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MODEL-BASED CLOSED-LOOP GLUCOSE CONTROL IN CRITICAL

ILLNESS

Timothy D. Knab, PhD

University of Pittsburgh, 2017

Stress hyperglycemia is a common complication in critically ill patients and is associated

with increased mortality and morbidity. Tight glucose control (TGC) has shown promise in

reducing mean glucose levels in critically ill patients and may mitigate the harmful reper-

cussions of stress hyperglycemia. Despite the promise of TGC, care must be taken to avoid

hypoglycemia, which has been implicated in the failure of some previous clinical attempts at

TGC using intensive insulin therapies. In fact, a single hypoglycemic event has been shown

to result in worsened patient outcomes.

The nature of tight glucose regulation lends itself to automatic monitoring and control,

thereby reducing the burden on clinical staff. A blood glucose target range of 110-130

mg/dL has been identified in the High-Density Intensive Care (HIDENIC) database at the

University of Pittsburgh Medical Center (UPMC). A control framework comprised of a zone

model predictive controller (zMPC) with moving horizon estimation (MHE) is proposed to

maintain euglycemia in critically ill patients. Using continuous glucose monitoring (CGM)

the proposed control scheme calculates optimized insulin and glucose infusion to maintain

blood glucose concentrations within the target zone.

Results from an observational study employing continuous glucose monitors at UPMC

are used to reconstruct blood glucose from noisy CGM data, identify a model of CGM error

in critically ill patients, and develop an in silico virtual patient cohort. The virtual pa-

tient cohort recapitulates expected physiologic trends with respect to insulin sensitivity and

glycemic variability. Furthermore, a mechanism is introduced utilizing proportional-integral-

iv



derivative (PID) to modulate basal pancreatic insulin secretion rates in virtual patients. The

result is virtual patients who behave realistically in simulated oral glucose tolerance tests

and insulin tolerance tests and match clinically observed responses.

Finally, in silico trials are used to simulate clinical conditions and test the developed

control system under realistic conditions. Under normal conditions the control system is able

to tightly control glucose concentrations within the target zone while avoiding hypoglycemia.

To safely counteract the effect of faulty CGMs a system to detect sensor error and request

CGM recalibration is introduced. Simulated in silico tests of this system results in accurate

detection of excessive error leading to higher quality control and hypoglycemia reduction.
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1.0 INTRODUCTION

Stress hyperglycemia is the elevation of blood glucose in response to illness [1, 2] and is

prevalent in up to 32.2 % of critically ill patients [3] where it appears to be a marker of

disease severity [4]. Every year more than 5.7 million patients are admitted to intensive care

units (ICUs) in the United states for treatment. Between 2000 and 2005 alone critical care

expenses increased from $56.6 billion to $81.7 billion representing 13.4% of hospital costs,

4.1$ of national health care expenditures and 0.66% of the U.S. GDP [5]. The Society of

Critical Care Medicine estimates that savings of up to $1 billion per quality life year gained

can be attained with better management of critically-ill patients [5]. Careful management of

stress hyperglycemia may present a route to achieving a significant portion of these savings.

Although hyperglycemia in the ICU has not been consistently shown to be detrimental in

patients with preexisting diabetes it is correlated with worse outcomes in patients not known

to have diabetes [6]. There is a large body of literature including observational and prospec-

tive randomized clinical trials which shows a strong association between hyperglycemia and

poor clinical outcomes such as mortality, infections and hospital complications [7–15]. Fur-

thermore, this association appears to be correlated with both the severity of hyperglycemia

at the time of admission to the ICU as well as the duration of hyperglycemia during the hos-

pital stay [7, 9, 10]. In addition to the deleterious effects of hyperglycemia there is mounting

evidence that glycemic variability may also be negatively associated with patient outcomes

[16–19].

The work here is grounded in the hypothesis that with an automated closed-loop system

hyperglycemia may be mitigated, hypoglycemia avoided and overall glycemic variability

reduced resulting in improved patient outcomes. To this end, a control algorithm utilizing

moving horizon estimation and zone model-predictive control is developed to affect zone
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glucose control (ZGC) through the automated infusion of subcutaneously delivered insulin

and intravenous glucose and demonstrated to be effective in in silico trials on a “virtual

patient” cohort.

1.1 TARGETED GLUCOSE CONTROL AND INTENSIVE INSULIN

THERAPY IN CRITICAL CARE

A seminal study conducted in Leuven, Belgium [20] on over 1500 patients implemented a

protocol with the goal of tightly controlling blood glucose concentrations in critical care

patients between 80-110 mg
dL

established the efficacy of reducing hyperglycemia on improved

patient outcomes. This study resulted in a significant (p<0.001)reduction in mean morning

blood glucose levels between the conventional and intensive insulin therapy groups from

173 to 103 mg
dL

. There was an associated reduction in 12 month mortality in intensive care

patients under intensive insulin therapy to 4.6 % compared to 8.0 % for the conventional

treatment group (P<0.04) (Kaplan-Meier survival curve shown in Figure 1). This study

established a new paradigm for insulin administration protocols in critical care units [21].

In 2004 a similar study [22] on 800 critically ill patients found that targeted glucose control

(TGC) through intensive insulin therapy reduced mortality by 29.3% and reduced overall

length of stay by 10.8% with no significant changes in hypoglycemia.

Despite these initial successes in improving patient outcome with targeted glucose con-

trol the results of these studies[20, 22] study have not always been borne out in subsequent

studies. The follow-up to the Leuven study found only a reduction in morbidity, but not

mortality when attempting targeted glucose control [23] Both the Glucontrol [24] and the

CREATE-ECLA [25] found no significant changes in patient outcomes with targeted glu-

cose control. Perhaps the most damning evidence for the limited or non-existent benefits

of reducing stress hyperglycemia in critically ill patients resulted from the NICE-SUGAR

study [26]. This multi-center study of over 6000 patients reported an increase in mortality

within the group receiving intensive insulin therapy as a means to control or prevent stress

hyperglycemia. Retrospective analysis of the NICE-SUGAR study [27] has since shown that
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Figure 1: Kaplan-Meier curve showing cumulative survival of patients who received intensive

insulin treatment or conventional treatment in the Intensive Care Unit [20])

insulin therapy to combat stress hyperglycemia increases the incidence of moderate and se-

vere hypoglycemia and the risks associated with hypoglycemia in critically ill patients [22, 28]

outweigh the potential benefits of targeted glucose control. The VISEP study [29], conducted

a year prior, with a much smaller patient cohort corroborated these results and had to be

stopped early due to a high incidence of hypoglycemia and associated adverse effects. Due

to the inconsistency in outcomes across studies, current clinical guidelines allow for hyper-

glycemia to avoid the potential for harm associated with hypoglycemia despite the fact that

hypoglycemic blood glucose concentrations do not promote optimal patient outcomes.

A review of the literature highlights discrepancies and inconsistencies in protocols for

tight glucose control [30] as well as a variety of TGC outcomes dependent on the critically-ill

population considered [31–33]. Due to varying reports about the efficacy and safety of TGC

there is significant disagreement regarding insulin treatment protocols [34, 35]. An overview

of these studies and several additional trials attempting TGC on adult, non-diabetic patients
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Table 1: Targeted Glucose Control clinical trials (adapted from [3]). ∗: Study underpowered

due to premature discontinuation. Mixed: non-diabetic and diabetic subjects. CABG:

Coronary Artery Bypass Graft.

Study Setting Population Clinical Outcome
Malmberg, 1994 [36] CCU Mixed 28% decrease in mortality after 1 year
Van den Berghe, 2001 [20] Surgical ICU Mixed, with CABG 34% decrease in mortality∗
Krinsley, 2003 [10] Med-surgical ICU Mixed 27% decrease in mortality
Van den Berghe, 2006 [23] Medical ICU Mixed 18% decrease in morbidity
Gandhi, 2007 [37] Operating Room Mixed, cardiac surgery No difference in mortality; increase in

stroke rate in TGC arm
VISEP, 2008 [38] Medical ICU Mixed w/ sepsis No difference in 28- or 90-day mortal-

ity, end-organ failure, length of stay ∗
De La Rosa, 2008 [39] Med-surgical ICU Mixed No difference in 28-day mortality
Glucontrol, 2009 [24] Med-surgical ICU Mixed No difference in 28-day mortality∗
NICE-SUGAR 2009/2012 [26, 27] Med-surgical ICU Mixed Increase in 90-day mortality
CGAO-REA, 2014 [40, 41] Medical ICU Mixed No difference in 90-day mortality, in-

creased hypoglycemia in the TGC
group

Okabayashi, 2014 [42] Surgical ICU Mixed Decrease in surgical site infections in
the TGC group

is given in table 1. In aggregate these studies seem to support the hypothesis that mitigating

stress hyperglycemia through insulin therapy has the potential to improve patient outcomes

provided hypoglycemia is avoided.

1.2 PATHOPHYSIOLOGY OF STRESS HYPERGLYCEMIA AND

OBSTACLES TO GLUCOSE CONTROL

The stress response results in a metabolic shift from an anabolic to a highly catabolic state

to provide additional fuel for tissue repair and immune function. Governed by a complex

neural-immune-neuroedocrine signal intermediary metabolic pathways are redirected and

reenginered to support the shift to catabolism which ultimately provides the necessary amino

acids for healing and recovery [43]. A result of stress-induced metabolic changes is increased

counterregulatory hormone activity which works to increase hepatic glucose production and

decrease peripheral glucose uptake as result of insulin resistance, factors which may be

antecedent to stress hyperglycemia.
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The insulin signaling cascade is initiated by binding with an insulin receptor (IR) [44]

followed by activation of the IRS/PI3K/Akt pathway and the Ras/mitogen-activated protein

kinase/extracellular signal-regulated kinase (MEK/ERK) pathway [45]. Decreased activa-

tion and tyrosine phosphorylation of IR, and the insulin receptor substrates IRS-1 and IRS-2

has been found to result from extreme stress [46] leading to a loss of fidelity in insulin signal

transduction. The loss of insulin-activated phosphorylation of IR, IRS-1, IRS-2 and Akt has

been detected in as little as 15 minutes in the liver and within 60 minutes in skeletal muscle

following trauma [45] resulting in a decreased sensitivity to insulin.

Systemic glucose balance is maintained by dynamic, minute-to-minute regulation of en-

dogenous glucose production and of glucose utilization by peripheral tissues [47–49]. Glucose

production is accomplished by gluconeogenesis or glycogenolysis primarily in the liver and

in a lesser degree by the kidneys [3, 49]. The constantly evolving nature of the metabolic

landscape in critical illness and the delicate homeostatic balance between glucose production

and glucose uptake which may be upset by fluctuations in insulin sensitivity may explain the

varying degrees of success in clinical trials of TGC. In light of these data, one thing appears

clear, if stress hyperglycemia is to be treated with insulin administration careful monitor-

ing of blood glucose concentration with frequent adjustment to insulin administration is

required. A task ideally suited to a closed-loop control system.

1.2.1 Targeted Glucose Control: Ways and Means

The first steps toward glucose control in critically ill patients used a variety of paper-based

protocols to guide nurses in adjusting insulin concentrations and infusion rates based on

intermittent glucose measurements [50]. Although this approach is simple, cost-effective and

can be deployed in hospitals worldwide it is not patient specific and may introduce personal

bias if not entirely prescriptive [50]. The next step in ICU glucose control is the use of

computerized algorithms or decision support systems.

A number of computer-based decision support systems have been developed including the

Stochastic TARgeted (STAR) system [51], the LOGIC-Insulin algorithm [52], an enhanced

model-predictive control (eMPC) algorithm [53, 54], the Glucose Regulation for Intensive

5



care Patients (GRIP) system [55], Glucosafe [56], and the Contrôle Glycémique Assisté

par Ordinateur (CGAO) system [57]. These systems benefit from mathematical models

describing basic biology and therefore a higher degree of physiologic relevance including

the ability to adapt to inter- and intrapatient variability and respond to changes in insulin

sensitivity. Furthermore, because of the use of models describing glucose dynamics they can

respond to trends and act pro-actively rather than take reactive action based on a single

glucose measurement as with the paper protocols.

In general, the use of computer-based decision support systems has resulted in reduced

error rates in treatment and overall better glucose control [58]. However, despite the out-

lined successes, these systems suffer from a number of key issues. First and foremost, they

still require a clinical effort to obtain glucose measurements and administer treatment. As

decision-support systems these computerized algorithms are not automated and require blood

glucose measurements at constant intervals, in some cases [51, 56] or at variable algorithm

requested times in others [52, 53, 55, 57]. In general these algorithms require a new blood

glucose sample approximately every 1-3 hours. One study reported that hourly blood glu-

cose monitoring required nearly 2 hours of direct nursing time per patient per day to achieve

TGC [59]. Hooijdonk et al. [60] reported a 1.8% increase in total hospital costs using fre-

quent point-of-care glucose testing. Furthermore, given the reliance of TGC on frequent

and accurate glucose measurements to avoid hypoglycemia [61] any non-compliance with the

recommendations of these decision support systems by clinical staff may have serious and

costly consequences.

Using continuous glucose monitors (GCMs), which automatically measure glucose con-

centrations at a high frequency, a closed-loop glucose control system becomes feasible and

may provide next step in targeted glucose control in critically ill patients. The use of con-

tinuous glucose monitors diminishes the burden imposed on clinical staff by frequent bed-

side glucose testing reducing it to much less frequent sensor calibrations. Furthermore, the

automated administration of treatment by a closed-loop algorithm eliminates issues of non-

compliance and further assuages the clinical burden.
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1.3 CONTINUOUS GLUCOSE MONITORING

A key component of any closed-loop control system is a feedback mechanism which monitors

the state of the controlled variable so that adjustments can be made to drive the deviation

between the controlled variable and set point or target to zero. Here continuous glucose

monitors are used to for high frequency measurements of glucose concentrations. It has been

shown by Hanazaki et al. that closed-loop glucose control using continuous monitoring of

venous glucose levels can reduce the incidence of hyperglycemia in the critically ill without

inducing hypoglycemia [62, 63]. As a point of comparison, a randomized clinical trial using a

computerized decision support system (CDSS) with sparse glucose measurements using PID

control was unable to significantly decrease the incidence of hyperglycemia compared to the

control arm and doubled the incidence of hypoglycemia [57]. This trial had a median time

between glucose measurements of 139 minutes. The stark difference in outcomes between

the Hanazaki and the CDSS trial can be attributed in large part to the frequency of glu-

cose measurements. Continuous glucose monitoring is fundamental to enabling reliable and

effective closed-loop glucose control in critically ill patients.

In a number of additional studies, control algorithms were successful in limiting hy-

poglycemia but generally were ineffective in controlling glucose to a target[64–66]. Blood

glucose values in these samples were typically sampled at an hourly or slower rate necessitat-

ing very conservative control leading to inefficacy in reducing hyperglycemia. These results

establish high-frequency glucose monitoring as one of the cornerstones enabling reliable and

effective closed-loop glucose control in critically ill patients. In the Hanazaki study, glucose

was continuously measured from venous blood sampled at a rate of 2mL
hr

. However, con-

tinuous venous sampling requires catheterization which carries significantly increased risks

of infection and thrombotic complications in critically ill patients [67] and is impractical

for routine deployment in a critical care setting. Furthermore, high frequency sampling by

clinical staff a poor use of a medical professionals’ time and is clearly untenable given the

responsibilities of a clinician in a critical care setting.
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Commercially available continuous glucose monitoring systems (CGMs) provide a safe,

minimally invasive alternative to arterial sampling that requires only nominal clinician effort

and oversight. CGMs are generally comprised of a small sensor implanted subcutaneously

which generates a signal in the presence (and proportional to the concentration) of interstitial

glucose. Typically a signal is generated through electron transfer in the enzyme catalyzed

glucose oxidase reaction, an increase in fluorescence or decrease in Förster resonance energy

transfer (FRET) of fluorescein labeled dextrin due to preferential glucose binding affinity for

concavelin A [68]. The signal from the subcutaneous sensors is processed by a receiving unit

that serves to both calibrate the sensors and filter the raw signal.

1.3.0.1 CGM in Critical Care Although the intended patient population for contin-

uous glucose monitors is ambulatory diabetics, CGMs have found their way into critical

care units as means to prevent hypoglycemia [61] and identify hyperglycemia [69] as well as

investigate the effects of intensive insulin therapy [70].

The accuracy of CGMs in critical or intensive care units has been investigated in a variety

of studies. Block et al. [70] reported that in 50 adults admitted to a medical (non-surgical)

intensive care (MICU) glucose concentrations recorded by the Glucoday® S CGM correlated

with arterial glucose measurements with r=0.85 and P<0.0001 for n=555 with 97% of the

data falling within regions A and B on a Clarke Error Grid (See Figure 2 for a description

of a Clarke Error Grid).

Another study of CGMs in a critical care setting enrolled 22 patients at the Yale New

Haven Hospital[72]. Patients were implanted with the Continuous Glucose Monitoring

System® by Medtronic Minimed. In total, 41 sensors (1-5 devices per patient) yielded

546 sensor-reference measurement pairs resulting in a mean absolute deviation (MAD) of

19.7 ± 18.3 mg
dL

. GCM values correlated to fingerstick measurements with r=0.88 and 98.7%

of the CGM values fell within the clinically acceptable A and B regions of the Clarke Error

Grid.
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Figure 2: Example Clarke Error Grid for GlucoDay CGM in MICU patients (reproduced from

[71]). Region A represents values that are within 20% of the reference measurement. Region

B contains points that are outside of the 20% region but would not lead to inappropriate

treatment. Region C contains points that would lead to unnecessary treatment. Region

D represents a potentially dangerous failure to detect hyper- or hypoglycemia. Region E

corresponds to a region where hyperglycemia could be detected as hypoglycemia and vice-

versa. [71]

A separate study of continuous glucose monitoring in the Surgical Intensive Care Unit

(SICU) at the Yale New Haven Hospital enrolled 25 patients to be implanted with a Guardian

REAL-Time Continuous Glucose Monitoring System from Medtronic Minimed [73]. This

study aimed to determine if CGM resulted in an acceptable accuracy for clinical use in an

intensive care unit and found CGMS values to correlate with blood glucose fingerstick val-

ues with r=0.61 (p<0.001) with a MAD of 16.0 mg
dL

. A Clarke Error Grid analysis showed

that 98.92% of the points were within zone A or B. The authors of this study concluded
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that CGMS in the SICU were reasonably accurate despite the widespread use of pressors

and large-volume resuscitation and state that further work investigating the use of contin-

uous glucose monitoring to enable targeted glucose control with intensive insulin therapy is

warranted.

A different 50 patient study of the Clinical Glucose Monitoring System® (CGMS)

GoldTM resulted in 736 CGM-reference blood glucose pairs resulting in a correlation co-

efficient of 0.93 between CGM sensed blood glucose and reference arterial blood glucose [74].

According to regulations set by the International Organization for Standardization (ISO),

94.2% of the data points from this study can be deemed accurate. This study further estab-

lished that CGMs in a clinical setting are unaffected by shock and the subsequent required

administration of norepinephrine.

Through a number of studies in both medical and surgical intensive care units, it has

been shown that continuous glucose monitoring achieves a reasonably high accuracy with

approximately 94-99% of the CGM measurements falling within zones A and B on a Clarke

Error Grid. This suggests that the error inherent to these sensors will not lead to insulin

administration based on traditional scales that will lead to patient harm in a critical or

intensive care unit. Despite the apparent accuracy of CGMs in critical care settings, the

results and statistical outcomes of the aforementioned studies are best viewed somewhat

more critically. The Clarke Error analyses presented in these studies is predicated on a

traditional schedule or scale of insulin administration, however due to the ability of an

automated control algorithm to deliver insulin at a much higher frequency based on CGM

measurements, chronically biased CGM readings and large errors could result in glucose

or insulin administration that would drive patient blood glucose levels to unsafe levels.

Ultimately, the control of glycemia is intimately related to the performance of the continuous

glucose monitors, the frequency of measurement and the control algorithm or treatment

protocol [75].
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A common measure used to assess the accuracy of continuous glucose monitoring is

mean absolute relative deviation (MARD) [76, 77] (equation (1.1)), where G(ti) is true

blood glucose at time ti and Ĝti is blood glucose as measured by CGM at time ti.

MARD =
1

N

N∑
i=1

|Ĝ(ti)−G(ti)|
G(ti)

(1.1)

A recent study by Wilinska and Hovorka [78] suggested that MARD ≤ 11% is optimal for

control and resulted in the lowest frequency of hypoglycemia. This result was corroborated

by a similar study [79] which found that MARD ≤ 10% was optimal. The conclusion to be

drawn from these studies is that the high frequency acquisition of glucose data via a CGM

system carries a definitive advantage for glycemic control compared to low frequency glucose

monitoring techniques, such as capillary fingerstick, even though the measurement quality

of CGM systems is inferior to intermittent monitoring [80].

An analysis of unadulterated CGM data from an observational study at UPMC results

in a MARD of 15.15%, greater than the maximum acceptable values established by Boyd

and Bruns, Wilinska and Hovorka and Van Herpe[78–80]. The large MARD observed in

our clinical dataset is likely due to improper calibration, contraindicated medications and

pressure-induced loss of sensitivity as a result of rolling onto or sleeping on a sensor [81].

In light of these studies and a preliminary analysis of our clinical dataset, it is necessary

to ensure that, through a combination of multiple CGMs and state estimation, estimates of

blood glucose serving as the basis for control action in the proposed control algorithm meets

a minimum criterion of MARD ≤ 10%.

1.4 AUTOMATED GLUCOSE CONTROL

1.4.1 In Type 1 Diabetes

Although the work here is focused on treating stress hyperglycemia in critically ill patients,

the use and study of automated glucose control in Type 1 Diabetes (T1D) predates the study

of TGC in critical care and continues to work toward the development of an artificial pancreas
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(AP), enabled largely by the development and advancement of CGM technology. Initial

work on APs began in the ‘70s by Albisser et al.[82], Pfeiffer et al.[83], and Mirouze et al.[84]

culminating in the development of the first commercial closed-loop beside glucose control

device, the Biostator[85]. The heart of any closed-loop glucose control system is the control

scheme and APs over the years have employed a variety of algorithms. Control algorithms

that have shown promise over the years include proportional-integrative-derivative (PID)

control [86, 87], fuzzy-logic[88–90], bio-inspired controllers [91] which mimic β-cell insulin

secretion in response to glucose and notably, model-predictive control (MPC) [92–97].

MPC for AP usage has been studied in both linear[92] nonlinear [93] formulations and

have been shown [98] to be effective in maintaining euglycemia and decreasing hypoglycemia

(particularly overnight where conventional self-monitoring is difficult). MPC’s have also

exhibited success in a bihormonal systems where the MPC is responsible for insulin infusion

and a PID controller controls glucagon infusion [99]. The option for glucagon infusions to

counteract the effects of insulin allows for better control by enabling control of blood glucose

in both directions.

1.4.2 In Critical Care:

Drawing from work in the development of an artificial pancreas several studies to date have

explored the efficacy and safety of closed-loop glucose control systems utilizing continuous

glucose monitoring in critically-ill patients. In 2003 a small five subject trial was conducted

to determine if continuous glucose monitor could be used in real-time with a closed-loop

system to control blood glucose concentrations [100]. The system used subcutaneous CGMs

with a proportional-integral (PI) control algorithm based on a sliding scale approach which

automatically infused intravenous insulin to patients. Error grid analysis of the CGM data

indicated that just 64.6% of sensor readings were accurate compared to measurements by a

highly accurate glucometer with blood drawn from an indwelling arterial cannula. That is

CGM measurements exhibited≤ 20% deviation from the arterial line measurements [100]. Of

the five patients who underwent closed-loop control only one patient did not require manual

intervention due to sensor deviations ≥ 20% from glucometer measurements. Despite issues
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of CGM error Chee et al. found that the closed-loop performance was comparable to manual

TGC, although it is difficult to ascertain the extent to which manual intervention affected

closed-loop outcomes.

A 2011 study utilized the STG-22 (Nikkiso, Tokyo, Japan), an artificial pancreas system,

to attempt TGC with a glucose target of 90− 110mg
dL

[101]. In this study the STG-22 infused

insulin continuously if blood glucose concentrations were ≥ 110mg
dL

and a 10% glucose solu-

tion BG ≤ 90mg
dL

[101]. Infusion rates were calculated by the STG-22 using a PID control

algorithm [102]. In 208 ICU patients the STG-22 was able to maintain glucose concentra-

tions within the target zone for 50% of the study period with no hypoglycemia (defined by

Yatabe et al. as BG ≤ 70mg
dL

[101]).

In a further trial using the STG-22 closed-loop glucose control system 450 patients in

a Japanese intensive care unit were treated following surgery for hepato-biliary-pancreatic

disease [42]. The patients were randomly assigned to either an intensive treatment group

with a glucose target range of 79.29 − 109.90mg
dL

or an intermediate treatment group with

a target zone between 138.72mg
dL

and 194.57mg
dL

. Under closed-loop control neither group

experienced any hypoglycemia and the intensive therapy group saw a decrease in surgical

site infections which may be a component of the improved outcomes observed in successful

TGC.

In 2013 a study [103] was conducted in which twenty-four critical ill adults were ran-

domized into two groups. One group received fully automated closed-loop intensive insulin

therapy with a nonlinear model-predictive controller (nMPC) directing the intravenous de-

livery of insulin and a 20% dextrose solution using a subcutaneous CGM to monitor glucose.

The other group was treated with a local protocol utilizing intravenous sliding-scale insulin.

The target blood glucose concentration for the nMPC arm was 108−144mg
dL

. With each new

CGM blood glucose measurement the nMPC updates parameters characterizing a rapidly

changing glucose flux to correct for errors in model based predictions, and a slowly chang-

ing estimate of a basal endogenous insulin production rate required to maintain euglycemia

[103]. In the experimental closed-loop treatment arm nMPC resulted in an increased time

within the target band (54.3% with a range of 44.1% to 72.8%) compared to the conventional

group treated with intravenous sliding-scale insulin (18.5% with a range of 0.1% to 39.9%).
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Furthermore, the nMPC arm was associated with decreased mean glucose concentrations

(140mg
dL

) compared to the conventional arm (164mg
dL

). No hypoglycemic events were reported

in either treatment arm.

Despite the general success of these closed-loop glucose controllers in achieving TGC,

there are a number of drawbacks to these methods. The PI or PID based control algorithms

have no basis in physiology or ability to adapt to different patient phenotypes and may not be

suitable for the wide range both inter- and intrapatient variability expected in a critical care

setting. The trials utilizing the STG-22 system rely on a dual-lumen catheter to draw and

return blood at a rate of 2mL
hr

for blood glucose measurements. The use of vascular catheters

carry an increased risk of foreign body reactions which may lead to thrombus formation

and catheter occlusion necessitating catheter replacement [104]. Vascular catheterization

also carries risk of infection [105], sepsis [106] and hemorrhaging [107]. Furthermore, the

closed-loop glucose control systems used in all the trials discussed above utilize intravenous

insulin infusion to affect TGC, which carries the same risks as vascular catheterization for

glucose monitoring. The decision to utilize intravenous delivery likely stems from reasons

of simplicity. Compared to diabetic patients who utilize subcutaneous insulin, critically ill

patients may present a higher variability in insulin requirements and the use of intravenous

insulin eliminates adsorption delays associated with subcutaneous insulin delivery [50].

In addition to the potential issues associated with vascular catheterization and PID

control, the 2003 study by Chee et al. [100] demonstrated the potential pitfalls of CGMs

in an intensive care setting where they may fail to meet the accuracy requirements for safe

TGC. The 2013 study utilizing model-predictive control by Leelarathna et al. [103] relied

on a single subcutaneous glucose monitor inserted either in the anterior abdominal wall or

the upper arm. This represents a single point of failure and poor calibration techniques or

a faulty CGM could derail control and result in dangerous hypo- or hyperglycemia. As a

preventative or safety measure the MPC algorithm in this study requests reference arterial

blood glucose measurements made using a blood gas analyzer every 1 to 6 hours. In practice

arterial samples were drawn every hour which represents a significant clinical burden or

workload.

14



The closed-loop glucose control scheme developed here (see fig. 3 for an overview) utilizes

dual CGMs inserted in the abdominal wall to provide glucose concentration measurements.

Moving horizon estimation is used to update patient specific parameters based on glucose

measurements and a model-predictive controller optimizes glucose and insulin infusion rates

to maintain blood glucose concentrations within a target zone. The key advantages of this ar-

rangement over PID controllers is the ability to account for intra- and interpatient variability

and the capacity to identify complex glucose trends and take proactive corrective measures

to prevent hypo- and hyperglycemia. Compared to clinically tested model-based methods

[103] the use of dual or redundant CGMs mitigates the risk of CGM error, and through

sensor fusion in the controller results in a MARD which is sufficient for safe TGC with less

frequent reference measurements and calibrations required. The enhanced accuracy of fused

measurements from dual CGMs also enables more accurate estimates of patient-specific pa-

rameters which improves theoretically achievable control quality [108]. Furthermore the use

of multiple CGMs provides a “built-in” reference that enables the identification of CGM

faults.

The basis for the internal model used in the closed-loop glucose control algorithm devel-

oped here was developed specifically to describe the glucose-insulin trajectories of critically

ill patients [110], including saturating nonlinear insulin dynamics. This is in contrast to the

model used in the MPC developed by Leelarathna et al. [103] as well as in a semi-closed-loop

MPC trials which required manual glucose draws for measurement and manual insulin ad-

ministration [111]. The controller model employed in [103] and [111] is developed to describe

glucose-insulin dynamics following an intravenous glucose tolerance test (IVGTT) and was

identified using data from IVGTTs over only a few hours. Owing to the original model pur-

pose and the relatively short time scale over which the parameters are identified the model

does not contain a mechanism for the saturating effect of insulin on glucose uptake [112, 113]

which may result in significant model-patient mismatch at longer timescales with elevated

rates of insulin infusion and affect the ability of the algorithm to maintain glucose control.

This model is supplemented with a validated linear model describing the adsorption ki-

netics of subcutaneously injected insulin [114]. As a result the glucose controller developed

here can accurately predict the rate of insulin appearance in plasma following subcutaneous
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administration and adsorption to optimize changes in subcutaneous infusion rates to main-

tain blood glucose concentrations within the target zone. This confers the advantages of

continuous subcutaneous insulin infusion which are largely the elimination of complications

associated with an indwelling intravenous delivery mechanism. Moreover, in contrast to reg-

ular insulin infusion, with subcutaneous insulin an increase in delivered dose as a bolus or

spike in infusion rates does not alter the time to peak and duration of action [115]. Addition-

ally, CSII can reduce postmeal glucose spikes, decrease the incidence of severe hypoglycemia

[116, 117] and is consistent with the preference method for insulin delivery for hospitalized

patients in the U.S. [118]. Finally, the use of subcutaneous insulin and CSII has been asso-

ciated with decreased glycemic variability [117, 119, 120] which has beneficial implications

for patient outcomes [16–19].

Like existing closed-loop systems, the glucose control system developed here allows for

the infusion of intravenous glucose. This is a key component of this system as it provides a

rapid “rescue” mechanism to avoid hypoglycemia. The safety margin and protection against

hypoglycemia that the availability of glucose infusion provides enables more aggressive con-

trol to mitigate hyperglycemia.

1.5 GLUCOSE TARGETS IN CRITICALLY ILL PATIENTS

The benefits of hyperglycemia reduction in critically ill patients, balanced with a necessary

avoidance of hypoglycemia implies the existence of an ideal target blood glucose range for

critically ill patients associated with reduced mortality and improved patient outcomes. Data

in the High-Density Intensive Care (HIDENIC) database from the University of Pittsburgh

Medical Center (UPMC) was compiled in Figure 4 and suggests that maintaining blood

glucose levels between 90 and 110 mg
dL

minimizes patient mortality. The proposed target

range is 110-130 mg
dL

where the lower bound is chosen as it provides a comfortable buffer

against hypoglycemia and the steeply increasing mortality rates associated with even mild

hypoglycemia.
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Figure 3: Diagram of the closed-loop glucose control scheme developed here. Dual CGMs (A)

measure patient glucose concentrations which are provided to the moving horizon estimator

(B). The MHE fuses the CGM measurements and estimates a more accurate blood glucose

concentration, insulin concentrations, insulin sensitivity, insulin production and glucose pro-

duction. These patient-specific estimates and parameters are passed to the MPC (D) which

optimizes a series of subcutaneous insulin and intravenous glucose infusion changes (E) to

maintain predicted glucose concentrations within a target zone over a future horizon. The

first of these infusion rate changes is implemented by infusion pumps and the cycle repeats.

The dashed box taken as a whole is the control algorithm developed here. The MHE and

MPC used in this work are both linear as the linear estimation and control problems can be

formulated as a constrained quadratic program which are well studied and a large number

of software tools are available for the efficient solution of constrained quadratic programs.

Moreover, the MPC is a convex quadratic problem which implies that any local minimum is

also a global minimum thereby guaranteeing the optimality of control action [109]. Further-

more, the highly structured nature of linear MPC means that a generic control algorithm

can be developed which has use in problems outside of the work presented here. Finally, a

linear control scheme may be more amenable to regulatory bodies, such as the FDA owing to

the well-studied nature of the field and the multitude of mathematical techniques developed

for the analysis of linear-time-invariant systems.
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Figure 4: Increased mortality is associated with both hyper- and hypoglycemia in critical

care patients (-). Mean blood glucose over the duration of stay shows that the critical care

population (- -) tends to present with hyperglycemia [121]. The “bathtub” shaped region

between 80 and 130 mg
dL

shows a clear minimum in mortality which is centered around lower

glucose concentrations than the critical care population mean.
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1.6 VIRTUAL PATIENTS AND IN SILICO TRIALS

in silico trials utilizing virtual patients offer the ability to design and test protocols and

algorithms to optimize performance and safety without risk to real patients [122]. The

development of virtual patients and simulated trials have a long history in glucose control,

both for diabetic patients [123–125] and critically ill patients [52, 78, 122, 126–129] and

here a novel virtual patient cohort is developed which is used for in silico trials of the

ZGC algorithm. Through simulated trials using this virtual patient cohort the controller

is iteratively tuned mitigate hyperglycemia while avoiding hypoglycemia even in the face

of CGM inaccuracies. Furthermore, the virtual patient cohort is used to inform controller

design decisions by exploring advantages and disadvantages of announced meals. Finally, the

virtual patient cohort can be used to test error and fault remediation strategies and provide

assurances of safety in the face of CGM or insulin infusion set failure.

The novel virtual patient here is based on the model developed by Lin et al. [110] which

has been previously validated in a critically ill patient population. This model is extended

to account for the effects of insulin suppression on endogenous glucose production [130] and

calibrated to high-frequency clinical data from 17 critically ill patients via a unique approach

utilizing a number of heuristic regularizations and physiologic constraints. A realistic pan-

creatic response is then introduced via a proportional-integral-derivative control mechanism

which modulates insulin secretion rates in response to plasma glucose concentrations. The

result is a set of physiologically realistic and clinically relevant virtual patients which cap-

ture a variety of glucose profiles, exhibit a range insulin sensitivity phenotypes and respond

realistically to clinical treatments as tested via simulated oral glucose tolerance tests and

insulin tolerance tests.
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1.6.1 Simulation Outcomes and Glucose Control Metrics

Through in silico studies it is trivial to calculate any number of statistics, indices and metrics

related to glucose and insulin dynamics, however it is important to identify and utilize metrics

which maintain relevance to measurable clinical outcomes. An ideal index of the quality of

glucose control should, according to Preiser et al. [50]:

– be measurable and assessable over time and retrospectively

– be linked to clinical outcomes

– allow robust statistical comparison between studies and paradigms

– be calculated and calculable from regular interpolated measurements

– be equally applicable to individuals and patient cohorts

– relate to known physiological effects

– be easy to understand and interpret

To this end several metrics are used throughout to quantify the quality of glucose in in

silico trials. The first and perhaps most obvious is mean blood glucose concentrations over

the course of the simulated trial. With a goal of reducing hyperglycemia the expectation

is that successful control will present with a reduction in average glucose concentrations.

Similarly, as a result of the negative association of blood glucose variability with patient

outcomes a reasonable expectation of quality glucose control would be a decrease in the

variance or standard deviation of blood glucose concentrations over the course of a simulated

trial. To quickly and efficiently quantify the severity of any incident hyper- or hypoglycemia

minimum and maximum glucose concentrations during in silico trials are reported.
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In addition to these simple statistical indices time(s) in relevant bands or zones has

been widely used as a potentially useful metric of glucose control quality [50, 131]. Here,

percentages of total time within certain bands are used to assess the quality of glucose

control: The bands used throughout this work are:

– the target zone (110 ≤ BG ≤ 130mg
dL

)

– below the target zone (BG ≤ 110mg
dL

)

– above the target zone (BG ≥ 130mg
dL

)

– hypoglycemia (BG ≤ 74mg
dL

)

– hyperglycemia (BG ≥ 180mg
dL

)

Time in band metrics have an increasing accuracy with higher measurement frequency

and are thus ideal for in silico simulations where near continuous glucose values are available.

The clinical data used here is also available at a high frequency with a sampling rate of 5

minutes which further supports the use of time in band metrics for comparison between in

silico trials and clinical practice.

1.7 OVERVIEW OF THIS THESIS

Chapter 2 provides a method to reconcile differences between measurements from multiple

CGMs by removing bias and drift to reconstruct an accurate blood glucose trajectory. Using

the newly generated glucose data from the reconciled sensors a model of CGM error is

constructed for both nominally functioning CGMs with a low level of noise and CGMs

deemed to be malfunctioning with a much greater degree of error. The error models are

able to accurately regenerate, to second order statistics, the observed error in stochastic

simulations and suggest that the primary driver of CGM error is improper calibration

In chapter 3 the reconstructed glucose data is used to generate a virtual patient cohort

through optimization of patient specific parameters including a time-varying insulin sen-

sitivity profile and rate of endogenous glucose production. The insulin sensitivity profiles

show two distinct patient phenotypes which have been described as clinically stable and
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clinically unstable. Regressed endogenous insulin production trajectories exhibit ultradian

rhythms consistent with physiology and overall insulin sensitivity and blood glucose trends

are congruent with clinical expectations.

Chapter 4 sees the introduction of a feedback mechanism for pancreatic insulin secretion

dependent on plasma glucose concentrations. To maximize the realism and physiologic rel-

evance of the virtual patient cohort a PID-based mechanism for the control of basal insulin

secretion is fit to patient-specific endogenous insulin secretion profiles. The introduction of

this feedback mechanism is shown to result in patient responses to oral glucose tolerance tests

and insulin tolerance tests which accurately recapitulate the dynamics observed in human

experiments.

Chapter 5 details the formulation for a linear moving horizon estimator and zone model

predictive controller. The MHE and zMPC developed within are generic, and can be used

for the control of any process described by a LTI state-space model. A description of the

linearized internal models including linearization points is given and controller tuning pa-

rameters provided. In this chapter it is shown in in silico trials that dual CGMs, even with

realistic noise provide measurements which following sensor fusion using the MHE result

in a MARD which is acceptable for safe glucose control in a clinical setting. Examples of

controller action in in silico trials on individual patients and the virtual patient cohort are

provided and it is shown that the MHE/zMPC control scheme is able to successfully control

glucose to a target zone even when simulated with realistic CGM sensor noise. The use of

announced or unannounced patient meals in the MPC is explored and finally the results of

the ZGC system developed here is compared to commercially available solutions.

In Chapter 6 the detection of CGM faults and excessive error is discussed and a system

to detect such failures is developed. The system is shown via in silico trials to mitigate

the effects of improper CGM calibration and ensure patient safety. An additional safety

mechanism to detect insulin infusion set failures is developed using a feature developed with

the MHE that allows for disturbance estimation. Finally, a clinical interface or information

system is detailed which provides a simple color-based display of the controller’s ability to

maintain glucose control over an approximately 3 hour horizon.
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In addition to demonstrating that a linear MHE/zMPC is effective in treating stress

hyperglycemia by reducing blood glucose levels and variability while avoiding hypoglycemia

in in silico trials this work has resulted in a comprehensive python package for linear esti-

mation and model-based control of LTI systems with an extensive feature set which, to our

knowledge, has not been available to this point. A novel virtual patient cohort with a high

degree of physiologic realism and clinical relevance is also developed and can be used in the

future to test further control schemes and paradigms.
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1.8 NOMENCLATURE

Abbreviations

TGC Tight Glucose Control

IIT Intensive Insulin Therapy

ZGC Zone Glucose Control

(z)MPC (Zone) Model Predictive Control

MHE Moving Horizon Estimator/Estimation

CGM Continuous Glucose Monitor/Monitoring

SQ Subcutaneous

MARD Mean Absolute Relative Deviation

VP Virtual Patient

PID Proportiona-Integral-Derivative Control

ICING Intensive Care Insulin Nutrition Glucose Model

eICING Extended ICING Model

(e)ICING + SQ (Extended) ICING Model with Subcutaneous Insulin Absorption Kinetics

Modeling

BG Blood Glucose Concentration mg
dL

QI Effective Interstitial Insulin Concentration mU
L

I Plasma Insulin Concentration mU
L

P1 Mass of glucose in the stomach mg

P2 Mass of glucose in the gut mg

QSC,r/f Subcutaneous insulin (regular/fast-acting) mass in the interstitium mU

Q1,r/f 1st intermediate SQ insulin compartment (regular/fast-acting) mU

Q2,r/f 2nd intermediate SQ insulin compartment(regular/fast-acting) mU

QL Insulin concentration in the liver mU
L

GISF Interstitial Glucose Concentration mg
dL
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EGP Endogenous Glucose Production mg
min

SI Insulin Sensitivity L
mU ·min

Uen Endogenous Insulin Production/Pancreatic Insulin Secretion mU
min

USC,f/r/s Rate of SQ insulin infusion (fast/regular/slow) mU
min

UI Rate of IV insulin infusion mU
min

UG Rate of IV glucose infusion mg
min

UE Rate of Enteral Feeding mg
min

ISS Steady State Plasma Insulin Concentration mU
L

QISS Steady State Interstitial Insulin Concentration mU
L

Uen,b Basal rate of insulin production mU
min

x
¯
(t) Vector of model states at time t

A,B,C,D etc. Matrices
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2.0 CONTINUOUS GLUCOSE MONITORING

2.1 INTRODUCTION

Continuous glucose monitors (CGM) were originally developed for use in diabetic patients

to provide doctors with a continuous record of glucose measures. Coupled with records of

patient meals, exercise and medicine this enabled a detailed understanding of patients glucose

dynamics, as well as insulin sensitivity and insulin requirements. Needle-based subcutaneous

continuous glucose monitoring systems were introduced in the early 2000s and currently form

the basis for the majority of commercially available CGM devices [132, 133]. In numerous

studies, the use of continuous glucose monitoring has been shown to result in significant

improvements in HbA1c or glycated hemoglobin, which reflects long-term average blood

glucose levels [134–139]

Despite initial approval for use in type 1 and type 2 diabetics, and primarily as an adjunct

to traditional self-monitoring of blood glucose levels (although recent FDA approval of a

Medtronic device opens the door to closed-loop control [140]), continuous glucose monitoring

has found its way into intensive care units as a means to alert to, and potentially forewarn

of, dangerous hyper- and hypoglycemia. The impact on patient outcomes from continuous

glucose monitoring in a clinical setting has been evaluated in multiple studies and found to

be generally favorable [72, 76, 77, 141, 142]. However, there remains some debate over the

efficacy of CGM in a critical care setting, as well as over the accuracy requirements for the

benefits of CGM to be realized for critically ill-patients.
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In ambulatory diabetics, continuous glucose monitors are known to suffer from drift, be

subject to the effects of improper or erroneous calibration, and exhibit significant fluctua-

tions in sensor gain in response to pressure [143, 144] and certain medications such as ac-

etaminophen [145]. We would expect these effects to be more pronounced in non-ambulatory

patients in critical care units, especially considering the highly variable nature of blood glu-

cose levels in this patient population. As a result, there is a need to evaluate the error and

noise characteristics of a continuous glucose monitor in a critically-ill patient populations and

develop a model of CGM error because, any closed-loop glucose control system Chapter 5

will have to demonstrate efficacy and safety in the face of this error.

2.2 RETROSPECTIVE CGM CORRECTION

There is a reasonable expectation that two continuous glucose monitors placed subcuta-

neously in each patient would record glucose measurements with little difference between

the sensors. In practice, however, there exist varying degrees of inconsistency between the

sensors as a result of improper calibration, poorly chosen calibration times, pressure in-

duced losses of sensitivity, non-specific CGM drift, and random noise (see Figure 5). YSI®

analyzer blood glucose measurements, and to a lesser degree, capillary fingersticks, are con-

sidered to be significantly more accurate than the CGM measurements, but are available at

a greatly reduced frequency compared to the CGM. The reference measurements collected

from the study patients, when available, are taken as a basis for retrospective correction of

the individual CGM signals so that they are consistent with glucose measurements of known

accuracy.

2.2.1 Materials and Methods

2.2.1.1 Clinical Data and Medical Records Twenty four Patients enrolled in an

IRB-approved study at the University of Pittsburgh Medical Center (UPMC) each received

two Dexcom® Platinum™ G4 continuous glucose monitors, one on each side of the abdomen
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Figure 5: Sensor 1 vs. Sensor 2 across N=17 patients with a total of 641.5 hours of measure-

ment. The average per patient time of measurement is 37.7 hours, with a minimum of 24.2

hours and a maximum of 49.8 hours. There appears to be a linear correlation described by

the line y = x, as would be expected for two sensors ostensibly measuring the same blood

glucose level. However, significant variability around y = x is observed, indicating that the

CGMs are not always in close agreement and therefore some amount of error is inherent in

at least one, but possibly both, CGMs.
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(henceforth referred to as CGM1 and CGM2). These sensors recorded subcutaneous glucose

levels every five minutes over a period not less than 12 hours. 17 patients were available

for analysis; 7 patients were omitted due to missing data and sensor-dropout. Clinical staff

recalibrated the CGMs using reference capillary fingerstick measurements approximately

every 6 hours. These recalibration measurements were available with the CGM data. Ad-

ditional reference blood glucose measurements were collected via capillary fingerstick and

YSI® analyzer and were recorded in the UPMC electronic medical records.

2.2.1.2 Dynamically Weighted Linear Combination of CGM Measurements A

simple and intuitive approach to retrospective sensor correction is based on the assumption

that overall a “true” or accurate series of glucose measurements by the CGMs should be

representable as a linear combination of the measurements from the individual sensors as

shown in Equation (2.1).

BGtrue(ti) = λ1(ti)CGM1(t1) + λ2(ti)CGM2(t2) ∀i = 1...NR (2.1)

In this approach, the weights, λ1(ti) and λ2(ti), for CGM1 and CGM2, respectively, are

dynamic and may take different values for a set of glucose measurements, from both finger-

stick reference and the continuous glucose monitors, at time t. Here, (G(t)), defined for a

particular reference measurement (from 1 to NR reference measurements) as

Gi ≡ {BGref (ti), CGMa(ta), CGMb(tb)}

where BGref is the value of the i-th reference measurement which was taken at time ti.

CGM1(t1) and CGM2(t2) are the CGM values from each CGM recorded at times t1 and t2.

t1 and t2 are the measurement times from each CGM data set closest to the reference time.
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A simple quadratic program (QP) for determining the weights λ1(t1) and λ2(t2), via min-

imization of the sum squared error between the reconstruction and reference measurements

is shown in Equation (2.2a).

minimize
λ1,i,λ2,i

J =

NR∑
i=1

(BGref (ti)− [λ1(ti)CGM1(t1) + λ2(ti)CGM2(t2)])2 (2.2a)

subject to:

λ1,2(ti) ≥ 0 ∀i = 1...NR (2.2b)

In Equation (2.3b), every reference value is associated with two variables, λ1(t1) and λ2(t2)

resulting in an ill-posed problem with an infinite number of solutions for {λ1(t1), λ2(t2)} ∈ R.

To combat the ill-posedness of this problem, a regularization term is used to generate

solutions that trend toward some physical assumption. In this case, if both sensors and the

reference measurements were perfectly accurate, the CGM profiles would match exactly and

require no modification, thereby implying that in the ideal limiting case a true mean of the

CGM measurements would be appropriate. As such, solutions that trend toward a true mean

are preferred. Starting from this assumption, a Tikhonov regularization term is employed

which applies a quadratic penalty on weights that deviate from 0.5. The quadratic nature

of the regularization term means that solutions that deviate further from a simple mean of

the two continuous glucose monitors are penalized more heavily. The resultant objective

function is shown in Equation (2.3a).

minimize
λa,i,λb,i

J=

NR∑
i=1

[
(BGref (ti)− [λ1(ti)CGM1(t1) + λ2(ti)CGM2(t2)])2

+ Γµ
{

(λ1(ti)− 0.5)2 + (λ2(ti)− 0.5)2}] (2.3a)

subject to:

λ1,2(ti) > 0 ∀i = 1...NR (2.3b)

Looking again to the limit of perfect data, a simple mean of the CGM measurements

would result in an exact match to the data at every point with constant weights (with a value

of 0.5). As such, solutions which limit variability in the weights are preferred. In addition

to preferentially generating solutions approximating a true mean, the regularization term in
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Equation (2.3a) penalizes deviations from a constant value, so it beneficially tends to result

in solutions which favor weights close to 0.5 and thereby minimizes changes in the weights

from one reference measurement to the next. The magnitude of this regularization is set by

Γµ in Equation (2.3a)

Solutions to the quadratic program of Equation (2.3a) result in a set of two weights for

each (sparsely sampled) reference measurement but do not generate a full reconstruction

of the glucose profile from the CGM data at the native high-frequency (5 minute) sam-

pling rate of the continuous glucose monitors. To fully reconstruct the glucose trace from

the two CGMs, a certain dynamic for the weights must be assumed in the times between

reference measurements. The previous assertion that the variability of the weights should

be minimized in an ideal solution motivates the choice of simple linear dynamics between

reference CGM measurements. A linearly changing weight, from BGref (ti) to BGref (ti+1),

is the minimum variance path. Given the relative sparsity of the reference data and the

reduction to a simple mean in the ideal limit, the values of the weights at intervening CGM

measurement times between reference measurements are calculated using a simple linear

interpolation. Following interpolation, the CGM measurement values and the associated

interpolated weights are paired and a reconstructed glucose trajectory is then calculated as

the weighted linear combination of the CGMs and their associated weights.

A Note on Pairing: Reference measurements are paired with their corresponding

CGM measurement by simply finding the CGM measurement within the calibration

window containing the reference measurement with a timestamp closest to that of the

reference measurement. If the difference between the reference and CGM measurement

times exceeds 5 minutes, it implies a missing CGM measurement and that reference

measurement is discarded.
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2.2.1.3 Dynamically Weighted Average of CGM Measurements (I) An evolution

of the method discussed in Section 2.2.1.2 utilizes a dynamically weighted average of CGM

measurements rather than a dynamically weighted linear combination to retrospectively

reconstruct a glucose profile which is in closer agreement with reference measurements than

either set of CGM data independently. For a given measurement time, the weighted average

is shown in Equation (2.4).

BGtrue(ti) =
1

2
[λ1(ti)CGM1(t1) + λ2(ti)CGM2(t2)] (2.4)

Although outwardly this appears to be an equivalent formulation to the linear combi-

nation presented in Section 2.2.1.2, this evolution allows weights to be regressed from the

reference measurement for each CGM independently, then subsequently averaged, whereas

the previous formulation required simultaneous regression of both weights for each reference

measurement.

The primary benefit in enabling independent regression of the weights is that it allows

reconstruction at times or over intervals where data may be missing from one CGM due

to any number of technical or patient comfort and safety-related reasons. The previously

discussed technique (Section 2.2.1.2) relies on a weighted linear combination of the CGM

measurements, and as such, it requires values from all sensors at every time to reconstruct

a more accurate glucose value. In this approach, a glucose trajectory can be safely recon-

structed using both sensors, or in the case of missing data, a single CGM. The formulation

for this modification is given in Equation (2.5).

In practice, the reference data and the CGM data are treated as piecewise continuous

between recalibration points for each CGM, inclusive of the calibration points. This means

that each interior calibration measurement is included both at the end of one interval and

the beginning of the next. If the quadratic program shown in Equations (2.5a) and (2.5b)

is solved for each interval using all reference measurements contained within that interval

inclusive of the calibration measurements, the resultant profile will tend toward continuity

around recalibrations.
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minimize
λ(1,2),i

J =

NR∑
i=1

[(
BGref (ti)−

1

2
λ(ti)CGMT (ti)

)2

+ Γµ (λ(ti)− 1.0)2

]
(2.5a)

subject to: λ(ti) > 0 ∀i = 1...NR (2.5b)

where : CGM(ti) = [CGM1(ti), CGM2(ti)]

λ(ti) = [λ1(ti), λ2(ti)]

The quadratic program defined by Equation (2.5) is similar to Equation (2.3), but differs

in that it minimizes the sum squared error between a reference glucose measurement and a

single weighted CGM measurement at a corresponding time compared to the linear combi-

nation previously discussed. Following the logic detailed in Section 2.2.1.2 we would expect

the weighted average to approximate an unweighted average. Because this approach recon-

structs a blood glucose profile as a weighted average of the CGM data, rather than a linear

combination, and because weights are regressed to the data from a single CGM indepen-

dent of the other sensor, the regularization term in Equation (2.5) preferentially results in

solutions with weights that take on the value of 1 in the ideal case (rather than 0.5).

A Note on Intervals: Throughout this discussion, intervals have been assumed to

be the subset of all CGM, capillary fingerstick, and YSI® blood chemistry measurements

between (re)-calibrations of that sensor. The final interval therefore remains unbounded

due to the lack of a calibration point before the CGM was removed or stopped collecting

data. As such, the final interval is treated as all points between the last sensor recali-

bration and the last available CGM measurement. In the event that the final interval

does not contain any reference measurements in addition to the calibration measurement,

Equation (2.9) is ill-posed with an infinite number of degenerate solutions. Under these

circumstances, Equation (2.9) is solved for a bias alone under the assumption that λ = 1.
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Inherent in this piecewise approach is the possibility of discontinuous weights as cali-

bration points shift from the end of the preceding interval to the beginning of the current

interval (see Equation (2.6)).

λ1,2(ti) =


λ1 lim

t→t−i

λ2 lim
t→t+i

(2.6)

As such, the linear interpolation of the weights for a given CGM at CGM measurement

times is also calculated piecewise within intervals. Although these discontinuities result in

significantly increased variability in the weights after recombination of the intervals, the

increase occurs around recalibrations which are assumed to reset the internal state of the

CGM, and as such there should be no expectations of continuity in the weights, whereas

there is a definite physiologic expectation of continuity in glucose levels at all times.

Following the solution of Equation (2.5) for all intervals and interpolation of the weights,

the piecewise-interval products of the CGM measurements and corresponding weights are

concatenated to form the weighted glucose profile for a CGM.

2.2.1.4 Model-Based Approach The approaches to glucose reconstruction detailed in

Sections 2.2.1.2 and 2.2.1.3 suffer from a number of significant drawbacks:

1. solutions are heavily dependent on the magnitude of regularization

2. solutions do not consider the differing accuracy of capillary fingerstick and blood chem-

istry analyzer measurements

3. physiologic constraints are not explicitly accounted for

In the previously described approaches, capillary fingerstick measurements and measure-

ments from a YSI® blood chemistry analyzer are assumed to be equally accurate or valid.

However, in practice these two methods have very different margins of error. Fingerstick

measurements are assumed to be accurate to within ±10% [146], whereas blood chemistry

analyzer glucose readings are significantly more accurate (±2%) [147]. In the previous ap-

proaches (Sections 2.2.1.2 and 2.2.1.3), the accuracy could be accounted for through a relative

weighting of the reference measurement types in the objective function. However, this intro-

duces more hyper-parameters in addition to the already present regularization, which have a
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significant impact on the resulting solutions. Furthermore, it becomes increasingly difficult

to determine and justify the values of an increasing number of hyper-parameters. Finally,

despite the efforts to address issues of continuity in Section 2.2.1.3, aphysiologic rates of

change in glucose values may still remain.

To combat these shortcomings, a model-based approach was developed that retains the

use of variable weights to correct CGM readings based on reference measurements in accor-

dance with the understood accuracy of those measurements along with known physiologic

constraints, while eliminating the need for regularization on the weights. Additionally, this

method does not require the pairing of CGM values, thereby eliminating issues such as jumps

or discontinuities associated with CGM dropout and missing CGM data.

This method is a two-step approach where the steps are:

i. remove bias and determine linearly varying weights for each CGM, independently, to

generate corrected CGM trajectory

ii. fit physiologic model of glucose and insulin dynamics to unpaired corrected CGM tra-

jectories simultaneously

In step i., the CGMs are corrected independently of each other, such that each CGM

matches the reference data to within the known error of all measurements (fingerstick or

blood chemistry analyzer). Under the assumption that portions of the collected CGM data

are affected by poor or improper calibration techniques leading to a bias or constant offset

in the measurements following calibration, the data from a single CGM are corrected in

a piecewise manner between calibrations. For an interval between calibration points there

is assumed to be a constant bias, B, which is additive with all points within the interval.

Additionally, every CGM measurement in a CGM-reference pair is assigned a gain factor

λ(1,2),t that corrects the measurement to within the error of the associated reference value.

As before, there is an assumption that the gain factors should all tend toward 1.0. Previously,

regularization was necessary for solutions with this characteristic, however the objective in

this approach simply minimizes the sum-squared difference between each gain factor and

unity subject to constraints that the corrected CGM trajectory is within the known error of

each measurement type. This optimization problem is formulated in Equation (2.7).

35



minimize
B,λ(a,b),ti

J =

NI∑
i=1

(λ(ti)− 1.0)2 (2.7a)

subject to: λ(ti) > 0 ∀i = 1...NI (2.7b)

CGMz(tw) +B ≥ 0 ∀z ∈ {a, b} , and ∀w ∈ {j, k, l} (2.7c)

BGref (tw)− λz(tw) [CGMz(tw) +B]

BGref (tw)
× 100 ≤ αw

∀z ∈ {a, b} , and ∀w ∈ {j, k, l} (2.7d)

Equation (2.7b) ensures that the λ’s cannot become negative and Equation (2.7c) constrains

the biases such that the CGM measurement after bias removal is always positive. Together,

Equations (2.7b) and (2.7c) restrict the parameter space such that either a bias or gain

correction alone still result in physically feasible solutions (i.e., non-negative glucose concen-

trations). The constraint given in Equation (2.7d) ensures that each reconstructed glucose

measurement in an interval is within α% of it’s associated reference measurement where α

is the known percent error associated with that measurement type – capillary fingerstick

(j), blood chemistry analyzer (k) or calibration measurement (l). Although, in general,

calibration measurements are obtained via a capillary fingerstick, they are handled within

this constraint separately from other capillary fingerstick measurements so that a tighter

constraint may optionally be specified to help ensure continuity around calibrations. For the

work presented here, αj = 10%, αk = 2%, and αl = 5%.

Following solution of the optimization problem given in Equation (2.7) for a given in-

terval, gain factors for all CGM measurements within the interval are calculated via linear

interpolation as before, and the corrected CGM data are calculated according to Equa-

tion (2.8). In contrast to the previous methods, the corrected measurements from the CGMs

are not paired and combined but rather left independent for the second step in this approach.

CGMcorr.(ti) = λ(ti) (CGM(ti) +B) ∀i ∈ Interval (2.8)
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After determination of the bias and gain correction factors in all intervals of available

data from a patient, a physiologically consistent model of insulin and glucose dynamics (see

Chapter 3) is fit to the corrected trajectories from both CGMs simultaneously resulting in a

reconstructed glucose trajectory (CGMR(ti)). This approach is preferable to an arithmetic

fusion of the corrected signals as seen in Sections 2.2.1.2 and 2.2.1.3 because the model is

subject to physiological constraints, such as maximal rates of glucose change, and ensures

smoothness in the resultant reconstructed blood glucose profile. This ameliorates issues of

discontinuity around recalibrations and prohibits aphysiologic behavior in CGMR – char-

acteristics not guaranteed by the previously discussed methods. Furthermore, assumptions

about the accuracy of a CGM over a particular window, or the instantaneous accuracy of a

sensor, can be incorporated into the model regression to the corrected data to de-emphasize

contributions of poorly calibrated or potentially faulty sensors.

Under the assumption that CGMs that were improperly calibrated suffer from bias, and

therefore are less accurate, every corrected CGM measurement can be weighted by 1
1+|Bi| ,

where Bi is the bias associated with the interval of origin for the CGM measurement as

determined via the optimization problem in Equation (2.7). Similarly, to mitigate the effects

of faulty or erroneous measurement, a corrected CGM measurement (CGMcorr(ti)) may also

be weighted by 1
1+|1−λ(ti)| . By weighting CGM values in the model fit to the corrected CGM

data, the most accurate data – data that required little correction – is preferentially fit.

This method seeks to ensure continuity across recalibrations by correcting the CGM

data in intervals both before and after each sensor calibration. By including the calibration

measurement as a reference in Equation (2.7a) and setting a conservative error threshold in

Equation (2.7d), the gap between corrected CGM data, both preceding and following cali-

bration can be tightly controlled. The internal recalibration process for Dexcom® Platinum™

G4 continuous glucose monitors is proprietary, but the data appear to show that there may

be rapid dynamics in the approximately 20 minutes following recalibration. As noted earlier,

reference measurements are paired with the closest CGM measurement within 5 minutes of

the reference. Due to the potential for significant glucose changes at calibration points, the

point immediately following recalibration may not be re-equilibrated with the calibrated

value and may be a poor point of comparison to the calibration point leading to excessive
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variability in the λ’s. In an effort to mitigate the confounding effects of calibration dynam-

ics on the reconstruction, an extension to the model-based reconstruction method using the

values further along the CGM trajectory following recalibration and/or the mean of multiple

values subsequent to recalibration is described here.

Following a calibration, N points, starting with some time offset by β from the recali-

bration, are averaged and replace the first CGM measurement following recalibration as the

CGM value paired with the recalibration reference. This modification results in the changes

to the formulation given in Equation (2.7) shown in Equation (2.9), which is solved for every

interval.

minimize
B,λ(a,b),ti

J =

NI∑
i=1

(λ(ti)− 1.0)2 (2.9a)

subject to: λ(ti) > 0 ∀i = 1...NI (2.9b)

ρz(tw) +B ≥ 0 ∀z ∈ {a, b} , and ∀w ∈ {j, k, l} (2.9c)

BGref (tw)− λz(tw) [ρz(tw) +B]

BGref (tw)
× 100 ≤ αw

∀z ∈ {a, b} , and ∀w ∈ {j, k, l} where:

ρz(ti) =


1
Nβ

β+Nβ∑
j=β

CGMz(tj) i = 1

CGMz(ti) i = 2 . . . NI − 1

(2.9d)

In the case of β = 0 and N = 1, Equation (2.9) reduces to Equation (2.7).

2.2.1.5 Numerical Methods The optimization problem given in Equations (2.3), (2.5),

(2.7) and (2.9) was implemented in Python using the Pyomo modeling and optimization

package ([148, 149]). All nonlinear programs were solved using the interior point algorithm

IPOPT as the nonlinear solver [150] and ma27 from [151] as the linear solver.
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2.2.2 Results

An example showing the raw CGM data for a particular patient and the corrected CGM

data following bias removal and weighting via the two step method from Section 2.2.1.4 is

shown in Figure 6. From Figure 6 it is clear that the combination of a shift to remove CGM

bias and a linearly varying weight to account for CGM drift or fluctuations in the sensor

gain is able to correct the raw CGM data such that it is in close agreement with reference

capillary fingerstick measurements.

Although a detailed explanation of the modeling efforts and optimization techniques used

to generate a model-based reconstruction (CGMR) of a blood glucose trajectory is reserved

for Chapter 3, Figure 7 shows an example of the model-based reconstruction compared to

the corrected CGM data along with the shifts, B, and weights, λ1,2, associated with each

CGM. The data collected by CGM 1 from the patient shown in Figures 6 and 7 exhibit what

is believed to be a pressure induced loss of sensitivity in the region around 500 minutes.

In response to the pressure-induced loss of sensitivity, the magnitudes of the bias and gain

factors associated with that CGM, over the interval including the event, are significantly

elevated compared to the nominally functioning sensor, as shown in the bottom panel of

Figure 7. When contributions to the objective function governing the fit of the model

(see Chapter 3) for each corrected CGM value are weighted by 1
1+|Bi| and 1

1+|1−λ(ti)| , the

likely faulty data from CGM 1 is effectively ignored as evidence by the close match of the

reconstructed glucose trajectory to the data from CGM 2 over the interval containing the

pressure-induced loss of sensitivity.

The model-based approach employed here easily allows for the specification of constraints

on the maximum rate of change of glucose. Limiting the glucose rate of change to a phys-

iologic regime provides a simple path to dealing with any remaining discontinuities in the

corrected CGM data. Applying the approach laid out in Section 2.2.1.4 results in recon-

structed blood glucose trajectories which are in good agreement with reference measurements

of greater accuracy and ultimately results in a cohort of virtual patients believed to be both

physiologically consistent and clinically realistic. A detailed description of the virtual patient

cohort and its relation with both physiology and clinical observation is given in Chapter 3.
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Figure 6: Raw and corrected CGM values for two Dexcom® Platinum™ G4 continuous

glucose monitors placed subcutaneously in Patient 16. The solid lines ( ) show the raw data

and the dashed lines ( ) denote the corrected signals. Capillary fingerstick measurements

and recalibration points are given by the H’s and x’s, respectively.
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Figure 7: Top: Model-based blood glucose trajectory reconstructed from corrected CGM

data using a model of glucose-insulin dynamics and medical record data (see Chapter 3).

Bottom: Shift and weights for the corrected CGM data.
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Table 2: Statistics for the biases (B) and linearly varying gain correction factors (λ) for all

patients and intervals. IQR represents the interquartile range (25% –75%) of the data.

µ σ Median Min Max IQR

B
(
mg
dL

)
6.60 18.625 4.51 -38.37 86.88 -3.06 –13.39

λ 0.98 0.072 0.997 0.54 1.47 0.96 –1.014

2.2.3 Discussion

By identifying an additive bias for each interval of CGM data and a multiplicative gain

correction factor for all CGM measurements, raw CGM data can be corrected such that

it is in close agreement with reference glucose measurements. The optimization problem

governing this correction aims to minimize deviations from unity in the multiplicative gain

correction factors but allows for a free range of bias values subject to a non-negativity

constraint (Equation (2.7c)) such that percent error of any CGM-reference measurement

pair is ≤ the known accuracy of the reference measurement type.

Because the bias term is additive across an interval, it preserves, exactly, the shape of

the raw CGM data. Conversely, due the fact that the gain correction is a linearly varying

multiplicative modifier, if λ(ti)− λ(ti−1) 6= 0 and λ(ti) ≥ 0, there is necessarily a stretching

or compression of the raw CGM trajectory leading to potentially significant differences in

the dynamics of the corrected data compared to the raw data. Larger |λ(ti) − λ(ti−1)|

induces greater deformation. The optimization problem given in Equation (2.9) minimizes

(λ(ti) − 1)2, which has the effect of also minimizing |λ(ti) − λ(ti−1)|. |λ(ti) − λ(ti−1)| (or

similarly (λ(ti) − λ(ti−1))2 is not minimized directly in the objective function because the

limit λ(ti)−λ(ti−1) = 0 does not imply λ(ti) = 1.0, the original assumptions or intuition for

the weights yielding ideal CGM function.

The distribution of the biases (B) and gain correction factors (λ) are shown in Figures 8

and 9 respectively. The statistics of the parameter distributions are given in Table 2.

Figure 8 and Table 2 demonstrate that the λ’s are, in general, tightly grouped around the
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Figure 8: Normalized density of correction factors, λ(ti), for all patients (N=17) after solving

the optimization problem in Equation (2.9) for intervals with available reference data.
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Figure 9: Normalized density of biases, B, for all patients (N=17) after solving the opti-

mization problem in Equation (2.9) for intervals with available reference data.
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nominal value of 1 (±0.17). Meanwhile the biases have a much higher degree of variability,

as seen in Figure 9, and positive mean indicating that in general the CGMs seem to report

glucose values that are too low. The relatively low variability in the λ’s is consistent with

the objective of minimizing (λ(ti)−1)2 ∀i) and implies a low level of modification to the raw

CGM dynamics. Although, in general, the λs tend strongly toward unity, as evidenced by the

standard deviation and interquartile range in Table 2, the minimum and maximum values

indicate regions of exceptionally poor CGM performance. The marked difference from one of

the λ’s in these extreme cases suggests that the corresponding CGM data is fundamentally

flawed with respect to glucose dynamics as significant variability over time is required to

recapitulate the reference measurements. The patient data resulting in the minimum λ over

all patients and intervals is shown in Figure 10 as an example and for reference.

Up to approximately 1000 minutes, both CGMs in Figure 10 exhibit extremely poor per-

formance compared to reference blood glucose measurements. Because the poor performance

appears to be endemic to both sensors and recovers immediately following a recalibration it

is likely that the sensors were calibrated to an erroneous measurement or at a point during

rapidly changing blood glucose levels, in contradiction to the operating procedure for the

Dexcom® Platinum™ G4 continuous glucose monitor [152]. Acetaminophen is also known

to degrade the performance of continuous glucose monitors [145] but causes falsely elevated

glucose readings rather than the under-reported values seen here. With the medical record

showing no indication that this patient may have received acetaminophen or any other med-

ication, miscalibration is the likely culprit for the poor performance over the first interval.

Over the region of under-reported glucose measurements, the procedure detailed in Sec-

tion 2.2.1.4 is able to correct the raw CGM data so that it is in agreement with the reference

measurements. The correction requires the removal of a large negative bias and highly vari-

able λ’s that deviate significantly from unity (see Figure 11). The steep slopes and large

deviations from 1 exhibited by the λs in Figure 11 for the poorly performing CGMs result in

significant differences in trajectory and dynamics between the raw and corrected data. This

is readily apparent in Figure 10, where close inspection reveals sections of data where the

raw and corrected data are trending in different directions. Despite the large differences in

magnitude and dynamics from the raw data, the corrected data recapitulates reference data
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Figure 10: Raw and corrected CGM values for two Dexcom® Platinum™ G4 continuous

glucose monitors placed subcutaneously in Patient 5. The solid lines (-) show the raw data

and the dashed lines (–) denote the corrected signals. Capillary fingerstick measurements

and recalibration points are given by the H’s and x’s, respectively. The region between 0

and 1000 minutes exhibits extremely poor CGM performance, with both CGMs significantly

under-reporting measured glucose concentrations.
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Figure 11: Interval biases (B) and gain corrections (λ’s) for a region of poor performance by

both CGMs.

collected at a comparatively high frequency and exhibits dynamics that are readily defended

compared to raw data. For example, CGM 2 reports rapid drops into a state of severe hy-

poglycemia followed by a rapid rebound with no glucose or insulin infusions recorded in the

medical record to support this trend. Furthermore, the raw CGM data are not particularly

coherent or well correlated, whereas the corrected CGM trajectories are significantly more

coherent and correlate very well.

Facchinetti et al. [153] employed a similar approach, which allowed for a polynomially

varying bias and gain over an interval. That study found that both a bias and gain which

varied linearly resulted in the best reconstruction. The work by Facchinetti et al. differs from

the approach discussed here in that the method described in Section 2.2.1.4 utilizes a con-

stant bias and time-varying multiplicative gains within an interval. For intervals containing

only calibration points, the method employed here reduces to that of [153] with a constant,

instead of linearly varying, bias. For intervals containing one or more non-calibration refer-

ence measurements, an argument could be made that this methodology may approach that
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of [153] with polynomial order N, where N is the number of reference measurements lead-

ing to a polynomial gain that redirects the CGM data through all reference measurements.

However, Facchinetti et al. had the benefit of high frequency reference measurements (ap-

proximately every 15 minutes). The data available for this study is much more sparse, with

only a small handful of reference measurements available in an interval. As such, fitting a

single linearly varying gain correction factor over an interval becomes extremely sensitive to

outliers and often results in large discontinuities across calibration windows. Fitting higher

order polynomial functions to describe the variations in the gain becomes untenable due to

the lack of intuition regarding physical relevance of the polynomial coefficients. The ap-

proach discussed here hinges on the assumption that λ should tend toward unity. No such

assumption exists for quadratic or higher order polynomial functions to drive the coefficients

toward some value. As such, with the sparse data available, the problem rapidly becomes

ill-posed for higher-order functions. For these reasons, and through the evolution of sev-

eral approaches, the retrospective glucose reconstruction discussed here was developed and

found to be effective, efficient and generate solutions consistent with physiology and certain

physical assumptions.

2.3 MODELING CGM ERROR

The previous section (2.2.1.4) detailed a method for correcting high-frequency CGM data

by removing biases and linear drifts in the sensor gain. The corrected CGM trajectories are

then used to reconstruct a single blood glucose profile and in turn a virtual patient cohort

as detailed in Chapter 3. In this section, that reconstructed glucose data is utilized in the

synthesis of a stochastic model for the CGM error process.

The true instantaneous error (EI(ti)) for a CGM at any point can be calculated as the

difference between the reference data (RG(ti)) and the raw CGM data (Equation (2.10)).

EI(ti) = RG(ti)− CGM(ti) (2.10)
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However, because EI(ti) can be calculated only when reference measurements are available,

it is not representative of the error at the CGM sampling rate, but rather it is assumed to

be the result of an accumulation (integration) of the error in every CGM measurement from

calibration up to the current time. As such, the reconstructed glucose profile (CGMR(ti))

developed in Section 2.2.1.4 is used as a surrogate reference to calculate a reconstructed error

(ER(ti), Equation (2.11)) at the native CGM sampling rate.

ER(ti) = CGMR(ti)− CGM(ti) (2.11)

To develop a model of the CGM error process, autoregressive-plus-moving-average (ARMA)

models are fit to the high-frequency reconstructed error. From the reconstructed error, we

can identify properly functioning CGMs and sensors that appear to be malfunctioning. A set

of ARMA models are fit to the set either properly functioning or malfunctioning CGMs inde-

pendently resulting in a stochastic model for “normal” CGM noise or error, and a stochastic

model for the rapid growth in error observed in faulty or malfunctioning CGMs.

2.3.1 Materials and Methods

2.3.1.1 Identifying Faulty CGM Data All continuous glucose monitors will suffer

from some degree of noise in their measurements, such that small errors are not indicative

of a faulty sensor. In Section 2.2.1.4, it was shown that even a single CGM may perform

well over certain intervals and at other times may function very poorly, as evidenced by

large biases and a highly variable gain which deviates significantly from unity. A common

measure used to assess the accuracy of continuous glucose monitoring is mean absolute

relative difference (MARD, Equation (2.12)) [76, 77].

MARD =
1

N

N∑
i=1

∣∣∣Ĝ(ti)−G(t1)
∣∣∣

G(t1)
(2.12)

where G(ti) is true blood glucose at time ti and Ĝ(ti) is blood glucose as measured by CGM

at time ti.
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A recent study by Wilinska and Hovorka [78] suggested that MARD ≤ 10% is optimal

for TGC and resulted in the lowest frequency of hypoglycemia [154]. This result was corrob-

orated by a similar study, which found that MARD ≤ 11% was optimal [79]. The MARD

for each CGM over every interval in our data was calculated with G(ti) = CGMR(ti) and

Ĝ(ti) = CGM(ti), and the recommendations of these studies are used as a threshold between

functioning and malfunctioning sensors. This results in the identification of a set of intervals

with MARD > 10%, which are presumed to contain data from malfunctioning CGMs, and a

set of nominally functioning sensors with MARD ≤ 10%. These two sets are used to develop

stochastic models describing both the noise present even in fault-free CGM operation and

the error process governing faulty CGMs leading to significant drift and inaccurate glucose

measurements.

2.3.1.2 Autoregressive-plus-Moving-Average (ARMA) Models ARMA models

are commonly used to describe stochastic time series processes and will be employed here

to model CGM error. The notation ARMA(p, q) represents a model consisting of an au-

toregressive polynomial with p terms and a moving-average polynomial with q terms. The

general form for an ARMA model is given in Equation (2.13).

Xt = c+ εt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjεt−j (2.13)

Here c is a constant trend, ε is white noise process with variance σ2
ε , ϕi are the coefficients of

the autoregressive polynomial and θj are the coefficients of the moving average polynomial.

ARMA models assume weakly stationary data, meaning that the data and autocovari-

ance do not vary with respect to time. Here, the augmented Dickey-Fuller test is used to

check for stationarity. Because it was found, In general, that the reconstructed error was not

stationary, the reconstructed error data was differenced once over each interval resulting in

a stationary process. Here, stationarity implies that the joint probability distribution, and

consequently the interval mean and variances of the error, do not change with time. If Xt
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is assumed to be the integrated error of a single differenced error signal (dXti = XtiXti−1
),

then the integrated form of Equation (2.13) for Xt is given by Equation (2.14).

(
1−

p∑
i=1

ϕiL
i

)
(1− L)Xt = δ +

(
1 +

q∑
i=1

θiL
i

)
εt (2.14)

L in Equation (2.14) is the lag operator defined as LXt = Xt−1.

2.3.1.3 Identifying p and q in ARMA(p, q) The autocorrelation and partial autocorre-

lation functions are commonly used to identify the appropriate order for p and q. In general,

it was observed that the autocorrelation function for the differenced error data dropped off

immediately to levels indicating no significant correlation after a single lag. This is indica-

tive of an ARMA(0, 1) process or simply an integrated moving average model with one term

(MA(1), see Equation (2.15)) and a constant (c).

Xt = δ +

(
1 +

q∑
i=1

θiL
i

)
εt (2.15)

2.3.1.4 Akaike Information Criterion The Akaike Information Criterion(AIC) [155,

156] is commonly used as a measure of the tradeoff between the quality of model fit and

the complexity of the model. In general, parsimony as characterized by fewer unknown

parameters is favored to avoid over-fitting. The AIC is computed as:

AIC = 2k + n ln

(
RSS

n

)
(2.16)

where k is the number of estimated parameters, n is the number of data points and RSS is

the residual sum of squares.

From Equation (2.16), it is clear that as k, the number of estimated parameters, increases,

the AIC value will grow if there is not a corresponding decrease in the residual from a least-

squares regression. Conversely, a reduction in the number of parameters, which does not

significantly increase the fitting error as measured as the residual sum of squares, will result

in a reduced AIC. Here, the AIC is used to validate the choice of an MA(1) model structure

and evaluate the need for a non-zero constant trend (c in Equations (2.13) and (2.15)).
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2.3.1.5 CGM Bias Because the reconstructed error data were found to be non-stationary

and because ARMA models assume stationarity, the data were made stationary via differ-

encing. As a result of the differencing, any constant offset or bias is removed from the data.

The reconstruction process in Section 2.2.1.4 enabled the identification of a constant bias for

all intervals (see Figure 9 for the distribution of biases) which may be added to the ARMA

process. As before, the biases are separated into bias subsets corresponding to the nomi-

nally functioning and malfunctioning CGM intervals. The distributions of these subsets can

then be sampled when simulating or regenerating a CGM error trajectory to re-introduce a

realistic offset post-hoc.

2.3.2 Results

The moving average coefficient (θ), along with σ2
ε , were fit using the statsmodels [157] package

in Python. As a result of differencing the error data to induce stationarity, any trends or

offset are removed. As such, there is assumed to be no constant in the model and c is taken

to be equal to 0. Assuming an MA(1) model, the distributions of the MA coefficient θ as

well as the error variance σ2
ε are shown for both the functioning and malfunctioning CGMs

in Figure 12 and the statistics for θ are shown in Table 3.

Table 3: Statistics for the moving average parameter (θ) and the variance of the white

noise (ε) driving the MA process for all intervals with MARD ≤ 10% (functioning) and all

intervals with MARD > 10% (malfunctioning).

Mean Median Standard Deviation Min Max

Functioning
θ 0.401 0.402 0.185 -0.016 0.858

σ2
ε 5.96 2.93 8.11 0.584 55.86

Malfunctioning
θ 0.401 0.394 0.227 -0.208 0.916

σ2
ε 11.25 8.72 9.202 0.702 38.89
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Figure 12: (Top) Distribution of the moving average parameter (θ) and (Bottom) the white

noise variance (σ2
ε). The outer edges of the box denote the interquartile range, the middle bar

indicates the median, the boxes extend to 1.5×IQR, and the �s indicate outliers. Significance

(via Mann-Whitney U Test) is indicated with ∗ at the following levels: – = no significance,

∗=95%, ∗∗= 99%, ∗∗∗= 99.9%, ∗∗∗∗= 99.99%

53



Figure 13 shows a histogram of the biases for intervals with proper CGM functioning

and intervals where a CGM is presumed to be malfunctioning. Normal distributions were

found to provide a good description of the biases, and the fit of the normal distributions are

shown in Figure 13. The parameters describing the normal distributions (Equation (2.17))

for the functioning and malfunctioning CGMs are given in Table 4.

f(x | µ, σ2) =
1√

2σ2π
e−

(x−µ)2

2σ2 (2.17)

where µ is the mean of the distribution and σ2 is the variance.

From the MA(1) model and the distribution of CGM biases, a simulation or likely

realization of a CGM error profile (ES) can be constructed from the integration or cumulative

sum of the MA(1) process with a constant variance and bias as:

ES(tj) =

j∑
i=1

[θiES(ti−1) + ε(ti)] +N(µB, σ
2
B) (2.18)

where N(µB, σ
2
ε) is a random sample from the appropriate normally distributed bias function

held constant across an interval. Equation (2.18) gives the full CGM error model for both

nominally functioning and faulty CGMs where θ, σ2
ε and N(µB, σ

2
B) fully determine whether

the model is simulating functioning or malfunctioning sensors.

1000 realizations of the integrated moving average model for both nominally functioning

and malfunctioning models were generated for each interval length within the functioning

or malfunctioning subgroup. For all the moving average parameters (θ, σ2
ε) median values

were used to diminish the effect of outliers on the trajectories. Constant biases were sampled

directly from the distribution N(µB, σ
2
B) for the corresponding functioning or malfunctioning

subgroup. Because the integration of the moving average model results in a process with

a variance that increases with time, realizations were sampled with a length equal to the

median value of all interval lengths within the CGM subgroup. The cumulative histograms

comparing simulated error for both CGM subgroups compared to the true observed error

are shown in Figures 14 and 15. The statistics of observed and simulated error trajectories

are shown for both groups in Table 5.
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Figure 13: Distribution of bias parameter (B) for nominally functioning continuous glucose

monitors (Left) and malfunctioning sensors (Right).
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Table 4: Parameters for the normal pdf (Equation (2.17)) describing the distribution of the

biases for both functioning and malfunctioning CGMs.

µ
(
mg
dL

)
σ
(
mg
dL

)
Functioning 2.01 7.15

Malfunctioning 7.90 20.48

An additional 1000 realizations were simulated for the equivalent of 700 minutes of mea-

surements and compared to the true error trajectories for both the nominally functioning

and malfunctioning CGM subsets. These results are shown in Figures 16 and 17.

As previously mentioned (Section 2.3.1.3), the autocorrelation function of the differenced

error data suggested that the data were described by a moving average model with one history

term. Section 2.3.1.4 explained the use of the Akaike Information Criterion (AIC) to assist

in model selection in a manner that favors parsimony. Table 6 presents the AIC values for

a variety of alternative and/or higher order models.

2.3.3 Discussion

For both the nominally functioning and malfunctioning CGM data, the Aikaike Information

Criterion (AIC) was not found to be the lowest for the chosen model structure (ARMA(0, 1)).

However, in general, there is little variance in the AIC across all model structures and

an ARMA(0, 1) model was found to best represent both the reconstructed and observed

CGM error qualitatively (Figures 14 to 17). Although the mean AIC in Table 5 results

from a second order moving average (ARMA(0, 2)) model, it is somewhat misleading in

so far as fitting routines fail to converge on a solution for all intervals using higher order

models. As such, there are fewer total intervals included in the calculation of mean AIC
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Figure 14: Cumulative histogram showing the qualitative agreement between the observed

error calculated as the difference between sparse reference measurements and the corre-

sponding raw CGM data, and simulations (N=1000) of the integrated moving average model

(Equation (2.18)) with parameters determined for the nominally functioning subset of CGM

data.
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Figure 15: Cumulative histogram showing the qualitative agreement between the observed er-

ror calculated as the difference between sparse reference measurements and the corresponding

raw CGM data, and simulations of the integrated moving average model (Equation (2.18))

with parameters determined for the malfunctioning or faulty subset of CGM data.
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Table 5: Mean and standard deviations of the observed data compared to 1000 simulated tra-

jectories via an integrated moving moving average model with offest for both the nominally

functioning and malfunctioning CGM groups

µ
(
mg
dL

)
σ
(
mg
dL

)
Functioning

Observed 1.825 17.92

Simulated 2.343 18.18

Malfunctioning
Observed 10.63 35.82

Simulated 9.285 35.75

for higher order models and only the “best intervals, that is intervals most well-described

by an ARMA(0, 2+) model are included. The deviation observed between the model and

reference data in Figure 15 may suggest that a more narrow non-normal distribution is more

appropriate to describe the variance of the random effects in the moving average model.

The distributions of parameters for both the nominally functioning and malfunctioning

CGM groups are shown in Figure 12, with relevant statistics given in Table 3. Disregarding

bias from these parameters and distributions for the moment, as it is purely additive post-hoc,

it is apparent that both the nominally functioning and malfunctioning CGM groups can be

described by an MA(1) process with, for all practical purposes, an identical moving average

coefficient (θ). The differences between them must result from the significant difference in

the variance of the white noise (σ2
ε). This is not necessarily intuitive, but upon further

consideration of the calibration and operation of CGM it could be expected, as explained

below.

The calibration procedure for the Dexcom® Platinum™ G4 continuous glucose monitor

is proprietary, but patent literature suggests that the CGM employs a linear calibration

curve calculated via a weighted least-squares regression over (at most) the previous six

calibration points where recent calibrations may be weighted more heavily [158]. As such

the calibration curve is sensitive to miscalibrations or erroneous calibration measurements.
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Figure 16: The error in nominally functioning CGMs is simulated over 700 minutes and com-

pared to the observed error trajectories. The dashed black lines denote the 95th percentiles

of the simulated data. The color of the reference measurement corresponds to individual

patients (all reference measurements from a certain patient will have the same color).
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Figure 17: The error in malfunctioning functioning CGMs is simulated over 700 minutes

and compared to the observed error trajectories. The dashed black lines denote the 95th

percentiles of the simulated data. The color of the reference measurement corresponds to

individual patients (all reference measurements from a certain patient will have the same

color).
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Table 6: The mean AIC over all intervals fit with an ARMA(p, q) model is shown for models

with p ∈ {0, 1, 2} autoregressive terms and q ∈ {0, 1, 2} moving average terms for both the

nominally functioning and malfunctioning CGM data.

Functioning

@
@

@
@@

p

q
0 1 2

0 – 312.20 319.14

1 306.72 310.42 305.01

2 306.22 311.38 312.06

Malfunctioning

0 – 416.83 414.88

1 409.88 410.81 437.85

2 409.63 410.29 419.15

A new calibration measurement with significant error compared to the true blood glucose

concentration will be given a greater weight than older, possibly more accurate, calibrations,

potentially resulting in a significant shift in the slope of the calibration curve. As a result,

all succeeding glucose concentrations will be measured with a faulty gain. This leads to

significantly more error as glucose concentrations move away from the calibration point. This

implies that the observed trend in any of the error trajectories is simply the magnification

of error as glucose concentrations naturally vary in response to pancreatic insulin secretion,

meals, and a host of other physiologic phenomena. The stochasticity of the trajectories is the

result of the magnification of random noise from an erroneous calibration curve. Ultimately,

this effect would manifest in the variance of the process with faulty calibrations leading

to a significant magnification in the variance of the error as observed here. Because the

point-to-point changes in the error are simply the result of random noise and natural blood

glucose fluctuations, the dynamics of the process would not be expected to change; hence, it

is observed that an MA(1) process with a single θ, but different σ2
εs, is able to capture and

recapitulate error between the two groups equally well.
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Poor calibration does not affect only the slope; it is also used to set the intercept or offset

of the calibration curve. Poor calibration, especially at early time points, may therefore also

result in continuous bias or offset in the CGM measurements. This is apparent in the distri-

butions for the biases (Figure 13 and table 4), which have a positive mean and significantly

greater spread over intervals of malfunctioning CGM data. Due to the extreme difference in

the distribution of the biases between the nominally functioning and malfunctioning CGM

groups, it is easy to attribute most of the error to faulty or erroneous calibration mea-

surements. However, calibrating the CGM during periods of rapid blood glucose change

is also known to result in significant error [159]. This is because interstitial glucose con-

centrations, as measured by the CGM, lag blood glucose measurements, as measured by

a capillary fingerstick, due to the transport time from the blood to interstitium. During

rapid changes in blood glucose, this effect becomes most pronounced and interstitial con-

centrations may lag significantly behind the measured blood glucose concentration, thereby

introducing a source of error in the calibration curve. As such, calibration should only be

performed during periods of stable blood glucose concentrations, during which plasma and

interstitial glucose concentrations will have equilibrated. As a result, it would be expected

that the data from malfunctioning CGMs should exhibit greater slopes in blood glucose and

greater blood glucose variability preceding calibration compared to data from the nominally

functioning CGMs. This phenomenon is in fact seen, as shown in Figure 18, although the

magnitude of the effect may be debatable. From this we may ultimately conclude that a

combination of erroneous calibration measurements and calibration at inappropriate times

combine to produce the observed CGM error, with erroneous calibration appearing as the

primary contributor.

Not discussed previously is the potential for drift in the CGM gain. We would expect

any drift to be the result of physical processes such as degradation of the sensing element

or biofouling [68]. Because the physical processes leading to CGM drift are expected to be

consistent, the drift can be considered a component of the error dynamics as governed by

the moving average parameter (θ) and therefore conserved between the CGM groups.
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Figure 18: (Top) Glucose rate of change in the 30 minutes preceding a CGM (re)calibration.

(Bottom) Blood glucose variability in the 30 minutes preceding (re)calibration. Signif-

icance (via Mann-Whitney U Test) is indicated with ∗ at the following levels: – =

no significance, ∗ = 95%, ∗∗ = 99%, ∗∗∗ = 99.9%, ∗∗∗∗ = 99.99%
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2.4 SUMMARY

A model-based technique has been developed that corrects raw CGM data according to

reference measurements of varying confidence in a piecewise manner by removing a static

bias and allowing for the potential of a linearly varying drift in the gain of the sensors.

The approach is able to retrospectively correct the CGM data to recapitulate reference

measurements from multiple sources primarily by removing a constant offset. In general,

corrections to CGM gain are small and the few cases where the gain correction factors

(λ(ti)) grow large represent extreme CGM faults such as improper calibration. Fitting a

model of glucose-insulin dynamics to the corrected data results in dynamics that will be

shown, in Chapter 3, to be physiologically realistic and consistent with clinical observations

and expectations.

Using the glucose concentrations fit via the aforementioned model as surrogate reference

measurements, the CGM data is segregated based on MARD into two groups of individuals:

one with normal sensor function, and a second with malfunctioning CGMs. A time series

model of CGM error was then developed for each group independently, and it was found that

a first-order integrated moving average model best described each group. Furthermore, the

moving-average processes were characterized by a nearly identical distribution of the moving

average parameter but differed significantly in the variance of the white noise term. From

these observations and the distribution of the biases of each CGM group (where the bias

is calculated as part of the retrospective correction) it was suggested that calibration error

may be largely responsible for the differences in error where the malfunctioning CGM group

was subject to erroneous calibration measurements or calibration at inappropriate times (i.e.

rapid rate of glucose change or high glucose variability).

These results highlight the importance of proper calibration technique. Chapter 5 will

use the error model developed here to demonstrate that as long as calibration protocol is

followed carefully, with dual CGMs and moving horizon estimation the CGMs generally

perform well. This system is capable of measuring blood glucose levels with MARD≤ 10%,

which is appropriate for closed-loop control. In addition, the distributions of error between

the nominally functioning and malfunctioning CGM groups, as well as the error models
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developed, will be incorporated into the closed-loop glucose control algorithm for in silico

trials which simulate realistic clinical conditions (see Chapter 5. They will also be used in

Chapter 6 to test algorithms used to identify malfunctioning CGMs thus ensuring patient

safety.
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3.0 VIRTUAL PATIENTS

3.1 INTRODUCTION

In developing a model-based glycemic control scheme, the dangers associated with even a

single incidence of hypoglycemia [22] motivate the necessity of simulated trials and testing

of a proposed control algorithm. To facilitate this need the following chapter details the

development of a mathematical model, and a corresponding data-driven virtual patient co-

hort, for in silico testing of targeted glucose control schemes. The requirements of a virtual

patient cohort are that it is able to capture blood glucose dynamics observed in a wide range

of critically ill patients with patient-specific parameterizations and trends which are congru-

ous with physiology. We would expect characteristic differences in the dynamics of insulin

sensitivity between patients corresponding to stable (healthier/improving patients) and un-

stable (acutely ill) patients. Namely, healthy patients, or those with stable blood glucose

levels near euglycemia, should have a higher degree of sensitivity to insulin as well as a lower

variance in their insulin sensitivity trajectories [160]. Conversely, patients exhibiting stress

hyperglycemia and poor blood glucose control would be expected to present with suppressed

and highly variable insulin sensitivities concomitant with a proinflammatory ICU state [160].

These characteristically different dynamics should emerge in any clinically-relevant virtual

patient cohort. Additionally, a virtual patient should support clinically relevant inputs such

as enteral and parenteral nutrition as well insulin administration (both intravenous (IV) and

subcutaneous (SQ)). Furthermore, parameter ranges should be consistent with physiology

and fixed when supported by literature values.
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To this end the virtual patient model developed here is composed by linking the Intensive

Control Insulin-Nutrition-Glucose (ICING) model [110], a model of subcutaneous insulin

delivery [160], and the insulin-suppressed endogenous glucose production component of the

“extended” minimal model [130]. The virtual patient cohort synthesized from this model

captures the clinical data of patient response at high measurement density while meeting

the criteria outlined above. The resultant virtual patients exhibit a range of both intra-

and inter-patient variability that could be expected in a population of critically ill patients.

These virtual patients will be used in Chapter 5 to study and test the merits of a proposed

ZGC paradigm.

3.2 METHODS AND MODELING

The basis of the virtual patient cohort comes from an existing model of clinically validated

glucose-insulin dynamics for critically ill patients. The base model makes certain simplifying

assumptions such as a constant basal rate of endogenous glucose production (EGPb), and a

simplistic feedback mechanism modeling pancreatic insulin secretion as suppression from a

maximal rate in response to Rising plasma insulin levels. In lieu of this feedback mechanism,

Lin et al. [110] recommend fitting an endogenous insulin production rate using C-Peptide

data as a marker of plasma insulin concentration but unfortunately this data is not available

in real-time at present. Fitting this model with patient specific variable insulin sensitivities

and rates of non-insulin mediated glucose uptake (pG) to the corrected high frequency CGM

data (Section 2.2.1.4) resulted in variability in insulin sensitivity which defied physiologic

expectations. The model only resulted in a good match to the corrected CGM data via

numerous and implausible extended periods of complete resistance to insulin. In even the

most severely type 2 diabetic patients complete insensitivity to insulin is not observed [161].

The excessive variability and poor quality of fit, compared to the results of the model creators

[110] may be due to differences in data density. The ICING model was developed and

validated with hourly blood glucose measurements whereas the CGM data used here is

available with a sampling frequency of 5 minutes. To develop a virtual patient cohort with
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increased physiologic relevance and clinical consistency, in addition to more physiologically-

realistic patient-specific profiles for the aforementioned regressed parameters and pancreatic

insulin secretion profiles, the assumption of a constant rate of endogenous glucose production

will be relaxed. Rapid rates of change in blood glucose concentrations which may only

be observed with the high frequency measurements available from the continuous glucose

monitors are believed to drive the excessive variability in insulin sensitivity, which not have

been originally observed with the lower rate of measurement in the development of the

ICING model. The inclusion of an insulin-dependent rate of endogenous glucose production

and more realistic time-dependent insulin secretion trajectories distributes the variability

realistically into several key contributors and result in a more believable virtual patients.

There is not, to the best of our knowledge, a model of insulin secretion that results in a good

fit with our high density clinical data and exhibits dynamics consistent with the observed

data. In addition, a number of constraints grounded in physiology are used to guide the

regression of insulin sensitivity and secretion profiles.

3.2.1 ICING Model

The Intensive-Control-Insulin-Nutrition-Glucose (ICING) model has been previously vali-

dated in a critical-care patient population[110] and will be used as the basis for the glucose-

insulin dynamics of this virtual patient cohort. Nominally, the ICING model shares a struc-

ture with the Bergman minimal model [162] but includes a Michaelis-Menten saturating

insulin effect in comparison to the linear response of glucose to insulin seen in the minimal

model. This change is significant for a critically-ill population as it suppresses the effect

of insulin[163–166] at high concentrations, thereby limiting the extent of insulin-mediated

glucose uptake in the presence of insulin resistance. The basic structure and connectivity

of the ICING model is depicted and described in Figure 19 and the nonlinear differential

equations representing this five-state model are given in Equations (3.1a) to (3.1h)
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Figure 19: Block diagram depicting the structure of the ICING model for glucose-insulin dy-

namics. Here, I is plasma insulin, QI is interstitial insulin, and G is plasma glucose. Plasma

insulin concentrations can change in response to pancreatic insulin production, exogenously

administered intravenous insulin (UI(t)) and absorption from the subcutaneous space fol-

lowing subcutaneous insulin administration (see Section 3.2.3). Insulin diffuses between the

blood and interstitium and is eliminated via cellular clearance in the interstitium. Glucose

is cleared from the blood via an insulin mediated saturating effect on peripheral and hepatic

glucose uptake and appears in the blood as a result of endogenous glucose production (EGP)

where ∼ 95% of (EGP) is found to come from the liver[167]. Additional sources of glucose

are exogenous intravenous glucose administration (UG(t)) enteral feeding (UE(t)) where P1

and P2 represent gastric emptying and absorption in the gut, respectively.
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dBG(t)

dt
= −pGBG(t)− SI(t)

QI(t)

1 + αGQI(t)
+
P (t) + EGPb(t) + UG(t)− CNS

VG
(3.1a)

dQI(t)

dt
= nI(I(t)−QI(t))− nc

QI(t)

1 + αGQI(t)
(3.1b)

dI(t)

dt
= −nkI(t)− nLI(t)

1 + αII(t)
− nI (I(t)−QI(t)) +

uex + (1− xL)Uen(t)

VI
(3.1c)

dP1(t)

dt
= −d1P1 +D(t) (3.1d)

dP2(t)

dt
= −min(d2P2, Pmax) + d1P1 (3.1e)

P (t) = min(d2P2, Pmax) + PN(t) (3.1f)

Uen(t) = k1e
−I(t)k2/k3 (3.1g)

uex = UI(t) + kTRQ2,r + kTRQ2,f + USC,s(t) (3.1h)

Equations (3.1a) to (3.1c) describes the effect of previously infused insulin over time in the

interstitium (QI) on blood glucose (BG) and the transport of plasma insulin (I) into the

interstitium. Equations (3.1d) to (3.1f) govern the appearance of glucose in the plasma from

the gut (P (t)). P1 represents glucose in the stomach and P2, the intestine resulting from oral

or parenteral glucose intake (PN(t)) [110]. The insulin secretion rate as originally described

in [110] is given by Equation (3.1g). The saturating effect of insulin on glucose uptake is

given by the Michaelis-Menten function:

QI(t)

1 + αGQI(t)

in Equation (3.1a) and is used to represent the binding of insulin to GLUT4 receptors

on the cell surface driven by interstitial insulin concentrations. This term appears again

in Equation (3.1b) to represent the degradation of receptor bound insulin[168]. A final

saturating effect is given by:
I(t)

1 + αII(t)

which describes the lumped flux of insulin from the plasma to account for the many various

routes of insulin clearance which are not explicitly counted for here. kTRQ2,r and kTRQ2,f

in Equation (3.1h) descrbe the rate of appearance of insulin in the plasma following the
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absorption of subcutaneously administered regular- and fast-acting insulin analogs per the

kinetics given by Equations (3.2) to (3.4). USC,s(t) gives a constant rate of plasma appearance

of insulin following a subcutaneous bolus of a long-acting insulin analog.

3.2.2 Glucose and Medical Record Data

The virtual patient cohort detailed herein was developed using high frequency (5 minute)

measurements of glucose collected using two Dexcom® Platinum™ G4 continuous glucose

monitors per patient. The data from each CGM were independently corrected via the pro-

cedure detailed in Section 2.2.1.4, before use here, to enhance the accuracy with respect to

reference capillary fingerstick and blood chemistry analyzer measurements.

In addition to the corrected glucose data, amounts and rates of glucose infusion and

insulin infusion were obtained from a manual search of the UPMC electronic medical records

for each patient. Information pertaining to enteral nutrition (meals and continuous tube

feeding) was also obtained from the medical records. For meals, the type (breakfast, lunch,

dinner, juice), time, and percentage consumed were specified and for tube feeding the feeding

rate in mL/hr was specified along with the solution type enabling conversion to an equivalent

rate of glucose appearance in the gut. Because the nutritional content of meals was not

specified, the equivalences specified in Table 7[92, 169] were used. These medical record

data were included in the virtual patient fitting in order to isolate, to the greatest degree

possible, insulin sensitivity and insulin secretion dynamics from exogenous inputs. This is

important for simulations of TGC methodologies so that virtual patient responses can be

decoupled from the original clinical protocol under which they were treated.

3.2.3 Subcutaneous Insulin Administration Model

Subcutaneous insulin administration is less invasive than intravenous delivery and preferen-

tially employed in patients deemed stable enough to be taken off intravenous insulin drips.

The medical record data used here included both continuous infusions and bolus adminis-

trations of slow-release, regular- and fast-acting insulin analogs. Regular insulin is standard

human insulin whereas the fast-acting analog is modified to be absorbed more readily from
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Table 7: Glucose equivalents for three standard meals and oral fluids along with the corre-

sponding rate of appearance in the gut. The rate of appearance is based on the assumption

that meals are consumed over the course of an hour and juice over twenty minutes.

Meal Glucose Equivalent (g) Rate
(
mg
min

)
Breakfast 40 666.67

Lunch 40 666.67

Dinner 70 1166.67

Oral Fluids (Juice) 14.2 710.0

the subcutaneous injection site and, therefore, to be available for insulin-mediated glucose

disposal more rapidly. The long-acting analog is designed to be slowly released over a period

of up to 24 hours to mimic the response of basal pancreatic release.

These various insulin analogs have very different pharmacokinetic profiles after subcuta-

neous administration which must be considered in order to maximally isolate patient-specific,

time-varying parameters from exogenous effects in the virtual patient cohort. To this end

a linear three-compartment model of subcutaneous insulin absorption is employed[160] to

describe the absorption kinetics of regular- and fast-acting insulin. The model as used here

results from the reduction of an existing model of subcutaneous insulin absorption[78] and

captures the absorption kinetics of regular- and fast-acting insulin through a difference in

parameterization. The model structure and differential equations describing regular- and

fast-acting insulin analogs are shown in Figure 20 and table 8.
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The parameterization of Equations (3.2) to (3.4) for regular and fast-acting analogs is

given in Table 8. This model structure does not have a parameterization for long-acting

insulin, so instead long-acting analogs are assumed to result in a constant rate of appearance

in the blood over 20 hours.

dQSC(t)

dt
= USC(t)− kSCQSC(t) (3.2)

dQ1(t)

dt
= kSCQSC(t)− kEQ1(t)− kTRQ1(t) (3.3)

dQ2(t)

dt
= kTRQ1(t)− kTRQ2(t) (3.4)

Figure 20: Block diagram depicting the absorption of subcutaneously administered insulin

(USC(t)) from the interstitium (QSC) through two intermediary compartments (Q1, Q2) to

the plasma (I).
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Table 8: Parameters describing the absorption and appearance in the blood plasma of

regular- and fast-acting insulin following a subcutaneous injection. The parameterization

of the model is largely identical for the two insulin analogs with the differences in action

being described by the rate of elimination from the first intermediary compartment. (see

[114] and [170] for a further discussion)

Parameter Units Regular Fast

kE min−1 0.0268 0.00682

kSC min−1 1.08 1.08

kTR min−1 0.0127 0.127
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3.2.4 Insulin Mediated Endogenous Glucose Production

The suppression of endogenous glucose production is taken from [171] and is modeled by

Equation (3.5a) and Equation (3.5b).

dQL(t)

dt
= PG4(I(t)−QL(t)) (3.5a)

EGP (t) = EGP0

(
1− kEGP

[
Q3
L(t)

Q3
L(t) + s3

EGP

])
(3.5b)

Equation (3.5a) describes the transport of plasma insulin to a remote liver compartment,

QL. This effector modulates the rate of endogenous glucose production via the algebraic

saturating Hill function in Equation (3.5b) [171]. In this manner rising plasma insulin levels

suppress the production and release of glucose from the liver. This addition along with the

inclusion of a description of subcutaneous insulin absorption are depicted in Figure 21 and

will be referred to from here on as the extended ICING (eICING) model. sEGP in Equa-

tion (3.5b) is the remote liver insulin concentration at which endogenous glucose production

is suppressed to a rate half of the lowest possible suppressed value. The maximum rate of

endogenous glucose production, EGP0 in Equation (3.5b), is taken to be EGPb from [110]

at a value of 20.9 mg
min

and PG4 assumes the value from [171]. The full form of the eICING

model can be seen in Appendix A
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Figure 21: Block diagram depicting the structure of the eICING model. The additions

of subcutaneous insulin absorption kinetics and a saturating insulin-mediated endogenous

functionality are shown by the dotted lines ( . . . ).
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3.2.5 Glucose Transport Delays

The continuous glucose monitors used in the observation study which generated the glucose

data for this work are implanted subcutaneously and therefore measure interstitial glucose

concentrations. Due transport dynamics there is a lag between plasma and interstitial glucose

concentrations [172–177]. This lag is estimated to be less than 10 minutes [172], and is

commonly assumed to be around 5 minutes [175]. This could generally be assumed to result

in little difference between plasma and interstitial glucose concentrations during periods of

slow glucose changes, however the discrepancy may become significant following rapid plasma

glucose fluctuations. As such, this transport delay is added to the ICING model so that it

may be fit to interstitial glucose concentrations as measured by subcutaneous continuous

glucose monitors as opposed to plasma glucose measurements.

The lag between interstitial and plasma glucose concentrations can be simply modeled

by the first order filter given by Equation (3.6) as has been commonly done, previously

[178–181].

dGISF (t)

dt
=

1

τ
(BG(t)−GISF (t)) (3.6)

where BG(t) is the plasma glucose concentration and GISF (t) is the glucose concentration

in interstitial fluid. Assuming a lag time of 5 minutes, τ , the filter time constant becomes

3.15 minutes. Given this addition GISF (t) is then fit to the CGM data as opposed to BG(t).

3.2.5.1 Regressed Patient-Specific Parameters In addition to SI(t) and Uen(t), the

constant parameters nI and nC will be regressed individually to each patient. Lin et al. [110]

identified nI as a critical parameter governing the quality of model fit. Based on studies

indicating that the interstitial to plasma insulin ratio is between 0.4 and 0.6 at steady state

the assumption that nI = nC was employed in parameterizing the ICING model. In that

work, ultimately, the “optimal” values of nI and nC were determined via grid search. The

formulation of virtual patients as a constrained nonlinear optimization problem allows for

relaxation of the assumption that nI = nC . Here nI and nC will be determined through the

solution of the nonlinear optimization in Equation (3.9) where the relative values of nI and

nC bounded by a steady-state constraint.
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The value of pG, the insulin-independent rate of glucose uptake in peripheral tissue was

established pair-wise with a basal rate of endogenous glucose production (EGPb) in Lin et

al. [110]. As EGP in the eICING model introduced here is related algebraically to a remote

insulin concentration in the liver, pG is refit as a variable in the nonlinear program given in

Equation (3.9).

Because peripheral tissue insulin sensitivity (SI) is known to exhibit inter- and intrap-

atient variability, it stands to reason that different patients experience varying degrees of

sensitivity in their suppression of endogenous glucose production in response to insulin. As

such, sEGP is regressed as a patient-specific constant parameter in our virtual patient cohort.

The constant rate of glucose utilization by the central nervous system (CNS) is allowed

to vary in the virtual patient regression between it’s bounds of 5.22 mg
min

and 6.84 mg
min

.

Finally, steady state values of plasma and interstitial insulin concentrations (ISS and

QISS , respectively) along with a basal post-absorptive rate of insulin secretion (Uen,b) are

regressed subject to the constraints given in Equations (3.12a), (3.12b) and (3.13). It is worth

noting here that Uen,b in addition to being a variable is used to regularize insulin secretion

rates to a patient-specific basal value (see Section 3.2.6.1) thereby favoring mean-reverting

behavior and a return to basal rates in pancreatic insulin production during steady-state

conditions.

3.2.6 Virtual Patient Dynamic Optimization

3.2.6.1 Regularization An inverse problem is the process of deducing the causal factors

that result in a set of observations. Inverse problems are an archetypal class of ill-posed

problems which require additional assumptions such as smoothness of solutions which is

introduced here via regularization [182]. Specifically, regularization on changes in the SI
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profile (Equation (3.7a)) results in smoothness in the insulin sensitivity trajectories. A

second regularization (Equation (3.7b)) is used to enforce a degree of smoothness in the

insulin secretion rate profiles.

ΓSI

N∑
i=1

(SI(ti)− SI(ti−1))2 , i ∈ I (3.7a)

ΓUen

N∑
i=1

(Uen(ti)− Uen,b))2 , i ∈ I (3.7b)

Without the regularization term in Equation (3.7a), the regressed SI(t) profile would exhibit

extreme variability in order to produce an exact match to the clinical data at the expense of

expected physiologic behavior resulting in a preponderance of sharp corners. The omission

of this regularization term additionally results in extremely tight correlation between the

SI(t) and UI,en(t) profiles as a result of the ill-posedness of the problem. The regularization

term of Equation (3.7b) ensures that insulin secretion rates have a mean reverting behavior

such that insulin secretion rates tend toward Uen,b in a post-absorptive state. Appropriate

selection of the magnitudes of the quadratic penalties outlined in Equation (3.7) along with

the insulin-mediated suppression of endogenous glucose production (Equation (3.5b)) breaks

the strong correlation between insulin sensitivity and insulin secretion rates in this otherwise

ill-posed problem. This results in a separation of dynamics between these trajectories and a

frequency of oscillation in insulin secretion rates consistent with observed ultradian rhythms

[183]. In the nonlinear program (NLP) formulated in Section 3.2.6.2, Uen,b is a constant

regressed parameter whose value is bounded through the use of a steady-state constraint.

3.2.6.2 Virtual Patient Optimal Formulation A dynamic optimization approach

was employed to regress the virtual patients to clinical data. The differential equations were

discretized via a backward finite difference with a five minute time step (corresponding to the

native CGM sampling rate). Insulin sensitivity (SI(t)) and the pancreatic insulin secretion
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rate (Uen(t)) were discretized on the same timescale. From this discretization, constraints

of the form shown in Equation (3.8) can be formulated for all differential equations in the

eICING model.
x
¯
(ti)− x

¯
(ti−1)

∆t
:==

dX
¯

(ti)

dt
(3.8)

The finite differences for all eICING model equations along with the regularization discussed

above results in the following optimization problem (Equation (3.9)):

minimize
ν

J =
N∑
i=0

(GISF (ti)model −BG(ti)CGMa,b
)2 + ΓSI

N∑
i=1

(SI(ti)− SI(ti−1))2

+ ΓUen

N∑
i=0

(Uen(ti)− Uen,b))2 ∀i ∈ {0, . . . , tf} (3.9a)

subject to:
dxi
dt

=
x(ti)− x(ti−1)

∆t
(3.9b)

x(0) ≥ 0 (3.9c)

0.0
(

L
mU ·min

)
≤ SI(ti) (3.9d)

0.0
(
mU
min

)
≤ Uen(ti) ≤ 210.0

(
mU
min

)
(3.9e)

∀i = 0...tf

0.5.58
(
mg
min

)
≤ CNS ≤ 6.84

(
mg
min

)
(3.9f)

where: x =
{
BG,QI , I, P1, P2, Qsc,(r,f), Q1,(r,f), Q2,(r,f)

}
ν = {SI(ti), Uen(ti), x(0), pG, sEGP , CNS, nI , nC , ISS, QISS , Uen,b, GISF}

The objective function of the nonlinear program laid out in Equation (3.9) seeks to min-

imize the sum squared error between the CGM data and the eICING model while ensuring

smooth and physiologically motivated insulin sensitivity and pancreatic insulin secretion

profiles. This objective function is minimized subject to the algebraic finite differences of

the eICING differential equations, a non-negative constraint on the initial conditions for

all model states and physiologic limits on insulin sensitivity [110]) and rates of pancreatic
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insulin secretion [184]). The bounds on the rate of glucose uptake in the brain (CNS, Equa-

tion (3.9f)) and and the upper bound on the rate of insulin secretion (Uen, Equation (3.9e))

are taken from [110] and [185], respectively.

3.2.6.3 Additional Physiologic Constraints The nonlinear program given above in

Equation (3.9) is readily solved, but for certain patients results in solutions counter to

physiology and intuition – returning null rates of insulin-independent rates of glucose disposal

(IIGD, pG) and extended periods of time characterized by insulin secretion rates at or near

the physiologic maximum.

The first physiology-based constraint is used to maintain a physiologically consistent

ratio between non-insulin mediated glucose disposal (NIMGD) and insulin mediated glucose

uptake (IMGU). Shown in Equation (3.10), the upper bound in this constraint follows from

the observation that non-insulin mediated glucose disposal accounts for up to 75% of glucose

metabolism in the post-absorptive (3-5 hours following complete digestion and absorption of

a meal) state [186]. The lower bound is based on data suggesting that skeletal, adipose and

liver tissues are responsible for approximately 83% of glucose disposal in the postprandial

(immediately following a meal) state [187]. Because skeletal, adipose and liver tissues are

the primary insulin sensitive tissues in the body [188], it stands to reason that even in the

postprandial state NIMGD is responsible for approximately 17% of glucose disposal. By

limiting the fraction of glucose disposal occurring through non-insulin mediated pathways

between the post-absorptive and postprandial extremes this constrain helps to properly set

the balance between insulin sensitivity (SI), the non-insulin mediated rate of glucose uptake

(pG) and rates of insulin production (Uen).

0.17 ≤ 1

N

N∑
i=0

pGBG(ti)

pGBG(ti) + SI(ti)BG(ti)
QI(ti)

1+αGQI(ti)

≤ 0.75 (3.10)

Despite the regularization introduced in Equation (3.7b), which penalizes deviations in

the insulin secretion rate from a basal value it was observed that optimal solutions often

resulted in extended periods of insulin production at the maximum allowable rate. This

is not believed to be particularly realistic, and it is well known that the pancreas tends to

exhibit a biphasic release phenomenon where a maximum rate of secretion is reached only
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briefly [189–193]. A study by Polonsky et al. [194] measured insulin secretion rates over a

180 minute period in normal and obese individuals receiving a hyperglycemic intravenous

glucose infusion. Over this 3 hour period normal subjects (body surface area ≈ 1.7m2)

secreted insulin at an average rate of 44.29±2.17mU
min

while obese subjects (body surface area

≈ 2.2m2) secreted insulin at a significantly higher rate of 79.1 ± 8.4mU
min

. From the results

of this experiment the upper bound on the average insulin secretion rate over any 3 hour

period was set at 87.5mU
min

. This constraint is formalized in Equation (3.11).

1

180

ti+180∑
j=ti

Uen(tj) ≤ 87.5
mU

min
∀ti ∈ {0, · · · , tf} (3.11)

At steady state it is estimated that the ratio of interstitial (QI) to plasma (I) insulin

is 0.4 to 0.6 [195–197]. This ratio ultimately determines the the value of nI and nC as

well as the steady state or basal rate of insulin secretion (Uen,b). To calculate the the steady

state plasma and interstitial insulin concentrations the constraints given in Equations (3.12a)

and (3.12b) are used where ISS and QISS are the steady state plasma and interstitial insulin

concentrations, respectively.

nI (ISS −QISS)− nC
QISS

1 + αGQISS

= 0

(
mU

L ·min

)
(3.12a)

−nKISS −
nLISS

1 + αIISS
− nI (ISS −QISS) + (1− xL)

Uen,b
VI

= 0

(
mU

L ·min

)
(3.12b)

Then the ratio of QISS : ISS is constrained by Equation (3.13).

0.4 ≤ QISS

ISS
≤ 0.6 (3.13)

A final constraint on nI and nC (Equation (3.14) is taken from [110] and is based on reported

half-lives of “effective” insulin between 25-130 min.

0.0053 min−1 ≤ nI + nC ≤ 0.0277 min−1 (3.14)
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3.2.7 Numerical Methods

The discretization and constraints formulated in Section 3.2.6.2 were implemented in Python

using the Pyomo optimization package [148, 149]. The nonlinear program from Equa-

tion (3.9) was solved using the interior point algorithm IPOPT as the nonlinear solver [150]

and ma57 from [151] as the linear solver.

To determine the magnitude of the regularization parameters (ΓSI and ΓUen) the non-

linear program from Section 3.2.6.2 was first solved on a 2-dimensional grid of possible values

for the regularization parameters. At each point the sum-squared error was returned resulting

in the construction of an objective function surface spanning many orders of magnitude for

regularization parameter values. The resultant surface is shown in Figure 22.
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Figure 22: [log10 (ΓSI ) , log10 (ΓUen)] vs. log10 (SSE)
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The objective surface shown in Figure 22 indicates that the sum squared error begins

to sharply increase at [ΓSI , ΓUen ] ≈ [1× 108, 1× 10−4]. Because these values represent

the point at which variability and oscillations in the insulin sensitivity and insulin secretion

rate profiles can be reduced without significantly increasing the SSE and thereby unduly

biasing the solutions, the final virtual patient cohort is taken as the solution to the NLP in

Equation (3.9) with [ΓSI , ΓUen ] ≈ [1× 108, 1× 10−4].

3.3 RESULTS

Of 24 patients enrolled in the observational study which provided the data for this work

17 patients had glucose data sets over a time window of at least 24 hours which was suf-

ficient to develop virtual patients. Over these 17 patients, the virtual patients exhibited a

mean absolute error per point of 1.79 mg
dL

. Two representative virtual patients are shown in

Figures 23a and 23b. The first virtual patient (Figure 23a) has a relatively stable insulin

sensitivity profile and is representative of a healthier patient with blood glucose approaching

euglycemic levels. The latter virtual patient (Figure 23b) is characterized by a much higher

degree of variability in their insulin sensitivity profile as well as significant hyperglycemia

and poor overall control of blood glucose levels. Model fits, insulin sensitivity and secretion

profiles are shown for all patients comprising the virtual patient cohort in Appendix B.

The insulin secretion rates associated with both patients in Figures 23a and 23b are

oscillatory and are representative of the virtual patient cohort. The amplitude spectral

densities (ASD) for the representative virtual patients shown in Figures 23a and 23b are

shown in Figures 24a and 24b.

For the ASD of all members of the virtual patient cohort see Appendix C. In general,

insulin secretion profiles exhibit a peak in the ASD in the 50-120 minute range consistent

with published studies of ultradian insulin oscillations in humans [183, 198] although several

virtual patients exhibit oscillation frequencies outside the expected range of the ultradian

insulin secretion rhythm which may be indicative of β-cell dysfunction in these patients and

loss of glucose control [198].
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(b) Unstable

Figure 23: Representative clinically “stable” (A) and clinically “unstable” (B) virtual pa-

tients. Top Panels: eICING model glucose concentration (-) fit to clinical CGM data (•

and •). Middle Panels: Estimated pancreatic insulin secretion rate (Uen(t)). Bottom

Panels: Estimated Insulin sensitivity (SI(t))
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Figure 24: Amplitude spectral density of Representative clinically “stable” (A) and clinically

“unstable” (B) virtual patients. Amplitude spectral density is calculated determined via

Fast-Fourier-Transform of the insulin secretion profile after filtering via a high-bandpass

Butterworth filter with a cutoff frequency of 5 hours. Vertical black bars indicate physiologic

frequency for ultradian insulin secretion oscillations (50-120 minutes) [183, 198].
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3.3.0.1 Parameter Distributions The distributions of the regressed static parameters

pG, nI , nC , sEGP , Uen,b, ISS and QISS are shown in (half-maximum suppression liver insulin

concentration
(
mU
L

)
) are shown in Section 3.3.0.1. A table summarizing the virtual patient

estimated parameters is shown in Table 9.
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Figure 25: Boxplots showing the parameter distribution across the virtual patient cohort.

Box denotes IQR and whiskers denote 1.5 IQR. �s denote outliers.
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Table 9: Mean (µ), standard deviation (σ), median and range for all regressed parameter

across the virtual patient cohort. Constant parameters statistics are calculated between

patients. For the time varying parameters intrapatient means are calculated then used for

determine interpatient statistics.s

PG sEGP nI nC SI Uen UenSS ISS QISS

µ 0.00173 39.06444 0.01220 0.01550 0.00044 36.48977 37.67478 18.52343 8.33580
σ 0.00112 61.50377 0.00132 0.00132 0.00029 16.15142 15.89632 8.07137 5.02089
min 0.00019 9.57798 0.01058 0.01212 0.00005 19.09709 19.09894 9.22002 3.68801
50% 0.00159 16.81689 0.01171 0.01599 0.00037 29.88487 31.82060 15.51374 6.20550
max 0.00354 266.00000 0.01558 0.01712 0.00117 75.45382 75.43278 37.91158 22.67296
Constant? y y y y n n y y y
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3.4 DISCUSSION

A virtual patient cohort was modeled using high-frequency (5-min) clinical CGM data and

a novel synthesis of existing, previously validated models of insulin-glucose dynamics in

critically ill patients, insulin-mediated endogenous glucose production and subcutaneous

insulin absorption. The resultant virtual patient cohort exhibits variable pancreatic insulin

secretion rates and insulin sensitivity profiles in line with physiologic expectation.

One of the main goals in adding an insulin-mediated endogenous glucose production

(EGP) mechanism (Equation (3.5b)) was to partially decouple the action of endogenous

insulin production and insulin sensitivity. Due to the product of SI(t) and Q(t) in Equa-

tion (3.1a), fitting both dynamic pancreatic insulin secretion rate and insulin sensitivity

results in trajectories for Uen and SI which are highly inversely correlated. Without in-

cluding insulin-mediation in the EGP mechanism, the ill-posedness of the problem is more

severe and no differentiation in SI trajectory shapes across the patient cohort is observed.

The addition of a mechanism for insulin-mediated endogenous glucose production provides a

structure where pancreatic insulin secretion is able to affect an increase or decrease in blood

glucose disposal rates via endogenous glucose production independent of insulin-mediated

glucose update. Through the addition of this mechanism, trends in insulin sensitivity trajec-

tories become apparent across the virtual patient cohort and are consistent physiology and

previous studies

3.4.0.1 Model Parameterization In general, the model parameterization is well within

physical regimes across the virtual patient cohort although some differences from the ICING

model [110] arise in this virtual patient cohort. Mainly pG, the non-insulin mediated rate

of glucose uptake is, on average, about half as fast as the lower reported in Lin et al. [110]

which determined a lower bound from an aggregated set of results of the Bergman minimal

model fit to a variety of patients [162, 199, 200]. The discrepancy in this rate compared to

the virtual patient model described likely results from the fact that the Bergman minimal

model supposes a constant rate of endogenous glucose production which is a multiple of

the rate of non-insulin mediated rate of glucose uptake (see Equation (3.15)). In contrast,
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the eICING model presented herein does not treat glucose production as a multiple of pG

and further more the virtual patient cohort incorporates a mechanism for suppression of

endogenous glucose production by insulin. These changes to the model structure ultimately

lead to an unsurprising and unconcerning decrease in pG compared to the minimal model.

dBG(t)

dt
= −(SG +X(t))BG(t) + SGGb (3.15)

where

BG(t) : Plasma blood glucose concentration
(
mg
dL

)
X(t) : Remote insulin concentration

(
mU
L

)
SG(t) : Non-insulin mediated rate of glucose uptake (also referred to as glucose

effectiveness in Bergman, min−1)

Furthermore, it has been shown [199] that the basic model structure used in the minimal

model, the ICING model and the eICING model of this work is insensitive to changes in pG

(or SG) with respect to regressed insulin sensitivities. The net result is a mitigation of any

concerns about the discrepancy in pG between the virtual patient cohort developed here and

previous work.

Despite the discrepancy in pG values discussed above, the mean insulin sensitivity across

this virtual patient cohort (.44 × 10−3 L
mU ·min) is in good agreement with the value found

by Lin et al. (.31 × 10−3 L
mU ·min). Furthermore, the interquartile ranges for this virtual

patient cohort (.22 × 10−3 − .60 × 10−3 L
mU ·min) is consistent with that reported by Lin et

al. (.20× 10−3 − .48× 10−3 L
mU ·min). The values of nI and nC were tightly distributed and

correspond to an “effective” insulin half-life of approximately 25 minutes which is consistent

with the range of values reported in the literature [164, 201, 202].

The mean basal insulin secretion rate, Uen,b, fit across the virtual patient cohort was

37.67mU
min

which is approximately 2× the commonly accepted basal secretion rate in healthy

individuals [194, 203–206]. This elevated basal rate of insulin secretion may either be

pathogenic or symptomatic of stress hyperglycemia and insulin resistant, but it is consistent

with the pancreatic insulin functionality proposed by Lin et al. in [110].
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Lin et al. in [110] proposed the algebraic relationship between plasma insulin concentra-

tions and insulin secretion given in Equation (3.16).

Uen = k1e
−I(t)k2
k3 (3.16)

where

k1 : 45.7 mU
min

k2 : 1.5

k3 : 1000.0

Across the virtual patient cohort developed using the eICING model detailed here the

mean plasma insulin concentration (I(t)) was 36.49 mU
L

. Using this value in Equation (3.16)

gives an average rate of insulin secretion of 36.66 mU
min

which is very close to the average

secretion rate across the virtual patient cohort resulting from the solution to the NLP of

Equation (3.9) with a completely non-parametric treatment of SI and Uen. This is the result

that would be expected in the limit of extreme regularization resulting in zero variability

in insulin secretion rates over time. Despite the agreement in the limit of a constant rate

of insulin secretion, the pancreatic insulin functionality shown in Equation (3.16) was not

employed here as it was found not to have the required dynamic range to capture the vari-

ability in blood glucose concentrations in a large portion of the virtual patient cohort. This

is due to the fact that Uen in Equation (3.16) is suppressed only by rising insulin concen-

trations which are affected only by Uen itself and exogenous action. As such Uen given by

Equation (3.16) quickly reaches steady state and remains unaffected by blood glucose concen-

trations. There is a body of evidence suggestive of autocrine negative-feedback of insulin on

insulin secretion rates as results in the ICING model with Uen described by Equation (3.16)

[207, 208], however there is still a debate as to reality of this mechanism [209]. Furthermore,

it is well understood that the primary feedback loop in the pancreas is driven by glucose

concentrations [210, 211] – a mechanism which is precluded by Equation (3.16).
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In general, the half-maximum suppression concentration of insulin in the liver (sEGP )

is tightly distributed around a median value of 16.82 mU
L

with a small number of virtual

patients exhibiting a significantly higher value. This may be suggestive of a breakdown in

the inhibitory mechanism of insulin on endogenous glucose production in certain patients

which may result in or exacerbate stress hyperglycemia.

At steady-state the average insulin concentration across the virtual patient cohort would

be 18.5 mU
L

. This is consistent with reported fasting insulin concentrations in the literature

with a range of 5.0 − 45.0 mU
L

[212–215]. The steady-state concentrations of interstitial

insulin are then tightly governed by Equation (3.13).

3.4.1 Physiologically Consistent Insulin Sensitivity Profiles

Insulin sensitivity in critically-ill patients is often suppressed leading to elevated blood glu-

cose levels. In a physiologically consistent virtual patient cohort we would expect this trend

to be borne out. Figure 26 demonstrates that in general there is a weak trend which emerges

in our virtual patient population.

Another hallmark of stress hyperglycemia in critically-ill patients is a highly variable

sensitivity to insulin reflecting the magnitude of the accompanying inflammatory response

and the administration of certain drugs, such as catecholamines. In a clinically-relevant

virtual patient cohort, especially one used to explore methods for TGC, we would expect

this trend to emerge. Figure 27 shows that increased variability in insulin sensitivity is indeed

associated with higher average blood glucose levels consistent with a pro-inflammatory state

and stress hyperglycemia.

The data shown in Figures 26 and 27 however fails to account for exogenous infusions

of insulin. From the medical record data it is known that many of the patients used to

develop this virtual patient cohort received significant exogenous infusions of insulin while

in critical care. Despite the potential for insulin resistance and associated hyperglycemia we

would expect large amounts of exogenously administered insulin to negatively affect plasma

glucose concentrations. As such, it is intuitive to reason that if two patients (a and b)

have similar mean plasma glucose concentrations yet patient a received significantly more
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Figure 26: Mean blood glucose vs. mean insulin sensitivity: an inverse relationship is

observed between average insulin sensitivity and average blood glucose across our virtual

patient cohort. This is consistent with clinical observations, which suggest that insulin

resistance is a primary driver of stress hyperglycemia in critically-ill patients.

exogenous insulin, then patient a would be expected to have a lower sensitivity to insulin

than patient b. To this end, a weighting based on exogenous insulin infusions should be used

to compare average plasma glucose values with insulin sensitivity values and variability. The

weighting chosen here normalizes mean blood glucose concentrations by the average hourly

rate of exogenous insulin administration. The hourly average is used to correct for the fact

that patients have varying lengths of stay in the ICU. (see Equation (3.17).

µ(BG)normalized = µ(BG)
1

1 +
∫ T
t=0

Uexdt
(3.17)
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Figure 27: Mean blood glucose vs. mean normalized insulin sensitivity variance: the positive

correlation between average blood glucose and the variability in insulin sensitivity across our

virtual patient cohort corroborates the clinical expectation that patients exhibiting symp-

toms of stress hyperglycemia may have significant variability in insulin sensitivity over time.

where T is the total time of stay in hours. The form of the normalization in Equation (3.17)

is used to prevent all patients receiving no exogenous insulin from having identically zero

normalized mean blood glucose concentrations.

Blood glucose normalized in this manner is shown in comparison with mean insulin

sensitivity and mean normalized insulin sensitivity variance in Figures 28 and 29.

In Figure 28 an inverse relationship is observed between average insulin sensitivity and

normalized average blood glucose across our virtual patient cohort. As a result of the nor-

malization (Equation (3.17)) patients receiving significant exogenous insulin infusions have a
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Figure 28: Mean blood glucose normalized by Equation (3.17) vs. mean insulin sensitivity.

much lower normalized average blood glucose concentration compared to patients not receiv-

ing exogenous insulin. It could be reasoned that these patients therefore have a depressed

sensitivity to insulin necessitating large amounts of exogenous insulin. As such lower values

of BGnormalized would be expected to be associated with lower mean SI values, a trend that

is borne out in Figure 28.

Similar logic applies to the data in Figure 29 except the expectation is now that “un-

healthy” patients receiving significant exogenous insulin intervention exhibit higher insulin

sensitivity variability. This expectation seems to be corroborated by Figure 29.
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Figure 29: Mean blood glucose normalized by Equation (3.17) vs. mean normalized in-

sulin sensitivity variance: the positive correlation between average blood glucose and the

variability in insulin sensitivity across our virtual patient cohort corroborates the clinical

expectation that patients exhibiting symptoms of stress hyperglycemia may have significant

variability in insulin sensitivity over time.

3.4.2 Conserved Trends

Under the assumption that, patient health generally improves leading up to discharge from

the ICU, we would expect to see this trend conserved in within our virtual patient cohort.

If insulin sensitivity is used as a marker of health, then the variance in insulin sensitivity

should drop. Figures 30a and 30b shows the mean normalized variance of insulin sensitivity,

at time “N” over which is calculated using the previous “N-12” hours of data.
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Figures 30a and 30b show that, in general virtual patients exhibit a decrease in SI vari-

ability as well as an increase in insulin sensitivity over the course of treatment in the ICU.

This trend recapitulates clinical understanding [216–218]. The conservation of this trend

across the virtual patient cohort indicates that the model in Equations (3.1a) to (3.1h) in-

corporates the necessary physiologically-motivated characteristics to parametrically capture

the observed variability in ICU patient glucose response across a cohort of patients.

3.5 SUMMARY

We have developed a virtual patient cohort derived from clinical data collected using con-

tinuous glucose monitors with a five minute sampling rate at the University of Pittsburgh

Medical Center. The virtual patients within the cohort were synthesized by fitting clinical

data using our eICING model, composed of: (i) the ICING [110] model; (ii) a mechanism

for insulin-mediated endogenous glucose production from the “extended” minimal model (a

model of subcutaneous insulin absorption [160]. Regressed quantities were a constant rate

of non-insulin mediated glucose disposal (pG), a dynamic pancreatic insulin secretion rate

(Uen(t)) and a dynamic insulin sensitivity (SI(t)) profile. Instead of a constant EGPb an

insulin-mediated functionality is added from an alternate model [171] which results in a sat-

urating suppression of endogenous glucose production in response to plasma insulin levels

elevated above baseline or basal values, consistent with repeated observations [167, 219–221].

The model closely matched the clinical data, after including medical record data regard-

ing relevant interventions ((par)enteral nutrition, insulin administration, etc.) with a mean

error of 1.02%. Through regularization, an oscillatory pancreatic insulin secretion rate of

with an average value of approximately 62 mU/min was maintained across the virtual pa-

tient cohort. The period and magnitude of oscillation were consistent with studies of the

ultradian nature of insulin secretion rates and this resulted in SI(t) trajectories that were

congruous with clinical expectations. In hyperglycemic patients SI(t) profiles resulted in in-
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creased sensitivity and decreased variability as a patients stay in the ICU progressed. These

trends are consistent with physiology, conserved across the virtual patient cohort, and, to our

knowledge, have not been demonstrated in models of insulin-glucose dynamics in critically

ill patients to date.

The result of this work is a virtual patient cohort and model that captures individual

patient changes in insulin sensitivity and glucose dynamics, can respond to clinically relevant

treatment interventions, and provides a possible platform for in silico testing of glucose

control schemes and methodologies with minimal risk to patients.
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Figure 30: (a) Normalized SI variance across patients calculated with a sliding 12 hour

window over the course of their stay in the ICU. As might be expected if insulin sensitivity

variability is a marker of health there is a clear inverse relationship between insulin sensitivity

variability and time spent in the ICU. (b) Normalized µ(SI) across all patients also calculated

with a sliding 12 hour window shows that in general insulin sensitivity improves over the

course of an ICU stay. The 48 hour data point is excluded due to a small number of patients

admitted to the ICU for 48 hours or more. For both (a) and (b) patient data points were

normalized by SI averaged across the duration of that patients’ ICU stay.
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4.0 RESPONSIVE VIRTUAL PATIENT PANCREATIC FUNCTION

4.1 INTRODUCTION

In healthy individuals the pancreas responds to plasma glucose concentrations and secretes

insulin to maintain normoglycemia in a closed loop feedback system. Rising plasma glucose

concentrations generally lead to rising insulin secretion rates and vice versa. The virtual

patient cohort developed in Chapter 3 was developed by fitting a dynamic insulin sensitivity

(SI) and pancreatic insulin secretion rate (Uen) subject to a variety of physiologic constraints

and heuristic regularizations. The resulting Uen trajectories are believed to be consistent

with physiologic norms and realistically approximate clinical expectations, however they are

specific to the measured blood glucose profile.

The goal of a closed-loop glucose control system for patients in critical care is to treat

stress hyperglycemia while avoiding hypoglycemia As such, virtual patient simulations of

various treatment methodologies are expected to yield plasma glucose profiles that may differ

from the fitted glucose data, such that the fitted Uen trajectory is no longer strictly valid

or accurate. In light of this discrepancy, a functionality that responds to plasma glucose

concentrations through a change in pancreatic insulin secretion rates is developed for the

virtual patient cohort.

Neglecting the pancreatic response to rising or falling blood glucose levels in in silico

trials can endanger patient health. For example, if the pancreatic response to glucose con-

centrations is ignored during in silico trials, the controller may be tuned to aggressively

deliver insulin to combat rising glucose concentrations, which results in maintenance of eug-

lycemia in the virtual patient cohort. In a real (non-diabetic) patient, however, the pancreas
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would be expected to respond, to a degree, by increasing insulin secretion to combat rising

glucose concentrations; when coupled with the aggressive response of the controller, which

was tuned in the absence of this effect, dangerous hyperglycemia may result.

To develop a responsive pancreas for the virtual patients, insulin secretion is assumed to

be comprised of both a glucose dependent and a glucose independent component [222]. The

glucose dependent component of insulin secretion provides a baseline rate of secretion that

shifts up or down in response to plasma glucose concentrations. The glucose-independent

component provides the remainder of the insulin secretion and is found to contain the oscilla-

tory component of insulin secretion resulting in the ultradian rhythms observed in the virtual

patient cohort (see Chapter 3). The functionality for a glucose dependent component of in-

sulin secretion is provided using a proportional-integral-derivative (PID) controller as has

been done previously [223] and was motivated by the use of PID control in the development

of many artificial pancreas systems [224–231].

This approach is inspired by fact that the pancreas acts in a feedback loop and, in a

simplified view, acts as a controller for health and homeostasis. The PID parameters can

be determined through a simple ordinary least squares regression. The pancreatic response

under PID control across the virtual patient cohort is validated using simulated oral glucose

tolerance tests and insulin tolerance tests with comparison to typical literature reported

responses.

4.2 METHODS

4.2.1 PID Control

A PID controller is comprised of three terms one for each of proportional, integral and

derivative action and is shown in it’s time domain representation in Equation (4.1).

u(t) = Kpe(t) +Ki

∫ t

0

e(t) +Kd
de(t)

dt
(4.1)
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where Kp, Ki, and Kd are all tuning parameters and represent the proportional, integral, and

derivative gains, respectively. e(t) represents the error signal or deviation from the setpoint.

The proportional term (Kpe(t)) provides a contribution to control action that varies

linearly with error. The integral term
(
Ki

∫ t
0
e(t)
)

provides a correction to control action

proportional to the accumulated error and helps to prevent controller offset. The final term

in Equation (4.1) is the derivative term
(
Kd

de(t)
dt

)
and is used to correct control action based

on the rate of change of the error.

4.2.2 Determining PID Parameters

For each virtual patient in the virtual patient cohort, the fitted pancreatic insulin secretion

rate (Uen(t)) and model-predicted plasma glucose (BG(t)) are available at each time point.

As design criteria for the PID control governing the glucose-dependent rate of insulin secre-

tion, the PID Uen should match the virtual patient regressed Uen as closely as possible at

each time point given eBG(t), where eBG(t) = BG(t)−BGSP and BGSP is a plasma glucose

concentration setpoint. Here, BGSP is taken as 110mg
dL

, which is the upper limit of normo-

glycemia [78, 232]. The integral component is calculated as
∑T

i=0 eBG(ti)(ti− ti−1) ∀T ∈ t.

Because the setpoint here is unchanging, deBG(t)
dt

can be taken exactly as the value of Equa-

tion (3.1a) in Chapter 3.

Given vectors of values for eBG(t),
∑T

i=0 eBG(ti)(ti− ti−1), and deBG(t)
dt

for all time points,

the PID-governed rate of insulin secretion at time t = ti+1 is given by a linear combination

of those vectors at t = ti (see Equation (4.2)).


Uen,PID(t1)

...

Uen,PID(tN)

 =


eBG(t0)

∑t0
i=0 eBG(ti)(ti − ti−1) deBG(t0)

dt
...

...
...

eBG(tN−1)
∑tN−1

i=0 eBG(ti)(ti − ti−1) deBG(tN−1)

dt



Kp

Ki

Kd

 (4.2)
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The values of the PID gains (Kp, Ki, and Kd) can then be determined via ordinary least

squares (OLS) subject to Equations (4.3) to (4.5), where the virtual patient fitted rate of

pancreatic insulin secretion Uen(t) is the response variable and eBG(t),
∑T

i=0 eBG(ti)(ti−ti−1),

and deBG(t)
dt

are the regressors.

Kp ≥ 0 (4.3)

Ki ≥ 0 (4.4)

Kd ≥ 0 (4.5)

4.2.2.1 Glucose Independent Insulin Secretion If the PID controller given by Equa-

tion (4.1) governs the glucose dependent rate of insulin secretion, then the glucose indepen-

dent rate of secretion is simply taken as the residual from the OLS results used to determine

the PID parameters.

During simulation of a virtual patient, the overall rate of pancreatic insulin secretion (Uen)

is given as the sum of the PID-controlled rate and the residual from the OLS regression at

any time. Under simulated treatment, this leads to the possibility of both Uen < 0mU
min

and

Uen > 210mU
min

. These scenarios are avoided by taking the soft minimum (Equation (4.6))

and soft maximum (Equation (4.7)) of the overall insulin secretion rate. Soft minimum and

maximum functions are used to avoid sharp corners and approximate saturating rates of

secretion, which are believed to be more physiologically realistic.

min(x, y) =
− log(e−xk + e−yk)

k
(4.6)

max(x, y) =
log(exk + eyk)

k
(4.7)

4.2.3 Simulated Tolerance Tests

4.2.3.1 Insulin Tolerance Test The insulin tolerance test (ITT) is the gold standard

for assessment of the hypothalamic-pituitary-adrenal axis (HPA), which is a measure of

pituitary function, as well as for the assessment of the growth hormone (GH) axis [233].
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Hypoglycemia stimulates the release of glucagon, epinephrine, growth hormone and cortisol,

which promote hepatic glucogenesis, lipolysis and ketogensis [234–236] thereby acting as

antagonists to insulin action. In this manner, cortisol and growth hormone, specifically,

comprise key components of the counter-regulatory response to hypoglycemia [237–241].

Developed in the 1960s, the ITT uses an insulin bolus to induce hypoglycemia to elicit the

counter-regulatory cortisol and growth hormone response. Because cortisol and GH release

require proper hypothalamic, pituitary and adrenal function [242–244] the ITT has widely

been used as a rapid test of the HPA and GH axes.

Although protocols vary, in general, hypoglycemia at a level at or below 50.4 mg
dL

is

necessary to properly assess the HPA and GH-axes [245–250]. In a standard insulin tolerance

test, between 0.025 and 0.3 mU
kg

of insulin are injected intravenously to induce the required

hypoglycemic response with 0.15 mU
kg

as the typical administration. Glucose data following

an ITT are available from the work of Greenwood et al. for insulin administration levels of

0.025, 0.05, 0.1 and 0.15 mU
kg

.

The goal of the ITT is to induce significant hypoglycemia in order to elicit a cortisol and

growth hormone responses and because cortisol and growth hormone are insulin antagonists,

However, these effects are not modeled or considered in the virtual patient cohort. As a

result, the lowest insulin administration (0.025mU
min

) is simulated to avoid inducing a level of

hypoglycemia which would otherwise mount a counterregulatory response not a component

of this work. For all virtual patients, the ITT is simulated during a period of stable plasma

glucose (σ(BG(t)) ≤ 10mg
dL

over the previous hour) and during a period in which the virtual

patient medical record data was free of meals, exogenous glucose and insulin. Following

simulation of the ITT, the recovery index (see Section 4.2.3.2) is calculated.

4.2.3.2 Recovery Index Greenwood et al. [251] define a recovery index as the sum of

plasma glucose levels obtained at 60, 90, and 120 minutes following insulin administration

expressed as a percentage of the pre-ITT plasma glucose concentration (Equation (4.8)).

RI =
∑

i=[60,90,120]

BG(t0 + i)

BG(t0)
where t0 is the time of ITT insulin injection (4.8)

The recovery index is used as a measure of the rate of recovery of plasma to pre-ITT values.
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4.2.3.3 Oral Glucose Tolerance Test The oral glucose tolerance test (OGTT) is the

most commonly used method to test whole body glucose tolerance in vivo [252] and in

some instances to derive information about insulin release and insulin sensitivity [253–255].

Briefly, an OGTT involves oral consumption of some amount of glucose followed by blood

glucose draws at several intervals following glucose intake.

The World Health Organization (WHO) recommends a 75 gram oral dose of glucose in

all adults [256] to be consumed within 5 minutes. This is the main dosage used for OGTTs in

the United States [257] and the version of the test that will be simulated here. Before the test

is administered, plasma glucose levels should be below 110mg
dL

, and at 1 hour following glucose

intake, plasma glucose levels below 180mg
dL

are considered normal [257, 258]. After 2 hours,

plasma glucose concentrations below 140mg
dL

are considered normal [257], 140 ≤ BG ≤ 200mg
dL

is indicative of impaired glucose tolerance and BG > 200mg
dL

confirms a diabetes diagnosis

[258].

Very few critical care patients meet the criteria for administering the OGTT (mainly

plasma BG < 110mg
dL

) as they have not necessarily been fasting and are assumed to suffer

from stress hyperglycemia. As a result, the plasma glucose limits for normal, impaired and

diabetic glucose tolerances in a 2 hour OGTT are not particularly useful in identifying proper

dynamics in the virtual patient cohort. However, because the OGTT is a common test, there

is plentiful data in the literature detailing plasma glucose dynamics following an OGTT. Here,

we are primarily interested in time to peak plasma glucose concentrations and secondarily,

time to recover to pre-test levels. The data from [252–254, 259–268] indicate that in healthy

patients, a peak plasma glucose concentration following an OGTT is reached within 60

minutes, and in type 2 diabetic patients the same peak is not reached until approximately

90 to 120 minutes (see Figure 31 for example data).
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Figure 31: Oral glucose tolerance test plasma glucose dynamics following a standard OGTT

for patients with normal glucose tolerance (◦), impaired glucose tolerance (•) or Type 2

diabetes (�) (Reproduced from Vollmer et al. [262]). Note that all patients reach a peak

plasma glucose concentration within approximately 90-120 minutes and return to pre-test

plasma glucose concentrations within 240 minutes.

For simulations of an OGTT in the virtual patient cohort the standard dose of 75 g of

glucose administered orally is used. For all virtual patients the OGTT is simulated during a

period of stable plasma glucose (σ(BG(t)) ≤ 10mg
dL

over the previous hour) during a period

in which the virtual patient medical record data was free of meals, exogenous glucose and

insulin. Following simulation of the OGTT the time until a glucose peak in the following 6

hours is reached is calculated as well as the time until glucose levels fall to within 15% of

glucose concentrations simulated without the OGTT.

107



4.3 RESULTS

4.3.1 PID Parameters

The PID gains resulting from the OLS regression are shown in Figure 32.

Figure 32: Distribution of regressed values for the proportional, integral and derivative gains,

respectively, are shown by box plots. The exact values are shown by colored circles. The

colors of the circles correspond to single patient values across all three panes of the figure.

Figure 32 shows that the proportional gain (Kp) is strictly positive for all patients, as

would be expected given the definition of the error here as eBG(t) = BG(t)− BGSP (t). As

plasma glucose concentrations rise, the error signal grows more positive, which given our

understanding of pancreatic function should result in increasing rates of pancreatic insulin

secretion. This seems to be borne out in the OLS regression to the virtual patient data

which returns Kp > 0 across the virtual patient cohort. A similar argument can be made for

Ki, the gain on the integral component of the PID controller, which is nonnegative across

the virtual patient cohort. Several patients resulted in a Ki exactly equal to zero, as per

Equations (4.3) to (4.5), perhaps indicating a chronic pancreatic dysfunction or failure in

these patients. This leaves the derivative gain (Kd), which as seen in Figure 32, is nonnegative

across the virtual patient cohort. A certain subset of patients have the derivative component

108



of their pancreatic response bounded at zero by Equations (4.3) to (4.5), which may be due

to acute pancreatic dysfunction resulting from stress and an inability to respond to rapidly

changing blood glucose concentrations. Perhaps in these patients this effect is responsible

for the elevated blood glucose variability commonly observed in stress hyperglycemia. For

all virtual patients, the PID-controlled rate of insulin secretion (Uen,PID) and the glucose

independent oscillatory rate of insulin secretion (Uen,GID) are given in Appendix D. Here

Uen,GID is simply the vector of residuals from the OLS regression of the PID parameters.

4.3.2 Insulin Tolerance Test

The Recovery Index (RI) for all patients meeting the criteria for inclusion in the simulated

ITT (see Section 4.2.3.1) is shown in Figure 33 for simulations with a responsive pancreas

under PID control and for a nonresponsive pancreas. Four patients were excluded from the

ITT, as they did not meet the blood glucose stability criteria established above or did not

have a period free of exogenous input in the medical record data. The dynamics following

a simulated ITT for an example patient simulated with a responsive, or nonresponsive,

pancreas are shown in Figure 34.

4.3.3 Oral Glucose Tolerance Test

The time to peak glucose following a simulated OGTT for all patients meeting the criteria for

inclusion in the simulated OGTT (see Section 4.2.3.3) is shown in Figure 35 for simulations

with a responsive pancreas under PID control and a nonresponsive pancreas. Four patients

were excluded from the OGTT as they did not meet the blood glucose stability criteria

established above or did not have a period free of exogenous input in the medical record

data. The time to recovery as defined by blood glucose values returning to within 10%

of glucose concentrations had the OGTT not been performed is shown for these patients

in Figure 36. The dynamics following a simulated OGTTT for an example patient with a

responsive and nonresponsive pancreas are shown in Figure 37.
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Figure 33: Recovery index for the simulated insulin tolerance test for virtual patients with

a responsive pancreas under PID control and a nonresponsive pancreas. 4 Patients were

excluded for failure to meet the criteria to conduct an ITT.
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Figure 34: Example virtual patient undergoing an insulin tolerance test with a simulated

responsive pancreas and a nonresponsive pancreas. The top panel shows plasma glucose

concentrations for the baseline virtual patient (clinical treatment, -), the virtual patient

simulated with a responsive pancreas (--) and a nonresponsive pancreas (--). The bottom

panel indicates the time and magnitude of the ITT insulin bolus (-).
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Figure 35: Time to peak plasma glucose concentrations following a simulated oral glucose

tolerance test for virtual patients with a responsive pancreas under PID control and a non-

responsive pancreas. 4 Patients were excluded for failure to meet the criteria to conduct an

OGTT.
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Figure 36: Time to recovery of plasma glucose concentrations following a simulated oral

glucose tolerance test for virtual patients with a responsive pancreas under PID control and

a nonresponsive pancreas. Recovery is defined as plasma glucose concentrations returning to

≤ 10% of plasma glucose concentrations simulated in the absence of the OGTT. 4 Patients

were excluded for failure to meet the criteria to conduct an OGTT.
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Figure 37: Example virtual patient undergoing an oral glucose tolerance test with a simulated

responsive pancreas and a nonresponsive pancreas. The top panel shows plasma glucose

concentrations for the baseline virtual patient (clinical treatment, -), the virtual patient

simulated with a responsive pancreas (--) and a nonresponsive pancreas (--). The bottom

panel indicates the time and magnitude of the OGTT oral intake (-).
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4.3.4 Discussion

4.3.4.1 Effects of Pancreatic PID Control As a motivating example, consider sim-

ulations of a virtual patient who was treated in the clinic with significant exogenous insulin

in the form of subcutaneous boluses of lispro, a fast acting insulin analog [269, 270]. If the

clinically administered exogenous insulin is withheld, as would be done in in silico trials of a

closed-loop glucose control system, the simulated virtual patient response is shown compared

to the clinical regimen in Figure 38.

When this insulin regimen is withheld in simulations, the PID component of Uen results

in higher secretion rates to combat rising plasma glucose concentrations in the virtual patient

with a responsive pancreas. From Figure 38, it is clear that not accounting for a pancreatic

response results in a much more significant degree of hyperglycemia.

This example demonstrates the effect of withholding clinical treatment, however it does

not demonstrate the pancreatic response to a different treatment regimen, one that might

include significant, extended exogenous insulin and glucose infusions, such as when a patient

is placed in the care of a closed-loop glucose control scheme. This is the motivation for

simulating insulin and oral glucose tolerance tests. Furthermore, these are standardized

tests with quantifiable outcomes which can be compared to a wealth of literature data.

4.3.4.2 Insulin Tolerance Test The results shown in Figure 33 demonstrate that pa-

tients simulated with a pancreas having a PID controlled response to plasma glucose con-

centrations exhibit a significantly higher recovery index compared to virtual patients with

no responsive pancreatic functionality. The results of Greenwood et al. [251] suggest that

following an insulin tolerance test with an insulin administration of 0.025 mU
kg

, a recovery

index of 291 ± 16 would would be expected. The average recovery index across our virtual

patient cohort is 182.1 for the group with a responsive pancreas and 145.2 for the group

with a nonresponsive pancreas. As expected, the group with the responsive pancreas has

a higher recovery index than the virtual patients with a nonresponsive pancreas due to a

decrease in insulin secretion rates by the PID controlled component of pancreatic function

(see Figure 34 for the pancreatic insulin suppression).
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However, even the value for the virtual patient group with responsive pancreatic function

is less than half of that reported by Greenwood et al. In light of the assumption that

these patients are suffering from stress hyperglycemia believed to be driven, in part, by

depressed insulin sensitivity, the expectation would be that these patients should have a
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Figure 38: Simulated plasma glucose concentrations (top), and insulin secretion rates (mid-

dle) simulated under the virtual patient fitted clinical treatment (-) and with the subcu-

taneous insulin administration withheld for the virtual patient with a responsive pancreas

with a component of insulin secretion under PID control (--) and within a non-responsive

pancreas (--). The exogenous insulin schedule regimen used in the clinic and for fitting the

virtual patient is shown in the bottom panel.
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higher recovery index than the healthy subjects in [251], as the administered insulin should

have a diminished effect on plasma glucose concentrations due to insulin resistance. Although

this discrepancy seems large, consider that Greenwood et al. reported a significant increase

in plasma cortisol concentrations compared to a saline control (11.5± 2.3 vs. 10.6± 1.9 µg
dL

)

as well as elevated plasma growth hormone concentrations compared to the saline control

(5.2± 3.8 vs. 1.8± 2.4 ng
mL

). Cortisol and growth hormone are powerful insulin antagonists

and are not considered in the extended ICING virtual patient model, which may explain

the depressed recovery index in the virtual patient cohort in response to an insulin tolerance

test.

Patients P17 and P23 in Figure 33 show an increased recovery index with the nonre-

sponsive pancreas, counter to intuition and the trend across the remainder of the simulated

insulin tolerance tests. These results can be explained by a severe lack of insulin sensitivity

or extreme insulin resistance in these patients. In both patients, the insulin bolus fails to

induce a meaningful decrease in plasma glucose concentrations; the differences between the

pancreatic functionalities can be attributed to the pancreatic response to withheld clinical

treatment in the patient with PID controlled insulin secretion rates.

Taking a more qualitative approach to the question of realism in the responsive pan-

creatic functionality introduced via PID control in the virtual patient cohort, consider the

simulated plasma glucose dynamics following an ITT in Figure 34. The virtual patient with

a responsive pancreas has a higher plasma glucose nadir compared to the virtual patient

with a nonresponsive pancreas (≈ 40mg
dL

vs. ≈ 20mg
dL

), a value consistent with the approxi-

mately 60% reduction in plasma glucose concentrations seen in [251] at this level of insulin

administration.

Furthermore, the virtual patient with responsive pancreatic function recovers to pre-ITT

conditions in approximately 120 minutes, whereas the virtual patient with a nonresponsive

pancreas takes approximately 445 minutes to recover. The data collected by Greenwood et

al. [251] and others [237, 271–273] seem to suggest that the 120 minute recovery time seen

in the virtual patient group with responsive pancreatic function is much closer to reality and

physiology than the long tail of recovery seen in the group with a nonresponsive pancreas.
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4.3.4.3 Oral Glucose Tolerance Test The results shown in Figure 35 indicate that

virtual patients simulated with a responsive pancreas achieve a peak plasma glucose concen-

tration during an oral glucose tolerance test on average 125± 79.6 minutes following enteral

glucose intake. In comparison, the virtual patients with no pancreatic responsivity take on

average 209± 90.04 minutes to reach peak plasma glucose concentrations. The difference in

dynamics is due to an upregulation in insulin secretion rates in response to rising plasma glu-

cose concentrations in virtual patients simulated with a responsive pancreas. The increased

rate of insulin secretion in these patients results in more rapid metabolism of the ingested

glucose leading to a more rapid fall in plasma glucose concentrations and a correspondingly

earlier peak. The time to peak of 125 minutes for the responsive pancreas group is much

more consistent with literature data and physiologic expectations (see Figure 31) [262].

For the same reason, Figure 36 shows that the virtual patients with a pancreas capable

of responding to plasma glucose concentrations show a much more rapid overall response

compared to the nonresponsive virtual patients (average time of return to “normal” plasma

glucose concentrations of 319 ± 71.3 minutes vs. 854 ± 134,minutes). A response time of

319 minutes is consistent with literature data [252–254, 259–268] and much more believable

on a physiological and experiential basis than 854 minutes (over 14 hours), even for insulin

resistant patients. See Figure 37 for an example of an OGTT in the same virtual patient used

for the example ITT (Figure 34). Note the long aphysiologic hyperglycemic tail that results

from the OGTT in a virtual patient without a pancreatic response to glucose and the signif-

icant increase in insulin secretion rates in response to rising plasma glucose concentrations

following the OGTT in the virtual patient with a pancreatic response.

4.4 SUMMARY

The pancreatic response demonstrated here is shown to be consistent with experimentally

observed responses for both insulin and glucose tolerance tests and is believed to add an ad-

ditional element of realism to the virtual patient cohort. The enhanced realism and accuracy

of the virtual patient cohort enabled through the use of a responsive pancreas that adapts
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insulin secretion rates dependent on plasma glucose concentrations via a PID control law

will lead to higher quality controller tuning and enhanced closed-loop glucose control safety

and efficacy.
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5.0 MODEL BASED GLUCOSE CONTROL

5.1 INTRODUCTION

Maintaining blood glucose concentrations within a tight target zone or range requires close

monitoring of blood glucose levels and more frequent intervention than is practical by crit-

ical care staff. Furthermore, current care protocols do not address inter- and intrapatient

variability in glucose-insulin dynamics stemming from differing insulin sensitivities. High-

frequency sampling of blood glucose levels, through continuous glucose monitors, coupled

with model-based control, has the capacity to enable zone-targeted glucose control to main-

tain blood glucose levels within the targeted zone and thereby decrease hyperglycemia while

avoiding hypoglycemia, ultimately leading to improved patient outcomes.

The work described herein details the development and virtual testing of an automated

linear model predictive controller with state estimation for the delivery of both subcutaneous

insulin and intravenous glucose to maintain patient blood glucose levels within a target zone

(110-130 mg/dL). Subcutaneous insulin is used as it is the clinical standard in the United

States, and complications associated with IV administration, such as infection, are avoided.

Output regulation is used to ensure that intravenous glucose infusion rates return to 0

when deemed unnecessary by the controller. The controller model is informed from glucose

measurement values, as measured by a continuous glucose monitoring (CGM) system with

a 5-minute sampling interval.

Moving horizon estimation is employed to ensure that the controller model closely matches

patient dynamics and enables the controller to account for both intra- and inter-patient vari-

ability. Insulin sensitivity (SI) is used as an estimated model parameter due to its stress-

driven transient nature in critically ill-patients. The ICING model parameter describing the

120



rate of pancreatic insulin secretion (Uen) is estimated, as endogenous insulin production is

known to be variable and would be expected to respond via a feedback mechanism to plasma

glucose levels. Additionally, the rate of endogenous glucose production, EGP , assumed to be

a static parameter in the ICING model, is estimated to account for responsivity to changing

plasma insulin concentrations.

In addition to the aforementioned parameters, QI , the state describing effective intersti-

tial insulin concentrations, is estimated, with deviations from model dynamics heavily pe-

nalized. The logic behind this decision stems from the idea that remote, or effective, insulin

concentrations should generally follow model dynamics. However, due to the linearization,

the saturating effect of high effective insulin concentrations on blood glucose disposal is lost.

As a result, at high values of QI , the rate of blood glucose disposal may be such that it

becomes impossible for modeled BG concentrations to reach the measured value.

Allowing for error on QI enables a decrease in QI contrary to linearized ICING dynamics

when model-predicted BG would otherwise disagree significantly from measured values. By

decreasing QI , the rate of insulin-mediated glucose disposal drops, thereby mimicking the

saturation of the insulin-mediated glucose disposal. A large penalty on QI is used in both

Q and P0 so that QI varies primarily according to model dynamics and differs only when

significant error from the measurements would otherwise arise.

The glucose control system designed here is a zone model predictive controller (zMPC)

with moving horizon estimation (MHE) formulation that includes glucose output regulation,

which will be referred to from here forward as zMPC/MHE. Diagrammatic examples of

MHE, MPC, and zone control for the glucose control problem are shown in Figure 39.

The zMPC/MHE/GOR control scheme developed here is tested and tuned via in silico

trials on the virtual patient cohort developed in Chapter 3, with the responsive pancreas

explained in Chapter 4. The controller is evaluated under the assumption of perfect sensors,

or in the face of realistic CGM noise, via simulations of the error process detailed in Chapter 2.

Finally, the glucose control algorithm of this work is compared to commercially available

solutions such as the computerized Yale protocol [275] and the GlucoStabilizer® algorithm

[276].
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Figure 39: MPC/MHE schematic (left) showing prediction and estimation horizons along

with optimal control actuation (adapted from [274]). MHE minimizes the error between

past glucose measurements and model predictions by adjusting insulin sensitivity and insulin

secretion rates based on past data over a moving horizon of length N . Zone control schematic

(right) shows changes in infusion rates to maintain predicted blood glucose within a specified

zone.

5.2 METHODS

5.2.1 Zone Model-Predictive Control (zMPC)

Given that an optimal range of blood glucose concentrations resulting in improved patient

outcomes has been established ([121]), an MPC formulation for control to zone (zMPC),

rather than a single setpoint, is employed. Using an internal model, a zone model-predictive

controller minimizes the objective function of an optimization problem where model-predicted

excursions of the controlled variable(s) from the target zone are penalized over a prediction

horizon. Changes in the manipulated variables are also penalized. The resulting quadratic
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objective function is subject to constraints governing the model dynamics, maximum and

minimum values for the manipulated variables, and maximum and minimum point-to-point

changes in the manipulated variables.

For the discrete state-space model given by:

xk+1 = Axk +Buuk−1 +Bu∆uk +Bddk

yk = Cxk +Duuk +Dddk

(5.1)

where xk+1 is the predicted state vector at the next time step, xk is the state vector at

the current time, uk−1 is a vector of previous manipulated inputs, ∆uk is the change in

manipulated inputs at the current time, dk is a vector of disturbance inputs at the current

time, and yk is the observed output at the current time, a linear, constrained model predictive

controller is formulated as shown in the following quadratic program( [277]):

minimize
z

P∑
i=1

‖yk+i − δ‖Γ +
M∑
i=1

‖∆uk+i−1‖S (5.2a)

subject to: xk+1 = Axk +Buuk−1 +Bu∆uk +Bddk (5.2b)

yk+1 = Cxk+1 +Duuk +Dddk (5.2c)

∆umin ≤ I∆u ≤ ∆umax (5.2d)

umin ≤ Iu ≤ umax (5.2e)

Zonelower ≤ δ ≤ Zoneupper (5.2f)

where : z = ∆uk, . . . ,∆uk+N−1

Here Γ is the matrix penalizing predicted model deviations from the target zone and S is

the matrix penalizing control moves. Γ and S, along with the prediction horizon, P , and the

control horizon, M , are controller tuning parameters.

This formulation results in targeted zone control by allowing δ to move between its lower

and upper bounds (Zonelower and Zoneupper, respectively) as given by constraint (5.2f) to

minimize the difference between the measured output and predicted output. ∆umin and

∆umax in constraint (5.2d) are the lower and upper bounds, respectively, on the allowable

change in the manipulated input at any given time step. The vector of non-manipulated
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variables is generally assumed to remain constant at dk over the prediction horizon. Solution

of this quadratic program results in a vector of optimal input changes at every time point

along the control horizon, however only the first suggested input change is implemented by

the controller.

For the glucose control problem, uk = [UI,k, UG,k]
′ and yk = [BGk, UG,k]

′ where UI,k

and UG,k are the subcutaneous insulin and glucose infusion rates, respectively. BGk is the

model-predicted blood glucose concentration. The fact that UG,k appears in both uk and yk

is what gives rise to glucose output regulation in this controller. The addition of this output

regulation serves to diminish spiking behavior and ensures that glucose and insulin are not

infused unnecessarily. This formulation also:

(i) prevents a situation where the controller infuses glucose constantly while simultaneously

infusing insulin at a constant (elevated) rate

(ii) reduces control effort by minimizing exogenous insulin usage, because continuous insulin

infusion suppresses endogenous insulin production, which would thereby increase the

control effort required to maintain blood glucose concentrations within the desired zone.

For this work there is no limit on the maximum rate of change of insulin and glucose infusion

rates, but the rates of subcutaneous insulin and glucose infusion are constrained to:

0
mU

min
≤ UI ≤ 250

mU

min
0
mg

min
≤ UG ≤ 600

mg

min
(5.3)

The formulation in Equation (5.2) [278–280] is generalized for any linear model and

includes functionality for systems with direct feedthrough (via matrices Du and Dd)) as well

as announced disturbances. The controller is implemented as a standalone python module,

termed PyMPC, and given the generic formulation of the QP Equation (5.2) and thoughtful

python class design, the controller as currently coded may be employed for the control of

any process or system given a linear plant model in silico. The quadratic program at the

heart of the controller is formulated in Pyomo [148, 149] and solved using an interior point

method [150]. For implementation details, including code as well as documentation for use

of the python module in a generic control problem, please consult Appendix E.
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5.2.2 Moving Horizon Estimation (MHE)

For linear systems, a Kalman filter is an optimal state estimator; however, it does not allow

for inequality constraints. As such, a moving horizon estimation (MHE) scheme was chosen

as it allows model states to be upper and lower bounded by physiological constraints ( [281]),

and in the unconstrained case it reduces to a Kalman filter ( [282]).

The MHE for the glucose control system developed here is formulated similar to [283].

Assuming that model-patient mismatch is due to process noise on both the states (ωk) and

inputs (σk), as well as measurement noise on the output (νk), the state-space model can be

written as:

xk+1 = Axk +Buk +Bσk + ωk

yk = Cxk +Duk + νk

(5.4)

For the state-space model in equation (5.4), the MHE is defined by the following quadratic

program:

minimize
z(k)

k∑
i=k−N+1

νTi Rνi +
k−1∑

i=k−N+1

ωTi Qωi + (xek−N+1)TP−1
k−N+1|k−N(xek−N+1) (5.5a)

subject to: νi = yi − (Cxi +Dui) (5.5b)

xk+1 = Axk +Buk +Bσk + ωk (5.5c)

αωk = 0 (5.5d)

βσk = 0 (5.5e)

ωi,j = ωi−1,j, i = k −N + 2 . . . k − 1, ∀j ∈ Constant Parameters (5.5f)

where: xek−N+1 , xk−N+1 − x̂k−N+1|k−N (5.5g)

z =
[
xek−N+1, ωk−N+1, ... ωk−1, σk−N+1, ..., σk−1] (5.5h)

P−1
k−N |k−N = P−1

k−N |k−N−1 + CTR−1C (5.5i)

P−1
k−N+1|k−N = Q−1 −Q−1A

(
P−1
k−N |k−N + ATQ−1A

)−1

ATQ−1 (5.5j)

s.t P−1
1|0 = P−1

0
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Through this formulation unmeasured inputs, or noise on measured inputs (σ) or put

another way, unmeasured disturbances, can be estimated. Constraints (5.5d) and (5.5e)

in the MHE optimization problem (5.5) force the process noise on manipulated inputs and

states that are not estimated to be zero (through suitable selection of vectors α and β). R

and Q are matrices that penalize deviations of the model from measurements and added state

noise, respectively, and are used to tune the estimator in conjunction with the estimation

horizon, N .

The final term in Equation (5.5b) is the arrival cost, which summarizes previous informa-

tion that is not included in the estimation horizon window. This term can be loosely viewed

as the conditional density function, p(xk−N |y0, · · · , yk−N−1) and penalizes prediction of ini-

tial conditions [281]. By penalizing deviations of xk−N+1 away from predictions of xk−N+1

given previous data and estimates (x̂k−N+1|k−N) if there is high confidence in projections of

the optimal estimate x̂k−N+1|k−N then the cost of estimating xk−N far away from x̂k−N+1|k−N

is large [282].

For unconstrained linear systems, the arrival cost can be expressed explicitly because

the MHE optimization simplifies to that of a Kalman filter, and the Kalman filter covari-

ance update formula (Equation (5.5i) and Equation (5.5i)) with initial condition P0 can be

used [284]. In the case of a constrained linear MHE, as implemented here, general ana-

lytical expressions for the arrival cost are not available [285]. A commonly used strategy

is to approximate the arrival cost by the Kalman update; such is the method used in this

implementation of a constrained linear MHE. This has the benefit of reducing to an exact

algebraic expression of the arrival cost when all inequality constraints are inactive [285]

In this formulation time-dependent parameters are estimated by reformulating the state

space model such that parameters are states with no dynamics:

dθ(t)

dt
= 0

or in a discrete time formulation

θk+1 = θk

126



This reformulation is used to estimate variable insulin sensitivities, insulin secretion rates,

and endogenous glucose production rates, where θ0 + ωk,θ exactly determines the parameter

value at each point, k over the estimation horizon, N and θ0 is the nominal parameter value.

For linear realizations of nonlinear models θ0 is the operating point of the linearization.

Although not used here, this formulation allows for the estimation of constant parameters

(across the estimation horizon) via Equation (5.5f). By enforcing Equation (5.5f) over a

subset of estimated parameters (which in this formulation are equivalent to estimated states)

the state noise ωi,j for state/parameter j at point i in the estimation horizon is constrained

to be equal to the state noise at the previous point for all points. In this way, the parameter

is held constant across the estimation horizon.

The inclusion of this functionality, in addition to allowing for the possibility of feedthrough,

meaning model inputs which directly and immediately affect an estimator output, and esti-

mation of unmeasured or noisy inputs, results in a moving horizon estimator that is gener-

alizable across multiple input-multiple output (MIMO) linear problems described with state

transition, input, feedthrough and output matrices. As with the model predictive controller

(Section 5.2.1), the MHE is implemented as a standalone Python module (given the name

CoPyMHE for Constrained Python Moving Horizon Estimator). The MHE quadratic pro-

gram is formulated in Pyomo [148, 149] and solved via the open source interior point solver

IPOPT [150]. For implementation details, including code and documentation for using the

python module in a generic state estimation problem, please consult Appendix F.

5.2.3 Internal Model

Both the zMPC and MHE make use of an internal linear model for predictions and estima-

tion. Here, the basic ICING model, with the addition of the model describing subcutaneous

insulin absorption dynamics, is linearized and used as the internal model for both the zMPC
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and MHE. For a system defined by

dx

dt
= F (x, t)

where

x = [x1, x2 . . . xn]

the linearization is the first order term of the Taylor expansion of F (x, t) around a point of

interest, x0, as given by Equation (5.6)

dx

dt
≈ F (x0

¯
, t) +∇F (x0, t)(x

¯
(t)− x0

¯
) (5.6)

where ∇F (x0
¯
, t) is the Jacobian of F (x

¯
, t) evaluated at the linearization point, x0

¯
.

Linearization and discretization of the ICING + subcutaneous insulin model is accom-

plished by finding the Jacobian of the model with respect to all state variables, estimated

parameters and inputs ([BG,QI , I, P1, P2, Qscr, Q1r, Q2r, SI, Uen, UG, UI , OG]), where UG, UI ,

and OG are rates of intravenous glucose infusion, subcutaneous insulin infusion and equiv-

alent oral glucose intake, respectively. The resulting Jacobian, broken into the state space

representation of the ICING model with dynamics for absorption of subcutaneously delivered

regular acting insulin, is given in Table 11 below.

The ICING model equation describing the mass of glucose in the gut (P2) contains a term

that requires finding the maximum of truncated linearly varying transport rate between the

stomach and the gut (see Equation (3.1e)). For linearization purposes, the rate is assumed

to varying linearly over all ranges, that is to say it is not truncated.

The state space matrices (A, B, and C) in Table 11 are evaluated at ICING model values

for all constant parameters and at the virtual patient cohort population averages for SI and

Uen. The states ([BG,QI , I, P1, P2, Qscr, Q1r, Q2r]) are evaluated at steady state values from

the ICING+SQ model [160] with SI = 0.0005 L
mU ·min and Uen = 20mU

min
. Intravenous glucose

and insulin infusion rates are assumed to be 0 at steady state, as are subcutaneous insulin

infusion rates and enteral glucose intake. The steady state values are given in Table 10.
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Table 10: Steady state values for the ICING+SQ model with SI = 0.0005
(

L
mU ·min

)
and

Uen = 20
(
mU
min

)
Variable: Steady State Value

BG
(
mg
dL

)
117.23

QI

(
mU
L

)
8.961

I
(
mU
L

)
16.83

P1 (mg) 0.0

P2 (mg) 0.0

Qsc (mU) 0.0

Q1 (mU) 0.0

Q2 (mU) 0.0

SI
(

L
mU ·min

)
0.0005

Uen
(
mU
min

)
20

129



After evaluation of A, B and C at the linearization point, the system is discretized with

a 5 minute sampling time to correspond to the CGM sampling rate [286]. Discretization is

accomplished through the scipy cont2discrete module [287, 288], which uses the following

transformations:

Ad = eAT (5.7a)

Bd =

(∫ T

τ=0

eAτdτ

)
B = A−1 (5.7b)

Cd = C (5.7c)

Here τ = 5 minutes is the sampling time.

5.2.4 in silico Trials

in silico trials are conducted on simulations of all patients within the virtual patient cohort

for the entirety of each patients’ stay in the critical care unit. For in silico trials, clinically

administered infusions or injections through any route (subcutaneous or intravenous) are

withheld from the virtual patients, however simulated virtual patients still consume meals

as indicated in the medical record data. Virtual patients with the responsive pancreatic func-

tionality described previously (Chapter 4) are simulated in python using the scipy [287, 289]

odeint library, which employs lsoda [290] from the FORTRAN odepack library. Simulations

are conducted in 5 minute steps to match the sampling rate of the CGM system [286], where

a new CGM “measurement” is taken as the interstitial glucose concentration at the end of

5 minutes simulated time (GISF , see Equation (3.6)) each time the virtual patient eICING

model differential equations are solved.

For each virtual patient, insulin sensitivity (SI) is calculated by the MHE at each glucose

measurement, collected at 5-minute intervals, and is assumed to be constant until the next

glucose measurement. The pancreatic insulin secretion rate, Uen, is also assumed to remain

constant over the 5 minute interval. In Chapter 4 a physiologically-motivated PID control

scheme is developed to determine pancreatic insulin secretion rates in response to blood

glucose concentrations. Briefly, insulin secretion is assumed to be comprised of a basal

component, which is determined by the aforementioned PID controller and a pseudo-random
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residual component. Here, the insulin secretion rate is taken as the sum of the PID calculated

basal component and the residual at the start of the 5 minute interval (as described in

Chapter 4). As noted earlier, secretion rates are constrained between 0mU
min

and 210mU
min

.

At the start of simulated closed-loop glucose control treatment, the MHE and zMPC are

both initialized with the A, B, and C matrices from Table 11 evaluated at the linearization

point. At each 5 minute time step, the MHE module returns a vector of all states and the two

estimated parameters (SI and Uen). The MHE results are inputs to the MPC module and

serve as the initial conditions for the MPC internal model. The estimated parameters SI and

Uen are assumed to remain constant throughout the prediction horizon. The MPC module

returns predictions of the controlled variable (BG in this case) at all steps in the prediction

horizon and optimized values for the control variables at all steps in the control horizon.

The first values of the MPC optimized control variables (glucose and subcutaneous insulin

infusion rates) become the inputs to the virtual patient simulation and remain constant

across the 5 minute simulation for that time step.

5.2.5 Simulated CGM Error

To more closely imitate clinical conditions, and the unfortunate but inescapable reality of

CGM sensor noise, the zMPC/MHE glucose control system is tested in silico with simulated

noisy CGMs. In practice, each patient has glucose concentrations measured by two continu-

ous glucose monitors; simulated virtual patient glucose concentrations are also “measured”

using two simulated CGMs. The availability of glucose measurements from two sensors

necessitates a modification of the C matrix in the MHE such that:

CMHE =

C
C

 (5.8)

and therefore BGCGM,1

BGCGM,2

 = [CMHE] [GISF ] (5.9)

This modification enables the MHE to estimate SI and Uen based on both CGM mea-

surements. If CGM noise is not simulated BGCGM,1 and BGCGM,2 are identical and esti-

mations would be no different than if a single “measurement” with C were used. When
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BGCGM,1 6= BGCGM,2 and with symmetric R this modification results in estimations based

on the simple average of BGCGM,1 and BGCGM,2. For asymmetric R, the estimation is based

on a weighted linear combination of BGCGM,1 and BGCGM,2.

CGM noise is simulated here using a first-order moving average model (MA(1), as de-

scribed in Chapter 2) with parameters taken as the medians from Table 3 for properly

functioning sensors. An independent MA(1) process is instantiated for each CGM and re-

alizations of the process are added to GISF from the virtual patient simulation at eac time

step to generate two unique CGM measurements with realistic noise characteristics. If the

addition of noise would result in BGCGM,i < 0 new values are generated from the MA(1)

process until BGCGM,i + noise > 0

Recalibration of the simulated CGMs is performed every 6 hours by re-initializing the

integrated moving average error model and letting error accumulate from a random start-

ing error over the next 6 hour window. The CGM recalibration often produces a jump in

the measured glucose values as the error decreases significantly due to recalibration. This

introduces large derivatives in a number of states in the MHE and results in estimates that

introduce corresponding large derivatives int he MPC leading to rapid control moves leading

to a temporary loss of control of blood glucose levels. To combat this, the error, for each sen-

sor, at the recalibration point, where error is defined as the difference between the previous

CGM measurement and the accurate measurement used for recalibration is subtracted from

the previous N CGM measurements (where N is the estimation horizon) used by the MHE.

Failure to correct the measurements internal to the MHE at the time of recalibration and

subsequent MHE re-initialization was found to result in significant measurement and esti-

mation errors which ultimately lead to poor control and dangerous hyper- or hypoglycemia.
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5.2.6 zMPC and MHE Tuning

With a sample time of 5 minutes (Ts = 5) the prediction horizon, P , is set at 36 intervals

(corresponding to predictions 3 hours into the future) per the common recommendation [291]

that T = PTs where T is the desired closed-loop response time – in this case 3 hours. In

general it is recommended that the control horizon (M) is much less than P (M << P ) for

the following reasons [291]:

• Smaller M reduces the computational size of the problem

• M < P is essential for plants with delay. If M = P it is possible that later control moves

might not affect plant outputs leading to an ill-posed optimization problem

• Small M promotes stability, although there is no guarantee of stability

For this work it was found that M = 8 resulted in good controller performance. Through

trial and error the following weighting matrices were found to result in a controller which was

resistant to high frequency oscillations in infusion rates or “spiking”, especially in the face

of CGM noise and which was able to mitigate hyperglycemia while avoiding hypoglycemia.

Γ =

30 0

0 10


S =

500 0

0 0.005


The MHE horizon, N , was set at 36 to utilize measurements over the previous 3 hours to

estimate insulin sensitivity and insulin secretion rates. R, the matrix penalizing deviations

in model predicted glucose concentrations from measured concentrations is simply taken as

2× 2 identity matrix. The matrix is 2× 2 and symmetric to account for the availability of

measurements from 2 CGMs and the belief that neither CGM is inherently more accurate.

Using R =

1 0

0 1

 as a baseline the weighting matrices Q and P0 (given below) are assumed

to be identical.The values for the first two diagonals take (corresponding to ωSI and ωUen)their
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values from the regularization on SI and Uen, respectively, used in developing the virtual

patient cohort by virtue of their analogous functionality in the MHE. The latter two diagonal

values, corresponding to ωQ and ωEGP were found via trial and error.

Q = P =


1× 10−5 0 0 0

0 1× 108 0 0

0 0 1× 10−4 0

0 0 0 1× 10−4



′

The corresponding vector of state noises is given by:

ω =
[
Uen, SI , QI , EGP

]

A Note on Weighting: A value of 1× 10−4 is used as the weight on noise for both QI

and Uen, however the ultimate penalty is the product of the weight and squared state

noise value. Because Uen is generally much larger in magnitude (0 − 210mU
min

) compared

to EGP (0− 1.16mmol
min

) in the ICING model the weight, on QI represents a significantly

larger penalty.

5.2.7 Moving Horizon Estimation and Accuracy Requirements

It has been suggested that in order to safely affect TGC in a critically-ill patient population

the accuracy of high frequency CGM measurements, as described by Mean Absolute Relative

Deviation (MARD), needs to be less than 11% according to one study [78] or less than 10%

according to another [79]. The Dexcom® Platinum™ G4 continuous glucose monitors used

here have a MARD of 15.15% which seems to suggest that they may be insufficient for

control. However, it is hypothesized here that the use of moving horizon estimation with

data from two CGMs and a sufficient recalibration frequency will result in a MARD value

for the estimated blood glucose concentration which is sufficient for control. Using simulated

CGM error an in silico trial was conducted across all in patients in the virtual patient cohort

in replicate with N=100. MARD was calculated using the MHE estimated blood glucose
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concentration as a surrogate measurement and the virtual patient simulated blood glucose

concentration as the reference. The results utilizing both a single and dual CGMs and an

array of recalibration frequencies are summarized in Figure 40

Figure 40: CGM recalibration frequency vs. MARD of estimated blood glucose concentra-

tions across the virtual patient cohort over N=100 trials using 1 and 2 CGMs. With 2 CGMs

the MHE fuses the sensor measurements into an overall significantly more accurate estimate

of blood glucose concentrations which results in an increase in the requisite recalibration

frequency to achieve an acceptable MARD for closed-loop glucose control.
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5.3 CONTROL RESULTS

Control results for a simulated virtual patient suffering from significant hyperglycemia are

shown in Figure 41, assuming perfectly functioning CGMs with no sensor noise. If simulated

CGM noise is added to more closely mimic clinical conditions the closed-loop glucose control

action and resulting plasma glucose concentrations are shown in Figure 42.

As seen in Figure 41, in simulations with realistic CGM noise, Figure 42, the zMPC/MHE

glucose control algorithm developed here is able to tightly control plasma glucose concentra-

tions in a simulated virtual patient. To demonstrate efficacy and safety, repeated in silico

control trials with simulated CGM noise are conducted across the virtual patient cohort. In

this in silico trial, each virtual patient undergoes 100 simulations to account for the stochas-

tic nature of the CGM noise, and statistics are aggregated from all simulated control runs.

The results of this in silico trial are shown in Figure 43 and Table 12.

5.4 DISCUSSION

Through the use of redundant or dual CGMs and the MHE for sensor fusion, a MARD

which is acceptable for TGC is achievable with a calibration period of approximately 6-7

hours despite the deleterious effects of CGM noise. Although this recalibration frequency is

significantly greater than would be utilized for ambulatory Type 1 Diabetic patients [286],

it represents a significant time-savings over control schemes which require blood sample

draws and manual glucose measurement up to every hour [103, 292], which represents a

significant clinical workload [59]. If only a single CGM is used, simulation results indicate

that the recalibration frequency necessary for acceptable TGC and the associated clinical

effort increases by approximately 40%.

Utilizing a zone MPC/MHE control algorithm to automate the delivery of glucose and

insulin to the virtual patients resulted in a much higher fraction of time spent within the

target glucose zone, a significant decrease in the incidence of hyperglycemia, and dramatic

decrease in hypoglycemic events as shown in Figure 43 and Table 12. The zMPC/MHE with
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Figure 41: Plasma glucose concentrations (Top) for the simulated virtual patient under

zMPC/MHE control (-) compared to plasma glucose concentrations if the patient consumed

meals as indicated in the medical record and went untreated (--). Measurements taken by

the two CGMs are shown by • and •. (Middle) zMPC optimized insulin infusion rate (-) and

pancreatic insulin secretion rate (-). (Bottom) zMPC optimized glucose infusion rate (-).

Note: Perfect measurements result in perfect agreement between the CGMs and an exact

match to simulated virtual patient plasma glucose concentrations.

output regulation algorithm significantly outperforms the clinical protocol in controlling

blood glucose levels while completely avoiding any hypoglycemic events. The controller
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Figure 42: Plasma glucose concentrations (Top) for the simulated virtual patient under

zMPC/MHE control (-) compared to plasma glucose concentrations if the patient consumed

meals as indicated in the medical record and went untreated (--). Measurements taken by

the two CGMs are shown by • and •. (Middle) zMPC optimized insulin infusion rate (-)

and pancreatic insulin secretion rate (-). (Bottom) zMPC optimized glucose infusion rate

(-). Note: Simulated noise on CGM measurements results in mismatch agreement between

the CGMs (top panel) as well as simulated virtual patient plasma glucose concentrations.

appears to be well-tuned, delivering insulin in decaying “bursts”, and the output regulation

on glucose infusion rates appears to be functioning as intended. Glucose is infused as a

rescue to avoid hypoglycemia followed by a return to no glucose infusion once the danger of

hypoglycemia has passed.
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(a) Clinical Treatment (b) zMPC/MHE Control

Figure 43: Distribution of blood glucose concentrations resulting from clinical treatment

and zMPC/MHE administered treatment. (a) Clinical Treatment. (b) zMPC/MHE

administered subcutaneous insulin and intravenous glucose infusions during an in silico

trial with simulated CGM noise. Shaded region indicates healthy blood glucose zone

(80mg
dL
≤ BG ≤ 130mg

dL
)
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Table 12: Mean, average standard deviation, minimum and maximum values as well as mean

percentage of time spent within relevant zones for the clinical treatment regimen and the in

silico trial with simulated CGM noise using a zMPC/MHE algorithm to control subcutaneous

insulin and intravenous glucose infusions.

Mean (mg
dL

) σ (mg
dL

) Min (mg
dL

) Max (mg
dL

) %TimeZone %Time80≤BG≤130

Clinic 156.11 26.04 53.44 387.20 23.73 37.39

zMPC/MHE 119.38 13.79 74.14 360.02 75.54 86.59

Examining the example results in Figures 41 and 42 shows that there are significant

windows where both subcutaneous insulin and intravenous glucose infusion rates are non-

zero. This may initially appear to be the result of poor or improper controller tunings

or an improperly estimated model. The intuitive expectation would be a zeroing of insulin

infusion rates when glucose infusion rates are non-zero so the controller is not “fighting” itself,

and vice versa. However, the fact that subcutaneously, and not intravenously, administered

insulin is being used must be considered. Subcutaneously administered regular acting insulin

must be absorbed into the blood stream and distributed throughout the body and peripheral

interstitial tissue to be effective.

The subcutaneous absorption process is slow compared to distribution in the plasma

and results in a delay between administration and action, such that ceasing subcutaneous

insulin infusion immediately in response to projected hypoglycemia would result in predicted

hyperglycemia at some point during the prediction horizon. Instead, the optimal solution

to the MPC formulation results in a continued subcutaneous insulin infusion (albeit at

a decreased rate) and impending hypoglycemia is countered with a non-zero intravenous

glucose infusion rate.

As a further explanation of the observed overlap between insulin and glucose infusions;

consider the structure of the subcutaneous insulin absorption model Equations (3.2) to (3.4)

as well as Equation (3.1h). Note that there is only insulin degradation in Q1, otherwise there
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is strictly transport from Qsc → Q1 and from Q2 → I. The transport rate constant, kTR

for Q2 → I, the final step in regular acting insulin absorption to plasma is approximately

5× slower than nK (0.0127 min−1 vs. 0.0542 min−1), not even considering the saturating

rate of plasma insulin disposal or the transport of insulin to the interstitium. All of this is

to say that there is a significant tail to insulin action even after subcutaneous infusion has

been stopped as insulin continues to appear in plasma due to the relatively slow absorption

process from the subcutis. This is in comparison to intravenous insulin infusion in which

case the effect of infused insulin will become negligible rapidly following cessation of infusion

due to the rapid elimination of insulin from plasma.

Consider also that intravenously infused glucose distributes rapidly in plasma as blood

completes a circulation of the body in approximately 2 minutes [293] (Note: in the virtual

patients developed here equilibration is immediate). As a result, in response to dropping

blood glucose concentrations that may portend hypoglycemia, when subcutaneous insulin is

used the optimal control action may not be a total restriction on insulin infusion due to the

delay introduced by absorption, but rather a continued infusion (at a lower level to prevent

future hyperglycemia) with a rapid rise in glucose infusion rates to combat hypoglycemia.

There are controller tunings which reduce the overlap between insulin and glucose infusions,

however it requires much more aggressive controller action. The net effect is that overall both

more insulin and glucose are infused with these tunings compared to to presented controller

tuning results despite the significant overlap.

5.4.1 Announced vs. Unannounced Meals

The zMPC algorithm as designed and implemented here has the functionality to tailor control

action around predicted disturbances – in this case patient meals. By announcing future

meals the zMPC can take pre-emptive action, by infusing additional subcutaneous insulin

before a meal, to ensure that blood glucose concentrations do not spike in response to a

meal. The results presented in Figures 41 to 43 do not utilize this feature but rather the

control algorithm assumes that there are no non-controller administered sources of exogenous

glucose and insulin, including oral intake over the prediction horizon.
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A Note on Unannounced vs. Announced Meals: Here unannounced meals imply that
the zMPC is totally “blind” to meals and the rate of oral glucose intake over the prediction
horizon is exactly zero. For an announced meal the current rate of oral glucose intake is held
constant (Zero-Order Hold) across the prediction horizon. In the case of predicted meals, the
anticipated rate of oral glucose intake over every step in the prediction horizon for any forecaster
meals within the prediction horizon are provided to the zMPC.

The logic behind this decision is perhaps most easily explained with the following demon-

stration. Here, a virtual patient (different from the one presented in Figures 41 and 42) is

placed under the control of the zMPC/MHE algorithm in the following scenarios:

(i) Unannounced meals

(ii) Announced meals

(iii) Predicted meals – consumed as predicted

(iv) Predicted meals – not consumed

Figure 44 shows the control results for a certain virtual patient in all of the above scenarios.

For scenarios in which meals are consumed the rate of glucose appearance in the blood from

absorption in the guy is shown. As seen in Figure 44, the use of predicted and announced

meals results in a significantly better controller to response in meals as evidenced by the

lack of spike in blood glucose concentrations around 400 minutes. This result matches

expectations, however from a clinical standpoint the use of announced or predicted meals

does not necessarily represent the optimal design decision.
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(i) Control results with unannounced meals. The
rate of oral intake is assumed to be 0.0 mg

dL across
the prediction horizon regardless of meals
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(ii) Control results with announced meals. At the
time of a meal the rate of oral intake is held con-
stant over the prediction horizon at the current
rate of consumption.
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(iii) Control results with forecasted meal informa-
tion. The assumed rate of oral intake for the dura-
tion of any meal which falls within the prediction
horizon is provided to the zMPC.

60

80

100

120

140

160

180

200

B
lo

od
 G

lu
co

se
 m
g

d
L

Sensor 1
Sensor 2

MPC
Untreated

0

100

200

300

400

500

600

700

In
su

lin
 R

at
e 

m
U

m
in

0

50

100

150

200

In
su

lin
 S

ec
re

tio
n 

R
at

e 
( mU m

in

)

0 200 400 600 800 1000 1200 1400
Time (minutes)

0

100

200

300

400

500

G
lu

co
se

 R
at

e 
m
g

m
in

(iv) Control results with forecasted meal informa-
tion. The assumed rate of oral intake for the dura-
tion of any meal which falls within the prediction
horizon is provided to the zMPC. In this scenario
meals the forecasted meals are never actually con-
sumed

Figure 44: Control results for a certain virtual patient under four different scenarios demon-

strating the affects of unannounced vs. announced meals. CGM error is not simulated here

for clarity and ease of comparison across figures. The untreated trajectory (--) in the top

panel of all figures shows the simulated virtual patient blood glucose profile in the absence

of any zMPC calculated infusions or any clinical treatment.
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Figure 45: Cumulative plot of intravenous glucose (top) and subcutaneous insulin (bottom)

showing the total mass of glucose and insulin delivered over time for the 4 scenarios shown

in Figure 44. For all scenarios the MHE is provided accurate meal information.
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Figure 45 shows the total amount of intravenous glucose and subcutaneous insulin deliv-

ered over time for the 4 scenarios presented above. From this figure and the results shown

in Figure 44 it is clear that predicted and announced meals result in good maintenance of

glucose levels within or near the zone with a minimum of control effort. In the case of unan-

nounced meals (Figure 44i) insulin infusion rates rise rapidly to very high levels to combat

the influx of glucose resulting from consumed meals, however, there is still a small a degree

of hyperglycemia resulting from the meal consumed between 400 and 600 minutes. Using

an announced meal (Figure 44ii) the controller is able to combat any hyperglycemia with

large, rapidly rising rates of subcutaneous insulin infusion but significant rates of glucose

infusion are required to avoid hypoglycemia. This is due to the fact that the rate of oral

intake is held at a constant elevated value over the prediction horizon (360 minutes) which

is far longer than the meal is consumed leading to very (overly) aggressive insulin delivery.

If the controller is provided predicted meal information, including the duration of the meal

significantly lower rates of insulin infusion are required to completely avoid hyperglycemia as

insulin is infused pre-emptively to combat the predicted rise in blood glucose concentrations

following a meal. Because the magnitude and duration of oral intake is accurately provided

to the controller prior to the meal there is a significantly diminished need for glucose to avoid

hypoglycemia following oral intake in this mode of operation.

It would seem then, that predicting meals is the optimum strategy for controlling plasma

glucose concentrations to a target zone. However, consider the final scenario (Figure 44iv)

in which predicted meals are provided to the controller but ultimately the meals are missed

and not consumed. As in the previous scenario (Figure 44iii) the controller ramps up insulin

infusion rates pre-emptively to combat the affects of oral glucose intake, however the ex-

pected oral intake never arrives requiring significant sustained infusions of glucose to avoid

hypoglycemia. In the results presented in Figure 44 hypoglycemia is avoided but at the cost

of significantly increased total insulin and glucose infusions (see Figure 45).

Figure 45 shows that unannounced and predicted meals both lead to the infusion of

similar masses of insulin and glucose, however, as seen in Figures 44i and 44iii predicted

meals result in significantly tighter glucose control within the target zone. Figure 45 also

demonstrates the significant increase in both glucose and insulin requirements if announced
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meals are used and the further increased glucose requirement if predicted meals are used but

ultimately the meals are not consumed. For this patient missing predicted meals precipitated

a 300+% increase in the mass of glucose infused to prevent hypoglycemia over the scenario

where oral intake was as predicted.

Although hypoglycemia is prevented here, this may not always be the case, especially

as the upper limit of allowable rates of glucose infusion is reached. Furthermore, the use of

announced or predicted meals is predicated upon the assumption of absolute reliability int

he glucose infusion system. Any failure in glucose infusion carries with it a significant risk

of hypoglycemia and cannot be recommended as the safest mode of operation. For these

reason unannounced meals are assumed throughout and the results described in Figures 41

to 43 and table 12 were generated using simulations with unannounced meals.

5.4.2 Comparison to Commercial Solutions

As a point of comparison to commercially available and approved solutions in silico trials

on the virtual patient cohort with the Computerized Yale Protocol and GlucoStabilizer®

Algorithm were conducted.

5.4.2.1 GlucoStabilizer GlucoStabilizer® is marketed as a tool for “trusted, Safe, Ef-

fective Glycemic Management” [294] in intensive care units and claims an 87% reduction

in hypoglycemia and a 35% reduction in nursing workload [294]. The details of the algo-

rithm are detailed in [276, 295] and for brevity are not reproduced in their entirety here.

Briefly, the program recommends an insulin dose based on an insulin sensitivity factor (ISF)

which increases or decreases, typically in increments of 0.1, when blood glucose is below

or above, respectively, the target range. The recommended insulin dose ( U
hr

) is then cal-

culated as (BG − 60) × ISF where BG is the current blood glucose concentration. Addi-

tionally, GlucoStabilizer® can recommend a bolus of Dextrose 50% based on the formula

(100−BG)× 0.4 when blood glucose concentrations fall below 70mg
dL

. For direct comparison
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with the model-based control algorithm developed here the target zone in GlucoStabilizer®

is set at 110−130mg
dL

. GlucoStabilizer® requires new glucose measurements and adjustments

to the insulin infusion rate every hour.

The results of the GlucoStabilizer® on the same virtual patient from Figures 41 and 42

are shown in Figure 46. The aggregate results of blood glucose management using GlucoStabilizer®

are shown in Figure 47 and table 13. As seen in Figure 46 the GlucoStabilizer® algorithm

significantly reduces blood glucose concentrations but induces an oscillatory glucose trajec-

tory and results in significant hypoglycemia, defined here as blood glucose concentrations

≤ 70mg
dL

. Due to the oscillatory nature of blood glucose concentrations when treated with

GlucoStabilizer® the mean blood glucose concentration for this patient is 133.65mg
dL

which

is very close to the target zone. Furthermore, the target blood glucose (110 − 130mg
dL

) is

reached in 240 minutes (4 hours), which is consistent with claims that the average time to

target is 3.84 hours [294]. GlucoStabilizer® further claims a hypoglycemia rate of 0.13%

[294] where in GlucoStabilizer defines hypoglycemia as BG ≤ 40mg
dL

. This is born out in the

in silico trials here with a hypoglycemia incidence rate of 0.23%. However, it is important to

consider the shaded region region of Figure 47 which denotes the minimum mortality zone

(80− 130mg
dL

) and note that a significant portion of blood glucose concentration density lies

to the left of this zone into a region of rapidly rising mortality rates [121] when using the

GlucoStabilizer® algorithm.

Although the GlucoStabilizer® algorithm generally maintains blood glucose concentra-

tions within a target zone and avoids severe hypoglycemia it tends to result in oscillatory

blood glucose profiles with relatively large amplitudes, especially compared with the zM-

PC/MHE controller developed here. Blood glucose variability has been negatively corre-

lated with patient outcomes in a number of studies [296–300, 300, 301]. In fact, according

to one study [38] patients with lower mean glucose concentrations but significantly increased

glucose variability had an almost five-fold increase in odds of hospital mortality compared

to patients with higher glucose concentrations but lower glucose variability. Notice from

Table 13 the GlucoStabilizer® decreases mean blood glucose concentrations to the middle

of the target zone compared to the clinical protocol but does so at the expense of increased

blood glucose variability (156.11± 26.04mg
dL

vs. 118.12± 31.49mg
dL

).
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Figure 46: Glucose control using the GlucoStabilizer® algorithm on a virtual patient. The

top panel illustrates the GlucoStabilizer blood glucose concentrations with meals compared

to the untreated virtual patient consuming the same meals. The middle panel shows the rate

of insulin infusion by the GlucoStabilizer® algorithm and the pancreatic insulin secretion

response to blood glucose concentrations. The bottom panel shows any glucose boluses

recommended and delivered by GlucoStabilizer® as well as the rate of glucose appearance

in the blood from oral intake.
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Figure 47: Histogram of blood glucose concentrations in in silico trials of the

GlucoStabilizer® algorithm on the virtual patient cohort. The histogram for the clinical

treatment is provided for comparison.

Table 13: Mean, average standard deviation, minimum and maximum values as well as

percentage of time spent within relevant zones for the GlucoStabilizer® in in silico trials

with the virtual patient cohort.

Mean (mg
dL

) σ (mg
dL

) Min (mg
dL

) Max (mg
dL

) %TimeZone %Time80≤BG≤130

Clinic 156.11 26.04 53.44 387.20 23.73 37.39

GlucoStabilizer 118.12 31.49 19.24 338.86 30.12 59.75
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5.4.2.2 Computerized Yale Protocol: The Computerized Yale Protocol (trademarked

as the GlucoCare™IGC System by Pronia Medical Systems, LLC, Louisville, KY) is a FDA

cleared insulin-dosing calculator based on the 2004 Yale insulin infusion protocol [302]. The

GlucoCare™IGC system targets a blood glucose concentration range of 110 − 140mg
dL

based

on the Yale Protocol by recommending bolus administration of insulin and glucose as well

as continuous intravenous infusion of insulin based on a patient’s response to prior rates

[275]. In essence, the Yale protocol adapts to patients’ varying degrees of insulin sensitivity.

The details of the GlucoCare™IGC System are detailed in [275] and the basics are given in

Table 14.

Table 14: Main instructions from the 2004 Yale Insulin Infusion Protocol (100140 mg/dL).

See column 1, row 4 of the first table which demonstrates the recommendation that in-

sulin continue with a BG decrease of 125 mg/dL even while in the range of 7599 mg/dL

(reproduced from [275]).

BG 75-99 mg/dL BG 100-139 mg/dL BG 140-199 mg/dL BG >200 mg/dL INSTRUCTIONS 

BG  > 50 mg/dL/hr BG INFUSION by “2 ” 

BG  by > 25 mg/dL/hr 
BG  1-50 mg/dL/hr 

OR 
BG UNCHANGED 

BG UNCHANGED 
OR 

BG  1-25 mg/dL/hr 
 INFUSION by “ ” 

BG 
BG  by 1-25 mg/dL/hr 

BG UNCHANGED, OR 
BG 1-25 mg/dL/hr 

BG  by 1-50 mg/dL/hr     BG  by 26-75 mg/dL/hr NO INFUSION 
CHANGE 

BG UNCHANGED 
OR 

BG  by 1-25 mg/dL/hr 
BG  26-50 mg/dL/hr       BG  by 51-75 mg/dL/hr 

BG  by 76-100 
mg/dL/hr  INFUSION by “ ” 

BG  by > 25 mg/dL/hr 
See below

BG  by > 50 mg/dL/hr      BG  by > 75 mg/dL/hr     BG  by > 100 mg/dL/hr HOLD x 30 min, then 
 INFUSION by “2 ” 

D/C INSULIN INFUSION:  Check BG q 30 min;  when BG > 100 mg/dL, restart infusion @ 75% of most recent rate.

CHANGES IN INFUSION RATE (“ ”) are determined by the current rate:

Current Rate 
(Units/hr) 

 = Rate Change 
(Units/hr) 

2  = 2X Rate Change 
(Units/hr) 

<3.0 0.5 1
3.0– 6.0 1 2

6.5– 9.5 1.5 3
10– 14.5 2 4

15– 19.5 3 6

20– 24.5 4 8
>25 >5 10(ConsultMD)
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The GlucoCare™IGC System is not intended for patients who are consuming intermittent

meals and must be handled separately from the protocol’s directions. As such, for the in

silico trial of the GlucoCare™IGC System conducted here with the virtual patient cohort

meals are not included. The results of the GlucoCare™IGC System in this in silico trial for

an example patient (the same patient used in testing the GlucoStabilizer® algorithm and

demonstrating the zMPC/MHE control system in Figures 41 and 42) is shown in Figure 48 as

an example. As shown in Figure 48 the GlucoCare system significantly reduces blood glucose

concentrations through the continuous infusion of intravenous insulin. At two points during

treatment dextrose boluses are delivered intravenously to prevent hypoglycemia and for this

particular patient severe hypoglycemia (BG ≤ 40mg
dL

) is avoided, however similar to the

results observed using the GlucoStabilizer algorithm (see Figure 46) the GlucoCare system

induces significant oscillations in blood glucose concentrations and appears to increase blood

glucose variability. The aggregated results of the GlucoCare system in this in silico trial

using the virtual patient cohort are presented in Figure 49 and table 15.

As with the GlucoStabilizer algorithm and the zMPC/MHE control scheme developed

here the computerized Yale Protocol of the GlucoCare system successfully shifts the dis-

tribution of blood glucose concentrations to lower values and places a larger mass of the

distribution within the healthy zone (80− 130mg
dL

) as demonstrated in Figure 49. Compared

to the GlucoStabilizer algorithm significantly less of the blood glucose density falls to the

left of the healthy zone in the region of rapidly rising mortality.

Using the GlucoCare™IGC System mean blood glucose concentrations are reduced to

130.26mg
dL

with a minimum value of 29.59mg
dL

. The GlucoCare system induces severe hypo-

glycemia (BG ≤ 40mg
dL

) 0.10% of the time – similar to the rates observed using the Glu-

coStabilizer system and overall a very low incidence rate. However, as postulated above and

as observed with the GlucoStabilizer algorithm, the GlucoCare™IGC System results in a

significant increase in mean blood glucose variability over the clinical treatment (±26.04mg
dL

to ±41.70mg
dL

) which raises the same concerns and suffers from the same drawbacks as the

GlucoStabilizer algorithm discussed previously in Section 5.4.2.1.
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Figure 48: Glucose control using the GlucoCare™IGC System to manage blood glucose

concentrations in a virtual patient. The top panel illustrates the GlucoCare system blood

glucose concentrations in the absence of meals compared to the untreated virtual patient.

The middle panel shows the rate of insulin infusion by the GlucoStabilizer® algorithm and

the pancreatic insulin secretion response to blood glucose concentrations. The bottom panel

shows any glucose boluses recommended and delivered by the GlucoCare™IGC System.

Both the GlucoStabilizer and GlucoCare systems effectively reduce mean blood glucose

concentrations and largely avoid severe hypoglycemic incidents, albeit, with significant blood

glucose variability. However, two of the stated driving forces behind the development of both
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Figure 49: Histogram of blood glucose concentrations in in silico trials of the Computerized

Yale Protocol on the virtual patient cohort. The histogram for the clinical treatment is

provided for comparison.

systems is a reduction in clinical workload and an increase in adherence to protocol [275, 276].

Both systems require, at a minimum a manually obtained blood glucose measurement every

hour and adjustment of insulin infusion rates with the possibility of a glucose bolus. In

situations where there is a high risk of hypoglycemia the required rate of intervention may

increase to once every 15 minutes. Compared to the proposed model-based control system

developed here which ostensibly requires manual blood glucose measurements only once every

6 hours for CGM recalibration the FDA approved and commercially available solutions still

represent a significantly increased clinical burden over what may be possible.
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Table 15: Mean, average standard deviation, minimum and maximum values as well as

percentage of time spent within relevant zones for the Computerized Yale Protocol tested in

in silico trials with the virtual patient cohort.

Mean (mg
dL

) σ (mg
dL

) Min (mg
dL

) Max (mg
dL

) %TimeZone %Time80≤BG≤130

Clinic 156.11 26.04 53.44 387.20 23.73 37.39
Computerized Yale Protocol 130.26 41.70 29.59 415.94 28.6 56.3

5.4.3 Summary

In this chapter the efficacy and safety of a model-based controller utilizing continuous sub-

cutaneous insulin infusions and intravenous glucose delivery has been demonstrated. Using

the zone model-predictive controller (zMPC) and moving horizon estimation (MHE) system

developed and described here blood glucose concentrations in a virtual patient cohort are

successfully and tightly maintained within a target zone.

In silico trials on the virtual patient cohort were successfully employed to tune zM-

PC/MHE controller and further used to justify the decision to operate the controller in a

mode in which patient meals are unannounced. In the in silico trials the zMPC/MHE was

able to significantly reduce average blood glucose levels compared to the clinical standard

of care (156.11 to 119.38 mg
dL

), reduce blood glucose variability by 50% and maintain blood

glucose concentrations within a zone of minimum mortality (80−130mg
dL

) 85.69% of the time

while completely avoiding hypoglycemia, even with normal, or expected CGM error.

The significantly improved glucose control demonstrated with the zMPC/MHE system

on the virtual patient cohort is achieved using subcutaneous insulin thereby recognizing

all the benefits of subcutaneous delivery and still outperforms other commercially available

solutions, especially on measures of glucose variability, such as GlucoStabilizer® and the

GlucoCare™IGC System which utilize intravenous insulin delivery. If intravenous insulin

was utilized, the model-based system developed here would likely see a further increase in

performance with a higher percentage of glucose measurements falling within the target

zone and zone of minimum mortality. When the control performance of the model-based

155



zMPC/MHE glucose control system developed here is compared with commercially available

and FDA approved systems in in silico trials with a realistic virtual patient cohort it becomes

clear that this model-based system may be a safe, effective and viable path to closed-loop

glucose control to a target, all while reducing the burden or workload imposed on clinical

staff when tight glucose control is considered.
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6.0 ALARMS AND FAULT DETECTION FOR CLOSED-LOOP

MODEL-BASED GLUCOSE CONTROL

6.1 INTRODUCTION

The automation of advanced systems allow for more efficient and safe operation, however an

important consideration in any process under automatic control is the response or actions

required when one or more components fail [303]. Like all closed-loop control systems, the

glucose control scheme developed here is comprised of measurement devices, the continuous

glucose monitors, an actuator, the glucose infusion pump and insulin infusion set, and the

zone model-predictive controller with moving horizon estimator. Failure of either the mea-

surment device or the actuator significantly diminish the achievable controller performance

and negatively impact patient safety. In this section techniques to identify faults or failures

in the measurement and actuation mechanisms will be discussed and evaluated via in silico

trials. Furthermore, a system to assess the “health” of the estimator and controller with a

simple clinically relevant presentation is developed and demonstrated.

Subcutaneous continuous glucose monitors may fail due to a significantly inhibited re-

sponses to glucose concentrations due to pressure induced losses of sensitivity (PILS) [81,

143, 144] and long term attenuation of sensor sensitivity [304–306] or due to improper cali-

bration leading to bias and the potential for significant drift. Due to the variability in insulin

sensitivity, the possibility for rapid shifts in insulin sensitivity, and the not yet well charac-

terized or modeled etiology of insulin resistance, it is extremely difficult to identify the cause

of unexpected variations in blood glucose as a change in insulin sensitivity or a potential

CGM fault. Fortunately, the use of paired or redundant CGMs in this work helps limit

the severity of this issue by enabling the controller to track instantaneous and accumulated
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error between the sensors. Furthermore, techniques for identifying PILS events in CGMs

[307, 308] have been developed based on maximal physiologic rates of change, which can be

employed here.

The potential for failure in control action stems largely from the possibility of insulin

infusion set failure. During normal infusion set operation, an infusion pump creates a bubble

of insulin under the skin which then osmoses into the blood stream where it affects glucose

uptake [307]. The body may react to the infusion set and exogenous insulin through swelling

at the site. Swelling and skin contortions may allow insulin to leak out of the body which

creates a mismatch between controller commanded insulin and the mass of insulin actually

delivered, resulting in poor control due to inadequate insulin [307].

The degradation in control resulting from an insulin infusion set failure is confounded in

the control system developed here due to the use of a moving horizon estimation scheme to

keep the internal controller models current and accurate. An unaccounted loss of insulin at

the infusion site leading to a low circulating concentration of effective insulin will result in

some inaccurate combination of reduced estimates of insulin sensitivity, reduced estimates

of endogenous insulin production and increased estimates of the rate of endogenous glucose

production. The inaccuracies in parameter estimates due to an insulin infusion set failure

will further degrade controller performance and may lead to significant hypoglycemia when

the infusion set fault is rectified as the likely controller response to what appears to be an

ineffective rate of insulin infusion is an increase in the infusion rate.

The primary strategy for the mitigation of insulin infusion set failures is replacement

of the infusion set every three days [129]. Significant variability in the lifespan of insulin

infusion sets [309] means that sets may fail before they are changed, necessitating a means of

detecting an infusion set failure. Here, taking the work of Tyler et al. [310] and Bemporad

et al. [311] as inspiration, the ICING model state space is augmented with an additional

disturbance which is used to identify infusion set failures.
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Problems with alarms in health care systems have been noted for decades [312–315], and

alarm fatigue [316], associated with excessive alarms, has been linked to over 200 deaths

between January 2005 and May 2013 [317]. So, although CGM and controller faults need

to be handled in a fail-safe manner to ensure patient safety, automated responses to such

situations should be designed and tuned to minimize false alarms.

6.2 METHODS

6.2.1 CGM Performance Degradation

6.2.1.1 Faulty Calibration and CGM Drift The use of paired or redundant continu-

ous glucose monitors provides a convenient means of determining potential CGM by offering

a reference point for each CGM in the form of a measurement from the paired sensor. The

following two simple metrics are used here to identify excessive CGM error and are tested

in in silico trials:

(i) Percent deviation between CGMs (PDC)

(ii) Cumulative area between CGMs (ABC)

If both sensors were functioning perfectly, exact agreement between glucose measure-

ments from the two CGMs would be expected. As one, or both, CGMs begin to drift,

the deviation between the measurements from the sensors might be expected to grow. If

an excessive deviation, expressed as a percent error between the CGMs (Equation (6.1)) is

detected, it is grounds for an immediate alarm per metric (i).

PDC =
|CGM1 − CGM2|

1
2

(CGM1 + CGM2)
× 100 (6.1)

The use of metric (i) for detection of CGM faults and alarm purposes utilizes a high percent

error threshold (30%) to avoid false positives but enables rapid detection of excessive CGM

error.
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Metric (i) enables rapid detection of excessive deviation but does not account for a

chronic less severe deviation between the CGMs, which may eventually manifest as hyper-

or hypoglycemia as a result of controller offset. Metric (ii) integrates the difference in glucose

measurements between the two CGMs at 5 minute intervals over a sliding 3 hour window

(Equation (6.2)).

ABC =
180∑
t=0

5 (CGM1(t)− CGM2(t)) (6.2)

This metric is slower to detect faults than the aforementioned metric (PDC) but enables

a high threshold for PDC as errors that fall below the PDC threshold will accumulate and

signal a problem via metric (ii). The error threshold for this metric is set based on a heuristic

which assumes the sensors are diverging at a physiologic maximum rate of glucose change

(5 mg
dL·min [318]) continually for 20 minutes. This extreme rate of change for an extended period

of time is assumed to occur rarely in the clinic, and therefore likely denotes a potential fault

in CGM measurements.

To simulate faulty continuous glucose monitors in silico, a stochastic additive error is

generated using a first order moving-average model with the parameters identified from faulty

sensor data in Section 2.3.1. Compared to random noise in nominally functioning sensors, the

error signals for faulty sensors are characterized by comparatively large biases and variability

(see Chapter 2 for a discussion of the differences between nominally functioning and faulty

CGMs).

6.2.2 Infusion Set Failure

To rapidly detect an infusion set failure, an additional input, USC,D, is added to Equa-

tion (3.2) such that:

dQSC(t)

dt
= USC(t)− kSCQSC(t)− USC,D (6.3)

Here USC,D is a disturbance in subcutaneous insulin infusion rates. As discussed in Sec-

tion 5.2.2, the linear moving horizon estimation algorithm developed in this work is able

to estimate unmeasured disturbances in addition to states and parameters. This feature is
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used here to allow the estimator to account for “missing” insulin in the event of an infusion

set failure. A positive value for USC,D ≥ 0 represents a decrease in the rate of subcutaneous

insulin infusion analogous to a failed and leaking insulin infusion set. In the linearization of

the ICING+SQ model augmented with USC,D, the nominal operating point for USC,D is taken

as 0mU
min

. An additional row and column are added to both Q and P , the MHE weighting

matrices, to account for USC,D. Through in silico trials, the matrix elements corresponding

to USC,D are tuned such that USC,D does not deviate significantly from zero except in the case

of simulated infusion set failures. The onset of an insulin infusion set failure is simulated by

withholding zMPC-recommended insulin infusions from the virtual patients at a randomly

selected time. An infusion set failure is considered to have been detected when estimations

of the disturbance variable USC,D rise above a specified threshold. Through these stochastic

in silico trials, the average time to detection, as well as false and true positive rates, can be

determined.

6.2.3 Clinical Interface

To provide constant feedback about controller operation in a simple, easy to parse manner,

a clinically facing “traffic light” system is introduced that codifies the projected ability of

the controller to maintain euglycemia by color. The three defined regimes correspond to

the colors green, yellow, and red, and are rooted in controller projections of its ability to

maintain glycemic control as detailed here:

• Green: The mean projected blood glucose concentration over the prediction horizon falls

within the target zone, and no hypoglycemia (BG ≤ 74mg
dL

) or hyperglycemia (BG ≥

180mg
dL

) is projected.

• Yellow: The mean projected blood glucose concentration over the prediction horizon

falls outside of the target zone, but no hypo- or hyperglycemia is projected.

• Red: A hypo- or hyperglycemic event is projected despite controller action, OR a CGM

fault or infusion set failure is detected as described above
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6.3 RESULTS

6.3.1 CGM Fault Detection

The results of the CGM fault detection algorithm described above in Section 6.2.1.1 in closed-

loop with error simulated using the model developed in Section 2.3.1 for malfunctioning or

improperly calibrated CGMs is demonstrated on a virtual patient in Figure 50.

Department of Chemical and Petroleum Engineering

CGM Fault Detection and Alarms
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Figure 50: Plasma glucose concentrations (Top) as measured by two “faulty” CGMs (-

-, -) compared to estimated concentrations (--) and true blood glucose concentration (-).

(Bottom) CGM Fault metrics: Metric (i.-) percent deviation between CGMs, Metric (ii.-)

cumulative area between CGMs. The colored arrows indicate when the corresponding CGM

fault metric reaches the alarm threshold.

162



Table 16: Percentage of CGM measurements within the zone, above, and below the zone, as

well as the percentage of points classified as either hypo- or hyperglycemic for the clinical

treatment, the zMPC/MHE algorithm on virtual patients with undetected simulated CGM

faults, and with CGM faults detected by the metrics detailed above. For in silico trials

with simulated faulty CGMs, each virtual patient was simulated in replicate with N=100 to

calculate aggregate statistics.

%Zone %Above %Hyper
(
BG ≥ 180mg

dL

)
%Below %Hypo

(
BG ≤ 74mg

dL

)
Clinic 23.73 69.89 17.79 1.20 0.0

zMPC/MHE (undetected) 54.11 16.84 2.93 27.3 5.50
zMPC/MHE (detected) 61.49 16.84 2.93 21.65 1.93

Assuming a worst-case scenario of always improperly calibrated CGMs an in silico trial

was conducted using simulated faulty CGMs and the fault detection metrics to ascertain

the efficacy of the alarm metrics. The results of 100 such simulations or each patient in

the virtual patient cohort are displayed in Table 16 for both undetected and detected CGM

faults. In the latter scenario, when a fault is detected recalibration is simulated by resetting

the integrating error process, although the error model continues to be parameterized with

the faulty parameter set to capture the worst case scenario where improper (re-)calibration

is assumed.

163



6.3.2 Infusion Set Failure

It was found that including the estimated infusion set failure disturbance variable, USC,D

with:

Q = P =



1× 10−5 0 0 0 0

0 1× 108 0 0 0

0 0 1× 10−4 0 0

0 0 0 1× 10−4 0

0 0 0 0 1× 10−3


where the corresponding vector of estimated noise is given by:

ωd =
[
ω, d

]′
=
[
Uen, SI , Q, EGP, USC,D

]′
results in low estimated values for USC,D (on the order of ≈≤ 5mU

min
, which is generally

insignificant compared to controller prescribed insulin infusion rates). During an infusion

set failure, the magnitude of USC,D increases by orders of magnitude.

The threshold used for detecting an infusion set failure is not a constant but rather

taken as a percentage of the current insulin infusion rate. Because the inclusion of USC,D in

Equation (6.3) directly subtracts from the rate of insulin infusion, the magnitude of USC,D,

or the rate of insulin leakage from a railed infusion set, would be expected to be proportional

to the insulin infusion rate. The following metric (ISFD, see Equation (6.4)) is used to

detect infusion set failure:

ISFD(t) =

0, for 0 ≤ USC ≤ 10

USC,D(t)

USC(t)
× 100, for 10 > USC

(6.4)

This formulation is used to avoid divide by zero scenarios at low levels of subcutaneous

insulin infusion. The threshold used here to detect an infusion set failure is ISFD(t) ≥ 25

for any t – corresponding to an estimated loss of at least 10% of the infused insulin.

As an example, the simulation in Figure 51 shows an infusion failure which is initiated

at t = 600 minutes and which is rectified at t = 1500 minutes.
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Figure 51: Plasma glucose concentrations (Top) for the simulated virtual patient under

zMPC/MHE control (-) compared to plasma glucose concentrations if the patient consumed

meals as indicated in the medical record and went untreated (--). Measurements taken by

the two CGMs are shown by • and •. (2nd Panel) zMPC optimized insulin infusion rate

(-) and pancreatic insulin secretion rate (-). (3rd Panel) zMPC optimized glucose infusion

rate (-). (Bottom) ISFD(t) shown in black with the infusion set failure detection threshold

indicated by dashed line (--). The green arrow indicates the onset of infusion set failure and

the orange arrow indicates when the failure was detected.
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Using an estimated insulin infusion disturbance to identify infusion set failures in stochas-

tic in silico trials 82.6% of infusion set faults were identified with an average time to detection

of 5.8 hours. Furthermore, even with a relatively low detection threshold of 10% the false

positive rate over 1700 simulations was 2%.

6.3.2.1 Controller “Health” Figure 52 demonstrates the output of a possible clinician

facing interface which provide a means to rapidly parse the projected ability of the controller

to control glucose concentrations over the next 3 hours. Every five minutes during the in

silico experiment a new pair of CGM measurements is received, the MHE estimates a new

set of states and parameters, andthe zMPC uses these estimates to optimize M control moves

to maintain blood glucose concentrations within the target zone over a prediction horizon

of length P. Based on the criteria outlined above in Section 6.2.3, each new measurement,

estimation and prediction results in a color assignment to the controller operation, which is

displayed in Figure 52.

6.4 DISCUSSION

As seen in Figure 50, fault metric (i.) is able to rapidly detect significant disagreement in

CGMs and fault metric (ii.) enables detection of slowly accumulating error from CGM drift.

The statistics aggregated in Table 16 show that the use of the CGM fault detection metrics

results in a nearly three-fold decrease in hypoglycemia with no change in hyperglycemia

– a significant improvement. Furthermore, this reduction in hypoglycemia is realized with

an average of only 3.75 alarms per 8 hour ICU shift. This represents a significant savings

in workload and easing of the monitoring burden compared to the previously discussed

commercially available solutions.
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Figure 52: The control outcomes with simulated normal CGM noise for the virtual patient

used in previous control examples is shown. The bottom 3 panels remain unchanged from

before, however the top panel is shaded in accordance with the color scheme defined in

Section 6.2.3.

Although the alarm metrics used here to detect excessive CGM error do not completely

eliminate incidences of moderate hypoglycemia (BG ≤ 74mg
dL

), it is important to remember

that these simulated trials are truly a worst case scenario. In all cases of (re-)calibration,

the CGM error model is reinitialized with the parameter set characterizing faulty CGMs. In

clinical practice we would expect such a scenario to be exceedingly unlikely.
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The infusion set failure detection mechanism accurately detects a large majority of infu-

sion set failures with a low false positive rate. Although approximately 18% of infusion set

failures appear to remain undetected, it is important to note that an infusion set failure may

only be detected if insulin is actually being infused. In many of the “missed” cases, insulin

is not constantly being infused and, due to subcutaneous insulin on board, glucose control

does not immediately or significantly suffer.

The average time to detection of an infusion set failure is 5.8 hours. This may seem

excessive, but the fact that subcutaneous insulin is being used here must be considered.

As discussed previously (Section 5.4), there is a significant difference in dynamics between

subcutaneous and intravenously delivered insulin, with subcutaneous insulin having a pro-

longed tail on effective action. As such, it takes a good deal longer to detect a failure in

subcutaneous insulin delivery compared to intravenous infusion, leading to seemingly lengthy

detection times compared to other methods [307].

With regards to the “traffic light” information system, the example provided in Figure 52

is representative of simulations with normal CGM noise. As seen in Figure 52, yellow regions

tend to precede excursions from the target zone and red regions are associated with significant

excursions from the target zone. As such, this simple system may provide a means for

clinicians to quickly identify when further non-automated intervention may be required to

ward off significant hypo- or hyperglycemia. Furthermore, such an interface may work to

enhance clinical confidence in the closed-loop model-based control loop system developed

here by providing output or feedback and making the system appear like less of a “black

box”.

6.4.1 Pressure Induced Loss of Sensitivity

Not yet considered here is a CGM fault via a pressure-induced loss of sensitivity. CGMs

are known to return a significantly decreased measurement of interstitial blood glucose in

response to a pressure challenge [81, 143, 144]. This pressure-induced loss of sensitivity

(PILS) is hypothesized to be due to a temporary reduction in local blood flow resulting in a

slowing of the glucose-diffusion process in the region of the sensing element [143, 144, 319]. In

168



humans, anomalous sensor readings are more commonly reported at night and are believed

to be due to compression of the sensor particularly when patients lie directly on the sensor

[320]. This is especially concerning in the largely bedridden critical care patient population

where the possibility for a PILS due to a patient lying on a sensor is much greater.

The data available for one virtual patient appears to exhibit a plausible, but unconfirmed

pressure induced loss of sensitivity. Otherwise, the remainder of the data does not appear to

have any segments which believably resemble a pressure induced loss of sensitivity in a single

CGM. As such, and because the algorithm discussed above has been tested and validated in

the work of Baysal et al. it will not be tested further for the detection of pressure induced

losses of sensitivity . An overview of this algorithm has been included in Appendix G to

provide a complete picture of the alarm systems envisioned for this model-based glucose

control system.

6.5 SUMMARY

A method to identify failing continuous glucose monitors and recommend recalibration based

on two metrics was introduced. Using this system in a simulated worst-case clinical scenario,

hypoglycemia was significantly reduced and patient safety enhanced. Using the moving

horizon estimator integrated into the closed-loop model-based control algorithm augmented

with an insulin infusion disturbance variable allowed infusion set failures to be reliably

detected within an average of 6 hours after the onset of failure. Furthermore, the infusion set

failure detection mechanism has a low false positive rate, thereby reducing the potential for

alarm fatigue and ignored faults. Finally, a system to output simple, relevant information

about the projected ability of the control system to manage hypo- and hyperglycemia was

introduced. This system provides an interface for clinicians to remain involved in glucose

management and intervene when deemed necessary.
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7.0 SUMMARY AND FUTURE RESEARCH

7.1 CONTRIBUTIONS

Mitigating hypeglycemia and reducing glucose variability in critically ill patients presenting

with stress hyperglycemia may be able to improve patient outcomes such as mortality, length

of hospital stay, infections and other complications. Previous attempts to treat stress hy-

perglycemia through tight glucose control and intensive insulin therapy have been met with

varying degrees of success, largely due to the increased incidence and risk of hypoglycemia

inherent in IIT. The work presented in this thesis details the development of a model-based

control system to automate the delivery of glucose insulin for the control of blood glucose

concentrations within a target zone.

To this end, the feedback component of the closed-loop control scheme in the form

of continuous glucose monitors are characterized to develop models of CGM error processes

and to reconstruct accurate patient blood glucose trajectories from dual CGM measurements.

The reconstructed glucose trajectories are used to develop a novel physiologically realistic and

clinically relevant virtual patient cohort which recapitulates anticipated physiologic trends,

exhibits expected inter- and intrapatient variability with individual virtual patients who

respond in a biologically consistent manner to insulin and glucose challenges. To affect zone

glucose control a moving horizon estimator and model-predictive control are implemented

in python and tuned using the virtual patient cohort so as to safely and effectively control

blood glucose concentrations even in the presence of CGM noise. Finally, a system to detect

CGM faults and insulin infusion set failures is developed and tested via in silico trials on the

virtual patient cohort and a clinical information system utilizing a simple color-coded scheme

to display the expected capacity of the controller to maintain glucose control is provided.
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7.1.1 Continuous Glucose Monitors: Blood Glucose Reconstruction and Error

Models

In an observational study conducted at the University of Pittsburgh Medical Center 24 criti-

cally ill patients each had two Dexcom® Platinum™ G4 continuous glucose monitors inserted

on opposing sides of the abdominal wall. These CGMs measured glucose concentrations ev-

ery five minutes for no less than 24 hours. Additional reference blood glucose measurements

were collected using capillary fingerstick point-of-care glucometers and a blood gas analyzer.

Analysis of the data indicated significant error between the CGMs and the reference mea-

surements. To correct the error a methodology was developed to remove presumed bias or

offset and CGM drift (Section 2.2.1.3). The result is a single blood glucose profile which

combines high-density measurements from independent CGMs and high-accuracy reference

measurements to produce a more accurate high-frequency vector of glucose concentrations.

Although there have been previous attempts to reconcile CGM measurements with high

accuracy reference measurements and model glucose sensor error [153], these techniques had

the advantage of high frequency reference measurement with a capillary fingerstick available

every 15 minute. This enabled a convolutional approach and explicit modeling of glucose

transport dynamics. Here, reference measurements are much more sparse necessitating the

approach taken in this work where a heuristic regularization is used to generate solutions

which trend toward an ideal situation with perfect agreement between CGMs and reference

measurements.

Utilizing the high-frequency reconstructed glucose trajectories as surrogate references a

noise model for properly functioning CGMs and an error model for malfunctioning CGMS

are developed. Nominally functioning and malfunctioning intervals of CGM data between

sensor recalibration are classified based on a MARD threshold of 5%. It was found that a first

order integrated moving average model fit both the data from nominally and malfunctioning

CGMs equally well with a nearly identical moving average parameter (θ = 0.402, and θ0.394,

respectively) but vastly different variances in the white noise driving these stochastic process.

This suggests that the primary component of CGM error may be erroneous calibration
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measurements or calibration during times of rapid glucose fluctuation. The error models

developed in Chapter 2 are used in Chapter 5 and Chapter 6 to test the efficacy and safety

of the control algorithm under realistic clinical conditions.

7.1.2 Virtual Patients

The use of in silico trials offers the ability to design and test treatment paradigms, protocols

and algorithms to optimize performance and safety without risk to real patients [122]. Useful

and credible in silico trials require accurate computer models of not only treatment and the

clinical realization of a treatment but also simulated or “virtual” patients [321–324]. In this

work, a virtual patient cohort is developed using reconstructed blood glucose data from CGM

measurements and medical record data of exogenous glucose and insulin administration,

enteral nutrition and pertinent medications.

The virtual patient cohort constructed here is rooted in the Intensive Care Insulin Nu-

trition Glucose (ICING) model developed by Lin et al. [110]. This model was developed

specifically to describe the glucose-insulin dynamics of critically-ill patients and has been

validated for both it’s explanatory and predictive power in an intensive care population.

The model, as originally formulated accounts for only intravenously insulin administration,

yet the data used here to construct the virtual patient cohort indicates that a vast majority

of the patients received subcutaneous insulin injections and infusions. Furthermore, the con-

troller developed here is designed to administer subcutaneous insulin to avoid complications

associated with intravenous delivery and conform to the U.S. clinical standard of care. As

such, the ICING model was extended with a model developed by the Parker group which

characterizes the absorption kinetics of subcutaneously delivered fast-acting and regular-

acting insulin [114, 160]. This model was found to be insufficient to capture the glucose

variability observed in the clinical data and as such was extended with a functionality to

describe the insulin-induced suppression of endogenous glucose production in the liver [130]

resulting in the extended ICING (eICING) model.
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To calibrate the eICING model to patient data, time-varying insulin sensitivity and rate

of endogenous glucose production (pancreatic insulin release) was regressed. Additional

patient specific parameters included the the Michaelis-Menten half-maximum insulin con-

centration for the suppression of hepatic EGP and the rates of insulin transport from the

plasma to interstitium and subsequent insulin degradation. The latter rate parameters are

constrained by a physiologically-based constraint on a steady state ratio of insulin concen-

trations in the plasma and interstitium [195–197].

Through a unique use of heuristic Tikhonov regularization terms on insulin sensitivity

and production changes and physiologically motivated constraints a novel virtual patient

cohort was developed. The virtual patients exhibited oscillations in pancreatic insulin se-

cretion consistent with observed ultradian rhythms of insulin secretion [183, 185, 198] and

insulin sensitivity trends which are conserved across the virtual patient cohort and congru-

ous with physiologic expectation and clinical assumptions. Namely, a negative correlation

between mean regressed insulin sensitivity values and blood glucose concentrations and a

positive correlation between mean regressed insulin sensitivity variability and blood glucose

concentrations – especially once normalized for exogenous insulin.

Although the virtual patient cohort as constructed from the eICING+SQ model exhibits

physiologic realism and the proper clinical tendencies, the lack of pancreatic response to

changing glucose concentrations cannot be ignored. In simulated trials of various treatment

methodologies it is extremely unlikely that a blood glucose trajectory identical to the one

observed in the clinical data would arise. As such, the pancreas would be expected to respond

to rising and falling blood glucose concentrations by increasing or decreasing insulin secretion

rates and the static regressed endogenous insulin production profile would no longer be valid.

The solution employed here is to modulate a basal rate of insulin secretion in response

to plasma glucose concentrations using a PID controller. The proportional, integral and

derivative gains are fit to a glucose error signal with a set point of 110mg
dL

(the upper limit

of normoglycemia [78, 232]) via a linear least squares regression. The pancreatic response
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using PID control is tested via simulated oral glucose tolerance tests and insulin tolerance

tests. The virtual patients equipped with the responsive PID pancreas show a much more

realistic response to the tolerance tests with times to peak glucose, recovery indices, and

total recovery times which are consistent with literature studies.

7.1.3 Control

To maintain blood glucose concentrations within the target zone
(
110− 130mg

dL

)
a controller

comprised of a zone model predictive controller and a moving horizon estimator is developed

and tested. The moving horizon estimator is implemented as a python module (CoPyMHE)

and allows for state, parameter and disturbance estimation of linear time invariant (LTI)

systems in a standard state space format. The update of the MHE arrival cost is the same

as the Kalman Filter covariance update cost and is exact if the estimation is unconstrained.

For constrained estimates the Kalman Filter arrival cost update is an approximation. The

model-predictive controller is also implemented as a python module (PyMPC) and enables

multiple input multiple output zone control of linear systems. Like the CoPyMHE module,

PyMPC is generic and can be used for any LTI system in a standard state space format.

PyMPC outputs can be constrained and PyMPC includes built in functionality to specify

any manipulated variable for output regulation, that is treatment of a manipulated variable

as a controlled variable with a target zone or setpoint.

For in silico trials using the CoPyMHE and PyMPC modules the ICING model was

supplemented with the subcutaneous insulin model and linearized around a steady state

operating point. The linearized model in state space form was discretized with a 5 minute

sampling period to correspond to the sampling rate of the Dexcom® Platinum™ G4 and

provided to the MHE and zMPC. For the MHE the output matrix C was modified to

generate two output measurements of blood glucose such that the state space mapped to

the clinical reality where two CGMs are used to measure glucose levels. In this way, the
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MHE fuses CGM measurements via a maximum likelihood estimate of insulin sensitivity,

insulin production, glucose production and interstitial insulin over a receding horizon of

CGM measurements. Using estimates of model state the MPC optimizes glucose and insulin

infusion rates which are administered to the virtual patient.

Using the MHE to fuse CGM measurements with simulated noise the MARD of the blood

glucose concentration as estimated by the MHE is calculated against the simulated virtual

patient glucose concentration. Although analysis of the data from individual CGMs shows a

MARD greater than 15%, larger than the suggested maximum for glucose control in critical

care [78, 80] the MHE estimates exhibit a significantly smaller MARD. With a simulated

recalibration frequency of 6 hours using 2 CGMs MHE estimates result in MARD ≤ 11%,

acceptable for glucose control. If only a single CGM is used with the MHE the necessary

recalibration frequency increases to once every 4 hours requiring a significant increase in

clinical effort.

In in silico trials using both “perfect” (i.e no error) CGMs and CGMs with simulated

normal levels of noise the controller was able to significantly reduce mean glucose in the

virtual patient cohort, compared to the clinical data as well as glycemic variability. The

effects of announcing meals to the MPC were studied via simulation and the decision was

made that the danger of missing announced meals outweighed the benefits of announced

meals (mainly avoidance of post-meal glucose speaks). Under these simulated conditions,

hypoglycemia was avoided entirely and a significant portion (86.59%) of time was spent in

the target zone for the virtual patients under closed-loop control (compared to 37.39%) for

the clinical treatment. Additionally, the controller developed here is compared in in silico

trials to two commercially available, FDA approved systems for glucose management in the

ICU; the GlucoStabilizer [294] and the Computerized Yale Protocol [275]. For these trials

the GlucoStabilizer and Computerized Yale Protocol algorithms were re-implemented and

used to treat the virtual patient cohort. Although these commercially available solutions

were successful in mitigating hyperglycemia, a low level of moderate hypoglycemia resulted

(although severe hyperglycemia was avoided). Furthermore, these systems were not effective

in reducing glucose variability and both systems actually increased variability compared to

an untreated patient. Finally, these systems require frequent measures of blood glucose
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concentrations, in some cases at 15 minute intervals which is a significant clinical burden.

As such, these systems are not as safe or effective as the closed-loop controller developed

here.

7.1.4 Safety

Through the use of dual CGMs with moving horizon estimation MARD is reduced to ac-

ceptable levels. However, there is still a possibility of improper recalibration and/or CGM

failure. To detect CGM faults or failures a method which tracks instantaneous percent error

between the CGMs as well as integrated error is introduced. With an instantaneous threshold

of 30% and an accumulated error threshold of 5000mg·min
dL

, in in silico trials with simulated

faulty CGM error (including after every recalibration) the use of these error metrics reduces

the incidence of hypoglycemia from 5.5% to 1.93%. Although hypoglycemic events are still

present in this scenario it is important to note that this is a worst case scenario simulating

improper CGM recalibration at every turn. In practice, this seems incredibly unlikely.

In addition to CGM faults or failure, the other likely point of failure in the control

system developed here is in the insulin infusion set. Insulin infusion sets are used to infuse

subcutaneous insulin below the skin and may fail due to a foreign body reaction and swelling

at the site or skin contortions which allow infused insulin to leak out of the body [307].

The resultant degradation in glucose control quality is made more severe by the use of an

MHE which will likely estimate a significant decrease in insulin sensitivity and/or pancreatic

secretion to account for the loss of insulin through infusion set failure thereby rendering the

internal models inaccurate.

To detect infusion set failures the disturbance estimation feature of the MHE is used. An

input, USC,d is added which is constrained in the MHE to be negative such that the effective

insulin infusion rate is the sum of USC and USC,d. By setting the term in the MHE weighting

matrix Q which penalizes deviations USC,d from zero sufficiently high, USC,d will be estimated

to be significantly non-zero only in the case of infusion set failures. An infusion set failure

is ultimately detected by the ratio of USC,d to USC . When the negative disturbance reaches
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a substantial fraction of the actual positive subcutaneous insulin infusion rate a failure is

detected. In in silico trials this technique is sensitive, detecting ∼ 82% of infusion set failures

with a 2% false positive rate.

As a final component of the safety system a clinical information system is designed and

presented here. In essence, this system uses a color-coded system to indicate to clinicians

the predicted ability of the MPC to adequately manage blood glucose concentrations within

the target zone. In doing so it provides a mean to keep clinicians involved in the automated

treatment process and warn of potential ineffective control so that clinicians may intervene

if they feel it is necessary.

7.2 FUTURE DIRECTIONS

The control system developed here for zone glucose control in critically ill non-diabetic

patients has been tested extensively through in silico trials in a virtual patient cohort and

shown to be effective and safe. Despite the benefits of in silico trials using mathematical

models to simulate patient behavior, it must be conceded that all models are wrong yet some

are useful [325]. As such, at some point clinical trials are necessary. The likely next step

in testing the control algorithm would be in open-loop operation where the MHE collects

data from CGMs as normal and the MPC calculates optimal control action, however infusion

rates are changed only subject to clinical approval. This keeps a doctor in the loop to ensure

patient safety and enables immediate intervention or controller override in the event of an

emergency or unexpected controller failure. Furthermore, it may be beneficial during such

a trial to explore the effects of blood glucose dynamics of CGM recalibration. A significant

component of CGM error observed here is postulated to be due to improper recalibration or

recalibration during periods of rapid blood glucose change. Deliberate recalibration during

periods of both steady blood glucose concentrations and rapid change may help provide

evidence of this hypothesis and through analysis of glucose variability and CGM MARD

may help set proper recalibration guidelines for CGM in critical care.
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The virtual patient cohort developed here is believed to be physiologically realistic and

responds appropriately to intervention with insulin and glucose. However, the PID pancreatic

response used here lacks a meaningful relation to physiology and only accounts for the

basal rate of insulin secretion, a fraction of the total pancreatic insulin secretion. The

remaining fraction of insulin secretion is patient-specific yet independent of plasma glucose

concentrations. The addition of a functionality which fully describes pancreatic insulin

secretion would be another step towards more realistic virtual patients and would further

enhance confidence in in silico trials and simulated control results. Furthermore, a fully

functional description of pancreatic insulin secretion could be incorporated into the controller

model which would result in more accurate estimations and predictions ultimately leading

to better controller performance

A multitude of mathematical models to describe pancreatic insulin secretion ranging

from cellular and subcellular models [326–330] to physiologically-based models [222, 331–

335]. However these models are developed for healthy patients or to explain the beta cell

component of metabolic dysfunction in diabetic patients. In a critically-ill patient popula-

tion due to the complex interplay between inflammation, stress and cytokine dynamics the

parameterization of these models may differ significantly from both a healthy and diabetic

patient population. Unfortunately, existing models contain a large number of parameters,

and therefore require a significant data density in order to proper calibrate.

Here, no insulin or C-peptide measurements were available leading to the use of a

Tikhonov regularization term and a number of physiologically motivated constraints in devel-

oping the virtual patient cohort. If open-loop trials were conducted or additional observation

studies carried out it would be beneficial to collect C-peptide data to help further identify

the contribution of pancreatic insulin secretion to blood glucose dynamics. Even if only

sparse C-peptide measurements were available, perhaps model reduction techniques such as

balanced truncation and parametric clustering based on sensitivity analysis, as previously

used in the Parker group [336] could be employed to ensure the identifiability of pancreatic

insulin secretion parameters.
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7.2.1 Counterregulatory Response

The endogenous response to hypoglycemia consists of the release of numerous counterregu-

latory hormones including epinephrine, norepinephrine, glucagon, cortisol, and growth hor-

mone [170, 337, 338]. The collective action of the counterregulatory response reduces the

rate of glucose absorption into peripheral tissues by lowering insulin sensitivity and triggers

the release of endogenous glucose supplies from the liver into the bloodstream to counteract

the causative hypoglycemia [170]. Although the use of a closed-loop model-based controller

results in zone glucose control while avoiding hypoglycemia in in silico trials, counterregu-

latory hormone concentrations may be increased from exogenous sources.

Epinephrine may be used to treat asthma and abnormal heart rhythm [339] and nore-

pinephrine is commonly used in ICU settings for the treatment of critically low blood pressure

[340]. Hydrocortisone is commonly used to treat a litany of conditions including rheumatoid

arthritis, asthma and COPD [341]. Due to the prevalence of exogenous administration of

these hormones and their significant action in the regulation of blood glucose it may be im-

portant to include a mechanistic description of their effects both in the virtual patient cohort

and within the controller. Otherwise, a number of conditions treated with these hormones

may preclude the use of the glucose control system developed here and a number of ICU

medications may be contraindicated for use with automated treatment.

A colleague in the Parker lab has developed a number of modular mathematical mod-

els describing various components of the counterregulatory response [170] which may be

used for this purpose. However, there is a relative lack of individualized data concerning

the dynamics of the counterregulatory response and patient specific responses, particularly

where insulin sensitivity is concerned, may be difficult to quantify. Ultimately, inclusion of

explanatory mechanisms for the counterregulatory response would broaden the applicability

of the glucose control system developed here and potentially improve patient outcomes in a

larger population with a significant savings in terms of clinical effort and health care costs.

179



APPENDIX A

EXTENDED ICING MODEL

The full extended ICING model with subcutaneous insulin adsorption is given in eqs. ( A.1)

to ( A.13). Here eqs. ( A.1) to ( A.7) are taken from the ICING model [110] and describe the

saturating effect of effective interstitial insulin concentrations (QI) on blood glucose (BG)

disposal with the magnitude of effect modulated by insulin sensitivity (SI). Additionally,

glucose is disposed of through a non-insulin dependent pathway at a proportional to glucose

concentration with a rate constant of pG and used at a constant rate by the central nervous

system (CNS). Glucose is replenished via enteral nutrition (P (t)), exogenous infusion (UG)

and endogenous glucose production (EGP ). Insulin appears in the interstitium from the

plasma at a rate of nI and is degraded at a saturating rate of nC . In the plasma insulin

degrades with a saturating rate of nL and at a non-saturating rate of nk. Insulin is replenished

in the plasma via pancreatic secretion (Uen) and exogenous input (uex). Equations ( A.4)

to ( A.6) describe the transport of oral nutrition from the stomach to the gut and subsequent

adsorption into the bloodstream. Equations ( A.8) to ( A.10) describe the linear adsorption

kinetics of both regular- and fast-acting insulin analogs [114]. In this three compartment

model subcutaneously administered insulin is degraded in the second compartment at a rate

specific to regular- or fast-acting analogs. Equations ( A.11) to ( A.12) descibe the transport

of insulin to liver tissue and the subsequent saturating insulin mediated endogenous glucose

production [130]. Finally, eq. ( A.13) governs the transport of glucose from plasma to the

interstitial fluid (ISF ) which is the glucose concentration measured by CGMs in in silico

simulations.
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A.1 MODEL EQUATIONS

dBG(t)

dt
= −pGBG(t)− SI(t)

Q(t)

1 + αGQ(t)
+
P (t) + EGP (t) + UG(t)− CNS

VG
(A.1)

dQ(t)

dt
= nI(I(t)−Q(t))− nc

Q(t)

1 + αGQ(t)
(A.2)

dI(t)

dt
= −nkI(t)− nLI(t)

1 + αII(t)
− nI (I(t)−Q(t)) +

uex + (1− xL)Uen(t)

VI
(A.3)

dP1

dt
= −d1P1 +D(t) (A.4)

dP2

dt
= −min(d2P2, Pmax) + d1P1 (A.5)

P (t) = min(d2P2, Pmax) + PN(t) (A.6)

uex = UIV + ka1Q2,r + ka1Q2,f (A.7)

dQsc,(r,f)

dt
= −k1,scQsc,(r,f) + Usc,(r,f) (A.8)

dQ1,(r,f)

dt
= k1,scQsc,(r,f) − kv,(r,f)Q1,(r,f) − ka1Q1,(r,f) (A.9)

dQ2,(r,f)

dt
= ka1Q1,(r,f) − ka1Q2,(r,f) (A.10)

dQL(t)

dt
= PG4(I(t)−QL(t)) (A.11)

EGP (t) = EGP0

(
1− kEGP

[
Q3
L(t)

Q3
L(t) + s3

EGP

])
(A.12)

dGISF (t)

dt
=

1

τ
(BG(t)−GISF (t)) (A.13)
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A.2 MODEL PARAMETERS

Table 17: Parameter values and units for the extended ICING model with subcutaneous

insulin adsorption kinetics. ∗: regressed patient-specific parameter, ∗∗: regressed, dynamic

(time-varying) patient-specific parameter vector

Paramter Value Unit

pG ∗ mg
dL·min

SI ∗, ∗∗ L
mU ·min

αG 0.0154 L
mU

VG 133 dL
CNS ∗ mg

min
nI ∗ min−1

nC ∗ min−1

αI 00017 L
mU

nk 0.0542 min−1

nL 0.1578 min−1

xL 0.67 −
vI 3.5 L

Uen ∗, ∗∗ mU
min

d1 0.047 min−1

d2 0.0069 min−1

Pmax 1100.75 mg
min

k1,SC 1.08 min−1

kv,r 0.0268 min−1

kv,f 0.00683 min−1

ka1 0.0127 min−1

PG4 0.07353 min−1

EGP0 208.98 mg
min

kEGP 0.9909 −
sEGP ∗ mU

L
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APPENDIX B

VIRTUAL PATIENTS

For all virtual patients:

– Top Panels: eICING model glucose concentration (-) fit to clinical CGM data (• and •)

– Middle Panels: Estimated pancreatic insulin secretion rate (Uen(t))

– Bottom Panels: Estimated Insulin sensitivity (SI(t))

50

75

100

125

150

B
G

 m
g

dL

Corrected CGM 1
Corrected CGM 2

Model Glucose

0

20

40

60

In
su

lin
 S

ec
re

tio
n 

m
U

m
in

0 500 1000 1500 2000 2500
Time (min)

0.0000

0.0005

0.0010

0.0015

In
su

lin
 S

en
si

tiv
iy

 
L

m
U

m
in

Figure 53: Virtual Patient 1
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Figure 54: Virtual Patient 2
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Figure 55: Virtual Patient 3
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Figure 56: Virtual Patient 4
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Figure 57: Virtual Patient 5
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Figure 58: Virtual Patient 6
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Figure 59: Virtual Patient 7
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Figure 60: Virtual Patient 8
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Figure 61: Virtual Patient 9
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Figure 62: Virtual Patient 10
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Figure 63: Virtual Patient 11
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Figure 64: Virtual Patient 12
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Figure 65: Virtual Patient 13
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Figure 66: Virtual Patient 14
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Figure 67: Virtual Patient 15
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Figure 68: Virtual Patient 16
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Figure 69: Virtual Patient 17
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APPENDIX C

ULTRADIAN INSULIN RHYTHMS

For all virtual patients:

-: Amplitude Spectral Density

-: Observed frequency limits of ultradian insulin secretion rhythms in the literature
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Figure 70: Virtual Patient 1
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Figure 71: Virtual Patient 2
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Figure 72: Virtual Patient 3
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Figure 73: Virtual Patient 4
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Figure 74: Virtual Patient 5
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Figure 75: Virtual Patient 6
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Figure 76: Virtual Patient 7
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Figure 77: Virtual Patient 8
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Figure 78: Virtual Patient 9
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Figure 79: Virtual Patient 10
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Figure 80: Virtual Patient 11
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Figure 81: Virtual Patient 12
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Figure 82: Virtual Patient 13
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Figure 83: Virtual Patient 14
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Figure 84: Virtual Patient 15
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Figure 85: Virtual Patient 16
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Figure 86: Virtual Patient 17
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APPENDIX D

RESPONSIVE PANCREAS BASAL AND RESIDUAL INSULIN

SECRETION RATES

Figure 87 below shows the always positive basal rate of insulin secretion as well as the

residual component which gives rise to ultradian oscillations in insulin secretion.

As seen in fig. 87, the glucose dependent (-) contribution to the overall insulin secretion

rate is slowly varying compared to the glucose independent rate (-))but exhibits long-term

trends not present in the high frequency glucose independent component. Rather, the glucose

independent component of insulin secretion is generally centered around zero and will give

rise to expected ultradian rhythms in any simulation of a virtual patient.
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Figure 87: (-) denotes the glucose dependent (PID) rates of insulin secretion and (-) shows

the glucose independent residual.

202



APPENDIX E

MPC CODE

Listing 1: PyMPC Module Source Code: Unlike most research grade code, the code here

takes pains to check for improperly formatted/configured inputs and provide useful and

informative error messages. Thorough documentation and API information is available upon

request but is not included here for brevity.

1 from pyomo.environ import (ConcreteModel, Constraint, Var, Param,
Objective, RangeSet)↪→

2 from pyomo.opt import SolverFactory
3 import numpy as np
4 from numbers import Number
5
6

7 class _IncompatibleMatrix(Exception):
8 pass
9

10

11 class _StateSpace_Error(Exception):
12 pass
13
14

15 class _MPC_Error(Exception):
16 pass
17
18

19 class _Bounds_Error(Exception):
20 pass
21
22

23 class _Update_Error(Exception):
24 pass
25
26

27 class MPC(object):
28

29 def __init__(self, A=np.array([]), B=np.atleast_2d(np.array([])),
C=np.array([]), D=np.atleast_2d(np.array([])),↪→

30 P=20, M=3, Zone={}, Gamma=np.atleast_2d(np.array([])),
S=np.atleast_2d(np.array([])), **kwargs):↪→

31 self.A = np.atleast_2d(np.array(A)).copy()
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32 self.B = np.atleast_2d(np.array(B)).copy()
33 self.C = np.atleast_2d(np.array(C)).copy()
34 self.D = np.atleast_2d(np.array(D)).copy()
35 self.P = P
36 self.M = M
37 self.Zone = Zone
38 self.Gamma = np.atleast_2d(np.array(Gamma)).copy()
39 self.S = np.atleast_2d(np.array(S)).copy()
40 self._eval_kwargs(kwargs)
41 self._checkSS()
42 self._checkZone()
43 self.__setupMPC()
44

45 def _checkSS(self):
46 if self.A.shape[1] == 0:
47 raise _StateSpace_Error('A is missing!')
48 if self.B.shape[1] == 0:
49 raise _StateSpace_Error('B is missing, control not possible!')
50 if self.B.shape[1] != 0 and self.A.shape[0] != self.B.shape[0]:
51 raise _IncompatibleMatrix('Dimensions of A and B are

incompatible')↪→

52 if self.A.shape[1] != self.C.shape[1]:
53 raise _IncompatibleMatrix('Dimensions of A and C are

incompatible')↪→

54 if self.D.shape[1] != 0 and self.C.shape[0] != self.D.shape[1]:
55 raise _IncompatibleMatrix('Dimensions of C and D are

incompatible')↪→

56 if self.D.shape[1] != 0 and self.B.shape[1] != 0 and
self.D.shape[1] != self.B.shape[1]:↪→

57 raise _IncompatibleMatrix('Dimensions of B and D are
incompatibe')↪→

58 if self.A.shape[0] == 0:
59 raise _StateSpace_Error('A is missing')
60 if self.C.shape[1] == 0:
61 raise _StateSpace_Error('C is missing')
62 if self.A.shape[0] != len(self.States):
63 raise _StateSpace_Error('Dimensions of A do not match given

States')↪→

64 if self.B.shape[1] != 0 and self.B.shape[1] != len(self.Inputs):
65 raise _StateSpace_Error('Dimensions of B do not match given

Inputs')↪→

66 if self.D.shape[1] != 0 and self.D.shape[1] != len(self.Inputs):
67 raise _StateSpace_Error('Dimensions of D do not match given

Inputs')↪→

68 if self.D.shape[1] != 0 and self.D.shape[0] != len(self.Outputs):
69 raise _StateSpace_Error('Dimensions of D do not match given

Outputs')↪→
70

71 def __addstr(self, attribute, string):
72 tmp = []
73 if type(string) == list:
74 setattr(self, attribute, string)
75 else:
76 tmp.append(string)
77 setattr(self, attribute, tmp)
78

79 def _eval_kwargs(self, kwargs):
80 if 'States' in kwargs:
81 self.__addstr('States', kwargs['States'].copy())
82 if len(set(self.States)) != len(self.States):
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83 raise _StateSpace_Error('List of state names cannot have
any duplicates')↪→

84 else:
85 self.States = ['s' + str(i) for i in range(0, self.A.shape[0])]
86 if 'Inputs' in kwargs and self.B.shape[0] == 0:
87 raise _StateSpace_Error('Inputs provided but B is missing')
88 elif 'Inputs' in kwargs:
89 self.__addstr('Inputs', kwargs['Inputs'].copy())
90 if len(set(self.Inputs)) != len(self.Inputs):
91 raise _StateSpace_Error('List of input names cannot have

any duplicates')↪→
92 else:
93 self.Inputs = ['i' + str(i) for i in range(0, self.B.shape[1])]
94 if 'Outputs' in kwargs:
95 self.__addstr('Outputs', kwargs['Outputs'].copy())
96 if len(set(self.Outputs)) != len(self.Outputs):
97 raise _StateSpace_Error('List of output names cannot have

any duplicates')↪→
98 else:
99 self.Outputs = ['o' + str(i) for i in range(0, self.C.shape[0])]

100 if 'Manipulated' in kwargs:
101 self.__addstr('Manipulated', kwargs['Manipulated'].copy())
102 if len(set(self.Manipulated)) != len(self.Manipulated):
103 raise _MPC_Error('List of manipulated variables cannot have

any duplicates')↪→
104 else:
105 self.Manipulated = self.Inputs
106 if 'OutputRegulated' in kwargs:
107 self.__addstr('OutputRegulated',

kwargs['OutputRegulated'].copy())↪→
108 if 'Controlled' in kwargs:
109 self.__addstr('Controlled', kwargs['Controlled'].copy())
110 if len(set(self.Controlled)) != len(self.Controlled):
111 raise _MPC_Error('List of controlled variables cannot have

any duplicates')↪→
112 else:
113 self.Controlled = self.Outputs
114 if 'Bounds' in kwargs:
115 self.Bounds = kwargs.get('Bounds')
116 self._checkBounds()
117 else:
118 self._checkBounds()
119 if 'dBounds' in kwargs:
120 self.dBounds = kwargs.get('dBounds')
121 self._checkdBounds()
122 else:
123 self._checkdBounds()
124 if 'Solver' in kwargs:
125 self.solver = kwargs['Solver']
126 else:
127 self.solver = 'ipopt'
128 if 'Hold_Type' in kwargs:
129 self.Hold_Type = kwargs['Hold_Type']
130 if self.Hold_Type not in ['Zero_Order', 'First_Order']:
131 raise _MPC_Error('Hold type %s is not recognized. Currently

supported options are Zero Order and First Order holds'
% self.Hold_Type)

↪→
↪→

132 else:
133 self.Hold_Type = 'First_Order'
134 list_all = self.States + self.Inputs + self.Outputs
135 if len(set(list_all)) != len(list_all):

205



136 raise _MPC_Error('Listed states, inputs, and outputs CANNOT
have any duplicates or overlap')↪→

137 self._checkMPC()
138

139 def _checkMPC(self):
140 if hasattr(self, 'OutputRegulated'):
141 OutputRegulated = self.OutputRegulated
142 else:
143 OutputRegulated = []
144 if self.B.shape[1] == 0:
145 raise _MPC_Error('No input matrix provided, cannot calculate

control action!')↪→
146 for m in self.Manipulated:
147 if m not in self.Inputs:
148 raise _MPC_Error('Manipulated variable %s not found in list

of model inputs' % m)↪→
149 for c in self.Controlled:
150 if c not in self.Outputs:
151 raise _MPC_Error('Controlled variable %s not found in list

of model outputs' % c)↪→

152 if self.Gamma.shape[0] != len(self.Controlled) +
len(OutputRegulated):↪→

153 raise _MPC_Error('Dimensions of Gamma do not agree with number
of controlled variables')↪→

154 if self.Gamma.shape[0] != self.Gamma.shape[1]:
155 raise _MPC_Error('Gamma must be square!')
156 if self.S.shape[0] != len(self.Manipulated):
157 raise _MPC_Error('Dimensions of S do not agree with number of

manipulated variables')↪→

158 if self.S.shape[0] != self.S.shape[1]:
159 raise _MPC_Error('S must be square!')
160

161 def _checkZone(self):
162 if hasattr(self, 'OutputRegulated'):
163 OutputRegulated = self.OutputRegulated
164 else:
165 OutputRegulated = []
166 for CV in self.Controlled + OutputRegulated:
167 if CV not in self.Zone:
168 raise _MPC_Error('Zone must be provided for controlled

variable %s' % CV)↪→

169 tmp = self.Zone[CV]
170 if 'Upper' not in tmp and 'Lower' not in tmp:
171 raise _MPC_Error('Upper or Lower zone boundaries must be

provided for controlled variable %s' % CV)↪→

172 if type(tmp) is not dict:
173 raise _MPC_Error('Zone for %s must be a dictionary' % CV)
174 if len(tmp) == 0:
175 raise _MPC_Error('Zone for %s must contain a bound!' % CV)
176 for b in tmp.keys():
177 if b not in ['Upper', 'Lower']:
178 raise _MPC_Error('%s in zone for %s is not recongnized'

% (b, CV))↪→

179 tmp2 = tmp[b]
180 if not hasattr(tmp2, '__iter__'):
181 tmp2 = [tmp2]
182 self.Zone[CV][b] = tmp2
183 elif len(tmp2) != self.P:
184 raise _MPC_Error('%s bound for %s zone must be scalar

or defined for all points in prediction horizon' %
(b, CV))

↪→
↪→
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185 else:
186 for k in tmp2:
187 if not isinstance(k, Number):
188 raise _MPC_Error('all % bounds for %s zone must

be numbers!' % (b, CV))↪→
189

190 def _checkBounds(self):
191 if not hasattr(self, 'Bounds'):
192 self.Bounds = {}
193 for m in self.Bounds.keys():
194 if m not in self.Manipulated:
195 raise _MPC_Error('Error in bounds: %s not found in

manipulated variables' % m)↪→

196 if type(self.Bounds[m]) is not dict:
197 raise _MPC_Error('Bounds for %s must be a dictionary' % m)
198 for b in self.Bounds[m].keys():
199 if b not in ['Upper', 'Lower']:
200 raise _Bounds_Error('%s in Bounds for %s is not

recognized' % (b, m))↪→

201 if not hasattr(self.Bounds[m][b], '__iter__'):
202 self.Bounds[m][b] = [self.Bounds[m][b]]
203 elif not isinstance(self.Bounds[m][b], Number) or

len(self.Bounds[m][b]) != self.P or
self.Bounds[m][b].ndim != 1:

↪→
↪→

204 raise _Bounds_Error('%s bound for manipulated variable
%s must be a scalar or an iterable of length equal
to P')

↪→
↪→

205 elif isinstance(self.Bounds[m][b], Number):
206 self.Bounds[m][b] = [self.Bounds[m][b]]
207 else:
208 self.Bounds[m][b] = list(self.Bounds[m][b])
209 for n in self.Bounds[m][b]:
210 if not isinstance(n, Number):
211 raise _Bounds_Error('All values for %s %s bound

must be numbers' % (m, b))↪→
212

213 def _checkdBounds(self):
214 if not hasattr(self, 'dBounds'):
215 self.dBounds = {}
216 for m in self.dBounds.keys():
217 if m not in self.Manipulated:
218 raise _MPC_Error('Error in dbounds: %s not found in

manipulated variables' % m)↪→

219 if type(self.dBounds[m]) is not dict:
220 raise _MPC_Error('dBounds for %s must be a dictionary' % m)
221 for b in self.dBounds[m].keys():
222 if b not in ['Upper', 'Lower']:
223 raise _Bounds_Error('%s in dBounds for %s is not

recognized' % (b, m))↪→

224 if not hasattr(self.dBounds[m][b], '__iter__'):
225 self.dBounds[m][b] = [self.dBounds[m][b]]
226 elif not isinstance(self.dBounds[m][b], Number) or

len(self.dBounds[m][b]) != self.P or
self.dBounds[m][b].ndim != 1:

↪→
↪→

227 raise _Bounds_Error('%s dbound for manipulated variable
%s must be a scalar or an iterable of length equal
to P')

↪→
↪→

228 elif isinstance(self.dBounds[m][b], Number):
229 self.dBounds[m][b] = [self.dBounds[m][b]]
230 else:
231 self.dBounds[m][b] = list(self.dBounds[m][b])
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232 for n in self.dBounds[m][b]:
233 if not isinstance(n, Number):
234 raise _Bounds_Error('All values for %s %s dbound

must be numbers' % (m, b))↪→
235

236 def __setupMPC(self):
237 if hasattr(self, 'OutputRegulated'):
238 OutputRegulated = self.OutputRegulated
239 else:
240 OutputRegulated = []
241 model = ConcreteModel()
242 model.statespace = {'A': self.A, 'B': self.B, 'C': self.C, 'D':

self.D}↪→

243 model.weights = {'Gamma': self.Gamma, 'S': self.S}
244 model.states_i = {s: i for i, s in enumerate(self.States)}
245 model.inputs_i = {ii: i for i, ii in enumerate(self.Inputs)}
246 model.manipulated_i = {ii: i for i, ii in

enumerate(self.Manipulated)}↪→

247 model.outputs_i = {oo: i for i, oo in enumerate(self.Outputs)}
248 model.OutputRegulated = OutputRegulated
249 model.controlled = self.Controlled
250 model.output_regulated_i = {oo: i for i, oo in

enumerate(model.OutputRegulated)}↪→

251 model.controlled_i = {oo: i for i, oo in enumerate(self.Controlled)}
252 model.A = Param(self.States, self.States, initialize=self._defineA)
253 if self.B.shape[1] != 0:
254 model.B = Param(self.States, self.Inputs,

initialize=self._defineB)↪→

255 model.C = Param(self.Outputs, self.States, initialize=self._defineC)
256 if self.D.shape[1] != 0:
257 model.D = Param(self.Outputs, self.Inputs,

initialize=self._defineD)↪→
258 model.bounds = self.Bounds
259 model.dbounds = self.dBounds
260 model.Phorizon = RangeSet(0, self.P - 1)
261 model.Mhorizon = RangeSet(0, self.M - 1)
262 model = self._setZone(model)
263 model = self._setBounds(model)
264 model = self._setdBounds(model)
265 model.CVSP = Param(self.Controlled + model.OutputRegulated,

['Upper', 'Lower'], model.Phorizon, initialize=self._defineSP,
mutable=True)

↪→
↪→

266 model.MVbounds = Param(self.Manipulated, ['Upper', 'Lower'],
model.Mhorizon, initialize=self._defineBounds, mutable=True)↪→

267 model.dMVbounds = Param(self.Manipulated, ['Upper', 'Lower'],
model.Mhorizon, initialize=self._definedBounds, mutable=True)↪→

268 model.X = Var(self.States, model.Phorizon, initialize=0.0)
269 model.MV = Var(self.Manipulated, model.Mhorizon,

bounds=self._assignBounds, initialize=0.0)↪→

270 model.dMV = Var(self.Manipulated, model.Mhorizon,
bounds=self._assigndBounds, initialize=0.0)↪→

271 model.Y = Var(self.Outputs, model.Phorizon, initialize=0.0)
272 model.deltaSP = Var(self.Controlled + model.OutputRegulated,

model.Phorizon, bounds=self._assignSP, initialize=0.0)↪→

273 model.U = Param(self.Inputs, model.Phorizon, initialize=0.0,
mutable=True)↪→

274 model.MVprev = Param(self.Manipulated, initialize=0.0, mutable=True)
275 model.x0 = Param(self.States, initialize=0.0, mutable=True)
276 model.Hold_Type = self.Hold_Type
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277 model.Gamma = Param(self.Controlled + self.OutputRegulated,
self.Controlled + self.OutputRegulated,
initialize=self._defineGamma, mutable=True)

↪→
↪→

278 model.S = Param(self.Manipulated, self.Manipulated,
initialize=self._defineS, mutable=True)↪→

279

280 def _stepSS(model, s, i):
281 if i == 0:
282 return model.X[s, i] == model.x0[s]
283 else:
284 asum = sum([model.A[s, si] * model.X[si, i - 1] for si in

self.States])↪→
285 bsum = 0.0
286 for ii in self.Inputs:
287 if ii in self.Manipulated and i < self.M:
288 bsum += model.B[s, ii] * (model.U[ii, i - 1] +

model.MV[ii, i - 1])↪→
289 elif ii in self.Manipulated and self.Hold_Type ==

"First_Order":↪→

290 bsum += model.B[s, ii] * (model.U[ii, i - 1] +
model.MV[ii, model.Mhorizon.last()])↪→

291 else:
292 bsum += model.B[s, ii] * model.U[ii, i - 1]
293 return model.X[s, i] == asum + bsum
294 model.SS_Constraint = Constraint(self.States, model.Phorizon,

rule=_stepSS)↪→
295

296 def _getY(model, o, i):
297 csum = sum([model.C[o, s] * model.X[s, i] for s in self.States])
298 dsum = 0.0
299 if hasattr(model, 'D'):
300 for ii in self.Inputs:
301 if ii in self.Manipulated and i < self.M:
302 dsum += model.D[o, ii] * (model.U[ii, i] +

model.MV[ii, i])↪→
303 else:
304 dsum += model.D[o, ii] * model.U[ii, i]
305 return model.Y[o, i] == csum + dsum
306 model.Y_Constraint = Constraint(self.Outputs, model.Phorizon,

rule=_getY)↪→
307

308 def _getdMV(model, m, i):
309 if i == 0:
310 # print("fooey!")
311 return model.dMV[m, i] == model.MV[m, i] - model.MVprev[m]
312 else:
313 return model.dMV[m, i] == model.MV[m, i] - model.MV[m, i -

1]↪→

314 model.dMV_Constraint = Constraint(self.Manipulated, model.Mhorizon,
rule=_getdMV)↪→

315

316 def _Obj(model):
317 ysum = 0.0
318 for o1 in self.Controlled:
319 for o2 in self.Controlled:
320 for i in model.Phorizon:
321 if o1 in self.Controlled:
322 elem1 = model.Y[o1, i]
323 if o2 in self.Controlled:
324 elem2 = model.Y[o2, i]
325 ysum += (elem1 - model.deltaSP[o1, i]) *

model.Gamma[o1, o2] * (elem2 -
model.deltaSP[o2, i])

↪→
↪→
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326 for o1 in model.OutputRegulated:
327 for o2 in model.OutputRegulated:
328 for i in model.Mhorizon:
329 if o1 in self.OutputRegulated:
330 if i <= model.Mhorizon.last():
331 elem1 = model.MV[o1, i]
332 elif i > model.Mhorizon.last() and

self.Hold_Type == 'First_Order':↪→

333 elem1 = model.MV[o1, model.Mhorizon.last()]
334 # elem1 = 0.0
335 elif i > model.Mhorizon.last() and

self.Hold_Type == 'Zero_Order':↪→
336 elem1 = 0.0
337 else:
338 elem1 = 0.0
339 if o2 in self.OutputRegulated:
340 if i <= model.Mhorizon.last():
341 elem2 = model.MV[o2, i]
342 elif i > model.Mhorizon.last() and

self.Hold_Type == 'First_Order':↪→

343 elem2 = model.MV[o2, model.Mhorizon.last()]
344 # elem2 = 0.0
345 elif i > model.Mhorizon.last() and

self.Hold_Type == 'Zero_Order':↪→
346 elem2 = 0.0
347 else:
348 elem2 = 0.0
349 ysum += (elem1 - model.deltaSP[o1, i]) *

model.Gamma[o1, o2] * (elem2 -
model.deltaSP[o2, i])

↪→
↪→

350 dssum = 0.0
351 for mv1 in self.Manipulated:
352 for mv2 in self.Manipulated:
353 for i in model.Mhorizon:
354 dssum += model.dMV[mv1, i] * model.S[mv1, mv2] *

model.dMV[mv2, i]↪→
355
356

357 return ysum + dssum
358 model.Objective = Objective(rule=_Obj)
359 self._pyomoMPC = model
360 self.__opt = SolverFactory(self.solver)
361

362 def _setZone(self, model):
363 model._zone = self.Zone.copy()
364 for CV in self.Controlled + model.OutputRegulated:
365 tmp = model._zone[CV]
366 for b in ['Upper', 'Lower']:
367 if b not in tmp and b == 'Upper':
368 model._zone[CV][b] = list(np.inf * np.ones(self.P))
369 elif b not in tmp and b == 'Lower':
370 model._zone[CV][b] == list(-np.inf * np.ones(self.P))
371 elif len(tmp[b]) == 1:
372 model._zone[CV][b] = list(model._zone[CV][b][0] *

np.ones(self.P))↪→
373 return model
374

375 def _setBounds(self, model):
376 model._bounds = self.Bounds.copy()
377 for MV in self.Manipulated:
378 if MV not in model._bounds:
379 model._bounds[MV] = {'Lower': -np.inf * np.ones(self.M),

'Upper': np.inf * np.ones(self.M)}↪→

380 tmp = model._bounds[MV]
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381 for b in ['Upper', 'Lower']:
382 if b not in tmp and b == 'Upper':
383 model._bounds[MV][b] = list(np.inf * np.ones(self.M))
384 elif b not in tmp and b == 'Lower':
385 model._bounds[MV][b] = list(-np.inf * np.ones(self.M))
386 elif len(tmp[b]) == 1:
387 model._bounds[MV][b] = list(model._bounds[MV][b][0] *

np.ones(self.M))↪→
388 return model
389

390 def _setdBounds(self, model):
391 model._dbounds = self.dBounds.copy()
392 for MV in self.Manipulated:
393 if MV not in model._dbounds:
394 model._dbounds[MV] = {'Lower': -np.inf * np.ones(self.M),

'Upper': np.inf * np.ones(self.M)}↪→

395 tmp = model._dbounds[MV]
396 for b in ['Upper', 'Lower']:
397 if b not in tmp and b == 'Upper':
398 model._dbounds[MV][b] = list(np.inf * np.ones(self.M))
399 elif b not in tmp and b == 'Lower':
400 model._dbounds[MV][b] = list(-np.inf * np.ones(self.M))
401 elif len(tmp[b]) == 1:
402 model._dbounds[MV][b] = list(model._dbounds[MV][b][0] *

np.ones(self.M))↪→
403 return model
404

405 def MPCUpdate(self, x0=np.array([]), **kwargs):
406 x0 = np.array(x0)
407 if len(x0) == 0:
408 x0 = np.zeros(self.A.shape[0])
409 elif len(x0) != self.A.shape[0]:
410 raise _Update_Error('Dimensions of given states does not jive

with state space!')↪→
411 for s in self.States:
412 i = self._pyomoMPC.states_i[s]
413 self._pyomoMPC.x0[s] = x0[i]
414 if 'U' in kwargs:
415 Utmp = np.atleast_2d(np.array(kwargs['U'])).T
416 if Utmp.shape[0] != self.B.shape[1]:
417 raise _Update_Error('Input vector must have the same number

of rows as inputs (Columns of B)')↪→

418 if Utmp.shape[1] != 1 and Utmp.shape[1] != self.P:
419 raise _Update_Error('Input vector must be constant over

prediction horizon or a value provided at every point
over the prediction horizon')

↪→
↪→

420 if Utmp.shape[1] == 1:
421 for ii in self.Inputs:
422 for i in self._pyomoMPC.Phorizon:
423 j = self._pyomoMPC.inputs_i[ii]
424 self._pyomoMPC.U[ii, i] = Utmp[j, 0]
425 elif Utmp.shape[1] == self.P:
426 for ii in self.Inputs:
427 for i in self._pyomoMPC.Phorizon:
428 j = self._pyomoMPC.inputs_i[ii]
429 self._pyomoMPC.U[ii, i] = Utmp[j, i]
430 if 'Ucontrol' in kwargs:
431 Uctmp = np.array(kwargs['Ucontrol'])
432 if Uctmp.shape[0] != self.B.shape[1]:
433 raise _Update_Error('Previous control action vector must

have the same number of rows as inputs (Rows of B)')↪→
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434 if Uctmp.shape[1] != 1:
435 raise _Update_Error('Please provide the previous control

action only!')↪→
436 for i in self.Inputs:
437 j = self._pyomoMPC.inputs_i[i]
438 self._pyomoMPC.MVprev[i] = Uctmp[j]
439 self._pyomoMPC.preprocess()
440 soln = self.__opt.solve(self._pyomoMPC, keepfiles=False, tee=False)
441 self._pyomoMPC.solutions.load_from(soln)
442 control_action = np.zeros((len(self._pyomoMPC.manipulated_i),

self.M))↪→

443 predictedx = np.zeros((self.A.shape[0], self.P - 1))
444 predictedy = np.zeros((self.C.shape[0], self.P))
445 for iidx, i in enumerate(self._pyomoMPC.Mhorizon):
446 for mv in self.Manipulated:
447 j = self._pyomoMPC.manipulated_i[mv]
448 control_action[j, iidx] = self._pyomoMPC.MV[mv, i]()
449 for s in self.States:
450 ctr = 0
451 for iidx, i in enumerate(self._pyomoMPC.Phorizon):
452 if i != 0:
453 j = self._pyomoMPC.states_i[s]
454 predictedx[j, ctr] = self._pyomoMPC.X[s, i]()
455 ctr += 1
456 for o in self.Outputs:
457 jy = self._pyomoMPC.outputs_i[o]
458 predictedy[jy, iidx] = self._pyomoMPC.Y[o, i]()
459 for mv in self.Manipulated:
460 self._pyomoMPC.MVprev[mv] = self._pyomoMPC.MV[mv, 0]
461 return control_action, predictedx, predictedy
462

463 @staticmethod
464 def _defineA(model, s1, s2):
465 i = model.states_i[s1]
466 j = model.states_i[s2]
467 return model.statespace['A'][i, j]
468

469 @staticmethod
470 def _defineB(model, s, inp):
471 i = model.states_i[s]
472 j = model.inputs_i[inp]
473 return model.statespace['B'][i, j]
474

475 @staticmethod
476 def _defineC(model, o, s):
477 i = model.outputs_i[o]
478 j = model.states_i[s]
479 return model.statespace['C'][i, j]
480

481 @staticmethod
482 def _defineD(model, o, inp):
483 i = model.outputs_i[o]
484 j = model.inputs_i[inp]
485 return model.statespace['D'][i, j]
486

487 @staticmethod
488 def _defineGamma(model, cv1, cv2):
489 if cv1 in model.controlled:
490 i = model.controlled_i[cv1]
491 elif cv1 in model.OutputRegulated:
492 i = model.output_regulated_i[cv1] + len(model.controlled)
493 if cv2 in model.controlled:
494 j = model.controlled_i[cv2]
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495 elif cv2 in model.OutputRegulated:
496 j = model.output_regulated_i[cv2] + len(model.controlled)
497 return model.weights['Gamma'][i, j]
498

499 @staticmethod
500 def _defineS(model, mv1, mv2):
501 i = model.manipulated_i[mv1]
502 j = model.manipulated_i[mv2]
503 return model.weights['S'][i, j]
504

505 @staticmethod
506 def _defineBounds(model, e, ul, i):
507 return model._bounds[e][ul][i]
508

509 @staticmethod
510 def _assignBounds(model, e, i):
511 return (model.MVbounds[e, 'Lower', i], model.MVbounds[e, 'Upper',

i])↪→
512

513 @staticmethod
514 def _definedBounds(model, e, ul, i):
515 return model._dbounds[e][ul][i]
516

517 @staticmethod
518 def _assigndBounds(model, e, i):
519 return (model.dMVbounds[e, 'Lower', i], model.dMVbounds[e, 'Upper',

i])↪→
520

521 @staticmethod
522 def _defineSP(model, cv, ul, i):
523 return model._zone[cv][ul][i]
524

525 @staticmethod
526 def _assignSP(model, cv, i):
527 return (model.CVSP[cv, 'Lower', i], model.CVSP[cv, 'Upper', i])
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APPENDIX F

MHE CODE

Listing 2: CoPyMHE Module Source Code: Unlike most research grade code, the code

here takes pains to check for improperly formatted/configured inputs and provide useful and

informative error messages. Thorough documentation and API information is available upon

request but is not included here for brevity.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue Jun 2 14:23:05 2015
4 @author: Tim
5 REQUIRED ARGUMENTS
6 _________________________________________________________________________ c

__↪→
7 A: State transition matrix
8 B: Input matrix
9 C: Output/Observation matrix

10 m: estimation horizon
11 P0: Initial State Error Covariance Matrix
12 R: Measurement Noise Covariance Matrix
13 Q: State Noise Covariance Matrix
14 ----------------------------------------------------
15 OPTIONAL/KEYWORK ARGUMENTS
16 _________________________________________________________________________ c

__↪→

17 x0: Vector of states at first measurement (Y[k-m+1])
18 - defaults to 0 if not provided.
19 States: List of state names
20 - defaults to 1...Ns if not provided.
21 Inputs: List of input names
22 - defaults to 1...Ni if not provided.
23 Outputs: List of output names
24 - defaults to 1...No if not provided.
25 EstimatedStates: List of states to be estimated (must match names in

States)↪→
26 - defaults to all if not provided.
27 Bd: Disturbance matrix
28 - Provides input matrix for unmeasured disturbances

214



29 Disturbances:
30 - List of names for disturbances in Bd
31 Qd: Disturbance noise covariance matrix
32 - Must be provided if Bd is given!
33 """
34 from pyomo.environ import (SolverFactory, ConcreteModel, RangeSet,
35 Param, Objective, Constraint, ConstraintList,

Var)↪→
36 import numpy as np
37 from numbers import Number
38 from numpy.linalg import inv as inv
39 import pdb
40

41 # Define Exception Classes
42
43

44 class _IncompatibleMatrix(Exception):
45 pass
46
47

48 class _StateSpace_Error(Exception):
49 pass
50
51

52 class _MHE_Error(Exception):
53 pass
54
55

56 class _Bounds_Error(Exception):
57 pass
58
59

60 class _Update_Error(Exception):
61 pass
62
63

64 class MHE:
65

66 def __init__(self, A=np.array([]), B=np.atleast_2d(np.array([])),
C=np.array([]), D=np.atleast_2d(np.array([])), H=10,↪→

67 R=np.array([]), P0=np.array([]), Q=np.array([]),
Regularize_Disturbances="All", Estimate_IC=[], IC={},
Ts_ratio=1, **kwargs):

↪→
↪→

68 self.A = np.atleast_2d(np.array(A)).copy()
69 self.B = np.atleast_2d(np.array(B)).copy()
70 self.C = np.atleast_2d(np.array(C)).copy()
71 self.D = np.atleast_2d(np.array(D)).copy()
72 self.H = H
73 self.R = np.atleast_2d(np.array(R)).copy()
74 self.Q = np.atleast_2d(np.array(Q)).copy()
75 self.P = np.atleast_2d(np.array(P0)).copy()
76 self._Regularize_Disturbances = Regularize_Disturbances
77 self.Estimate_IC = Estimate_IC
78 self.Ts_ratio = Ts_ratio
79 if type(Ts_ratio) is not int:
80 raise _MHE_Error("Ts_ratio must be an integer > 1 multiple of

the state space sampling rate")↪→

81 self._eval_kwargs(kwargs)
82 self._checkSS()
83

84 def _checkSS(self):
85 if self.A.shape[0] != self.A.shape[1]:
86 raise _StateSpace_Error('A must be square!')
87 if self.B.shape[1] != 0 and self.A.shape[0] != self.B.shape[0]:
88 raise _IncompatibleMatrix('Dimensions of A and B are

incompatible')↪→

89 if self.A.shape[1] != self.C.shape[1]:
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90 raise _IncompatibleMatrix('Dimensions of A and C are
incompatible')↪→

91 if self.D.shape[1] != 0 and self.C.shape[0] != self.D.shape[1]:
92 raise _IncompatibleMatrix('Dimensions of C and D are

incompatible')↪→

93 if self.D.shape[1] != 0 and self.B.shape[1] != 0 and
self.D.shape[1] != self.B.shape[1]:↪→

94 raise _IncompatibleMatrix('Dimensions of B and D are
incompatibe')↪→

95 if self.A.shape[0] == 0:
96 raise _StateSpace_Error('A is missing')
97 if self.C.shape[0] == 0:
98 raise _StateSpace_Error('C is missing')
99 if self.A.shape[0] != len(self.States):

100 raise _StateSpace_Error(
101 'Dimensions of A do not match given States')
102 if self.B.shape[1] != 0 and self.B.shape[1] !=

len(list(set(self.Inputs + self.Disturbances))):↪→

103 raise _StateSpace_Error(
104 'Dimensions of B do not match given Inputs')
105 if self.D.shape[1] != 0 and self.D.shape[1] != len(self.Inputs):
106 raise _StateSpace_Error(
107 'Dimensions of D do not match given Inputs')
108 if self.D.shape[1] != 0 and self.D.shape[0] != len(self.Outputs):
109 raise _StateSpace_Error(
110 'Dimensions of D do not match given Outputs')
111

112 def __addstr(self, attribute, string):
113 tmp = []
114 if type(string) == list:
115 setattr(self, attribute, string)
116 else:
117 tmp.append(string)
118 setattr(self, attribute, tmp)
119

120 def _eval_kwargs(self, kwargs):
121 if 'States' in kwargs:
122 self.__addstr('States', kwargs['States'].copy())
123 if len(set(self.States)) != len(self.States):
124 raise _MHE_Error(
125 'List of state names cannot have any duplicates')
126 else:
127 self.States = ['s' + str(i) for i in range(0, self.A.shape[0])]
128 if 'Inputs' in kwargs and self.B.shape[0] == 0:
129 raise _MHE_Error('Inputs provided but B is missing')
130 elif 'Inputs' in kwargs:
131 self.__addstr('Inputs', kwargs['Inputs'].copy())
132 if len(set(self.Inputs)) != len(self.Inputs):
133 raise _MHE_Error(
134 'List of input names cannot have any duplicates')
135 else:
136 self.Inputs = ['i' + str(i) for i in range(0, self.B.shape[1])]
137 if 'Outputs' in kwargs:
138 self.__addstr('Outputs', kwargs['Outputs'].copy())
139 if len(set(self.Outputs)) != len(self.Outputs):
140 raise _MHE_Error(
141 'List of output names cannot have any duplicates')
142 else:
143 self.Outputs = ['o' + str(i) for i in range(0, self.C.shape[0])]
144 if 'Estimated' in kwargs:
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145 self.__addstr('Estimated', kwargs['Estimated'].copy())
146 if len(set(self.Estimated)) != len(self.Estimated):
147 raise _MHE_Error(
148 'List of estimated state names cannot have any

duplicates')↪→
149 else:
150 self.Estimated = self.States
151 if 'Measured' in kwargs:
152 self.__addstr('Measured', kwargs['Measured'].copy())
153 if len(set(self.Measured)) != len(self.Measured):
154 raise _MHE_Error(
155 'List of measured outputs cannot have any duplicates')
156 else:
157 self.Measured = self.Outputs
158 if 'Disturbances' in kwargs and self.B.shape[1] == 0:
159 raise _MHE_Error('Disturbances provided but B is missing')
160 elif 'Disturbances' in kwargs:
161 self.__addstr('Disturbances', kwargs['Disturbances'].copy())
162 if len(set(self.Disturbances)) != len(self.Disturbances):
163 raise _MHE_Error(
164 'List of estimated disturbances cannot have any

duplicates')↪→
165 else:
166 self.Disturbances = []
167 if 'L' in kwargs and hasattr(self, 'Disturbances'):
168 self.L = np.atleast_2d(np.array(kwargs['L'])).copy()
169 elif 'L' in kwargs:
170 raise _MHE_Error(
171 'Disturbance regularization matrix, L, provided with no

disturbances')↪→
172 else:
173 self.L = np.atleast_2d(np.array([]))
174 if self._Regularize_Disturbances not in ['All', 'First', None]:
175 raise _MHE_Error(
176 'Disturbance regularization method not understood')
177 if self._Regularize_Disturbances in ["All", "First"] and not

hasattr(self, 'L'):↪→

178 raise _MHE_Error(
179 'Disturbance regularization requested with no weighting

matrix. Please provide L')↪→

180 self._checkMHE()
181 if 'Bounds' in kwargs:
182 self.Bounds = kwargs.get('Bounds')
183 self._checkBounds()
184 else:
185 self._checkBounds()
186 if 'dBounds' in kwargs:
187 self.dBounds = kwargs.get('dBounds')
188 self._checkdBounds()
189 else:
190 self._checkdBounds()
191 if 'Solver' in kwargs:
192 self.solver = kwargs['Solver']
193 else:
194 self.solver = 'ipopt'
195 list_all = self.States + self.Inputs + self.Outputs
196 if len(set(list_all)) != len(list_all):
197 raise _MHE_Error(
198 'Listed states, inputs, and outputs CANNOT have any

duplicates or overlap')↪→
199

200 def _checkMHE(self):
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201 est_all = self.Estimated.copy()
202 if hasattr(self, 'Disturbances'):
203 est_all += self.Disturbances
204 self._estimated_all = est_all
205 if len(est_all) == 0:
206 raise _MHE_Error('Nothing given to estimate!')
207 if self.R.shape[0] != len(self.Measured):
208 raise _MHE_Error(
209 'The size of R is incompatible with given measured outputs')
210 if self.R.shape[0] != self.R.shape[1]:
211 raise _MHE_Error('R must be square!')
212 # pdb.set_trace()
213 if self.Q.shape[0] != (len(self.Estimated) +

len(self.Disturbances)):↪→

214 raise _MHE_Error(
215 'The size of Q is incompatible with given estimated states

and disturbances')↪→

216 if self.Q.shape[0] != self.Q.shape[1]:
217 raise _MHE_Error('Q must be square!')
218 elif self.P.shape[1] != 0 and self.P.shape[0] !=

(len(self.Estimated) + len(self.Disturbances)):↪→

219 raise _MHE_Error(
220 'The size of P0 is incompatible with given estimated states

and parameters')↪→

221 if self.P.shape[0] != self.P.shape[1] and len(self.Estimated) > 0:
222 raise _MHE_Error('P must be square!')
223 if hasattr(self, 'L') and self.L.shape[1] != 0 and self.L.shape[0]

!= len(self.Disturbances):↪→

224 raise _MHE_Error(
225 'The size of L is incompatible with given estimated

disturbances')↪→
226 for s in self.Estimated:
227 if s not in self.States:
228 raise _MHE_Error('State %s not found in statespace' % s)
229

230 def _checkBounds(self):
231 if not hasattr(self, 'Bounds'):
232 self.Bounds = {}
233 for s in self.Bounds.keys():
234 if s not in self.States + self.Disturbances:
235 raise _MHE_Error(
236 'Error in bounds: %s not found in states or

disturbances' % s)↪→

237 if type(self.Bounds[s]) is not dict:
238 raise _MHE_Error('Bounds for %s must be a dictionary' % s)
239 for b in self.Bounds[s].keys():
240 if b not in ['Upper', 'Lower']:
241 raise _Bounds_Error(
242 '%s in Bounds for %s is not recognized' % (b, s))
243 if not isinstance(self.Bounds[s][b], Number):
244 raise _Bounds_Error(
245 'Value for %s %s bound must be a number' % (s, b))
246 if 'Lower' not in self.Bounds[s]:
247 self.Bounds[s]['Lower'] = -np.inf
248 if 'Upper' not in self.Bounds[s]:
249 self.Bounds[s]['Upper'] = np.inf
250 for s in self.States + self.Disturbances:
251 if s not in self.Bounds:
252 self.Bounds[s] = {'Lower': -np.inf, 'Upper': np.inf}
253

254 def _checkdBounds(self):
255 if not hasattr(self, 'dBounds'):
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256 self.dBounds = {}
257 for s in self.dBounds.keys():
258 if s not in self.States + self.Disturbances:
259 raise _MHE_Error(
260 'Error in dbounds: %s not found in states or

disturbances' % s)↪→

261 if type(self.dBounds[s]) is not dict:
262 raise _MHE_Error('dBounds for %s must be a dictionary' % s)
263 for b in self.dBounds[s].keys():
264 if b not in ['Upper', 'Lower']:
265 raise _Bounds_Error(
266 '%s in dBounds for %s is not recognized' % (b, s))
267 if not isinstance(self.dBounds[s][b], Number):
268 raise _Bounds_Error(
269 'Value for %s %s dbound must be a number' % (s, b))
270 if 'Lower' not in self.dBounds[s]:
271 self.dBounds[s]['Lower'] = -np.inf
272 if 'Upper' not in self.dBounds[s]:
273 self.dBounds[s]['Upper'] = np.inf
274 for s in self.States + self.Disturbances:
275 if s not in self.dBounds:
276 self.dBounds[s] = {'Lower': -np.inf, 'Upper': np.inf}
277

278 def __setupMHE(self, Y):
279 model = ConcreteModel()
280 model.estimated = self.Estimated
281 model.disturbances = self.Disturbances
282 model.m_mhe = Param(initialize=(self._ctr - 1) * self.Ts_ratio,

mutable=True)↪→

283 model.statespace = {'A': self.A, 'B': self.B, 'C': self.C, 'D':
self.D}↪→

284 model.weights = {'P': self.P, 'Q': self.Q, 'R': self.R, 'L': self.L}
285 model.states_i = {s: i for i, s in enumerate(self.States)}
286 model.states_est_i = {s: i for i, s in enumerate(self.Estimated)}
287 model.estimated_i = {s: i for i, s in enumerate(self.Estimated +

self.Disturbances)}↪→

288 model.inputs_i = {ii: i for i, ii in enumerate(self.Inputs)}
289 model.disturbances_i = {ii: i for i, ii in

enumerate(self.Disturbances)}↪→

290 model.outputs_i = {oo: i for i, oo in enumerate(self.Outputs)}
291 model.disturbances_i = {ii: i for i,
292 ii in enumerate(self.Disturbances)}
293 model.A = Param(self.States, self.States, initialize=self._defineA)
294 if self.B.shape[1] != 0:
295 model.B = Param(self.States, list(set(self.Inputs +

self.Disturbances)), initialize=self._defineB)↪→

296 model.C = Param(self.Outputs, self.States, initialize=self._defineC)
297 if self.D.shape[1] != 0:
298 model.D = Param(self.Outputs, self.Inputs,
299 initialize=self._defineD)
300 model.bounds = self.Bounds
301 model.dbounds = self.dBounds
302 model.horizon = RangeSet(0, model.m_mhe)
303 # print(model.m_mhe.display())
304 model.horizon_1 = RangeSet(0, model.m_mhe - 1)
305 model.ihorizon = RangeSet(0, model.m_mhe)
306 Ts_ddict = {}
307 Ts_wdict = {}
308 Ts_ydict = {}
309

310 tmp = model.horizon_1.first()
311 Winit = []
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312 Dinit = []
313 Yinit = []
314 for h in model.horizon_1:
315 if np.mod((h), self.Ts_ratio) == 0:
316 tmp = h
317 Winit.append(tmp)
318 Ts_wdict[h] = tmp
319 tmp = model.horizon.first()
320 for h in model.ihorizon:
321 if np.mod((h), self.Ts_ratio) == 0:
322 tmp = h
323 Dinit.append(tmp)
324 Ts_ddict[h] = tmp
325 tmp = model.horizon.first()
326 for h in model.horizon:
327 if np.mod((h), self.Ts_ratio) == 0:
328 tmp = h
329 Yinit.append(tmp)
330 Ts_ydict[h] = tmp
331

332 self.Winit = Winit
333 self.Dinit = Dinit
334 self.Yinit = Yinit
335 model.Xbounds = Param(
336 self.States, ['Upper', 'Lower'], initialize=self._defineBounds,

mutable=True)↪→

337 model.X = Var(self.States, model.horizon,
338 bounds=self._assignBounds, initialize=0.0)
339 model.dXbounds = Param(
340 self.States, ['Upper', 'Lower'],

initialize=self._definedBounds, mutable=True)↪→

341 model.dX = Var(self.States, model.horizon_1,
342 bounds=self._assigndBounds, initialize=0.0)
343 model.w = Var(self.Estimated, Winit, initialize=0.0)
344 model.Ibounds = Param(self.Disturbances, [
345 'Upper', 'Lower'],

initialize=self._defineBounds,
mutable=True)

↪→
↪→

346 model.ICons = Var(self.Disturbances, model.ihorizon,
347 bounds=self._assignBounds, initialize=0.0)
348 model.dIbounds = Param(self.Disturbances, [
349 'Upper', 'Lower'],

initialize=self._definedBounds,
mutable=True)

↪→
↪→

350 model.dICons = Var(self.Disturbances, model.ihorizon,
351 bounds=self._assigndBounds, initialize=0.0)
352 model.d = Var(self.Disturbances, Dinit, initialize=0.0)
353 model.Ymeas = Param(self.Outputs, Yinit,
354 initialize=0.0, mutable=True)
355 model.Reset = Param(self.States, initialize=0, mutable=True)
356 model.vL = Var(self.Outputs, Yinit, initialize=0.0)
357 # Set initial conditions for estimated states and parameters
358 model.x0 = Param(self.States, initialize=0.0, mutable=True)
359 model.d0 = Param(self.Disturbances, initialize=0)
360 model.X_1 = Param(self.States, initialize=0.0, mutable=True)
361 model.X_1Constraints = ConstraintList()
362 model._ICLOCK = ConstraintList()
363 model.XE = Var(self.States, initialize=0.0)
364 model.U = Param(self.Inputs, Dinit,
365 initialize=0.0, mutable=True)
366 model.U_1 = Param(self.Inputs, initialize=0.0, mutable=True)
367 model.D_1 = Param(self.Disturbances, initialize=0.0, mutable=True)
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368 model.P = Param(self.Estimated + self.Disturbances, self.Estimated
+ self.Disturbances,↪→

369 initialize=self._defineP, mutable=True)
370 model.Q = Param(self._estimated_all, self._estimated_all,
371 initialize=self._defineQ)
372 model.R = Param(self.Outputs, self.Outputs,
373 initialize=self._defineR, mutable=True)
374 if self.L.shape[1] != 0:
375 model.L = Param(self.Disturbances, self.Disturbances,
376 initialize=self._defineL, mutable=True)
377

378 def _Ic(model, d, i):
379 if d in self.Inputs:
380 U = model.U[d, Ts_ddict[i]]
381 else:
382 U = 0.0
383 return model.ICons[d, i] == U + model.d[d, Ts_ddict[i]]
384 # return model.ICons[d, i] == model.d[d, i]
385 model._IC = Constraint(self.Disturbances, model.ihorizon, rule=_Ic)
386

387 def _dIc(model, d, i):
388 if i == 0:
389 if d in self.Inputs:
390 U = model.U[d, Ts_ddict[i]]
391 U_1 = model.U_1[d]
392 else:
393 U = 0.0
394 U_1 = 0.0
395 return model.dICons[d, i] == (U + model.d[d, Ts_ddict[i]])

- (U_1 + model.D_1[d])↪→
396 else:
397 if d in self.Inputs:
398 U = model.U[d, Ts_ddict[i]]
399 U_1 = model.U[d, Ts_ddict[i - 1]]
400 else:
401 U = 0.0
402 U_1 = 0.0
403 return model.dICons[d, i] == (U + model.d[d, Ts_ddict[i]])

- (U_1 + model.d[d, Ts_ddict[i - 1]])↪→

404 model._dIC = Constraint(self.Disturbances, model.ihorizon,
rule=_dIc)↪→

405

406 # Calculate changes for ROC constraints
407 def _dXC_f(model, s, i):
408 return model.dX[s, i] == model.X[s, i + 1] - model.X[s, i]
409 model.dXC = Constraint(self.States, model.horizon_1, rule=_dXC_f)
410

411 def _stepSS(model, i, s):
412 asum = sum([model.A[s, si] * model.X[si, i] for si in

self.States])↪→
413 bsum = 0.0
414 for ii in self.Inputs:
415 bsum += model.B[s, ii] * model.U[ii, Ts_ddict[i]]
416 for ii in self.Disturbances:
417 bsum += model.B[s, ii] * model.d[ii, Ts_ddict[i]]
418 if s in self.Estimated:
419 wsum = model.w[s, Ts_wdict[i]]
420 else:
421 wsum = 0.0
422 return model.X[s, i + 1] == asum + bsum + wsum
423 model.SS_Constraint = Constraint(model.horizon_1, self.States,

rule=_stepSS)↪→
424

425 def _outputConstraints(model, s):
426 summer = 0
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427 for s2 in self.Outputs:
428 summer += model.C[s2, s]
429 if summer == 0 and s in self.Estimated:
430 return model.w[s, model.horizon_1.last()] == 0
431 else:
432 return Constraint.Skip
433 model.OutputConstraintsC = Constraint(self.States,

rule=_outputConstraints)↪→
434

435 def _vL(model, i, o):
436 cout = sum([model.C[o, si] * model.X[si, i] for si in

self.States])↪→

437 if hasattr(model, 'D'):
438 for ii in self.Inputs:
439 cout += model.D[o, ii] * model.U[ii, i]
440 for ii in self.Disturbances:
441 cout += model.D[o, ii] * model.D[ii, i]
442 return model.vL[o, i] == model.Ymeas[o, i] - cout
443 model.vLC = Constraint(Yinit, self.Outputs, rule=_vL)
444

445 def _NoFeedThroughConstraint(model, d):
446 if not hasattr(model, 'D') and self._ctr > 1:
447 return model.d[d, Ts_ddict[model.ihorizon.last()]] ==

model.d[d, Ts_ddict[model.ihorizon.last() - 1]]↪→
448 else:
449 return Constraint.Skip
450 model._NFTC = Constraint(self.Disturbances,

rule=_NoFeedThroughConstraint)↪→
451

452 def _Obj(model):
453 ArrivalCost = 0.
454 for s1 in self.Estimated:
455 for s2 in self.Estimated:
456 ArrivalCost += model.XE[s1] * \
457 model.P[s1, s2] * model.XE[s2]
458 SSE = 0.
459 for k in Yinit:
460 for o1 in self.Outputs:
461 for o2 in self.Outputs:
462 SSE += model.vL[o1, k] * \
463 model.R[o1, o2] * model.vL[o2, k]
464 NoiseCost = 0.
465 for k in model.w_index_1:
466 for s1 in self._estimated_all:
467 for s2 in self._estimated_all:
468 if s1 in self.States:
469 elem1 = model.w[s1, Ts_wdict[k]]
470 elif s1 in self.Disturbances:
471 elem1 = model.d[s1, Ts_ddict[k]]
472 if s2 in self.States:
473 elem2 = model.w[s2, Ts_wdict[k]]
474 elif s2 in self.Disturbances:
475 elem2 = model.d[s2, Ts_ddict[k]]
476 NoiseCost += elem1 * model.Q[s1, s2] * elem2
477 if hasattr(model, 'D'):
478 for s1 in self._estimated_all:
479 for s2 in self._estimated_all:
480 if s1 in self.Disturbances and s2 in

self.Disturbances:↪→

481 NoiseCost += model.d[s1,
Ts_ddict[model.ihorizon.last()]] *
model.Q[s1, s2] * model.d[

↪→
↪→

482 s2, Ts_ddict[model.ihorizon.last()]]
483

484 deltaDCost = 0.
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485 if hasattr(model, 'L'):
486 if self._Regularize_Disturbances == "All":
487 for k in Dinit:
488 for d1 in self.Disturbances:
489 for d2 in self.Disturbances:
490 if k > 0:
491 deltaDCost += (model.d[d1, Ts_ddict[k]]

- model.d[d1, Ts_ddict[k - 1]]) *
model.L[

↪→
↪→

492 d1, d2] * (model.d[d2, Ts_ddict[k]]
- model.d[d2, Ts_ddict[k - 1]])↪→

493 else:
494 print(k)
495 deltaDCost += (model.d[d1, Ts_ddict[k]]

- model.D_1[d1]) * model.P[↪→

496 d1, d2] * (model.d[d2, Ts_ddict[k]]
- model.D_1[d2])↪→

497 elif self._Regularize_Disturbances == "First":
498 deltaDCost += (model.d[d1, Ts_ddict[k]] -

model.D_1[d1]) * model.P[↪→

499 d1, d2] * (model.d[d2, Ts_ddict[k]] - model.D_1[d2])
500 elif self._Regularize_Disturbances is None:
501 deltaDCost += 0
502 return ArrivalCost + SSE + NoiseCost + deltaDCost
503

504 model._obj = Objective(rule=_Obj)
505 self._pyomoMHE = model
506 self.__opt = SolverFactory(self.solver)
507 self.Ts_ddict = Ts_ddict
508 self.Ts_wdict = Ts_wdict
509 self.Ts_ydict = Ts_ydict
510

511 def MHEUpdate(self, Y, U=None, x0=None, d0=None, returnfull=False,
reset=[], **kwargs):↪→

512 self.Reset = reset.copy()
513 if hasattr(self, '_x0'):
514 del self._x0
515 if self.B.shape[1] == 0 and d0 is not None:
516 raise _Update_Error(
517 'Initial disturbance supplied in the absence of a B matrix')
518 elif not hasattr(self, 'Disturbances') and d0 is not None:
519 raise _Update_Error(
520 'Initial disturbance supplied in the absence of estimated

disturbances')↪→
521 elif d0 is None:
522 d0 = np.zeros(len(self.Disturbances))
523 else:
524 d0 = np.array(d0)
525 if U is None:
526 U = np.zeros(self.B.shape[1])
527 if (np.isnan(Y).any()):
528 raise _Update_Error('NaN detected in meaurement!')
529 if (np.isnan(U).any()):
530 raise _Update_Error('NaN detected in input!')
531 Y = np.matrix(Y)
532 U = np.matrix(U)
533 if Y.shape[1] != U.shape[1]:
534 raise _Update_Error(
535 ('Y and U do not contain the same number of values'))
536 if Y.shape[0] != self.C.shape[0]:
537 raise _Update_Error(
538 ('Dimensions of measurement do not match State Space'))
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539 if not hasattr(self, 'y'):
540 self.y = Y
541 else:
542 self.y = np.hstack((self.y, Y))
543 if U is not None and self.B.shape[1] == 0:
544 raise _Update_Error(
545 'An input is provided in update, but no B matrix is

specified')↪→
546 else:
547 if U.shape[0] != len(self.Inputs):
548 raise _Update_Error(
549 'Dimensions of input do not match State Space')
550 if not hasattr(self, 'u'):
551 self.u = U
552 else:
553 # pdb.set_trace()
554 self.u = np.hstack((self.u, U))
555 self._ctr = self.y.shape[1]
556

557 if self._ctr * self.Ts_ratio <= float(self.H * self.Ts_ratio) or
not hasattr(self, '_pyomoMHE'):↪→

558 self._x0 = {}
559 if x0 is None:
560 x0 = {}
561 for s in self.States:
562 if s not in self.Estimate_IC:
563 x0[s] = 0.0
564 else:
565 self._x0 = x0
566 for s in self.States:
567 if s in self.Estimate_IC:
568 self.Reset.append(s)
569 else:
570 self._x0[s] = x0[s]
571 _m = self._ctr
572 if hasattr(self, '_pyomoMHE'):
573 delattr(self, '_pyomoMHE')
574 self.__setupMHE(Y)
575 self._pyomoMHE.m_mhe = np.array([[self._ctr * self.Ts_ratio]])
576 for d in self.Disturbances:
577 didx = self._pyomoMHE.disturbances_i[d]
578 self._pyomoMHE.D_1[d] = float(d0[didx])
579 # self._x0 = {}
580 for s in self.States:
581 self._pyomoMHE.X_1[s] = 0.0
582

583 else:
584 self._pyomoMHE.m_mhe = self.H * self.Ts_ratio
585 _m = int(self.H)
586 # FORCE INITIAL CONDITONS:
587 if x0 is None:
588 self._x0 = {}
589 else:
590 for s in x0.keys():
591 self._x0[s] = x0[s]
592 # print(reset)
593 self.Reset = reset.copy()
594 del self._pyomoMHE._ICLOCK
595 del self._pyomoMHE._ICLOCK_index
596 self._pyomoMHE._ICLOCK = ConstraintList()
597 asum = {}
598 for sk in self.States:
599 asum[sk] = self._pyomoMHE.X_1[sk]()
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600 for k in range(0, self.Ts_ratio):
601 asum2 = {}
602 for sj in self.States:
603 bsum = 0.0
604 for ii in self.Inputs:
605 bsum += self._pyomoMHE.B[sj, ii] *

self._pyomoMHE.U_1[ii]()↪→

606 # print(bsum)
607 for ii in self.Disturbances:
608 bsum += self._pyomoMHE.B[sj, ii] *

self._pyomoMHE.D_1[ii]()↪→

609 asum2[sj] = sum([self._pyomoMHE.A[sj, sk] * asum[sk] for sk
in self.States]) + bsum↪→

610 for sk in self.States:
611 asum[sk] = asum2[sk]
612 for s in self.States:
613 if s not in self.Reset and s not in self._x0 and s not in

self.Estimated:↪→

614 self._pyomoMHE._ICLOCK.add(expr=(self._pyomoMHE.X[s, 0] ==
asum[s]))↪→

615 elif s in self._x0:
616 self._pyomoMHE._ICLOCK.add(expr=(self._pyomoMHE.X[s, 0] ==

self._x0[s]))↪→
617 elif s in self.Estimated and s not in self.Reset:
618 self._pyomoMHE._ICLOCK.add(expr=(self._pyomoMHE.XE[s] ==

self._pyomoMHE.X[s, 0] - asum[s]))↪→

619 for i in range(1, _m + 1):
620 for o in self.Outputs:
621 yidx = self._pyomoMHE.outputs_i[o]
622 if i == 1:
623 self._pyomoMHE.Ymeas[o, 0] = float(self.y[yidx, - _m -

1 + i])↪→
624 else:
625 self._pyomoMHE.Ymeas[o, (i - 1) * self.Ts_ratio] =

float(self.y[yidx, -_m - 1 + i])↪→
626

627 for i in range(1, _m + 1):
628 for inp in self.Inputs:
629 uidx = self._pyomoMHE.inputs_i[inp]
630 if i == 1:
631 self._pyomoMHE.U[inp, 0] = float(self.u[uidx, - _m - 1

+ i])↪→
632 else:
633 self._pyomoMHE.U[inp, (i - 1) * self.Ts_ratio] =

float(self.u[uidx, - _m - 1 + i])↪→

634 if self.P.shape[1] != 0:
635 self.P = self.P
636 for s1 in self.Estimated:
637 for s2 in self.Estimated:
638 i = self._pyomoMHE.states_est_i[s1]
639 j = self._pyomoMHE.states_est_i[s2]
640 self._pyomoMHE.P[s1, s2] = self.P[i, j]
641 self._pyomoMHE.preprocess()
642 soln = self.__opt.solve(self._pyomoMHE, keepfiles=False, tee=False)
643 self._pyomoMHE.solutions.load_from(soln)
644 for s in self.States:
645 self._pyomoMHE.X_1[s] = float(self._pyomoMHE.X[s, 0]())
646 for d in self.Disturbances:
647 self._pyomoMHE.D_1[d] = self._pyomoMHE.d[d, 0]()
648 for u in self.Inputs:
649 self._pyomoMHE.U_1[u] = self._pyomoMHE.U[u, 0]()
650 xout = np.matrix(np.zeros((self.A.shape[0], 1)))
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651 xout2 = np.matrix(np.zeros((self.A.shape[0], 1)))
652 wout = np.matrix(np.zeros((len(self.Estimated), 1)))
653 for s in self.States:
654 i = self._pyomoMHE.states_i[s]
655 xout[i, 0] = self._pyomoMHE.X[s,

self._pyomoMHE.horizon.last()]()↪→

656 xout2[i, 0] = self._pyomoMHE.X[s,
self._pyomoMHE.horizon.first()]()↪→

657 if len(self.Estimated) > 0:
658 if len(self._pyomoMHE.w) > 0:
659 for s in self.Estimated:
660 i = self._pyomoMHE.states_est_i[s]
661 wout[i, 0] = self._pyomoMHE.w[
662 s, self._pyomoMHE.horizon_1.first()]()
663 if not hasattr(self, 'w'):
664 self.w = wout
665 self.w = np.array(self.w)
666 else:
667 self.w = np.hstack((self.w, wout))
668 self.w = np.array(self.w)
669 if not hasattr(self, 'x'):
670 self.x = xout
671 self.x = np.array(self.x)
672 else:
673 self.x = np.hstack((self.x, xout))
674 self.x = np.array(self.x)
675 if len(self.Disturbances) > 0:
676 dout = np.array(np.zeros(len(self.Disturbances)))
677 if self._pyomoMHE.horizon.last() > 0:
678 for d in self.Disturbances:
679 didx = self._pyomoMHE.disturbances_i[d]
680 dout[didx] = (self._pyomoMHE.d[
681 d, self.Ts_ddict[self._pyomoMHE.horizon.l c

ast()]]())↪→

682 if not hasattr(self, 'd'):
683 self.d = dout
684 self.d = np.array(self.d)
685 else:
686 self.d = np.hstack((self.d, dout))
687 self.d = np.array(self.d)
688 else:
689 tmplist = []
690 for d in self.Disturbances:
691 tmplist.append(self._pyomoMHE.d0[d])
692 dout = np.array(tmplist)
693 return xout, dout
694 else:
695 return xout, xout2
696

697 def updateBounds(self, e, Lower=None, Upper=None):
698 if e not in self._estimated:
699 KeyError(e + ' not found in estimated objects')
700 if Lower is not None:
701 if (not isinstance(Lower, Number) or Lower != '-inf'):
702 KeyError('Must enter an integer or',
703 ' float for lower bound!')
704 self.Bounds[e]['Lower'] = float(Lower)
705 if hasattr(self, '_MHE__MHEInstance'):
706 if e in self.States:
707 self._mHEInstance._Xbounds[e, 'Lower'] = float(Lower)
708 else:
709 self._mHEInstance._Dbounds[e, 'Lower'] = float(Lower)
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710 if Upper is not None:
711 if (not isinstance(Upper, Number) or Upper != 'inf'):
712 KeyError('Must enter an integer or',
713 ' float for upper bound!')
714 self.Bounds[e]['Upper'] = Upper
715 if hasattr(self, '_MHE__MHEInstance'):
716 if e in self.States:
717 self._mHEInstance._Xbounds[e, 'Upper'] = float(Upper)
718 else:
719 self._mHEInstance._Dbounds[e, 'Upper'] = float(Upper)
720

721 def updateROCBounds(self, e, Lower=None, Upper=None):
722 if e not in self.States:
723 KeyError(e + ' not found in defined states')
724 if Lower is not None:
725 if (not isinstance(Lower, Number) or Lower != '-inf'):
726 KeyError('Must enter an integer or',
727 ' float for lower bound!')
728 self.dBounds[e]['Lower'] = Lower
729 if hasattr(self, '_MHE__MHEInstance'):
730 if e in self.States:
731 self._mHEInstance._dXbounds[e, 'Lower'] = float(Lower)
732 else:
733 self._mHEInstance._dDbounds[e, 'Lower'] = float(Lower)
734 if Upper is not None:
735 if (not isinstance(Upper, Number) or Upper != 'inf'):
736 KeyError('Must enter an integer or',
737 ' float for upper bound!')
738 self.dBounds[e]['Upper'] = Upper
739 if hasattr(self, '_MHE__MHEInstance'):
740 if e in self.States:
741 self._mHEInstance._dXbounds[e, 'Upper'] = float(Upper)
742 else:
743 self._mHEInstance._dDbounds[e, 'Upper'] = float(Upper)
744

745 @staticmethod
746 def _defineA(model, s1, s2):
747 i = model.states_i[s1]
748 j = model.states_i[s2]
749 return model.statespace['A'][i, j]
750

751 @staticmethod
752 def _defineB(model, s, inp):
753 i = model.states_i[s]
754 if inp in model.inputs_i:
755 j = model.inputs_i[inp]
756 elif inp in model.disturbances_i and inp not in model.inputs_i:
757 j = model.disturbances_i[inp] + len(model.inputs_i)
758 return model.statespace['B'][i, j]
759

760 @staticmethod
761 def _defineC(model, o, s):
762 i = model.outputs_i[o]
763 j = model.states_i[s]
764 return model.statespace['C'][i, j]
765

766 @staticmethod
767 def _defineD(model, o, i):
768 i = model.outputs_i[o]
769 j = model.inputs_i[i]
770 return model.statespace['D'][i, j]
771

772 @staticmethod
773 def _defineL(model, d1, d2):
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774 i = model.disturbances_i[d1]
775 j = model.disturbances_i[d2]
776 return model.weights['L'][i, j]
777

778 @staticmethod
779 def _defineP(model, e1, e2):
780 i = model.estimated_i[e1]
781 j = model.estimated_i[e2]
782 return model.weights['P'][i, j]
783

784 @staticmethod
785 def _defineR(model, o1, o2):
786 i = model.outputs_i[o1]
787 j = model.outputs_i[o2]
788 return model.weights['R'][i, j]
789

790 @staticmethod
791 def _defineQ(model, s1, s2):
792 if s1 in model.states_est_i.keys():
793 i = model.states_est_i[s1]
794 elif s1 in model.disturbances_i.keys():
795 i = model.disturbances_i[s1] + len(model.states_est_i.keys())
796 if s2 in model.states_est_i.keys():
797 j = model.states_est_i[s2]
798 elif s2 in model.disturbances_i.keys():
799 j = model.disturbances_i[s2] + len(model.states_est_i.keys())
800 return model.weights['Q'][i, j]
801

802 @staticmethod
803 def _defineXprev(model, s):
804 # print(model.x0[s])
805 return float(model.x0[s])
806

807 @staticmethod
808 def _defineU(model, inp, k):
809 i = model.inputs_i[inp]
810 return model.u[i, -model.m_mhe - 2 + k]
811

812 @staticmethod
813 def _defineUprev(model, d):
814 return float(model.u0[d])
815

816 @staticmethod
817 def _defineDprev(model, d):
818 return float(model.d0[d])
819

820 @staticmethod
821 def _defineBounds(model, e, ul):
822 return model.bounds[e][ul]
823

824 @staticmethod
825 def _assignBounds(model, e, i):
826 if e in model.states_i.keys():
827 return (model.Xbounds[e, 'Lower'], model.Xbounds[e, 'Upper'])
828 else:
829 return (model.Ibounds[e, 'Lower'], model.Ibounds[e, 'Upper'])
830

831 @staticmethod
832 def _definedBounds(model, e, ul):
833 return model.dbounds[e][ul]
834

835 @staticmethod
836 def _assigndBounds(model, e, i):
837 if e in model.states_i.keys():
838 return (model.dXbounds[e, 'Lower'], model.dXbounds[e, 'Upper'])
839 else:
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840 return (model.dIbounds[e, 'Lower'], model.dIbounds[e, 'Upper'])
841

842 @staticmethod
843 def _kalmanUpdateP(mhe):
844 # A, C, P, Q, R
845 A = mhe.A
846 C = mhe.C
847 P = mhe.P
848 Q = mhe.Q
849 R = mhe.R
850 ii = []
851 for e in mhe.Estimated:
852 i = mhe._pyomoMHE.states_est_i[e]
853 ii.append(i)
854 Cin = np.empty((C.shape[0], len(mhe.Estimated)))
855 Ain = np.empty((len(mhe.Estimated), len(mhe.Estimated)))
856 Qin = np.empty((len(mhe.Estimated), len(mhe.Estimated)))
857 for iidx, i in enumerate(ii):
858 Cin[0, i] = C[0, i]
859 for j in enumerate(ii):
860 Ain[i, j] = A[i, j]
861 Qin[i, j] = Q[i, j]
862 C = Cin
863 A = Ain
864 Q = Qin
865 Pkmkminv = P + C.T * inv(R) * C
866 P = inv(Q) - inv(Q) * A * inv(Pkmkminv +
867 A.T * inv(Q) * A) * A.T * inv(Q)
868 return P
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APPENDIX G

CGM DETECTION OF A PRESSURE INDUCED LOSS OF SENSITIVITY

G.1 DETECTION

A PILS is characterized by a rate of decrease in glucose levels that violate physiologic lim-

its [308]. Following an approach similar to that of Baysal et al.[308] at each new CGM

measurement the PILS detection algorithm calculates the rate of change in the CGM signal

g′ = CGMk−CGMk−1

tk−tk−1
. The algorithm then checks the following:

i k ≥ 3
ii g′ < g′c

iii
g′k
g′k−1

> g′ratio,c

These three checks ensure that (i) at least three CGM measurements are available, (ii) the

rate of glucose decrease as measured by CGM is greater than some critical physiologic value

and (iii), the relative change in magnitude of the rate of decrease between measurements is

increasing above some critical threshold. When all three criterion are met a pressure-induced

loss of sensitivity alarm is signaled. The criterion above are used to identify the start of a

PILS event, however it is also necessary to determine when or if the PILS event has ended

and the CGM has returned to normal functionality. Following the start of a PILS event, at

each new reading from the faulty CGM the algorithm checks for:

i g′ > g′c
ii CGMk,est ≤ CGMk

iii g′c,ratio ≤
g′k−i
g′k−1−i

[i = 0...NPILS]
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G.2 REMEDIATION

In the event of a detected pressure induced loss of sensitivity the moving horizon estimator

reverts to a single observer mode where the CGM not influenced by the PILS event is

used in the MHE observation vector in place of the CGM affected by pressure. Direct

replacement of the pressure-affected CGM in the MHE observation vector may lead to a

jump in glucose estimations and a corresponding “jump” in some combination of insulin

sensitivity, endogenous insulin production rate and endogenous glucose production rate. To

prevent such a discontinuity, a constant offest is added to the replacement CGM value such

that the deviation between the CGM signals before the pressure induced loss of sensitivity

is maintained. To signal the end of a PILS event the CGM measured glucose rate of change

needs to return to a physiologic regime (i). Additionally, the most recent CGM measured

glucose value must be greater than or equal to the glucose level estimated by the MHE

using the remaining functioning sensor (ii) or the relative magnitude of the rate of glucose

change between subsequent measurements must greater than some threshold value (g′c,ratio)

for a certain number of measurements (NPILS) (iii). If the PILS is not resolved within the

allotted time following the loss of a single sensor infusions are stopped and an alarm is

raised.
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