C) and NL(C) have to be updated to ensure that C always is a
clique.

When the improvement phase is completed, the current clique and its size are output if
it is larger than the largest clique found before. In this case, also the variable for the size
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of the largest clique found is refreshed. We remark that the output contains only maximal
cliques.

In line 15, the variable nC∩C′ is set to the size of the current clique. This variable
originates from the following termination condition for the plateau search phase of the DLS-
MC algorithm: At the beginning of the plateau search phase, the current clique is saved
in the variable C′ and the plateau search is terminated when the intersection of C and C′
becomes empty. Pullan and Hoos adopt this criterion from [34]. In [49, p. 163], it is remarked
that this criterion can be realized by decreasing nC∩C′ by one each time a vertex is selected
and terminating when nC∩C′ = 0 since—as we will see—the plateau search phase is designed
such that each vertex can only be chosen once. We note that those criteria are not exactly
equivalent since if a vertex which is not in C′ is first swapped into C and later swapped out
again, nC∩C′ decreases faster than #(C ∩ C′).

The plateau search phase contains the lines 16 to 26. Here, an available vertex is chosen
at random from NL(C) and exchanges the only vertex of C to which it is not adjacent.
Each vertex selected during the plateau search phase of the algorithm is set “unavailable”.
This prevents the algorithm from choosing the same vertex twice in the plateau search
phase. Anyway, we do not prevent an unavailable vertex from enlarging the clique in the
improvement phase. After each replacement of an element in C, the sets NI(C) and NL(C)
are updated and nC∩C′ is decreased by one. Those steps are repeated until there are no
available vertices left in NL(C), nC∩C′ becomes zero, or NI(C) becomes non-empty. In the
last case, the algorithm jumps back to the improvement phase, in the first two cases, the
clique C is truncated by adding a random vertex v and removing all vertices which are not
adjacent to v from C. Before the algorithm starts the improvement phase again, all vertices
are made available again.

To reduce the search space and avoid unnecessary symmetries, the graph ∆
({0})
M , i.e., the

subgraph of ∆M,d induced by all vertices adjacent to 0, is passed to Algorithm 4 instead of
∆M,d. When outputting (m, C), m has to be increased by one and C has to be completed
with vertex 0. This is not an actual restriction since every code can be offset to include the
zero matrix provided that its surrounding matrix space M forms a group under addition.

Besides Algorithm 4, there is also implemented a greedy variant. A greedy algorithm is
one that makes locally the best choice. In our case, this means adding a vertex to the clique
which fulfills that the set of vertices which could be added next is as large as possible instead
of just a random one. For this, line 7 was exchanged by

| |7 v ← random({v′ ∈ NI(C) | #NI(C ∪ {v′}) maximal});

It turns out that none of the two versions is essentially better. The greedy variant has
its advantage in finding cliques of most sizes faster but with the drawback that it does not
find some “hidden” cliques.

The sizes of the largest cliques found are summarized in Table 8 and compared with the
upper and lower bounds from section 3. In all attempted symmetric cases, the lower bound
could be improved. In the cases H2(Fq2), 7 ≤ q ≤ 13, d = 2, the lower bounds originate
from heuristic search done by Cimráková and Fack in [8]. For q ∈ {7, 8, 9}, we confirm their
results, in the case q = 11, we can improve it, while in the case q = 13 we do not reach their
result. In all remaining attempted Hermitian cases, the lower bound is exceeded. The best
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Table 8: Sizes of the largest codes found by Algorithm 4 or its greedy version in comparison
to the lower and upper bounds summarized in Section 3. Improvements on the lower bounds
are marked bold.

n = 3, d = 2 n = 4, d = 2 n = 5, d = 4

Sn(Fq) q = 3 q = 4 q = 5 q = 7 q = 2 q = 2

lower bound 90 256 625 2401 256 64
heuristic

result
135 428 934 3100 320 96

upper bound 201 4033 2705 15001 1009 1024

n = 2, d = 2 n = 3, d = 2 n = 4, d = 4

Hn(Fq2) q = 7 q = 8 q = 9 q = 11 q = 13 q = 16 q = 2 q = 2

lower bound 97 125 145 215 272 271 64 16
heuristic

result
97 125 145 239 194 289 120 37

upper bound 175 216 369 671 1105 1296 176 86

codes found by our heuristic search are recorded on a disc attached to this thesis.
Altogether, the heuristic computations lasted about five weeks utilizing several comput-

ers. In the smallest cases, almost all runs reached the best result while in the others, mostly
only one amongst several runs did. In those cases, the best result often outdistances the rest
which indicates a hidden solution which is only found if the algorithm is lucky.

In Figure 12, the new lower bounds for the sizes maximum codes in H2(Fq2) with min-
imum distance 2 (for q ≤ 5 these are the sizes of maximum codes) are compared to the
function 2q2. The plot suggests the assumption that the maximum code size grows like 2q2,
though the heuristics (including the one in [8] for q = 13) did not find sizes near this value
for q ≥ 13. Actually, all found codes are of size < 2q2. This possibly might be true for all
codes with minimum distance 2 in H2(Fq2).

7 Conclusion

7.1 Results

In this thesis, the maximum codes in H2(F4), H2(F9), H2(F16), S3(F2), and H2(F25), each
with minimum distance ≥ 2 have been classified. In latter case, this implied the proof that
the lower bound on the maximum code size, 47, which was given by Cimráková and Fack
in [8] by heuristic search, is tight. In each of the matrix spaces H2(F4), H2(F9), S3(F2),
and H2(F25), it was shown that the maximum code is unique up to isomorphism and those
codes could be interpreted quite satisfyingly: A maximum code in H2(F4) is isomorphic to
the set of rank-1-matrices while a maximum code in S3(F2) with minimum distance 2 is
isomorphic to the set which contains the zero matrix and all non-alternate rank-2 matrices.
A maximum code in H2(F9) is closely related to the Cremona-Richmond configuration and
a maximum code in H2(F25) features an octahedral symmetry. In H2(F16), there are seven
different isomorphism classes of maximum codes.

In some more cases, it was possible to construct new codes which improve the known
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Figure 12: Optimal and best heuristical code sizes for codes in H2(Fq2) with minimum
distance ≥ 2 in comparison to the function 2q2.
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lower bounds on the maximum code size by heuristic search.
Furthermore, a construction for additive codes with minimum distance 2 of size qn(n−1)

in Hn(Fq2) was given. This provides a partial answer to the question whether additive

codes of size qn(n−d+1) with minimum distance d < n where n and d are both even exist in
Hn(Fq2) and how to construct them [57, remark after Thm. 5]. The question remains open
for 4 ≤ d < n where n and d are both even.

This construction also improves the lower bound on the maximum code size in Hn(Fq2)
in the cases where d = 2 and n ≥ 4 even. All improvements on lower bounds are summarized
in Table 9.

Table 9: Improvements on lower bounds for the maximum code size.

n = 3, d = 2 n = 4, d = 2 n = 5, d = 4

Sn(Fq) q = 3 q = 4 q = 5 q = 7 q = 2 q = 2

previous 90 256 625 2401 256 64
new 135 428 934 3100 320 96

n = 2, d = 2 n = 3, d = 2 n = 4, d = 4 n ≥ 4 even, d = 2

Hn(Fq2) q = 11 q = 16 q = 2 q = 2 q arbitrary prime power

previous 215 271 64 16 qn(n−2)

new 239 289 120 37 qn(n−1)
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It was also possible to slightly improve the upper bound for the size of a maximum code
with minimum distance 2 in Sn(Fq). The new upper bound in this case is qn(n+1)/2 − qn + 1
whereas the previous bound equaled the number qn(n+1)/2 of symmetric matrices in Sn(Fq).

Besides this research on bounds and classification, it was also shown that in general, the
automorphism group of a code depends on its ambient space in a nontrivial way.

7.2 Further Work

For further research, the following ideas are suggested:

• Improve the known upper bound for the maximum code size in H2(Fq2). The best

known bound is min
{

1
2(q3 + q),

(
(p+2)(p+1)2p

12

)e}
, where q = pe, p prime. Our results

suggest that 2q2 might be a good upper bound.

• Though the maximum code size is known in the unrestricted case, those codes should
be classified with respect to the concept of isomorphism presented in section 4.1. No
such research is known to the author of this thesis.

• Classify codes in the symmetric and Hermitian cases, where the known upper and lower
bounds coincide. For symmetric matrices, this is the case when d is odd or d = n. For
Hermitian matrices, the upper and lower bounds coincide when d is odd.

• Apply the heuristic presented in section 6.4 using starting configurations bigger than
{0}. This could also solve the problem that (for example in the case H4(F9), d = 4)

the graph ∆
({0})
M is too large to fit into 32 GB RAM and 108.5 GB swap.

• A strategy which was not pursued in this thesis is formulating the maximum clique
search in ∆M,d as an integer linear programming (ILP) problem and pass it to an
appropriate solver. This has the advantage that the solver successively improves both
the upper and lower bounds. However, the resulting ILPs are quite big and compu-
tationally hard to solve. In the orientation phase of this thesis, this was checked out
using Gurobi [30] for the case S3(F3). After about 4.5 days, the upper bound was
reduced from 201 to 198 while the lower bound was raised from 90 to 135. Also the
performance did not improve considerably by prescribing small starting configurations.
It should be noted that even if the solver finds an exact solution, this does not involve
a classification.

• The approach which looks most promising for further classification results is to extend
the improvement ideas of Section 6.3.2, for example, in the following way: Starting
with a full set Sk of starting configurations of size k, each time the computation

of CliquerFindAllMaximumCliques(∆
(S)
M,d) finishes for some S in Sk, the unfinished

starting configurations are checked for redundancy. This can be done by extending
step by step rather than extending to a predefined size m and checking for subsets
isomorphic to completed or excluded sets S̃ ∈ Sk after each augmentation step.

For the next case in reach, H3(F4), d = 2, k should be chosen at least 5 since the
computation time for single starting configurations of size 4 exceeds three weeks by
far, see page 48 in Section 6.3.
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A Partial Spreads and Partial Ovoids in Classical Polar
Spaces

Definition A.1. [7, Section 1.4] A polar space S is a set of points together with distinguished
subsets called subspaces such that:

(i) a subspace together with the subspaces it contains is a d-dimensional projective space
with −1 < d < n− 1 for some integer n which is called the rank of S;

(ii) the intersection of any two subspaces is a subspace;

(iii) given a subspace L of dimension n − 1 and a point p ∈ S \ L , there exists a unique
subspace M containing p such that dim(M ∩ L) = n − 2 and it contains all points of
L which are joined to p by some subspace of dimension one;

(iv) there exist disjoint subspaces of dimension n− 1.

Definition A.2. [9, Section 1] The generators of a classical polar space are the subspaces
of maximal dimension.

Definition A.3. [62, Section 1.1]

1. H(n, q2) is the polar space formed by the points and lines of a non-singular Hermitian
variety H in PG(n, q2), n ≥ 3. Its rank is

⌈
n
2

⌉
.

2. Q−(2n+1, q) is the polar space formed by the points and lines of a non-singular elliptic
quadric Q− in PG(2n+ 1, q), n ≥ 2. Its rank is n.

Theorem A.4. [62, Thm. 5] Q−(5, q) is isomorphic to the dual of H(3, q2).

Definition A.5. [9, Section 1]

1. A partial spread of a classical polar space P is a set S of pairwise disjoint generators
of P.

2. A partial ovoid of a classical polar space P is a set O of points of P such that every
generator contains at most one point of O.

B Numbering of the Matrices

The basis of the numbering of the matrices is a numbering of the field elements. Since we
represent a non-prime field Fq, q = pe with p prime, as Fp[x]/(g) where g is an irreducible
polynomial, the field elements ai ∈ Fq (0 ≤ i < q) are represented as polynomials fi ∈ Fp[X]

with degree at most e−1. These polynomials can also be considered as polynomials f̃i ∈ Z[x]
with degree at most e−1 and coefficients in {0, . . . , p−1}. Thinking of the positional notation
system with base p, it is easy to see that f̃i(p) takes all values in {0, . . . , pe − 1} as i varies
from 0 to q− 1. Now the numbering of the field elements ai is chosen such that f̃i(p) = i for
all 0 ≤ i < q. Note that, in the case of non-prime fields, this numbering of the field elements
depends on the irreducible polynomial g.

For the matrix spaces used in calculations of this thesis, the numbering of the matrices
is explicitly given on the disc attached to this thesis. The numbering of symmetric and
Hermitian matrices in the general case is described in the following.
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Figure B.1: The order of matrix entries used in the numbering of symmetric matrices using
the example S5(Fq).

B.1 Symmetric Matrices

There are qn(n+1)/2 symmetric n × n matrices with entries in Fq. To obtain the matrix Mi

where i ∈ {0, . . . , qn(n+1)/2−1}, proceed as follows: Write the number i in positional notation
with base q. Then—beginning with the least significant digit—fill the matrix entries in the
order illustrated in Figure B.1 with the field elements aj ∈ Fq corresponding to the digits j
of i in this notation. Finally, the gray fields have to be filled such that the resulting matrix
is symmetric.

B.2 Hermitian Matrices

Since, in a Hermitian matrix in Hn(Fq2), the n entries on the main diagonal can only
take values in Fq ⊂ Fq2 while the remaining n(n − 1) entries can take all values in Fq2 ,
the numbering of Hermitian matrices is a bit more complicated than the numbering of
symmetric matrices. To proceed similar to the latter, we need a mixed radix positional
notation system where the n(n−1)

2 least significant digits can take values from 0 to q2 − 1
while the more significant digits can only take values up to q − 1. Besides the numbering of
the field elements of Fq2 = {a0, . . . , aq2−1} which is taken as described above, we additionally
need a numbering of the subfield Fq = {b0, . . . , bq−1} ⊂ Fq2 which is obtained by numbering
the elements of Fq in the order they show up in Fq2 , that is, such that bj = aij = aij and
i0 < · · · < iq−1.
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Figure B.2: The order of matrix entries used in the numbering of Hermitian matrices using
the example H5(Fq2).

To obtain the matrix Mi where i ∈ {0, . . . , q(n2)−1}, we write this number i in the mixed
radix notation described above and fill the matrix entries in the order illustrated by Figure
B.2 with the field elements aj ∈ Fq2 or alternatively bj = aij ∈ Fq determined by the digits j
of i, depending on whether the entry lies on the main diagonal or not. At the end, the gray
entries have to be filled such that the resulting matrix is Hermitian.
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