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TWO-SAMPLE INFERENCE AND CHANGE POINT DETECTION FOR SPARSE

FUNCTIONAL DATA

Qiyao Wang, PhD

University of Pittsburgh, 2017

With recent advances in technology, functional-type data is arising fast in a number of fields,

including finance, physics, meteorology, public health, and information technology. Driven by

explosive needs in real practice, statistical methods for functional data have been developed quickly

in recent decades. There are two typical types of functional data which possess different features

and require different sets of techniques to model. One is called dense functional data, where for

each random subject there are a large number of regularly-spaced observations. Dense functional

data has been relatively well studied in terms of modeling, estimation and inference. The second

one is called sparse functional data, where only a few irregularly-spaced observations are attainable

for each subject. Statistical methods for sparse functional data are of less development, despite the

importance and demand for these methods. In this thesis, we focus on three topics within the field

of sparse functional data inference: two-sample inference of mean functions of two independent

groups of functional data, one-way functional ANOVA (FANOVA), and change point detection in

mean functions for sparse functional time series.

For each of the three topics mentioned above, methods for dense functional data are firstly

reviewed. It helps us to understand why or why not each of these methods is applicable to sparse

functional data situations. For the two-sample mean function testing problem and one-way func-

tional ANOVA, we develop asymptotic chi-square tests for detecting differences among mean func-

tions when sparse and irregular observations are drawn from the underlying stochastic processes

for each subject. For the change point detection in a sequence of functional samples, we cre-

ate two test procedures whose asymptotic distributions are related to a summation of independent

iv



Brownian Bridge squares. We provide theoretical arguments to justify the validity of the proposed

tests. Numerical experiments, including simulation studies and applications to a CD4 count data

set and two eBay online auction data sets, are presented to demonstrate the good performances of

the proposed test procedures.

Keywords: mean function, shrinkage estimator, sparse design, functional time series, asymptotic

distribution, CD4 count, eBay auction
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1.0 INTRODUCTION

1.1 DENSE AND SPARSE FUNCTIONAL DATA

Functional data refers to data drawn from continuous underlying random processes. Put dif-

ferently, each subject in the sample is a random function (a curve), instead of a random number or

a random vector. With recent advances in technology, functional data is arising fast in a number

of scientific fields, including finance, psychiatry, physics and public health. It has become one of

the most commonly encountered types of data. Practically functional data is consist of discretized

realizations of the underlying random function. For each subject, there are a number of repeated

observations over time or any other continuum. Even though both functional data and vector data

contain multiple observations for each subject, function-type data do not require the same num-

ber of observations for all the subjects. Functional data also account for the order of observations

within each subject. Examples of functional data include repeated measurements of stock prices

over time for a collection of stocks and repeated measurements of brain signals over space for a

sample of patients.

Driven by the increasing needs in various fields, statistical methods for functional data, called

functional data analysis (FDA), have been expanded quickly in recent decades. In FDA, there are

two typical types of data: dense functional data, where a large number of regularly-observed mea-

surements for each subject are attainable; and sparse functional data, where only a few irregularly-

spaced measurements are available for each subject. Dense functional data is very common in

fields where automated instruments are used to record data. A Canadian Weather study mentioned

in (Ramsay, 2006) uses automated sensors to monitor the daily precipitation near 35 weather sta-

tions for a year. The left panel in Figure 1.1 displays the precipitation trajectory for a randomly

selected weather station within the study period. For dense functional data, smoothing techniques

1
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Figure 1.1: The observed daily average precipitation of a randomly selected weather station in the

Canadian Weather study are on the left panel; The observed CD4 counts of a randomly selected

subject in the AIDS Clinical Trial Group 193A study are on the right panel.

can be used to recover the underlying individual trajectories. Sparse functional data arises fre-

quently in longitudinal studies. For example, in the AIDS Clinical Trial Group 193A study, 2 to

10 irregularly distributed measurements of CD4 count data are available for each patients over the

40 week study period. The right panel in Figure 1.1 visualizes the observations of a randomly

selected subject in the study. Another typical example of sparse functional data comes from eBay

online auctions where live bids are irregularly spaced for the pre-specified listing duration (3,5, or

7 days). For sparse functional data, pre-smoothing of each individual function is unreliable.

The reason for distinguishing between these two types of functional data is that they often

exhibit different features and require different modeling techniques. Dense and sparse functional

data are usually represented by two distinct formats. For dense functional data, a common practice

is to first recover each underlying curve through pre-smoothing techniques, such as kernels, splines,

and local polynomial. The resulting individual curves are consistent, given certain dense regular

design assumptions. Then people can evaluate all recovered curves at a pre-specified common

dense regular grid. Consequently, the dense functional data can be represented by an n × M

2



matrix, where each row records M equally-spaced and noiseless observations from an individual

curve. For sparse functional data, the pre-smoothing techniques no longer yield consistent recovery

for the individual curves, because of the limited number of observations on each curve. The data

is usually recorded in the form of (Tij, Yij), for i = 1, . . . , n and j = 1, . . . , Ni, where Yij is

the jth observation of the ith subject, and Tij is the corresponding observing time. In addition

to the format, dense and sparse functional data have different routines in terms of estimation and

inference. For example, when estimating the population mean function for dense functional data,

a regular mean sample function can be used. At each time point, the estimate equals the sample

mean value at this time over all the subjects. For sparse functional data, it is usually assumed that

the pooled data across different subjects are dense. Local linear smoothing on the pooled sample

is used, and the achieved smoother estimates the population mean function. The book (Ramsay,

2006) offers a comprehensive perspective of FDA methods for densely observed functional data,

and the paper (Müller, 2005) provides a nice review for sparse functional data analysis.

1.2 MOTIVATION AND STRUCTURE OF THIS THESIS

Dense functional data is relatively well studied in terms of both modeling and inference. For

modeling, some topics covered are functional principal component analysis (Cardot et al., 2003;

Silverman, 1996), regression with functional response, predictor or both (Cardot et al., 2003; Cai

et al., 2006; Yao et al., 2005), functional classification and clustering (Müller, 2005), and functional

quantile analysis (Cardot et al., 2005; Ferraty et al., 2005; Chen and Müller, 2012a). Recently,

there are increasing interests in modeling multivariate functional data and repeatedly observed

functional data (Morris and Carroll, 2006; Chen and Müller, 2012b; Chen et al., 2017). As for

statistical inferences for dense functional data, the two-sample inference for the population means

of independent groups is studied by (Ramsay, 2006; Zhang and Chen, 2007; Faraway, 1997; Zhang

and Liang, 2014; Zhang et al., 2010; Abramovich et al., 2004; Lillo et al., 2015; Staicu et al.,

2014) from several different perspectives. Extension to multiple independent group cases (one-

way FANOVA) is justified by (Shen and Faraway, 2004; Fan and Lin, 1998; Cuevas et al., 2004;

Paparoditis and Sapatinas, 2014). Inferences for the covariance functions of multiple groups are
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presented in (Gaines et al., 2011; Fremdt et al., 2013). Hypothesis testings regarding the functional

distributions across groups are given by (Pomann et al., 2016). For repeated dense functional data,

i.e., functional time series, testing whether the mean function changes at some unknown time

point is discussed in (Aston and Kirch, 2012; Berkes et al., 2009; Aue et al., 2009; Račkauskas

and Suquet, 2006). This topic is known as the change point detection problem in functional time

series.

For sparse functional data, there are some works regarding modeling, including principal com-

ponent analysis (Yao et al., 2005; James et al., 2000), and clustering analysis (James and Sugar,

2003). Statistical methods for inferencing on sparse functional data are less developed, despite

their importances. In this thesis, we focus on three topics within the field of sparse functional data

inference: two-sample inference of mean functions of two independent groups of functional data,

one-way functional ANOVA (FANOVA), and change point detection in mean functions for sparse

functional time series.

1.2.1 Motivation for two-sample mean function inference for sparse functional data

The two-sample inference for the population mean functions problem is one of the most fun-

damental research topics in FDA. The statistical framework of the specific two-sample inference

problem that we consider can be stated as follows. Let L2(T ) be the space that is consist of all

squared-integrable functions within the closed interval T (mathematically, L2(T ) = {f(t), t ∈

T : ∫T f 2(t)dt < ∞}) and let Xg(t) ∈ L2(T ), g = 1, 2, denote the gth random process, with

a continuous unknown mean function µg(t). Based on random samples of Xg(t), we concentrate

on testing µ1(t) = µ2(t), against the general alternative that the two mean functions are not equal

at some time points within the time range T . Testing the equality of mean evolution curves of a

variable across two groups is of interest in numerous fields. For example, in a historical study of

African slave trade from 1650 to 1890, one of the most important questions that the researchers

want to answer is whether the slave population of west Africa is the same as those of east Africa

over the 250 years. Similarly, in an AIDS clinical trial, the researchers want to compare the timely

effectivenesses of two medical treatments by determining whether the CD4 count curves of the two

treatment groups are the same over the entire study period.
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For dense functional data, where a large number of regularly-observed measurements for each

subject are attainable, some well-developed methods for the two-sample mean function testing

problem exist. The pointwise t-test (Ramsay, 2006) simplifies the problem by testing the null

hypothesis over the alternative hypothesis at each time point separately. The L2-norm-based test

and the F -type test (Zhang and Chen, 2007; Faraway, 1997; Zhang and Liang, 2014; Zhang et al.,

2010) quantify the overall difference between the two mean functions by integrating the standard-

ized sample mean function difference over the entire time range. They prove that the defined

random quantity follows an approximate χ2 distribution. Tests involving basis representations

(Abramovich et al., 2004; Lillo et al., 2015) project the sample mean function difference into a

common orthonormal space. They argue that the original test problem is equivalent to testing

whether the mean of the achieved random score vector is zero. The pseudo likelihood ratio test

(Staicu et al., 2014) first represents the random samples in the L2(T ) by penalized spline bases,

transforming the test problem into simultaneously testing a vector of polynomial parameters and

a vector of random spline coefficients. Then they propose a pseudo likelihood ratio test (pseudo

LRT) for this equivalent problem. In addition, tests aimed at detecting differences in functional

distributions (Pomann et al., 2016; Hall and Van Keilegom, 2007) are also applicable to func-

tional mean testing problem under further assumptions. Before introducing our proposed method,

we first review these test procedures, compare them through numerical studies, and discuss their

advantages and disadvantages. These results can be found in Section 2.2.

When it comes to sparse functional data, where only a few irregularly-observed measurements

are available for each subject, the two-sample mean testing problem is much more challenging.

Most of the previous methods designed for dense functional data cannot be used with sparse data.

The L2-norm-based test and the F -type test involve pre-smoothing for each individual curve such

that regular sample mean and covariance functions are attainable. However, pre-smoothing is not

reliable considering the limited amount of data for each subject. The projection-based tests require

consistent scores obtained from basis expansions for individual curves. However these scores are

no longer consistent due to the small number of observations on each curve. To the best of our

knowledge, (Staicu et al., 2014) and (Pomann et al., 2016) are the only two dense data tests that

are adaptive to sparse data. Their limitations will be detailed later in Section 2.3.

In Section 2.4, we propose a test procedure specially designed for the sparse functional mean
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testing problem. The test statistic is based on a shrinkage estimator for the projection score of each

subject, conditional on the observing locations. Under the null, the proposed test statistic is proven

to follow a χ2 distribution asymptotically. We conduct several simulation studies and also apply

the proposed method to a CD4 count data set and an eBay online auction data set to investigate the

numerical performance of the proposed method. We also compare with several dense data methods

which are adaptive to sparse functional data. The proposed method is demonstrated to have more

satisfactory performances for sparse functional data.

1.2.2 Motivation for one-way functional ANOVA for sparse functional data

In practice, there are oftentimes more than two independent groups being compared. For in-

stance, in the CD4 data set in Chapter 2, the original data set contains four different therapy groups.

The research goal is to see which of the four medical treatments is the most effective one at certain

time within the study period. When there are multiple groups involved, the mean function testing

problem is referred to as one-way functional ANOVA. It tries to determine whether there exist

any statistically significant differences among the multiple mean functions. Mathematically, let

L2(T ) = {f(t), t ∈ T : ∫T f 2(t)dt < ∞}, and Xg(t) ∈ L2(T ), g = 1, ..., G(G > 2) denotes the

gth random process, with a continuous unknown mean function µg(t). Based on random samples

of Xg(t), we concentrate on testing µ1(t) = ... = µG(t), against the general alternative that there

exist i 6= j such that µi(t) and µj(t) are not equal at some time points within the time range T .

We generalize the asymptotic χ2 test proposed in Chapter 2 to multiple group cases, proposing

a test statistic which is the summation of multiple quadratic forms. This new test statistic is still

asymptotically χ2 distributed, and its degree of freedom depends on the number of groups in ad-

dition to the dimension reduction result from orthogonal projections. Its performance is confirmed

by simulation studies and an application to an eBay online auction data set. All of these results can

be found in Chapter 3.

1.2.3 Motivation for change point detection for sparse functional time series

In the domain of univariate time series analysis, change point detection is a fundamental prob-

lem that is widely of interest. In general, the change point detection problem tries to solve two
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tasks: determining whether certain statistical properties of a stochastic process changes signifi-

cantly at some time points in the series, and identifying the times when such changes happen.

Change point detection techniques have been found to be powerful in analyzing time series data in

numerous fields, such as climate (Reeves et al., 2007), environment (Siris and Papagalou, 2004),

and information technology (Tartakovsky et al., 2006; Weng and Lee, 2011). Driven by different

needs, the change point detection problem can be represented in some form or other. There are

several types of change point detection problems including the at most one change point prob-

lem (AMOC) (Hawkins, 1977; Worsley, 1986) and epidemic changes (Yao, 1993; Ramanayake

and Gupta, 2003), where the statistical property changes and then returns to its original level.

Most of the time researchers are concerned with detecting possible changes in terms of mean lev-

els, while detecting possible changes in distributions is considered by (Pollak, 1985; Zhou et al.,

2017). Traditional change point detection problems assume that random variables in the stochas-

tic process are independently normal distributed. Exponential distribution situations is considered

by (Ramanayake and Gupta, 2003; Worsley, 1986). Change point detection in non-independent

sequences is studied by (Henderson, 1986; Kim, 1996; Joseph et al., 1996). Among all these vari-

ations, the simplest and most classical one is detecting a sequence of independent variables for a

shift in mean level (the AMOC problem). Mathematically,Xi is the random variable at time i, with

mean µi = E[Xi] and variance σ2. The hypothesis testing of interest is µi = µ for all i = 1, ..., n

against the alternative that µi = µ for i = 1, ..., θ (θ is unknown) and µi = µ′ for i = θ + 1, ..., n.

Note that the two means µ and µ′ are not equal. Methods regarding this problem are reviewed in

Section 4.1.

In this thesis, we consider a functional version of the aforementioned AMOC problem. For the

rest of this thesis, we refer to the functional AMOC change point problem when we say functional

change point detection. Basically, let X1(t), ..., Xi(t), ..., Xn(t) be a sequence of independent

stochastic processes with mean function µi(t) and covariance function G(s, t), with s, t ∈ T =

[0, 1]. The functional change point detection problem tries to test µi(t) = µ(t) for all i = 1, ..., n

against the alternative that µi(t) = µ(t) for i = 1, ..., θ (θ is unknown) and µi(t) = µ′(t) for

i = θ + 1, ..., n. Let’s assume that we have the daily precipitation in Pittsburgh from 1951 to

2000. The climate researchers hope to utilize these data to determine whether the precipitation

starts to differ since some year within the fifty years. To use the univariate time series change
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point methods, one has to summarize the yearly profile by taking an average within a year. This

method might lose valuable information and the different choices of pre-aggregation can lead to

different testing results. Functional change point detection methods view the yearly profile as a

function Xi(t), for i = 1, ..., 50. The original problem can be answered by testing whether the

mean function changes at some unknown year θ.

For dense functional data, there are several recent literature talking about the AMOC problem,

such as, (Berkes et al., 2009) and (Aue et al., 2009). They both utilize functional principal compo-

nent analysis to approximate the infinite dimensional inference problem by an finite approximate

in the eigenspace. As for sparse functional data, the change point detection problem has not been

specifically explored. The aforementioned dense data methods no longer work for sparse data.

This is because they require consistent individual projection scores, which are no longer achiev-

able when only a few irregularly-spaced observations are available for each curve. In Chapter 4,

we propose a testing method specifically designed for the sparse functional AMOC problem. The

test statistic is formulated from shrinkage estimators of the individual projection scores, which are

conditional on the subject-dependent observing locations. Under the null hypothesis, the proposed

test statistic follows a finite summation of independent standard Brownian bridge squares. Two

simulation studies are conducted to justify its finite sample performance. And it is also applied to

an eBay online auction data set.

The rest of the thesis is organized as follows. Chapter 2 first reviews the two-sample inference

problem for dense functional data. It then thoroughly presents the proposed method for sparse

functional data cases, including the statistical framework, proposed test statistics, estimation pro-

cedures, asymptotic theorems, and numerical experiments. Extension to multiple sample cases,

i.e., one-way FANOVA, is investigated in Chapter 3. Chapter 4 contains discussion for the func-

tional change point detection problem. The univariate change point detection problem in univariate

time series is briefly reviewed, followed by the proposed method for its counterpart under sparse

functional data cases. The proposed sparse functional method is justified by simulation studies and

application to an eBay online auction data set. Chapter 5 summarizes the entire thesis with some

further discussions. Proofs for the theorems are provided in the Appendix.
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2.0 TWO-SAMPLE MEAN FUNCTION INFERENCE FOR SPARSE FUNCTIONAL

DATA

For the two-sample mean function testing problem, methodologies for dense regular designs

have been relatively well developed. There exist several popular test procedures, including the

pointwise t-test (Ramsay, 2006), the L2-norm-based test and the F-type test (Zhang and Chen,

2007; Faraway, 1997; Zhang and Liang, 2014; Zhang et al., 2010), tests involving basis repre-

sentations (Abramovich et al., 2004; Horváth and Rice, 2015; Lillo et al., 2015), and the pseudo

LRT test (Staicu et al., 2014). In addition, tests aiming at detecting differences in functional dis-

tributions (Pomann et al., 2016; Hall and Van Keilegom, 2007) are also applicable to functional

mean testing problems under further assumptions. These dense functional data methods are briefly

reviewed in Section 2.2. They are invented by different people at different times, there is no univer-

sal conclusion to say which one is better than the others. We conduct several simulation studies to

provide some insights for their advantages and disadvantages. Reviewing the literature for dense

functional data not only helps us to have a thorough understanding about the two-sample mean

function inference problem, but also allows us to figure out why or why not each of these methods

are applicable to sparse functional data.

Sparse functional data is also very common in real world applications. Inventing two-sample

mean function testing procedures for sparse functional data will be beneficial to researchers from

all the fields where sparsely and repeatedly observed data are provided for answering the question

of general interest: are the average curves of a variable the same across the groups? For instance,

it can assist financial analysts to determine whether client’s transaction behaviors in stock markets

have changed from 2014 to 2015, even though for each client, only a few irregularly distributed

transaction data are available in each year. Similarly, it can help researchers to figure out which

of the two medical treatments is more effective for advanced AIDS patients, even though there are
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only 2 to 10 irregularly-observed measurements for each patient.

Constructing appropriate test procedures for sparsely observed functional samples is rather

challenging. Most of the aforementioned methods designed for dense functional data are unfeasible

now. The L2-norm-based test and the F -type test require a dense regular design on each curve,

such that the regular sample mean and sample covariance functions are attainable. When observing

times are not the same for all the subjects, pre-smoothing for each individual curve is involved.

However, pre-smoothing techniques are no longer reliable for sparse functional data, considering

the limited amount of data for each subject. The projection-based tests are not applicable to sparse

functional data because it is well known that the estimated scores obtained from basis expansions

for individual curves are no longer consistent. There are some recent works regarding one-sample

inference for sparse functional data (Ma et al., 2012). These methods cannot be easily generalized

to two or more functional samples. To the best of our knowledge, the pLRT test in (Staicu et al.,

2014) and and the distribution test in (Pomann et al., 2016) are the only two dense data tests

that are adaptive to sparse data cases. How to extend these two methods to sparse data cases are

briefly summarized in Section 2.3, and their performances are compared with those of our proposed

procedure through simulation studies in Section 2.8.1.

In this chapter, we propose a test procedure specially designed for the sparse functional mean

testing problem. We propose to construct a test statistic based on a shrinkage eigen-projection

score vector. Unlike the regular eigen-projection score vector, the distribution of the individual

shrinkage score depends on its specific design, i.e., the observing times. However, we notice that

if we take the randomness of designs into consideration, the distribution of the shrinkage score is

still i.i.d across all the subjects. Based on the distribution of the estimator of the shrinkage score,

we propose a χ2 type test statistic. We rigorously derive its asymptotic distribution under the null.

The development of the asymptotic null distribution is nontrivial since we need to consider the

estimation error of the shrinkage estimator for each individual subject, which is itself a random

quantity. The overall error needs to be controlled uniformly across all subjects.

The remaining of this chapter is organized as follows. In Section 2.1, we state the statistical

framework for the two-sample inference problem. In Section 2.2, we review and compare available

tests for dense functional data. In Section 2.3, we concisely explain how to modify the adaptable

dense data tests to sparse functional data. In Section 2.4 through Section 2.8, all the details about
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the proposed test for sparse functional data are presented, including the derivation, estimation

procedures, asymptotic results, simulation studies, and applications to both the CD4 count data set

and the eBay online auction data set mentioned before.

2.1 STATISTICAL FRAMEWORK

The model we consider is

Ygij = Xgi(Tgij) + εgij (2.1)

where Ygij , g = 1, 2, i = 1, .., ng, j = 1, .., Ngi denotes the jth observation of the ith subject in

group g. The random samples Xgi are realizations of two independent stochastic processes with

homogeneous covariance structures in a bounded time domain T . Without loss of generality, let’s

assume T = [0, 1]. Basically, Xgi(t) are random samples from Xg(t) ∼ SP (µg(t), G(s, t)), s, t ∈

T = [0, 1]. Here εgij ∼ N(0, σ2) are i.i.d measurement errors. The number of observations for the

ith subject in group g is denoted as Ngi. The corresponding observing times are {Tgi1, ..., TgiNgi
}.

For dense functional data, the number of observations Ngi is relatively large which goes to

infinity with sample size ng with a high rate, and the observing times {Tgi1, ..., TgiNgi
} are usually

regularly-spaced. When observing times are not the same for all the subjects, one can use pre-

smoothing techniques to get a consistent estimate for the entire underlying curve Xgi(t), then

evaluate all subjects at a common dense regular grid. Consequently, for dense functional data, the

number of observations are often assumed to be the same across subjects, i.e., Ngi = N . The

common observing times {T1, ..., TN} are usually assumed to be fixed and equally spaced without

loss of generality.

For sparse functional data, the number of observations Ngi is assumed to be finite or grow

slowly with sample size ng. Given Ngi, random observing times {Tgi1, ..., TgiNgi
} are i.i.d with a

bounded density function (specified in Section 2.7) within the time domain T . It is also assumed

that Xgi, Ngi and εgij are mutually independent.

Based on the observed data Ygij , g = 1, 2, i = 1, ..., ng, j = 1, ..., Ngi, the two-sample mean

function testing problem is interested in testing

H0 : µ1(t) = µ2(t), t ∈ T V S Ha : ∃ t ∈ T , µ1(t) 6= µ2(t). (2.2)
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2.2 REVIEWS FOR DENSE FUNCTIONAL DATA

2.2.1 Pointwise t-test

The pointwise test is introduced in (Ramsay, 2006). Its key idea is to test the null hypoth-

esis against the alternative hypothesis at each time point t0 ∈ T . In practice, one actually only

can observe data on a grid of time points, so they need to first apply some pre-smoothing tech-

niques, such as kernel, spline, and local polynomial, to each of the observed individual curve

(Ygi1, ..., YgiN ) to consistently recover the underlying curve in the entire domain t ∈ T . Let’s

denote the reconstructed curves as X̌gi(t). These recovered curves are
√
n consistent in supnorm

to the true curves, therefore they are usually assumed to have the same properties as the true

curve Xgi(t). Under Gaussian processes, for each time point t0 ∈ T , the pointwise t-test use

tn(t0) =
¯̌
X1·(t0)− ¯̌

X2·(t0)√
(1/n1+1/n2)Ĝ(t0,t0)

∼ t(n1 + n2 − 2), where Ĝ(t0, t0) = 1
n1+n2−1

∑2
g=1

∑ng

i=1[X̌gi(t0) −
¯̌
Xg·(t0)][X̌gi(t0)− ¯̌

Xg·(t0)], to test

H0 : µ1(t0) = µ2(t0) V S Ha : µ1(t0) 6= µ2(t0). (2.3)

And they propose to reject the H0 in (2.2) whenever there exist some time point t0 such that

|tn(t0)| > tn1+n2−2(1− α/2), for any predetermined significant level α.

It is unrealistic to test (2.3) over all points in the entire domain. Empirically, people pre-specific

a finite set of grids on which they want to test. And the H0 in (2.2) is rejected, if (2.3) is rejected

for at least one time points in the pre-specific grids set.

There are four comments that we want to make. First, Gaussian processes are not required

by the pointwise t-test. Under non-Gaussian cases, the test can be replaced by a pointwise z-test,

as long as both n1 and n2 are large enough. Second, the pointwise t-test is user-dependent. A

set of grids needs to be pre-specified by users. Third, even though our simulation studies show

that pre-smoothing is not necessary when the subjects share a common observing grid and the

measurement errors are not too large, it is required when the subjects do not share a common

observing grid. Pre-smoothing for each individual subject could be very time consuming. Finally,

the pointwise test cannot guarantee the overal significance level α. All the other global tests in

Section 2.2.2 to Section 2.2.6 can approximately control the type I errors. This point is clearly
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illustrated by simulation studies in Section 2.2.7, where the type I errors of the pointwise t-test are

much larger than the significance level α = 0.05, while the type I errors of the L2-norm-based test,

the globalized F -test, and the eigen-space projection method are all successfully controlled.

2.2.2 L2-norm-based test

The L2-norm-based test is described in detail by (Zhang, 2013). Similar to the pointwise t-test,

it is created based on the assumption that the entire curves Xgi(t) are obtainable. So the first step

is again to achieve consistent curve estimates X̌gi(t). The L2-norm-based test is motivated by the

fact that the integration of the squared difference between the two group’s sample mean functions

is a reasonable statistical quantity to measure the overall difference between their population mean

functions. The explicit formula of their test statistic is

Ln = n1n2

n

∫
T

[ ¯̌
X1·(t)− ¯̌

X2·(t)]2dt. (2.4)

where n = n1 + n2, ¯̌
Xg·(t) = 1

ng

∑ng

i=1 X̌gi(t). Under Gaussian processes cases, they prove that

Ln
D=

p∑
k=1

λkAk, with Ak ∼ i.i.d χ2(1) (2.5)

where ‘D=’ denotes equal in distribution, λ1, ..., λp are the positive eigenvalues of the common

covariance function G(s, t). They propose to use the Welch-Scatterthwaite χ2-approximation to

get the following approximate for Ln,

Ln ∼ βχ2(d) approximately ,where β = tr(G
⊗

2)
tr(G) , d = tr2(G)

tr(G
⊗

2)
(2.6)

Note that tr(G) = ∑p
k=1 λk, and tr(G

⊗
2) = ∑p

k=1 λ
2
k.

In terms of the numerical implementation of the L2-norm-based test, they propose to evaluate

values of the test statistics Ln by

Ln = n1n2

n

∥∥∥∥ ¯̌
X1·(t)− ¯̌

X2·(t)
∥∥∥∥2

2
≈ n1n2

n

1
N

N∑
j=1

( ¯̌
X1·(Tj)− ¯̌

X2·(Tj))2, (2.7)

and tr(G) and tr(G
⊗

2) are estimated by

tr(Ĝ) =
∫
T
Ĝ(t, t)dt ≈ 1

N

N∑
j=1

Ĝ(Tj, Tj) (2.8)
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tr(Ĝ
⊗

2) =
∫
T 2
Ĝ2(s, t)dsdt ≈ 1

N2

N∑
j=1

N∑
j′=1

Ĝ2(Tj, Tj′) (2.9)

where Ĝ(s, t) = 1
n1+n2−1

∑2
g=1

∑ng

i=1[X̌gi(s)− ¯̌
Xg·(s)][X̌gi(t)− ¯̌

Xg·(t)].

Under the Gaussian process assumption, the L2-norm-based test statistic is shown to be a

mixture χ2 distribution. Empirically, it is approximated by a single χ2 distribution, based on the

Welch-Scatterthwaite method. So it is not an exact test, and as shown by the simulation studies

in Section 2.2.7, performances of this approximation works well with relative large sample sizes.

Under non-Gaussian cases, as long as n1 and n2 are both large enough, the distribution of the

test statistic is approximately a mixture χ2 distribution according to the functional Central Limit

Theorem.

2.2.3 Globalized F -test

The globalized F -test is studied in (Zhang and Liang, 2014). The basic idea is to come up with

a globalized version of the pointwise F -test by using its integral over T ,

Fn =
∫
T

∑2
g=1 ng[

¯̌
Xg·(t)− ¯̌

X··(t)]2∑2
g=1

∑ng

i=1[X̌gi(t)− ¯̌
Xg·(t)]2/(n− 2)

dt. (2.10)

Under Gaussian processes and several other regular assumptions, they prove that

Fn
D−→

∞∑
k=1

λ′kAk, Ak ∼ i.i.d χ2(1) (2.11)

where ‘ D−→’ denotes converge in distribution, λ′k, k = 1, ...,∞ are the non-increasing eigenvalues

of Gω(s, t) = G(s, t)/
√
G(s, s)G(t, t). Similar to the L2-norm-based test in Section 2.2.2, the

asymptotic distribution of Fn can be approximated by the Welch-Scatterthwaite χ2-approximation.

The resulting approximation is

Fn
D−→ βωχ

2(dω) approximately, (2.12)

where βω = tr (G
⊗

2
ω ) and dω = 1

tr (G
⊗

2
ω )

. Note that tr(G
⊗

2
ω ) = ∑p

k=1 λ
′2
k.
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The numerical implement for the Globalized F -test is very similar to the L2-norm-based test

in Section 2.2.3. The empirical Fn is evaluated by

Fn =
∫
T

∑2
g=1 ng[

¯̌
Xg·(t)− ¯̌

X··(t)]2∑2
g=1

∑ng

i=1[X̌gi(t)− ¯̌
Xg·(t)]2/(n− 2)

dt ≈ 1
N

N∑
j=1

∑2
g=1 ng[

¯̌
Xg·(Tj)− ¯̌

X··(Tj)]2∑2
g=1

∑ng

i=1[X̌gi(Tj)− ¯̌
Xg·(Tj)]2/(n− 2)

,

(2.13)

and tr(Gω) and tr(G
⊗

2
ω ) are estimated by

tr(Ĝω) =
∫
T
Ĝω(t, t)dt ≈ 1

N

N∑
j=1

Ĝω(Tj, Tj) (2.14)

tr(Ĝ
⊗

2) =
∫
T 2
Ĝ2
ω(s, t)dsdt ≈ 1

N2

N∑
j=1

N∑
j′=1

Ĝ2
ω(Tj, Tj′) (2.15)

where Ĝω(s, t) = Ĝ(s,t)√
Ĝ(s,s)Ĝ(t,t)

, with Ĝ(s, t) = 1
n1+n2−1

∑2
g=1

∑ng

i=1[X̌gi(s) − ¯̌
Xg·(s)][X̌gi(t) −

¯̌
Xg·(t)].

The globalized F -test improves upon the pointwise t-test and can control the overall type I

error. Similar to the L2-norm-based test in Section 2.2.2, the functional Central Limit Theorem

ensures that Fn is still approximately mixture χ2 distributed as long as n1 and n2 are both large

enough.

2.2.4 Projection-based distance test

The eigen-space projection based test is considered by (Horváth and Kokoszka, 2012; Horváth

and Rice, 2015; Lillo et al., 2015). This method is based on the eigen-decomposition of the com-

mon covariance functionG(s, t), i.e.,G(s, t) = ∑∞
k=1 λkφk(s)φk(t), where {φk(t), k = 1, 2, ...,∞}

are the orthonormal eigenfunctions of G(s, t), corresponding to the non-increasing eigenvalue se-

quence {λk, k = 1, 2, ...,∞}. They first project the difference between the sample mean functions

to the eigen-space spanned by the common eigenfunctions {φk(t), k = 1, ...,∞}. Mathematically,

the projection score is υk =< ¯̌
X1· − ¯̌

X2·, φk >, k = 1, ...,∞, where ¯̌
Xg·(t) = 1

ng

∑ng

i=1 X̌gi(t).

Based on some regularization assumptions on the mean functions µg(t) and the eigenvalues

{λk, k = 1, 2, ...,∞}, they are able to argue that the first several dominant scores capture the
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majority of the signals of ¯̌
X1· − ¯̌

X2·. Let p denote the number of random scores to keep. Under

H0, it is easy to get the following property

p∑
k=1

υ2
k

λk
∼ χ2(p) (2.16)

In practice, {λk, φk(t)}pk=1 can be estimated by computing the eigenvalues and eigenfunctions for

the N × N sample covariance matrix of random vectors (X̆gi(T1), ..., X̆gi(TN)), g = 1, 2; i =

1, ..., ng. The corresponding estimated eigenvalues and eigenfunctions of covariance matrix of

(X̆gi(T1), ..., X̆gi(TN)) are denoted as {ˆ̃λk, ˆ̃φk(t)}pk=1. Then the estimate for eigenvalues and eigen-

functions of G(s, t) are

λ̂k = ˆ̃λk (2.17)

φ̂k(t) =
√
N ˆ̃φk(t) (2.18)

Let υ̂k =< ¯̌
X1·− ¯̌

X2·, φ̂k >≈ 1
N

∑N
j=1( ¯̌

X1·(Tj)− ¯̌
X2·(Tj))φ̂k(Tj), then they propose the following

test statistic

Dn =
p∑

k=1

υ̂2
k

λ̂k

D−→ χ2(p). (2.19)

They comment on p by arguing that p can be chosen by the classical fraction of variance

explained (FVE) approach. For instance, if the threshold is 0.80, then the FVE method takes the

first p leading principal components such that they can explain at least 80% of the total variance.

The eigen-space projection based test needs to estimate the eigenvalue and eigenfunctions,

which usually can be efficiently and consistently estimated. It also requires additional regulariza-

tion assumptions to ensure that the signals of the mean functions are be mostly captured by the

projection scores of the first several eigen-directions, and some addition techniques are involved

to determine the appropriate dimensions of the random score vectors. The test statistic is based

on a quadratic form of the estimated projection scores. The derivation of the null distribution re-

lies on consistency results for υ̂k. As we will discuss later, this only works for densely observed

functional data with moderate noise levels. Gaussian processes are not required by eigen-space

projection based test. The Central Limit Theorem ensures that the test statistic converges to a χ2

distribution regardless of whether the random functions are Gaussian or not.
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2.2.5 Pseudo likelihood ratio test

The Pseudo Likelihood Ratio Test (pLRT) is investigated in (Staicu et al., 2014). Their model

is a delicate version of (2.1). According to Mercer’s theorem, they have the spectral decomposition,

G(s, t) = ∑∞
k=1 λkφk(s)φk(t), where {φk(t), k = 1, 2, ...,∞} are the orthonormal eigenfunctions

of G(s, t), corresponding to the non-increasing eigenvalue sequence {λk, k = 1, 2, ...,∞}. Then

based on the Karhunen-Loève expansion, they have Xgi(t) = µg(t) + ∑∞
k=1 ξgkφk(t), with ξgk =∫

T (Xgi(t)− µg(t))φk(t)dt. Under the additional assumption that the overall mean function of the

two groups is µpool(t), they have the following model

Ygij = µpool(Tj) + [µg(Tj)− µpool(Tj)] +
∞∑
k=1

ξgkφk((Tj)) + εgij. (2.20)

By several regularization assumptions, they have an estimated µpool(t), µ̂pool(t) = µ̂1(t)+µ̂2(t)
2 ,

where µ̂g(t) is the mean functional estimate based on the gth sample alone. Let Ỹgij = Ygij −

µ̂pool(Tgij). And they assume that µpool is estimated well enough, such that model (2.20) becomes

Ỹgij = [µg(Tj)− µpool(Tj)] +
∞∑
k=1

ξgkφk((Tj)) + εgij. (2.21)

Observe that testing (2.2) is the same as testing

H0 : µ1(t)− µpool(t) = 0, t ∈ T V S Ha : ∃ t ∈ T , µ1(t)− µpool(t) 6= 0, (2.22)

the two-sample test problem (2.2) is transformed into an one-sample inference problem.

In order to test (2.22), they suppose that µ1(t) − µpool(t) can be represented by the penalized

spline class of functions,

µ1(t)− µpool(t) = β0 + β1t+ ...+ βpt
q +

S∑
s=1

bs(t− κs)q+ (2.23)

where xq+ = max(0, x)q, κ1, ..., κS are the knots placed at equally spaced quantiles, and b =

(b1, ..., bS)T ∼ N(0, σ2
b I). Then model (2.21) becomes

Ỹi = X̃iβ + Z̃ib + ei. (2.24)

where Ỹi = (ỸT

1i, Ỹ
T

2i)T = (Y1i1, ..., Yi1N , Y2i1, ..., Y2iN)T , X̃i = [X̃T

1i|−X̃T

2i]T (X̃gij = (1, Tj, ..., T qj )),

Z̃i = [Z̃T

1i| − Z̃T

2i]T (Z̃gij = ((Tj − κ1)q+, ..., (Tj − κS)q+)), and the covariance matrix of ei is
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Σi = diag(Σ1i,Σ2i), the (j, j′) element of Σgi equals to G(Tj, Tj′) + σ21(j = j′). And the test

problem (2.22) becomes

H0 : β = 0 and σ2
b = 0 V S Ha : not H0, (2.25)

Let N = ∑2
g=1

∑ng

i=1Ngi. They propose to use the following pseudo LRT statistics

pLRTN = sup
H0
⋃
Ha

2 logLỸ(β, σ2
b )− sup

H0

2 logLỸ(β, σ2
b ) (2.26)

where LỸ(β, σ2
b ) is likelihood function. Under Gaussian cases, the asymptotic null distribution of

pLRTN is proven to be the same as

sup
η≥0

[
S∑
s=1

η

1 + ηζs
−

S∑
s=1

log(1 + ηγs)] +
q+1∑
j=1

ν2
j (2.27)

where νj ∼ N(0, 1), and let γsN and ζsN are eigenvalues of N−ρZ̃TΣ−1Z̃ and N−ρ{Z̃TΣ−1Z̃ −

Z̃TΣ−1X̃(X̃TΣ−1X̃)−1X̃TΣ−1Z̃} respectively, and γsN
p−→ γs, ζsN

p−→ ζs.

The numerical implementation of the pLRT test can be done by using the R function ‘ex-

actLRT’ in the package ‘RLRsim’ (Scheipl et al., 2008), which not only calculates the value of the

pLRT test statistic but also determines the p-value by approximating its asymptotic null distribu-

tion.

The pLRT test solves the problem in the traditional likelihood ratio test prospective. How-

ever, the pLRT test suffers from several drawbacks. First, it is based on the fact that the mean

functions can be represented by the penalized spline class of functions. This is not always the

case in real practice, and then the pLRT test may be biased. Second, as pointed by the author, the

pLRT test require a relatively high level of accuracy of µ̂g(t) and Ĝ(s, t). This is a rather strict

requirement, especially for sparse functional data. Third, the asymptotic null distribution of the

test statistic depends on the limiting eigenvalues of two complex sequences of matrices, which is

inconvenient and unstable in practice. This shortcoming is demonstrated in our simulation studies

in Section 2.8.1. Finally, unlike the tests discussed in Section 2.2.1 to Section 2.2.4, the Gaussian

assumption is required for the pLRT test.
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2.2.6 Distribution test

This distribution test is proposed in (Pomann et al., 2016). It is originally invented to test the

null hypothesis,

H0 : X1(t)D=X2(t) V S Ha : X1(t)
D

6=X2(t), (2.28)

where ‘D=’ denotes equal in distribution as before.

In order to test (2.28), they denote X(t) as the mixture process of X1(t) and X2(t), with

mean function µpool(t) and pooled covariance function G̃(s, t). Similar to the pLRT test, based

on the Karhunen-Loève expansion, they have Xg(t) = µpool(t) + ∑∞
k=1 ωgkηk(t), with ωgk =∫

T (Xg(t) − µpool(t))ηk(t)dt, where ηk(t) are the eigenfunctions of the pooled covariance G̃(s, t).

Then it is straightforward that testing (2.28) is equivalent to testing

H0 : {ω1k}∞k=1
D={ω2k}∞k=1 V S Ha : {ω1k}∞k=1

D

6={ω2k}∞k=1. (2.29)

Similar to the argument in Section 2.2.4, they argue that they can consider only the first p projection

scores, i.e., {ωg1, ..., ωgp}. For each of the p dimensions, they propose to utilize the Anderson-

Darling test, a distribution test to test the quality of distributions. Note that multiple comparison

adjustments, such as the Bonferroni correction, should be used to ensure the overall significance.

Under additional Gaussian assumptions and common covariance assumptions, i.e., Xg(t) ∼

GP (µg(t), G(s, t)), we notice that testing (2.28) is equivalent to testing (2.2). However, the dis-

tribution test tends to yield lower powers for the mean function testing problem, because of the

nonparametric nature of the AD test and the multiple testing correction. In order to apply the

distribution test to the mean function testing problem, the Gaussian assumption is required.

2.2.7 Comparisons through simulation studies

Simulation I

In this simulation, we compare the performances of the pointwise t-test, the L2- norm-based

test, the globalized F -test and the projection-based test. We compute the type I error and the

powers of these tests through 1000 repetitions and summarize the results in Table 2.1. The mean

function in this simulation is generated as linear combinations of eigenfunctions, therefore we
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know the true value of p in the projection based method. A more complex mean function setting is

considered in simulation II.

The data is generated based on model (2.1), and the Karhunen-Loève expansion Xgi(Tj) =

µg(Tj) + ∑∞
k=1 ξgikφk(Tj), with ξgik ∼ N(0, λk). The observing time points, {T1, ..., TN} are

equally spaced within the interval [0,1]. We assume that the eigenvalues are λk = (k + 1)−2

for k = 1, ..., 4, and λk = 0 for k > 4. The eigenfunctions are φk(t) =
√

2 cos[(k − 1)πt] for

k ≥ 2 and φ1(t) = 1. The first four eigenfunctions are visualized on the left panel in Figure 2.3.

The mean functions are µ1(t) = ∑4
k=1 a1kφk(t) and µ2(t) = ∑4

k=1 a2kφk(t), where agk = 3āgk

‖āg‖2
,

with āg = (āg1, ..., āg4)T and ā1k = (2)5−k(5 − k)6 and ā2k = (2 − ς)5−k(5 − k)6. Note that

ς = 0, 0.4, 0.8, 1.2 correspond to the null hypothesis and three alternative hypotheses for (2.2).

The variance of the measurement errors takes two values, σ = 0 and σ = 0.3. The sample sizes

under consideration are n1 = n2 = 100, and n1 = n2 = 200. The number of observations on

each curve is chosen to be N = 100 or N = 50. Figure 2.1 and Figure 2.2 visualize 9 randomly

selected subjects for situations where (N = 100, σ = 0) and (N = 100, σ = 0.3) .

All the simulation results are summarized in Table 2.1, with all numbers representing the per-

centages of rejection (at significance level α = 0.05) calculated based on 1000 repetitions. We use

the true value of p, i.e., p = 4, to perform the ‘projection-based’ test. First, indicated by all the three

sections in the table, the pointwise t-test is incapable of controlling the pre-specified significance

level. The performance of all the other three tests (‘L2-norm-based’, ‘Globalized’, ‘Projection-

based-test’) are reasonable: they not only successfully control the type I error, but also have in-

creased powers with the increase of either sample sizes or discrepancies between the two mean

functions. The powers of ‘L2-norm-based’ and ‘Globalized’ are comparable. The ‘Projection-

based test’ is much more powerful than ‘L2-norm-based’ and ‘Globalized’. The projection-based

distance-test is essentially utilizing the same quantity as the L2-norm-based statistic. However,

the L2-norm-based statistic considers all the positive eigenvalues and the projection-based method

truncate at the first few large eigenvalues. The truncation, if employed appropriately, can serve as a

de-noising step and therefore results in better performance. Second, by comparing the first part and

the second part in Table 2.1, we can see that performances of all the three tests are not affected by

moderate random measurement errors. Finally, the first part and the third part of Table 2.1 together

confirm that these three tests are not sensitive to the number of observations on each individual
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Figure 2.1: (N = 100, σ = 0). Simulated data for nine randomly chosen subjects in group 1. Note

that in each plot, the black curve is the mean curve for this subject, and the blue curve represent

the observed curve.
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Figure 2.2: (N = 100, σ = 0.3). Simulated data for nine randomly chosen subjects in group

1. Note that in each plot, the black curve is the mean curve for this subject, and the blue curve

represent the observed curve.
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curve, as long as the observations are dense enough.

Table 2.1: Results for simulation study I (p=4). We presented results for (N, σ) = (100, 0),

(100, 0.3), (50, 0), where N is the number of grids on each curve and σ is the standard deviation

of random error. Sample sizes are n1 = n2 = 100 or 200. The type I error (ς = 0) and powers

(ς = 0.4, 0.8, 1.2) for four different methods: the pointwise t-test (‘pointwise’), the L2-norm-based

test, the Globalized F -test, the projection-based test are calculated based on 1000 repetitions.

(N,σ) sample size Test ς = 0 ς = 0.4 ς = 0.8 ς = 1.2
(N, σ) = (100, 0) (n1, n2) = (100, 100) Pointwise 0.156 0.252 0.800 1.000

L2-norm-based 0.046 0.059 0.357 1.000
Globalized 0.047 0.062 0.331 1.000
Projection-based 0.053 0.168 0.862 1.000

(n1, n2) = (200, 200) Pointwise 0.150 0.404 0.997 1.000
L2-norm-based 0.045 0.102 0.816 1.000
Globalized 0.044 0.099 0.785 1.000
Projection-based 0.062 0.307 0.993 1.000

(N, σ) = (100, 0.3) (n1, n2) = (100, 100) Pointwise 0.392 0.552 0.951 1.000
L2-norm-based 0.049 0.062 0.349 1.000
Globalized 0.050 0.063 0.332 1.000
Projection-based 0.060 0.191 0.860 1.000

(n1, n2) = (200, 200) Pointwise 0.381 0.673 0.996 1.000
L2-norm-based 0.055 0.116 0.797 1.000
Globalized 0.054 0.108 0.770 1.000
Projection-based 0.059 0.333 0.992 1.000

(N, σ) = (50, 0) (n1, n2) = (100, 100) Pointwise 0.159 0.272 0.807 1.000
L2-norm-based 0.046 0.068 0.367 1.000
Globalized 0.045 0.067 0.341 1.000
Projection-based 0.051 0.193 0.869 1.000

(n1, n2) = (200, 200) Pointwise 0.153 0.600 0.999 1.000
L2-norm-based 0.045 0.105 0.800 1.000
Globalized 0.048 0.100 0.770 1.000
Projection-based 0.047 0.314 0.994 1.000

Simulation II

For the second simulation study, we consider a more complex setting. We want to explore the

performance of the four test procedures when the mean functions are not linear combinations of

the eigenfunctions. That is to say, we do not know the value of the true p, the number of dominant

random scores after projecting the mean functions into the common eigen-space. We adopt the the

classical fraction of variance explained (FVE) approach. The specific threshold levels that we use

is 80% (‘FVE80’) and 90% (‘FVE90’). The mean functions are µ1(t) = 1 + 2.3t + 3.4t2 + 1.5t3
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and µ2(t) = µ1(t) + ( 1
30 + 2

30t + 3
30t

2 + 4
30t

3)η, where η = 0, 0.13, 0.26, 0.4, correspond to the

null hypothesis and three alternative hypotheses. The mean functions are visualized on the right

panel in Figure 2.3. All the other settings are almost the same as Simulation I. The number of

observations on each curve equal 100, i.e, N = 100. The observing time points, {T1, ..., TN} are

equally spaced within the interval [0,1], i.e., {T1, ..., TN} = { 1
100 ,

2
100 , ..., 1}. We assume that the

eigenvalues are λk = (k + 1)−2 for k = 1, ..., 4, and λk = 0 for k > 4. The eigenfunctions are

φk(t) =
√

2 cos[(k − 1)πt] for k ≥ 2 and φ1(t) = 1. The first four eigenfunctions are visualized

on the left panel in Figure 2.3. The variance of the measurement errors is σ = 0.3. The sample

sizes are n1 = n2 = 100, and n1 = n2 = 200.

All the simulation results are summarized in Table 2.2, with all numbers representing the

percentages of rejection (at significance level α = 0.05) calculated based on 1000 repetitions.

Shown by all Table 2.2, the pointwise t-test is incapable of controlling the pre-specified signifi-

cance level. The performance of all the other tests (‘L2-norm-based’, ‘Globalized’, ‘Projection-

based (FVE80)’, and ‘Projection-based (FVE90)’) are reasonable: they successfully control the

type I error, but have increased powers with the increment of either sample sizes or discrepancies

between the two mean functions. The powers of ‘L2-norm-based’ and ‘Globalized’ are compa-

rable. The ‘Projection-based test’ is more powerful, even though the true value of p is no longer

obtainable.

2.3 ADAPTATIONS OF DENSE DATA METHODS TO SPARSE CASES

In this section, we briefly introduce how the ‘pLRT test’ and the ‘Distribution’ test can be

adaptive to sparse data.

Conceptually, the ‘pLRT’ test can be straightforwardly extended to the sparse data, which

requires essentially no change in the test statistic. Different assumptions are required to make the

null distribution result holds. More details can be found in their paper (Staicu et al., 2014). The

numerical implementation of the ’pLRT’ method involves estimation of the mean function and

covariance function, which is simply the sample mean and sample covariance estimates in dense

functional data case. For sparse functional data, one could use methods developed in (Yao et al.,
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Figure 2.3: Visualization for Simulation II. Eigenfunctions {φ1(t), φ2(t), φ3(t), φ4(t)} are on the

left panel; Mean functions under the null and three alternative hypotheses are on the right panel.

2005) or (Peng and Paul, 2009). The original paper focuses on the one-sample mean function

inference problem. And it is mentioned that the method can be generalized to two-sample mean

function testing problems. However the asymptotic null distribution of the test statistic depends on

the limiting eigenvalues of two complex sequences of matrices, and the implementation involves

quite a few tuning parameters. In addition, as mentioned by the authors, their method requires a

high accuracy level for the mean and covariance function estimates. We notice that the performance

of the pLRT test is unstable, being sensitive to simulation settings. This shortcoming is illustrated

by our simulation studies in Section 2.8.1.

The distribution test is applicable to sparse functional data as follows. Under the joint Gaussian

assumption and the common covariance assumption, they claim that testing (2.29) is the same as

testing

H0 : {ω̃1k}∞k=1
D={ω̃2k}∞k=1 V S Ha : {ω̃1k}∞k=1

D

6={ω̃2k}∞k=1, (2.30)

where ω̃gk = E[ωgk|Ygi]. The specific formula of ω̃gk has been studied in (Yao et al., 2005; Peng

and Paul, 2009). So for sparse functional data, ω̃gk instead of ωgk should be used to perform the

AD test with multiple testing corrections. We note that the K-L expansion used in the distribution

test is based on the pooled mean µpool and pooled covariance G̃(s, t).
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Table 2.2: Results for simulation study II (p unknown). We presented results N = 100, σ = 0 and

n1 = n2 = 100 or 200. Fraction of variance explained methods (‘FVE80’ and ‘FVE90’) are uti-

lized to choose p for the projection-based test. We compare four different methods: the pointwise

t-test (‘pointwise’), the L2-norm-based test, the Globalized F -test, the Projection-based test. The

type I error (η = 0) and powers (η = 0.4, 0.8, 1.2) are calculated based on 1000 repetitions.

sample size Test η = 0 η = 0.13 η = 0.26 η = 0.4

(n1, n2) = (100, 100) Pointwise 0.399 0.644 0.964 1.000

L2-norm-based 0.066 0.157 0.569 1.000

Globalized 0.069 0.154 0.537 1.000

Projection-based (FVE80) 0.059 0.235 0.748 1.000

Projection-based (FVE90) 0.059 0.235 0.748 1.000

(n1, n2) = (200, 200) Pointwise 0.308 0.807 0.993 1.000

L2-norm-based 0.051 0.265 0.832 1.000

Globalized 0.050 0.256 0.812 1.000

Projection-based (FVE80) 0.051 0.436 0.950 1.000

Projection-based (FVE90) 0.051 0.436 0.950 1.000

2.4 PROPOSED TEST PROCEDURE FOR SPARSE FUNCTIONAL DATA

Let µpool(t) denote the mean function of the mixture process of X1(t) and X2(t). We first

achieve a centered model by deducting this overall mean function from both sides of (2.1). Let

Y c
gij = Ygij − µpool(Tgij) and Xc

gi(t) = Xgi(t)− µpool(t), then model (2.1) becomes

Y c
gij = Xc

gi(Tgij) + εgij (2.31)

where Xc
gi(t) ∼ SP (µg(t)− µpool(t), G(s, t)).

Let {φk(t), k = 1, 2, ...,∞} be orthonormal eigenfunctions of G(s, t), corresponding to the

non-increasing eigenvalue sequence {λk, k = 1, 2, ...,∞}. We define the projection score of
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µg(t)− µpool(t) onto the kth eigenfunction φk(t) as θcgk, which is calculated by

θcgk = 〈µg − µpool, φk〉, g = 1, 2; k ≥ 1. (2.32)

Given the fact that µg(t)− µpool(t) = ∑∞
k=1 θ

c
gkφk(t), it can be seen that testing (2.2) is equivalent

to testing

H0 : {θc1k}∞k=1 = {θc2k}∞k=1 V S Ha : {θc1k}∞k=1 6= {θc2k}∞k=1. (2.33)

Observe that

Xc
gi(t) =

∞∑
k=1
〈Xc

gi, φk〉φk(t)
def=

∞∑
k=1

rcgikφk(t), (2.34)

and the fact that testing (2.33) is equivalent to testing

H0 : {E[rc1ik]}∞k=1 = {E[rc2ik]}∞k=1 V S Ha : {E[rc1ik]}∞k=1 6= {E[rc2ik]}∞k=1, (2.35)

in dense data setting, projection-based tests truncate at the first p dimensions and construct test

statistics based on rcgik, g = 1, 2, i = 1, .., ng, k = 1, .., p.

For extremely dense functional data, one can first recover the underlying true curve and es-

timate the scores using
∫
t∈T X

c
gi(t)φ̂k(t) dt. However, in sparse functional data settings, this is

impossible.

We propose to consider the best linear predictor,E[rcgik|Y c
gi], which is a rational choice because

Et[E[rcgik|Y c
gi]] = E[rcgik]. (2.36)

That is to say, by taking the randomness of design points under sparse data cases into account, the

expectation of random quantity E[rcgik|Y c
gi] also equals to θcgk defined in (2.32). Similar ideas have

been proposed in (Yao et al., 2005) for principal component analysis for sparse functional data.

Let Y c
gi = (Y c

gi1, ..., Y
c
giNgi

)T be the vector contains observations of the corresponding subject.

Denote µgi = (µg(Tgi1), ..., µg(TgiNgi
))T and µpool,gi = (µpool(Tgi1), ..., µpool(TgiNgi

))T . Motivated

from a special case where the projection scores rcgik and the random errors εgij are jointly Gaussian

distributed, the best linear predictor E[rcgik|Y c
gi] has the following explicit formula

E[rcgik|Y c
gi] = θcgk + λkφ

T
gikΣ−1

Yc
gi

(Y c
gi − µgi + µpool,gi), (2.37)
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where ΣYc
gi

is the covariance matrix ofY c
gi, and the (j, j′) element of ΣYc

gi
equals toG(Tgij, Tgij′)+

σ21(j = j′).

Let’s truncate at the first p directions and denote the projection score vector as rcgi = (rcgi1, ..., rcgip)T .

The best linear predictor of rcgi is

E[rcgi|Y c
gi] = θcg + diag(λ)ΦT

giΣ−1
Yc

gi
(Y c

gi − µgi + µpool,gi), (2.38)

where θcg = (θcg1, ..., θcgp)T , Φgi = (φgi1, ...,φgip), with φgik = (φk(Tgi1), ..., φk(TgiNgi
))T , λ =

(λ1, ..., λp)T .

Under the null hypothesis of the testing problem (2.2), we have µg(t) = µpool(t) and θcg = 0,

so we propose to construct a test statistic based on the following quantity,

r̃cgi = diag(λ)ΦT
giΣ−1

Yc
gi
Y c

gi = diag(λ)ΦT
giΣ−1

Yc
gi

(Y gi − µpool,gi), (2.39)

which is referred as shrinkage score in later parts. The shrinkage score introduced in (2.39) is not

the same as the original score rcgi in (2.34), but it gets closer to rcgi when the number of observations

on each curve goes large and the measurement error gets small.

To construct a test statistic based on the shrinkage score vector r̃cgi, let’s first calculate its mean

vector and covariance matrix through the following two steps. First, assuming the observing times

T gi = (Tgi1, ..., TgiNgi
)T are fixed, the conditional mean and variance of r̃cgi are

E[r̃cgi|T gi] = diag(λ)ΦT
giΣ−1

Yc
gi

(µgi − µpool,gi)

Cov[r̃cgi|T gi] = diag(λ)ΦT
giΣ−1

Yc
gi

Φgidiag(λ)
(2.40)

Next, by taking the randomness of T gi into account, we have the mean and variance of r̃cgi are

E[r̃cgi] = Et[diag(λ)ΦT
giΣ−1

Yc
gi

(µgi − µpool,gi)]

Cov[r̃cgi] = Et[diag(λ)ΦT
giΣ−1

Yc
gi

Φgidiag(λ)]
(2.41)

28



All the quantities involved in estimating r̃cgi, E[r̃cgi] and Cov[r̃cgi] can be obtained from data

Ygij , g = 1, 2, i = 1, .., ng, j = 1, .., Ngi, with details included in the next section. Let’s denote the

estimated quantities as λ̂, φ̂k(t), µ̂pool(t), and σ̂. We have the following empirical estimators

ˆ̃rcgi = diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi + σ̂2I]−1(Ygi − µ̂pool;gi)

ˆCov[r̃cgi] = 1
n1 + n2

2∑
g=1

ng∑
i=1

diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi + σ̂2I]−1Φ̂gidiag(λ̂)

def= V̂

(2.42)

Given all these arguments, we propose to use the following test statistic,

Tp,N = [ ¯̃̂r
c

1· −
¯̃̂r
c

2·]T [( 1
n1

+ 1
n2

)V̂ ]−1[ ¯̃̂r
c

1· −
¯̃̂r
c

2·] (2.43)

where ¯̃̂r
c

g· =
∑ng

i=1 ˆ̃rcgi/ng.

Even though the proposed test statistic Tp,N is motivated from joint Gaussian situations, we

later proved that it has an asymptotic χ2(p) null distribution regardless of whether the joint Gaus-

sian assumption is true or not. See Theorem 1 for more details. The proof of this theoretical result

is rather challenging. The shrinkage score vector r̃cgi is not observable, needing to be estimated

from data. This additional estimation error is required to be controlled. The projection-based

method for dense functional data also involves controlling errors in the estimated scores. What

makes our argument more complicated than dense cases is that we need to consider each estima-

tion error conditional on the individual design points and ensure that the overall error is uniformly

controlled over random designs.

2.5 ESTIMATION PROCEDURES

In this section, we discuss the estimation procedure for all elements in Tp,N . We utilize the

restricted Maximum Likelihood Estimate (rMLE) in (Peng and Paul, 2009). To implement the

rMLE procedure, we modified their publicly available R package called ‘fpca’. Note that Gaussian

distributions are assumed in the following description. However, as stated in their paper, the Gaus-

sian processes assumption is only a working condition and their asymptotic results still hold under
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some relaxed conditions. Our simulation studies in Section 2.8.1 also show that rMLE has reason-

able performance under non-Gaussian cases. Our test procedure itself does not require Gaussian

distributions. One can always use other estimating methods, such as the local linear smoothing in

(Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016) and the EM algorithm in (James

et al., 2000), as long as they produce consistent estimates.

Estimations of the mean function µg(t) and the pooled mean function µpool(t) are performed

by a local linear smoothing technique. This method has been used in various studies, including

(Fan and Gijbels, 1996; Yao et al., 2005; Peng and Paul, 2009). To be more specific, we define the

local linear smoother of the pooled mean function µpool(t) by minimizing

2∑
g=1

ng∑
i=1

Ngi∑
j=1

K(Tgij − t
hµpool

)[Ygij − β0 − β1(t− Tgij)] (2.44)

with respect to β0 and β1, where K(·) is a smoothing kernel and hµpool
is the bandwidth. Then

µ̂pool(t) = β̂0(t). Similarly, for each g, we define the local linear smoother of the mean function

µg(t) by minimizing

ng∑
i=1

Ngi∑
j=1

K(Tgij − t
hµg

)[Ygij − β∗g0 − β∗g1(t− Tgij)] (2.45)

with respect to β∗g0 and β∗g1. Then µ̂g(t) = β̂∗g0(t).

As for the eigenfunctions φk(t), the eigenvalues λk of the common covariance functionG(s, t),

and the measurement errors σ, estimates are achieved by modifying the restricted maximum like-

lihood method in (Peng and Paul, 2009), such that two independent samples instead of one can be

dealt with. This method is based on a reduced rank model, i.e., it is assumed that the eigenvalues of

G(s, t) decay to zero efficiently fast such that the difference betweenG(s, t) = ∑∞
k=1 λkφk(t)φk(s)

and
∑p
k=1 λkφk(t)φk(s) are very small. Further more, under some weak smoothness conditions on

Xg(·), the first p eigenfunctions {φ1(t), ..., φp(t)} can be modeled as,

φk(t) =
M∑
l=1

dlkψl(t), k = 1, , , ., p, (2.46)

where functions {ψ1(t), ..., ψM(t)} ∈ L2(T ) are known. Let’s define D = (dlk)l=1,..,M ;k=1,..,p.

Based on the orthonormality of eigenfunctions, we have DTD = Ip, if {ψ1(t), ..., ψM(t)} are also
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orthonormalized. Under the Gaussian process and normal error assumption, conditional on time

points, the negative log-likelihood of the data is given by

− logL(D, diag(λ), σ2) ∝ 1
2

2∑
g=1

ng∑
i=1

Tr[(σ2INgi
+ ΨT

giDdiag(λ)DTΨgi)(Ygi − µ̂gi)(Ygi − µ̂gi)T ]

+ 1
2 log |σ2INgi

+ ΨT
giDdiag(λ)DTΨgi|

(2.47)

where Ψgi = (ψgi1, ...,ψgiM), with ψgil = (ψl(Tgi1), ..., ψl(TgiNgi
))T for l = 1, ..,M . And µ̂g(t)

is estimated above in (2.45) and µ̂gi = (µ̂g(Tgi1), ..., µ̂g(TgiNgi
))T . A Newton-Raphson algorithm

is utilized to achieve D̂, λ̂ and σ̂2 such that they minimize the negative log-likelihood, subject

to the constraint that DTD = Ip. Then we can estimate the corresponding eigenfunctions by

φ̂k(t) = ∑M
l=1 d̂lkψl(t).

Combining all these estimates, we achieve estimation of the covariance Cov[r̃cgi]. We raise the

following estimator

V̂ = 1
n1 + n2

2∑
g=1

ng∑
i=1

diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi + σ̂2I]−1Φ̂gidiag(λ̂), (2.48)

and the empirical estimate for r̃cgi is ˆ̃rcgi = (ˆ̃rcgi1, ..., ˆ̃rcgip)T , where ˆ̃rcgik = λ̂kφ̂
T

gikΣ̂
−1
Ygi

(Ygi −

µ̂pool;gi). Then our test statistic Tp,N is

Tp,N = [ ¯̃̂r
c

1· −
¯̃̂r
c

2·]T [( 1
n1

+ 1
n2

)V̂ ]−1[ ¯̃̂r
c

1· −
¯̃̂r
c

2·] (2.49)
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2.6 EXTENSION TO COMMON PRINCIPAL COMPONENT CASES

Even though our proposed test statistic Tp,N is created based on the homogeneous covari-

ance function assumption, we notice that it only requires that the eigenfunctions of the covari-

ance functions are the same. To be more specific, the gth covariance function can be Gg(s, t) =∑∞
k=1 λgkφk(s)φk(t), with φk(t) being the same across different groups. This is called the com-

mon principal component structure (CPC) (Flury, 1984; Benko et al., 2009; Boente et al., 2010;

Chen and Müller, 2013). Under CPC, the test statistic has a formula that is similar to Tp,N , but λ̂

should be replaced with λ̂g. The estimation procedure also needs to be modified. φ̂k(t) is achieved

by applying the restricted maximum likelihood estimate to the pooled data. Ĝg(s, t) is calculated

by using data from group g alone. Then the group-dependent eigenvalues λ̂gk is obtained by the

following formula,

λ̂gk =< φ̂k, φ̂
′
k >, with φ̂′k(t) =

∫
T
Ĝg(s, t)φ̂k(s)dt. (2.50)

2.7 ASYMPTOTIC RESULTS

In this section, we develop the asymptotic theory of Tp,N under both the H0 and the Ha in test

(2.2). To achieve these asymptotic arguments, we need the following consistency results

∥∥∥µ̂pool − µpool∥∥∥
F

= op(1)∥∥∥diag(λ̂)− diag(λ)
∥∥∥

2
= op(1)∥∥∥φ̂k − φk∥∥∥

F
= op(1)∥∥∥σ̂2 − σ2

∥∥∥
2

= op(1)

(2.51)

where‖f‖F is defined as {
∫
t∈T f(t)2dt}1/2.

We estimate µ̂pool using local linear smoothing techniques and the consistency result holds

under some regular and mild conditions, which are discussed in (Yao et al., 2005; Li and Hsing,

2010; Zhang and Wang, 2016). The other quantities are estimated using rMLE, and they are

consistent when the following assumptions hold (Paul and Peng, 2009).
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1. X1(t) and X2(t) are two independent Gaussian processes.

2. The p largest eigenvalues of G(s, t) satisfy. (i) There exists a constant a1 < ∞, such that

a1 ≥ λ1 > λ2 > ... > λp > λp+1; (ii) There exists a constant a2 < ∞, such that max
1≤k≤p

(λk −

λk+1)−1 ≤ a2.

3. The common eigenfunctions {φk}pk=1 are four times continuously differentiable and satisfy for

some 0 < A0 <∞

max
1≤k≤p

sup
t∈T
|φ(4)
k (t)| ≤ A0 (2.52)

4. For each g, i, {Tgij, j = 1, ..., Ngi} are i.i.d samples from a distribution g within the time

domain T , where g is a bounded function and it satisfies cg,0 ≤ g(x) ≤ cg,1 for all t ∈ T ,

where 0 < cg,0 ≤ cg,1 <∞.

5. The number of measurements Ngi satisfies N ≤ Ngi ≤ N̄ with N ≥ 4 and N̄ <∞.

6. The following two assumptions are correct: M−1(n/ log n)1/9 = O(1), andM = o(
√
n/ log n),

where n = n1 + n2 and M as defined in Section 2.5 is the number of orthonormalized cubic

B-spline basis used to represent the eigenfunctions φk(t).

The Gaussian process requirement is merely a working assumption for their rMLE method,

which can be replaced by a weaker condition on the tail distributions. More details can be found

in (Paul and Peng, 2009). Note that the derivation of the asymptotic distribution of the proposed

test statistic Tp,N does not need Gaussian distribution. We can always use other estimation meth-

ods such as the local linear smoothing, and then we need other conditions to make sure that the

estimates are consistent (Yao et al., 2005; Li and Hsing, 2010). We focus on the sparse scenario

that the number of observations on each curve is bounded; while the proposed method also works

when N̄ grows with the sample size n. If one can achieve rate αn consistency for all the estimated

quantities in (2.51) and have N̄2α2
n = o(1) satisfied, then the current proofs for Theorem 1 and 2

can go through. Given that we use rMLE to estimate λ, φ and σ and use local linear smoothing for

µpool, we can at least allow N̄ = O(n1/5) with M � (nN̄2/ log n)1/9 and an appropriately chosen

bandwidth in local linear smoothing.

Theorem 1. Under H0 and regularization assumptions 1-6, assuming limn1.n2→∞
n1
n

= w, with

w ∈ (0, 1) and n = n1 + n2, if Et[ΦT
gikΣ−1

Ygi
Φgik] <∞ is satisfied. For any fixed p, we have

Tp,N
D−→ χ2(p) (2.53)
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Given Theorem 1, we propose the following test procedure. For a specific significance level

α, reject H0 in (2.2), if Tp,N > χ2(1− α; p), the upper α quantile of χ2(p); otherwise, we will not

have enough evidence to reject H0. Proof of Theorem 1 is postponed to Appendix. The theorem

guarantees the performance when the total sample size goes to infinity, finite sample performance

is justified in the Section 4 by three simulation studies and real data analyses.

In the following, Theorem 2 provides theoretical justifications for the power of our test proce-

dure under certain type of alternatives.

Theorem 2. Under regularization assumptions 1-6, assuming limn1.n2→∞
n1
n

= w, with w ∈ (0, 1)

and n = n1 + n2. Suppose that we have Et(diag(λ)ΦT
giΣ−1

Ygi
(µgi − µpool;gi)) 6= 0, then

Tp,N
p−→∞ (2.54)

Under random design t, Et(diag(λ)ΦT
giΣ−1

Ygi
(µgi − µpool;gi)) is basically some type of projec-

tion of µg(t)− µpool(t). When µg(t)− µpool(t) 6= 0, it is unlikely that this projection scores equal

to 0 on all the first p directions. Theorem 2 ensures that, under any alternative Ha when the differ-

ence between µg(t) and µpool(t) is captured by some of the first p directions of such projection, the

power of our test procedure goes to 1. Proof of Theorem 2 is also postponed to Appendix.

2.8 NUMERICAL EXPERIMENTS

2.8.1 Simulation studies

In this subsection, through three simulations we evaluate the performances of the proposed

test Tp,N (‘Shrink’). First, we investigate the performance of the proposed χ2 test in comparison

with three other methods. Second, we examine the performance of our proposed χ2 test under a

non-Gaussian circumstance. Third, we investigate different methods of choosing number of p.

Simulation I

The data is generated based on model (2.1), and the Karhunen-Loève expansion Xgi(Tgij) =

µg(Tgij) + ∑∞
k=1 ξgikφk(Tgij), with ξgik ∼ N(0, λk). The number of observations are the same
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across different curves, i.e., Ngi = N for g = 1, 2; i = 1, ..., ng. N takes two values, 4 and

8. The observing time points, {Tgi1, ..., TgiN}, are uniformly distributed within the interval [0,1].

We assume that the eigenvalues are λk = 2(k + 1)−2 for k = 1, ..., 4, and λk = 0 for k > 4.

The eigenfunctions are φ1(t) =
√

2 cos(πt), φ2(t) =
√

2 sin(πt), φ3(t) =
√

2 cos(2πt), φ4(t) =
√

2 sin(2πt). The mean functions are µ1 = ∑4
k=1 a1kφk(t), where a1k = 3ā1k/‖ā1‖2, with ā1 =

(ā11, ..., ā14)T and ā1k = (2)5−k(5 − k)6. And µ2 = ∑4
k=1 a2kφk(t), where a2k = 3ā2k/‖ā2‖2,

with ā2 = (ā21, ..., ā24)T and ā2k = (2 − ς)5−k(5 − k)6. Note that ς = 0, 0.8, 1.2, 1.6 correspond

to the null hypothesis and three alternative hypotheses for (2.2). The standard deviation of the

measurement errors takes three values, σ = 0, σ = 0.6, σ = 1.2. The sample sizes are n1 = n2 =

100, n1 = n2 = 300, and n1 = n2 = 600. Figure 2.4 and Figure 2.5 visualize 9 randomly selected

subjects for (N = 4, σ = 0.6) and (N = 4, σ = 1.2).

In this simulation study, we compare performances of the proposed asymptotic χ2 test Tp,N

(‘Shrink’), the distribution test in (Pomann et al., 2016) (‘Distribution’), the pLRT test in the

(Staicu et al., 2014) (‘pLRT-linear’ and ‘pLRT-cubic’), and a naive adaption from the dense func-

tional data projection-based test in (Horváth and Rice, 2015; Lillo et al., 2015) (‘Naive dense’).

The distribution test in (Pomann et al., 2016) aims to test whether X1(t) and X2(t) have the same

distribution. They projected each individual curve to the eigenspace spanned by the covariance of

the mixture process of X1(t) and X2(t). A similar shinkage score was used for sparse functional

data. Then test the equality of distributions of the first p projection scores through the Anderson-

Darling test with Bonferroni corrections. It is a nonparametric test which does not require the

derivation of the score distributions. Using Gaussian assumption with equal covariance settings,

this test can be used to test whether X1(t) and X2(t) have the same mean function. For the pLRT

test, the original paper focuses on the one-sample mean function inference problem. And it is

mentioned that the method can be generalized to two-sample mean function testing problems. We

were able to modify their package to perform the two-sample testing problem. However in our

simulation studies, the pLRT test yield inflated type I errors on the average of 0.4. The original

pLRT paper includes some results for sparse data with N = 10, and the code involves quite a few

tuning parameters. We were not sure if the inflated type I errors were due to the rather sparse set-

tings with N = 4 and N = 8 or due to parameter tunings that have not reach the optimal. For the

naive adaption from the dense functional data, we first use the B-spline interpolation to recover the
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underlying curve for each individual subject. Then apply the dense data eigen-projection test to the

recovered data. Though we do not compare with other dense functional tests using the recovered

data, we expect them to work similarly as the one considered here, since the pre-smoothing step is

problematic for sparse functional data.

All the tests except for the pLRT test need to choose p, we use the true p = 4 for this simulation.

All the simulation results are summarized in Table 2.3-Table 2.5. The distribution test performs

reasonably good, with incidentally inflated type I errors. Our proposed χ2 test performs the best

under almost all circumstances. As expected, the naive adaptation from the dense data test does

not work, since the null distribution of the test statistic is incorrect under sparse designs. The pLRT

test cannot control type I error at pre-specified level.

Simulation II

The second part focus on exploring the performance of the proposed test under non-Gaussian

circumstances. The number of observation on each curve is N = 4. Most of the other simulation

settings are the same as Simulation I, except that ξgik, g = 1, 2; i = 1, .., ng; k = 1, ..., p are now

generated from a mixture of two normal distributions, i.e., they are distributed as N(
√
λk/2, λk/2)

with probability 1/2 and N(−
√
λk/2, λk/2) with probability 1/2. In this way, we get samples from

mixture Gaussian processes instead of Gaussian processes. According to the results summarized

in Table 2.6, we can see that the proposed test still produces valid results for this non-Gaussian

situation. It can control the type I error at the predetermined significance level and the powers are

reasonable.

Simulation III

Now we adopt two more complex settings. Under the first setting, the number of observa-

tions Ngi ∼ U [2, ..., 6], and then conditional on the value of Ngi, (Tgi1, ..., TgiNgi
) are i.i.d uni-

formly distributed. Eigenfunctions are φ2k−1(t) =
√

2 cos((2k − 1)πt) for k = 1, ..., 15, φ2k(t) =
√

2 sin(2kπt) for k = 1, ..., 15. As for the mean functions, we used µg(t) = ∑30
k=1 agkφk(t), where

agk = 3āgk/
∥∥∥āg∥∥∥2

, with āg = (āg1, ..., āg30)T , ā1k = (2)31−k(31−k)6 and ā2k = (2 + δ1)31−k(31−

k)6 with δ1 = 0, 1.2, 2.4, 3.6, σ = 1. This setting represents situations where p is rather large. Un-

der the second setting, the mean functions are µ1(t) = 1.08− 3.2t and µ2(t) = µ1(t) + (1− t)δ2,

with δ2 = 0, 0.3, 0.6, 0.9 for the null and three alternative hypotheses. This setting represents

situations where p is unknown. All the other settings are the same.
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Figure 2.4: (N = 4, σ = 0.6) Simulated data for nine randomly chosen subjects in group 1. Note

that in each plot, the black curve is the underlying curve for this subject, and the blue dots represent

the observations contaminated with measurement errors.
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Figure 2.5: (N = 4, σ = 1.2) Simulated data for nine randomly chosen subjects in group 1. Note

that in each plot, the black curve is the underlying curve for this subject, and the blue dots represent

the observations contaminated with measurement errors.
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We exploit two methods of choosing p: the leave one curve out cross-validation approach

described in (Peng and Paul, 2009) (‘CV’), and the fraction of variance explained method (‘FVE’),

with thresholds 80% (‘FVE80’) and 85% (‘FVE85’). Combining the results in Table 2.7 and

Table 2.8, we can see that performance of our proposed χ2 test is not sensitive to the method

of choosing p. Both ‘CV’ and ‘FVE’ have reasonable performances, while the cross-validation

method tends to have better performances in terms of power.

2.8.2 Application to an AIDS clinical trial study

Now we apply the proposed χ2 test to a CD4 count data from the AIDS Clinical Trials Group

(ACTG) 193 A study, which aims at comparing the effectiveness of two different therapies, 600mg

of zidovudine alternating monthly with 400mg didanosine (group A) and 600mg of zidovudine

plus 400mg didanosine (group B), for advanced AIDS patients with CD4 counts less than or equal

to 50 cells per cubic millimeter. Totally we have 655 advanced AIDS patients, with 325 subjects

in group A and 330 in group B. These patients were followed for 40 weeks after they started to

receive either of the two treatments mentioned above. The number of observations available for

each subject ranges from 1 to 9, and the observing times are randomly distributed within 40 weeks.

We model the data from sparse functional data perspective. The 325 CD4 count trajectories

in group A are assumed to be i.i.d random samples of an unknown stochastic process. The 330

CD4 count trajectories in group B are i.i.d samples of another unknown random process. Through

inferring whether the two population mean functions are significant different within the 40-weeks

period, we can understand whether the effectiveness of these two treatments are different over

time. As suggested by previous literature (Fitzmaurice et al., 2012; Weinfurt et al., 2000), we

transform the original CD4 count using function log(x + 1). The Spaghetti plots of transformed

data of group A and B can be found in Figure 2.8. The first three estimated functional principal

components for both groups respectively are shown on the right panel in Figure 2.9. As shown by

Figure 2.9, the estimated eigenfunctions of the two groups, especially the first two components, are

rather close to each other. The corresponding eigenvalues are (24.868, 1.763, 0.564)T for group A

and (38.759, 1.805, 0.404)T for group B. We implement our proposed χ2 test under both the homo-

geneous covariance (Section 2.4) and the common principal component structures (Section 2.6).
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The p-values using the homogeneous covariance structure under p = 2, 3, 4, 5, are 0.0333, 0.0779,

0.0133 and 0.0270. Under the CPC structure mentioned in Section 2.6, the corresponding p-values

are smaller, they are 1.111e-61, 7.727e-61, 4.608e-92, 1.472e-97. We can see that under all dif-

ferent values of p, the proposed test is able to detect the discrepancy between the effectiveness of

group A and group B. Given the estimated mean functions provided on the left panel in Figure 2.9,

it can seen that the therapy used by group B tends to be more effective on helping advanced AIDS

patient to recover.

2.8.3 Application to an eBay online auction data set

EBay.com is one of the largest online auction markets. The most common auctions on eBay

are single-item auctions, even though multiple-item auctions are also feasible. The problem that

we consider belongs to the single-item auction category. For this kind of auctions, eBay adopts the

second-price rule to decide the winner. To be more specific, within the pre-selected bidding period

(3 days, 5 days, or 7 days), bidders can submit the maximum amounts that they are willing to pay

(WTP). The first bidder to provide the second largest WTP within the bidding period is the win-

ner. The WTP’s are hidden from the public, instead, eBay’s proxy bidding system automatically

increases each bidder’s bid by a minimum increment determined by the current bidding price and

certain rules set by eBay. And it displays these prices lively on the item page. This real-time price

trajectories come out of this system are often referred as live bid. The auction data in our problem

are live bid data. More details about the mechanism of eBay online auctions are provided by their

official website (Ebay.com, 1995). eBay auction data for all items are appropriately stored by eBay

on (Ebay.com, 1995) and are completely accessible to all registered users for up to 90 days.

As mentioned in the previous paragraph, the auctions can last for 3 days, 5 days, or 7 days.

We consider the problem that whether the price trends for a certain type of item are different for

different bidding length choices. We use the live bid for Palm M515 Personal Digital Assistant

as an example. The data set can be found at (Jank and Shmueli, 2010). The two bidding lengths

that we compare are 3 days and 7 days. In the 3 days group, there are 90 auctions of Palm M515

that happened between March and May, 2003. In the 7 days group, there are 158 auctions of Palm

M515 happened within the same period of time. The number of bids for each items are given in
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Figure 2.10, which are not small. However, as shown in Figure 2.11, where 9 randomly selected

auctions in the 7 days group are visualized, the bids are extremely irregular. There are big gaps

among the data.

We use sparse functional data approaches to model this ebay online live bid data. We assume

that the 90 auctions with duration 3 days are i.i.d random samples from an unknown population

distribution, and the 158 auctions with duration 7 days are i.i.d random sample from another un-

known stochastic process. (Peng and Müller, 2008; Liu and Müller, 2008; Wang et al., 2004; Jank

et al., 2008) also analyze ebay online auction data from sparse functional perspectives. Following

previous papers (Peng and Müller, 2008; Jank et al., 2008), we transform live bid data into log-

scale. We also scale the bidding time variables of both the 3 days group and the 7 days group to

[0, 1]. Now the problem of detecting differences in average price trends becomes testing whether

the population mean curves are significantly different within some parts of [0, 1].

As indicated by the right panel in Figure 2.12, the estimated first three eigenfunctions of the

7 days group (black) and the 3 days group (blue) are very close. The corresponding eigenvalues

are (0.344, 0.101, 0.020)T for the 7 days group and (0.416, 0.162, 0.011)T for the 3 days group.

It is reasonable to assume that they share the same covariance function. The proposed χ2 test is

implemented to this mean function testing problem. We use the cross-validation method to choose

p = 5 and the p-value of our proposed test is less than 0.000001. This means that we have enough

confidence to conclude that the mean price evolution curves are different when different bidding

time periods are selected. The estimated mean functions by local linear smoothing are included on

the left panel in Figure 2.12. From the graph, we can see that the price of the 7 days group (solid

black) is larger than that of the 3 days group (dash blue) over the entire time domain.
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Table 2.3: Results for simulation I. Results for the number of observations on each curve is 4

(N = 4) and 8 (N = 8), when the standard deviation of the random measurement error is 0 (σ =

0). Three different sample sizes (n1, n2) = (100, 100),(300, 300), and (600, 600) are considered.

We compare the performances of four different methods: the proposed χ2 test Tp,N (‘shrink’),

the distribution test in (Pomann et al., 2016)(‘distribution’), the naive adaption of dense eigen-

projection based test in (Horváth and Rice, 2015; Lillo et al., 2015) (‘Naive dense’), and the pLRT

test in (Staicu et al., 2014)(‘pLRT-linear’ and ‘pLRT-cubic’). The type I error (ς = 0) and powers

(ς = 0.8, 1.2, 1.6) are calculated based on 1000 repetitions.

(N,σ) Sample size Test ς = 0 ς = 0.8 ς = 1.2 ς = 1.6
N = 4, σ = 0 (n1, n2) = (100, 100) Shrink 0.043 0.435 0.990 0.999

Naive dense 0.048 0.053 0.048 0.046
Distribution 0.166 0.491 0.985 1.000
pLRT-linear 0.671 0.653 0.643 0.718
pLRT-cubic 0.302 0.310 0.328 0.348

(n1, n2) = (300, 300) Shrink 0.044 0.904 1.000 1.000
Naive dense 0.054 0.062 0.076 0.069
pLRT-linear 0.564 0.512 0.592 0.679
pLRT-cubic 0.398 0.377 0.403 0.537

(n1, n2) = (600, 600) Shrink 0.034 0.999 1.000 0.998
Naive dense 0.136 0.152 0.145 0.137
Distribution 0.110 0.999 1.000 0.999
pLRT-linear 0.389 0.387 0.427 0.360
pLRT-cubic 0.464 0.467 0.467 0.465

N = 8, σ = 0 (n1, n2) = (100, 100) Shrink 0.027 0.484 0.995 1.000
Naive dense 0.617 0.637 0.607 0.633
Distribution 0.041 0.433 0.992 1.000
pLRT-linear 0.270 0.276 0.266 0.312
pLRT-cubic 0.107 0.105 0.111 0.139

(n1, n2) = (300, 300) Shrink 0.035 0.962 1.000 1.000
Naive dense 0.922 0.921 0.927 0.895
Distribution 0.060 0.938 1.000 1.000
pLRT-linear 0.046 0.054 0.096 0.325
pLRT-cubic 0.165 0.174 0.178 0.374

(n1, n2) = (600, 600) Shrink 0.036 1.000 1.000 1.000
Naive dense 0.937 0.947 0.931 0.944
Distribution 0.050 1.000 1.000 0.997
pLRT-linear 0.106 0.110 0.198 0.110
pLRT-cubic 0.314 0.331 0.397 0.306
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Table 2.4: Results for simulation I. Results for the number of observations on each curve is 4

(N = 4) and 8 (N = 8), when the standard deviation of the random measurement error is 0.6

(σ = 0.6). Three different sample sizes (n1, n2) = (100, 100),(300, 300), and (600, 600) are

considered. We compare the performances of four different methods: the proposed χ2 test Tp,N

(‘shrink’), the distribution test in (Pomann et al., 2016)(‘distribution’), the naive adaption of dense

eigen-projection based test in (Horváth and Rice, 2015; Lillo et al., 2015) (‘Naive dense’), and the

pLRT test in (Staicu et al., 2014)(‘pLRT-linear’ and ‘pLRT-cubic’). The type I error (ς = 0) and

powers (ς = 0.8, 1.2, 1.6) are calculated based on 1000 repetitions.

(N,σ) Sample size Test ς = 0 ς = 0.8 ς = 1.2 ς = 1.6
N = 4, σ = 0.6 (n1, n2) = (100, 100) Shrink 0.049 0.274 0.927 1.000

Naive dense 0.032 0.037 0.036 0.308
Distribution 0.065 0.268 0.891 1.000
pLRT-linear 0.399 0.407 0.471 0.714
pLRT-cubic 0.356 0.383 0.422 0.713

(n1, n2) = (300, 300) Shrink 0.040 0.776 1.000 1.000
Naive dense 0.091 0.056 0.846 0.808
Distribution 0.058 0.734 1.000 1.000
pLRT-linear 0.662 0.648 0.513 0.841
pLRT-cubic 0.667 0.718 0.721 0.904

(n1, n2) = (600, 600) Shrink 0.039 0.973 1.000 1.000
Naive dense 0.134 0.128 0.132 0.965
Distribution 0.058 0.960 1.000 1.000
pLRT-linear 0.637 0.647 0.684 0.896
pLRT-cubic 0.830 0.827 0.859 0.951

N = 8, σ = 0.6 (n1, n2) = (100, 100) Shrink 0.041 0.418 0.988 1.000
Naive dense 0.349 0.331 0.353 0.336
Distribution 0.035 0.340 0.960 1.000
pLRT-linear 0.349 0.383 0.465 0.714
pLRT-cubic 0.391 0.388 0.465 0.714

(n1, n2) = (300, 300) Shrink 0.047 0.881 1.000 1.000
Naive dense 0.804 0.813 0.824 0.827
Distribution 0.060 0.849 1.000 1.000
pLRT-linear 0.386 0.410 0.519 0.836
pLRT-cubic 0.653 0.671 0.728 0.896

(n1, n2) = (600, 600) Shrink 0.049 0.994 1.000 1.000
Naive dense 0.958 0.955 0.953 0.955
Distribution 0.037 0.994 1.000 1.000
pLRT-linear 0.564 0.537 0.638 0.907
pLRT-cubic 0.792 0.790 0.816 0.959
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Table 2.5: Results for simulation I. Results for the number of observation on each curve is 4

(N = 4) and 8 (N = 8), when the standard deviation of the random measurement error is 1.2

(σ = 1.2). Three different sample sizes (n1, n2) = (100, 100),(300, 300), and (600, 600) are

considered. We compare the performances of four different methods: the proposed χ2 test Tp,N

(‘shrink’), the distribution test in (Pomann et al., 2016)(‘distribution’), the naive adaption of dense

eigen-projection based test in (Horváth and Rice, 2015; Lillo et al., 2015) (‘Naive dense’), and the

pLRT test in (Staicu et al., 2014)(‘pLRT-linear’ and ‘pLRT-cubic’). The type I error (ς = 0) and

powers (ς = 0.8, 1.2, 1.6) are calculated based on 1000 repetitions.

(N,σ) Sample size Test ς = 0 ς = 0.8 ς = 1.2 ς = 1.6
N = 4, σ = 1.2 (n1, n2) = (100, 100) Shrink 0.038 0.121 0.628 1.000

Naive dense 0.033 0.025 0.032 0.022
Distribution 0.049 0.162 0.639 1.000
pLRT-linear 0.372 0.380 0.446 0.700
pLRT-cubic 0.445 0.435 0.505 0.728

(n1, n2) = (300, 300) Shrink 0.031 0.455 0.991 1.000
Naive dense 0.046 0.039 0.045 0.041
Distribution 0.051 0.455 0.994 1.000
pLRT-linear 0.605 0.634 0.685 0.883
pLRT-cubic 0.729 0.771 0.787 0.921

(n1, n2) = (600, 600) Shrink 0.036 0.784 1.000 1.000
Naive dense 0.134 0.123 0.128 0.132
Distribution 0.059 0.782 1.000 1.000
pLRT-linear 0.578 0.615 0.661 0.908
pLRT-cubic 0.804 0.831 0.860 0.958

N = 8, σ = 1.2 (n1, n2) = (100, 100) Shrink 0.045 0.224 0.880 1.000
Naive dense 0.143 0.156 0.143 0.148
Distribution 0.065 0.213 0.835 1.000
pLRT-linear 0.421 0.428 0.539 0.777
pLRT-cubic 0.552 0.537 0.616 0.815

(n1, n2) = (300, 300) Shrink 0.046 0.658 1.000 1.000
Naive dense 0.508 0.502 0.484 0.512
Distribution 0.042 0.622 1.000 1.000
pLRT-linear 0.494 0.526 0.613 0.857
pLRT-cubic 0.763 0.746 0.792 0.927

(n1, n2) = (600, 600) Shrink 0.047 0.955 1.000 1.000
Naive dense 0.830 0.846 0.845 0.856
Distribution 0.051 0.940 1.000 1.000
pLRT-linear 0.649 0.607 0.702 0.649
pLRT-cubic 0.847 0.808 0.877 0.847
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Table 2.6: Results for simulation study II. Performances of our χ2 test is examined under a non-

Gaussian case. We presented results for the standard deviation of the random measurement error

is 0 (σ = 0), 0.6 (σ = 0.6), and 1.2 (σ = 1.2), when the number of observation on each curve

is 4 (N = 4). Three different sample sizes (n1, n2) = (100, 100), (300, 300), or (600, 600) are

considered. The type I error (ς = 0) and powers (ς = 0.8, 1.2, 1.6) are calculated based on 1000

repetitions.

(N,σ) sample size ς = 0 ς = 0.8 ς = 1.2 ς = 1.6

N = 4, σ = 0 (n1, n2) = (100, 100) 0.068 0.462 0.987 1.000

(n1, n2) = (300, 300) 0.044 0.946 1.000 1.000

(n1, n2) = (600, 600) 0.061 1.000 1.000 1.000

N = 4, σ = 0.6 (n1, n2) = (100, 100) 0.051 0.273 0.930 1.000

(n1, n2) = (300, 300) 0.038 0.736 1.000 1.000

(n1, n2) = (600, 600) 0.046 0.975 1.000 1.000

N = 4, σ = 1.2 (n1, n2) = (100, 100) 0.029 0.125 0.637 0.998

(n1, n2) = (300, 300) 0.030 0.391 0.995 1.000

(n1, n2) = (600, 600) 0.042 0.776 1.000 1.000
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Figure 2.6: Visualizations of the first setting in Simulation III: first 10 eigenfunctions are on the

left panel; mean functions are on the right panel.
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Figure 2.7: Visualizations of the second setting in Simulation III: first 10 eigenfunctions are on the

left panel; mean functions are on the right panel.
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Table 2.7: Results for simulation III. True value of p is 30, and the leave one curve out cross-

validation method (“CV”) (Peng and Paul, 2009) as well as the fraction of variance explained rule

(“FVE80” and “FVE85”) are implemented to choose an appropriate p. Performances of our shrink

test are evaluated in terms of type I error (δ1 = 0) and powers (δ1 = 1.2, 2.4, 3.6) over 1000

repetitions.

sample size Testing δ1=0 δ1=1.2 δ1=2.4 δ1=3.6

(n1, n2) = (100, 100) Shrink (CV) 0.051 0.250 0.736 0.909

Shrink (FVE80) 0.043 0.080 0.248 0.525

Shrink (FVE85) 0.048 0.079 0.252 0.531

(n1, n2) = (300, 300) Shrink (CV) 0.038 0.736 0.990 0.996

Shrink (FVE80) 0.040 0.125 0.542 0.907

Shrink(FVE85) 0.036 0.162 0.555 0.915

(n1, n2) = (600, 600) Shrink (CV) 0.046 0.966 1.000 0.998

Shrink (FVE80) 0.044 0.219 0.851 1.000

Shrink (FVE85) 0.042 0.289 0.851 1.000
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Table 2.8: Results for simulation III. True value of p is unknown, and the leave one curve out cross-

validation method (“CV”) (Peng and Paul, 2009) as well as the fraction of variance explained rule

(“FVE80” and “FVE85”) are implemented to choose an appropriate p. Performances of our shrink

test are evaluated in terms of type I error (δ2 = 0) and powers (δ2 = 0.3, 0.6, 0.9) over 1000

repetitions.

sample size Testing δ2=0 δ2=0.3 δ2=0.6 δ2=0.9

(n1, n2) = (100, 100) Shrink (CV) 0.051 0.158 0.533 0.882

Shrink (FVE80) 0.066 0.156 0.451 0.810

Shrink (FVE85) 0.066 0.159 0.471 0.831

(n1, n2) = (300, 300) Shrink (CV) 0.041 0.393 0.966 0.998

Shrink (FVE80) 0.062 0.360 0.896 0.999

Shrink (FVE85) 0.061 0.383 0.924 0.999

(n1, n2) = (600, 600) Shrink (CV) 0.042 0.763 0.997 0.998

Shrink (FVE80) 0.061 0.678 0.998 1.000

Shrink (FVE85) 0.056 0.722 0.999 1.000
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Figure 2.8: Plots of CD4 trajectories in group A are on the left panel; plots of CD4 trajectories in

group A are on the left panel
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Figure 2.9: Left: estimated mean CD4 curves of two treatment groups (group A: solid black;

group B: dash blue); Right: estimated first three eigenfunctions of each group (group A: solid

black; group B: dash blue)
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Figure 2.10: Left: histogram of number of observation within each item in the 3 days group; Right:

histogram of number of observation within each item in the 7 days group
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Figure 2.11: Live bids for 9 randomly chosen Palm M515 in the 7 days group.
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Figure 2.12: Left: estimated mean log(price) curves of two bidding groups (3 days: dashed blue; 7

days: solid black); Right: estimated first three eigenfunctions of each group (3 days: blue; 7days:

black)
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3.0 ONE-WAY FUNCTIONAL ANOVA FOR SPARSE FUNCTIONAL DATA

For dense functional data, some of the six methods mentioned in Chapter 2 can be easily

generalized to multiple sample circumstances, while some are only applicable to the two-sample

inference problem. In Section 3.2, we briefly talk about the possibility of extending them one by

one.

For sparse functional data, there are no methods specifically designed for the one-way func-

tional ANOVA problem. We propose an asymptotic χ2 test based on the shrinkage score estimator

introduced in Chapter 2. The test statistic is a summation of multiple square forms.

This chapter is organized as follows. The general statistical framework of one-way functional

ANOVA is given in Section 3.1. Reviews for dense functional data is in Section 3.2. Proposed

method for sparse functional data is deliberately discussed in Section 3.3 to Section 3.4, where

the derivation, estimation methods, asymptotic results, and numerical experiments are presented,

including an application to an eBay online auction data set.

3.1 STATISTICAL FRAMEWORK

For one-way functional ANOVA, the model we consider is

Ygij = Xgi(Tgij) + εgij (3.1)

where Xgi ∼ SP (µg(t), G(s, t)), g = 1, .., G(G > 2), i = 1, ..., ng, j = 1, ..., Ngi. Ygij denotes

the jth observation of the ith subject in group g, and it is observed at time Tgij . The random

samples Xgi are realizations of G independent Gaussian processes with homogeneous covariance

structures in a bounded time domain T = [0, 1]. Namely, Xgi are random samples from Xg ∼
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GP (µg(t), G(s, t)), s, t ∈ T . The number of observations for the ith subject in group g is denoted

as Ngi. The corresponding observing times are {Tgi1, ..., TgiNgi
}.

For dense functional data, the number of observations within each subject, i.e., Ngi, goes to

infinity with a high rates and the observing times are usually regular. The entire underlying curve

Xgi can be consistently recovered from (Ygi1, ..., YgiNgi
). Consequently, the observing times are

only assumed to be common across subjects and are assumed to be equally spaced without loss of

generality. Let’s denote the common observing times as {T1, ..., TN}.

For sparse functional data, the number of observations within each subject Ngi is assumed to

be bounded or grows slowly with ng. random observing times {Tgi1, ..., TgiNgi
} are i.i.d with a

bounded density function (specified in Section 2.7) within the time domain T . It is also assumed

that Xgi, Ngi and εgij are mutually independent.

Based on the observed data Ygij , g = 1, .., G(G > 2), i = 1, ..., ng, j = 1, ..., Ngi, one-way

functional ANOVA is interested in testing

H0 : µ1(t) = µ2(t) = ... = µG(t), t ∈ T V S Ha : not H0. (3.2)

3.2 REVIEWS FOR DENSE FUNCTIONAL DATA

Six dense test methods are reviewed in Section 2.2 for the two-sample mean function inference

problem. For each of these tests, we briefly examine whether it can be extended to multiple sample

cases (3.2) in this section.

Extension of the pointwise t-test is simple, as there is a multiple sample version of the point-

wise t-test, called pointwise F -test. Basically, a F -test, instead of a t-test, is utilized at each local

time point t0.

The L2-norm-based test can also be generalized to functional ANOVA problems by using a

statistical quantity that quantifies the difference among all the G mean functions. To be more

specific, the new pivotal quantity is
∑G
g=1 ng[

¯̌
Xg·(t) − ¯̌

X··(t)]2, with ¯̌
Xg·(t) = 1

ng

∑ng

i=1 X̌gi(t) and
¯̌
X··(t) = 1

n1+....+nG

∑G
g=1

∑ng

i=1 X̌gi(t). Then the test statistic is the integral of this pivotal over the
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entire time domain T .

L̃n =
G∑
g=1

ng

∫
T

[ ¯̌
Xg·(t)− ¯̌

X··(t)]2dt ∼
∞∑
k=1

λkBk, with Bk ∼ i.i.d χ2(G− 1) (3.3)

where λk, k = 1, ...,∞ are the eigenvalues of the common covariance function G(s, t).

Generalizing the globalized F -test is originally designed for the one-way functional ANOVA

problem. Compared with the test statistic defined in (2.11), the degree of freedom of the indepen-

dent χ2 distribution is now G− 1 instead of 1.

For the eigen-space projection based test, it can also be generalized to multiple cases. The

problem basically becomes testing the equality of multiple mean vectors, whose test statistic is the

summation of multiple square forms. Mathematically, let υ̂gk =< ¯̌
Xg· − ¯̌

X··, φ̂k >, k = 1, ...,∞,

the test statistic is

D̃n =
G∑
g=1

p∑
k=1

ngυ̂
2
gk

λ̂k
, (3.4)

because under the H0 of (3.2) and Gaussian processes, D̃n ∼ χ2(p(G− 1)).

The pLRT test can not be easily utilized to the one-way functional ANOVA problem. All their

theory is designed for one-sample inference problem. When there are more than two samples being

considered, the original problem can no longer be easily transformed into a one-sample inference

problem. This is one of the shortcomings of the pLRT test.

The distribution test can be used to test (3.2) as long as there is a multiple version of the

nonparametric AD test, which is capable of testing the equality of distributions of certain univariate

variables across multiple groups.

3.3 PROPOSED METHOD FOR SPARSE FUNCTIONAL DATA

Under sparse functional data cases, by arguments similar to two sample situations, we can see

that test (3.2) is equivalent to

H0 : θc1k = θc2k = ... = θcGk k ≥ 1 (3.5)
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against the general alternative that there exist k ≥ 1 such that at least two of θc1k, ..., θ
c
Gk are not

equal, where θcgk =< µg − µpool, φk >, g = 1, ..., G; k = 1, ..., p. In order to create test procedures

for test (3.5), given the expansion

Xc
gi(t) =

∞∑
k=1
〈Xc

gi, φk〉φk(t)
def=

∞∑
k=1

rcgikφk(t), (3.6)

a straightforward thinking is to form a test statistic based on rcgik, g = 1, G; i = 1, ..., ng; k =

1, ...,∞.

Similar to the two-sample situation in Chapter 2, we propose to use the best linear unbiased

predictor of the projection score vector rcgi. Under joint Gaussian assumptions, the predictor

E[rcgi|Y c
gi] is

E[rcgi|Y c
gi] = θcg + diag(λ)ΦT

giΣ−1
Yc

gi
(Y c

gi − µgi + µpool,gi), (3.7)

Under the null hypothesis, E[rcgi|Y c
gi] in (3.7) becomes the following shrinkage score

r̃cgi = diag(λ)ΦT
giΣ−1

Yc
gi

Yc
gi = diag(λ)ΦT

giΣ−1
Yc

gi
(Ygi − µpool,gi). (3.8)

The mean and covariance of r̃cgi are

E[r̃cgi] = Et[diag(λ)ΦT
giΣ−1

Yc
gi

(µgi − µpool,gi)]

Cov[r̃cgi] = Et[diag(λ)ΦT
giΣ−1

Yc
gi

Φgidiag(λ)]
(3.9)

All the components in r̃cgi and Cov[r̃cgi] can be estimated by slightly modifying procedures de-

scribed in Section 2.5. By plugging int the estimated quantities, λ̂, φ̂k(t), µ̂pool(t), and σ̂, we have

the following empirical estimators

ˆ̃rcgi = diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi + σ̂2I]−1(Ygi − µ̂pool;gi)

ˆCov[r̃cgi] = 1
n1 + ...+ nG

G∑
g=1

ng∑
i=1

diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi + σ̂2I]−1Φ̂gidiag(λ̂)

def= V̂ 2

(3.10)

Consequently, we propose to use

TGp,N =
G∑
g=1

( ¯̃̂r
c

g· −
¯̃̂r
c

··)T (V̂ 2

ng
)−1( ¯̃̂r

c

g· −
¯̃̂r
c

··) ∼ χ2((G− 1)p) (3.11)
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where ¯̃̂r
c

·· = n1
¯̃̂r

c

1·+...+nG
¯̃̂r

c

G·
n

, with n = n1 + n2 + ... + nG. Even though the proposed test statis-

tic TGp,N is motivated from joint Gaussian situations, it has an asymptotic χ2((G − 1)p) null

distribution regardless of whether the joint Gaussian assumption is true or not.

The theoretical results for TGp,N is analogous to those for the two-sample inference problem.

Theorem 3. Under H0 and regularization assumptions, assuming limng→∞
ng

n
= wg, with wg ∈

(0, 1) and n = n1 + ...+ nG, if E[ΦT
gikΣ−1

Ygi
Φgik] <∞ is satisfied, we have

TGp,N
D−→ χ2((G− 1)p) (3.12)

Given Theorem 3, it is reasonable for us to reach our conclusion based on the following rule:

for a specific significance level α, reject H0 in (3.2), if TGp,N > χ2(1 − α; (G − 1)p), the upper

α quantile of χ2((G− 1)p); otherwise, we will not have enough evidence to reject H0. Theorem 3

ensures good performance for the proposed test statistic TGp,N when the sample sizes ng go to

infinity proportionally. Finite sample performances are justified through numerical experiments in

Section 3.4.

Next, we want to examine the performance of our test statistic under certain types of alterna-

tives in (3.2).

Theorem 4. Under Ha and regularization assumptions, assuming limn1.n2→∞
ng

n
= wg, with wg ∈

(0, 1) and n = n1+...+nG, and ∃ g,Et(diag(λ)ΦT
giΣ−1

Ygi
(µgi−µpool;gi)) 6= 0, for some 1 ≤ k ≤ p,

we have

TGp,N
p−→∞ (3.13)

Et(diag(λ)ΦT
giΣ−1

Ygi
(µgi − µpool;gi)) is actually a type of projection for the function µg(t) −

µpool(t). Under the alternative in (3.2), it is really rare that these projection score of all G groups

equals to 0 for all the first p directions. Theorem 4 ensures that, when the mean function differences

are captured by these projection scores, the power of our test procedure goes to 1, when sample

sizes ng go to infinity proportionally. Proof of the above theorems are similar to the proof of

Theorem 1 and Theorem 2, and thus we omit the details.
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3.4 NUMERICAL EXPERIMENTS

3.4.1 Simulation studies

In this subsection, we examine the finite sample performance of the proposed test procedure

TGp,N through two simulations studies. For both simulation studies, we consider comparing the

mean functions of four independent groups (G = 4).

Simulation I

The data is generated based on model (3.1), and the Karhunen-Loève expansion Xgi(Tgij) =

µg(Tgij) +∑∞
k=1 ξgikφk(Tgij), with ξgik ∼ N(0, λk). The number of observations on each curve is

4, i.e., Ngi = N = 4 for g = 1, ..., G; i = 1, ..., ng. The observing time points, {Tgi1, ..., TgiN}, are

uniformly distributed within the interval [0, 1]. We assume that the eigenvalues are λk = 2(k+1)−2

for k = 1, ..., 4, and λk = 0 for k > 4. The eigenfunctions are φ1(t) =
√

2 cos(πt), φ2(t) =
√

2 sin(πt), φ3(t) =
√

2 cos(2πt), φ4(t) =
√

2 sin(2πt). All the mean functions are assumed to

be linear combinations of the first four eigenfunctions. That is to say µ1 = ∑4
k=1 a1kφk(t), where

a1k = 3ā1k

‖ā1‖2
, with ā1 = (ā11, ..., ā14)T and ā1k = (2)5−k(5 − k)6. And µ2 = ∑4

k=1 a2kφk(t),

where a2k = 3ā2k

‖ā2‖2
, with ā2 = (ā21, ..., ā24)T and ā2k = (2 − ς1)5−k(5 − k)6. And µ3 =∑4

k=1 a3kφk(t), where a3k = 3ā3k

‖ā3‖2
, with ā3 = (ā31, ..., ā34)T and ā3k = (2 − ς2)5−k(5 − k)6. And

µ4 = ∑4
k=1 a4kφk(t), where a4k = 3ā4k

‖ā4‖2
, with ā4 = (ā41, ..., ā44)T and ā4k = (2− ς3)5−k(5− k)6.

ς1, ς2 and ς3 quantifies the magnitude of the distinctions among the mean functions. Note that

(ς1, ς2, ς3)T = (0, 0, 0)T , (0.6, 0.8, 1.0)T , (1.0, 1.2, 1.4)T , and (1.4, 1.6, 1.8)T correspond to the null

hypothesis and three alternative hypotheses for (3.2). The standard deviation of the measurement

errors is σ = 1.2. The sample sizes are n1 = n2 = n3 = n4 = 100, n1 = n2 = n3 = n4 = 300, and

n1 = n2 = n3 = n4 = 600. The eigenfunctions used here are exactly the same as as Simulation I

in Chapter 2. Visualizations for the mean functions are given in Figure 3.2.

The true p is utilized in all the calculation in this simulation study. Based on Table 3.1, it can

be seen that the proposed test (3.8) is valid, even though only finite samples are provided. Under

all sample size situations, TGp,N (3.8) succeeds in controlling the pre-specified significance level

α = 0.05. For a given alternative, its power increases with the increasing of sample sizes. For a

given sample size setting, the power is larger when the discrepancy between H0 and Ha is larger.
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Figure 3.1: Mean functions under the null and three alternative hypotheses of Simulation I.

Table 3.1: Results for simulation I. We presented results for the number of observation on each

random curve is 4 (N = 4) and the standard deviation of the random measurement error is 1.2 (σ =

1.2), different sample sizes (ng = 100, 300, or 600). The type I error ((ς1, ς2, ς3)T = (0, 0, 0)T )

and powers (Ha1 : (ς1, ς2, ς3)T = (0.6, 0.8, 1.0)T ;Ha2 : (ς1, ς2, ς3)T = (1.0, 1.2, 1.4)T ;Ha3 :

(ς1, ς2, ς3)T = (1.4, 1.6, 1.8)T ) are calculated based on 1000 repetitions. The significance level α

is 0.05.

sample size H0 Ha1 Ha2 Ha3

(n1, n2, n3, n4) = (100, 100, 100, 100) 0.034 0.195 0.884 1.000

(n1, n2, n3, n4) = (300, 300, 300, 300) 0.031 0.649 1.000 1.000

(n1, n2, n3, n4) = (600, 600, 600, 600) 0.036 0.955 1.000 1.000

Simulation II

Now we adopt two more complex settings. Under the first setting, the number of observations

varies across subjects, Ngi ∼ U [2, 3, 4, 5, 6]. In the meanwhile, the true value of p is no longer

given. Eigenfunctions are φ2k−1(t) =
√

2 cos((2k−1)πt) for k = 1, ..., 15, φ2k(t) =
√

2 sin(2kπt)
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for k = 1, ..., 15. The mean functions are µg(t) = ∑30
k=1 agkφk(t), where agk = 3 ∗ āgk

‖ā‖2
, with ā =

(āg1, ..., āg30)T , ā1k = (2)31−k(31−k)6, ā2k = (2+ δ1)31−k(31−k)6, ā3k = (2+ δ2)31−k(31−k)6,

and ā4k = (2 + δ3)31−k(31 − k)6, with (δ1, δ2, δ3)T = (0, 0, 0)T , (0.2, 0.4, 0.6)T , (0.8, 1.2, 1.6)T ,

(1.2, 1.6, 2.0)T . The corresponding eigenvalues are λk = 2(k + 1)−2 for k = 1, ..., 30. The

standard deviation of random measurement errors is σ = 1. The mean functions under the null and

three different alternatives are illustrated by Figure 3.2. Data for 9 randomly selected subjects are

provided in Figure 3.3. This setting represents situations where p is rather large. Under the second

setting, the mean functions are µ1(t) = 1.08−3.2t and µg(t) = µ1(t)+(1−t)νg, g = 2, 3, 4. Values

of (ν1, ν2, ν3)T are (0, 0, 0)T , (0.2, 0.3, 0.4)T , (0.4, 0.6, 0.8)T , and (0.6, 0.9, 1.2)T (Figure 3.4). The

eigenfunctions, eigenvalues and the random error standard deviation share the same values as the

first setting.

For both settings, we exploit two methods to choose p: the cross-validation approach described

in (Peng and Paul, 2009) and the fraction of variance explained method (FVE), with threshold 80%

(FVE80) and 90% (FVE90). Combining the results in Table 3.2 and Table 3.3, we can see that

our proposed test TGp,N has reasonable performance regardless which method of choosing p is

utilized. The cross-validation method in (Peng and Paul, 2009) tends to provide higher powers.

3.4.2 Application to an eBay auction data set

In Chapter 2, we use the live bid for Palm M515 Personal Digital Assistants as an example

to analyze eBay online auction data through our proposed method Tp,n. In that part, only two

independent groups are considered, i.e., auctions with a 3-days duration and auctions with a 7-

days duration. There is also a 5-days duration option for eBay sellers. Now we want to consider all

these three groups at the same time to see whether the average bidding curves are different across

different duration groups.

The data set can be found at (Jank and Shmueli, 2010). In the 3-days group, there are 90

auctions of Palm M515 that happened between March and May, 2003. In the 5-days and 7-days

group, there are respectively 49 and 158 auctions of the same item happened within the same period

of time. As shown in Figure 2.11, the bids are extremely irregular. There are big gaps among

the data. Similar to Section 2.8.3, we model the data from sparse functional data perspective. We
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Figure 3.2: Mean functions under the null and three alternative hypotheses of the first setting in

Simulation II
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Figure 3.3: Data for nine randomly chosen subjects under the first setting of Simulation II.
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Figure 3.4: Mean functions under the null and three alternative hypotheses of the second setting in

Simulation II.

assume that each group of data are i.i.d realizations of an underlying continuous stochastic process,

with its own mean function and covariance function. we transform live bid data into log-scale. We

also scale the bidding time variables of all the 3 days group , the 5 day group and the 7 days group

to [0, 1]. Now the problem of detecting differences in average price trends becomes testing whether

the three population mean curves are significantly different within some parts of [0, 1].

Before applying our proposed method, we first explore the covariance functions of the three

different groups. As indicated by the right panel in Figure 3.5, the estimated first three eigen-

functions of the 7 days group (solid black), the 5 days group (dash blue) and the 3 days group

(dash red) are very close. The corresponding eigenvalues are (0.344, 0.101, 0.020)T for the 7 days

group, (0.602, 0.093, 0.023)T for the 7 days group and (0.416, 0.162, 0.011)T for the 3 days group.

It is reasonable to assume that they share the same covariance function. The proposed χ2 test is

implemented to this mean function testing problem. We use the cross-validation method to choose

p = 5 and the p-value of our proposed test is less than 0.000001. This means that we have enough

confidence to conclude that the mean price evolution curves are different when different bidding

time periods are selected. The estimated mean functions by local linear smoothing are included on
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Table 3.2: Results for simulation II (the first setting). True value of p is 30, and the leave one curve

out cross-validation method (“CV”) (Peng and Paul, 2009) as well as the fraction of variance ex-

plained rule (“FVE80” and “FVE90”) are implemented to choose an appropriate p. Performances

of our shrink test are evaluated in terms of type I error ((δ1, δ2, δ3)T = (0, 0, 0)T ) and powers

(Ha1 : (δ1, δ2, δ3)T = (0.2, 0.3, 0.4)T ;Ha2 : (δ1, δ2, δ3)T = (0.4, 0.6, 0.8)T ;Ha3 : (δ1, δ2, δ3)T =

(0.6, 0.9, 1.2)T ) over 1000 repetitions.

sample size Testing H0 Ha1 Ha2 Ha3

(n1, n2, n3, n4) = (100, 100, 100, 100) shrink(CV) 0.047 0.192 0.697 0.962

shrink(FVE80) 0.032 0.052 0.092 0.554

shrink (FVE90) 0.037 0.066 0.109 0.562

(n1, n2, n3, n4) = (300, 300, 300, 300) shrink (CV) 0.036 0.556 0.989 0.986

shrink (FVE80) 0.051 0.099 0.263 0.678

shrink (FVE90) 0.033 0.141 0.260 0.681

(n1, n2, n3, n4) = (600, 600, 600, 600) shrink (CV) 0.030 0.923 0.993 0.998

shrink (FVE80) 0.043 0.159 0.599 0.830

shrink (FVE90) 0.037 0.264 0.581 0.786

the left panel in Figure 3.5. From the graph, we can see that the price of the 7 days group (solid

black) is larger than that of the 5 days group (dash blue) and that of the 3 days group (dash red)

over the entire time domain.
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Table 3.3: Results for simulation II (the second setting). True value of p is unknown, and the

leave one curve out cross-validation method (“CV”) (Peng and Paul, 2009) as well as the fraction

of variance explained rule (“FVE80” and “FVE90”) are implemented to choose an appropriate p.

Performances of our shrink test are evaluated in terms of type I error ((ν1, ν2, ν3)T = (0, 0, 0)T ) and

powers ((ν1, ν2, ν3)T = (0.2, 0.3, 0.4)T ; (0.4, 0.6, 0.8)T , (0.6, 0.9, 1.2)T ) over 1000 repetitions.

sample size Testing H0 Ha1 Ha2 Ha3

(n1, n2, n3, n4) = (100, 100, 100, 100) shrink (CV) 0.060 0.181 0.662 0.976

shrink (FVE80) 0.056 0.153 0.497 0.873

shrink (FVE90) 0.070 0.163 0.530 0.906

(n1, n2, n3, n4) = (300, 300, 300, 300) shrink (CV) 0.043 0.503 0.988 0.998

shrink (FVE80) 0.068 0.437 0.968 0.999

shrink (FVE90) 0.059 0.477 0.984 1.000

(n1, n2, n3, n4) = (600, 600, 600, 600) shrink (CV) 0.029 0.878 0.998 1.000

shrink (FVE80) 0.065 0.787 0.998 1.000

shrink (FVE90) 0.057 0.860 1.000 1.000

62



0.0 0.2 0.4 0.6 0.8 1.0

3.
5

4.
5

5.
5

6.
5

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

1
2

3

lis
t1

$e
ig

en
fu

nc
tio

ns
[1

, ]

Figure 3.5: Left: estimated mean log(price) curves of three bidding groups (3 days: dash red; 5

days: dash blue; 7 days: solid black); Right: estimated first three eigenfunctions of each groups (3

days: dash red; 5 days: dash blue; 7 days: solid black)
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4.0 CHANGE POINT DETECTION FOR SPARSE FUNCTIONAL TIME SERIES

In this chapter, we consider the change point detection problem in functional time series, whose

objective is to detect possible changes among the mean functions of a sequence of independent

stochastic processes. This problem is usually modeled from hypothesis testing perspectives. The

null hypothesis is that all the random functions in the sequence share the same mean function.

As for the alternative, there are two typical types: at most one change point (AMOC), where the

mean function changes at most once; and epidemic changes, where the mean function changes at

some time point and then it returns to its original level. In this thesis, we focus on the AMOC

problem under sparse functional data settings. Similar ideas can be used to generalize epidemic

change point problems, but we do not study the details here. For the rest of this chapter, the

two terms functional AMOC and change point detection are used interchangeably. They both

refer to the functional AMOC problem. The mathematical model of the AMOC problem can be

formalized as follows. Let L2(T ) be the space that is consists of all squared-integrable functions

within the closed interval T . And let Xi(t) ∈ L2(T ), i = 1, ..., n, denote the independent random

process at time i, with mean function E[Xi(t)]. The functional AMOC change point detection

problem concentrates on testing E[Xi(t)] = µ(t) for all i, against the alternative that the mean

function E[Xi(t)] equals to µ(t) before some unknown time point θ and equals to µ′(t) 6= µ(t) for

i = θ + 1, ..., n. The unknown change point θ can be any value within the range of 1 and n − 1,

and we want to test whether the change exists.

For dense functional data, the change point detection problem has been considered by (Berkes

et al., 2009) and (Aue et al., 2009). They both utilize functional principal component analysis to

reduce the infinite dimensional inference problem to a finite approximate in the eigenspace. They

solve this problem in two steps. First, they propose consistent testing procedures to infer whether

there is a shift in terms of the mean function among the functional time series Xi(t) ∈ L2(T ),
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i = 1, ..., n. Next, if a significant shift is detected by their test procedures, they propose estimates

for θ, the location of the change point.

For sparse functional data, the change point detection problem has not yet been addressed. In

this chapter, we propose a test procedure specifically designed for the sparse functional change

point detection problem. A subject-dependent shrinkage estimator similar to Chapter 2 is utilized

to construct the current test statistic. Details can be found in Section 4.3. In Section 4.3, an estimate

for the location of the change point is also proposed.

This chapter is organized as follows. In Section 4.1, a brief review for the change point de-

tection problem in univariate time series is presented. In Section 4.2 to Section 4.4, the proposed

method for sparse functional data is discussed in detail, including the statistical framework, the

proposed test statistic, estimation procedures, and numerical experiments.

4.1 REVIEWS FOR THE CHANGE POINT DETECTION PROBLEM IN UNIVARIATE

TIME SERIES

The statistical framework for the traditional AMOC change point detection problem can be

summarized as follows. Suppose that we have a sequence of independent random variables with

homogeneous variance. Let’s denote the random series as {X1, ..., Xi, ..., Xn}, where Xi denotes

the random variable at time i, and n is the length of the random series. The population mean at

the ith location is denoted as E[Xi], and the common variance is σ2. The change point detection

problem focuses on testing

H0 : E[Xi] = µ, i = 1, ..., n V S Ha : E[Xi] =


µ, i = 1, ..., θ

µ′, i = θ + 1, ..., n
(4.1)

where θ is the unknown location of the change point, which can take any value within {1, ...., n−

1}. µ and µ′ are the unknown mean values, which are not equal.

According to (Hawkins, 1977), when the random variables are normal distributed, test statistics

for the change point detection problem in (4.1) can be constructed from the likelihood ratio test

(LRT) point of view. To be more specific, under H0 and Ha respectively, one should first achieve
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the the maximum likelihood estimates (MLE) for all the unknown parameters, including µ, µ′,

σ, and θ. Then the log likelihood ratio function can be calculated by plugging these estimates

back. To simplify the notation, it is assumed that σ is known. Under the null, the only unknown

parameter is µ, and its MLE estimate is µ̂ = X̄ = 1
n

∑n
i=1Xi. Under Ha, for any fixed θ = k, the

MLE of µ and µ′ are

µ̂ = X̄k = 1
k

k∑
i=1

Xi

µ̂′ = X̄k′ = 1
n− k

n∑
i=k+1

Xi

(4.2)

According to the probability density function of Gaussian distributions, the likelihood function

under Ha is monotonically decreasing in Sk = ∑k
i=1(Xi − X̄k)2 + ∑n

i=k+1(Xi − X̄k′)2. So the

MLE of θ is

θ̂ = arg min
k

Sk (4.3)

Let’s denote S = ∑n
i=1(Xi − X̄)2. It is then straightforward to show that

−2σ2 log(likelihood ratio) = S − Sθ̂

= n

θ̂(n− θ̂)
[
θ̂∑
i=1

(Xi − X̄)]2

= max
k

∣∣∣∣∣∣ n

k(n− k)

k∑
i=1

(Xi − X̄)

∣∣∣∣∣∣
2

def= Un

(4.4)

where k = 1, ..., n − 1. It is easy to show that, for any fixed k, n
k(n−k)

∑k
i=1(Xi − X̄) ∼ N(0, 1).

The distribution of the LRT test statistic Un is therefore the maximum absolute value of a discrete

Gaussian process, whose mean is zero, variance is 1, and correlation between any position l and m

(l < m) is

ρlm =

√√√√ l(n−m)
m(n− l) . (4.5)
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Specifically, as shown by (Hawkins, 1977), the formula of the probability density function of the

test statistic Un is

fUn(x) = 2z(x, 0, 1)
n−1∑
k=1

gk(x, x)gn−k(x, x),

gk(x, s) =
∫ s

y=0
gk−1(y, s)[z(y, ρx,

√
1− ρ2) + z(y,−ρx,

√
1− ρ2)] dy.

(4.6)

where ρ = ρk−1,k =
√

(k − 1)(n− k)/k(n− k + 1), and z(x, a, b) is the probability density

function of N(a, b2) evaluated at x. This results is derived based on the Markovian property of

the discrete Gaussian process and several other probabilistic basics. More details can be found in

(Hawkins, 1977). A fractile table is provided in (Hawkins, 1977), which contains simulated quan-

tiles for Un at different combinations of sequence length n and several commonly-used significance

levels.

The LRT test statistic defined in (4.4) intuitively makes sense. For any fixed k, the random

quantity n
k(n−k)

∑k
i=1(Xi − X̄) measures the magnitude of the distinction between the former part

{X1, ..., Xk} and the latter part {Xk+1, ..., Xn}. The test statistic uses the maximum distinction

among all dividing methods, i.e., k = 1, ..., n−1. The Gaussian distribution assumption is required

for the LRT test discussed here. Non-Gaussian circumstances are investigated by (Cardot et al.,

2013).

4.2 STATISTICAL FRAMEWORK FOR FUNCTIONAL CHANGE POINT

DETECTION

Analogous to univariate cases reviewed in Section 4.1, for functional data, it is assumed that we

have a sequence of independent stochastic processes with homogeneous covariance structure. That

is to say, X1(t), ..., Xi(t), ..., Xn(t) ∼ SP (E(Xi(t)), G(s, t)), t ∈ T . For each stochastic process

Xi(t), it is only observed at a finite set of points. And all the observed values are contaminated

with random measurement errors. Mathematically, the model we consider is

Yij = Xi(Tij) + εij, (4.7)
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where Yij , i = 1, .., n, j = 1, .., Ni denotes the jth observation of the random function at the ith

time cycle Xi(t). Here εij are i.i.d Gaussian measurement errors with standard deviation σ. The

number of observations for the ith time cycle is denoted as Ni. The corresponding observing times

are {Ti1, ..., TiNi
}.

For dense functional data, the number of observations Ni is relatively large which can goes to

infinity with a high rate. Similar to the argument in Section 2.1, the observing times Ti1, ..., TiNi

are usually common for all i and denoted as {T1, ..., TN}.

For sparse functional data, the number of observationsNi is assumed to be finite or grow slowly

with sample size n. Given Ni, random observing times {Ti1, ..., TiNi
} are i.i.d with a bounded

density function (specified in Section 4.3.3) within the time domain T . It is also assumed that Xi,

Ni and εij are mutually independent.

For the functional change point detection problem, the hypothesis of interest is

H0 : E[Xi(t)] = µ(t), i = 1, ..., n V S Ha : E[Xi(t)] =


µ(t), i = 1, ..., θ

µ′(t), i = θ + 1, ..., n
(4.8)

where µ(t) 6= µ′(t) are the corresponding mean functions. Note that µ(t), µ′(t), θ and G(s, t) are

all unknown.

4.3 PROPOSED METHOD FOR SPARSE FUNCTIONAL TIME SERIES

4.3.1 Derivation of test statistics

To construct a test statistic for (4.8), we exploit a direct extension of the LRT test statistic Un

in (4.4). First, analogous to (4.2), let’s introduce several notations. For any fixed k = 1, ..., n− 1,

X̄k(t) = 1
k

k∑
i=1

Xi(t)

X̄ ′k(t) = 1
n− k

n∑
i=k+1

Xi(t).
(4.9)
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Then the following stochastic process quantifies the difference in the mean functions between the

first k and the latter n− k random functions

Pk(t) = k(n− k)
n

[X̄k(t)− X̄ ′k(t)]

=
k∑
i=1

Xi(t)−
k

n

n∑
i=1

Xi(t)

=
k∑
i=1

[Xi(t)− µpool(t)]−
k

n

n∑
i=1

[Xi(t)− µpool(t)],

(4.10)

where µpool is the mean function of the mixture stochastic process of {Xi(t), i = 1, ..., k} and

{Xi(t), i = k + 1, ..., n}. Mathematically,

µpool(t) = ζµ(t) + (1− ζ)µ′(t), (4.11)

where ζ = θ/n.

If the mean function changes, then Pk(t) should be large for some k and some t. The quantity

is infinite dimensional, we project it on to the orthonormal eigen space of the covariance func-

tion G̃(s, t) = G(s, t) + ζ(1 − ζ)[µ(t) − µ′(t)][µ(s) − µ′(s)]. Let ηl(t) being the eigenfunction

corresponding to the lth largest eigenvalue ωl of G̃(s, t). Let’s the define eigen projection scores

of Xi(t) − µpool(t) as ξil =
∫

[Xi(t) − µpool(t)]ηl(t) dt for i = 1, ..., n; l = 1, ...,∞. Then the

projection score of Pk(t) onto ηl(t)

∫
t∈T

Pk(t)ηl(t) dt =
k∑
i=1

ξil −
k

n

n∑
i=1

ξil l = 1, ...,∞. (4.12)

If the mean function changes, then
∫
t∈T Pk(t)ηl(t) dt should be large for some k and some l.

For dense functional data, one can truncate at the first p dimensions and construct the following

test statistic

DCp,n = 1
n

[
k∑
i=1
ξ̂i −

k

n

n∑
i=1
ξ̂i]Tdiag[ω̂1, ..., ω̂p]−1[

k∑
i=1
ξ̂i −

k

n

n∑
i=1
ξ̂i] (4.13)

where ξi = (ξi1, ..., ξip)T , ξ̂i and ω̂l are consistent estimates from data Yij , i = 1, ..., n; j =

1, ..., Ni. To obtain the consistent estimate of the projection score ξil, one can utilize numerical ap-

proximations of
∫

[Xi(t)− µpool(t)]ηl(t) dt based on the discrete observations Yij , i = 1, ..., n; j =

1, ..., Ni.
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For sparse functional data, we can no longer achieve consistent estimates for ξi through nu-

merical integration due to the limited number of observations on each curve. We propose to use

the best linear predictor, E[ξil|Y i], with Y i = (Yi1, ..., YiNi
)T being the vector contains all the

observation at the ith time cycle. This is a reasonable choice due to the fact that

Et[E[ξil|Y i]] = E[ξil], (4.14)

when we take the randomness of observing times into account. Under a special case where the

projection scores ξil and the random errors εij are jointly Gaussian distributed, the best linear

predictor E[ξil|Y i] has the following explicit formula

E[ξil|Y i] =
∫

(µi(t)− µpool(t))ηl(t) dt+ ωlη
T
ilΣ−1

Yi
(Y i − µpool,i − µi + µpool,i)

def= κl + ωlη
T
ilΣ−1

Yi
(Y i − µpool,i − µi + µpool,i),

(4.15)

where µi(t) = E[Xi(t)], µi = (µi(Ti1), ..., µi(TiNi
))T , µpool,i = (µpool(Ti1), ..., µpool(TiNi

))T ,

ηil = (ηl(Ti1), ..., ηl(TiNi
))T , and ΣYi

is the covariance matrix of Y i, and the (j, j′) element of

ΣYi
equals to G̃(Tij, Tij′) + σ21(j = j′).

Let’s truncate at the first p directions. The best linear predictor of ξi is

E[ξi|Y i] = κ+ diag(ω)ET
i Σ−1

Yi
(Y i − µpool,i − µi + µpool,i), (4.16)

where κ = (κ1, ..., κp)T , ω = (ω1, ..., ωp)T , Ei = (ηi1, ...,ηip) with ηil = (ηl(Ti1), ..., ηl(TiNi
))T .

Under the null hypothesis, we have E[Xi(t)] = µi(t) = µpool(t), so we propose to construct a

test statistic based on the following quantity,

ξ̃i = diag(ω)ET
i Σ−1

Yi
(Y i − µpool,i), (4.17)

which is referred as shrinkage score in later parts.

To construct a test statistic based on the shrinkage score vector ξ̃i, let’s first calculate its mean

vector and covariance matrix through the following two steps. First, assuming the observing times

T i = (Ti1, ..., TiNi
)T are fixed, the conditional mean and variance of ξ̃i are

E[ξ̃i|T i] = diag(ω)ET
i Σ−1

Yi
(µi − µpool,i)

Cov[ξ̃i|T i] = diag(ω)ET
i Σ−1

Yi
Eidiag(ω).

(4.18)
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Next, by taking the randomness of T i into account, we have the mean and variance of ξ̃i are

E[ξ̃i] = Et[diag(ω)ET
i Σ−1

Yi
(µi − µpool,i)]

Cov[ξ̃i] = Et[diag(ω)ET
i Σ−1

Yi
Eidiag(ω)].

(4.19)

All the quantities involved in estimating ξ̃i, E[ξ̃i] and Cov[ξ̃i] can be obtained from data Yij ,

i = 1, .., n, j = 1, .., Ni, with details included in the next subsection. Let’s denote the estimated

quantities as ω̂, η̂k(t), µ̂pool(t), and σ̂. We have the following empirical estimators

ˆ̃ξi = diag(ω̂)ÊT

i [Êidiag(ω̂)ÊT

i + σ̂2I]−1(Yi − µ̂pool;i)

ˆCov[ξ̃i] = 1
n

n∑
i=1

diag(ω̂)ÊT

gi[Êgidiag(ω̂)ÊT

gi + σ̂2I]−1Êgidiag(ω̂)

def= V̂ 3

(4.20)

Combining all these results, for the change point θ = k, we propose to use the following test

statistic

S
(1)
p,n,k = 1

n
[
k∑
i=1

ˆ̃ξi −
k

n

n∑
i=1

ˆ̃ξi]T V̂
−1
3 [

k∑
i=1

ˆ̃ξi −
k

n

n∑
i=1

ˆ̃ξi] (4.21)

Remember that the quantity S(1)
p,n,k defined in (4.21) should be small for all k to make H0 favorable.

There are two ways to take k into account. The first one is exactly the same as (4.4). It takes the

maximum across k and yields the following test statistic

C(1)
p,n = max

1≤k<n
S

(1)
p,n,k (4.22)

The second one continualizes k by defining k = [nz], z ∈ (0, 1), then integrates over z,

C(2)
p,n =

∫ 1

0

1
n

[
[nz]∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi]T V̂
−1
3 [

[nz]∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi] dz

def=
∫ 1

0
S(2)
p,n,z dz

(4.23)

Even though the proposed test statistics C(1)
p,n and C(2)

p,n are motivated from joint Gaussian situ-

ations, we later prove that the asymptotic null distribution is valid regardless of whether the joint

Gaussian assumption is true or not.

71



4.3.2 Estimation procedures

In the proposed test statistics C(1)
p,n and C(2)

p,n, the unknown parameters include eigen-valuesω of

G̃(s, t), eigen-functions ηl(t), the variance of random measurement errors σ2, and the overall mean

function µpool(t). We adopt the pLRT method in (Peng and Müller, 2008) to achieve the estimates

for these parameters. In the following description, Gaussian processes are utilized to calculate

the likelihood function. However, as stated in their paper, the Gaussian processes assumption is

only a working condition and their asymptotic results still hold under some relaxed conditions. To

implement our test procedures, one can always utilize other estimating methods, such as the local

linear smoothing in (Yao et al., 2005; Li and Hsing, 2010; Zhang and Wang, 2016), as long as they

produce consistent estimates. As our test procedure itself does not require Gaussian conditions.

First, in order to the overall mean function µpool(t) defined in (4.11), we use the local linear

smoothing procedure. To be more specific, we define the local linear smoother of pooled mean

function µpool(t) by minimizing

n∑
i=1

Ni∑
j=1

K(Tij − t
hµpool

)[Yij − β0 − β1(t− Tij)] (4.24)

with respect to β0 and β1, where hµpool
is the bandwidth, and K(·) is the smoothing kernel. Then

µ̂pool(t) = β̂0(t).

As for the eigenfunctions ηl(t) and eigenvalues ωl of the covariance function G̃(s, t), estimates

are achieved through the restricted maximum likelihood method in (Peng and Paul, 2009). It’s

assumed that, under some weak smoothness conditions on the population stochastic process, the

first p eigenfunctions {η1(t), ..., ηp(t)} can be modeled as,

ηl(t) =
M∑
m=1

dmlψl(t) (4.25)

where functions {ψ1(t), ..., ψM(t)} ∈ L2(T ) and are known. Note that {ψ1(t), ..., ψM(t)} are

usually orthonormalized. Based on the orthonormality of eigenfunctions {η1(t), ..., ηp(t)}, we
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have the constraint for matrix D, DTD = Ip. Note that under Gaussian Process and normal error

assumption, conditional on time points, the negative log-likelihood of the data is given by

− logL(D, diag(ω, σ2)) ∝ 1
2

n∑
i=1

Tr[(σ2INi
+ ΨT

i Ddiag(ω)DTΨi)(Yi − µ̂pool;i)(Yi − µ̂pool;i)T ]

+ 1
2 log |σ2INi

+ ΨT
i Ddiag(ω)DTΨi|

(4.26)

where Ψi = (ψi1, ...,ψiM)T , with ψil = (ψl(ti1), ..., ψl(tiNi
))T for l = 1, ..,M . Estimate for

the pooled mean function µ̂pool(t) is given in (4.24) and µ̂pool;i = (µ̂pool(ti1), ..., µ̂pool(tiNi
))T . A

Newton-Raphson algorithm is utilized to achieve D̂, ω̂ and σ̂2 such that they minimize the negative

log-likelihood, subject to the constraint that DTD = Ip. Then we can estimate the corresponding

eigenfunctions by η̂l(t) = ∑M
m=1 d̂mlψl(t).

Combing all the estimation above, we achieve estimation for the covariance Cov[ξ̃i]

ˆCov[ξ̃i] = Êt[diag(ω)ET
i Σ−1

Yi
Eidiag(ω)]

= 1
n

n∑
i=1

diag(ω̂)ÊT

i [Êidiag(λ̂)ÊT

i + σ̂2I]−1Êidiag(ω̂)

def= V̂ 3

(4.27)

And the empirical estimate for ξ̃i is ˆ̃ξi = (ˆ̃ξi1, ..., ˆ̃ξip)T , where ˆ̃ξil = ω̂lη̂
T
ilΣ̂
−1
Yi

(Yi − µ̂pool;i).

By plugging all the estimates into equation (4.22) and equation (4.23), we have the following

two test statistics,

C(1)
p,n = max

1≤k<n

1
n

[
k∑
i=1

ˆ̃ξi −
k

n

n∑
i=1

ˆ̃ξi]T V̂
−1
3 [

k∑
i=1

ˆ̃ξi −
k

n
ˆ̃ξi]

C(2)
p,n =

∫ 1

0

1
n

[
[nz]∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi]T V̂
−1
3 [

[nz]∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi] dz
(4.28)

73



4.3.3 Asymptotic results

In this section, we develop the asymptotic theory of C(1)
p,n and C(2)

p,n under both the H0 and

the Ha. Given that we use the rMLE method and local linear smoothing, we need the following

assumptions.

1. X1(t),....,Xn(t) are independent Gaussian processes.

2. The p largest eigenvalues of G̃(s, t) satisfy. (i) There exists a constant a1 < ∞, such that

a1 ≥ ω1 > ω2 > ... > ωp > ωp+1; (ii) There exists a constant a2 < ∞, such that max
1≤l≤p

(ωl −

ωl+1)−1 ≤ a2.

3. The common eigenfunctions {ηk}pk=1 are four times continuously differentiable and satisfy for

some 0 < A0 <∞

max
1≤l≤p

sup
t∈T
|η(4)
l (t)| ≤ A0 (4.29)

4. For each i, {Tij, j = 1, ..., Ni} are i.i.d samples from a distribution g within the time domain

T , where g is a bounded function and it satisfies cg,0 ≤ g(x) ≤ cg,1 for all t ∈ T , where

0 < cg,0 ≤ cg,1 <∞.

5. The number of measurements Ni satisfies N ≤ Ni ≤ N̄ with N ≥ 4 and N̄ <∞.

6. The following two assumptions are correct: M−1(n/ log n)1/9 = O(1), andM = o(
√
n/ log n),

where M as defined in Section 4.3.2 is the number of orthonormalized cubic B-spline basis

used to represent the eigenfunctions ηl(t).

Similar conditions are needed and discussed in Chapter 2.

Theorem 5. Under H0 and regularization assumptions 1-6, if Et[ET
ilΣ−1

Yi
Eil] < ∞ is satisfied.

For any fixed p, we have

C(1)
p,n

D−→ sup
0≤z≤1

p∑
l=1

B2
l (z)

C(2)
p,n

D−→
p∑
l=1

∫ 1

0
B2
l (z) dz

(4.30)

where Bl(t), l = 1, ..., p, are independent standard Brownian Bridges.

74



The above asymptotic results are the basis of making decisions in the testing problem (4.8).

The distribution of
∑p
l=1

∫ 1
0 B

2
l (z) dz is derived by (Kiefer, 1959). However, they only provide re-

sults for a small number of p, i.e., p < 5. In practice, people can always get the 1−α percentiles of

sup0≤z≤1
∑p
l=1B

2
l (z) or

∑p
l=1

∫ 1
0 B

2
l (z) dz by repeatedly simulating p independent standard Brow-

nian Bridges. And the decision rule is to reject H0 if C(1)
p,n or C(2)

p,n is greater than the corresponding

1−α percentile. For C(2)
p,n, its 1−α quantile calculated from 1000 points over 100,000 replications

are given by (Aue et al., 2009). We copy their results for p = 1, ..., 15 in Table 4.1. Following the

same schema, we simulated a quantile table for C(1)
p,n, as shown in Table 4.2. Proof of Theorem 5 is

postponed to Appendix.

Table 4.1: Simulated critical values (α = 0.01, 0.05, 0.10) of the distribution of
∑p
l=1

∫ 1
0 B

2
l (z) dz.

The value of p = 1, .., 15.

α p = 1 p = 2 p = 3 p = 4 p = 5
0.10 0.345165 0.606783 0.842567 1.065349 1.279713
0.05 0.460496 0.748785 1.001390 1.239675 1.469008
0.01 0.740138 1.072101 1.352099 1.626695 1.866702
α p = 6 p = 7 p = 8 p = 9 p = 10
0.10 1.485200 1.690773 1.897365 2.096615 2.288572
0.05 1.684729 1.895557 2.124153 2.322674 2.526781
0.01 2.125950 2.342252 2.589244 2.809778 3.033944
α p = 11 p = 12 p = 13 p = 14 p = 15
0.10 2.496635 2.686238 2.884214 3.066906 3.268958
0.05 2.744438 2.949004 3.147604 3.336262 3.544633
0.01 3.268031 3.491102 3.708033 3.903995 4.116829

In the following, Theorem 6 provides theoretical justifications for the power of our test proce-

dures under certain type of alternatives.

Theorem 6. Under regularization assumptions 1-6, suppose that we haveEt(diag(ω)ET
i Σ−1

Yi
(µi−

µpool;i)) 6= 0, then

C(1)
p,n

p−→∞

C(2)
p,n

p−→∞
(4.31)

Under random design t, Et(diag(ω)ET
i Σ−1

Yi
(µi−µpool;i)) is basically some type of projection

of µ(t) − µpool(t). When µ(t) − µpool(t) 6= 0, it is unlikely that this projection scores equal to 0
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Table 4.2: Simulated critical values (α = 0.01, 0.05, 0.10) of the distribution of sup∑p
l=1 B

2
l (z).

The value of p = 1, .., 10.

α p = 1 p = 2 p = 3 p = 4 p = 5
0.10 1.451416 2.067668 2.563871 3.022649 3.45234
0.05 1.796405 2.458266 2.987638 3.479112 3.942844
0.01 2.605361 3.318181 3.91891 4.467059 4.98733
α p = 6 p = 7 p = 8 p = 9 p = 10
0.10 3.840457 4.241502 4.634173 5.002395 5.371901
0.05 4.348183 4.770868 5.183215 5.579701 5.954123
0.01 5.413516 5.897421 6.343253 6.792156 7.183547

on all the first p directions. Theorem 6 ensures that, under any alternative Ha when the difference

between µg(t) and µpool(t) is captured by some of the first p directions of such projection, the

power of our test procedure goes to 1. Proof of Theorem 6 is also postponed to Appendix.

4.3.4 Estimation of change point

When a significant shift in mean function is detected, we propose to estimate its location by

k̂∗
(1) = inf{k : S(1)

p,n,k = max
1≤s<n−1

S(1)
p,n,s}

k̂∗
(2) = inf{z : S(2)

p,n,z = sup
0≤y≤1

S(2)
p,n,y}

(4.32)

which is the first location that yields the largest difference in the mean function estimates of the

former sub-sequence and the latter sub-sequence. The performances of the both estimators are

evaluated by simulation studies in Section 4.4.1.

4.4 NUMERICAL EXPERIMENTS

4.4.1 Simulation studies

In this subsection, we examine the finite sample performance of the proposed test procedures

C(1)
p,n (4.22) and C(2)

p,n (4.23) through two simulations studies, both of which only have one change
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point. In the first one, we eliminate the effect of choosing p by using its true value. In the second

study, we consider a more complex situation, where the true value of p is unknown. In both

studies, we examine the performances of the proposed test procedures and the estimates for the

change point location defined in (4.32).

Simulation I

The data is generated based on model (4.7), and the Karhunen-Loève expansion Xi(Tij) =

µi(Tij) + ∑∞
l=1 ξilφl(Tij), with ξil ∼ N(0, λl). The number of observations on each curve is 4,

i.e., Ni = N = 4 for i = 1, ..., n. The observing time points, {Ti1, ..., TiN}, are uniformly

distributed within the interval [0, 1]. We assume that the eigenvalues are λl = 2(l + 1)−2 for

l = 1, ..., 4, and λl = 0 for l > 4. The eigenfunctions are φ1(t) =
√

2 cos(πt), φ2(t) =
√

2 sin(πt),

φ3(t) =
√

2 cos(2πt), φ4(t) =
√

2 sin(2πt). The standard deviation of the measurement errors is

σ = 0.6. The lengths of the random sequence are n = 50, n = 100, and n = 200. For each

length situation, there are three different change point considered, θ = [n4 ], [n2 ] and [3n
4 ]. The mean

functions µi(t) are µi(t) = µ(t), for i = 1, ..., θ, and µi(t) = µ′(t), for i = θ + 1, ..., n. And

µ(t) = ∑4
l=1 a1lφl(t), where a1l = 3ā1l

‖ā1‖2
, with ā1 = (ā11, ..., ā14)T and ā1l = (2)5−l(5 − l)6. And

µ′(t) = ∑4
l=1 a2lφl(t), where a2l = 3ā2l

‖ā2‖2
, with ā2 = (ā21, ..., ā24)T and ā2l = (2− ς)5−l(5− l)6. ς

quantifies the magnitude of the distinctions among the two mean functions, and ς = 0, 1.2, 1.35, 1.5

correspond to the null hypothesis and three alternative hypotheses for (4.8).

In the calculation of all the results, we use the true p = 4, such that the results are free of

the effect of choosing p. Given the results shown in Table 4.3, the performances of both C(1)
p,n and

C(2)
p,n are quite reasonable. Under the null in (4.8) (ς = 0), the tests are capable of controlling

the pre-specified significance level α = 0.05, even though they tends to be relatively biased when

sample size is small. For a given change point situation θ and a fixed sample size n, the powers

of the proposed tests increases with the increasing the distinction between µ(t) and µ′(t), i.e., ς .

For a specific combination of sample size n and alternative ς , the powers are larger if the change

happens in the middle (θ = [n2 ]), while the powers at the first quarter and the third quarter are very

close. According to Figure 4.1, which visualizes θ̂ from (4.32) under different n and θ, the point

estimate for θ is pretty close to its true value.

Simulation II

Now we adopt a more complex setting. The number of observations Ni ∼ U [2, ..., 6], and
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Table 4.3: Results for simulation I. We present results for bothC(1)
p,n andC(2)

p,n. The length of the time

series is n = 50, 100, 200, and the change point is θ = [n4 ], [n2 ] and [3n
4 ]. The number of observation

on each random curve is 4 (N = 4) and the standard deviation of the random measurement error

is 0.6 (σ = 0.6). The type I error (ς = 0) and powers (ς = 1.2, 1.35, 1.5) are calculated based on

1000 repetitions. The significance level α is 0.05.

Test statistic n Location ς = 0 ς = 1.2 ς = 1.35 ς = 1.5
C

(1)
p,n n = 50 θ = 13 0.009 0.045 0.109 0.361

θ = 25 0.006 0.120 0.366 0.767
θ = 38 0.045 0.083 0.108 0.261

n = 100 θ = 25 0.014 0.211 0.484 0.934
θ = 50 0.013 0.496 0.877 1.000
θ = 75 0.011 0.195 0.469 0.927

n = 200 θ = 50 0.030 0.621 0.942 0.999
θ = 100 0.040 0.934 0.998 1.000
θ = 150 0.023 0.581 0.953 1.000

C
(2)
p,n n = 50 θ = 13 0.016 0.078 0.179 0.392

θ = 25 0.009 0.148 0.342 0.742
θ = 38 0.017 0.070 0.127 0.321

n = 100 θ = 25 0.020 0.237 0.504 0.882
θ = 50 0.016 0.260 0.508 0.992
θ = 75 0.022 0.255 0.490 0.873

n = 200 θ = 50 0.051 0.603 0.928 0.999
θ = 100 0.033 0.883 0.997 1.000
θ = 150 0.037 0.581 0.930 0.999

then conditional on the value of Ni, (Ti1, ..., TiNi
) are i.i.d uniformly distributed with [0,1]. The

lengths of the random sequence are n = 50, n = 100, and n = 200. For each length situation,

there are three different change point considered, [n2 ] and [3n
4 ]. The mean functions µi(t) are

µi(t) = µ(t), for i = 1, ..., θ, and µi(t) = µ′(t), for i = θ+1, ..., n. µ(t) = 20t%(1−t), and µ′(t) =

20t(1− t)%, where % = 1, 1.12, 1.24, 1.36 correspond to the null and three alternative hypotheses.

Eigenfunctions are φ2l−1(t) =
√

2 cos((2l − 1)πt) for l = 1, ..., 15, φ2l(t) =
√

2 sin(2lπt) for

l = 1, ..., 15. The standard deviation of random errors is σ = 0.8.

Different from simulation I, the true value of p is unknown. We use the leave-one-out cross-

validation method (CV) in (Peng and Paul, 2009) and the fraction of variance explained (FVE80,
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FVE85) to estimate p. Then use this p̂ to conduct the proposed test procedures. Given the numbers

in Table 4.4, the cross-validation method is more reliable all the time. The FVE methods fails to

appropriately control the type I errors when the length of the independent random sequence is not

long enough. In Figure 4.2, the estimated θ̂ based on p̂ selected from the CV method are visualized.

It can be seen that the point estimate for θ is pretty close to its true value.

4.4.2 Application to an eBay online auction data set

It is all known that iPhone 7 and iPhone 7 Plus was announced on September 7th, 2016 and

was released on September 16th, 2016. We are interested in checking whether the release of the

new versions has any effects on the sales of the previous versions on eBay markets.

To investigate this question, we scraped the live bidding price trajectories of used 64GB iPhone

6 Plus with AT&T network. The auctions that we consider are all with starting dates between

August 18th, 2016 and November 13rd, 2016. Within all the auctions, we consider only the 3-day

auctions. Totally we include 233 individual auctions in the functional time series, after deleting

two outliers. Similar to the data analysis in Chapter 2, we transform live bid data into log-scale.

Now the problem of checking whether the release of new iPhones have any effect on the previous

versions becomes testing whether there exists any change points in mean bidding curves between

August 18th, 2016 and November 13rd, 2016.

The proposed tests is implemented to this mean function change point detection problem. We

use the cross-validation method to choose p̂ = 3. For test statistic C(2)
p,n, we have its value 5.14,

which is greater than the 95% quantile given in Table 4.1. This means that we have enough con-

fidence to say the mean functions are not consistent over time. The estimated change point is

September 9th, 2016. This date is two days after the new iPhone was displayed to the public. The

estimated mean functions by local linear smoothing are included in Section 4.4.2. From the graph,

we can see that the price of the before group (solid black) is larger than that of the after group

(solid red) over the entire time domain. For test statistic C(1)
p,n, we have its value 7.28, which is also

greater than the 95% quantile given in Table 4.2. This means that we do have enough confidence

to say the mean functions are not consistent over time.
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Figure 4.1: On each row of the figure matrix, histograms of estimated change point θ is presented

for length n = 50, 100, 200. On each column of the plot matrix, histograms is provided for θ = [n4 ],

[n2 ] and [3n
4 ]. For all the situations, the majority of the estimates are very close to the true value θ.

For example, let’s take a look at the histogram right in the middle (n = 100, θ = 50), majority of

θ̂ fall within the range from 45 to 55.
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Table 4.4: Results for simulation II. We present results for both C(1)
p,n and C(2)

p,n. The length of

the time series is n = 50, 100, 200, and the change point location is [n2 ] and [3n
4 ]. The number

of observation on each random curve is 4 (N = 4) and the standard deviation of the random

measurement error is 0.8 (σ = 0.8), different sample sizes (n = 50, 100, or 200). The type I error

(% = 0) and powers (ς = 1.12, 1.24, 1.36) are calculated based on 1000 repetitions.

Test statistic n Location Test % = 0 % = 1.12 % = 1.24 % = 1.36
C

(1)
p,n n = 50 θ = 25 CV 0.014 0.156 0.658 0.943

FVE80 0.296 0.504 0.752 0.867
FVE85 0.292 0.507 0.756 0.869

θ = 38 CV 0.020 0.058 0.256 0.546
FVE80 0.278 0.431 0.637 0.799
FVE85 0.283 0.436 0.642 0.802

n = 100 θ = 50 CV 0.021 0.489 0.978 0.999
FVE80 0.108 0.534 0.843 0.955
FVE85 0.109 0.537 0.849 0.958

θ = 75 CV 0.023 0.212 0.813 0.985
FVE80 0.119 0.357 0.743 0.891
FVE85 0.120 0.358 0.745 0.893

n = 200 θ = 100 CV 0.024 0.874 1.000 1.000
FVE80 0.060 0.756 0.946 0.992
FVE85 0.058 0.762 0.946 0.998

θ = 150 CV 0.030 0.609 0.995 1.000
FVE80 0.070 0.528 0.893 0.981
FVE85 0.070 0.528 0.899 0.983

C
(2)
p,n n = 50 θ = 25 CV 0.032 0.217 0.690 0.924

FVE80 0.274 0.476 0.741 0.863
FVE85 0.279 0.484 0.746 0.862

θ = 38 CV 0.028 0.092 0.324 0.608
FVE80 0.242 0.398 0.638 0.752
FVE85 0.250 0.406 0.640 0.758

n = 100 θ = 50 CV 0.035 0.517 0.969 0.999
FVE80 0.092 0.517 0.852 0.945
FVE85 0.098 0.518 0.857 0.947

θ = 75 CV 0.047 0.359 0.638 1.000
FVE80 0.060 0.537 0.752 0.968
FVE85 0.061 0.543 0.756 0.969

n = 200 θ = 100 CV 0.040 0.873 0.999 1.000
FVE80 0.056 0.713 0.940 0.996
FVE85 0.056 0.724 0.941 0.997

θ = 150 CV 0.038 0.515 0.970 1.000
FVE80 0.118 0.515 0.857 0.950
FVE85 0.122 0.520 0.865 0.953
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Figure 4.2: On each row of the figure matrix, histograms of estimated change point θ is presented

for length n = 50, 100, 200. On each column of the plot matrix, histograms is provided for [n2 ]

and [3n
4 ]. For all the situations, the majority of the estimates are very close to the true value θ. For

instance, let’s take a look at the last histogram on the left column in Figure 4.2 (n = 200, θ = 100),

majority of θ̂ fall within the range from 105 to 110.
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Figure 4.3: Estimated mean function of iPhone 6 plus live biddings before September 9th, 2016

(solid black); estimated mean function of iPhone 6 plus live biddings after September 9th, 2016

(dash blue)
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5.0 CONCLUDING REMARKS

In this thesis, we studied several related inference problems for sparsely observed functional

data, including two-sample test, one-way functional ANOVA problem and change point detection

in functional time series. We reviewed and discussed the existing methods for dense functional

data, which at the same time explained and motivated the need of methodological development for

sparse functional data. The proposed test statistics are based on the construction of a shrinkage

score and a careful derivation of the asymptotic distribution. Numerical experiments demonstrated

the good performance of the proposed testing procedures. All the methods were illustrated by

applications to the CD4 count data and the eBay online auction data.

This thesis focused on the inference problem for mean functions, assuming the covariance

functions are the same. We discussed the extensions to some relaxed assumptions on covariance

functions such as common covariance structures. The inference and formal checking of covariance

structures are interesting and challenging problems on their own, which we think would be nice

topics for further research.
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APPENDIX

PROOF OF THEOREMS

Proof of Theorem 1

The goal is to show that Tp,N → χ2(p) in distribution, under H0. Denote T ∗p,N = (¯̃rc1· −

¯̃rc2·)T [( 1
n1

+ 1
n2

)V ]−1(¯̃rc1·− ¯̃rc2·), where V =
∑2

g=1

∑ng
i=1 diag(λ)ΦT

giΣ−1
Yc

gi
Φgidiag(λ)

n1+n2
. According to the

Central Limit Theorem and the Slutsky’s theorem, T ∗p,N is asymptotically χ2(p) distributed under

H0. Consequently, proving Theorem 1 is basically proving Tp,N = T ∗p,N + op(1).

Let’s denote Sgi = diag(λ)ΦT
giΣ−1

Yc
gi

Φgidiag(λ) and Ŝgi = diag(λ̂)Φ̂T

gi[Φ̂gidiag(λ̂)Φ̂T

gi +

σ̂2
gI]−1Φ̂gidiag(λ̂), then V̂ = Ŝ11+...+Ŝ1n1+Ŝ21+...+Ŝ2n2

n
and V = S11+...+S1n1+S21+...+S2n2

n
. The

absolute value of Tp,N − T ∗p,N can be decomposed as follows.

|Tp,N − T ∗p,N |

=
∥∥∥∥∥( ¯̃̂rc1· − ¯̃̂r

c

2·)T [( 1
n1

+ 1
n2

)V̂ ]−1( ¯̃̂r
c

1· −
¯̃̂r
c

2·)− (¯̃rc1· − ¯̃rc2·)T [( 1
n1

+ 1
n2

)V ]−1(¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2

≤
∥∥∥∥∥(¯̃rc1· − ¯̃rc2·)T [[( 1

n1
+ 1
n2

)V̂ ]−1 − [( 1
n1

+ 1
n2

)V ]−1](¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2

+
∥∥∥∥∥( ¯̃̂rc1· − ¯̃̂r

c

2· − ¯̃rc1· + ¯̃rc2·)T [( 1
n1

+ 1
n2

)V̂ ]−1(¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2

+
∥∥∥∥∥( ¯̃̂rc1· − ¯̃̂r

c

2·)T [( 1
n1

+ 1
n2

)V̂ ]−1( ¯̃̂r
c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥∥

2
def= A1 + A2 + A3

(.1)

Given (.1), proving Theorem 1 can be accomplished by proving A1 = op(1), A2 = op(1), and

A3 = op(1) hold.
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First, let’s start to show A1 = op(1). Under H0, i.e., µ1(t) = µ2(t) = µpool(t), we have

( 1
n1

+ 1
n2

)−1/2(¯̃rc1· − ¯̃rc2·) ∼ Np(0, Cov(r̃cgi)) (.2)

So we have ∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2(¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2
= Op(1) (.3)

According to (Peng and Paul, 2009), under condition 1 to 6 in Section 2.7 and several other mild

conditions for local linear smoothing (Zhang and Wang, 2016), we have

∥∥∥µ̂pool − µpool∥∥∥
F

= op(1)∥∥∥diag(λ̂)− diag(λ)
∥∥∥

2
= op(1)∥∥∥φ̂k − φk∥∥∥

F
= op(1)∥∥∥σ̂2 − σ2

∥∥∥
2

= op(1)

(.4)

we have∥∥∥V̂−V
∥∥∥

2
≤ max

1≤g≤2;1≤i≤ng

∥∥∥∥diag(λ̂)Φ̂T

giΣ̂
−1
gi Φ̂gidiag(λ̂)− diag(λ)ΦT

giΣ−1
gi Φgidiag(λ)

∥∥∥∥
2

def= max
1≤g≤2;1≤i≤ng

∥∥∥diag(λ̂)M̂gidiag(λ̂)− diag(λ)Mgidiag(λ)
∥∥∥

2

≤ max
1≤g≤2;1≤i≤ng

∥∥∥(diag(λ̂)− diag(λ))Mgidiag(λ)
∥∥∥

2

+ max
1≤g≤2;1≤i≤ng

∥∥∥diag(λ̂)Mgi(diag(λ̂)− diag(λ))
∥∥∥

2

+ max
1≤g≤2;1≤i≤ng

∥∥∥diag(λ̂)(M̂gi −Mgi)diag(λ̂)
∥∥∥

2

≤ op(1) + op(1) + op(1) = op(1)

(.5)

The last inequality requires more arguments. We need to show for any g and i, we have

∥∥∥M̂gi −Mgi

∥∥∥
2
≤
∥∥∥(Φ̂gi −Φgi)TΣ−1

gi Φgi

∥∥∥
2

+
∥∥∥Φ̂giΣ−1

gi (Φ̂gi −Φgi)
∥∥∥

2

+
∥∥∥∥Φ̂gi(Σ̂

−1
gi −Σ−1

gi )Φ̂gi

∥∥∥∥
2

≤ op(1) + op(1) +

∥∥∥Σ−1
gi

∥∥∥
2

[
∥∥∥Σ−1

gi

∥∥∥
2

∥∥∥Σ̂gi −Σgi

∥∥∥
2
]−1 − 1

≤ op(1) + op(1) + op(1) = op(1)

(.6)
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Combine (.3) and (.5) together, we have

A1 ≤
∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2(¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2

2

∥∥∥∥V̂ −1 − V −1
∥∥∥∥

2

≤ Op(1)×

∥∥∥V −1
∥∥∥

2

[
∥∥∥V −1

∥∥∥
2

∥∥∥V̂ − V ∥∥∥
2
]−1 − 1

= op(1)
(.7)

Next, we start to show that A2 = op(1). Note that

A2 ≤
∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2(¯̃rc1· − ¯̃rc2·)
∥∥∥∥∥

2

∥∥∥∥V̂ −1
∥∥∥∥

2

∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2( ¯̃̂r
c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥∥

2

≤ Op(1)Op(1)
∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2( ¯̃̂r
c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥∥

2

(.8)

In order to prove A2 = op(1), we need to show
∥∥∥∥( 1

n1
+ 1

n2
)−1/2( ¯̃̂r

c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥

2
= op(1).

We want to write out the explicit formula of ¯̃̂r
c

g· − ¯̃rcg·:

ˆ̃rcgi = diag(λ̂)Φ̂T

giΣ̂
−1
Ygi

(Ygi − µ̂pool;gi)
def= diag(λ̂)Q̂gi(Ygi − µ̂pool;gi)

= r̃cgi + (diag(λ̂)− diag(λ))Qgik(Ygi − µpool;gi) + diag(λ̂)(Q̂gik −Qgik)(Ygi − µpool;gi)

+ diag(λ̂)Q̂gik(µpool;gi − µ̂pool;gi)

(.9)

i.e.,

( 1
n1

+ 1
n2

)−1/2( ¯̃̂r
c

g· − ¯̃rcg·) = ( 1
n1

+ 1
n2

)−1/2(diag(λ̂)− diag(λ)) 1
ng

ng∑
i=1

Qgi(Ygi − µpool;gi)

+ ( 1
n1

+ 1
n2

)−1/2diag(λ̂) 1
ng

ng∑
i=1

(Q̂gi −Qgi)(Ygi − µpool;gi)

+ ( 1
n1

+ 1
n2

)−1/2diag(λ̂) 1
ng

ng∑
i=1

Q̂gi(µpool;gi − µ̂pool;gi)

def= Bg1 +Bg2 +Bg3

(.10)
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According to (.10), in order to ensure that
∥∥∥∥( 1

n1
+ 1

n2
)−1/2( ¯̃̂r

c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥

2
= op(1), we

need to examine B11 −B21, B12 −B22, and B13 −B23. Let’s start with B11 −B21, for each g,

∥∥∥Bg1

∥∥∥
2
≤ ( 1

n1
+ 1
n2

)−1/2
∥∥∥diag(λ̂)− diag(λ)

∥∥∥
2

∥∥∥∥∥∥ 1
ng

ng∑
i=1

Qgi(Ygi − µpool;gi)

∥∥∥∥∥∥
2

= ( 1
n1

+ 1
n2

)−1/2op(1)

√√√√ p∑
k=1

( 1
ng

ng∑
i=1

Qgik(Ygi − µpool;gi))2

= ( 1
n1

+ 1
n2

)−1/2op(1)
√
OP ( 1

ng
) = oP (1)

(.11)

where Central Limit theorem is used to bound the second norm term. UnderH0, we haveE[Qgik(Ygi−

µpool;gi)|t] = 0, V ar[Qgik(Ygi − µpool;gi)|t] = QgikΣYgi
QT
gik = ΦT

gikΣ−1
Ygi

Φgik. As a result, we

have

E[Qgik(Ygi − µpool;gi)] = E[E[Qgik(Ygi − µpool;gi)|t]] = 0

V ar[Qgik(Ygi − µpool;gi)] = V ar[E[Qgik(Ygi − µpool;gi)|t]] + E[V ar[Qgik(Ygi − µpool;gi)|t]]

= 0 + E[ΦT
gikΣ−1

Ygi
Φgik]

So as long as we have E[ΦT
gikΣ−1

Ygi
Φgik] < ∞, based on the Central Limit Theorem, we have

1
ng

∑ng

i=1 Qgik(Ygi − µpool;gi) = OP ( 1√
ng

). From (.11), we have

‖B11 −B21‖2 ≤‖B11‖2 +‖B21‖2 = op(1) (.12)

Now let’s consider B12 − B22. To simplify our arguments, we assume that we split the entire

sample into two parts. We use the first part to estimate all the components needed in Tp,N , and use

the second part to conduct the proposed test. Thus, we have independence between Q̂gi−Qgi and

Ygi − µpool;gi. Then we have

∥∥∥Bg2

∥∥∥
2
≤ ( 1

n1
+ 1
n2

)−1/2
∥∥∥diag(λ̂)

∥∥∥
2

∥∥∥∥∥∥ 1
ng

ng∑
i=1

(Q̂gi −Qgi)(Ygi − µpool;gi)

∥∥∥∥∥∥
2

= ( 1
n1

+ 1
n2

)−1/2Op(1)op(1/
√
ng) = op(1),

(.13)

because E[(Q̂gi −Qgi)(Ygi − µpool;gi)] = E[(Q̂gi −Qgi)]E[(Ygi − µpool;gi)] = 0, and for each

k = 1, ..., p, V ar[(Q̂gik −Qgik)(Ygi − µpool;gi)] = op(1). Based on (.13), we have

‖B12 −B22‖2 ≤‖B12‖2 +‖B22‖2 = op(1) (.14)
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Note that our simulation study demonstrates good performances of our proposed test statistic,

without sample splitting.

For the last term in (.10), B13−B23. Note that the randomness of Q̂gi(µpool;gi− µ̂pool;gi) come

from random design, which are the same for group 1 and group 2. Consequently, we know that

Et[Q̂1i(µpool;1i − µ̂pool;1i)] = Et[Q̂2i(µpool;2i − µ̂pool;g2)]. Let’s denote Et[Q̂gi(µpool;gi − µ̂pool;gi)]

as Eg, and we know E1 = E2, then

‖B31 −B32‖2

≤ ( 1
n1

+ 1
n2

)−1/2
∥∥∥diag(λ̂)

∥∥∥
2

∥∥∥∥∥∥ 1
n1

n1∑
i=1

Q̂1i(µpool;1i − µ̂pool;1i)−
1
n2

n2∑
i=1

Q̂2i(µpool;2i − µ̂pool;2i)

∥∥∥∥∥∥
2

≤ ( 1
n1

+ 1
n2

)−1/2Op(1)

∥∥∥∥∥∥ 1
n1

n1∑
i=1

[Q̂1i(µpool;1i − µ̂pool;1i)−E1]− 1
n2

n2∑
i=1

[Q̂2i(µpool;2i − µ̂pool;2i)−E2]

∥∥∥∥∥∥
2

= ( 1
n1

+ 1
n2

)−1/2Op(1)op(1/
√
n1 + 1/√n2) = op(1)

(.15)

Combine (.12), (.14) and (.15), we have∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2( ¯̃̂r
c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥∥

2
≤ op(1) + op(1) + op(1) = op(1) (.16)

Therefore,

A2 ≤ Op(1)Op(1)
∥∥∥∥∥( 1
n1

+ 1
n2

)−1/2( ¯̃̂r
c

1· −
¯̃̂r
c

2· − ¯̃rc1· + ¯̃rc2·)
∥∥∥∥∥

2

= Op(1)Op(1)op(1) = op(1)
(.17)

Similarly, we have

A3 = op(1) (.18)

Put (.7), (.17) and (.18) together, we have

Tp,N
D−→ χ2(p) (.19)
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Proof of Theorem 2

Under Ha when Et(diag(λ)ΦT
giΣ−1

Ygi
(µgi − µpool;gi)) 6= 0, then with probability 1

¯̃r∗1· − ¯̃r∗2· 6= 0, (.20)

where ¯̃r∗g· = 1
ng

∑ng

i=1 r̃
∗
gi, with r̃∗gi = diag(λ)ΦT

giΣ−1
Ygi

(µgi − µpool;gi)

Next, we want to show that

( ¯̃̂r
c

1· −
¯̃̂r
c

2·)T V̂
−1( ¯̃̂r

c

1· −
¯̃̂r
c

2·)
p−→ ( ¯̃r∗1· − ¯̃r∗2·)TV −1( ¯̃r∗1· − ¯̃r∗2·) (.21)

Note that we have the following decomposition

|( ¯̃̂r
c

1· −
¯̃̂r
c

2·)T V̂
−1( ¯̃̂r

c

1· −
¯̃̂r
c

2·)− ( ¯̃r∗1· − ¯̃r∗2·)TV −1( ¯̃r∗1· − ¯̃r∗2·)|

≤
∥∥∥∥( ¯̃r∗1· − ¯̃r∗2·)T [V̂ −1 − V −1]( ¯̃r∗1· − ¯̃r∗2·)

∥∥∥∥
2

+
∥∥∥∥( ¯̃̂rc1· − ¯̃̂r

c

2· − ¯̃r∗1· + ¯̃r∗2·)T V̂
−1( ¯̃r∗1· − ¯̃r∗2·)

∥∥∥∥
2

+
∥∥∥∥( ¯̃̂rc1· − ¯̃̂r

c

2·)T V̂
−1( ¯̃̂r

c

1· −
¯̃̂r
c

2· − ¯̃r∗1· + ¯̃r∗2·)
∥∥∥∥

2
def= C1 + C2 + C3

(.22)

As we have V̂ − V = op(1), then

C1 ≤
∥∥∥( ¯̃r∗1· − ¯̃r∗2·)

∥∥∥2

2
op(1) = op(1) (.23)

For C2, we have,

¯̃̂r
c

g· − ¯̃r∗g· =
¯̃̂r
c

g· − ¯̃rcg. + diag(λ) 1
ng

ng∑
i=1

Hgi(Ygi − µgi) = op(1) (.24)

Then we have

C2 ≤
∥∥∥∥ ¯̃̂rc1· − ¯̃r∗1· −

¯̃̂r
c

2· + ¯̃r∗2·
∥∥∥∥

2

∥∥∥∥V̂ −1
∥∥∥∥

2

∥∥∥( ¯̃r∗1· − ¯̃r∗2·)
∥∥∥

2

≤ op(1)Op(1)
∥∥∥ ¯̃r∗1· − ¯̃r∗2·

∥∥∥
2

= op(1)
(.25)

Similarly, we have

C3 = op(1) (.26)

Combining (.23), (.25) and (.26), and together with (.51), we have

( ¯̃̂r
c

1· −
¯̃̂r
c

2·)T V̂
−1( ¯̃̂r

c

1· −
¯̃̂r
c

2·)
p−→ ( ¯̃r∗1· − ¯̃r∗2·)TV −1( ¯̃r∗1· − ¯̃r∗2·) > 0 (.27)

Thus, Tp,N →∞

90



Proof of Theorem 5

Under the null hypothesis, for each of the independent shrinkage projection score vector ξ̃i,

we know that it has mean zero vectors and a covariance matrix

Cov[ξ̃i] = Et[diag(ω)ET
i Σ−1

Yi
Ψidiag(ω)]. (.28)

The functional central limit theorem thus implies that

n−1/2
nz∑
i=1
ξ̃i

D−→∆p(z), 0 ≤ z ≤ 1, (.29)

where the process ∆p(z) takes value in Rp, and it has zero mean and covariance matrix Cov[ξ̃i].

Given the convergence in (.29), we have

1
n

[
k∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]TCov[ξ̃i]−1[

k∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]

D−→
p∑
l=1

B2
l (z). (.30)

According to the Slutsky’s Theorem, let’s denote V 3 =
∑n

i=1 diag(ω)ET

i Σ−1
Yi
Eidiag(ω)

n
, we also

have

S∗p,n,z
def= 1
n

[
k∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]TV −1

3 [
k∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]

D−→
p∑
l=1

B2
l (z). (.31)

Then in order to prove Theorem 5, we should prove that

Sp,n,z = S∗p,n,z + op(1), (.32)

where Sp,n,z = 1
n
[∑k

i=1
ˆ̃ξi−z

∑n
i=1

ˆ̃ξi]T V̂
−1
3 [∑k

i=1
ˆ̃ξi−z

∑n
i=1

ˆ̃ξi], with V̂ 3 = 1
n

∑n
i=1 diag(ω̂)ÊT

i Σ̂−1
Yi
Êidiag(ω̂).

The absolute value of Sp,n,z − S∗p,n,z can be decomposed as follows.

|Sp,n,z − S∗p,n,z|

=

∥∥∥∥∥∥ 1
n

[
nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi]T V̂
−1
3 [

nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi]−
1
n

[
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]TV −1

3 [
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥ 1
n

[
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]T [V̂ −1

3 − V −1
3 ][

nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
n

(
nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi −
nz∑
i=1
ξ̃i + z

n∑
i=1
ξ̃i)T V̂

−1
3 [

nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i]

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
n

(
nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi)T V̂
−1
3 (

nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi −
nz∑
i=1
ξ̃i + z

n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

def= D1 +D2 +D3

(.33)
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Given (.33), proving Theorem 5 can be accomplished by proving D1 = op(1), D2 = op(1), and

D3 = op(1) hold.

First, let’s start to show D1 = op(1). Under H0, for any fixed z, we have

1
n

1/2
(
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i)

= 1
n

1/2nz(n− nz)
n

( ¯̃ξnz −
¯̃ξn−nz)

D−→Np(0, Cov[ξ̃i])

(.34)

Consequently, ∥∥∥∥∥∥ 1
n

1/2
(
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

= Op(1). (.35)

And similar to (.5), we have
∥∥∥V̂3 −V3

∥∥∥
2

= op(1), then

D1 ≤

∥∥∥∥∥∥ 1
n

1/2
(
nz∑
i=1
ξ̃i − z

n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

2

∥∥∥∥V̂ −1
3 − V −1

3

∥∥∥∥
2

≤ Op(1)×

∥∥∥V −1
3

∥∥∥
2

[
∥∥∥V −1

3

∥∥∥
2

∥∥∥V̂ 3 − V 3

∥∥∥
2
]−1 − 1

= op(1)

(.36)

Next, we consider D2. Note that

D2 ≤

∥∥∥∥∥∥ 1
n

1/2
(
nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi −
nz∑
i=1
ξ̃i + z

n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

∥∥∥∥V̂ −1
3

∥∥∥∥
2

∥∥∥∥∥∥ 1
n

1/2 nz∑
i=1

(ξ̃i − z
n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

≤ Op(1)Op(1)

∥∥∥∥∥∥ 1
n

1/2
(
nz∑
i=1

ˆ̃ξi − z
n∑
i=1

ˆ̃ξi −
nz∑
i=1
ξ̃i + z

n∑
i=1
ξ̃i)

∥∥∥∥∥∥
2

= Op(1)Op(1)

∥∥∥∥∥∥ 1
n

1/2nz(n− nz)
n

[(
¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn−nz)]

∥∥∥∥∥∥
2

= Op(1)Op(1)
∥∥∥∥∥n1/2[(

¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn−nz)]
∥∥∥∥∥

2

(.37)
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In order to prove D2 = op(1), we need to show
∥∥∥∥∥n1/2[(

¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn−nz)]
∥∥∥∥∥

2
= op(1).

We want to write out the explicit formula of
¯̃̂
ξnz −

¯̃ξnz:

ˆ̃ξi = diag(ω̂)ÊT

i Σ̂−1
Yi

(Yi − µ̂pool;i)
def= diag(ω̂)Ûi(Yi − µ̂pool;i)

= ξ̃i + (diag(ω̂)− diag(ω))Ui(Yi − µpool;i) + diag(ω̂)(Ûi −Ui)(Yi − µpool;i)

+ diag(ω̂)Ûi(µpool;i − µ̂pool;i)

(.38)

i.e.,

n1/2(
¯̃̂
ξnz −

¯̃ξnz) = n1/2(diag(ω̂)− diag(ω)) 1
nz

nz∑
i=1

Ui(Yi − µpool;i)

+ n1/2diag(ω̂) 1
nz

nz∑
i=1

(Ûi −Ui)(Yi − µpool;i)

+ n1/2diag(ω̂) 1
nz

nz∑
i=1

Ûi(µpool;i − µ̂pool;i)

def= E1 + E2 + E3

(.39)

n1/2(
¯̃̂
ξn−nz −

¯̃ξn−nz) = n1/2(diag(ω̂)− diag(ω)) 1
n− nz

n∑
i=nz+1

Ui(Yi − µpool;i)

+ n1/2diag(ω̂) 1
n− nz

n∑
i=nz+1

(Ûi −Ui)(Yi − µpool;i)

+ n1/2diag(ω̂) 1
n− nz

n∑
i=nz+1

Ûi(µpool;i − µ̂pool;i)

def= F1 + F2 + F3

(.40)

According to (.39) and (.40), in order to ensure that
∥∥∥∥∥n−1/2[(

¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn−nz)]
∥∥∥∥∥

2
=

op(1), we need to examine E1 − F1, E2 − F2, and E3 − F3. Let’s start with E1 − F1, we have

‖E1‖2 ≤ n1/2∥∥diag(ω̂)− diag(ω)
∥∥

2

∥∥∥∥∥∥ 1
nz

nz∑
i=1

Ui(Yi − µpool;i)

∥∥∥∥∥∥
2

= n1/2op(1)

√√√√ p∑
k=1

( 1
nz

nz∑
i=1

Ui(Yi − µpool;i))2

= n1/2op(1)
√
OP ( 1

nz
) = oP (1)

(.41)

93



where Central Limit theorem is used to bound the second norm term. UnderH0, we haveE[Ui(Yi−

µpool;i)|t] = 0, V ar[Qi(Yi − µpool;i)|t] = UiΣYi
UT
i = ET

i Σ−1
Yi
Ei. As a result, we have

E[Ui(Yi − µpool;i)] = E[E[Ui(Yi − µpool;i)|t]] = 0

V ar[Ui(Yi − µpool;i)] = V ar[E[Ui(Yi − µpool;i)|t]] + E[V ar[Ui(Yi − µpool;i)|t]]

= 0 + E[ET
i Σ−1

Yi
Ei]

So as long as we have E[ET
i Σ−1

Yi
Ei] < ∞, based on the Central Limit Theorem, we have

1
nz

∑nz
i=1 Ui(Yi − µpool;i) = OP ( 1√

nz
). Similarly, we have

‖F1‖2 = oP (1) (.42)

Combining (.41) and (.42), we have

‖E1 − F1‖2 ≤‖E1‖2 +‖F1‖2 = op(1) (.43)

For the second term in (.39) and (.40), E3 − F3. We use sample splitting techniques. We

randomly select a proportion among the n random subjects, then with probability 1 that we will

have data from both the former and the latter parts of the series. We utilize these data to estimate

all the components, and use the remaining data to calculate the test statistics. Then we have that

(Ûi −Ui)(Yi and µpool;i) are independent. Then we have

‖E2‖2 ≤ n1/2∥∥diag(ω̂)
∥∥

2

∥∥∥∥∥∥ 1
nz

nz∑
i=1

(Ûi −Ui)(Yi − µpool;i)−
1

n− nz

n∑
i=nz+1

(Ûi −Ui)(Yi − µpool;i)

∥∥∥∥∥∥
2

= n1/2Op(1)op(1/
√
n) = op(1),

(.44)

becauseE[(Ûi−Ui)(Yi−µpool;i)] = E[(Ûi−Ui)]E[(Yi−µpool;i)] = 0, and for each k = 1, ..., p,

V ar[(Ûi −Ui)(Yi − µpool;i)] = op(1). Based on (.45), we have

‖E2 − F2‖2 ≤‖E2‖2 +‖F2‖2 = op(1) (.45)

Note that our simulation study demonstrates good performances of our proposed test statistic,

without sample splitting.
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For the last term in (.39) and (.40), E3 − F3, note that the randomness of Ûi(Yi − µpool;i)

come from random design, which are the same for the former part and latter part. Let’s denote the

common expectation as E0, then

‖E3 − F3‖2

≤ n1/2∥∥diag(ω̂)
∥∥

2

∥∥∥∥∥∥ 1
nz

nz∑
i=1

Ûi(µpool;i − µ̂pool;i)−
1

n− nz

n−nz∑
i=nz+1

Ûi(µpool;i − µ̂pool;i)

∥∥∥∥∥∥
2

≤ n1/2Op(1)

∥∥∥∥∥∥ 1
nz

nz∑
i=1

[Ûi(µpool;i − µ̂pool;i)−E0]− 1
n− nz

n∑
i=nz+1

[Ûi(µpool;i − µ̂pool;i)−E0]

∥∥∥∥∥∥
2

= n1/2Op(1)op(1/
√
nz + 1/

√
n− nz) = op(1)

(.46)

Combining (.43), (.45) and (.46), we have∥∥∥∥∥n1/2[(
¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn)]
∥∥∥∥∥

2
≤ op(1) + op(1) + op(1) = op(1) (.47)

Therefore,

D2 ≤ Op(1)Op(1)
∥∥∥∥∥n1/2[(

¯̃̂
ξnz −

¯̃̂
ξn−nz)− ( ¯̃ξnz −

¯̃ξn−nz)
∥∥∥∥∥

2

= Op(1)Op(1)op(1) = op(1)
(.48)

Similarly, we have

D3 = op(1) (.49)

Put (.36), (.48) and (.49) together, we have

Sp,n,z
D−→

p∑
l=1

B2
l (z) (.50)
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Proof of Theorem 6

Under Ha when Et(diag(ω)ET
i Σ−1

Yi
(µi − µpool;i)) 6= 0, then with probability 1 that there

exists z such that
¯̃ξ∗nz −

¯̃ξ∗n−nz 6= 0, (.51)

where ¯̃ξ∗nz = 1
nz

∑nz
i=1 ξ̃

∗
i and ¯̃ξ∗n−nz = 1

n−nz
∑n
i=nz+1 ξ̃

∗
i , with ξ̃

∗
i = diag(ω)ET

i Σ−1
Yi

(µi − µpool;i)

Next, we want to show that

(
¯̃̂
ξnz −

¯̃̂
ξn−nz)T V̂

−1
3 (

¯̃̂
ξnz −

¯̃̂
ξn−nz)

p−→ (¯̃ξ∗nz −
¯̃ξ∗n−nz)TV −1

3 (¯̃ξ∗nz −
¯̃ξ∗n−nz) (.52)

Note that we have the following decomposition

|(
¯̃̂
ξnz −

¯̃̂
ξn−nz)T V̂

−1
3 (

¯̃̂
ξnz −

¯̃̂
ξn−nz)− (¯̃ξ∗nz −

¯̃ξ∗n−nz)TV −1
3 (¯̃ξ∗nz −

¯̃ξ∗n−nz)|

≤
∥∥∥∥(¯̃ξ∗nz −

¯̃ξ∗n−nz)T [V̂ −1
3 − V −1

3 ]( ¯̃ξ∗nz −
¯̃ξ∗n−nz)

∥∥∥∥
2

+
∥∥∥∥∥( ¯̃̂
ξnz −

¯̃̂
ξn−nz −

¯̃ξ∗nz + ¯̃ξ∗n−nz)T V̂
−1
3 (¯̃ξ∗nz −

¯̃ξ∗n−nz)
∥∥∥∥∥

2

+
∥∥∥∥∥( ¯̃̂
ξnz −

¯̃̂
ξn−nz)T V̂

−1
3 (

¯̃̂
ξnz −

¯̃̂
ξn−nz −

¯̃ξ∗nz + ¯̃ξ∗n−nz)
∥∥∥∥∥

2
def= G1 +G2 +G3

(.53)

Note that V̂ 3 − V 3 = op(1), then

G1 ≤
∥∥∥∥ ¯̃ξ∗nz −

¯̃ξ∗n−nz
∥∥∥∥2

2
op(1) = op(1) (.54)

For G2, we have,

¯̃̂
ξnz −

¯̃ξ∗nz =
¯̃̂
ξnz −

¯̃ξnz + diag(ω) 1
n

nz∑
i=1

Ui(Yi − µi) = op(1)

¯̃̂
ξn−nz −

¯̃ξ∗n−nz =
¯̃̂
ξn−nz −

¯̃ξn−nz + diag(ω) 1
n

n∑
i=nz+1

Ui(Yi − µi) = op(1)
(.55)

Then we have

G2 ≤
∥∥∥∥∥ ¯̃̂
ξnz −

¯̃̂
ξn−nz −

¯̃ξ∗nz + ¯̃ξ∗n−nz
∥∥∥∥∥

2

∥∥∥∥V̂ −1
3

∥∥∥∥
2

∥∥∥∥ ¯̃ξ∗nz −
¯̃ξ∗n−nz

∥∥∥∥
2

≤ op(1)Op(1)
∥∥∥∥V̂ −1

3

∥∥∥∥
2

∥∥∥∥ ¯̃ξ∗nz −
¯̃ξ∗n−nz

∥∥∥∥
2

= op(1)
(.56)
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Similarly, we have

G3 = op(1) (.57)

Combining (.54), (.56) and (.57), we have

(
¯̃̂
ξnz −

¯̃̂
ξn−nz)T V̂

−1
3 (

¯̃̂
ξnz −

¯̃̂
ξn−nz)

p−→ (¯̃ξ∗nz −
¯̃ξ∗n−nz)TV −1

3 (¯̃ξ∗nz −
¯̃ξ∗n−nz) > 0 (.58)

Thus

C(1)
p,n

p−→∞

C(2)
p,n

p−→∞
(.59)
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Lajos Horváth and Gregory Rice. Testing equality of means when the observations are from func-
tional time series. Journal of Time Series Analysis, 36(1):84–108, 2015.

Gareth M James and Catherine A Sugar. Clustering for sparsely sampled functional data. Journal
of the American Statistical Association, 98(462):397–408, 2003.

Gareth M James, Trevor J Hastie, and Catherine A Sugar. Principal component models for sparse
functional data. Biometrika, 87(3):587–602, 2000.

Jank and Shmueli. Modeling Online Auctions, 2010. http://www.
modelingonlineauctions.com/datasets.

Wolfgang Jank, Galit Shmueli, Catherine Plaisant, and Ben Shneiderman. Visualizing functional
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