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ESSAYS ON THE MANAGEMENT OF APPOINTMENTS FOR CHRONIC

CONDITIONS

Zlatana Dobrilova Nenova, PhD

University of Pittsburgh, 2017

Treating chronic conditions is a fairly complex task, which requires well-timed appoint-

ments to control one’s disease progression. In my dissertation I would like to optimize the

monitoring strategies and better predict the demand-for-care of patients with chronic kidney

disease (CKD). To do that I design a chronic disease monitoring framework which consists of

forecasting, survival analysis and Markov Decision Process (MDP) models. First, I propose

a forecasting model which quantifies the impact of CKD-related doctor’s appointments on

patient’s disease progression. The model accounts for patient’s comorbidities, vital signs,

and important laboratory values. Second, I propose a survival analysis model, which esti-

mates the expected life days of a patient given his or her current health status. Finally, I use

the information gained from the first two models to parametrize and solve the MDP, which

can suggest monitoring strategies and predict medium-term demand for CKD-patient-care

in a clinic. In addition to the chronic disease monitoring framework, I examine CKD patient

characteristics associated with a higher resource utilization.

Keywords: optimal appointment allocation, chronic disease, Markov Decision Process.
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1.0 INTRODUCTION

Chronic conditions are diseases, which once developed, cannot be cured. If left untreated,

they can significantly reduce patients’ quality of life. Still, if properly managed chronic

disease progression can be slowed down and even halted [19]. Unfortunately, studies suggest

that current chronic care is often suboptimal [6, 17, 40, 45, 89, 92, 114].

In this dissertation, I present a framework of models, which aims at optimizing the

treatment of patients with different chronic illnesses. The framework is applied to a single

condition – chronic kidney disease (CKD). CKD is selected due to its high prevalence rate,

cost of care [98], complexities [86] and the decrease in the number of new medical graduates

with a nephrology subspecialty [90], which makes finding the balance between the supply

and demand for CKD care particularly hard to achieve.

The models presented in this dissertation attempt to improve current treatment practices

by optimizing the timing of follow-up appointments with specialists who have a direct impact

on patients’ disease progression. The appointment frequency alternatives we consider are

based on guidelines suggested by the National Institute for Health and Care Excellence. We

believe that appointment timing is important because visits should be neither too frequent

nor too scarce. The first option is undesirable because it could overwhelm the patient and

prevent the medical provider from seeing individuals in a greater need for care. The second

alternative should be avoided because it could inhibit early progression detection, which

could lead to patients’ hospitalizations and death.

Models for personalized care have gained popularity in recent years. Still, most of them

have focused on detecting [8, 23] rather than monitoring diseases [38]. Furthermore, current

CKD appointment optimization models focus only on determining the optimal timing of

dialysis initiation [61] or the placement of a fistula - the vascular access needed for dialysis
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[107]. Thus, no papers have attempted to estimate the best time for a follow-up appointment

for CKD patients prior to dialysis initiation. Helm [38] optimizes appointment decisions for

glaucoma patients, but does not use a Markov Decision Process (MDP) model.

Given the gap in the MDP literature I selected a dissertation topic which aims at de-

signing a general disease monitoring framework for optimizing the timing of a follow-up

appointment for a chronically ill patient. To do that I developed two parameter estimation

models, which feed information into an optimization (MDP) model.

The first parameter estimation model applies a case-based reasoning (CBR) method to

forecast patient’s disease progression given a set of health descriptors and a desired appoint-

ment frequency. In a manner similar to other CBR models, ours contains a database, which

incorporates information on millions of past patient (solution) cases. When a new patient

(target) arrives, he is compared to all cases in the database, and similar solution cases are

retrieved and used to forecast his disease progression. The model hinges on the assumption

that patients with a similar disease history will experience compatible disease progression.

The forecasting model addresses a very important aspect of any CBR, namely, how

many nearest neighbors should be retrieved when target and solution cases are matched and

if multiple cases are selected, whether they should be equally weighted or weighted based

on their closeness to the target. These questions are answered through a two-step decision

model [82].

The model contributes to the current medical CBR literature with its novel stability

measure, which determines health descriptors’ importance weights. The measure ensures that

when looking for nearest neighbors, all selected solution cases are especially close matches

to the target across features, where the target case has high variability. We created this

measure based on a recommendation by Dr. Hotchkiss.

Finally, the model is the first CBR which estimates patients’ disease progression based

on his health status and a desired appointment frequency. This allows us to estimate the

transition probability matrix of an MDP model, which determines when it is optimal for a

patient to be seen next.

The second parameter estimation model applies a Cox proportional hazards model with

two competing risks (death and dialysis). The model is designed to estimate the terminal

2



reward of the MDP. In this dissertation, we have included a more complex version of the

survival analysis model. In addition to the variables needed to parametrize the MDP, the

model incorporates past appointment frequency information. It also introduces a segmented

relationship across all continuous predictors. The breakpoint regression results suggest that

if a patient with CKD needs on average over seventeen kidney disease related appointments

in a year then his doctors should begin a palliative care preparation. This is the first data-

driven rule, which is based on readily available data, designed to facilitate targeted palliative

care introduction.

As noted above the two parameter estimation models are used to design an optimization

model, which determines when a CKD patient should be seen next. This is the first MDP

model, which can design sensible CKD monitoring policies, evaluate current practices and

estimate the expected aggregate demand for care at a CKD clinic. The model confirms that

older and sicker patients need to follow stricter monitoring strategies. It also highlights the

need for considering patients’ possible future disease progression when making appointment

decisions.

This is the first MDP model used to produce aggregate demand for care estimates. Thus,

management can ensure that a clinic has enough medical professionals to meet patients’

demand for care. Recruiting doctors with a nephrology subspecialty is especially problematic.

That is why accurate and timely demand predictions are important because they provide the

administrative staff with the extra time needed to hire additional nephrologists. Additionally,

these estimates can signal if a clinic will have a lower than expected demand and can therefore

accept new patients.

The dissertation also contains a model which uses a novel method to highlight the rela-

tionship between CKD patients’ health status and their demand for care. The model suggests

that the most significant drivers of hospitalizations and outpatient appointments are comor-

bidities, more specifically diabetes and heart failure. The results highlight the importance

of developing better referral policies so that patients with such coexisting conditions can get

timely access to cardiologists and endocrinologists. While more intense monitoring strategies

might result in an increase in the number of outpatient appointments, they will hopefully

translate into fewer hospitalizations.
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We would like to thank the U.S. Department of Veterans Affairs for the data they have

provided, which was used in all models. This work was made possible because of the con-

tinuing partnership between the Pittsburgh Veterans Engineering Resource Center (VERC)

and the Katz Graduate School of Business.

The remainder of the dissertation is organized as follows. First, we discuss the CBR fore-

casting model in Chapter 2. Chapter 3 focuses on our Cox proportional hazards model. Our

optimization model is presented in Chapter 4. The clustering analysis results are examined

in Chapter 5. Finally, we conclude and present additional details in Appendices A through

C.
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2.0 REPRESENTATION AND RETRIEVAL OF MEDICAL TIME SERIES

DATA FOR CASE-BASED FORECASTING

2.1 INTRODUCTION

Accurate forecasting models are important for optimizing decisions in a multifaceted

environment. Humans have limited ability to process information [76]. Therefore, using

data driven models could be beneficial in settings where the information a person has to

receive, process and use to make decisions is too complex. Standard multivariate forecasting

methods use past data to provide estimates for future items’ trajectories [71]. Still, there is

a need for models that provide accurate forecasts and incorporate variables which allow a

decision choice evaluation.

A case-based reasoning model (CBR), which can include multivariate time series and

decision choice data, is effective in settings where decisions are experience-based. CBRs

[101] mimic the experience-driven decision making process of humans, and are widely used

in health science research [10, 32, 84], due to their similarities to the daily procedures followed

by medical professionals.

Additionally, CBRs are appealing because they can use intermittent, multivariate, and

possibly correlated time series data. Research areas in need of more precise forecasting

models built on such data include disease modeling [3], high-frequency financial tick data

analysis [91], and natural disaster predictions [68]. While the development of such models

could be challenging, it is important to ensure that they are complete, tractable, and easy

to follow, which would make them attractive to both researchers and practitioners.

In this paper, we propose a CBR procedure for modeling time-series data, which could be

used to accurately predict the disease progression of patients with chronic conditions. The
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model is useful because it allows us to evaluate different treatment policies, which is necessary

when optimizing one’s regular monitoring strategy. To demonstrate the procedure, we built a

detailed model for forecasting the progression of patients with chronic kidney disease (CKD).

We chose CKD as the chronic condition to showcase our model, because of its prevalence,

cost [98] and complexities [86].

As with any CBR model, we built a database of cases, which are snippets of patients’

histories. That database is called a case base. The cases are used to predict the progression

of a new CKD patient, referred to as the target. The target is compared to all cases in the

case base. One or more of the most similar cases are retrieved from the case base. The

retrieved cases are used to forecast the future trajectory of the target individual.

What separates our model from previously developed CBRs and improves its prediction

capabilities are its novel method of representing key time series features, and its customized

retrieval procedure, which improves the information extraction from the time-series-based

CBRs. As noted earlier, CBRs mimic a human reasoning process. Humans examine pat-

terns in time series data to draw inferences about its future values, so a CBR should also

incorporate features that summarize such patterns. Based on discussions with our medical

collaborator, we designed a process that uses standard statistical tools to facilitate informa-

tion extraction. For example, our collaborator suggested that, when dealing with patients

with chronic conditions, doctors should be particularly careful when observing gradual or

sudden changes in health measures. To account for that, we represent and select similar cases

based on the stability of the target’s health status descriptors, as well as his closeness to

possible solution cases. The stability measures ensure that features with greater variability

are more important when deciding on possible solution cases.

Furthermore, we provide a technique to answer a question that arises in the retrieval

stage of any CBR problem: how many nearest-neighbor solution cases should be selected

from the case base in order to create a prediction for the target case? We propose a case-

specific, customized retrieval approach. We demonstrate the approach on our CKD dataset,

and produce numerical confirmation that the customized method produces results superior

to those of any non-customized technique.

6



As noted in [10], when it comes to matching techniques ”the nearest neighbor retrieval

algorithm is still widely applied in medical CBR systems,” meaning that, typically, a pre-

diction for the target is produced using only its single nearest neighbor. While this method

makes case-based reasoning simple because the target is predicted to be exactly like the near-

est neighbor [4], we consider strategies, which use information from up to the four nearest

neighbors because any ”increase in the ratio of controls to cases lead to gain in power until

a ratio of 4 to 1; after that point, gains in power usually become too small to be worth-

while” [29, 58]. Furthermore, we examine whether we should weigh solution cases equally or

depending on their dissimilarity with the target patient.

Therefore, we develop a model that identifies the most desirable number of solution cases

from a fixed set of strategic alternatives. The predictors we use to determine the preferable

approach for a target are associated with its characteristics, which in our CBR model include

patient’s (1) comorbidities, (2) oscillations in kidney filtration capabilities, (3) lab values’

extremes and (4) lab values’ dissimilarities across the target and nearest neighbor cases. The

model works in two steps. First, we determine if a target will be better forecasted using (1)

one nearest neighbor, or (2) equally or (3) non-equally weighted multiple nearest neighbors.

If a target is better classified using multiple equally (non-equally) weighted nearest neighbors,

we choose among using the two, three or four equally (non-equally) weighted solution cases

closest to the target. The weights used in the non-equal approach are based on the total

uniformized dissimilarity between the target and each of its solution cases. While the two-

step model was developed with chronic kidney disease patients in mind, it is also applicable

to other CBR environments that have similar time series and/or categorical features.

Our work contributes to the case-based reasoning literature in the following ways. First,

we present an approach for describing medical time series data, which (1) accommodates its

nonequispaced collection nature, and (2) teases out important features’ stability information.

Second, we propose a multi-stage, data mining-type model for personalizing the sample size

of solution cases used to forecast the progression of a new patient, and show empirical

evidence of its superiority.

The remainder of the paper is organized as follows. The relevant case-based reasoning,

analytical model, and chronic kidney disease literatures are discussed in section 2.2. We
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describe our case-based reasoning features, retrieval and adaptation procedures in §2.3. In

section 2.4, we examine the chronic kidney disease data used to showcase the model and

describe the CBR case settings. In §2.5 we discuss the process used to select our two-step

nearest neighbor model. We discuss our model and its numerical results in sections 2.6 and

2.7. Concluding remarks and potential directions for future research are addressed in section

2.8.

2.2 LITERATURE REVIEW

In this section, we discuss three streams of relevant literature. First, we focus on the

research done in case-based reasoning. Second, we address related analytical models. Third,

we discuss the relevant chronic kidney disease literature.

2.2.1 Case-Based Reasoning Literature

Case-based reasoning can be traced back to the work by Schank and Abelson [101].

CBR models consist of five-steps:(1) feature selection, (2) case retrieval, (3) adaptation, (4)

validation and (5) update [5]. The retrieval step in any CBR process has a great impact on

its performance [56].

Not surprisingly, there exists a non-trivial literature on different components of the case

retrieval process, including the selection of neighbor sample sizes. Even though the dominant

matching technique used in a health science CBR is the nearest neighbor retrieval algorithm

[10, 32, 84], researchers should use more than one nearest neighbor ”to improve the gener-

alization properties of the retrieval, reduce sensitivity to noise, and obtain more accurate

results (by interpolation)” [47].

Jarmulak [47] and Ahn [1] used a genetic algorithm (GA) to select an optimal population-

based nearest neighbor sample size policy. Jarmulak [47] used a standard genetic algorithm

with a cross-validation strategy to avoid overfitting. Ahn [1] used a GA-optimized k-nearest

neighbor (k-NN) algorithm with feature weighting. Additionally, Lee and Park [62] proposed
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a linear-integer mathematical programming (MP) method for optimizing the number of case

neighbors. Still, the MP procedure in Lee and Park [62] could be computationally intensive,

and depends on an adjustment factor p ∈ [0, 0.5], which is not clearly defined [1].

Rather than using a population-based policy, we develop a fast and accurate method for

customized sample size selection. Customization is important, because there is no reason

to believe that cases are uniformly distributed in the feature space. We expect that the

preferable number of solution cases for a target that is near a large number of other cases will

be different when compared against a target case that is relatively isolated. When considering

unusual target cases, which are significantly separated from nearly all prior cases, using a

one- rather than an n-nearest-neighbors strategy might be more appropriate, because basing

a prediction on multiple cases may introduce undesirable variance and inaccuracy into the

forecast.

2.2.2 Relevant Analytics Models

Snippets from the case base are retrieved based on their proximity to the target case. Fur-

thermore, cases have multiple features, so combining feature distances to determine cases’

overall similarity is another important case-retrieval component. The most common ap-

proach in the literature is to use weighted sums of feature distances [118]. More recent

papers discuss optimizing weights through genetic algorithms [47, 1]. However, all three

methods [118, 47, 1] use population-based approaches, meaning that the same set of weights

is used for all target-to-case-base comparisons.

Based on discussions with our medical collaborator, we believe that a target-specific

weight mechanism is more appropriate for our medical decision-making problem. That is,

we suggest that feature weights should be patient dependent. For example, a patient who has

a history of stable lab results but whose blood pressure (BP) has been increasing, should be

matched to patients in a way that depends primarily on the BP trend. Focusing mostly on it

is sensible, because unstable results require more attention than do consistent measures. We

describe our stability-dependent similarity determination procedure in §2.4. We believe this

is the first solution retrieval process that takes into account the consistency of lab values.
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To speed up the CBR retrieval process, researchers have applied various indexing meth-

ods, such as X-trees [11], R-trees [35], LCS-trees [96] and TV-trees [109]. Others implement

cluster-based methods [9]. We use a filtering approach [77] in which patients are first filtered

based on a set of static features, and then compared to the target patient.

As noted earlier, we select the number of nearest neighbors using a two-step analytical

model [82].Knowing the structure of our classification tree prior to building it, we can justify

the control over the number and type of splits at each of its levels. At the first step, the model

separates patients that are to be predicted based on their nearest neighbor from individuals

that should be predicted using multiple, unequally and equally weighted solution cases. At

the second step, it separates the individuals categorized as multiple-case predictees into the

three multiple nearest neighbor classes considered. Thus, we allow for a triple node-split at

both levels of the decision tree. We consider five different induction algorithms, which are

discussed in 2.5, to build our model. Four of the algorithms selected use decision trees. They

include oblique decision trees [79]; CART [13]; support vector networks [18]; and C5 [93].

2.2.3 Chronic Kidney Disease

To develop and evaluate our model, we use data on patients with chronic kidney disease

(CKD). CKD is described by the gradual decline in a patient’s kidneys’ filtration function.

It has five stages, where the fifth one is also referred to as end-stage renal disease (ESRD).

The stages are specified by the patient’s glomerular filtration rate (GFR), because it is the

best measure of kidney function [108]. Unfortunately, GFR lab tests are fairly expensive, so

doctors typically estimate glomerular filtration rate (eGFR) to define the patient’s disease

stage. The estimation procedure is based on the patient’s race (African-American or non-

African-American), gender, age, and serum creatinine [65].

We selected CKD because of its prevalence and its treatment complexities. According to

the newly issued kidney disease fact sheet, around ten percent of U.S. adults may have chronic

kidney disease. In 2011 alone, over one hundred thousand individuals started treatment for

end stage renal disease [26].
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In an effort to improve the treatment of the disease, researchers have developed a variety

of CKD models. Some focus on determining the optimal timing of dialysis initiation [60, 61] .

The models consider demographic characteristics, comorbidity conditions, discretized disease

markers, and clinical flags to describe an individual. The authors utilize two of the seven

continuous disease markers we selected: eGFR and Albumin. They discretize eGFR into five

groups and Albumin into two groups, although they neither appear to provide conceptual

support, nor a citation to the medical literature, for their discretization policy.

Another recent CKD article examines when a patient should have vascular access surgery,

in preparation for an expected dialysis initiation [105]. The authors focus on patients’ eGFR

measures, and use a linear regression model to estimate CKD progression parameters. We

believe that a linear assumption may be problematic, because ”in contrast to the traditional

paradigm of steady GFR progression over time, many patients with CKD have a nonlinear

GFR trajectory or a prolonged period of nonprogression” [67]. In addition to patients’ eGFR,

there are other lab values that should be considered when predicting disease progression.

The first step of our prediction model falls into the category of CKD trajectory estimation

models. We allow for a non-linear disease progression in the laboratory values and vital signs

selected [67, 87]. We do not focus on specific time intervals of our patients’ lives, such as

last years of life [78] or last two years before the initiation of long-term dialysis [87]. Our

underlying trajectory estimation approach is similar to a Bayesian analysis spline regression

[67]. We do not use a visual graphical analysis exploratory approach [78] or a semi-parametric

mixture model [87].

2.3 CBR SETTINGS

In this section we will discuss the data transformations and summary information needed

to design the case-based reasoning dataset. Following a detailed description of the case

base (2.3.1 and 2.3.2) we will explain how features are compared and used to retrieve cases

”similar” to the targets we would like to forecast (2.3.3). Finally, we will define our forecast

building adaptation procedure (2.3.4).
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We selected a CBR model because it allows us to incorporate complex patient informa-

tion, including static and dynamic categorical data, and irregularly sampled time series data.

The flexibility of the method’s structure provides an opportunity to develop a model that

is more detailed and complete than its predecessors [60, 105]. It enables us to evaluate how

alternative control strategies impact a target’s future development.

CBR models are not decision models in and of themselves. Still, they can be very effec-

tive in parametrizing standard decision models, such as MDPs, with state spaces describing

patients’ health, and with action spaces addressing possible appointment frequency alterna-

tives. CBRs are particularly useful when estimating transition probabilities, because of their

ability to incorporate MDP state and action space information.

2.3.1 Case Structure

Cases are defined over a time window of length T. The first T − 1 time periods represent

the historical records. The last month is used for forecasting. The length of the historical

records’ time window should be recommended by a domain expert. We use a sliding window

technique to maximize the number of created cases. If a record has M ≥ T months of data,

we can create M − T + 1 unique snippets out of it. Each case contains a time stamp and an

instance ID, which allows us to track the cases created using the moving window technique.

A case can contain irregularly sampled time series data. To address the difficulty caused

by the unequally spaced time intervals, we smooth our data [3]. The goal of the smoothing

process is to produce an entry for time series’ periods 1 through M for each record in our

dataset.

When a case contains multiple time series, we need to determine whether smoothing

them separately or simultaneously is more appropriate. To answer that question, we can

randomly select and withhold p percent of a patient’s time series data and use it as a test

set. The remaining data can be used to fit the simultaneously and separately smoothed

models. Once the models are fitted, they can be used to estimate the withheld patient’s

data. The estimates can be compared to the actual values, and standard accuracy measures

can be used to evaluate the two models [43]. In the CKD model used to showcase our CBR
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tool, we concluded that smoothing time series one at a time produced more accurate results.

We use four models to independently smooth our patients’ time series: thin plate regres-

sion, with and without shrinkage [21], and cubic spline regression, with and without shrinkage

[95], unless a given model does not converge, in which case its settings are not considered.

We set γ = 1.4 [52] in the Generalized Cross-Validation score of the fitted model. To select a

model, we first optimize the sample size dependent maximum degrees of freedom (k) allowed

across all four models by examining the residual pattern removed by k [119]. We can also use

a QQ plot to examine models’ fit through their residuals [119]. While residuals’ normality is

not an assumption required by a general additive model, QQ plots can tell us how well the

model fits the data. Rather than plotting the residuals against standard normal quantiles,

we check if the sample residuals are consistent with a population assumption of normality,

using the Shapiro-Wilk test because a manual examination of thousands of QQ plots is not

practical. While we do not require models’ residuals to be normality distributed (p-value

> 0.05), we select the model with the highest Shapiro-Wilk p-value because it should have

better information extraction properties. A model is selected based only on the normality

of its residuals if none of the k values are deemed appropriate.

We observed that an extended time interval between data entry points could cause un-

realistically high or low smoothed values when the maximum degrees of freedom are greater

than nine. To spot such abnormalities, we check whether the smoothed time series have im-

possible values (e.g., negative laboratory values), or if the maxima (minima) of the smoothed

time series are at least 10% higher (lower) than the maxima (minima) of the original data.

If one or more anomalies are observed, we reduce the value of k. If the reduction does not

help we can also increase the value of γ, in an effort to smooth the spline regression even

further.

The instance ID and time stamp of each case allow us to locate the smooth and raw time

series data associated with a case. While the smoothed values are directly incorporated into

the case definition, the raw data have to be summarized. The relevant summary statistics

are the raw times series extrema (minima and maxima) and standard deviations. The raw

data information complements the smoothed trajectory data, and addresses the variability

in the time series.
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Finally, we record the number of peaks, the number of troughs, and the two-sided Wald-

Wolfowitz run test’s p-value [75] for the smoothed time series in the case. The peak and

though information helps us differentiate between stable and fluctuating time series that

display similar percentage changes between time periods 1 and T −1. The null hypothesis of

the non-parametric test states that each element in the transformed time series sequence is

independently drawn from the same distribution. A small p-value could be associated with

a steady increase or decrease in the smoothed time series [80] (Table 1).

Table 1: A Generic Example of a Time Series Case Summary

Value

Identifier Record ID 1

Begin 01/01/00

End 01/01/01

Historical Data Smoothed Data 1 1

... ...

T − 1 12

peaks 0

troughs 0

WW p-value 0.002465

Raw Data min 1:T − 1 0.7

max 1:T − 1 13

sd 1:T − 1 2.3

Forecasting Information Smoothed Data T 14

Raw Data min 2:T 1

max 2:T 16

sd 2:T 2.5
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Additionally, a case may contain information in the form of categorical data (Table 2).

To record such information, we save the case state in periods T − 1 and T. The case’s state

in time period T − 1(T) is used for case retrieval (target adaptation).

Table 2: A Generic Example of a Categorical Data Case Summary

Value

Identifier Record ID 1

Begin 01/01/00

End 01/01/01

Historical Data Category 1 (T − 1) 0

... ...

Forecasting Information Category 1 (T) 1

... ...

2.3.2 Features

All features should be selected with the help of a domain expert. Cases are matched based

on their categorical and time series data. Categorical data are used to stratify patients prior

to predicting their future time series’ trajectory behavior. Times series data are compared

based on their raw and smoothed information. If we believe that time series fluctuation and

extrema are important, we match cases based on the raw data summaries only. Conversely,

if we are interested in the overall trajectory of a time series, we compare cases based on the

smoothed data only. If we are interested in the time series fluctuation and trajectory, we

should compare cases based on their smoothed and raw data.

2.3.3 Retrieval

First, solution cases are filtered based on the categorical data states. We select only case

snippets whose categorical data statuses match those of the target patient. Once we select
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the relevant solutions, we compare them to the target case. We scale the smoothed time

series so that they have a mean of zero and a variance of one, because we are interested in the

trajectory of the series, not in the level of the values themselves. The degree of separation of

the points along the y-axis is not material. Once scaled, the time series are compared using

a dynamic time warping (DTW) distance measure [51], because it allows for a nonlinear

alignment of time series that could be similar to one another but locally out of phase.

The peak, trough, and descriptive statistics measures are not scaled, because magnitudes

of their raw value are important when selecting solution cases. They are compared using

a Euclidean distance measure, because it is one of the most commonly used methods for

comparing continuous variables [22]. We purposefully selected these dissimilarity measures

because they are not disease specific.

We examine the target patient’s stability across each time series used to describe a case.

While the method we use mimics our medical collaborator’s importance feature assignment,

we believe this idea is generalizable for any chronic disease CBR. The stability measure

highlights features with high variability, gradual changes and fluctuations observed in the

not too distant past. This is done because such changes should be closely monitored.

Before we begin the stability measure calculation, we fit a fifth degree Taylor polynomial

to all smoothed time series across all selected solution cases, to determine the positions

of their first inflection points. For all time series’ features and across all solution cases,

we obtain (1) the raw data’s standard deviation, which embodies features’ variability, (2)

the smoothed time series’ percentage change between months one and twelve and (3) the

smoothed time series’ linear regression slope, which are used as features’ proxies for gradual

change, and (4) the absolute difference in the smoothed time series’ pre- and post-inflection

point linear regression slopes, which highlights fluctuations in the not too distant past. Due

to their magnitude differences, the four values are first uniformized and then summed for

each feature. The feature-specific total uniformized stability measures are separated into ten

equally sized bins, and the bin cut-off values are used to classify the features’ stability of

our target patient. Stability scores are thus between 1 and 10, where the greater the score,

the more relatively unstable the target’s feature is, as compared with the same feature in all

relevant solution cases.
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Once the stability ranks (sj) of all j =1, ..., J target case features, and the distances

between the descriptors of the target and solution cases are obtained, we begin our selection

procedure. First, we find a minimal positive dissimilarity distance between the target and

all solution cases for all features (dj). The minimum value helps us gauge the proximity of

the closest non-identical solution features. Using the minimal dissimilarity distance and the

stability ranks, we perform a window search around each target feature, which expands W

times (w = 1, ..., W). We record the cases whose features meet our threshold requirement of

dj(1+0.5w
11− sj

10
), for all w. To forecast a target using N nearest neighbors we set aside the

first N solution cases that meet J, ..., bJ/2 + 1c out of the J threshold requirements, where

N is specified before the CBR model runs. Thus, we get (J −bJ/2 + 1c+1) possible solution

case groups. If there do not exist N cases that satisfy at least J, ...,bJ/2+1c of the threshold

requirements at step W, we save as many cases as do exist, and proceed to the next step of

the retrieval procedure. For example, if cases are matched based on eight features, i.e. J =

8, there will be a total of four possible solution case groups, where the N solutions in each

group satisfy 8, 7, 6, and 5 of the 8 threshold requirements.

Using the rule above, we identify cases that meet more than half of the feature thresholds.

The solution case groups are compared across each feature, in order to select the most

preferable solution group. The comparison is done in two steps. First, we check to see if two

or more of the feature groups are significantly different from each other, using a Kruskal-

Wallis (K-W) test. We use a non-parametric test because the normality assumption needed

to perform ANOVA analysis cannot be guaranteed. If the K-W test has a p-value of no more

than 0.01, we use the Nemenyi multiple comparison test [81] with α = 0.05. We conclude

that a group is preferable for a specific feature if its dissimilarity values are significantly

smaller than the majority of its alternatives. Such a feature group is given a rank of two,

and the others are given a rank of one. Once all feature-specific threshold groups have

been compared and ranked, the ranks are summed up. The group with the greatest sum is

selected. If two or more groups have the same maximum sum, the group that satisfies the

greater number of threshold requirements is selected.
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2.3.4 Adaptation

The information for time period T from all selected solution cases is used to forecast

the target case trajectory. To obtain the non-equally weighted nearest neighbor model

results, we weight the information from each case, based on its proximity to the target

patient, where proximity is determined by its uniformized feature dissimilarities. The weight

wn =

∑
j dj,n∑

j

∑
n dj,n

is neighbor specific, and incorporates the information from all features,

where n = 1, ..., N is the number of neighbors and j = 1, ..., J is the feature number. To

get the equally weighted nearest neighbor forecasts, we set wn = 1/n for all n. Combining

dissimilarity measures has been used in gene analysis [55, 66], where distances from gene

expression data and prior biologically meaningful patterns are averaged to produce better

results.

The weights are then used to obtain the composite percentage change of the solution

cases. The composite percentage change (PT,j =
∑

nwnpT,n,j) is a weighted average of the

percentage changes observed across all N solution cases between months T − 1 and T. To

forecast the smoothed time series one month into the future, PT,j is (1) increased by one and

(2) multiplied by the smoothed target value of feature j in month T − 1. To forecast the raw

data descriptive statistics, we use the information from all N solution cases, and update the

raw value for feature j, summary measure k, for period [2:T] to YT,j,k =
∑

nwnY
n
T,j,k. Finally,

we update the categorical data characteristics of the target for period [2:T], if at least one

of the selected solution cases experiences such a change between periods T − 1 and T.

To evaluate our model, we use a standard forecast-value-to-actual-value comparison. We

hold out the actual smoothed time series data between period T and T + F, where F is

the forecasting time window normally used by a domain expert. We forecast all time series

values between periods T and T + F, using the CBR model and our targets’ historical record

information between periods 1 and T − 1. Finally, we compare the forecasted and actual

values using a standard forecast accuracy measure, such as a mean absolute percentage error

(MAPE).
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2.4 DATA

In this section, we discuss the data used to showcase the model described in section 2.3.

Following our medical collaborator’s suggestion, each case is defined over a time window of

length T = 13. The time series data contains information on patients’ laboratory values and

vital signs. The categorical data included in each case contains patient’s comorbidity and

dialysis status. Additional information on patients’ appointment frequencies is provided.

2.4.1 Laboratory Values and Vital Signs

Cases include four laboratory values (estimated glomerular filtration rate, albumin, phos-

phate, and potassium) and three vital signs (weight, systolic blood pressure, and diastolic

blood pressure). Estimated glomerular filtration rate (eGFR) is used to monitor CKD pro-

gression [44] and estimate the flow rate of filtrated fluids that goes through one’s kidneys.

Albumin helps individuals maintain growth and repair tissues, and its decrease could indi-

cate inadequate nutrition, proteinuria, or inflammation. Chronic kidney disease could affect

the regulation of one’s potassium and phosphorus levels. Excess potassium could cause

hyperkalemia, and result in a hospitalization due to heart arrhythmia and sudden cardiac

death. Similarly, high levels of phosphorus can have an adverse effect on a patient’s heart,

blood vessels and lungs [69]. Blood pressure is important for determining patient’s risk of

cardiovascular complications. Kidney disease could lead to water retention, which can be

detected by measuring patient’s weight.

Using the smoothing process described in §2.3, we transformed our intermittent time

series to equispaced data. We set k = {10; 20; 30; 40}. We do not consider k > 40 in order

to prevent over-fitting, which is especially important for data with high measurement errors.

In cases where the abnormalities discussed in §2.3.1 were observed we set k = {8; 6; 3}. We

limited k to 5 or 3 for situations in which the abnormality issues were not resolved. If we

observed the same difficulty again, we restricted k = 3 and set γ = {4; 6} to further smooth

the spline regression line.
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We compare an individual based on eight time-series-based features: (1) smoothed eGFR

time series; (2) smoothed eGFR time series’ peak and trough information; patients’ (3)

albumin; (4) potassium; (5) phosphate; (6) weight; (7) systolic blood pressure; and (8)

diastolic blood pressure raw data summary statistics (Table 3). We chose the smoothed

eGFR data because doctors are interested in the overall trajectory of the patient, and not in

the fluctuations, which are sometimes caused by measurement errors. The error is primarily

a result of the timing of the lab test. For example, if the test is run after dialysis, the eGFR

results may be inflated, because the patient’s blood has just been filtered through a dialysis

machine. We selected the raw data information for the other features because doctors are

concerned when they observe low albumin, high potassium, high phosphate, high blood

pressure, and fluctuating or increasing weight.

Table 3: CBR Time Series Features

Time Series Features Data Type

eGFR time series (Periods 1: T – 1) Smooth data

eGFR peaks and troughs Smooth data

Phosphate Raw data

Potassium Raw data

Albumin Raw data

SBP Raw data

DBP Raw data

Weight Raw data

2.4.2 Comorbidities and Dialysis Status

We monitor five comorbidities: type II diabetes, heart failure, peripheral vascular disease

(PVD), cerebrovascular disease (CVD), and cirrhosis. We consider diabetes because it was

the primary cause in 44% of all new kidney failure cases in 2011 [26]. We track heart
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failures, peripheral and cerebrovascular disease because CKD is recognized as an independent

factor for heart disease outcomes [99]. Finally, we screen for cirrhosis because it could cause

inaccurate kidney filtration estimates [106].

This information is based on inpatient admission, inpatient discharge, and outpatient

appointment ICD9 and ICD10 codes. To categorize all patients, we (1) filter all ICD9 and

ICD10 codes into groups based on the five comorbidities and dialysis status, and (2) use the

date of the first recording of a complication as an estimate of its date of onset.

We use this categorical data to filter out our CBR solutions (Table 4). First, we match

target patients to solution cases with identical comorbidities and dialysis status, because

disease complexities are expected to have an effect on patients’ trajectories. Second, all

selected cases are separated into three equally sized groups, based on the percentage change

in their smoothed eGFR values between months one and twelve. That is done in order to

find the cut-off values of the groups, which can be labeled as (1) increasing/stable, (2) with

progressive, or (3) with accelerated/catastrophic loss of eGFR [87], and filter the solution

cases that are in the same eGFR percentage change category as the target case.

Table 4: CBR Categorical Data Features

Categorical Variables Values

Diabetes {0, 1}

Heart Failure {0, 1}

PVD/CVD {0, 1}

Cirrhosis {0, 1}

Dialysis {0, 1}
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2.4.3 Appointment Information

We have recorded patient appointments with medical providers, who can have a direct

impact on patients’ kidney disease progression: (1) General Internal Medicine, (2) Cardi-

ology, (3) Diabetes, (4) Hematology, (5) Pulmonary/Chest, (6) Renal/Nephrology (except

dialysis), (7) Primary Care/Medicine, and (8) Hepatology. That information is not used for

determining case similarity in this paper. It is used to estimate the impact of an action

choice in an MDP transition probability, because different appointment patterns generate

different future patient trajectories.

Patient appointment information is used to determine the number of days between the

last appointment before, and the first appointment after, the case’s twelfth month. The

number of days is used to partition patients into four groups: those with appointments less

than one and a half months apart, those with appointments between one and a half and three

months apart, those with appointments between three and six months apart, and those with

appointments more than six months apart. The four alternatives represent the action states

in our MDP, and are based on a policy suggested by the National Institute for Health and

Care Excellence, which recommends that patients in Stage 1 and Stage 2 should be seen

once every twelve months, patients in Stage 3 - once every six months, patients in Stage 4 -

once every three months, and patients in Stage 5 - once every one and a half months [72].

2.5 TWO STEP MODEL SETTINGS

We developed a model, which selected the optimal number of nearest neighbors based on

how the nearest neighbor policies performed on various target patients. Depending on our

model building data set’s size, we could either use all of it or select a representative sample

based on criteria identified by a domain expert.

For our model we used a representative sample based on the magnitude and change of

targets’ eGFR. We built the model on cases which were of primary interest to us and had

an average smoothed eGFR ∈ [10, 60], because such patients had CKD Stages 3 - 5 and
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with a few exceptions were not on dialysis. We calculated the percentage change in the

smoothed eGFR values within the time window across which the target cases were defined.

The changes were ordered, and a stratified sample of 2000 patients was obtained. Finally,

we included the patients with the highest and lowest percentage change in eGFR. Once the

2002 patients were selected, we used the same stratification technique to select 500 patients

out of the them. The 500 patients were used as a validation set. The remaining 1502 were

used as a training set.

Each of the target patients was forecasted one (F = 1) month into the future. This time

horizon allowed for a less subjective accuracy measures selection. Additionally, the iterative

nature of our forecasting approach requires good short-term predictions, because inaccurate

month 1 forecasts could have a multiplicative effect on the inaccuracies in the forecasts that

would follow.

We recorded seven different 1-month forecasts for each target case using the procedure

described in §2.3. The policies used N equal to (1) 1, (2) 2 equally weighted,(3) 2 unequally

weighted, (4) 3 equally weighted, (5) 3 unequally weighted, (6) 4 equally weighted, or (7) 4

unequally weighted nearest neighbors to forecast all target cases - §2.3.4.

Table 5: Nearest Neighbor’s Optimal Frequencies

1-NN 2e-NN 2n-NN 3e-NN 3n-NN 4e-NN 4n-NN Grand Total

Training Set 512 151 133 124 145 179 258 1502

Test Set 167 45 54 38 55 38 103 500

Once each target’s forecasts were recorded, they were compared to the actual smoothed

time series of the target patient. We calculated the time series’ absolute percentage error,

rounded off after the tenth decimal point, across the seven forecasted months when using

(1) 1 (1-NN), (2) 2 equally weighted (2e-NN), (3) 2 non-equally weighted (2n-NN), (4) 3

equally weighted (3e-NN), (5) 3 non-equally weighted (3n-NN), (6) 4 equally weighted (4e-

NN), or (7) 4 non-equally weighted (4n-NN) nearest neighbors. Since there were multiple

time-series-based features, we focused on the one which was of primary importance for the
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model user. In this model forecasting accuracy was evaluated in terms of patients smoothed

eGFR values, because it is the best measure of kidney function [108].

We did not consider strategies that included information from more than four nearest

neighbors because any ”increase in the ratio of controls to cases lead to gain in power until a

ratio of 4 to 1; after that point, gains in power usually become too small to be worthwhile”

[29, 58]. That conclusion might explain the popularity of matching ratios between 1:1 and

1:4 [85].

We deemed a forecasting approach as preferable if it had the smallest primary feature

absolute percentage error, which is a measurement commonly used when examining the

accuracy of different forecasting methods. We recorded the preferable forecasting approaches

for each target case (Table 5).

We used two hundred and forty-five predictors to determine the preferable forecasting

technique for each patient. All predictors were based on the closeness of the target and

solution cases when one through four nearest neighbors were used, and previously discussed

case-base features, which fell into four categories: (1) smoothed and (2) raw laboratory

values, (3) appointment history, and (4) comorbidities. The predictors based on smoothed

lab results included (1) the change and (2) the squared change between months 1 and 12, (3)

the number of peaks, (4) the number of troughs, (5) the average, (6) the squared average,

(7) the standard deviation, (8) the variance, (9) the slope, and (10) the squared slope of

the smoothed eGFR. The predictors based on raw lab results included (1) the minima, (2)

the squared minima, (3) the maxima, (4) the squared maxima, (5) the standard deviations,

and (6) the variances of patient’s raw eGFR, albumin, phosphate, potassium, systolic and

diastolic blood pressure, and weight.

The appointment-based predictors included (1) the number and (2) the squared number

of relevant outpatient appointments attended, (3) the number and (4) the squared number

of days the target patient was hospitalized in the twelve-month time window across which

the target was defined.
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The closeness measures included (1) the smoothed eGFR time series’, (2) the smoothed

eGFR time series’ peaks and troughs and (3) the albumin, (4) the potassium, (5) the phos-

phate, (6) the weight, (7) the systolic and (8) the diastolic blood pressure averaged dissimilar-

ities and squared averaged dissimilarities when a patient is forecasted using one, two, three,

and four nearest neighbors for all features used in the retrieval procedure described in §2.3.3.

Additionally, we used the difference and squared difference between the dissimilarities across

the eight features listed above when the dissimilarity of the nearest neighbors was compared

to the averaged dissimilarity of the two/three/four nearest neighbors, when the averaged

dissimilarity of the two nearest neighbors was compared to the averaged dissimilarity of the

three/four nearest neighbors, and finally when the averaged dissimilarity of the three nearest

neighbors was compared to the one of the four nearest neighbors. The difference metrics

were standardized, so their estimated coefficients would measure their relative importance.

The five binary comorbidity characteristics included whether the target patient had been

diagnosed with (1) diabetes, (2) heart failure, (3) PVD/CVD, or (4) cirrhosis, or is on

(5) dialysis. Based on the five binary characteristics, patients fell into one of thirty-two

classes (25 = 32). Twenty-five of the thirty-two classes had nonzero frequencies in the

training set and were therefore used as possible predictors. The classes varied from patients

without comorbidities and not on dialysis (Class 1) to individuals on dialysis with all four

comorbidities (Class 32). The last comorbidity based variable considered was the number of

comorbidities each patient had.

The methods we selected to establish a relationship between the preferable forecasting

method for a target case and its descriptors in both steps of the model included logistic

regression, discriminant analysis, C5.0, CART, and Support Vector Machines (SVM). We

used a CART model with a Gini impurity measure for categorical targets, a discriminant

analysis model with step-wise parameter selection, and logistic regression models with either

forward or backward conditional parameter selection. We considered SVM models with two

and three-degree polynomial and RBF kernel types. To account for possible over-fitting, we

used regularization parameters C = 1, ..., 10 for each kernel type. We fitted five C5.0 models

with different minimum numbers of records per child branch settings (M = 2, 5, 10, 15, 20).

The model we selected had two steps. First, we classified patients as having a preference
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for the 1-NN, equally (2e-, 3e-, 4e-NN) and non-equally (2n-, 3n-, 4n-NN) weighted multiple-

NN forecasting approaches. The second step required two different models, one model for

cases that were predicted as having equally weighted nearest neighbor preferences and a sec-

ond model for patients that were classified as having non-equally weighted nearest neighbor

preferences. Each of the second step models had three classification alternatives, namely use

(1) two, (2) three or (3) four nearest neighbors.

2.6 TWO STEP MODEL DESCRIPTION

We developed a model that selects an optimal nearest neighbor strategy for a CBR target

case, based on its characteristics. The model uses a two-step process to select among seven

alternatives. We imposed that structure on our model because it (1) produced good classifi-

cation results and (2) was intuitively plausible. We did not use a single-step model because

it proved suboptimal, especially for those nearest neighbor groups that are underrepresented

in the training and test sets. Similarly, using methods with more than two classification

steps resulted in a large decrease in the correctly predicted cases, especially across targets

that were best forecasted using only the single nearest neighbor.

The classification tree structure provides some insights about the characteristics associ-

ated with the seven nearest neighbor forecasting approaches. Complete details of the model

are provided in Appendix A. In its first step, the model classifies each target case into one

of three categories: best forecast using (1) a single, (2) multiple equally weighted, or (3)

multiple unequally weighted nearest neighbors.

The first model achieves separation by using four types of variables: (1) dissimilarities -,

(2) comorbidities-, (3) filtering-features-, and (4) raw-summary-statistics-based (Table 25a-

25b). The dissimilarity predictors contain information on all matching features used in the

CBR retrieval process. Their inclusion confirms the significant contribution of all time series

features used to gauge the closeness of target and solution cases. The comorbidity group

contrasts patients with no comorbidities with those who have at least one coexisting chronic

condition. The filtering feature is a function of the change in patient’s smoothed eGFR over
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the previous twelve months. A function of this predictor is used to select relevant solutions

cases, and is discussed in section 2.3.3. The raw summary statistics highlight the maximum

phosphate reading for a patient in the previous year. An elevated phosphate level may cause

an adverse cardiac event.

The relative probability of being best forecasted using only one nearest neighbor is greater

if the standardized averaged dissimilarity difference in the eGFR peak metric between using

one and two nearest neighbors increases, and all other predictors are held constant. That is

also the case when the standardized and squared albumin (systolic blood pressure) difference

between two(three) and four nearest neighbors increases. Furthermore, patients with large

differences in their standardized average potassium dissimilarity readings when using two

and three nearest neighbors have greater odds of being better forecasted using only one

nearest neighbor. The opposite holds if the squared eGFR change (diastolic blood pressure

dissimilarity) increases and all other predictors are held constant.

Therefore, we conclude that target cases with a preference for the 1-NN forecasting

policy have a smaller number of similar solution cases in their (1) eGFR peak and trough, (2)

albumin, (3) potassium, and (4) systolic blood pressure feature spaces. Target patients with a

preference for multiple nearest neighbor forecasting policies experience large changes in their

eGFR and diastolic blood pressure dissimilarity readings in the previous twelve months. The

patients with a preference for non-equally weighted multiple nearest neighbors often have co-

existing chronic conditions and less extreme phosphate readings, and experience significantly

greater standardized squared difference in their solution cases’ albumin dissimilarity values

when one (three) and three (four) nearest neighbors are compared. Target cases with a

preference for equally weighted solution case forecasts have significantly higher standardized

diastolic blood pressure (weight) dissimilarity differences (differences and squared differences)

when comparing one and three (four) nearest neighbors.

The portion of the model that separates cases categorized as being forecasted using

non-equally weighted multiple nearest neighbors, primarily involves dissimilarity-based pre-

dictors. The other independent variables are raw-summary-statistics and hospitalization

based (Table 27). The model suggests that patients for whom only two nearest neighbors

should be used are those with larger standardized averaged phosphate (eGFR smoothed time
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series) dissimilarity differences when using three (four) rather than two nearest neighbors.

Patients with a preference for the four nearest neighbor option typically have a very small

standardized difference between their eGFR peak and trough values when using two and four

nearest neighbors. The probability of having more accurate forecasts with the 3-NN policy

significantly increases if there exists a greater standardized difference between solution cases’

smoothed eGFR time series values when using three and four nearest neighbors.

The portion of the model that separates cases that are best forecasted using equally

weighted multiple nearest neighbor cases involves eight dissimilarity and two smoothed time

series based variables (Table 29). According to the model, patients with a preference for the

two nearest neighbor forecasting policy are more overweight, have a more gradual decline

in their eGFR, as represented by the slope of the smoothed eGFR time series, and have a

relatively smaller (larger) standardized difference (squared difference) between systolic blood

pressure (phosphate) dissimilarity measures when one (three) and two (four) nearest neigh-

bors are compared. Targets with a preference for the four nearest neighbor forecasting policy

have larger (smaller) standardized differences (squared differences) between their eGFR peak

and trough (weight) dissimilarity measures when one and four (three) nearest neighbors are

contrasted. Finally, patients with a preference for the 3-NN policy had larger (smaller) stan-

dardized differences between their solution cases’ smooth eGFR time series (systolic blood

pressure) closeness measures when one and two (three) nearest neighbors are compared.

The structure of both the first and the second step models support the conclusion that

target patients in spatial regions that are sparsely populated are better forecasted with fewer

neighbors than would be target patients in spatial regions that are more densely populated.

In other words, for patients who are less typical, the increase in forecast accuracy that might

result from using more neighbors is more than offset by the loss in accuracy that results

from using neighbors that are not sufficiently similar to the target case. Still, the model

ensures that targets within more densely populated feature space regions are forecasted

using a larger sample of solutions, which reduces the sensitivity to noise, and helps obtain

more accurate forecasts. Additionally, the first step of the model suggests that patients with

large changes in their twelve-month time horizon eGFR readings should require the use of

multiple solution cases. This highlights the importance of relying on rich CBRs with diverse
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patient populations, which could accurately forecast both stable and deteriorating patients’

disease progressions.

2.7 MODEL EVALUATION

We design the two step customized strategy for selecting relevant solution cases because

using the same policy for predicting all patients’ progressions could result in very inaccurate

forecasts for some individuals. While we are interested in having good correct classification

results, we also want to make sure that when a mistake a made it does not have a severe

effect on our forecasting results.

Table 6: Two Step Model Test Set Confusion Matrix

4n-NN 4e-NN 3n-NN 3e-NN 2n-NN 2e-NN 1-NN N/A Total

4n-NN 47 2 9 10 0 4 31 0 103

4e-NN 9 6 3 4 3 3 10 0 38

3n-NN 21 2 7 6 6 2 11 0 55

3e-NN 6 3 2 6 2 4 15 0 38

2n-NN 17 0 4 7 6 3 17 0 54

2e-NN 10 2 0 7 0 8 18 0 45

1-NN 41 3 5 20 4 8 85 1 167

Total 151 18 30 60 21 32 187 1 500

To evaluate the quality of our model we compare it against the seven pure strategies we

have considered: (1) 1, (2) 2 equally weighted (2e-NN), (3) 2 non-equally weighted (2n-NN),

(4) 3 equally weighted (3e-NN), (5) 3 non-equally weighted (3n-NN), (6) 4 equally weighted

(4e-NN), or (7) 4 non-equally weighted (4n-NN) nearest neighbors.

One way of comparing our two step model to the pure strategies is by examining the num-

ber of correct predictions achieved using each method. Based on the test set a pure 1-NN/2e-
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NN/2n-NN/3e-NN/3n-NN/4e-NN/4n-NN method will have a total of 167/45/54/38/55/38/

103 correctly classified cases. The two-step model classifies correctly a total of 165 patients

(Table 6). Therefore, it performs a lot better than the multiple nearest neighbors approaches

and is comparable to the 1-NN method.

While the total number of correct classifications is important, we believe that the fore-

casting error accumulated when misclassifying a case should also be examined. To do that we

calculated the difference between each of the eight nearest neighbors forecasting options and

the optimal policy’s accuracy measures. If the difference equaled zero that meant that the

corresponding nearest neighbor policy was optimal. Similarly, if the difference measure was

greater than zero that meant that the nearest neighbor policy selected a sub-optimal number

of solution cases to forecast the patient with, which resulted in a less accurate forecast.

Table 7: Total Misclassification Error Test Set

Policy Total Misclassification Error

2Step Model 1.476309929

Pure 1NN Strategy 2.303174733

Pure 2e-NN Strategy 1.805693226

Pure 2n-NN Strategy 1.805965463

Pure 3e-NN Strategy 1.641142481

Pure 3n-NN Strategy 1.636745673

Pure 4e-NN Strategy 1.531448847

Pure 4n-NN Strategy 1.527036367

We filtered out all patients which were correctly classified across each of the eight poli-

cies. We had a total of 335/333/455/446/462/445/462/397 misclassified cases using the

two-step/pure 1-NN/pure 2e-NN/ pure 2n-NN/ pure 3e-NN/ pure 3n-NN/ pure 4e-NN/

pure 4n-NN policy. We compared the total forecasting inaccuracies accumulated as a result

of using all eight policies (Table 7). Based on the results we concluded that the strategy

that performed the worst across its misclassified cases was the 1-NN and the strategy that
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performed the best was the two-step customized policy. The high total misclassification error

associated with the 1-NN policy was even more troublesome considering that the number of

misclassified cases added up to get this total value was smaller than that of any other strat-

egy (333 cases). Additionally, we observed that the absolute difference between the total

misclassification error across the equally and non-equally weighted solution cases increased

in the neighbors’ sample size.

Figure 1: Misclassification Error

Furthermore, we used a Kruskal-Wallis test to examine the misclassification errors across

the eight policies. We concluded that there was a significant difference between the policies

(p-value < 0.001) and the 1-NN pure strategy had a significantly poorer performance across

its misclassified cases than any of the other seven policies (Fig. 1). This meant that even

though the 1-NN pure strategy had the highest correct classification rate, when it erred

it erred by a lot. This is a cause for concern especially since the 1-NN approach is still

commonly used in the CBR literature.

Based on our results we could conclude that the two-step model was preferable when

compared against any of the seven pure strategies. First, it had a significantly lower misclas-

sification error when compared to the 1-NN pure strategy and it had a compatible misclas-

sification error performance when measured against the other pure policies. Second, it had
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the lowest total misclassification error among all eight methods. Third, it had a competitive

correct classification when compared against the 1-NN pure strategy and significantly better

prediction capabilities than any of the multiple-NN models, i.e. it predicted correctly 60.19%

more cases than the best multiple-NN model (4n-NN).

2.8 CONCLUSION

Patients with chronic diseases may be very care-demanding. Informed scheduling of such

individuals requires accurate models for disease progression, so that limited appointment

time slots are optimally allocated. In this paper, we presented an experience-based model

that could serve as a critical component of a decision model to help medical providers in

managing their patients. The model is set up to accommodate any chronic condition. We

test it on patients with Chronic Kidney Disease because of their prevalence and complexities.

We focus on an important component of improving the accuracy of any CBR model -

selecting the preferable number of nearest neighbors used when forecasting the trajectory

of a target case. We are the first to design a two-step empirical model, which specifies the

number of solution cases needed to create accurate forecasts. This allows us to determine the

patients who can be predicted using one or multiple solution cases. Our selection mechanism

can be easily updated for different CBR environments.

Our empirical results demonstrate that a model-based customization of the nearest neigh-

bor determination problem is superior to any pure strategy. The preferable number of nearest

neighbors appears to be related to the density of cases in the immediate vicinity of a target

patient. Relatively isolated cases, meaning patients who are relatively unlike those in the

provider’s past experience, are better matched with a small number of neighbors. Those who

are more typical are better forecasted with a greater number of past cases.

Our findings suggest several avenues of future research. First, we would like to examine

different feature weighting techniques used when selecting CBR solution cases. We would

like to examine the impact of forecasting patients two and three months at a time on the

accuracy of the produced results, which would speed-up the long-term projections of a pa-
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tient’s trajectory. Finally, we believe that it is important to further examine the costs of

misclassifying cases, and to incorporate that information into our analytical model.
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3.0 WHEN PATIENT’S APPOINTMENT UTILIZATION SIGNALS THE

NEED FOR A TARGETED-PALLIATIVE-CARE PREPARATION.

3.1 INTRODUCTION

Chronic kidney disease (CKD) is associated with a gradual or sudden loss of kidney

function. According to the CDC, each year it kills more people than breast and colorectal

cancer [121]. Not surprisingly, kidney disease is among the ten leading causes of death [27].

Its financial burden is evident when examining Medicare spending records. According to the

United States Renal Data System [97], care for CKD patients over the age of 65 exceeded

50 billion dollars in 2013, which was approximately 20% of the Medicare budget for this age

group.

The high demand for expensive care raises questions on how to better allocate patient

appointments so that individuals are seen by medical professionals neither too often nor

too rarely. As with any disease, there are official guidelines [64], which are designed to help

clinicians in making treatment decisions. Additionally, researchers have developed ”accurate,

easy to implement, and highly generalizable” models for predicting CKD progression [112].

Still, nobody has examined how different consultation frequencies could predict patients’

end-of-life trajectories.

The goal of our study is to use big data and quantify appointments’ effect on one’s kidney

disease progression. Furthermore, we determine the range of annual consultation frequencies

which signal that a patient’s health is failing and a targeted-palliative-care preparation should

be initiated.
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3.2 METHODS

3.2.1 Study Population

Our patient cohort is extracted from the Corporate Data Warehouse of the U.S. De-

partment of Veterans Affairs. The data set includes information on 44,751 CKD patients,

treated at eleven Veteran Administration (VA) facilities located in California, Florida, Mas-

sachusetts, Nevada, New York, Pennsylvania and Texas, between January 1, 2009 and Febru-

ary 21, 2016. All patients had CKD stages 3, 4 or 5. Patients’ outcomes consist of whether

individuals went on dialysis, died or were alive and did not experience kidney failure by

February 21, 2016.

The work is supported through master contract numbers VA244-13-C-0581 and VA240-

14-D-0038 between the U.S. Department of Veterans Affairs and the University of Pittsburgh.

Informed consent was not required due to the use of de-identified, administrative data and

our inability to obtain such documentation from all cohort participants.

3.2.2 Variables

Independent Variable

The events of interest are death before dialysis and kidney failure defined by dialysis

initiation. To estimate dialysis initiation, we use the first dialysis record in each patient’s

history. We examine the competing risks of death and dialysis onset because of their palliative

care decision making implications. We are interested in both outcomes because we would

like to examine the CKD-appointments’ effect on patients near the end of their lives.

Dependent Variables

Similar to previous studies [112], we select predictors based on their face validity (Table

8). We record whether a patient had diabetes, heart failure, cirrhosis and peripheral or

cardiovascular disease (PVD/CVD) at the end of the study. We record patients’ eGFR and

age at baseline [112]. To estimate the appointment effect we use patients’ average number

of annual CKD-related consultations during the study time period.

Comorbidities are not grouped because of their small correlations. Across patients who
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died, the observed sample correlations fall between 0.02348099 (PVD/ CVD and cirrho-

sis) and 0.24516652 (PVD/CVD and heart failure). The range of comorbidity correlations

for patients who went on dialysis is between 0.006019226 (PVD/CVD and cirrhosis) and

0.23667980 (PVD/CVD and heart failure). As noted, the pairs with the least and great-

est correlation values are the same in both subgroups. This observation stays the same for

patients who were alive and not on dialysis at the end of the study time period.

Some of the of the dependent variables are transformed to ensure that the Cox propor-

tional hazard assumption is met. Due to the closed nature of the VA Healthcare System the

dataset contains no missing data. Therefore, no imputation techniques are needed.

Table 8: Survival Analysis Predictors

Predictors Possible Values

Diabetes {0, 1}

Heart Failure {0, 1}

Cirrhosis {0, 1}

PVD/CVD {0, 1}

Age [22, 100]

eGFR at baseline [0, 60]

Average number of annual appointments [0, 88]

3.2.3 Statistical Analysis

Model Selection

We develop a Cox proportional hazards model with a fixed number of break-points in the

appointment frequencies, age and eGFR predictors. The segmented relationships are used

to highlight the changes in the effect of medical consultations, age and eGFR across different

levels of the three variables. We build a multi-state survival analysis model, where the two

terminal states are (1) dialysis and (2) death before dialysis because we cannot assume that
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the two competing end points are independent.

Model Assumptions

We check if the proportional hazard, functional form and outlier [28] assumptions of

the model are satisfied. To meet the proportional hazard assumption at α = 0.01, we

use predictors’ stratification, interaction terms and variable transformations. We introduce

segmented relationships across continuous predictor variables where such segmentation has

a significantly positive contribution to the goodness-of-fit of our model.

Model Comparison

We use a standard information criterion measure (Akaike Information Criterion i.e. AIC

[2]) for model selection. The metric determines models’ appropriateness by examining the

trade-off between their goodness-of-fit and complexity (number of predictors).

Table 9: Cohort Characteristics

Characteristics VA Cohort (n=44,751)

Comorbidities, No. (%) Diabetes 13,571 (30.326)

Heart Failure 4,888 (10.923)

PVD/CVD 19,571 (43.733)

Cirrhosis 893 (1.995)

Age, mean (s.d.; No.) < 65 58.72(6.15; 13,689)

65 − 85 76.15(5.51; 27,086)

> 85 88.15(2.19; 3,986)

eGFR Baseline, mean (s.d.) 43.96 (12.10)

30 − 60, No. (%) 38,816 (86.738)

15 − 30, No. (%) 4,270 (9.542)

0 − 15, No. (%) 1,665 (3.721)

Annual Appointments Mean (s.d.) 6.493 (6.397)

Min 0

Max 88
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3.3 RESULTS

3.3.1 Cohort Description

There were 3,147 (7,902) patients who experienced kidney failure (died prior to kidney

failure). Most patients had a baseline eGFR between 30 and 60 mL/min/1.73m2 s and were

between 65 and 85, where the youngest (oldest) individual was 22 (100) years old. The

most prevalent comorbidity was PVD/CVD followed by diabetes, heart failure and cirrhosis.

The average number of annual appointments was a little over six, where on average some

patients attended less than one and others up to eighty-eight appointments every year (Table

9). Appointments were calculated so that each unique consultation was counted separately.

Thus, if a patient saw a cardiologist and a nephrologist in the same day this counted as

two visits. We excluded patients with more than 88 annual appointments who represented

0.262% of the original dataset because they were considered outliers.

Figure 2: Linearity Assumption

3.3.2 Prediction Model

Our competing risk survival model was designed in three steps. First, we checked our

model’s assumptions. The first one required that subjects’ censoring was not related to the

probability of an event occurring. This design assumption was met, because we had no

event information prior to obtaining our dataset. The second assumption pertained to the
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proportional hazards of the model [80] and was met for both terminal states since the smallest

kidney failure (death) proportional hazard p-value was 0.156 (0.0115). The influential points

assumption was met sufficiently well. Finally, the linearity assumption [28] was substantially

violated by the annual appointments predictors (Fig. 2), which highlighted the importance

of using segmented Cox proportional hazard models.

Table 10: Breakpoint Predictor Significance

Terminal Event Predictors Breakpoint Coefficient ecoefficient p-value

Death Baseline eGFR2 Before -0.300611 0.740366 0.381345

After -0.635252 0.529802 0.000449

log(Age) Before 3.545338 34.651382 3.65e−10

After 7.228908 1378.7161 < 2e−16

Appointments Before 0.319074 1.375853 3.07e−10

After 0.271964 1.3125397 < 2e−16

Kidney Failure Baseline eGFR Before 0.1536677 1.1661033 6.37e−11

After 0.037726 1.0384467 4.20e−7

Age Before 0.0369418 1.0376327 1.60e−6

After 0.0219917 1.0222353 0.036451

Appointments Before 0.0540712 1.0555598 0.000119

After -0.0139365 0.9861602 < 2e−16

Once the optimal Cox proportional hazard model was selected, we performed a segmented

regression analysis one at a time across each of the three continuous predictors: (1) age, (2)

average number of annual appointments and (3) eGFR at baseline. We used the optimal

breakpoints selected by the three segmented regressions to initialize the selection of our

final model where all continuous predictors were segmented. The need for segmentation

was significant at α = 0.05 across all but one predictor variable regardless of whether the

terminal event was death or kidney failure (Table 10).
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3.4 COMMENTS

We estimate the annual appointments’ threshold above which patient’s demand for care

signals failing health and requires palliative-care preparation. Our model uses patient infor-

mation, which is readily available.

Table 11: Breakpoint Coefficient Information

Terminal Event Predictors Estimate Standard Error

Death Baseline eGFR0.5 4.350420 0.10986086

log(Age) 4.343341 0.04061622

Annual Appointments 17.081968 0.06294703

Kidney Failure Baseline eGFR 10.24653 0.08964794

Age 56.97425 0.07003546

Annual Appointments 18.38747 0.07414720

We conclude that increasing annual appointments up to a threshold indicates that a

patient will live long enough to experience kidney failure before dying. At the same time,

very frequent appointments signal that an individual will die before his/her kidneys fail.

We observe that there is a significant decline (p-value < 2*2e−16) in the probability of

experiencing a kidney failure event when a patient is seen more than 17 times every year

(Fig. 3 & Table 11). At the same time, our model suggests that the risk of dying grows as

the number of annual appointments goes up and while the rate of increase is slightly smaller

for patients seen more than 18 times per year (Fig. 4 & Table 11), it is still significantly

greater than zero (p-value < 2*2e−16). Therefore, the increase in patients’ appointment

frequencies signals deteriorating health and becomes an imminent death indicator when a

patient requires over sixteen annual appointments.

Similar to previous studies [112, 31, 49], we conclude that the risk of kidney failure

increases as patients’ eGFR values go down. Additionally, our model suggests that the rate

of increase in the kidney failure risk drops significantly (p-value = 4.20e−07) if a patient has
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eGFR above 10 (Fig. 3 & Table 11). Furthermore, the risk of death before dialysis decreases

as patients’ eGFR results increase (Fig. 4), where it is significantly smaller (p-value =

0.000449) for patients with eGFR approximately greater than 19 mL/min/1.732 s (Table

11). This is in agreement with previous findings, which concluded that ”among patients of

all ages, rates of both death and ESRD were inversely related to eGFR at baseline”[88].

Figure 3: Breakpoint Effect on Kidney Failure Outcome

Figure 4: Breakpoint Effect on Death Outcome

Finally, we observe that the risk of death increase with age. Our results are consis-

tent with previous research that ”older patients had higher rates of death” than younger

patients [88]. Furthermore, the risk of kidney failure (dying before dialysis initiation) rises

significantly (p-values < 0.05) for patients above the age of 56 (76) (Table 11).
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To the best of our knowledge, we are the first to quantify the appointment frequencies’

effect on individual’s CKD progression using data from the largest integrated healthcare

system in the US. Our competing risk Cox proportional hazard model with segmented rela-

tionships suggests that consultations’ data dichotomizes patients into normal and frequent

users. This grouping can flag patients who will most likely die before going on dialysis. Thus,

it can help provide better nursing home-based end-of-life care when behavioral, physical, so-

cial and participant-explained indicators are only beginning to manifest themselves [116].

Furthermore, the appointment frequency threshold has important implications for clinicians

because it can facilitate the prioritization of CKD patients for formal palliative-care-focused

appointments, which could help them make better-informed end-of-life treatment decisions

[94].

What makes our conclusions more believable is the large and geographically diverse

population we use. Our model’s main result can be readily integrated into the palliative

care decision making process of patients with CKD. Furthermore, following the approach

taken in this paper we can estimate consultation frequencies’ effect for different chronic

conditions, as long as patients’ appointment data is available. Our results are reinforced

because ”disparities in referral patterns and CKD care” are ”less likely to be present” [112]

across our patient population.

Still, using data extracted from the Corporate Data Warehouse of the U.S. Department

of Veterans Affairs has its disadvantages. The major limitations are associated with its

limited gender, age and race diversity. Due to the nature of the veterans’ population our

dataset contains a smaller percentage of females and minority patients than a representative

sample of CKD patients. Therefore, our results cannot be generalized across ethnic and

gender groups underrepresented in our analysis.

In conclusion, we are the first to develop an appointment-frequency-based indicator of

targeted-palliative-care preparation. This objectively defined feature can be used to enrich

and supplement current subjective and more loosely defined characteristics [116]. To ensure

the appropriateness of our appointment frequency threshold it is advisable to perform the

same analysis on different patient cohorts.
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4.0 OPTIMAL STRATEGIES FOR MONITORING CHRONIC KIDNEY

DISEASE AND PREDICTING PATIENTS’ DEMAND-FOR-CARE.

”Kidney disease doesn’t get the attention, funding or concern associated with cancers

of the breast or prostate. But it actually kills more Americans - 90,000 a year - than both

malignancies combined.” [14]

4.1 INTRODUCTION

Chronic kidney disease (CKD) is defined by the slow decline in kidneys’ filtration abilities.

It has five stages, where the final one, called end stage renal disease (ESRD), is reached when

a patient experiences a complete kidney failure. CKD is the ninth leading cause of death

in the US [27]. It is estimated that between 11 and 16.8% of the US population have CKD

[25, 16]. The disease is largely asymptomatic in its earlier stages (stages 1 through 3), which

could explain why only about 10% of such patients are diagnosed [86]. NIDDK reported that

there were 117,162 new ESRD cases in 2013, and although the incidence rate has recently

stabilized, the number of prevalent cases continues to rise by about 21,000 every year [98].

Data from 2013 suggests that approximately 20% of all Medicare spending went towards

treating kidney disease patients [98]. This is because CKD has a disease multiplier effect,

i.e. approximately 55% of all CKD patients have diabetes and self-reported cardiovascular

disease (CVD) [86]. Therefore, kidney patients have higher hospitalization and 30-days-

readmission rates and pose a heavy financial burden on the healthcare system.

Like other chronic diseases, CKD cannot be reversed. Still, its progression can be slowed

down and even halted if proper care is administered [19]. Unfortunately, many studies
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suggest that kidney disease management has been suboptimal [6, 17, 40, 45, 89, 92, 114].

Standard care involves nephrologist appointments, where patient’s kidney function and

comorbidities’ development are assessed. The laboratory value used to check how well one’s

kidneys are working is called Glomerular Filtration Rate (GFR). Due to its high cost, GFR

is estimated (eGFR) using patient’s age, race, gender and blood creatinine information. The

noisy eGFR measures are accumulated over time and used to determine individual’s CKD

stage and rate of disease progression, which guide treatment changes aimed at slowing down

patient’s kidney failure. Individuals also need to be examined by cardiologists as chronic

kidney disease affects cardiovascular disease outcomes [99], by endocrinologists because of

the high risk of kidney failure among diabetic patients [26], etc.

To prevent further health deterioration, individuals need to see various medical specialists

during well-timed appointments. Visits should be scheduled so they are neither too frequent

and overwhelming to the patient and the healthcare system, nor too scarce and incapable of

detecting progression early enough to prevent hospitalizations and early death.

Current guidelines designed by the National Institute for Health and Care Excellence

(NICE) suggest that patients in stages (1 & 2), 3, 4 and 5 should be seen once every 12, 6,

3 and 1.5 months, respectively. Like any population-based policy, it is suboptimal because

of its inability to incorporate the effect different coexisting conditions have on patient’s

risk of disease progression. Furthermore, current guidelines do not consider patient-specific

disutilities associated with appointment visits which are a function of patient’s mobility [117].

Mobility is particularly important for our patients (US Veterans) because according to the

U.S. Census Bureau’s American Community Survey approximately 24.1% of our population

of interest lives in rural areas. Furthermore, the survey found that the median age of the rural

Veterans was 15 years higher than that of urban Veterans, and this discrepancy increased

in the level of rurality. Due to their age and health complications many rural Veterans rely

on a centralized transportation system (Veterans Transportation Program) to take them to

the regional medical center early in the morning and return home later in the afternoon

regardless of their appointment time, which is often inconvenient and results in long wait

times.
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4.1.1 Chronic Disease Treatment Model

Despite the great need for personalized care models, disease detection research [8, 23] is

much more prevalent than the work on optimizing disease monitoring [38]. What makes a

monitoring problem challenging is the disease deteriorating nature, which demands contin-

uous treatment adjustments made during a series of optimally spaced appointments.

We develop a research framework for optimizing the appointment frequencies of chroni-

cally ill patients. Our approach is applied to individuals with chronic kidney disease but can

be easily adapted for patients with diabetes, heart failure, etc. The information needed to

implement our model includes (1) knowledge of the features characterizing the chronic disease

and (2) data on the population of interest. Our approach involves the development of three

models. The first is a case-based reasoning (CBR) model, which quantifies the impact of

appointment frequencies on patients’ disease progressions. The second is a Cox proportional

hazards model [54], which predicts patients’ life expectancy given their age and health state.

Finally, we use a finite horizon Markov Decision Process (MDP), which is parametrized using

outputs from the first two models, to optimize patients’ monitoring strategies by maximizing

their expected quality-adjusted life days (QALDs). Our CBR model estimates the transition

probability matrices and our survival analysis model helps determine the terminal rewards

used in the MDP. Details on our framework can be found in §4.4.1.

We choose a finite horizon MDP because it assists doctors in making evidence-based

and data-driven follow-up appointment decisions. It is also useful for gauging the demand

for non-emergency care at a clinic or a network of clinics treating patients with a specific

chronic condition. The demand for future regular appointment visits can be quite accurately

predicted by aggregating the optimal appointment frequencies across all clinics’ patients over

a pre-specified time horizon. Such information is useful when deciding if a clinic needs to

recruit more clinicians or patients.

To the best of our knowledge, this is the first model-based approach to optimize followup

chronic disease appointment frequencies to help both clinicians and management better

prepare for the demand of non-emergency visits. Previous work on personalizing chronic-

disease care [38] suggests when to see a patient next, which is useful when making short-term
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scheduling decisions. Our model provides medium-term (approximately 2 years) demand-

for-care estimates, which are important for capacity adjustments as it takes time to hire

highly qualified personnel.

Our model uses the appointment frequencies suggested by NICE as the basis for action

space alternatives. The equispaced appointment schedules recommended by NICE are special

cases of our MDP policies. To better understand the extreme NICE policies, we pinpoint

the conditions under which seeing a patient as frequently and as rarely as possible is selected

by our MDP, this signals when the current extreme guidelines are optimal.

Besides contributing to the MDP and chronic disease modeling literature, our optimal

monitoring strategies can be easily applied to CKD patients with different comorbidities and

from various age groups. We compare our policies to the NICE guidelines to highlight the

importance of stratifying patients across more than just their kidney disease stages when

optimizing their appointments’ timing.

All models in our research are parametrized using a diverse patient cohort treated at the

U.S. Department of Veterans Affairs hospitals. The data set included information on 68,514

patients with CKD stages 3 through 5, treated at eleven geographically diverse Veterans

Administration (VA) facilities between January 1, 2009 and February 21, 2016.

The remainder of the paper is organized as follows. Section 4.2 reviews the literature.

We propose the MDP model for chronic kidney disease management in section 4.3. In section

4.4, we discuss estimates used to parametrize the model. Empirical results and structural

properties are summarized in section 4.5. Demand planning results are provided in section

4.6, followed by our conclusion in section 4.7.

4.2 LITERATURE REVIEW

We discuss three streams of literature most relevant to our research. They are (1) Markov

decision processes, (2) disease management modes for optimizing treatment regimens, and

(3) healthcare demand planning.
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4.2.1 Markov Decision Process Models

MDPs are well equipped to address decisions that are sequential and uncertain [100].

Over the last ten years the growth in incidence rate and treatment cost of chronic diseases

and cancer have prompted research interest in their treatment optimization. What makes

MDP models particularly attractive for healthcare researchers are their ability to incorporate

different goals. MDPs can be used to examine a problem from both the patient [8] and the

population [74] perspectives. Additionally, they can be used to increase patients’ length of

life [73, 4], reduce cost [63], or design policies based on their cost and effect implications [37].

Table 12a: Disease Management Methods

Reference Solution Methodology Perspective

Alagoz et al. [4] Discrete-time, infinite- horizon, discounted MDP patient

Ayer et al. [8] Discrete-time, finite-horizon POMDP patient

Erenay et al. [23] Discrete-time, finite-horizon POMDP patient

Helm et al. [38] Linear Gaussian system modeling patient

Lee et al. [61] MDP population

Skandari et al. [107] Dynamic Programming patient

Our Research Discrete-time, finite-horizon MDP patient

Table 12b: Disease Management Methods

Authors Chronic Disease Appt. Frequency Impact Demand-for-Care

Helm et al. [38]
√

Our Research
√ √ √

CKD researchers have used dynamic programming to improve patients’ treatment by

optimizing the timing of vascular access needed for hemodialysis [107] and dialysis initia-
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tion [61]. However, no research has hitherto developed a MDP-based model to address the

management of an ongoing chronic disease. We employ a MDP model because it does not

dichotomize patients into progressors and non-progressors [38]. Such a categorization of time

series trajectories requires a judgment call that might be subjective.

4.2.2 Disease Management

Our research focuses on developing models to evaluate appointment schedules for chron-

ically ill individuals. We reference methods discussed by [107] and others and contrast them

in Tables 12a − 12b. Depending on the disease in question, authors frequently select regular

or partially observable (PO) MDP models. Additionally, they apply simulation/forecasting

techniques to parametrize their optimization models.

Our method differs in the generalizability of its components (Chapter 2-3). We deploy a

CBR model [4] to parametrize our optimization model. We chose a CBR to forecast patient

trajectories because it can accommodate complex data and estimate monitoring strategies’

effects on one’s disease progression. Still, we minimize the reliance on subjective inputs

from clinicians and employ an analytic approach to identify a cohort of nearest neighbors

used to forecast the disease progression of a new patient (see Chapter 2). This allows us to

quickly replicate our model across different chronic conditions once we know their descriptive

characteristics.

4.2.3 Demand Planning

Predicting demand for care is not new [20]. What separates our work from previous

models is the novel approach used to estimate the medium-term demand for chronic dis-

ease monitoring appointments. Accurate demand forecasts are crucial when making staff

recruitment decisions. This is particularly important in medical specialties with declining

graduation rates (e.g. nephrology) and increasing patient populations [42, 90].

In their review of the literature on capacity and demand management, Jack & Powers [46]

discuss aspects of the healthcare industry which make it challenging to model. The authors

highlight benefits of deploying demand management strategies in hospitals and clinics. They
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suggest that more research should be done on estimating the demand for care given an

increase in healthcare access. While this is not the main focus of our research, we believe

that it can be used to address such concerns if we can estimate the health status of all new

patients who gain access to the healthcare system.

4.3 MODEL SETTINGS

To maximize patient’s total quality-adjusted life days (QALDs), we choose a finite hori-

zon discrete state MDP model. The problem is set from the patient’s perspective; therefore,

we do not consider cost-of-care. This assumption is realistic for our patient population - US

Veterans - due to their military service-based healthcare benefits. We also assume that all

individuals are risk neutral.

A patient’s current state determines our model’s recommendations on seeing a doctor

in 1.5, 3, 6 or 12 months. The options are based on appointment frequency guidelines

proposed by NICE. While the guidelines suggest that patients should see a doctor at equal

time intervals determined by their CKD stage, our model recommends monitoring strategies

based on one’s overall state, such that the time between appointments does not have to be

constant.

All patients are characterized by their age, CKD stage and comorbidities. We focus on

patients between the ages of 60 and 90 who have moderate to severe chronic kidney disease

(Stages 3 - 5). We select this subgroup because it demands a lot of care and as noted

earlier lower stages are often not diagnosed [86]. We also record if patients have diabetes,

vascular disease (peripheral or cardiovascular) and heart failure, because these comorbidities

are common among CKD patients. We assume that comorbidities cannot be cured (Fig. 5a),

patients age, and kidneys’ filtration abilities cannot improve, which causes CKD progression

(Fig. 5b).

We assume that patient’s eGFR is obtained at every appointment and used to determine

one’s CKD Stage. Patient’s health determines the type of nephrologist clinic he or she

attends. Prior to dialysis a patient visits a standard nephrology clinic; once dialyzed the
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patient transitions into a dialysis clinic. In this model, we focus on the care provided prior

to dialysis because most patients die before dialysis is initiated. Therefore, a patient stays in

the system if no dialysis initiation or death is observed. Since dialysis and death are terminal

states the transition between them will not be considered in our model (Fig. 5b).

Table 13: State Space

State Settings

Kidney {3, 4, 5, 6, 7}

Diabetes {0, 1}

Heart Failure {0, 1}

Vascular Disease {0, 1}

Age {60, 61, 62, . . . , 89, 90}

The notations necessary for developing our models are discussed next.

• n = 1, 2, ..., N, N < ∞ . Each decision epoch equals 1.5 months, which corresponds to

the smallest time interval between appointments suggested by NICE. N is selected by the

model user and is the planning horizon for which scheduling appointments is intended.

For example, if we need to optimize appointment frequencies over a ten-year period N =

80 = 10∗8 because there are eight 1.5-month periods in a single year. In our numerical

examples (section 4.5) we set N = 16 = 2 years. We chose this value because (1) we

find that our optimal policies are stable across all actions when the time horizon exceeds

one year and (2) it is clearer and easier to describe the numerical results when the time

horizon is relatively short.

• S = {SD⊗SH ⊗SV ⊗SK ⊗SAge}. The health state of a patient s = (d, h, v, k, age) ∈ S

specifies the diabetes (D), heart failure (H), vascular disease (V), kidney disease (K) and

age (Age) group an individual belongs to (Table 13). All comorbidities are either present

(1) or absent (0). The kidney state consists of five stages: 3 represents CKD Stage 3; 4

– CKD Stage 4; 5 – CKD Stage 5 without dialysis; 6 – dialysis; and 7 – death. States 6
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and 7 are both terminal as patients will leave our system if they progress to these states

(attend a dialysis clinic or pass away). We consider patients between the ages of 60 and

90.

(a) Comorbidity States

(b) CKD & Terminal States

Figure 5: State Space
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• ai – the action i, where ai ∈ A = {1.5; 3; 6; 12} means seeing a doctor in 1.5/3/6/12

months; {a1; a2; a4; a8} = {1.5 ∗ 1; 1.5 ∗ 2; 1.5 ∗ 4; 1.5 ∗ 8} = {1.5; 3; 6; 12}.

• [Pi]s = P (j|s, ai) – the transition probability across all states (j) given that action ai

is chosen and a patient is currently in state s ∈ S = {SD ⊗ SH ⊗ SV ⊗ SK ⊗ SAge}.

Since, we assume that comorbidities cannot be cured and CKD cannot be reversed, the

probabilities associated with curing one or more comorbidities or transitioning into a

lower kidney disease stage are set to zero.

• pi(s,m)
- the probability of transitioning from state s to state m given that action i is

chosen; i.e. the mth entry of [Pi]s.

• pk,i - the probability of not going on dialysis or dying (k 6= 6, 7) before the next scheduled

appointment given that the patient is currently in kidney state k and action i is chosen

(Fig. 6).

• p′k,i - the probability of initiating dialysis before the next scheduled appointment given

that the patient is currently in kidney state k and action i is chosen (Fig. 6).

• p6,i - the probability of remaining on dialysis (k = 6) for a time interval of length 1.5∗i.

Figure 6: pk,i and p
′

k,i

• disus – the disutility associated with being in state s = (d, h, v, k, age) ∈ S, where

disus = disud + disuh + disuv + disuk + disuage + disu#(1+d+h+v) coexisting comorbidities. For

more information refer to §4.4.2.
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• disus′ - the disutility associated with being in state and s
′
= (d, h, v, k

′
, age

′
) ∈ S, where

the only difference between s
′

and s is that the patient is on dialysis (k
′

= 6) and she or

he is in a different age state (age
′
), i.e. s

′
= (d, h, v, 6, age

′
). For more information refer

to equation 4.1.

• disuappt – the disutility associated with attending an appointment, which is especially

important for individuals who live in remote areas and travel long distances to meet with

a CKD expert.

• [ri]s = r(s, s
′
, ai, disuappt) – an immediate reward, which represents the expected QALDs

accrued when a patient is in health state s ∈ S and action ai is taken, which is associated

with the disutility of attending an appointment in 1.5*i months from today (disuappt)

and the possible transition into state s
′

= (d, h, v, k
′
, age

′
) = (d, h, v, 6, age

′
) ∈ S. It

depends on the time a patient will spend away from his doctor before attending a follow-

up appointment. It incorporates health state and appointment attendance disutility

measures. Furthermore, it reflects the probability that an individual could die or go on

dialysis before a scheduled appointment occurs.

• [RN ]s = RN(s, s
′
) = RN(d, h, v, k, age, d, h, v, k

′
, age

′
) = RN(d, h, v, k, age, k

′
, age

′
) – the

terminal reward, which represents the total expected QALDs for a patient in health

state s = (d, h, v, k, age) ∈ S in period N, who could go on dialysis before dying

(s
′
= (d, h, v, k

′
, age

′
) = (d, h, v, 6, age

′
) ∈ S).

• LEB.D.(s) – the life expectancy of a patient in state s = (d, h, v, k, age) ∈ S before

entering dialysis.

• LEA.D.(s
′
) – the life expectancy after dialysis initiation for a patient who started dialysis

in state s
′
== (d, h, v, k

′
, age

′
) = (d, h, v, 6, age

′
) ∈ S.

Note that in all notations above if s and ai are known then s
′

is also known since

s = (d, h, v, k, age) and s
′
= (d, h, v, 6, age

′
), where age

′
= age+ 1.5i in [ri]s; or age

′
is value

obtained from our Cox proportional hazard model in [RN ]s. Therefore, we can simplify our

notations:

• [ri]s = r(s, s
′
, ai, disuappt) = r(s, ai, disuappt)

• [RN ]s = RN(s, s
′
) = RN(s)
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Our model accounts for the possibility that while waiting for an appointment a patient

may experience an observable complication, which could result in death or dialysis initiation.

If no deterioration is detected a patient will not attend any emergency appointments and

will wait until the next regularly scheduled visit. Therefore, we use a ”No ER” notation in

Figure 7 to mark the alternative associated with following the monitoring strategy suggested

by our model. Most MDP models assume that the decisions are either act now or wait for

another time-period. Our action settings are different because medical professionals would

need to set follow-up appointment in advance due to the high demand for specialized care,

which makes the wait-and-set rule harder to enforce.

Figure 7: Decision Process
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4.3.1 Optimality Equation

In our model [v∗n]s = v∗n(s, disuappt) represents the maximum total expected quality-

adjusted life days in period n (n = 1, 2, ..., N - 1) when the patient is in state s and his or

her appointment disutility value is disuappt:

v∗n(s, disuappt) = maxi{r(s, ai, disuappt) +
∑
j

P (j|s, ai)v∗n+i(j)}, i = 1, 2, 4, 8 (4.1)

where

v∗N(s, disuappt) = RN(s) =


(1− disus)LEB.D.(s) + (1− disus′ )LEA.D.(s

′
) if k < 6

(1− disus)LEA.D.(s) if k = 6

0 if k = 7

and

r(s, ai, disuappt) =


pk,i

365

8/i
(1− disus) + p

′

k,i

365

8/i
(1− disus′ )− disuappt if k < 6

p6,i
365

8/i
(1− disus) if k = 6

0 if k = 7

We can reduce the formula to v∗n(s, disuappt) = maxi=1,2,4,8[ri + Piv
∗
n+i]s. Therefore,

vin(s, disuappt) = [ri +Piv
∗
n+i]s is the total expected quality-adjusted life days in period n if a

patient is in state s, with an appointment disutility equal to disuappt and action i is chosen.

It should be noted that actions are dependent on the length of the time horizon, i.e. action

ai is a possible alternative for all n ∈ [1, N - i].

The terminal reward RN(s) is obtained using survival analysis length of life estimates,

which are adjusted with disutility measures reported in medical journals. For a patient in

a nonterminal kidney state (k < 6), we estimate the highest QALDs right before reaching

dialysis or death by multiplying the life expectancy prior to a terminal state LEB.D.(s) and

the utility associated with the patient’s current health state (1− disus). This represents the

highest QALDs because we assume that our patient’s next stage of progress will be dialysis or
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death. Similarly, we estimate the highest QALDs between dialysis initiation and death, if the

patient is predicted to transition into dialysis prior to passing away, as (1−disus′ )LEA.D.(s
′
)

where the only difference in s
′

and s is observed in patient’s kidney and age states. When

added up, the two measures represent the maximum total expected QALDs for a patient in

state s. Similarly, we obtain RN(s) when k=6 and we set RN(s)=0 for patients who have

passed away.

The immediate reward r(s, ai, disuappt) calculations account for the possibility of a patient

dying or going on dialysis prior to his or her follow-up appointment. The reward is action

dependent, i.e. if action i is chosen the patient will be seen in approximately
365

8/i
days.

We multiply the days between appointments (
365

8/i
) by the patient’s health state dependent

utilities (1− disus) to obtain the quality adjusted days a patient will gain given that he or

she is in state s and action i is chosen. The same value is multiplied by (1−disus′ ) to obtain

the quality adjusted days a patient will gain if he or she is in state s
′

and action i is chosen,

where s
′

is the same as s except for the patient’s (1) kidney state, where k is updated to 6

(i.e. the patient is on dialysis), and (2) age, which is updated to age
′
= age+ 1.5i. The two

values are multiplied by the probability of not transitioning into a terminal state and the

probability of transitioning into a dialysis state, given the patient was initially in state s and

action i was chosen, respectively. The formula represents the expected quality adjusted days

gained for a patient in state s who follows policy i. We subtract disuappt from the reward

because that is the time that the patient will lose due to attending a follow-up appointment.

The same logic is used to obtain r(s, ai, disuappt) when k = 6. We do not include disuappt in

r(s, ai, disuappt) when k = 6 because once on dialysis the patient will leave the system and

will stop accumulating the appointment disutilities associated with k < 6.

4.3.2 Structural Properties of the MDP

As noted earlier the NICE policy is a special case of the monitoring strategies proposed

based on the MDP. Because the NICE guideline is currently used by doctors, we would like

to understand the conditions under which they will be selected as part of our optimization

model. Below, we will present the NICE results associated with the extreme cases, i.e. see
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a patient as frequently as possible (every 1.5 months) and as rarely as possible (once per

year). The proofs accompanying the lemmas and propositions are provided in Appendix B.

For our proofs to work, we need to introduce a well-known inequality proven by Karamata

[50]:

Lemma 1 (Karamata, 1932). If (1) [Pi]s,s ≥ [Pi]s,s+1 ≥ ... ≥ [Pi]s,s∗ and [Pi′ ]s,s ≥ [Pi′ ]s,s+1 ≥

... ≥ [Pi′ ]s,s∗ ; (2) {[Pi′ ]s} � {[Pi]s}, i.e.
∑l

j=s[Pi′ ]s,j ≥
∑l

j=s[Pi]s,j for all l ∈ [s, s∗] with

an equality when l = s∗; and (3) f is convex, then
∑s∗

j=s f([Pi′ ]s,j) ≥
∑s∗

j=s f([Pi]s,j) (for f -

concave the reverse inequality holds).

For Lemma 1 to be valid both [Pi]s,j and [Pi′ ]s,j should be non-increasing in j. This

is reasonable because a slight disease progression is more likely than a significant health

deterioration, especially if a patient is monitored. The second assumption suggests that

action ai′ is associated with a lower probability of progression from state s to any more

care demanding state (l 6= s∗) when compared to action ai, which makes action i
′

more

attractive.
∑s∗

j=s[Pi′ ]s,j =
∑s∗

j=s[Pi]s,j = 1 because (1) none of the comorbidities we consider

can be cured, (2) CKD cannot be reversed and (3) patients get older with time. The

convexity/concavity assumption will be discussed below.

Lemma 2. If (1) [(P n+1
1 −P n

1 )v∗N ]s−P n+1
1 (s, s)[r

◦(n+1)
1 ]s is non-decreasing in n, (2) [r1+(P1−

I)v∗N ]s ≥ 0 , (3) [r
◦(n−1)
1 ]s(P

n
1 (s, s)[r1]s−P n−1

1 (s, s)) ≥ max{[r1]s,
[r2]s

2
,
[r4]s

4
,
[r8]s

8
}2∗ (n−1)

for n ∈ [1, N] & (4) [P j
1 ]s first order stochastically dominates [Pj]s, then [v∗n−1 − v∗n]s ≥ 0 &

non-increasing in n ∈ [1, N].

To ensure that the numerical series are non-decreasing and the third assumption is met

the patient should be sick and his immediate reward [r1]s has to be relatively small but

still greater than 1 (i.e. P1(s, s)[r1]s approximately equals one). The second assumption

guarantees that [v∗n−1 − v∗n]s ≥ 0 ∀n. The right hand side in the third assumption could be

viewed as the highest QALDs a person would have over n - 1 time periods given his current

health state. The last assumption suggests that E1j [v
∗
n+1]s ≥ Ei[v

∗
n+1]s, where E1j [v

∗
n+1]s =

[P j
1 v
∗
n+1]s and i = 2, 4, 8.

Lemma 3. If Pi′ for i
′

= {1, 2, 4, 8} is convex and Lemma 2 holds, then [Piv
∗
N−q+i −

P1v
∗
N−q+1]s ≥ [Piv

∗
N−(q+1)+i − P1v

∗
N−(q+1)+1]s, where i ∈ {2, 4, 8}.
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For Lemma 3 to hold we assume that the difference between the value function in periods

t and t - 1 do not increase as t approaches N, which occurs under the assumptions in Lemma

2. If P is convex and it is multiplied by a positive number the new function is still convex.

The convexity assumption is in line with the logic that the function has a limited downside,

i.e. min(f([Pi′ ]s)) = 0 when [Pi′ ]s,j = 0, i
′
= 1, 2, 4, 8 ([Pi′ ]s,j ∈ [0, 1]).

Proposition 1. If Lemma 2 and [r1 − ri]s ≥ [Piv
∗
N − P1v

∗
N−i+1]s, i ∈ {2, 4, 8} hold, then for

a patient in health state s the constant policy a1 is optimal .

Proposition 1 highlights that for the most frequent appointment policy to be constantly

optimal a patient needs to be very sick. The assumption [r1 − ri]s ≥ [Piv
∗
N − P1v

∗
N−i+1]s, i ∈

{2, 4, 8} ensures that the finite horizon will not prevent policy a1 from being optimal across

all N - 1 decision points. This is in line with the guidelines given by NICE, which suggest

that very sick patients should be seen as frequently as possible by their medical providers.

Lemma 4. If (1) [(P1−I)P n
1 (v∗N−r

◦(n+1)
8 )]s is non-increasing in n, (2) [r1+(P1−I)v∗N ]s ≤ 0,

(3) [(I − P1)(P
n
1 r
◦(n+1)
8 − P n−1

1 r
◦(n)
8 )]s ≥ 2n ∗max{[r1]s,

[r2]s
2
,
[r4]s

4
,
[r8]s

8
} for n ∈ [1, N] &

(4) [P j
1 ]s first order stochastically dominates [Pj]s, then [v∗t−1− v∗t ]s ≥ 0 & non-decreasing in

t ∈ [1, N].

To ensure that the numerical series are non-increasing the patient should be healthier,

i.e. r8(s) has to be relatively large. The additional assumptions are in line with the logic

behind the requirements listed in lemma 2.

Lemma 5. If Pi′ for i
′

= {1, 2, 4, 8} is concave and Lemma 4 holds, then [Piv
∗
N−q+i −

P8v
∗
N−q+8]s ≥ [Piv

∗
N−(q+1)+i − P8v

∗
N−(q+1)+8]s, where i ∈ {1, 2, 4}.

Under lemma 4 [v∗t−1 − v∗t ]s is non-decreasing as t approaches N. As noted above the

settings hold if the person under consideration is relatively healthy. P has to be concave

because when multiplied by a negative number, a concave function is transformed into a

convex one.

Proposition 2. If Lemma 5 and [r8 − ri]s ≥ [Piv
∗
N−i+8 − P8v

∗
N ]s, i ∈ {1, 2, 4} hold, then for

a patient in health state s the constant policy a8 is optimal.
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Proposition 2 suggests that infrequent appointments are appropriate for healthier indi-

viduals with more stable disease progression. Thus, we conclude that our findings are in line

with the current guidelines, which suggest that patients should be seen once a year only if

they are reasonably healthy.

4.4 MODEL INPUTS

In the following section, we describe our research framework. Subsequently, we discuss

the source of parameters used in the MDP. The parameters are derived through historical

data, not estimated by subjective judgments.

Figure 8: MDP Model Framework
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4.4.1 Modeling Framework

We optimize the frequencies of chronic disease monitoring appointments over a prespec-

ified time horizon (Figure 8). Our approach is used on a population with chronic kidney

disease. Still, it can be easily applied to improve the care of patients with other chronic con-

ditions. The framework consists of three models: two parameter estimation models (CBR,

Survival Analysis) and one optimization model (MDP). It also requires summarizing research

findings reported in the clinical literature (see Table 14), which pertain to the disutility of

having certain comorbidities and transitioning into a terminal state before a follow-up ap-

pointment.

Figure 9: CBR Model
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4.4.1.1 Case-based Reasoning Model The first framework component is a case-based

reasoning forecasting model. We choose this method because it can use intermittent, multi-

variate, and possibly correlated time series data. Furthermore, it allows for the development

of a comprehensive model, which is easy to understand and implement by researchers and

practitioners. To design a CBR model we create a database with 215,821 diverse patient

cases. Each case contains relevant information on patient’s disease progression. If we need

to predict the disease progression of a new patient (target case), we compare him to the in-

dividuals (solution cases) saved in our database. We pull only similar and therefore relevant

cases, which are then used to project the new individual’s condition. The model hinges on

the sensible assumption that if patients have similar disease histories they will experience

comparable disease progressions.

Alagoz [3] have developed a disease specific CBR. In contrast, our model applies an

analytic approach (see Fig. 9), which is sophisticated but easy to implement (Chapter 2),

and avoids the use of disease specific selection measures because they will prevent us from

directly applying our model to a new disease CBR database. It contributes to the CBR

literature by developing a statistical method for extracting feature stability information.

This is particularly relevant for medical CBRs, because while examining multiple patient

features doctors tend to focus more on those exhibiting atypical variability. Furthermore, we

propose a case-specific retrieval process, which optimizes the number of nearest neighbors

used by a target. Our adaptive rule is important, because cases are not uniformly distributed

in the feature space. Therefore, a patient with frequently observed characteristics will have

a larger cohort of solution cases than a patient with unique features who is very different

from cases in the database.

We use the CKD case-based reasoning database to forecast patients’ progression given

that they attended appointments within 1.5, 3, 6 and 12 months of their last visit. The fore-

casted results are aggregated and used to estimate our MDP transition probability matrix.

We have stratified our transitional probability matrix across all states in S except for age.

We have done that due to the limited number of patients in some age groups in S.
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4.4.1.2 Survival Analysis Model The second model used to parametrize our MDP is

a standard Cox proportional hazard model, which can be easily replicated across different

chronic conditions. It is designed to estimate the life expectancy of different patient groups

before reaching a terminal state. Our MDP has two such states: death before dialysis and

dialysis initiation. Therefore, we used a Cox proportional hazard model with competing

risks. Furthermore, we estimate the life expectancy of dialysis patients, conditional on their

age and coexisting comorbidities.

4.4.1.3 Appointment attendance disutility The final dataset used to parametrize

the MDP estimates the disutility of attending appointments (disuappt) due to the time re-

quired to see the doctor and return from his office. We can only approximate this measure,

by identifying the distance between the patient’s and the clinic’s ZIP codes. If such informa-

tion is not available to researchers, they can analyze how sensitive their MDP results are to

any disuappt changes. Sensitivity analysis is relatively easy because disuappt ∈ (0, 1], where 1

(0.5) corresponds to spending a whole (half a) day traveling to and from a clinic and vising

a doctor. To address the worst-case scenario, we let disuappt = 1.

4.4.2 Input Parameter Source

To finalize our model, we should fully estimate the immediate reward function (ri(s)) and

patients’ total expected quality-adjusted life days in period N (RN(s)). Therefore, we need

to estimate some disutilities (disus, disus′ ) and probabilities of transitioning into terminal

states (pk,i, p
′

k,i, p6,i) (Table 14).

Our first set of disutilities is associated with patients’ chronic kidney disease stages.

Gorodetskaya [34] quantifies the quality of life among CKD patients for all disease stages,

including CKD Stage 5 with and without dialysis. The authors administer three question-

naires to a diverse patient group, where individuals with advanced kidney disease (CKD

Stages 4 and 5) are asked to respond to the questionnaires on multiple occasions. The

second set of disutilities quantifies the negative impact of age and one or more comorbidi-

ties on patient’s quality of life [110, 111]. The authors provide a detailed list of ICD9 and
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CCC Code-based utility measures. All comorbidity estimates are obtained using a US-based

national survey of noninstitutionalized individuals.

Using the parameter estimates from Table 14 and the disutility function listed in §4.3

(disus = disud +disuh +disuv +disuk +disuage +disu#(1+d+h+v) coexisting comorbidities) we can

obtain the disutilities for all patient groups. For example, the disutility for a 65 year old

patient with CKD Stage 3 and no comorbidites is disus = 0+0+0+0.084+0.099+0 = 0.183.

Similarly, the disutility for a 65 years old patient with CKD Stage 3, diabetes and heart failure

is disus = 0.0351 + 0.0635 + 0 + 0.084 + 0.099 + 0.0876 = 0.3692.

Table 14: Parameter Estimates

Parameter Reference

Disutility CKD Gorodetskaya et al. (2005) [34]

Comorbidities and Age Sullivan & Ghushchyan (2006) [110]

Sullivan et al., (2005) [111]

Time Until Death Patients not on Dialysis Gansevoort et al., (2013) [30]

Turin et al. (2012) [115]

Patients on Dialysis Jassal et al., (2007) [48]

Time Until Dialysis CKD Stage 3 O’Hare et al., (2012) [87]

CKD Stage 4 & 5 Landray, M. (2010) [57]

We use the expected time until reaching death or dialysis to estimate the probability of

transitioning into a terminal state in 1.5, 3, 6 and 12 months given patient’s health status

(pk,i, p
′

k,i, p6,i). Landray [57] reports that the mean time until dialysis for patients in CKD

stages 5 and 4 is approximately one and six years respectively. The mean time until dialysis

for CKD Stage 3 is estimated using information provided by O’Hare [87]. They suggest that

people experiencing slow disease progression observe a 7.7 ± 4.7 decrease in their eGFR

every year. We make the conservative assumption that all CKD Stage 3 patients have eGFR

= 60mL/min/1.73m2 and will progress at a rate of 3 units per year. This means that on

average it will take approximately eighteen years for a patient in CKD Stage 3 to go on
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dialysis. Average life expectancy for patients across all CKD groups is reported in [30, 115].

Finally, the mean length of life for patients on dialysis is given by Jassal [48]. To calculate

the probability of an event occurring given that a certain time has passed we assume that

the time until terminal state is exponentially distributed with a mean equal to the estimates

provided in the articles from Table 14.

4.5 NUMERICAL RESULTS

4.5.1 Empirical Results

Section 4.4 provided the inputs for our MDP. We now employ the MDP model to identify

the optimal appointment strategies for each patient’s subcategory over a pre-determined

planning horizon. As noted earlier, the NICE guidelines are a special case of our MDP

policy. Therefore, we compare our results with the guidelines suggested by NICE. We find

that the data-informed decisions produced by the MDP outperform the NICE guidelines.

In all examined results, we set the time horizon to two years. This seemingly small value

is chosen because the optimal policies across the examined cases are not sensitive to changes

in N, when N > 4 (i.e. one year). Namely, the results across the cases below are almost

identical when N is set to 40 (i.e. ten years). This observation is in agreement with the

sensitivity analysis results in §4.5.2. We also select the two-years-time horizon setting for

ease of illustration (§4.5.1.1 - 4.5.1.4).

4.5.1.1 Comorbidity Comparison We will first examine four common patient types,

who have CKD Stage 3 with (1) no comorbidities, (2) diabetes, (3) heart failure and (4)

diabetes and heart failure. All patients are 75 years old at the time the scheduling decisions

are made. We focus on patients with CKD Stage 3 first because approximately 88.82% of

the patient cases in our dataset fall into this category.

One would expect that individuals who belong to the first group would need the least

amount of care. Similarly, patients who belong to the fourth group would require more
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monitoring due to their disease complications. Still, if we follow the NICE guideline, which

is solely based on one’s kidney disease stage, we would conclude that patients from all four

groups should be treated identically and seen on average once every six months, since all of

them have CKD Stage 3.

Contrary to this generic policy, our model suggests that the sicker patients should be

seen sooner than the healthier individuals. Thus, when the planning horizon is set to two

years, our MDP suggests examining CKD Stage 3 patients with no comorbidities once a

year, CKD Stage 3 patients with diabetes or heart failure once every six months, and CKD

Stage 3 patients with both comorbidities once every three months. This policy is consistent

across all age groups for the first three patient types, which suggests that their results are

not age sensitive. However, younger patients (e.g. between 60 and 68 years old) with CKD

Stage 3, heart failure and diabetes are scheduled to see a doctor every three months the first

year and just once the following year. Therefore, the model recognizes that in more complex

cases older patients require more care.

Table 15: Appointment Frequencies

Time periods Ages 60 – 74 Ages 75 – 83 Ages 84 – 88

1 – 6 months 1 4 4

6 – 12 months 4 4 4

12 – 18 months 1 1 4

18 – 24 months 4 4 4

4.5.1.2 Age Comparison We examine the optimal strategy for patients in CKD Stage

5 with diabetes and heart failure under a 2-year time horizon. Similar to the fourth group

above (i.e. Stage 3 with diabetes and heart failure), older individuals in CKD Stage 5 with

diabetes and heart failure require more appointments. Our model suggests seeing patients

ages 60 through 74 in six months. The appointment is followed by four equally-spaced visits

(every 1.5 months) in the second half of the year. This pattern is repeated in the second
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year (Table 15, column 1). Patients between the ages of 75 and 83 should be seen more

frequently: eight times in the first year and five in the second year (Table 15, column 2).

Finally, patients between the ages of 84 and 88 need to visit the clinic once every 1.5 months

in both years (Table 15, column 3).

Unlike their CKD Stage 3 counterparts, younger CKD Stage 5 patients (see Table 15,

column 1) with diabetes and heart failure are scheduled for more intense monitoring (four

appointments in six months) after a period of less demanding follow-up care (a single ap-

pointment in six months). This schedule is based on the data used to parametrize the model.

Thus, past observations influence our model to hedge against the possibility of observing a

disease deterioration after a period of limited monitoring.

4.5.1.3 Sickest Patients Surprisingly, patients in CKD Stage 5 with all three comor-

bidities (diabetes, heart failure and vascular disease) achieve optimal quality adjusted life

days following the least frequent appointment visits. This might seem counter intuitive.

However, such patients are at a high risk of kidney failure and death. Therefore, our results

flag the need for change in patient’s treatment policy. Depending on the dialysis initiation

practices followed by clinicians, most patients in this group would soon begin dialysis and will

not need as many future monitoring appointments. Once on dialysis, chronic kidney disease

patients will only attend nephrology clinic to obtain their medication, and to maintain their

eligibility for kidney transplant. These needs can be accommodated by attending annual

appointments because some of the tests required prior to kidney transplant are good only

for a year; to keep their medical records current patients need to get them redone annually.

Furthermore, the oldest individuals in this subcategory are expected to have a very short life

span. Therefore, palliative care rather than frequent doctor’s appointments might be more

appropriate for them.
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Table 16: Age-Averaged Life Quality Improvement Achieved by the MDP model

Diabetes Heart Failure Vascular Disease CKD mean (sd)

0 0 0 3 18.50% (1.87%)

1 0 0 3 14.24% (0.46%)

0 1 0 3 22.63% (1.09%)

1 1 0 3 20.71% (0.71%)

0 0 1 3 19.63% (1.84%)

1 0 1 3 21.70% (1.03%)

0 1 1 3 19.86% (1.73%)

1 1 1 3 39.35% (1.14%)

0 0 0 4 25.48% (1.75%)

1 0 0 4 26.39% (0.41%)

0 1 0 4 24.74% (2.43%)

1 1 0 4 36.53% (1.22%)

0 0 1 4 27.30% (1.43%)

1 0 1 4 30.75% (0.86%)

0 1 1 4 32.52% (1.83%)

1 1 1 4 42.32% (1.27%)

0 0 0 5 60.15% (0.48%)

1 0 0 5 49.33% (0.75%)

0 1 0 5 81.32% (0.26%)

1 1 0 5 14.58% (0.65%)

0 0 1 5 53.86% (0.28%)

1 0 1 5 64.28% (1.05%)

0 1 1 5 62.48% (0.49%)

1 1 1 5 46.14% (0.71%)
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4.5.1.4 NICE Policies’ Evaluation We estimate patients’ QALDs following the NICE

guidelines, and then compare the results with those of our MDP. We compute the difference

in QALDs between adopting the NICE guideline and our policy. We summarized the results

in Table 16 by averaging the difference for each disease-based state across all age groups.

In all, there are 24 patient states defined by: diabetes, heart failure, vascular disease, and

CKD Stage. This allows us to observe the age-averaged improvement in QALDs if patients

are monitored following the proposed MDP model. We find that our model outperforms the

NICE policy across the entire state space and the minimum average QALDs improvement

is 14.24%.

The NICE guidelines suggest very frequent appointment visits for patients with advanced

kidney disease. However, Linn [70] reports that frequent doctor appointments are associated

with lower treatment satisfaction, and are directly linked to reduced quality of life [83]. This

implies that overly demanding monitoring strategies could cause further deterioration in

one’s already poor quality of life. For CKD Stage 5 patients (the last 8 rows in Table 16),

our model not only maintains proper care across all patient groups, but also avoids excessive

clinic visits among patients. This explains why CKD Stage 5 patients can significantly

improve their QALD by following our policy.

Patients groups whose NICE policy resembles the MDP policy include:

• CKD Stage 3 with diabetes

• CKD Stage 4 without comorbidities

• CKD Stage 5 with diabetes and heart disease

Following the NICE policy, the three patient groups will still experience a suboptimal quality

of life over the planning horizon. This is because unlike the MDP model, the NICE policy

is not as adaptive, and does not consider the impact a possible disease progression might

have on patient’s quality of life. Our results highlight the importance of making disease

monitoring decisions, while taking patient’s possible future disease progression into account.
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4.5.2 Sensitivity Analysis

For ease of illustration, we allow for two transition outcomes: (1) remain in the same

transient state, (2) transition to k=7 (death). To understand how sensitive the optimal policy

is to changes in the immediate and terminal rewards, we consider three separate transient

state settings:

(i) CKD Stage 3 with no comorbidities, i.e. s = (d, h,v,k,age) = (0,0,0,3,65): (0003,65),

(ii) CKD Stage 4 with no comorbidities: (0004, 65),

(iii) CKD Stage 5 without dialysis and no comorbidities: (0005, 65).

These states are sufficient to examine the impact terminal and immediate rewards have on

the policy suggestions.

We consider four planning horizon alternatives: one, two, three and four years. These

alternatives are sufficient to address the effect our planning horizon has on the proposed

MDP model.

Table 17: Parameter Values

Parameter Settings

Transient State {(0003, 65), (0004, 65), (0005, 65)}

p1(1,1) {0.1, 0.3, 0.5, 0.7, 0.9}

p2(1,1) {0, ..., p1(1,1) − 1/250, p1(1,1) }

p4(1,1) {0, ..., p2(1,1) − 1/250, p2(1,1) }

p8(1,1) {0, ..., p4(1,1) − 1/250, p4(1,1) }

N {1 year, 2 years, 3 years, 4 years}

Our simplified model has two by two action dependent transition probability matrices,

which are defined by a single parameter pi(1,1) since Pi =

pi(1,1) 1− pi(1,1)
0 1

. Recall pi(s,m)

is the probability of transitioning from state s to state m given that action i is chosen. To

estimate the effect of the transition probability changes on patient’s appointment policies,
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we vary the values of pi(1,1) between 0 and 1 at an increment of 1/250 across all actions.

We examine all settings where 0 ≤ p8(1,1) ≤ p4(1,1) ≤ p2(1,1) ≤ p1(1,1) ≤ 1, which implies that

when a patient sees his doctor frequently the chance of staying in the same state is relatively

higher due to the short time interval between appointments.

The settings in Table 17 show that we consider a total of 38,902,500 (3∗[2, 9251 +73, 150+

333, 375 + 908, 600 + 1, 923, 825] ∗ 4) model perturbations. They are presented in a series of

graphs, as seen in Appendix C.

(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 10: s = (0,0,0,3,65) & p1(1,1) = 0.9

We use Fig. 10 as an example to illustrate our results in Appendix C, where s =

(0,0,0,3,65) and p1(1,1) = 0.9. Thus, 0 ≤ p8(1,1) ≤ p4(1,1) ≤ p2(1,1) ≤ 0.9. Across all graphs,

p1(1,1) = 0.9 indicates that the probability of staying in the same state given that the pa-

tient is seen in 1.5 months equals 90%. Each column (figure pair) corresponds to a different

planning horizon (i.e. 1, 2, 3, 4 years). Each pair represent the same results viewed from

different angles. The x-, y- and z-axis specify the values of p2(1,1) , p4(1,1) , p8(1,1) , i.e. the prob-

1There exist 25 unique p2(1,1) values between 0 and 0.1 (p1(1,1)=0.1) and
∑25

i=1

∑i
j=1 j = 2, 925
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ability of remaining in the same state given that the patient is seen in 3, 6, and 12 months,

respectively. The orange, light blue, light green, and red optimal policy regions correspond

to having equispaced appointments once every 1.5, 3, 6, and 12 months, respectively. The

dark blue, dark green, and dark red areas signal that having irregularly-spaced appointments

is optimal, where the first one is in 3, 6, and 12 months, respectively. We observe that the

dark color areas expand with N and serve as separators between regions where equispaced

appointments are optimal.

Each vertex of the pyramid corresponds to a different equispaced appointment policy.

For example, the top vertex corresponds to p1(1,1) = p2(1,1) = p4(1,1) = p8(1,1) = 0.9. Therefore,

all policies have the same probability of progression and the model picks action a8, which

is the least demanding monitoring strategy. The bottom left vertex of the pyramid in Fig.

10a corresponds to p2(1,1) = p4(1,1) = p8(1,1) = 0 and p1(1,1) = 0.9, while the bottom right is

associated with p4(1,1) = p8(1,1) = 0 and p2(1,1) = p1(1,1) = 0.9. Therefore, our model selects

policies a1 and a2 as optimal for the left and right vertexes, respectively. Thus, patients have

a high probability of staying alive and their appointment frequencies are kept to a minimum.

The last vertex of the pyramid corresponds to p8(1,1) = 0 and p1(1,1) = p2(1,1) = p4(1,1) = 0.9. Its

optimal policy is to see the patient every six months (a4). All these observations are in line

with our findings that when policy alternatives produce similar results, the least demanding

one will be chosen.

From the graphs in Appendix C, we conclude that the time horizon effect does not

play a role in 90.07% of our simulated settings. This justifies our decision to report only

results associated with a two-year time horizon in sections 4.5-4.6. Furthermore, fixed-

interval appointment strategies are optimal in 91.42%, 92.82%, and 94.42% of the settings,

where the transient state s equal to (0,0,0,3,65), (0,0,0,4,65) and (0,0,0,3,65), respectively.

Therefore, fixed-interval schedules recommended by the MDP could be used in standard

hospital settings.

Our sensitivity analysis results show that when all four action alternatives (a1, a2, a4,

and a8) have compatible probabilities of deterioration the model will select a8. Additionally,

seeing a doctor every six months is preferred over other actions when a1, a2, and a4 produce

comparable results and have probabilities of health deterioration significantly smaller than
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the one associated with a8. Seeing a patient every three months is optimal when actions a1

and a2 are comparable and significantly better than a4 and a8. The most frequent appoint-

ment policy (a1) dominates only when there is a significant benefit of seeing a doctor very

often (i.e. p1(1,1) >> pi(1,1) for i = {2, 4, 8})). This suggests that the proposed MDP model

will choose the least demanding policy, when there is a negligible difference in the proba-

bility of entering the terminal state between the least and the more frequent appointment

alternatives.

When the probability of remaining in the same state is very low (p1(1,1) = 0.1 across

all time horizons; or p1(1,1) = 0.3 when the time horizon is greater than 1 year), the model

suggests seeing a patient once per year (Fig. 18, 27-29). Thus, the MDP reduces the

disutility of attending appointments for patients near the end of their lives. This observation

is consistent with the finding in §4.5.1.3, where our model schedules the sickest patients as

infrequently as possible.

4.6 DEMAND PLANNING

Markov Decision Models have been around for decades. The steady improvement in

computer technologies has allowed researchers to use MDPs and solve a variety of complex

healthcare problems, which have provided meaningful recommendations on how to person-

alize treatments to improve patients’ quality of life. Still, such patient-level results are not

common in demand planning.

The relationship between workload and patient outcomes is well documented. Tarnow-

Mordi [113] suggests that limiting the number of medical providers can adversely affect

patients’ outcomes. Hospitals deliver services which require a highly trained and expensive

workforce. Therefore, management needs to plan for a capacity change in the early stages

of a planning horizon to have sufficient time to recruit more staff. Furthermore, a better

understanding of the patient population could help determine what type of new patients

could be accepted at a clinic if its resources are underutilized. Patient recruitment decisions

should be made to ensure that providers’ idle time is minimized and patients’ needs are met.
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Figure 11: Aggregated Demand

We believe that leveraging the information obtained through a finite-planning-horizon

MDP model can be instrumental in helping better anticipate demand for non-emergency care.

This is important to ensure that the staff at a clinic can meet their patients’ demand for

services. Models for personalized care can help determine the optimal appointment schedule,

which would maximize patients’ quality of life. They can create an optimal visit plan over

a prespecified time horizon, which would fit the needs of a patient in a specific health state.

This patient-level information can be aggregated over the entire clinic population to estimate

its expected demand for non-emergency care (Fig. 11). The aggregated demand represents

the total number of patients who should be seen in 1.5 (n1), 3 (n2), 6 months from today

(n3), etc.

MDP results are used to guide the next decision maker’s action given the current state of

a system. We believe that using the remaining policy recommendations derived by an MDP

could also be helpful, because even though such actions in the more distant future may not

be optimal for each patient, when aggregated they can produce good overall demand-for-care
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estimates. Our conjecture is in line with the Central Limit Theorem where given a large

enough sample, policy discrepancies at the patient level will cancel each other out to produce

satisfactory group approximations.

Because we would like to use the MDP to make capacity planning decisions we will focus

on its performance when predicting demand for care 6 to 24 months into the future. Having

estimates for the number of appointments needed that far in advance will allow management

to decide if personnel recruitment is needed. Furthermore, this information will give the

administrative staff enough time to hire one or more qualified clinicians.

We aim to show that our model will be appropriate for predicting the demand for care

at a clinic. However, currently no clinic uses our MDP to make appointment decisions.

Furthermore, we believe that the concern over malpractice lawsuits and poor service quality

could result in patients being seen more frequently on average. Since our model does not

consider such infrequent appointment deterrents, we would expect that its optimal policies

will result in fewer appointments than the ones currently scheduled. Therefore, to evaluate

how well our model predicts current practices we use its most frequent appointment visits

suggested for each kidney state. We name this our conservative-MDP policy. Based on the

results in §4.5, the conservative-MDP policy correspond to seeing a patient with CKD Stage

3, 4, and 5 once every 3, 6, and 1.5 months, respectively, in months 6 through 24 when the

planning horizon is set to two years.

Following the suggestion made by our medical collaborator, we obtain patients’ aggre-

gate demand for care by recording appointments with doctors, who belong to one of seven

specialties: (1) nephrology, (2) cardiology, (3) endocrinology, (4) hematology, (5) pulmonary,

(6) primary care or (7) general internal medicine. Providers from these specialties are con-

sidered because they could prescribe treatments, which have a meaningful impact on the

disease progression of a CKD patient.

To examine how well our MDP model predicts the demand for care given a patient

population at a clinic, we obtain information on all chronic kidney disease patients treated

within 5 diverse VA regions, who have CKD Stages 3, 4 or 5 (not on dialysis) as of January

1, 2009. The regions are selected because of their diverse CKD populations and geographical

locations. We record each patient’s first eGFR post January 1, 2009. We save the number
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of appointments each patient had 6 through 12, 12 through 18 and 18 through 24 months

after the baseline eGFR. The appointments we consider belong to any of the seven categories

listed above. Finally, we aggregate the patient level information to get the total number of

actual unique days with scheduled appointments between months 6 and 12, 12 and 18 and

18 and 24 past the eGFR baseline date.

Table 18: Aggregated Demand

Region Time Period Actual Conservative-MDP NICE

N. Florida & S. Georgia 6-12 months 13649 14087 8238

12-18 months 13301 14087 8238

18-24 months 13352 14087 8238

Central Florida 6-12 months 14957 13652 7897

12-18 months 15360 13652 7897

18-24 months 13721 13652 7897

S. Florida 6-12 months 5404 4872 2990

12-18 months 5227 4872 2990

18-24 months 5357 4872 2990

Texas 6-12 months 3389 2890 1714

12-18 months 3281 2890 1714

18-24 months 3191 2890 1714

Pennsylvania 6-12 months 7246 7365 4518

12-18 months 6815 7365 4518

18-24 months 6827 7365 4518

We estimate the number of appointments days using the NICE and our conservative-

MDP policy suggestions. Accordingly, we multiple the number of patients who belong to

CKD Stage 3, 4, and 5 at baseline by the kidney state dependent appointment frequencies

suggested by each policy for periods 6 through 12, 12 through 18 and 18 through 24. For

example, if there are one thousand CKD Stage 3 patients the conservative-MDP policy will
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estimate that approximately 2∗1000 = 2000 appointments will be scheduled in each of the

three time periods. At the same time, the NICE policy will estimate that there will be

approximately 1∗1000=1000 appointments.

We observe that the actual demand for care across all three periods in all regions is

relatively stable (Table 18). Both estimation methods (conservative-MDP and NICE) predict

stable aggregate demand across all time periods. We conclude that our model provides good

approximations for the demand of care, which represents a significant improvement over the

NICE demand-for-care estimation strategy.

Our results show that appointment frequency strategies produced by MDPs can be useful

when predicting the medium-term demand for care, conditional on knowing or being able

to estimate clients’ current health status. Therefore, such models would be good at approx-

imating the demand for non-emergency appointments at clinics where patients are repeat

customers.

4.7 CONCLUSION

Chronic disease monitoring strategies involve understanding patient’s overall health state.

In this research, we design a framework for optimizing such strategies, which would help im-

prove the quality of life of a patient with a chronic condition. We showcase our framework

using chronic kidney disease, which is selected due to its complexities, prevalence and cost of

care. To develop a reliable model, we parameterize our MDP with the help of a supercom-

puter and using information on 68,514 patients treated for chronic kidney disease throughout

the US. We show the benefits of following our framework, when monitoring CKD patients,

by comparing it to a standard CKD population strategy, which does not account for patient’s

age and coexisting comorbidities.

This is the first chronic disease appointment optimization model, which is set up as

a Markov Decision Process. It suggests that patients with the same chronic disease but

different underlying complications require different care intensity. A similar observation was

made by Gijsen [33], who stated that in past studies comorbidities were ”consistently related
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to health care utilization”. This explains the results reported by Woodard [120] who note

that the quality of care for more complex diabetes patients exceeds the one provided to

individuals with fewer complications.

Furthermore, age impacts optimal policies primarily among patients with a more complex

health status. Our model highlights that older individuals who are not close to kidney

failure should be monitored more frequently than younger patients. These results confirm

observations made in O’Hare [88], who suggest that for patients in CKD Stages 3 through 5

age plays a major role in disease progression and should be considered when designing CKD

management strategies.

As noted earlier for patients near kidney failure and/or death the model suggests fewer

monitoring appointments. This counterintuitive policy is sensible for individuals in CKD

Stage 5 with multiple comorbidities because they are often faced with deciding between

conservative (palliative) and active (dialysis) CKD treatment choices [24]. If the conserva-

tive treatment is chosen, regular monitoring appointments will be largely substituted with

interactions with a palliative care specialist. If dialysis is initiated, the patient will begin

attending a dialysis clinic and will leave our decision process.

Additionally, this is the first finite horizon discrete state MDP model, set from patient’s

perspective, whose goal is to maximize patient’s total quality-adjusted life days and used for

estimating demand for care. We demonstrate how the proposed MDP model can be used

to predict demand for medium-term appointments, which is important when making staff

hiring and patient recruitment decisions. We show that our model outperforms the NICE

strategy and provides estimates which can be useful for clinic management and capacity

planning. This is particularly important because of the decline in medical graduates with a

nephrology subspecialty and the increase in the demand for the care they provide [90].

Our results have their limitations. The chronic disease used to showcase our framework

produces results with a high medium-term demand-for-care accuracy and reasonable schedul-

ing policies. Still, our model is developed using VA data which is primarily comprised of

information on white male patients. This is the reason why gender and race were not con-

sidered in the state space of our MDP model. Therefore, our results should be used with

caution when optimizing the appointment frequencies of patient types underrepresented in
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our data set. This is particularly important for African Americans with CKD because they

often experience faster disease progression [41].

Furthermore, our model does not suggest the type of appointments that should be sched-

uled in the future. This leads to an idea for future research, which will not only specify the

optimal timing, but also the type of follow-up appointments given patients’ current health

state. Currently, we do not differentiate between appointments with different specialists,

which could have an impact on patients’ disease progression. Still, stratifying across doctors

would make our MDP more realistic. This improvement could be achieved by updating the

MDP action space to account for all appointment timing and doctor specialties we would

like to consider.

We believe our work provides an important insight into optimizing the monitoring strate-

gies for patients with chronic kidney disease. Still, there are several research directions we

have not explored. First, we do not incorporate cost into our appointment optimization

problem, which would be important when discussing patients without full healthcare cover-

age or designing policy recommendations from the societal perspective. Second, we do not

examine the changes in appointment policies when patients are assumed to be risk averse

rather than risk neutral. Third, we do not allow the timing between appointments to vary

outside of our four action alternatives. Still, it will be interesting to study policies where it

is possible for a patient to be seen as early as the next day.
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5.0 PATIENT CHARACTERISTICS AND RESOURCE ALLOCATION

FOR INDIVIDUALS WITH CHRONIC KIDNEY DISEASE.

5.1 INTRODUCTION

The median prevalence of chronic kidney disease (CKD) in the United States is approxi-

mately 7.2%, for people above the age of 30, and between 23.4% and 35.8% in people above

64[123]. As noted in a paper on CKD costs in the Medicare population [39] ”the 2010 US-

RDS report shows that Medicare spent 29 billion dollars in 2009, or almost 6% of the annual

Medicare budget, for people with ESRD” (end stage renal disease) [12]. The high demand

for CKD care motivated us to investigate, empirically, using administrative data, whether

patient characteristics are associated with the level of appointment utilizations. We use an

approach similar to the one reported in Seligson et al. [104]. Our objective is to find patient

clusters with greater numbers of outpatient appointments and hospitalizations, because such

information might be of administrative use to improve patient prioritization policies.

5.2 METHODS

Patient Data

All models were developed using de-identified, administrative data, extracted from the

Corporate Data Warehouse of the U.S. Department of Veterans Affairs. The extracted data

set includes information on 29,735 CKD patients, treated at eleven VA facilities between Jan-

uary 1, 2009 and February 21, 2016. The data set includes patients’ (1) comorbidities, CKD

state and dialysis status, (2) lab values, (3) vital signs, and (4) appointment information.
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We tracked four comorbidities: diabetes, heart failure, peripheral and/or cardiovascular

disease (PVD/CVD), and cirrhosis. Our dataset contains information on individuals’ CKD

state, whether they are on dialysis, and whether they have been diagnosed with any of the

four comorbidities of interest, as well as the time between the first recorded diagnosis, or

treatment initiation, and death or the study end date. We track patients’ diabetes status

because it has been identified as the primary cause in 44% of kidney failures [26]. Patients’

CKD states represent individuals’ last explicitly specified CKD states. If an individual has

an unspecified CKD state, we record it as unspecified. We followed both heart comorbidities,

because CKD has been reported as an independent factor for cardiovascular disease outcomes

[99]. We examine patients’ cirrhosis status because it has been identified as a cause of

inaccurate kidney filtration estimates [106].

We record four laboratory values, and four vital signs. Lab values consist of patients’

estimated glomerular filtration rate (eGFR), albumin, potassium, and phosphate. Patients’

vital signs include systolic (SBP) and diastolic blood pressure (DBP), pulse pressure, and

weight. All characteristics, excluding phosphate, are summarized using five standard sum-

mary statistics: mean, median, standard deviation, minimum, and maximum. Approxi-

mately 40% of all patients have, at most, a single phosphate value on record. Therefore, for

that lab value, we created a binary variable, which shows whether a patient has multiple

phosphate lab measures on record. We examine patients’ eGFR, because it is accepted as the

best single measure of kidney function [108]. Low albumin could indicate patient proteinuria,

inflammation, or inadequate nutrition. Elevated phosphate or potassium levels could result

in a variety of heart complications [69]. Favorable values for blood and pulse pressure are

indicative of good heart health [7]. Weight is used as a proxy for water retention.

We record the percentage of days a patient spends (1) hospitalized, (2) attending out-

patient appointments, or (3) both. To obtain any of the three percentage values, we first

calculate the number of days for which we have information on the patient, i.e., the distance

between the first and last days with any records of appointments, comorbidity diagnoses, or

laboratory results. We use the length of that interval to divide into the number of unique

days a patient has (1) attended outpatient appointments, (2) been hospitalized, and (3)

either been hospitalized or attended outpatient appointments.
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Study Design

We built patient clusters for each VA facility, in order to compare and contrast hospitals

located in different parts of the US. Each model was obtained using patients’ laboratory

value, vital sign, comorbidity, dialysis, and CKD status data. No appointment information

data was used in the unsupervised clustering procedures, in order to test the hypothesis that

groups determined by health status metrics translate into groups with significantly different

resource utilization characteristics.

Figure 12: Analysis Graph

We used unsupervised clustering in order to avoid biases, such as that of selecting the

number of possible patients’ groups. We applied a Two-Step cluster analysis method [15].

The optimal cluster number was first picked with the help of information criteria (Akaike’s

Information Criterion (AIC) [2] or the Bayesian Information Criterion (BIC)[103]), which

compared models with different numbers of clusters against one another by examining the

trade-off between models’ goodness-of-fit and their complexity. The unsupervised clustering

method does not highlight the predictors that have a significant impact on patients’ group-

ings. Therefore, in a second methodological step, we utilized a linear discriminant analysis

(LDA) model [53] to determine the health characteristics that played a significant role in

the cluster selection procedures. Once important predictors were flagged, they were used

to re-calibrate the clusters, again using a Two-Step unsupervised clustering routine. This

three step procedure, which involved (1) clustering, (2) significant predictor detection, and

(3) re-clustering, was independently applied to all eleven VA facilities (Fig. 12).
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Once patients were grouped, we used Kruskal-Wallis nonparametric tests to compare

their clusters, based on the three appointment measures discussed above. We used the

LDA predictors to compare and contrast all inter- and intra-facility groups with significantly

different appointment utilizations (Fig. 12).

5.3 RESULTS

Overall, 32.46% of the patients in the data set had been diagnosed with diabetes; values

at facilities ranged from 27.50% to 43.13%. 6.67% of the patients in the data set were on

dialysis. Depending on the facility, this number was as small as 4.21% and as large as 10.46%.

While only 11.41% of the people had been diagnosed with heart failure, 44.01% had some

form of PVD/CVD. The facility located in Massachusetts had the highest incidence rate of

both heart-related comorbidities, 19.36% and 59.10%, respectively. With an incidence rate of

2.48%, cirrhosis was the least frequently observed comorbidity. Most patients were in CKD

Stage 3 (39.38%), followed by CKD Stage unspecified (34.10%), Stage 5 (ESRD) (8.78%),

Stage 4 (8.29%), Stage 2 (6.56%), and Stage 1 (1.96%) (Table 19). A small percentage of

the patients (0.92%) did not have recorded CKD-related ICD9/ICD10 codes, and were not

assigned to any of the CKD groups. Across all facilities, the majority of patients who had

not been diagnosed with heart failure also had not been diagnosed with diabetes, regardless

of their PVD/CVD status. In all but one of the California hospitals, more patients had been

diagnosed with diabetes if they had been diagnosed with at least one of the two heart related

comorbidities.

The mean lab values, and the mean vital sign descriptors, varied significantly across

the VA facilities (p-value < 0.0001) (Table 20). For example, two Florida facilities, and

one Texas facility, had significantly lower average albumin values, which could mean that

more patients at those facilities suffered from proteinuria, inflammation, or malnutrition.

One of the four Florida hospitals, and a hospital located in Massachusetts, serviced patients

with significantly lower mean weights, as compared to the patients in all other facilities.

Similarly, a facility located in southern Florida had a patient population with significantly
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higher eGFR values, which may indicate that, on average, its patients had healthier kidneys

than did individuals from the other ten VA facilities.

Table 19: Population Categorical Descriptors

Classifiers Overall Min Max

Comorbidities & dialysis status PVD/CVD 44.01% 34.56% 59.10%

diabetes 32.46% 27.50% 43.14%

heart failure 11.62% 6.07% 19.36%

dialysis 6.67% 4.21% 10.46%

cirrhosis 2.48% 1.71% 3.91%

Chronic Kidney Disease Stage 3 39.38% 22.03% 46.77%

Unspecified 34.10% 21.51% 49.61%

5 8.78% 5.69% 13.19%

4 8.29% 6.50% 10.64%

2 6.56% 2.51% 14.30%

1 1.96% 0.67% 3.35%

We applied our three step clustering method to the data from each facility. Due to miss-

ing data, between 9.13% and 0.84% of the facility-specific patient data was ignored in the

cluster selection procedure. In all but one facility, using either the AIC or the BIC informa-

tion criterion resulted in the selection of the same number of clusters. The number of clusters

identified for each facility varied from two to six, and used between eleven and twenty signifi-

cant LDA variables (Table 21). There were a total of forty-four unique predictors used across

all facility models. The predictors that were selected in at least fifty percent of the models

(i.e., six or more times) included the indicator variable for multiple phosphate measures, a

diagnosis of PVD/CVD, diabetes and dialysis, time since onset (TSO) of PVD/CVD and

dialysis, minimum albumin and eGFR values, and standard deviation of the potassium and

SBP values.
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The facilities for which patients were grouped into only two clusters had smaller patient

counts. They contained the second, third, and fifth smallest CKD patient populations.

Hospitals with patient populations clustered into three groups had the first, second, and

eighth largest CKD patient populations, among the eleven facilities examined (Table 21).

Table 20: Population Mean Laboratory Values and Vital Signs

Mean Value Overall Min Max

Albumin 3.86 3.68 4.05

eGFR 45.54 44.43 47.75

Phosphate 3.57 3.48 3.64

Potassium 4.42 4.35 4.46

SBP 134.06 133.24 135.19

DBP 72.44 71.39 74.03

Weight 200.50 196.00 204.59

Pulse Pressure 61.74 60.62 62.70

We checked to see if there was a significant difference among patient groups across all

three appointment utilization metrics (Table 22) discussed in the patient data section above.

The only hospital with no significant difference across patient clusters for any utilization

measures was the one located in southern Florida (FL #2). As noted above, the patient

population at that facility appeared to be healthier than the patient populations at the other

facilities. The facility located in Texas was the only one that had only two significant utiliza-

tion measures. The outpatient appointments may have been similar across Texas’ clusters

because of the relatively low median outpatient appointment utilizations (significantly lower

than the utilizations at seven of the facilities). Finally, CA #1 patient clusters differed

only in their hospitalization utilization, perhaps due to the larger variability in outpatient

appointment utilizations across patients from both CA #1 clusters.
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Table 23 shows a summary of all health-status characteristics whose rank ordering was

consistent with the frequency ordering of the significantly different patient groups across

all three utilization metrics in the eight facilities where such significant differences existed.

For example, across all three utilization measures, MA group 1 required significantly less

outpatient and inpatient care than did MA group 2. As noted in Table 23, the patients’

diabetes state predictor was aligned with that utilization difference, because none of the

patients in group 1 had diabetes and approximately 76.61% of the individuals in group

2 had this comorbidity. Thus, the greater incidence rate of diabetes was associated with

increased utilization.

Table 21: Facility Cluster Results

Hospital Clusters (AIC/BIC) Population LDA Predictors Missing Information (%)

NV 6/3 1804 17/16 2.66%

PA 4 2545 16 3.03%

FL #1 4 4516 20 0.84%

TX 4 1026 16 2.24%

CA #2 4 3400 20 7.47%

NY 3 4706 20 8.12%

FL #3 3 5156 17 9.13%

FL #4 3 1683 20 1.84%

MA 2 1560 19 4.17%

FL #2 2 1712 16 1.46%

CA #1 2 1627 11 2.34%

The majority of the health-status predictors in Table 23 were comorbidity based. The

predictors most often used to differentiate among clusters were whether a patient was diag-

nosed with diabetes, and PVD/CVD, and the time since the onset of dialysis. For example,

the lower utilization groups (1 and 3) in New York had almost no diabetes patients, while

all the more frequent users in group 2 were diagnosed with diabetes. Similarly, less frequent
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users in the FL #3 facility (groups 1 and 2) had almost no cases of PVD/CVD, while fre-

quent users (group 3) were almost all diagnosed with this comorbidity. A greater contrast

occurs in the data from the facility in Nevada, where high utilization users (1 and 6) had

PVD/CVD, while none of the patients in the low appointment utilization groups, 2 through

5, had the same comorbidity.

Table 22: Significant Difference in Appointment Utilizations

Hospital 3 Measures 2 Measures 1 Measure 0 Measures

MA X

NY X

PA X

FL #1 X

FL #3 X

FL #4 X

NV X

CA #2 X

TX X

CA #1 X

FL #2 X

Only two facilities, MA and FL #4, had their clusters differentiated by multiple labo-

ratory value predictors. The minimum potassium value (median DBP) had a significantly

greater variability in MA than in five (seven) of the examined hospitals. The second facil-

ity, FL #4, had its clusters separated using three standard deviation-based predictors. The

potassium (weight) standard deviation-based predictors had significantly lower mean values

in FL #4 than in eight (seven) of the other ten facilities.
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Table 23: LDA predictors matching K-W cluster appointment ranks

Predictor NY PA MA FL #1 FL #3 FL #4 NV CA #2

PVD/CVD State 1 1 1 1 1 1

PVD/CVD TSO 1 1 1

Diabetes State 1 1 1 1 1 1

Diabetes TSO 1 1 1

Heart Failure State 1 1 1 1

Heart Failure TSO 1 1 1 1

Cirrhosis State 1 1 1

Cirrhosis TSO 1 1

Dialysis state 1 1 1 1 1

Dialysis TSO 1 1 1 1 1 1

Phosphate - multiple 1

Potassium sd 1

min potassium 1

median pulse pressure 1 1

Pulse pressure sd 1

mean pulse pressure 1

Weight sd 1

median DBP 1

5.4 DISCUSSION

The primary goal of this study was to provide new CKD monitoring suggestions, by

teasing out patients’ characteristics that were associated with more frequent outpatient ap-

pointments and hospitalizations. To do that, we compared and contrasted regions based
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on characteristics that significantly contribute towards individuals’ appointment utilization

differences. PVD/CVD and diabetes states, and the time since dialysis onset were the three

characteristics whose mean group values had orderings most consistent with the frequencies

of outpatient appointments and hospitalizations (Table 22). Those three characteristics were

selected in six regions; heart failure and the time since the onset of heart failure were selected

in four.

There exists a plethora of work on developing risk stratification models, whose main goal

is to highlight patient groups with more complex and, therefore, more costly health needs.

Such models include the hierarchical condition categories (HCC), adjusted clinical groups

(ACGs), elder risk assessment, chronic comorbidity count (CCC), Carlson comorbidity index,

and Minnesota tiering [36]. The primary commonality of those risk adjustment models is

that all of them contain some patient comorbidity information. Still, the way comorbidity

information is incorporated into the models differs. Some measures count the number of

chronic conditions that fit certain characteristics (CCC and Minnesota tiering). Others

group them based on whether they are stable or unstable (ACGs).

Our observations suggest that policymakers should focus on the type of comorbidities,

not only on their number. We believe that they should pay attention first to whether

patients have chronic peripheral and/or cardiovascular disease and diabetes, and then on

whether they have been diagnosed with heart failure and cirrhosis, because there was a clear

relationship between the differences among group resource utilizations and the prevalence of

those comorbidities among patients. Focusing on diabetes is particularly important, because

between 2000 and 2008, the percentage of Veterans with renal failure and diabetes increased

by 197% and 34%, respectively [122]. Therefore, failing to improve the treatment of renal

failure patients with diabetes could result in a significant increase in resource demand. A

possible way of addressing that problem might be to develop a policy aimed at preventing

the onset of diabetes and PVD/CVD in CKD veterans.

While preventing the onset of comorbidities could be difficult to achieve, a more doable

goal might involve the creation or the improvement of existing comorbidity-management rules

for individuals with chronic kidney disease. An example of the potential associated with an

update in CKD policies was reported by Kaiser Permanente Hawaii, where the CKD state
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of patients referred to a nephrologist varied significantly [59]. A risk stratification model,

and improved communication channels between generalists and nephrologists, addressed the

variability problem, and resulted in a significant reduction of late nephrologist referrals,

which substantially increased the number of patients with functioning arteriovenous fistulas

at dialysis initiation. Similarly, Schmidt et al. [102] argue that, even though long term

survival rates in early and late referrals are not significantly different, the distress caused

by the unexpected diagnosis and dialysis initiation could be very emotionally and physically

demanding, which makes early referrals preferable.

While many papers on early referrals of CKD patients focus on the importance of nephrol-

ogist care, our results highlight the importance of referring patients to cardiologists and

endocrinologists, who are expected to provide better care for patients with vascular and

diabetes complications. A rise in such referrals might result in an increase in demand for

more specialized outpatient appointments, but may help prevent hospitalizations caused by

sub-optimal disease management.

Figure 13: Regions Stimulus Coordinates

Unfortunately, our data set contains information only about Veterans with chronic kidney

disease. Because the population of Veterans is predominantly male, and older than the

89



general population, it is possible that our findings may not apply as they stand to the entire

US CKD population. Still, our results and methodology could be used to determine whether

patients’ laboratory results for the general population could be used to stratify individuals

into distinct groups, to see if patient clusters have different resource utilization rates.

Furthermore, we observed geographical variability in clusters and clustering predictors,

which might be partially explained by the regional variability of patient populations, because

dissimilarities are driven by complex, and possibly interacting, factors. Note that close

geographical proximity (FL #1 and FL #4) does not necessarily imply similarity (Fig. 13).

The degree of medical professionals’ adherence to guidelines is an attractive attribute,

which we have not measured in this study, and which might further explain the differences

across facilities. This would suggest the need for further examination of whether hospitaliza-

tions across facilities are significantly different after controlling for patients’ characteristics,

as well as practitioners’ adherence to guidelines.

In this study, we showed that, regardless of the facility’s geographical location, patients’

comorbidity states are usually the primary contributors towards individuals’ appointment

utilizations. The two comorbidities with the greatest regional selection rates are PCV/CVD

and diabetes, followed by heart failure and cirrhosis. Those selection frequencies highlight

the need for the improvement of chronic kidney disease referral policies, not only between

generalists and nephrologists, but also between generalists and both cardiologists and en-

docrinologists. The data appear to suggest that more specialized care might be beneficial in

reducing the number of hospitalizations among CKD patients with PVD/CVD and diabetes

comorbidities.
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6.0 SUMMARY AND FUTURE WORK

To improve the care they provide, doctors should personalize appointment frequencies,

based on patient’s health status, disease progression and appointments’ impact. Therefore,

accurate disease trajectory and life expectancy forecasts are crucial when managing a chronic

disease. In my dissertation, I present novel methods used to quantify the effect of appoint-

ment frequencies given patient’s health status. The models suggest optimal and personalized

follow-up appointment strategies, which can help doctors select treatment policies for the

chronically ill. The models can also estimate the expected aggregate demand for care at a

chronic disease clinic in the near future. Such predictions can be utilized by management

when making employee or patient recruitment decisions.

The optimization model confirms some generally accepted treatment notions; for exam-

ple, older patients and individuals with one or multiple comorbidities require more intense

care. Additionally, our results show that using a myopic policy for assigning follow-up ap-

pointments is detrimental to patient’s quality of life. Such a policy fails to account for the

patient’s expected disease trajectories and disutility of attending appointments, which is

especially pronounced among older and sicker individuals who live in rural regions. Further-

more, the models use readily available past appointment utilization data to flag patients in

need for palliative care preparation. This is particularly important because current prioriti-

zation policies are based on subjective rather than data-driven rules.

Our disease monitoring framework has been applied to patients with moderate to severe

chronic kidney disease. All models in the framework are parametrized using data on a large

geographically diverse population of U.S. Veterans. The close nature of the VA healthcare

system allows us to obtain thorough records of our patients. Still, our data source has its

limitations, the main one being the lack of gender, age and race diversity among Veterans,
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who are primarily older white males. Therefore, our results should be used with caution

when selecting treatment options for patients who fall into any demographic category un-

derrepresented in our patient population.

The models do not consider the quality of life implications associated with appointments’

financial burden, which could be significant if a patient is a working adult with no access to

free health care. Our framework does not incorporate cost data because most VA patients

are retired and have service-based health coverage, therefore their disutility associated with

seeing a doctor is only measured by the time spend on going to, attending and returning

from an appointment.

The work presented in this dissertation provides valuable insight into the impact ap-

pointments have on one’s disease trajectory. Our results suggest several avenues for future

research. Our current framework offers recommendations on when a chronic kidney disease

patient should be seen next. Still, our models do not specify the specialty of the medical

professional/s the patient needs to see. Such a model, which provides the specialty of the

doctor/s, is not present in the current literature. To design it we should estimate the effect

of appointment type and frequency on patient’s disease progression. This information will

help optimally allocate limited healthcare provider resources and suggest backup appoint-

ment strategies if waiting times for a doctor from a recommended specialty are too long.

Additionally, our current model assumes that a patient follows all recommendations made

by the doctors. This assumption is often unrealistic and could also be relaxed. Lastly, our

model can be updated to incorporate cost of care estimates, which would be useful when

optimizing monitoring strategies for a chronic condition from the population prospective.
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APPENDIX A

TWO STEP MODEL

We fitted all thirty-eight models to the training set in order to predict whether a case

had more accurate forecasts when 1-NN, unequally weighted or equally weighted multiple

neighbors were used. The model with the most accurately predicted and balanced results

was the logistic regression model with a forward likelihood ratio selection (Table 24a-24b).

It was accurate in 245 of the 500 test set cases (49%). It predicted correctly 117 of the

unequally weighted, 43 of the equally weighted and 85 of the 1-NN cases. The model used

a small fraction of the predictors considered in the analysis (Table 25a-25b).

Three hundred and three of the training cases were correctly classified as having a prefer-

ence for the non-equally weighted forecasting approach. They were used to develop a model

for predicting cases with preference for unequally weighted nearest neighbors, where the

options were 2n-, 3n- and 4n-NN. We picked a multinomial logistic regression model with

filtered forward likelihood ratio selection because of its performance on the test and training

sets and its ability to predict cases across all three groups (Table 26a-26b). The filtering was

done to remove predictors with almost identical values, which would cause numerical insta-

bility if used as independent variables. Similarly, to the first step model, over fifty percent

of the predictors used were dissimilarity based (Table 27).

One hundred and thirty-eight training cases were correctly classified as having a pref-

erence for the equally weighted multiple nearest neighbors’ techniques. Using the selection

method applied when determining non-equally weighted nearest neighbor preferences, we

predicted which cases fell into the 2e-, 3e-, and 4e-NN categories. A C5.0 model with
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ten minimum numbers of records per child branch proved the best (Table 28a-28b). It had

among the best total correct prediction percentages and achieved a good balance in correctly

classifying cases across all three preference groups.

Table 24a: Step 1 Model Selection

Model Weighted (0) Non-Weighted (1) 1-NN Total Percentage

SVM Poly=3 C=1 91 55 59 41.00

SVM Poly=3 C=2 91 55 59 41.00

SVM Poly=3 C=3 91 55 59 41.00

SVM Poly=3 C=4 91 55 59 41.00

SVM Poly=3 C=5 91 55 59 41.00

SVM Poly=3 C=6 91 55 59 41.00

SVM Poly=3 C=7 91 55 59 41.00

SVM Poly=3 C=8 91 55 59 41.00

SVM Poly=3 C=9 91 55 59 41.00

SVM Poly=3 C=10 91 55 59 41.00

C5 M=2 140 42 16 39.60

C5 M=5 45 39 121 41.00

C5 M=10 36 42 108 37.20

C5 M=15 40 9 143 38.40

C5 M=20 40 4 150 38.80
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Table 24b: Step 1 Model Selection

Model Weighted (0) Non-Weighted (1) 1-NN Total Percentage

Logit Forward LR 117 43 85 49.00

Logit Backward LR 105 56 39 40.00

LDA 108 52 68 45.60

SVM RBF C=1 105 41 51 39.40

SVM RBF C=2 100 40 55 39.00

SVM RBF C=3 102 40 56 39.60

SVM RBF C=4 98 43 58 39.80

SVM RBF C=5 98 42 61 40.20

SVM RBF C=6 89 43 58 38.00

SVM RBF C=7 92 43 57 38.40

SVM RBF C=8 91 44 57 38.40

SVM RBF C=9 91 44 56 38.20

SVM RBF C=10 91 43 55 37.80

SVM Poly=2 C=1 85 49 56 38.00

SVM Poly=2 C=2 86 51 60 39.40

SVM Poly=2 C=3 86 56 60 40.40

SVM Poly=2 C=4 86 56 57 39.80

SVM Poly=2 C=5 89 53 56 39.60

SVM Poly=2 C=6 92 56 58 41.20

SVM Poly=2 C=7 89 56 57 40.40

SVM Poly=2 C=8 91 57 58 41.20

SVM Poly=2 C=9 89 55 56 40.00

SVM Poly=2 C=10 89 56 56 40.20
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Table 25a: Multinomial Logistic Regression Model, Step 1

Group Predictor Exp(B) p-value

non-equal Intercept 0.531

weights [No Comorbidities=0] 1.434 0.01

[No Comorbidities=1]

(eGFR peak 2-NN averaged dissimilarities)2 0.682 0.296

(Albumin 2-NN averaged dissimilarities)2 4.254 0.012

(DBP 4-NN averaged dissimilarities)2 0.297 0.002

(eGFR change)2 0.623 0.028

(max Phosphate)2 1.012 0.062

std eGFR peak dissimilarity diff b/w 1 & 2 NN 1.289 0.002

std Phosphate dissimilarity diff b/w 1 & 2 NN 1.117 0.153

std DBP dissimilarity diff b/w 1 & 3 NN 1.333 0

std eGFR smooth t.s. dissimilarity diff b/w 1 & 4 NN 1.427 0

std Albumin dissimilarity diff b/w 1 & 4 NN 1.796 0.001

std Potassium dissimilarity diff b/w 1 & 4 NN 1.115 0.217

std Weight dissimilarity diff b/w 1 & 4 NN 1.023 0.775

std Potassium dissimilarity diff b/w 2 & 3 NN 1.312 0.003

std (DBP dissimilarity diff b/w 1 & 2 NN)2 1.288 0.011

std (Albumin dissimilarity diff b/w 1 & 3 NN)2 0.278 0

std (Weight dissimilarity diff b/w 1 & 4 NN)2 0.923 0.318

std (eGFR smooth t.s. dissimilarity diff b/w 2 & 3 NN)2 1.649 0.002

std (Albumin dissimilarity diff b/w 2 & 4 NN)2 16.386 0.001

std (Albumin dissimilarity diff b/w 3 & 4 NN)2 0.277 0.035

std (SBP dissimilarity diff b/w 3 & 4 NN)2 1.561 0.034
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Table 25b: Multinomial Logistic Regression Model, Step 1

Group Predictor Exp(B) p-value

equal Intercept 0.461

weights [No Comorbidities=0] 0.92 0.554

[No Comorbidities=1]

(eGFR peak 2-NN averaged dissimilarities)2 2.437 0.041

(Albumin 2-NN averaged dissimilarities)2 1.801 0.315

(DBP 4-NN averaged dissimilarities)2 0.407 0.028

(eGFR change)2 0.544 0.049

(max Phosphate)2 0.996 0.575

std eGFR peak dissimilarity diff b/w 1 & 2 NN 1.161 0.079

std Phosphate dissimilarity diff b/w 1 & 2 NN 0.905 0.18

std DBP dissimilarity diff b/w 1 & 3 NN 0.875 0.096

std eGFR smooth t.s. dissimilarity diff b/w 1 & 4 NN 1.128 0.167

std Albumin dissimilarity diff b/w 1 & 4 NN 0.866 0.159

std Potassium dissimilarity diff b/w 1 & 4 NN 0.886 0.164

std Weight dissimilarity diff b/w 1 & 4 NN 0.752 0.005

std Potassium dissimilarity diff b/w 2 & 3 NN 1.19 0.037

std (DBP dissimilarity diff b/w 1 & 2 NN)2 0.937 0.452

std (Albumin dissimilarity diff b/w 1 & 3 NN)2 0.899 0.272

std (Weight dissimilarity diff b/w 1 & 4 NN)2 0.757 0.015

std (eGFR smooth t.s. dissimilarity diff b/w 2 & 3 NN)2 1.343 0.076

std (Albumin dissimilarity diff b/w 2 & 4 NN)2 4.04 0.038

std (Albumin dissimilarity diff b/w 3 & 4 NN)2 0.561 0.268

std (SBP dissimilarity diff b/w 3 & 4 NN)2 1.654 0.017
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Table 26a: Non-equally Weighted NN Model Selection

Model 2n-NN 3n-NN 4n-NN Total Percentage

SVM Poly=3 C=1 11 9 27 40.17

SVM Poly=3 C=2 11 9 27 40.17

SVM Poly=3 C=3 11 9 27 40.17

SVM Poly=3 C=4 11 9 27 40.17

SVM Poly=3 C=5 11 9 27 40.17

SVM Poly=3 C=6 11 9 27 40.17

SVM Poly=3 C=7 11 9 27 40.17

SVM Poly=3 C=8 11 9 27 40.17

SVM Poly=3 C=9 11 9 27 40.17

SVM Poly=3 C=10 11 9 27 40.17

C5 M=2 16 4 24 37.61

C5 M=5 25 3 14 35.90

C5 M=10 24 1 14 33.33

C5 M=15 24 4 14 35.90

C5 M=20 25 5 15 38.46
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Table 26b: Non-equally Weighted NN Model Selection

Model 2n-NN 3n-NN 4n-NN Total Percentage

Logit Forward LR 12 8 32 44.44

Logit Forward LR filtered 6 7 47 51.28

Logit Backward LR 13 11 18 35.90

LDA 9 14 22 38.46

SVM RBF C=1 9 10 34 45.30

SVM RBF C=2 11 8 31 42.74

SVM RBF C=3 12 9 27 41.03

SVM RBF C=4 14 8 28 42.74

SVM RBF C=5 14 9 30 45.30

SVM RBF C=6 14 9 33 47.86

SVM RBF C=7 12 8 32 44.44

SVM RBF C=8 12 9 35 47.86

SVM RBF C=9 12 9 35 47.86

SVM RBF C=10 10 9 35 46.15

SVM Poly=2 C=1 11 10 26 40.17

SVM Poly=2 C=2 11 10 26 40.17

SVM Poly=2 C=3 11 10 26 40.17

SVM Poly=2 C=4 11 10 26 40.17

SVM Poly=2 C=5 11 10 26 40.17

SVM Poly=2 C=6 11 10 26 40.17

SVM Poly=2 C=7 11 10 26 40.17

SVM Poly=2 C=8 11 10 26 40.17

SVM Poly=2 C=9 11 10 26 40.17

SVM Poly=2 C=10 11 10 26 40.17
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Table 27: Multinomial Logistic Regression Model, Step 2 non-equally weighted nearest neigh-

bors

Group Predictor Exp(B) p-value

4n-NN Intercept 0.004

(min SBP)2 1 0.01

(min DBP)2 1 0.112

(days in-patient)2 1 0.15

std Phosphate dissimilarity diff b/w 2 & 3 NN 1.363 0.04

std eGFR smooth t.s. dissimilarity diff b/w 2 & 4 NN 2.734 0

std eGFR peak dissimilarity diff b/w 2 & 4 NN 1.611 0.009

std eGFR smooth t.s. dissimilarity diff b/w 3 & 4 NN 1.304 0.376

3n-NN Intercept 0.061

(min SBP)2 1 0.001

(min DBP)2 1 0.006

(days in-patient)2 1 0.754

std Phosphate dissimilarity diff b/w 2 & 3 NN 2.413 0

std eGFR smooth t.s. dissimilarity diff b/w 2 & 4 NN 2.911 0.001

std eGFR peak dissimilarity diff b/w 2 & 4 NN 0.892 0.58

std eGFR smooth t.s. dissimilarity diff b/w 3 & 4 NN 0.36 0.002
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Table 28a: Equally Weighted NN Model Selection

Model 2e-NN 3e-NN 4e-NN Total Percentage

SVM Poly=3 C=1 6 5 6 39.53

SVM Poly=3 C=2 6 5 6 39.53

SVM Poly=3 C=3 6 5 6 39.53

SVM Poly=3 C=4 6 5 6 39.53

SVM Poly=3 C=5 6 5 6 39.53

SVM Poly=3 C=6 6 5 6 39.53

SVM Poly=3 C=7 6 5 6 39.53

SVM Poly=3 C=8 6 5 6 39.53

SVM Poly=3 C=9 6 5 6 39.53

SVM Poly=3 C=10 6 5 6 39.53

C5 M=2 5 3 10 41.86

C5 M=5 2 5 10 39.53

C5 M=10 8 6 6 46.51

C5 M=15 16 4 1 48.84

C5 M=20 5v 5 8 41.86
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Table 28b: Equally Weighted NN Model Selection

Model 2e-NN 3e-NN 4e-NN Total Percentage

Logit Forward LR 8 6 5 44.19

Logit Forward LR filtered 6 5 5 37.21

Logit Backward LR 9 2 3 32.56

LDA 7 5 2 32.56v

SVM RBF C=1 5 5 3 30.23

SVM RBF C=2 7 5 4 37.21

SVM RBF C=3 7 5 4 37.21

SVM RBF C=4 7 4 4 34.88

SVM RBF C=5 7 4 6 39.53

SVM RBF C=6 7 5 6 41.86

SVM RBF C=7 7 5 6 41.86

SVM RBF C=8 7 6 6 44.19

SVM RBF C=9 7 6 6 44.19

SVM RBF C=10 7 5 6 41.86

SVM Poly=2 C=1 7 5 6 41.86

SVM Poly=2 C=2 7 5 6 41.86

SVM Poly=2 C=3 7 5 6 41.86

SVM Poly=2 C=4 7 5 6 41.86

SVM Poly=2 C=5 7 5 6 41.86

SVM Poly=2 C=6 7 5 6 41.86

SVM Poly=2 C=7 7 5 6 41.86

SVM Poly=2 C=8 7 5 6 41.86

SVM Poly=2 C=9 7 5 6 41.86

SVM Poly=2 C=10 7 5 6 41.86
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Table 29: C5.0 Model, Step 2 equally weighted nearest neighbors

Nodes

standardized SBP dissimilarity diff b/w 1 & 2 NN

Smooth GFR slope

standardized SBP dissimilarity diff b/w 1 & 3 NN

standardized (phosphate dissimilarity diff b/w 3 & 4 NN)2

standardized eGFR peak dissimilarity diff b/w 1 & 4 NN

Average smooth weight

standardized weight dissimilarity diff b/w 3 & 4 NN

standardized eGFR smooth t.s. dissimilarity diff b/w 1 & 2 NN

standardized (weight dissimilarity diff b/w 1 & 3 NN)2
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APPENDIX B

MDP PROOFS

Note: [A◦(n)](i,j) = an(i,j)
Lemma 2:

Proof. Let n = 1
[(P 2

1 − P 1
1 )v∗N ]s − P 2

1 (s, s)[r
◦(2)
1 ]s ≥ [(P 1

1 − P 0
1 )v∗N ]s − P 1

1 (s, s)[r
◦(1)
1 ]s

[P 2
1 v
∗
N − P1v

∗
N ]s − P 2

1 (s, s)[r
◦(2)
1 ]s ≥ [P1v

∗
N − v∗N ]s − P1(s, s)[r1]s

But [P1v
∗
N ]s = [v∗N−1 − r1]s

[P 2
1 v
∗
N − P1v

∗
N + r1]s + P1(s, s)[r1]s − P 2

1 (s, s)[r
◦(2)
1 ]s ≥ [v∗N−1 − v∗N ]s

[P 2
1 v
∗
N − v∗N−1]s + P1(s, s)[r1]s ≥ [v∗N−1 − v∗N ]s + P 2

1 (s, s)[r
◦(2)
1 ]s

But [v∗N−2]s = max[r1 + P1r1 + P 2
1 v
∗
N ; r2 + P2v

∗
N ]s,

⇒ [v∗N−2]s ≥ [r1 + P1r1 + P 2
1 v
∗
N ]s ≥ [P 2

1 v
∗
N + P1r1]s ≥ [P 2

1 v
∗
N ]s + P1(s, s)[r1]s

[v∗N−2 − v∗N−1]s ≥ [P 2
1 v
∗
N − v∗N−1]s + P1(s, s)[r1]s ≥ [v∗N−1 − v∗N ]s + P 2

1 (s, s)[r
◦(2)
1 ]s

But P 2
1 (s, s)[r

◦(2)
1 ]s ≥ 0

⇒ [v∗N−2 − v∗N−1]s ≥ [v∗N−1 − v∗N ]s
Let n = t
[(P t

1 − P t−1
1 )v∗N ]s − P t

1(s, s)[r
◦(t)
1 ]s ≥ [(P t−1

1 − P t−2
1 )v∗N ]s − P t−1

1 (s, s)[r
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1 ]s

[(P t
1 + P t−2

1 )v∗N ]s ≥ [2P t−1
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1(s, s)[r
◦(t)
1 ]s − P t−1

1 (s, s)[r
◦(t−1)
1 ]s

[(P t
1 + P t−2

1 )v∗N ]s ≥ [2P t−1
1 v∗N ]s + [r

◦(t−1)
1 ]s(P

t
1(s, s)[r1]s − P t−1

1 (s, s))

If [r1]s ∈ [P1(s, s)
−1, 365/8)

⋃
{0} ⇒ [r

◦(t−1)
1 ]s(P

t
1(s, s)[r1]s − P t−1

1 (s, s)) ≥ 0
[v∗t ]s ≥ [f1(r1) + P t

1v
∗
N ]s ≥ [P t

1v
∗
N ]s

where [f1(r1) + P t
1v
∗
N ]s is the value of v∗t (s, disuappt) if the optimal policy was having

constant appointments of type a1 between periods t and N and [f1(r1)]s ≥ 0.
[v∗t−2]s ≥ [f2(r1) + P t−2

1 v∗N ]s ≥ [P t−2
1 v∗N ]s

where [f2(r1) +P t−2
1 v∗N ]s is the value of v∗t−2(s, disuappt) if the optimal policy was having

constant appointments of type a1 between periods t - 2 and N and [f2(r1)]s ≥ 0.

⇒ [v∗t + v∗t−2]s ≥ [(P t
1 + P t−2

1 )v∗N ]s ≥ [2P t−1
1 v∗N ]s + [r

◦(t−1)
1 ]s(P

t
1(s, s)[r1]s − P t−1

1 (s, s))

Based on (3) & (4) [2P t−1
1 v∗N ]s + [r

◦(t−1)
1 ]s(P

t
1(s, s)[r1]s − P t−1

1 (s, s)) ≥ 2[v∗t−1]s
[v∗t−2 + v∗t ]s ≥ 2[v∗t−1]s ⇒ [v∗t−2 − v∗t−1]s ≥ [v∗t−1 − v∗t ]s
Based on (2) [r1 + (P1 − I)v∗N ]s ≥ 0⇒ [v∗N−1 − v∗N ]s ≥ 0
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Therefore by induction [v∗t−2 − v∗t−1]s ≥ [v∗t−1 − v∗t ]s ≥ ... ≥ [v∗N−1 − v∗N ]s ≥ 0
Therefore, [v∗n−1 − v∗n]s ≥ 0 & non-increasing in n.

Lemma 3:

Proof. By lemma 2 [v∗n−1 − v∗n]s ≥ 0 & non-increasing in n.
If [Pj]s - convex then f([Pj]s) = [Pj(v

∗
n−1 − v∗n)]s - convex.

According to lemma 1 where i
′
= 1 and n = N − q + i

[P1(v
∗
N−q+i−1 − v∗N−q+i)]s ≥ [Pi(v

∗
N−q+i−1 − v∗N−q+i)]s

Based on lemma 2
[P1(v

∗
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∗
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∗
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Proposition 1:

Proof. For a1 to be optimal in all time periods we need to prove that
[r1 − ri]s ≥ [Piv

∗
N−n+i − P1v

∗
N−n+1]s for i ∈ {2, 4, 8} & ∀n

By induction:
(*) Let n = i (the smallest possible value in these settings)

[r1 − ri]s ≥ [Piv
∗
N − P1v

∗
N−i+1]s

true based on the assumption listed in the proposition.
(**) Let n = q, assume that the following statement is correct:

[r1 − ri]s ≥ [Piv
∗
N−q+i − P1v

∗
N−q+1]s

(***) Let n = q + 1; we need to prove that the following inequality holds:
[r1 − ri]s ≥ [Piv

∗
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∗
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By lemma 3 [Piv
∗
N−q+i − P1v
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∗
N−(q+1)+i − P1v

∗
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∗
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∗
N−q+1]s

⇒ [r1 − ri]s ≥ [Piv
∗
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∗
N−(q+1)+1]s

⇒ By induction we can conclude that [r1 − ri]s ≥ [Pkv
∗
N−n+i − Pi′v

∗
N−n−1]s,∀n

⇒ [r1 − ri]s ≥ maxi 6=1[ri + Piv
∗
N−n+i]s

⇒ v∗N−n(s) = maxi∗=1,2,4,8[ri∗ + Pi∗v
∗
N−n+i∗ ]s = [r1 + P1v

∗
N−n+1]s,∀n

Therefore, if the assumptions made in proposition 1 hold, then a1 is consistently optimal
across the entire finite time horizon.

Lemma 4

Proof. Let n = 1
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Therefore [v∗N−2]s ≤ [P 2
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◦(t)
8 )]s

[P t+1
1 v∗N + P t−1

1 v∗N ]s + [(I − P1)(P
t
1r
◦(t+1)
8 − P t−1

1 r
◦(t)
8 )]s ≤ [2P t

1v
∗
N ]s ≤ 2[v∗N−t]s

From (3) [P t
1v
∗
N ]s ≥ [P i

1P
j
2P

k
4 P

l
8v
∗
N ]s where t = i + j*2 + k*4 + l*8

From (4) [(I − P1)(P
t
1r
◦(t+1)
8 − P t−1

1 r
◦(t)
8 )]s ≥ 2t ∗max{[r1]s,

[r2]s
2
,
[r4]s

4
,
[r8]s

8
}

[v∗N−t+1 + v∗N−t−1]s ≤ [P t+1
1 v∗N + P t−1

1 v∗N ]s + [(I − P1)(P
t
1r
◦(t+1)
8 − P t−1

1 r
◦(t)
8 )]s ≤ 2[v∗N−t]s

[v∗N−t+1 + v∗N−t−1]s ≤ 2[v∗N−t]s ⇒ [v∗N−t−1 − v∗N−t]s ≤ [v∗N−t − v∗N−t+1]s
Based on (2) [r1 + (P1 − I)v∗N ]s ≤ 0⇒ [v∗N−1 − v∗N ]s ≤ 0
Therefore by induction [v∗N−t−1 − v∗N−t]s ≤ [v∗N−t − v∗N−t+1]s ≤ ... ≤ [v∗N−1 − v∗N ]s ≤ 0
Therefore, [v∗n−1 − v∗n]s ≤ 0 & non-decreasing in n.

Lemma 5:

Proof. By lemma 4 [v∗n−1 − v∗n]s ≤ 0 & non-decreasing in n.
If [Pj]s - concave then f([Pj]s) = [Pj(v

∗
n−1 − v∗n)]s - convex.

According to lemma 1 where i
′
= 1 and n = N − q + i

[P8(v
∗
N−q+i−1 − v∗N−q+i)]s ≥ [Pi(v

∗
N−q+i−1 − v∗N−q+i)]s

Based on lemma 4
[P8(v

∗
N−q+8−1 − v∗N−q+8)]s ≥ [P8(v

∗
N−q+i−1 − v∗N−q+i)]s, because i = 1, 2, 4 i.e. i < 8

⇒ [P8(v
∗
N−q+8−1 − v∗N−q+8)]s ≥ [Pi(v

∗
N−q+i−1 − v∗N−q+i)]s

[P8v
∗
N−q+8−1 − P8v

∗
N−q+8]s ≥ [Piv

∗
N−q+i−1 − Piv

∗
N−q+i]s

[Piv
∗
N−q+i − P8v

∗
N−q+8]s ≥ [Piv

∗
N−q+i−1 − P8v

∗
N−q+8−1]s

[Piv
∗
N−q+i − P8v

∗
N−q+8]s ≥ [Piv

∗
N−(q+1)+i − P8v

∗
N−(q+1)+8]s

Proposition 2:

Proof. The proof is almost identical to the one in Proposition 1.
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APPENDIX C

MDP GRAPHS

(a) s = (0,0,0,3,65) (b) s = (0,0,0,4,65) (c) s = (0,0,0,5,65)

(d) s = (0,0,0,3,65) (e) s = (0,0,0,4,65) (f) s = (0,0,0,5,65)

Figure 14: p1(1,1) = 0.90 & N = 1 year
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(a) s = (0,0,0,3,65) (b) s = (0,0,0,4,65) (c) s = (0,0,0,5,65)

(d) s = (0,0,0,3,65) (e) s = (0,0,0,4,65) (f) s = (0,0,0,5,65)

Figure 15: p1(1,1) = 0.70 & N = 1 year
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(a) s = (0,0,0,3,65) (b) s = (0,0,0,4,65) (c) s = (0,0,0,5,65)

(d) s = (0,0,0,3,65) (e) s = (0,0,0,4,65) (f) s = (0,0,0,5,65)

Figure 16: p1(1,1) = 0.50 & N = 1 year
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(a) s = (0,0,0,3,65) (b) s = (0,0,0,4,65) (c) s = (0,0,0,5,65)

(d) s = (0,0,0,3,65) (e) s = (0,0,0,4,65) (f) s = (0,0,0,5,65)

Figure 17: p1(1,1) = 0.30 & N = 1 year

(a) s = (0,0,0,3,65) (b) s = (0,0,0,4,65) (c) s = (0,0,0,5,65)

Figure 18: p1(1,1) = 0.10 & ∀N
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 19: s = (0,0,0,4,65) & p1(1,1) = 0.9
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 20: s = (0,0,0,5,65) & p1(1,1) = 0.9
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 21: s = (0,0,0,3,65) & p1(1,1) = 0.7
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 22: s = (0,0,0,4,65) & p1(1,1) = 0.7
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(a) N = 1 year (b) N = 2 years

55

(c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 23: s = (0,0,0,5,65) & p1(1,1) = 0.7
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 24: s = (0,0,0,3,65) & p1(1,1) = 0.5
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 25: s = (0,0,0,4,65) & p1(1,1) = 0.5
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 26: s = (0,0,0,5,65) & p1(1,1) = 0.5
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 27: s = (0,0,0,3,65) & p1(1,1) = 0.3
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 28: s = (0,0,0,4,65) & p1(1,1) = 0.3
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(a) N = 1 year (b) N = 2 years (c) N = 3 years (d) N = 4 years

(e) N = 1 year (f) N = 2 years (g) N = 3 years (h) N = 4 years

Figure 29: s = (0,0,0,5,65) & p1(1,1) = 0.3

121



Bibliography

[1] Hyunchul Ahn, Kyoung-jae Kim, and Ingoo Han. Global optimization of feature
weights and the number of neighbors that combine in a case-based reasoning system.
Expert Systems, 23(5):290–301, 2006.

[2] Hirotugu Akaike. Akaike’s information criterion. In International Encyclopedia of
Statistical Science, pages 25–25. Springer, 2011.

[3] Oguzhan Alagoz, Cindy L Bryce, Steven Shechter, Andrew Schaefer, Chung-Chou H
Chang, Derek C Angus, and Mark S Roberts. Incorporating biological natural history
in simulation models: empirical estimates of the progression of end-stage liver disease.
Medical Decision Making, 25(6):620–632, 2005.

[4] Oguzhan Alagoz, Lisa M Maillart, Andrew J Schaefer, and Mark S Roberts. The op-
timal timing of living-donor liver transplantation. Management Science, 50(10):1420–
1430, 2004.

[5] Bradley P Allen. Case-based reasoning: Business applications. Communications of the
ACM, 37(3):40–43, 1994.

[6] Nagesh S Anavekar, John JV McMurray, Eric J Velazquez, Scott D Solomon, Lars
Kober, Jean-Lucien Rouleau, Harvey D White, Rolf Nordlander, Aldo Maggioni, Ken-
neth Dickstein, et al. Relation between renal dysfunction and cardiovascular outcomes
after myocardial infarction. New England Journal of Medicine, 351(13):1285–1295,
2004.

[7] Nishkanta Arulkumaran, Ramaswamy Diwakar, Zaheer Tahir, Maha Mohamed, Juan
Carlos Kaski, and Debasish Banerjee. Pulse pressure and progression of chronic kidney
disease. JN journal of nephrology, 23(2):189, 2010.

[8] Turgay Ayer, Oguzhan Alagoz, and Natasha K Stout. Or forum—a pomdp approach to
personalize mammography screening decisions. Operations Research, 60(5):1019–1034,
2012.

[9] Kerstin Bach, Odd Erik Gundersen, Christian Knappskog, and Pinar Öztürk. Auto-
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