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Since Magnetic Resonance Imaging (MRI)’s introduction into the clinical imaging application 

arena, MRI has become one of the most promising non-invasive methods for evaluating and 

identifying body organs in normal and diseased conditions.  In the last two decades, a few research 

groups have been working on addressing the challenges to Ultra-High Field (UHF) imaging (≥ 7 

Tesla), such as magnetic field inhomogeneities and elevated Radiofrequency (RF) power 

absorption through technological developments.  In recent years, imaging at 7 Tesla has shown an 

inherent ability to improve scan time and anatomical resolution.   

To address the current challenges associated with UHF imaging, this thesis presents the 

development of innovative whole body and extremity RF coil systems for 7 Tesla imaging.  For 

body imaging, the transmit (Tx) coil is based on the innovative Tic-Tac-Toe (TTT) design, which 

possesses a load insensitive characteristic in terms of magnetic and electric field distributions.  7 

Tesla homogenous whole-body in-vivo imaging with and without a receive (Rx) only insert array 

is demonstrated showing excellent anatomical detail.   

As a part of upper extremity imaging, we have developed a transverse electromagnetic 

(TEM) coil as a transmitter in conjunction with an eight channel receive only insert for 7 Tesla 

hand/forearm imaging.  We have acquired a wide variety of different sequences and used post-
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processing methods to extract specific anatomy from high resolution scans (i.e. nerve and vessels), 

which in turn has helped in exploring new clinical applications, such as arm transplantation, and 

has added knowledge to existing ones.  

The developed RF coil systems and methodologies not only enhance the fundamental 

scientific knowledge of RF coil design approaches at high frequencies but they also add to the 

realm of clinical applications of UHF human imaging. 
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1.0 INTRODUCTION TO DISSERTATION 
 
 

1.1 ULTRA-HIGH FIELD MRI 
 

Since the advent of the use of Magnetic Resonance Imaging (MRI), there has been a 

constant push in the scientific community to develop and evaluate the diagnostic capabilities of 

higher field strengths [1-4].  Early ultrahigh field (UHF) developmental systems for human 

imaging include 8 tesla (T) at the Ohio State University in 1997 [5] and 7T at the University of 

Minnesota in 2000 [6], and each of these systems provided the  opportunity for scientists and 

engineers to develop MR hardware and supplemental technologies.  As 7T human imaging is 

currently on the cusp of clinical applications [7], there is an even greater push towards 

technological development as well as clinical application [8, 9]. 

 

MRI is a favored technique to evaluate soft tissues in various body organs in normal and 

diseased conditions [10, 11].  However, UHF MRI presents some challenges, such as like B1
+ 

inhomogeneities, RF power absorption, and technological developments.  In the last two decades, 

a few research groups (4T-9.4T) have been working on addressing the UHF imaging challenges 

[6, 12], ultimately discovering that UHF MRI could provide anatomical, functional and 

physiological information beyond just gains in higher resolution image quality (Signal-to-noise or 

SNR) [6].  In recent years, human head [6], prostate [13], cardiac [14], spine [15], kidney [16], 
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liver [17] and knee imaging [18] have been conducted by a handful of research groups at 7T and 

have demonstrated good potential in terms of technological development as well as addressing the 

clinical demands of identifying body organs in normal and diseased conditions.  In addition, 

various clinical imaging procedures at 7T employ T1 or T2 weighted imaging with the fat 

suppression method and/or breath-hold techniques (application specific repetition time (TR) and 

echo time (TE)).  This aids in improving the performance [13, 17, 19] of imaging on abdominal 

organs like the pancreas, kidney, liver and bile duct in terms of important parameters like scan 

time and motion artifacts.  

 

Until now, all major research efforts into UHF imaging have been focused on imaging the 

brain [20-22], somewhat successfully compared to imaging of the human torso/body and 

extremities (except the knee) [18, 23, 24].  As efforts to use UHF imaging for abdominal imaging 

haven’t been that successful yet, there lies a tremendous need for attention to UHF imaging of the 

body (kidney, liver, pancreatic) and extremity conditions [12].  Accordingly the goal of this 

dissertation is to develop a whole body and extremity radiofrequency (RF) system for ultra-high 

field (UHF) human magnetic resonance imaging (MRI).  For body imaging, the transmit (Tx) coil 

will be based on the innovative tic-tac-toe (TTT) design [20, 25-27], which possesses a load 

insensitive characteristic in terms of magnetic and electric field distributions.  The Tx coil will 

work in conjunction with a high density receive (Rx) only array that will boost SNR/CNR, increase 

spatial resolution and/or reduce scanning time.  For the upper extremity imaging, we will develop 

a transverse electromagnetic (TEM) coil as a transmitter in conjunction with an eight channel Rx 

only insert for hand/forearm imaging.  We will focus on optimizing the different sequences, not 

just the typical T1 and T2 weighted imaging protocols, using post-processing methods to extract 
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the specific anatomy from high resolution scans (i.e. nerve and vessels), which will help in 

exploring new clinical applications and adding knowledge to existing ones.   

 

Due to its intricate electromagnetic field behavior at an ultra-high field, 7T MRI is still an 

investigational/research-only device.  Our successful completion of the above mentioned goal (a 

successful whole body and upper extremity imaging systems) will expand the technological 

boundaries of UHF imaging.  With acceptable SAR values and homogeneous B1
+ fields, we will 

have a technology that can be used to detect finer anatomical details, early stage tumors and 

diseased conditions in the abdomen (e.g., first and second order distal arteries (compare to lower 

field strength)), cyst and solid tumors, non-contrast enhanced renal MR angiography, distal renal 

artery stenosis, and, in cases of extremity applications, various conditions like post-transplant 

evaluation, dystrophic lesions, hamartomas and rare neoplastic lesions, along with a variety of 

other pathological conditions [28].  Such a new system will not only enhance the fundamental 

scientific knowledge of an RF coil design approach at high frequency but will also add to the realm 

of clinical applications of UHF body and extremity  imaging.  

 

 

1.2 DISSERTATION OUTLINE 
 

Chapter 1 presents the introduction and thesis outline.  Chapter 2 outlines the challenges 

in using Ultra-high field MRI and motivations for developing it, the use of RF coils at UHF, the 

finite difference time domain (FDTD) method and the human model (simulation model).  
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Chapter 3 discusses the detailed in-vivo imaging of the whole body using a thirty-two 

channel Tx only coil with a sixteen channel receive only 7T body coil.  First, it describes the 

detailed development of the numerical modelling and experimental coil design.  Then it presents 

results of the benchtop evaluation of Scattering (S) parameters in simulation as well as 

experimentally.  Next, a characterization of an RF, including noise correlation, acceleration factor, 

and SNR with and without a receive only array, are presented.  Chapter 3 also details the coil 

performance established by B1
+ mapping in simulation using the FDTD method as well as 

experimentally on a 7T MRI scanner.  The phantom as well as in-vivo data are presented using a 

7T Siemens Magnetom scanner. 

 

Chapter 4 describes the development of a UHF RF coil for evaluating Upper Extremity 

Imaging applications. This Upper Extremity RF Coil is composed of a transverse electromagnetic 

transmit (TEM) coil and an eight channel receive-only array developed for 7T MR applications.  

This chapter lists the characterization of the RF coil system on bench measurements like scattering 

parameters evaluation and decoupling measurements.  Coil performance using B1
+ mapping is 

presented numerically as well as experimentally.  Results of finite difference time domain 

simulations to evaluate the B1
+ field distribution and SAR for the forearm region of the upper 

extremity are presented, as well as a comparison of the High Resolution 7T images 3T images. 

 

Chapter 5 details the findings of a clinical feasibility study of the 7T upper extremity RF 

coil system, in which  a wide range of sequences, including  a T1 weighted (T1W) volumetric 

interpolate breath-hold exam (VIBE), T2 weighted (T2W) double-echo steady state (DESS), 

susceptibility weighted imaging (SWI), time-of-flight (TOF), diffusion tensor imaging (DTI), and 
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diffusion spectrum imaging (DSI), were optimized and incorporated using a radiofrequency (RF) 

transmit and receive only system for the 7T upper extremity (UE) imaging.  In addition, results 

from a comparison of Siemen’s optimized protocol/sequences on a 3T scanner and those at 7T are 

presented.  DSI studio was utilized to analyze diffusion-weighted derived fractional anisotropy 

images to identify nerves.  MIPAV (Medical Image Processing, Analysis, and Visualization) was 

used to extract the forearm vasculature.   

 

Chapter 6 summarizes the findings and the significance of the work done in this 

dissertation.  It also outlines the ongoing as well as future work direction. 
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2.0 BACKGROUND 

 

 

2.1 ULTRA-HIGH FIELD (UHF) MRI CHALLENGES AND MOTIVATION FOR 

USE 

 

MRI, being a non-invasive modality, is the primary choice for addressing soft-tissue related 

challenges. UHF MRI has the inherent advantages of a higher static field (and therefore increased 

sensitivity), higher anatomical resolution, and reduced scan time, all of which can improve the 

throughput of clinical exams [29].  This higher static (Bo) field increase means a higher number of 

excited nuclei, which increases the SNR [30], chemical shift dispersion [31], susceptibility [32, 

33], and blood oxygenation-dependent contrast [34], all of which increases the diagnostic 

capability of MRI and widens its research applications.  However, translating clinical protocols 

from lower field imaging to UHF imaging faces many challenges [6, 12], including:  

(i) B1
+ field inhomogeneities:  At 300MHz (7T), one electrical wavelength is 

approximately ~12cm in tissue. Since the physical size of the abdomen is 4-6 times 

larger than one electrical wavelength (~12cm), complex non-uniformities appear, 

resulting in bright and dark spots in the region of interest (ROI) [35, 36] in the images.  
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(ii) Higher Radiofrequency (RF) power requirements and SAR:  7T UHF MRI requires 

higher power when compared to clinical scanners (≤3T) [6].  

(iii)  RF penetration capability:  The large heterogeneous abdominal anatomy leads to 

significant reduction in RF penetration, resulting in highly non-uniform images [35, 

36].  

(iv)  Additional parameters:   

a) Not only the organ/tissue’s electromagnetic signatures, structure, and 

location inside the body, but also the coil design, geometry, and its position with 

respect to the subject could have a significant effect on tissue loading, B1
+ field 

distribution, SAR and coil sensitivity [6, 12, 37-44].  

b) In the case of extremity applications like transplant and various hand 

surgeries, surgeons are challenged to find the precise anatomical locations of 

abnormal soft tissue.   

c) In certain conditions it is necessary to find how various tendons, ligaments, 

nerves, and muscles are interconnected to surrounding structures.  These issues 

present significant challenge to protocol optimization when the B1
+ field 

distribution inside the region of interest is not highly efficient. 

 

 Due to the intricate electromagnetic field behavior at ultra-high fields, 7T MRI has only 

been used as an investigational/research device so far. However, currently, efforts are being made 

to get FDA approval so that it may be used for clinical application.  This study is timely, then, in 

that the RF coil systems presented in this dissertation will expand the technological boundaries of 
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UHF imaging, so as to not only enhance the fundamental scientific knowledge of RF coil design 

approach at high frequency, but also add to the realm of clinical applications of UHF body imaging.   

 

 

2.2  RF COILS AT UHF 

 

      The first ever basic RF system, the coaxial cavity resonator, was built and tested by Pound, 

Torrey and Purcell [45, 46] after the end of World War II.  In 1970, Ginsberg [47] experimented 

with a new Saddle coil design, where the current distribution was ideal, but the design was riddled 

with B1
+ Inhomogeneity issues, a low filling factor, and a low upper frequency limit.  In 1977, 

Schneider [48] introduced two slotted quarter wavelength tubes with a surround shield, achieving 

a higher sensitivity resonator.  In 1979, Alderman and Grant [49] improved this same design by 

varying the length of elements for clinical spectroscopy applications.  In 1980, Ackerman et al. 

introduced a small surface coil to image the spine, which had the advantage of higher SNR for 

smaller regions of interest.  In 1984, Hayes introduced the Birdcage design [50], which allows for 

distributed capacitance and inductance. This feature allows increases in SNR and B1
+ field 

homogeneity compared to the above mentioned saddle and slotted tube resonator designs.  In 1997, 

Leifer [51] experimented with an elliptical BD coil to improve homogeneity and sensitivity further.  

In 1999, Bobroff and Mccarthy [52] proposed rectangular as well as elliptical slotted tube 

resonators as an alternative to noncylindrical BD coils, where inherent current pattern defines the 

performance of coils.  Also, some of the other  Birdcage designs (end capped birdcage design [53] 

in 1986 and half birdcage design [54] in 1990) added a physical ground plane to the coil. This 

helped to achieve a higher loading/filling factor [53, 54], which resulted in better imaging 
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outcomes.  As a next step in improving RF coil performance, a dielectric resonators design was 

introduced in 1992, in which low conductivity dielectric material is used to make hollow cylinders.  

In the case of the birdcage design, the coil is surrounded by dielectric cylinders with a layer of a 

high dielectric constant material to improve the B1
+ field homogeneity [55].   

 

The first conceptual TEM resonator design with an open-circuited coaxial transmission 

line of varying length was proposed by Röschmann [56] in 1988.  Simultaneously another patent 

was given to Bridges [57] for a design presenting TEM transmission elements arranged in a 

circular fashion and covered fully with a cylindrical copper shield.  Then Vaughn et al. utilized 

sixteen TEM Roschmann resonators to build a TEM Coil [58].  Compared to other coils, the TEM 

coil is characterized by improved homogeneity, a higher Q factor, multiple frequency of operations 

and a minimal decrease in SNR.  As a next step in improving the B1
+ field distribution the authors 

in [59, 60] demonstrated the use of a distributive type of capacitance that makes it easier to separate 

the resonant modes and improve the B1
+ field homogeneity over the region of interest.  In 2009 

Morich introduced a TEM design where the RF shield is part of coil itself, and SAR and B1
+ 

uniformity can be adjusted by varying the length of TEM elements.  Also, for this design the B1
+ 

field uniformity is more like that for an unshielded BD [61].  

 

Adriany et al., highlighting that with ultra-high field wavelength effects, there is a need to 

consider the coil current phase effects, created a design that consists of transmission line elements 

as basic building blocks. This lines act as a transceiver array at ultra-high fields.  This design 

incorporates an RF shield into a resonant structure, lessening radiation issues and improving coil 

performance.  Also, receive coil arrays can be added to these transmit arrays in close proximity 
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and still achieve good decoupling [62, 63].  Even after addressing radiation losses, the author 

mentioned that this design still had increased sample losses and difficulty in decoupling coil 

elements that needed to be managed [6, 64].  When comparing the novel adjustable transceiver 

coil to a fixed geometry transceiver array, clear gains in peripheral SNR, transmit efficiency, and, 

in particular, parallel imaging performance, were observed [65]. 

 

Other researchers have provided information about a few more distinctive design 

approaches.  In 2006 Wang C. et al. performed a comparative study showing that the birdcage coil 

had the best unloaded B1
+ field homogeneity, the TEM coil had the best loaded B1

+ field 

homogeneity and the lowest radiation loss, while the micro-strip coil was better in SAR and SNR 

at 7T than the other two designs [66].   In 2015, Li et al demonstrated a rotating RF Coil array 

(RRFCA) with uniform image reconstruction for the homogeneous phantom and a significant 

reduction in scan time for a homogeneous phantom at 7T.  However, when compared to a similar 

channel stationary coil array, the RRFCA can still reconstruct better images with higher quality at 

higher reduction factor.  This means that UHF MRI can benefit from the proposed rotation-

dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA [67].  In 

2015 [68] and 2016 [69] Raaijmakers et al. presented the application of a dipole antenna and a 

comparison with a loop array coil.  They showed that in comparison with loop coils, dipole 

antennas have a higher receive sensitivity/transmit efficiency from a given depth onwards.  Zhang 

et al. offer a feasibility study of a travelling wave system in body applications at 7T [70].  This 

study shows that traveling wave excitation still experiences inhomogeneity issues in whole body 

imaging at 7T but that parallel transmit approaches are potential solutions for solving the non-

uniformity related issues in the deep region of the torso at 7T [70]. 
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2.3 FINITE DIFFERENCE TIME DOMAIN (FDTD) 

 

2.3.1 Motivation for FDTD Modelling 

 

Moving from a low field to an ultra-high static (Bo) field, the ratio of the aligned nuclei in 

the human body becomes larger.  This results in a higher SNR, which in turn results in a higher 

quality image.  However on the technical side, the Larmor frequency rises linearly with an 

increasing Bo field, and the operational frequency for proton imaging rises to equal the Larmor 

frequency.  In turn the RF wavelength becomes smaller than the electrical dimensions of the coil 

and structures like the abdomen become bigger than or comparable in size to the operating 

wavelength.  For example, at 7T, the physical size of the abdomen is 4-6 times larger than one 

electrical wavelength (~12cm) at 297.2MHz, as compared to with a lower field (≤3T), where the 

biological subject is relatively smaller, electrically.  A circuit analysis cannot predict these coil 

currents behavior.  As the human body contains various body organs, including the abdomen, 

which are of a highly inhomogeneous structure with lossy materials, strong electromagnetic 

interactions are expected between the RF coil structure, the excitation source(s) and the various 

tissues.  At Ultra-high fields, this produces non-uniform images with bright and dark spots inside 

the human body.  Also, the interactions between the RF coil structure, excitation source(s), and 

various tissues can generate unwanted local RF hot spots inside the various abdominal organs.  

This creates the necessity for approaches like full wave electromagnetic methods for analyzing the 

UHF MRI coil problem. 
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2.3.2 FDTD Background 

 

For medical applications, electromagnetic simulations are extensively used in both 

academia and private industry.  For example, full wave methods are typically used for modelling 

microwave hyperthermia [71-73] in tumor applications to calculate the SAR of various tissues in 

communication (antenna, phones, power transmission lines) applications [74, 75].  Most of the 

MRI systems in the market are either 1.5T or lower field systems, so there has been no immediate 

need for full wave numerical approaches.  As a result, circuit-based approximations are appropriate 

for numerically modelling the RF coils.  However, with the introduction of ultra-high fields (4T 

[76, 77], 7T [6], 8T [78]) in recent times, the need for full-wave methods has become much more 

urgent (as explained in section 2.3.1) in order to simulate, design and evaluate the RF coils using 

an anatomically detailed human model.  It is also predicted that RF coil design, optimization, and 

evaluation will depend heavily on numerical approaches [79-81].  

 

The FDTD method has been used in calculating electromagnetic field interaction between 

human biological tissues and radiating objects such as surface MRI RF coils [82, 83].  Significant 

effort has been devoted to modeling the electrical characteristics of RF whole body and upper 

extremity coils, which is discussed in detail in chapters 3-5.   

 

Jin et al [84] utilized the fast Fourier transform method to evaluate the electromagnetic 

fields inside a birdcage coil in conjunction with a human head model.  [85, 86] present the details 

of FDTD modelling of a birdcage coil loaded with a human head model.  These studies mention 

that RF coil functions as an azimuthal transmission line at all the frequencies of interest [60, 84-
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88].  For example, RF evaluation was done by determining the coil current distribution without 

the head being present using the method of moments [86].  Method of moments was utilized to 

predict the currents in the coil without the presence of human head model or utilized voltage 

sources instead of lumped capacitors with varied sinusoidal magnitude [85].  In turn, the coil 

currents distribution on the birdcage elements are required to have the following sinusoidal 

distribution which results in a TEM mode of operation: 

𝐼𝐼𝑖𝑖 =  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶
(𝑖𝑖−1)∗П

𝑁𝑁
               (1.1)                   

where Ii is the current in the ith element, Imax is the maximum current and N is the 

number of current elements. 

 

Since there is electromagnetic coupling between the head model and coil, these 

assumptions are not completely valid [89, 90].  At 1.5T, these resulting inaccuracies in field 

distribution calculations may not be too significant but it is much more prone to be invalid at higher 

static Bo frequencies.  Even when the coil is empty, there are many cases where the ideal current 

distribution is not present [90, 91].  When neglecting the effect of the head model on the coil, 

current distribution can be a major source of error;  the most accurate simulations present coil and 

object model as a single system [86].  It is considered a difficult problem [86]; FDTD modelling 

work is considered in more detail in the chapters of this dissertation.  

 

2.3.3 FDTD Method 

 

In 1966 [92] Kane Yee introduced Finite time difference time domain methods to provide 

a direct solution to Maxwell’s time dependent curl equations.  This technique replaces the spatial 
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and time domain derivatives of Maxwell’s equations with finite difference approximations [93].  

A second order accurate central difference approximations is used in place of the differential 

operators of the curl equations [94].  Maxwell’s equations [95] for isotropic, source free and 

homogeneous media are given as:  

        

 

 

Where E (V/m) is electric field, H (A/m) is magnetic field, D(C/m2) is electric field density, B 

(w/m2) is magnetic flux density, and J (A/m2) is electric current density.  M (V/m2) is equivalent 

magnetic current density.  σm (Ω/m) and σe (S/m) are the magnetic and electric conductivities, 

respectively.  The dielectric parameters, permeability and permittivity are given by μ (H/m) and ε 

(F/m), while ρe (C/m3) and ρe (Wb/m3) are the electric and magnetic charge densities, respectively. 

These rectangular coordinates in three-dimensional structures are as:  

 

 

 

 

 

𝜇𝜇 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑥𝑥 +  𝜎𝜎 ∗ 𝐻𝐻𝑥𝑥)       (1.6)  

𝜇𝜇 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑦𝑦 +  𝜎𝜎 ∗ 𝐻𝐻𝑦𝑦)       (1.7)  
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Where H and E are both in the x, y and z directions.  The space and time points for any 

function v were introduced by Yee [55] with ∆x, ∆y and ∆z components, with the time component 

being ∆t.  I, j, k, and m are integers.  Central difference expressions obtained using Taylor’s 

theorem for the space for the x direction and the time derivatives for function v are shown below: 

 

 

 

 

 

 

 

𝜀𝜀 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 − (𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑧𝑧 +  𝜎𝜎𝐸𝐸𝑧𝑧)                      (2.1) 

𝜇𝜇 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

 − (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑧𝑧 +  𝜎𝜎 ∗ 𝐻𝐻𝑧𝑧)      (1.8)  

𝜀𝜀 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐻𝐻𝑦𝑦
𝜕𝜕𝜕𝜕

 − (𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑥𝑥 +  𝜎𝜎𝐸𝐸𝑥𝑥)            (1.9)  

𝜀𝜀 𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝜕𝜕

 − 𝜕𝜕𝐻𝐻𝑧𝑧
𝜕𝜕𝜕𝜕

 − (𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑦𝑦 +  𝜎𝜎𝐸𝐸𝑦𝑦)             (2.0)  

(𝑖𝑖∆𝑥𝑥, 𝑖𝑖∆𝑦𝑦,𝑘𝑘∆𝑧𝑧,𝑚𝑚∆𝑡𝑡) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣𝑚𝑚+1/2(𝑖𝑖,𝑗𝑗,𝑘𝑘) −𝑣𝑣𝑚𝑚+1/2(𝑖𝑖,𝑗𝑗,𝑘𝑘)
∆𝑡𝑡

+ 𝑂𝑂((∆𝑡𝑡)2)     (2.3)  

(𝑖𝑖∆𝑥𝑥, 𝑖𝑖∆𝑦𝑦,𝑘𝑘∆𝑧𝑧,𝑛𝑛∆𝑡𝑡) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣𝑛𝑛(𝑖𝑖+1/2,𝑗𝑗,𝑘𝑘) −𝑣𝑣𝑛𝑛(𝑖𝑖−1/2,𝑗𝑗,𝑘𝑘)
∆𝑥𝑥

+ 𝑂𝑂((∆𝑥𝑥)2)     (2.2)  
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In order to achieve second order accuracy, the error terms O((∆x)2) and O((∆t)2) can be 

dropped, so the FDTD equations become: 
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For electric field components, the surrounding fields are magnetic field components.  And 

for magnetic components, the surrounding fields are electric field components.  Based on the 

minimum wavelength of the problem, a spatial step is chosen (good choice is λmin/20).  The 

criteria for selecting the time step ∆𝑡𝑡 is based on Courant-Friedrichs stability criterion [96].  It is 

based on the time and space eigenvalue problem of Maxwell’s time-dependent equations.  

∆𝑡𝑡 ≤  
1

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉� 1
∆𝑥𝑥2+∆𝑦𝑦2 + ∆𝑧𝑧2

 

                  (2.10) 

Where, Vmax = 1/ is the maximum wave speed inside the medium. 

 

A 3D Yee cell is shown in below, with electric and magnetic field vector components with 

an (I, j, k) position. 
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Fig 2.1 A 3D YEE cell. 
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Also, the spatial step is directly proportional to the minimum wavelength of the problem 

(maximum size of 1/10 of a wavelength).  This is only where accuracy is surpassed by wavelength, 

the domain is multiple wavelengths and each element in the domain can be represented by at least 

single spatial step.  In case of lossless, spatial step (∆x =∆y = ∆z) is: 

                                    (2.11) 

Where f (Hz) is the frequency of operation.  λ (m) is the minimum wavelength. µ (max) and σ 

(max) are the maximum relative permeability and permittivity, respectively. 

 

Figure 2.1 shows the Electric and magnetic field components of the Yee cell.  At the center 

of every edge on the block, electric field values are sampled.  The electric field vector directions 

are the same as the directions of these edges.  At the center of each block face, the magnetic field 

value is sampled.  The magnetic field vector directions are perpendicular to each of these block 

faces.    

 

2.3.4 The Human Model 

 

The 1mm duke male model from a visible human [97] project (age: 34, height: 1.77m, 

weight: 72.4kg, bmi: 23.1 kg/m2) was used in this dissertation with a converted resolution of 

1.58x1.58x1.58mm3.  It includes 77 various tissue types.  Coil positioning with respect to the 

model was kept as close as possible to a real experimental setup.  
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3.0 DESIGN, DEVELOPMENT AND EVALUATION OF WHOLE BODY 

RADIOFREQUENCY TRANSMIT ONLY AND RECEIVE ONLY INSERT ARRAY AT 

7T. 

 

 

3.1     INTRODUCTION 

 

Since its introduction, researchers have been pushing for clinical applications of 7T in various 

realms of the human body.  The National Cancer Society’s (NCI) 2008-2012 report presented 

detailed statistics on abdominal organs (liver, kidney, bladder, prostate, colon and others) with 

cancer [98, 99].  The kidney, pancreas, liver and bile duct are the major abdominal organs where 

cancer related deaths  have been reported [98] [99].  MRI, which is growing as a diagnostic and 

research tool, is the primary non-invasive method, especially for addressing soft tissue related 

challenges [10, 11] as mentioned earlier.  UHF MRI has distinct advantages over lower field MRI, 

including a higher SNR [6], higher anatomical resolution and reduced exam time when compared 

to the existing/commercial clinical scanners (≤3T) in  hospitals.  However, UHF MRI still 

experiences challenges [12]  such as inhomogeneities in the B1
+ field (the circularly polarized 

component of the transverse magnetic field that excites the spins) and higher RF power deposition 

(local and global SAR), that require the need for RF development.  Until now, all of the major 
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efforts have been focused on imaging the brain [20-22] with somewhat successful results, with 

little research being devoted to the imaging of the human torso/body and extremities (except the 

knee [18, 23, 24]).  This leaves a tremendous need for attention towards the body (kidney, liver, 

pancreatic) and extremity conditions [12].  

 

Few research groups have developed body coils at 3T and 7T.  Especially given the 

technical difficulty and challenges presented at high field (3T) and ultra-high fields (7T and 

higher), there are few research groups who have attempted various distinctive body coil designs at 

3T and 7T that demonstrate the potential for clinical imaging.  Specifically, Vernickel et al [44] 

show an eight-channel 3T transmit/receive body coil design at 3T;  Wu et al [100] discussed the 

performance of various RF coil designs, including a birdcage, single-ring stripline, and multi-ring 

stripline array; and Tian et al [101] present seven different TEM array configurations and compare 

them with a high pass birdcage coil and two loop array configurations for optimal body coils.  

When compared with the birdcage coil, all designs improved the RF field homogeneity, with 3D 

arrays performing better than 2D arrays for the same type of array elements.  TEM arrays provided 

better B1
+ homogeneity, and less peak 10gram SAR than loop arrays.  

 

 At 7T, Raaijmakers et al [68, 69] presented the application of a dipole antenna and 

compares it with a loop array coil in body imaging.  When compared to loop coils, dipole antennas 

were shown to have higher receive sensitivity/transmit efficiency from a given depth onwards.  As 

the Larmor frequency increased, the transition depth decreased.  For a single loop coil, the B1
+ 

over √SARmax ratio was more favorable than that of single dipole antennas, for any depth and for 

any frequency.  However, when operating in an array, this relationship is not straightforward and 
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a loop coil with geometric overlap generates higher SAR levels.  Vaughan et al [12, 21] showed 

the application of whole body imaging using a multichannel TEM transceiver coil at 7T UHF MRI, 

where homogeneity and signal intensity was improved with B1
+ shimming for imaging local 

regions of interest.  Abraham et al [102] demonstrated homogenous whole-slice (demonstrated in 

three axial, sagittal, and coronal slices) and 3D localized (demonstrated in the heart) excitations.  

Orzada et al [103] showed application of TIAMO to reduce inhomogeneity in abdominal/body 

imaging application.  Hezel et al [104] showed the potential for clinical imaging while listing 

technical challenges like B0 variations, T2* dephasing, and necessity of a larger chemical shift to 

carry out successful abdominal fat/water imaging at 7T UHF.  Snyder et al [105] compared eight- 

and sixteen-channel transceive stripline/TEM body arrays at 7T (297 MHz) both in simulation and 

experiment.  Zhang et al [70] demonstrated the application of a travelling wave system and 

compared it to a TEM body coil at 7T. 

 

As mentioned above, the complex electromagnetic field behavior at ultra-high fields (7T 

and beyond) creates many practical challenges [12] like B1
+ field inhomogeneities, where the 

wavelength of interest becomes shorter or comparable to the region being imaged.  In the case of 

the abdomen, the wavelength is 4-6 times shorter (approx. 12cm) than the body at 300MHz.  This 

creates non-uniform wave behavior in ROI, resulting in bright and dark spots 

(constructive/destructive interference).  Another practical challenge of UHF imaging is the 

significantly high RF power requirement, and therefore SAR, when compared to that at lower field 

strength [6].  Another significant issue is the lack of RF penetration inside the body tissue [35, 36].  

Therefore, not only the tissues’ electromagnetic signature and their location inside the body, but 

also the coil design, geometry, and position with respect to the subject can have a significant effect 
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on tissue loading, B1
+ field distribution, SAR, RF power requirements and coil sensitivity [12, 21, 

37-44].   

 

Diverse RF probe designs as well as other MRI approaches have been tested as MR 

research has transitioned from low field to high field MRI applications.  Moving fundamentally 

from lumped element (R, L, and C) and transmission line theories to full wave Maxwellian 

electromagnetic theory, the Tic Tac Toe (TTT) coil [26] presented here is a distinctive design to 

be used for 7T UHF body imaging in combination with a decoupled receive-only-insert to reduce 

noise, and thus provide excellent SNR [106].  This TTT design has never been applied in body 

imaging before.  However, there are few research groups that have published work regarding UHF 

MRI in different parts of the human body [12, 14-17, 19].   

 

This work demonstrates an in-house developed and numerically simulated 32CH RF Tx 

body coil design.  Specifically, a thirty-two channel, 8 X 2 X 2 cross-pole [107-109] 7T RF array 

for the body region is presented in this study.  While it has the capability of independently driven 

excitation sources, in this work, we used different phases and identical amplitudes to create a 

pseudo circularly polarized field.  Experimental and numerical studies were performed and 

quantitatively analyzed to evaluate the RF body coil.  The developed RF array inherently shows 

high couplings (S13 = ~-3 to -4dB and S12 = -8 to -9dB) between the excitation elements.  Thus, 

B1
+ field intensity supplied (by the system) power is typically lower than the traditional body RF 

coils; however, the array exhibits more homogeneous and consistent B1
+ field distributions in the 

body [25].   
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TTT RF coil designs are inherently highly coupled, having the higher RF transmission 

properties associated with highly coupled coils, which property enables them to negate the 

aforementioned loading effects (ultra-high field electromagnetic effects).  This helps overcome the 

loading dependency [20, 25, 26], which means no tuning, matching or RF shimming from subject 

to subject is required.  The complex interaction (loading) between the biological tissue and the coil 

has been problematic due to the variations in electromagnetic properties as well as geometrical 

properties [37-39, 42, 43].  The higher RF transmission properties (highly coupled coils) of this 

coil design, make it load-insensitive [20, 25, 26].  This helps in implementing a circularly polarized 

field or other shimming methodologies without the need for measuring the transmission field (B1
+).  

 

Our aim is to create a TTT coil in combination with a multi-channel receive-only insert 

array for whole body (various abdominal organs) imaging at 7T UHF MRI.  FDTD calculations 

of the coil properties will be presented.  T1 weighted sequences with and without the receive-only 

insert array will be presented. 

 

 

3.2  MATERIALS AND METHOD 

 

 

3.2.1 FDTD Modelling 

 

As the operational wavelength comes close to the RF coil dimensions and electrical size of 

the load, full wave analysis becomes important to find out the interaction between body and RF 
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coil, which in turn helps in designing a more uniform RF coil with lower and consistent local and 

global SAR [110, 111].  Figure 3.1A shows a detailed coil model with a spherical body phantom 

model.  Figure 1B shows the excitation ports.  Figure 3.1C shows the human model within the coil 

model.  A detailed simulation method mentioned in Ibrahim et al [112, 113] was followed; the TTT 

Tx coil is simulated as shown in Figures 3.1A, 3.1C with the model (spherical body phantom 

model/visible human model) as a single system [39, 40] using the FDTD method.  First, the coil 

geometry, including the shield, coil excitation ports, coil elements, and tuning/matching rods, was 

accurately modeled including the spherical body phantom model/visible human model using a 

mesh created by MATLAB (MATHWORKS, MA).  This resulted in a three dimensional grid 

structure of 331x311x228 cells in the case of the coil with spherical body phantom model and 

296x296x746 cells in the case of the coil with the visible human model, as shown in Figure 3.1A, 

and 3.1C, respectively.   

 

Constitutive electromagnetic properties such as electric conductivity (σ), dielectric 

constant (ε), magnetic conductivity, were assigned to each element, such as acrylic, phantom 

material, the biological tissues air, at the resonance frequency of 7T UHF MRI (297.2 MHz) as 

per the Yee cell [92].  The copper elements and shields were modeled as perfect electrical 

conductors (PEC), with the tangential E field component set to zero.  A three dimensional grid 

model with spatial resolution of 1/16 of an inch (1.58mm) and temporal resolution of 6 x10(-12) sec 

were used to meet the Courants stability criteria.  The computational domain was surrounded by 

32 layers of perfectly matched layers to reduce the effects of the reflected electromagnetic field 

(to mimic the experimental environment) as per Beringer [114, 115].  Once the required copper 

geometry was created, it was fed into in-house developed second order accurate central difference 
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time domain equations (Maxwell’s equations), which calculated the E field and H field on the 3D 

Yee cell, at spatial intervals of (Δ/2) and temporal interval of (Δt/2) in a leapfrog manner.  The 

value of 𝐻𝐻(𝑥𝑥,𝑦𝑦,𝑧𝑧)(/𝐸𝐸(𝑥𝑥,𝑦𝑦,𝑧𝑧)) at a particular position can be calculated from its previous value of 

 𝐸𝐸(𝑥𝑥,𝑦𝑦,𝑧𝑧)(/𝐻𝐻(𝑥𝑥,𝑦𝑦,𝑧𝑧)) at the adjacent grid location.  As the outcome of the simulation, we not only 

could calculate the currents on the coil and the reflection coefficient (S11), but also the B1
+ 

(magnetic field) distribution and SAR. 

 

The original 1mm Duke male model [116] (age: 34, height: 1.74 m, weight: 70 kg, 77 

different types of tissues, body mass index (bmi): 23.1 kg/m2) was rescaled to a resolution of 

1.58x1.58x1.58 mm3.  It was located inside the RF coil to resemble the experimental environment 

in-vivo. 

 

Here, the deposited energy in tissue is given by the product of induced current density and 

induced electric field E (P = J*E = 𝜎𝜎𝐸𝐸2).  In addition, peak SAR (W/kg) was calculated using the 

following equation and was determined for 10 gram pixel average: 

                       𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑗𝑗,𝑘𝑘) =  1
2
�
𝜎𝜎(𝑖𝑖,𝑗𝑗,𝑘𝑘)�𝐸𝐸𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)

2 +𝐸𝐸𝑦𝑦(𝑖𝑖,𝑗𝑗,𝑘𝑘)
2 +𝐸𝐸𝑧𝑧(𝑖𝑖,𝑗𝑗,𝑘𝑘)

2 �

𝜌𝜌(𝑖𝑖,𝑗𝑗,𝑘𝑘)
�            (1.1) 

Where Ex, Ey and Ez are the E field magnitude in the tissue in V/m, sigma (𝜎𝜎) is the 

conductivity in siemens/m and rho (𝜌𝜌) is the density of tissues in kg/m3 in the sample;  i, j, and k 

represent locations in the Cartesian coordinate System. 

 

 

 



 
 

35 
 

 

 

 

Figure 3.1 Coil simulation models (with phantom and human  

body model). A. FDTD model of 32CH TTT Tx body coil with spherical body phantom 

model (ports shown by green circles); B. thirty-two channel TTT Tx body coil showing the 

locations of the excitation ports (for simplification, only four port locations are shown since 

the remaining sides of the coil have a similar configuration); C. FDTD model of thirty-two 

channel TTT Tx body coil with the anatomically detailed Duke human model. 

 

 

3.2.2 Transmit and Receive RF Array Design 

 

3.2.2.1     Thirty-Two Channel Transmit Array Coil:  A thirty-two channel Tx body coil 

containing eight decoupled sets of highly couple 4-channel arrays was constructed in-house, 

described as a TTT of coaxial transverse electromagnetic (TEM) elements.  Each set is put in a 2 
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x 2 arrangement, forming a tic-tac-toe configuration (Figure 1B).  These square struts have inner 

copper rods inside the outer strut covered with copper sheet (thickness = 8 um).  The inner and 

outer struts are separated by a dielectric sleeve (Teflon filling), as shown by the arrows in the 

schematics in Figure 3.2A.  In association with a conductive cylinder, this creates a transmission 

line, with the struts as inner conductors and the cavity walls as outer conductor.  Also, the inner 

struts are electrically connected to the RF shield while the outer struts are electrically isolated from 

end shield plates by a small gap (0.5 inch).   

 

The inner struts have a gap in the center, and they can be adjusted by pulling them in and 

out of the cavity resonator, ultimately changing the capacitance between the inner and outer 

conductor in order to tune the 2 x 2 side to 297.2 MHz.  The inner rod is electrically connected to 

the surrounding RF copper shield.  The outer struts are electrically isolated from the inner struts 

and the RF shield.  Each conjoined place where two coil sides come in contact is covered with 

adhesive copper tape to decrease the radiation loss and increase RF efficiency [117] (green dotted 

line in Figures 1A, 2B).  All the lengths of the 32 inner rods were numerically calculated.  The 

actual rods were then manually inserted and adjusted to achieve precise tuning and matching on 

each 2 x 2 coil side.  All thirty-two coil elements were tuned and matched to 297.2 MHz and the 

S matrix was measured using a vector network analyzer (HP, USA).   

 

The schematics of each of the coil sides are shown in Figure 3.2A, including all four 

excitation sources marked with yellow circles.  The coil design parameters are listed in Table 3.1.  

Figure 3.2B shows how eight of the coils form an octagon-shaped thirty-two channel TTT RF body 

(Figure 3.1A, 3.1B, 3.2B) coil [118].  All eight coil sides were put together in the octagon shape 
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using two circular rings (front and back).  Each circular ring was further divided into a semi-circle 

arrangement.  As shown in Figure 3.2B, the whole body coil can open and close using two latches 

(Black latches) on either side in the front or back.  Since each coil side has an excitation port in 

the same location, when put together they form four levels with eight excitation ports on each 

level, L1 to L4, as shown in Figure 3.2B.  Figure 3.2C shows the phase-only arrangement on all 

four levels.  Each level has 8 excitation ports, with a 45° phase difference between each adjacent 

two ports, starting from 0° to 360° in a clockwise direction.  There is a 180° difference between 

each level, as shown in Figure 3.2C.  All the workbench measurements were performed using a 

calibrated vector network analyzer (Agilent E5062A, USA) together with a multiport S parameter 

test set (87050EA, Agilent, CA USA) for all eight sides/panels, as described in a later section.  

Eight transmit channels from a pTx plug were connected to eight 1:4 Wilkinson power dividers 

(splitter) and constant phase shifters in order to produce a pseudo circularly polarized (CP) mode.  

All 32 transmit channels were arranged in a quadrature excitation fashion on all four levels of the 

transmit array.  Looking in the Bo direction, the phases of the voltages were rotating clockwise, 

with increments of 45° on each level and 180° difference between different levels, as shown in 

Figure 2C.  There are four Z levels (L) in the coil, as shown in Figure 3.2B.  Referred to as L1 to 

L4, each level contains eight Tx channels.    
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Figure 3.2 Transmit only array RF system. A. Single side showing coil design parameters 

and different coil ports; B. Constructed 32CH TTT body coil showing all four levels L1 to 

L4 in the Bo direction, and potential receive insert location (blue dotted lines); C. Phase 

arrangement between the coil ports.  
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Table 3.1 Transmit Coil Design Parameters 

 

 

Coil design parameters for one single side 

Element height 1.5 inch 

Center of strut to endcap 1 inch 

Strut cross-section width 0.5 inch 

Strut cross-section length 0.5 inch 

Shield to copper 0.125 inch 

Strut length 5.25 inch 

Strut width 5.25 inch 

Center gap width 2 inch 
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3.2.2.2     Sixteen Channel Receive Only Array:  A sixteen channel receive only array was 

developed to fit inside the Tx coil on a flexible acrylic frame (McMaster Carr, Elmhurst, IL) with 

flexible Teflon sheeting (McMaster Carr, Elmhurst, IL) that can bend at the middle of each 

element, as shown in Figure 3.3.  Each element is 10x10 cm2 in size.  Here, the coil array contains 

two rows of eight loop Rx only coils, as shown in Figure 3.3.  The coil array contains sixteen 

inductively decoupled surface loops (orthogonal to Bo direction) evenly distributed.  A network 

analyzer was used to measure the performance of the Rx only coil.  Overlapping distance was 

adjusted manually (Figure 3.3) to reduce the crosstalk induced by neighboring loops, whereas the 

preamplifier decoupling method was used to tackle the mutual inductance (adding -15 dB 

additional isolation) caused by next neighboring/non-adjacent loops [44].  The Rx coil is 

positioned in between the subject and Tx coil (Figure 3.3B).  Each loop contains two passive 

detuning circuits, which are used to decouple the receive loops during transmit operation, making 

it basically an L-C tuned circuit with bidirectional PIN diodes that turns ON and OFF as a function 

of radio frequency.  In summary, the TTT Tx coil can operate as a transmit and receive coil, 

whereas the receive-only-insert can only acquire the signal from the ROI being imaged.  The noise 

correlation measurement was evaluated to precisely measure the decoupling performance, as 

discussed a later in section.  Detuning of the Tx coils during the receive mode was guaranteed by 

the L-C tank circuits, which act as a band stop filter on all 4 sides for each panel.  The Tx detuning 

was measured by checking the S parameters (S11, S12) using active bias applied through the power 

supply.  
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Figure 3.3 A. Sixteen channel receive only insert array; B. TTT transmit only coil and 

receive only insert coil system. 

 

 

 

3.2.2.3     MR Imaging Experiments:  All MR imaging studies were performed on a 7T human 

scanner (Magnetom: Siemens Medical Systems, Erlangen, Germany) approved by the institutional 

Internal Review Board.  Four normal healthy volunteers were recruited and scanned.   
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3.2.2.4     MR Sequence Parameters:  A 2D B1
+ field map was acquired with a modified turbo 

flash (TFL) sequence [119].  B1
+ 2D Turbo flash Sequence: Slice Thickness: 3mm, TR/TE: 

13300/3.13, No. of Avg: 1, No. of phase encoding steps: 96, Pixel bandwidth: 491, FA: 83, TA: 

00.56 min, FoV: 300*300, Resolution: 0.320 pixels per mm, Voxels size: 3.1x3.1x16.50 mm.   

G factor: TR/TE: 10/2 ms, FA: 10o, Acquisition Matrix: 128 x 128, FOV: 332 x 332, Voxel size: 

2.6 x 2.6 x 2.6 mm3, Slice thickness: 2.59 mm. 

T1 VIBE: TR/TE: 5/1.48 ms, FA: 26.5o, Pixel bandwidth: 488, FOV: 226x330 mm2, Acquisition 

matrix: 176 x 256, Voxel size: 1.3 x 1.3 x 3 mm3 and slice thickness: 3 mm.   

 

3.2.2.5  Experimental and simulation calculations:  Intensity values (calculated and 

experimentally measured values) were analyzed using MRIcron [120].  Mean B1
+, B1

+ in uT/V, 

and B1
+ in uT /1W input powers in the experiment and simulations were calculated/measured. 

Total voltage was also calculated/measured in order to achieve 180° flip angle with 1 ms pulse 

width.  In-vivo and simulated B1
+ slices of the body and the spherical body phantom were loaded 

into ImageJ [121], then mean B1
+ intensities were measured in each slice in the region of interest 

(liver tissue).  

 

For simulations and experiments:  

Mean 𝐵𝐵1+ =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

   (1.2) 

 

To have 180° flip angle with 1 ms pulse width:   

𝛼𝛼 = 𝛾𝛾 ∗ 𝐵𝐵1 ∗ 𝑡𝑡𝑝𝑝     (1.3) 
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𝜋𝜋    =  267.513𝐸𝐸6 ∗ 𝐵𝐵1+ ∗
1

1000
    

𝐵𝐵1+ = 11.744𝜇𝜇𝜇𝜇 

 

In order to calculate the B1
+ field in the 𝜇𝜇𝜇𝜇/𝑉𝑉 in simulations, Vsim is obtained from FFT pulse 

amplitude at 297 MHz, as calculated by FDTD simulation. 

Scaling to 𝜇𝜇𝜇𝜇/ :    

𝐵𝐵1+ = Mean 𝐵𝐵1+∗𝜇𝜇0
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉∗√2 

    (1.4) 

 

In order to calculate B1
+ in 𝜇𝜇𝜇𝜇/𝑉𝑉 in the 7T experiments, voltage per PTX channel was given by 

the equation below:         

 

  

        

       (1.5)  

Since there are eight transmit channels in our PTX configuration,           

             

            (1.6)  

 

The above calculated total voltage can achieve a resultant FA based on mean B1
+ intensity.  In 

order to calculate the total voltage required to achieve 180° (11.7 uT): 

 

             (1.7) 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗
𝐹𝐹𝐹𝐹

180 
∗

1000
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 2√2 
    

V exp = Total Voltage * 180 / Resultant FA 
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Scaling to 𝜇𝜇𝜇𝜇/𝑉𝑉:          

  

             

            (1.8) 

 

For simulation and experiments: 

 1W input power represents 10V input as shown below:  

1𝑊𝑊 = 𝑉𝑉2

2𝑍𝑍
 → 𝑉𝑉 = √100 = 10𝑉𝑉   

         (1.9) 

                   

3.2.2.6     Geometry (G) Factor: A G factor map (G-map) was acquired to evaluate the feasibility 

of parallel MRI in a rectangular phantom similar to the shape of the human abdomen/body.  A 3D 

Gradient echo sequence was utilized with an acceleration factor (R) from 1 to 4 in the anterior to 

posterior (AP) direction in a transverse plane, right to left in the coronal plane and head to feet in 

the sagittal plane.  The G-map was calculated using the following equation: 

 

                        𝐺𝐺 −𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑦𝑦,𝑧𝑧) =  
𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑧𝑧)𝑅𝑅=1

√𝑅𝑅∗𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠,𝑦𝑦,𝑧𝑧)(𝑅𝑅=1,2,3,4)
        

 

(1.10) 

𝐵𝐵1+ =
Mean 𝐵𝐵1+ ∗ 𝜇𝜇0
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ √2 
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where SNR (x,y,z) is the SNR map of the MR images; and x, y, and z represent locations in the 

Cartesian coordinate system.  

 

 

3.3     RESULTS 

 

 

3.3.1 RF Coil Evaluation 

 

3.3.1.1     Scattering Parameters:  The S parameters were measured on the spherical body 

phantom using a vector network analyzer (Agilent, USA) and numerically calculated using an in-

house FDTD package.  The S11 mean of all array channels was experimentally measured 

approximately ~ -14dB in experiment (A/B/D/E) and ~18dB in simulation (G/H/J/K).  Also, the 

TTT coil sides were highly coupled between opposite elements, as seen in the Figure 3.4C/F/I/L.  

Figure 3.4 shows the simulated compared to bench measured S parameters for a single coil side 

(2x2 as seen in Figure 3.2A) out of the eight coil sides.  The results show good agreement between 

the experimental and simulated data. 
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Figure 3.4 Experiments and Simulation scattering parameter comparison. 

A/B/D/E (Experiment) and G/H/J/K (Simulation): Reflection coefficient of Port 13, 14, 15 

and 16, respectively; C/F (Experiment) and I/L (Simulation): Transmission coefficient of 

Port 13/15 and 14/16, respectively.  
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3.3.1.2     Coupling Matrix for One Coil Side:  All thirty-two ports of the Tx coil were tuned and 

matched to 50 ohms.  When loaded with different human subjects, these scattering matrix values 

changed very insignificantly due to the inherent highly coupled behavior.  A coupling matrix for 

a single element out of all eight elements is presented in Figure 3.5 (TX coil).  

 

 

 

 

 

 

Figure 3.5 Coupling Matrix for a single coil side (2x2) out of the 8 sides.  
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3.3.1.3     B1+ Field Distribution: Spherical Body Phantom:  Figure 3.6 shows the B1
+ field maps 

obtained from experiment and simulation shown in slices across the spherical body phantom.  

Three slices were taken at three different locations, as shown in group 1, 2, 3 and 4, being sagittal, 

axial and coronal, respectively, in Figure 3.6.  The numerical and experimental results are in good 

agreement, as shown below.  The relative intensity values are marked on the spherical body 

phantom simulations as well as the experiments at comparative locations where the intensity was 

scaled from 0 to 1.  The four locations are marked with yellow arrows in Figure 3.6.  The relative 

intensity values of 0.50, 0.96, 1 and 0.42 for experiments show excellent agreement with the 

simulation numerical values of 0.48, 0.92, 1 and 0.51, as shown in Figure 3.6. 
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Figure 3.6 Experimental vs Simulation B1+ field comparison of spherical body 

phantom. Set 1 shows the relative intensity values on phantom simulations as well as 

experiments at comparative locations. This figure shows four slice locations as Group 1, 2, 3 

and 4, with each group showing three slices sagittal, axial, and coronal.  (Note, the body 

spherical phantom is Model: 2135650, Weight: 25lbs, Content: NiCl2 * H20, H20, GE 

Electric Company- Dielectric Corp, USA).    
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3.3.1.4     Human Body B1+ Field Distribution:  As per the equations given in the Material and 

Methods section, the following are the calculations for Mean B1
+, B1

+ in 𝜇𝜇𝜇𝜇/𝑉𝑉, and then results 

scaled to 1W input power.  This section also calculates the total voltage required to flip 180 degrees 

in the case of simulation and experiments.  As mentioned earlier, ImageJ was used to find out the 

Mean B1
+ for each slice, then equation 1.1 was used to calculate the resultant mean B1

+ field 

intensity using equation 1.2. 

 

For the experimental measurements, equation 1.5 indicates that voltage per Tx channel (total of 8 

channels) is calculated as follows: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 𝐹𝐹𝐹𝐹
180 

∗ 1000
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

  

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ 90
180 

∗ 1000
500

  

       = 152 V where the System Voltage is 152V. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 2√2     
 

                                                      = 428.6 V  
 

The above calculated total voltage can achieve a mean flip angle in the liver region = 35.5o.  In 

order to calculate the total voltage required to achieve 180° (11.74 𝜇𝜇𝜇𝜇), equation 1.7 is used as:  

                                                   428.6   =>   35.5 

                                      Vexp?   =>   180  

                                      Vexp    =      2173 V  
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Scaling to 𝜇𝜇𝜇𝜇/𝑉𝑉, the mean B1
+ field intensity in the liver = 11.74/Vexp = 0.0054 𝜇𝜇𝜇𝜇/𝑉𝑉. 

Scaling to 1W input power, the mean B1
+ field intensity in the liver = 0.0054*10 = 0.054 𝜇𝜇𝜇𝜇 per 

1W input. 

 

For the simulations: 

Scaling to 𝜇𝜇𝜇𝜇/𝑉𝑉, the mean B1
+ field intensity in the liver = 0.0074 𝜇𝜇𝜇𝜇/𝑉𝑉. 

Scaling to 1W input power, the mean B1
+ field intensity in the liver = 0.0074*10 = 0.074 𝜇𝜇𝜇𝜇 per 

1W input.    

The total voltage required to achieve a mean flip angle of 180° (11.74 𝜇𝜇𝜇𝜇) = 11.74/0.0074 = 

1587V 

 

   

The resultant difference between the simulation and experimental voltage = 36.9%. Part of 

this loss can be accounted for as the RF chain includes connections from the coil/PTX plug (from 

table header to the beginning of the splitters), splitters, and TR switches, resulting in a measured 

plug loss of 11%.  Second, from the beginning of the splitter all the way to the excitation ports of 

the coil, the loss was measured to be 12%.  The rest of the loss (13.9%) can be attributed to the TR 

switches as well as the coil losses. 

 

Figure 3.7 shows the simulated B1
+ field distributions in the axial, sagittal, and coronal 

slices.  Figure 3.8 shows the in-vivo B1
+ field distribution in the whole body, covering the liver 

from beginning to end.  The calculated COV from mean and standard deviation is 31% in the 

simulations.  The experimental COV is 28%. 
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Figure 3.7 Simulated B1+ field distributions. Four slices are shown in axial, sagittal and 

coronal views.  Segmentation of the liver location is also shown. 
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Figure 3.8 In-vivo B1+ field distribution for the transmit-only coil. 

 

  

 

3.3.1.5     SAR:  As per IEC guidelines, numerical calculations were carried out using an in-house 

FDTD method (6, 33).  For 1W input power, the calculated average SAR was to be 0.0049 

W/Kg/10g, with peak SAR at 0.11 W/Kg/10g and a total absorbed power of 22%.  The average 

SAR per mean 2 μT was (0.11009/0.0049236) * (0.074) = 1.65 W/kg/10gm.  Figure 3.9 shows the 

SAR the axial, coronal, and sagittal view in the liver and the whole body, respectively. 
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Figure 3.9 Simulated SAR is shown in four slices in the sagittal, coronal, and axial view.  

Note: It is overlaid with segmented anatomical structure. 
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3.3.1.6     Noise Correlation for Receive Only Array:  All sixteen channels were tuned and 

matched to a minimum of -15dB reflection coefficient and -14 dB transmission coefficient.  The 

receive array noise correlation was also measured, shown in Figure 3.10; these results show that 

good inductive decupling and preamplifier decoupling was reached.  

 

 

 

 

 

 

Figure 3.10 Sixteen-channel receive-only array noise correlation.  
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3.3.1.7     Geometry factor:  The G-factor map demonstrates the feasibility of parallel MR imaging 

as well as depicts the image quality for respective acceleration factors (R).  Figure 3.11 shows the 

three different acceleration factors R= 2, 3 and 4 with transverse (anterior-posterior), coronal 

(right-left) and sagittal (head-foot) marked on the left side.  The mean G-factor increased in all 

three planes as the R increased.  
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Figure 3.11 Experimental G-factor map in Sagittal (HF), Coronal (RL), and Transverse 

(AP) planes.  The maps were calculated using a 3D gradient echo sequence with varying 

acceleration factors (R). 

 

 

 



 
 

58 
 

3.3.1.8     In-vivo Imaging: Signal to Noise Ratio with and without Receive Array:  A T1 VIBE 

sequence was used to measure the SNR with and without a receive array.  The SNR was measured 

in all the slices starting from the beginning of the liver to the end of liver in the abdomen.  The 

SNR was ~3 to 3.5-fold higher compared to without an Rx receive array in the abdomen as well 

as the liver, as shown in Figure 3.12 and 3.13.  This shows a significant improvement due to the 

sixteen-channel Rx receive array in the high resolution T1 VIBE (Figure 3.14, and 3.15).  A 

significant SNR increase was observed around the periphery of the abdomen, as well as good RF 

penetration as shown in Figure 3.14 and 3.15.  The in-vivo experimental data show promising 

results in the liver (portal vein and its branches, inferior vena cava and it’s branching veins), and 

kidney (first and second order renal artery) of the human body, overcoming the severe RF 

penetration issues and undesired signal voids normally encountered with body imaging at UHF 

(7T). 
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Figure 3.12 SNR in the abdomen with T1 Vibe scans with (yellow bars) and without (blue 

bars) receive-only array. 
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Figure 3.13 SNR in the liver with T1 Vibe scans with (yellow bars) and without (blue bars) 

receive-only array. 
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Figure 3.14 Whole-body T1 Vibe image (single slice) showing SNR obtained using 

the 32-ch TTT Tx with and without 16-ch Rx whole body coil.  The scans were 

obtained with and without receive only coil. 
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Figure 3.15 Whole-body T1 Vibe images (Complete liver covering slices from 

beginning to end) obtained using the thirty-two channel TTT Tx whole body coil.  

The scans were obtained with and without (using the body coil as receive coil) 

receive only coil which is shown on right side. 
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3.4  DISCUSSION 

 

A newly developed Tx coil with receive-only array was presented at 7T MRI.  The 

numerically calculated S parameters were matched to experimentally measured values for both the 

reflection and the transmission coefficients.  This was necessary in terms of evaluating the 

electromagnetic fields during the RF coil development, as shown in Figure 3.4.  Figure 3.5 shows 

a good transmit coupling matrix for the Tx-only coil.  Figure 3.6 shows the numerical and 

experimental results at relative intensity values to be in good agreement.  Figure 3.7 and 3.8 show 

simulation B1
+ field distributions and in-vivo B1

+ field distributions in the whole body, covering 

the liver from beginning to end, where COV is 31% in simulation and 28% in experiment.  The 

calculated total voltage to achieve 180° FA was 1587 V in the simulations and 2173.4 V in the 

experiments, with a difference of 36.9%, where 11% is from plug loss, 12% is measured from 

beginning of the splitter after the plug to the coil excitation port, with a resultant 13.9% being the 

difference between the simulations and experiments.  Figure 3.9 shows the SAR in the axial, 

coronal, and sagittal view in the whole body.   

 

Figure 3.10 shows that the Rx receive-only array noise correlation demonstrated good 

inductive and preamplifier decoupling.  The G-factor map presented in Figure 3.11 shows the 

feasibility of parallel MR imaging while showing that image quality decreases for R=3 and 4.  In-

vivo imaging of the liver/abdomen showed ~ 3 to 3.5 fold increase in SNR gain when comparing 

Rx to without Rx as shown in Figure 3.12 and 3.13 at 7T.  In Figure 3.14 SNR increases are 
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demonstrated clearly in the whole body slices plotted using MRIcron [120].  The physical size of 

the abdomen is 4-6 times larger than one electrical wavelength (~12 cm) at 300MHz, which usually 

creates complex non-uniform wave behavior in ROI, but this was addressed using a circularly 

polarized phase only scheme as demonstrated in Figure 3.14 and 3.15.  Also, the volunteer in-vivo 

images in Figure 3.14 and 3.15 show the reproducibility and robustness of a Tx-Rx coil.  If needed, 

the developed Tx array can also be used in a pTx mode, where amplitudes and phases can be 

optimized in order to further improve B1
+ field homogeneity and/or SAR.  The in-vivo images 

show excellent anatomical detail in the liver and abdomen where the receive coil is located, as 

shown in Figure 3.14 and 3.15.  Also, the stomach region doesn’t benefit from a receive coil as 

much as the liver because the receive coil only covers a limited region, not the entire area, as shown 

in Figure 3.15. 

 

The TTT Tx coil has an inductance where the coil geometry and its corresponding 

dimensions define the total inductance which might not be low enough to tune the Tx coil to 

297.2MHz (7T UHF MRI).  There are a few parameters that can help to tune the coil to the 

frequency of interest (297.2MHz), such as adding a capacitor to increase the capacitance and 

changing the copper rod thickness or coil channel dimensions to increase the inductance.  Those 

changes would shift the frequency to the desired frequency of interest (297.2 MHz) at 7T UHF 

MRI.  One of the advantages of the design presented here is that the coil element size can be 

increased or decreased such that it can be either circular as presented or elliptical for future 

configurations.  In both cases, it can be tuned to 297.2 MHz without any difficulty.  A highly 

coupled coil reduces the load dependency, which in turn doesn’t require adjustment of tuning or 

matching or shimming per subject either in single or parallel Tx mode, resulting in optimum 
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performance.  Also, rigorous full wave simulation helps in choosing the correct coil array 

dimensions since the resonant frequency is defined by the geometrical inductance of coil.   

 

This full wave simulations are also important since it helps in predicting the 

electromagnetic fields during the coil development and evaluation.  One of the future challenge is 

to produce a higher B1
+ field towards the center of the abdomen using either the existing circularly 

polarized strategy or other optimized shimming configuration.  Also, a higher RF power can be 

used to increase B1
+ field while keeping the SAR under acceptable FDA limits since SAR is the 

only parameter which puts a limit on how much power can be applied.  Tian et al [101] reports 

peak 10gm SAR values well within IEC limits, listing various TEM configurations in addition to 

loop array and birdcage design.  Dieringer et al mentioned that averaged partial body RF exposure 

was less than 1.4 W/kg (IEC: 4W/kg, 1st level) in [122].  Alon et al [123]  and Vaughan [124] also 

reported average SAR values less than 2W/kg for the whole body, the limitation set by the IEC.  

Also, high density coil designs like a 64- or 128-channel array would provide a higher degree of 

B1
+ manipulation.  This would help in lowering B1

+ areas and optimizing the ROI, which leads us 

to the next step of focusing on exploring a high density Tx-Rx coil (as mentioned earlier) and the 

use of RF shimming for obtaining better uniformity in whole body imaging.  In spite of existing 

B1+ field inhomogeneity challenges, the proposed coil design has shown to be highly beneficial 

in attaining good RF penetration in various parts of the abdomen and torso. 
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3.5 CONCLUSION 

 

In this study, an RF array system with a thirty-two channel Tx-only TTT array was 

combined with a sixteen channel Rx-only array for whole body MRI at 7T.  This study also 

includes a B1
+ profile in a spherical body phantom simulation as well as in an experiment that 

shows excellent correlation using a thirty-two channel Tx only configuration, which shows the 

accuracy of FDTD prediction.  Noise correlation showed good isolation and the G-factor map 

demonstrated the feasibility of parallel imaging.  Also, 7T in-vivo imaging with and without the 

Rx only insert array showed increases in SNR by 3 to ~3.5 (compared with Tx-only coil utilized 

as a transceiver).  3D T1 VIBE images were acquired successfully with excellent anatomical detail.  

Future work will include study of a higher density Tx only array, Rx only array, distinctive RF 

shimming strategy, and clinical evaluation using various pulse sequences to get high 

spatial/temporal resolution in-vivo images at 7T UHF MRI. 
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4.0 DESIGN AND DEVELOPMENT OF ULTRA-HIGH FIELD RADIOFREQUENCY 

COIL DEVELOPMENT FOR EVALUATING UPPER EXTREMITY IMAGING 

APPLICATIONS 

 

 

4.1 INTRODUCTION 

 

 

As we discussed in the background chapter, MRI is a favored imaging modality for soft tissue 

imaging (with or without contrast) for a wide range of upper extremity pathologies including 

diagnosis and monitoring of several medical conditions.  These include acute trauma and sports-

related injuries; occult fractures; peripheral neuropathy [125]; sporadic inclusion body myositis 

[126]; inflammatory (muscle) myopathies [127]; nerve entrapment syndromes [128]; soft tissue 

dystrophic lesions and  avascular necrosis [129]; and cartilage [130],  tendon, and joint conditions 

(oedema, synovitis, dactilytis, and enthesis) [131].  Most upper extremity MR procedures are 

currently performed at field strengths of 1.5T and/or 3T.  Compared to the Food and Drug 

Administration (FDA) currently approved clinical systems at1.5T and 3T, systems at 7T can 

enhance some of the upper extremity clinical applications.  These include i) sequential monitoring 

of regeneration after peripheral nerve (PN) repair [132, 133] which is critical for evaluation of re-
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innervation and in planning treatment strategies, and ii) monitoring outcomes after vascular 

interventions [134] without the need for contrast agents.   

 

At this point, MRI imaging at ultra-high fields (UHF ≥7T) remains an investigational 

modality.  Higher field strengths could theoretically augment resolution but the primary challenges 

of UHF imaging include problems similar to encountered at 3T, but at a more intensified level.  

These include inhomogeneities in the B1
+ field (circularly polarized component of transverse 

magnetic field that excites the spins) distribution, elevated radiofrequency (RF) power deposition 

affecting local and global SAR, and chemical shift and other tissue contrast issues.  All these 

aspects affect image quality and require specific improvements to UHF hardware design and 

imaging protocols [6, 27, 37, 135, 136].  Optimization of UHF upper extremity technology and 

pulse sequences can improve the role and relevance of 7T MRI in imaging of soft tissue (muscle, 

vessel, nerve, cartilage, ligament and tendon), bone (trabecular and bone marrow characteristics) 

anatomy, and contextual structures [137].  To date, prior and ongoing clinical focus on UHF 

imaging has been in brain applications as opposed to human torso and extremities (except the knee 

[18, 138, 139]). 

 

In this work, we describe a design for an upper extremity RF system composed of a 

transverse electromagnetic (TEM) resonator Tx coil in conjunction with an eight-channel receive-

only insert array.  We comprehensively evaluate the performance of the proposed RF coil system 

with experimentally measured and numerically calculated B1
+ maps as well as SAR.  We 

investigate a wide variety of imaging sequences including: T1 VIBE (T1 weighted volumetric 

interpolate breath-hold exam), T2 DESS (T2 weighted double-echo steady state), T2* SWI 
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(susceptibility weighted imaging), TOF (time-of-flight) and DTI (diffusion tensor imaging) on a 

7T human MRI scanner.  We also compare images obtained at 7T (using the designed RF coil 

system) and at 3T (using a commercially available eight-channel extremity coil).   

 

 

4.2 MATERIALS AND METHODS 

 

 

The Tx-only and receive-only approach offers the following distinct advantages:  

1. The TEM coil design acts as a multi-conductor transmit coil.  With a distributive type of 

capacitance, it is easier to separate the resonant modes and adjust the B1
+ field distribution for 

better homogeneity over the region of interest [59, 60]. 

2. The high-density eight-channel receive-only array can provide excellent SNR, and CNR.  In 

addition, the receive coil can be tuned and matched such that it can be used for forearm, elbow, 

wrist and finger imaging. 

 

4.2.1 Transmit Coil Design 

 

 Given the low filling factor of the arm/hand, a shielded design of an actively detuned TEM 

resonator [56, 60] was adapted using 8 struts arranged along a concentric circle, as shown in 

Figures 4.1A and 4.1B.  The inner and outer struts were separated by a dielectric sleeve (Teflon 

filling) as shown by arrows in Figures 4.1A and 4.1B.  In conjunction with a conductive cylinder, 

this created a transmission line mechanism with the struts as inner conductors and the cavity wall 
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as the outer conductor (inner/outer diameter of the cavity = 7.5/10.0 inch).  The inner struts were 

electrically connected to the front and back end shield plates while the outer struts were electrically 

isolated by a small gap (0.5 inch) from the end shield plates.  The coil (Figure. 4.1C) was tuned by 

pulling/pushing the inner struts in and out of the cavity resonator.  This ultimately changes the 

capacitance between the inner and outer struts and therefore tunes the coil’s mode of interest to 

297.2 MHz.  The system utilized an in-house made quad-hybrid for producing quadrature 

excitation.  Other design parameters are shown in Table 4.1.   

 

 

 

Table 4.1  TEM UHF Transmit Coil Design Parameters (See Figure. 4.1) 

 

 

Design Parameter Dimension 

Outer strut diameter (Dos) 0.5 inch 

Inner strut diameter (d) 0.25 inch 

Teflon filler outer diameter (Dd) ~0.5 inch 

Distance from the center of the coil to the 

center of the outer strut (Lc) 

3.75 inch 

Length of inner strut inside the cavity (Los) ~ 3-4 inch 

Relative dielectric constant of Teflon (εr) 2.1 

Distance from center of the outer strut to the 

outer conductor shield 

1.25 inch 
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Figure 4.1 Transmit coil design and receive only coil array 

A: 8-element TEM resonator (four struts  are shown for simplicity);  B: Front plate of 

resonator (looking right to left);  C: Picture of constructed transmit coil;  D: Receive array 

circuit diagram showing single element (blue loop), overlapping geometry between adjacent 

loops (yellow arrow), inductive decoupling for no-adjacent neighbors (green arrows), passive 

decoupling for each loop element (two black arrows on left side), and continuation of rest of 

the loop elements (maroon arrows); and  E: Picture of the eight-channel receive array. 
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4.2.2     Transmit Active Decoupling Method 

 

 As previously described [58, 140], the TEM elements were detuned by forward biasing 

with 100mA at 10V (as they are shunted to the outer conductor).  During transmit mode, the coil 

functioned by reverse biasing PIN diodes (MA4P7446F-1091T, MA-COM, MA) with 30V.  The 

selection of the PIN diode was based on stray capacitance, switching speed, and heat capacity 

(25W power dissipation).  RF chokes of 5.8uH (J. W. Miller, CA, and Vishay, CT) were used to 

block the RF signal in the DC path, and5000pF American Technical Ceramics (ATC) capacitors 

were used for blocking DC in the RF path. 

 

4.2.3     Receive Coil Design 

 

 In order to improve the SNR over the ROI (forearm and hand), eight inductively decoupled 

[141] surface loops (18 X 7 cm2) were distributed evenly on an acrylic former (McMaster Carr, 

Elmhurst, IL).  A 5-mm wide copper foil with evenly distributed circumferential capacitors (ATC, 

Huntington Station, NY, USA; and Passive plus, Huntington, NY, USA) was utilized to achieve 

tuning at 297.2 MHz (Figures. 4.1D, 4.1E).  Figure 4.1D depicts a circuit diagram of three out of 

the eight loops, showing the overlapping geometry (yellow arrow), active (dotted rectangular 

marking) and passive (two black arrows) decouplers, balun and arrangement of the preamplifiers.  

Figure 4.1E shows the eight-channel receive array configuration. 
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4.2.4     Receive Decoupling Method 

 

 Neighboring elements were decoupled using overlapping (yellow arrow in Figure. 4.1D) 

distance to minimize mutual inductance.  The sole use of this technique however restricts the 

geometrical layout of the array and is ineffective in minimizing coupling on the next nearest 

neighboring array.  Therefore, inductive decoupling (as shown in Figures. 4.1D (green arrow) and 

4.1E) and low impedance pre-amplifier decoupling through the use of a ‘tank circuit’ [141] were 

implemented to reduce coupling caused by non-adjacent loops.  In addition to a passive decoupling 

circuit, each loop contains an active decoupling circuit (shown with black arrow in Figure. 4.1D) 

which turns ON (during transmit operation) using DC bias voltage from rhe MR system.  This 

functionality is important for a combined transmit-receive system since the Tx coil’s emitted 

electromagnetic waves could create significant voltage on the receive loops, damaging the receive 

preamplifiers (if the active decouplers do not properly function). 

 

4.2.5 Finite Difference Time Domain Modeling 

 

 The growing demand for UHF technologies necessitates the use (in terms of design as well 

as evaluation) of full wave rather than low-frequency, lumped-circuit approaches.  As the 

operational wavelength becomes closer to the RF coil dimensions and electrical size of the load, 

full wave analysis becomes essential in predicating the electromagnetic interactions between the 

tissues and RF coil [40].  In this work, the TEM volume resonator and the anatomically detailed 

human hand model were modeled as a single system (Figures 4.2A and 4.2B show a 3D view of 

the coil struts and side view of the human arm model, respectively) using  the finite difference time 
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domain (FDTD) method.  Our in-house FDTD package involved the modeling of the excitation 

sources using a transmission line model, which allows for accurate calculations of the coupling 

and the input impedance [37, 142].  MATLAB was used to create the grid of the resonator 

geometry.  A 3D computational grid composed of 188x188x270 Yee cells [92] with spatial 

resolution of 1.58mm (dx=dy=dz) and temporal resolution of 3 x10(-12) sec (used to meet the 

Courants stability criteria [143]) was developed.  The computational domain was surrounded by 

32 perfectly matched layers (PML) placed on the top and bottom  of the coil model and 12 PMLs 

surrounding the coil model (as shown in Figure. 4.2C) in order to absorb the electromagnetic waves 

radiated by the coil [114, 115].  The original 1mm Duke male model [144] (age: 34, height: 1.74 

m, weight: 70 kg, body mass index (bmi): 23.1 kg/m2) was rescaled to a resolution of 

1.58x1.58x1.58 mm3. 
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Figure 4.2 Coil and arm model as single system 

A: FDTD model of TEM coil (excitation ports shown by yellow circles); B: Side view (YZ 

slice) with human arm model positioned inside TEM structure (showing struts in green, and 

shield in red); and C: Top view (XY slice) showing all 8 elements of the coil and locations of 

the PMLs. 
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4.2.6 RF Power and Specific Absorption Rate (SAR) 

 

 At UHF frequency, the most important safety concerns are local SARs and/or localized 

temperature rises.  The RF power supplied to the coil can be approximately calculated as the sum 

of the radiated power (that escaping the coil without getting absorbed in tissue), the absorbed 

power (in tissue), the power lost through coupling and the power dissipated in the coil and RF 

shield [145].  Since tissue dissipation and RF heating concerns are associated with the power 

absorbed in tissue, we investigate the power absorbed in the human model.  The total power 

absorbed is scaled to obtain a mean (in the ROI) and continuous B1
+ field intensity of 1.957 μT, 

which is the field strength required to produce a flip angle of π/2 with a 3-ms rectangular RF pulse.  

The linearity of Maxwell’s equation helps in calculating the absorbed power as Feed Voltage ∝ E 

∝ H; and therefore, the absorbed Power ∝ E2 ∝ B1
+2, where E and H are the electric and magnetic 

field intensities, and ∝ indicates linear dependence.  Therefore the absorbed power in a tissue of a 

given density from the Tx RF coil is described as SAR.  In FDTD, the SAR as calculated utilizing 

our in-house FDTD package is:  

SAR(i,j,k) =  
1
2
σ(i,j,k)(E2x(i,j,k) + E2y(i,j,k)  + E2z(i,j,k))

ρ(i,j,k)
 

            (4.1) 

Where ρ(i,j,k)  is tissue mass density (unit: kg/m3), and σ(i,j,k)  is tissue conductivity (unit: S/m) at 

the (i, j, k) location.  Ex, Ey, and Ez (V/m) are the magnitudes of the electric field components in 

the x, y, and z directions, respectively.  By summing the SAR from all tissues, an indication of the 

total power deposition can be obtained.  SAR is presented in the unit W/kg per 10 gm of tissue by 
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continuously averaging a finite number of FDTD cells, which results in achieving an approximate 

average SAR value over any 10 gm of tissue. 

 

4.2.7 Experimental Imaging Protocols 

 

 All the workbench measurements were performed using a calibrated vector network 

analyzer (Agilent E5062A ENA series, CA, USA) together with a multi-port S parameter test set 

(87050EA, Agilent, CA, USA).  All MR experiments were performed on 3T and 7T whole body 

human scanners (Siemens Healthcare, Erlangen, Germany).  All imaging experiments were 

collected on three healthy volunteers recruited under a university approved Institutional Review 

Board (IRB).  All the pulse sequences parameters are listed in Table 4.2.  Noise correlation 

measurements were acquired by setting RF amplitude to 0 V with TR = 2000, TE = 0.15, Number 

of acquisition = 1, Acquisition duration= 204 ms, Vector size =2048, and bandwidth = 10 KHz.  

Accelerated images were acquired for AF = 0, 1, 2 and 4 for the T1W VIBE sequence.  
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Table 4.2 7T musculoskeletal imaging protocols used to acquire MR images (see Figures. 4.4, 

4.5, 4.7 to 4.9) 

 

 

 

 

SNR was measured and is listed in the Results Section.  At 7T, the above described RF coil 

system was used; at 3T, a dedicated eight-channel knee coil (Siemens, Erlangen, Germany) was 

used.  Within both systems, the coils were positioned in the center of the magnet bore during the 

scan.  The subjects were placed in a prone position with a pillow for additional comfort. 

 

 

 

 

 

  

ISO Sequences Orientation FOV TR/TE (ms) Slices 

T2 DESS Coronal 105x 160mm  (294x 448) 18/5.2 238 

T1 VIBE Coronal 95 x 160mm  (304x512) 12/4.5 288 

T2 SWI Axial 105 x 160mm  (336x512) 23/15 128 

DTI (Dir:64, b=0,1300) Axial 700 x 620mm  (490x434) 7000/83 65 

TOF A/S/C 85 x 208mm (236x640) 12/4.5 - 

B1
+ map Seq. Axial 140 x 140mm (64 x 64) 2000/2.5 88 
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4.3 RESULTS 

 

4.3.1     Coil Evaluation 

 

           4.3.1.1     Transmit Coil 

 

i)  Bench Measurements:  The S-parameters were measured and are shown in Figure. 4.3.  The 

measured reflection coefficients (S11, S22) were greater than or equal to -23 dB under the 

loaded (forearm) condition and -20dB for the muscle phantom with a conductivity of 0.8 

S/m and relative permittivity of 79 (measured using the DAK SPEAEG system Zurich).  

Figure 4.3A shows excellent agreement between the FDTD calculated scattering 

parameters (S11, S22 and S12) and those measured utilizing the network analyzer.  The 

transmission coefficient (Isolation, S12) was ≤ -18 dB (<3%), as shown in Figure 4.3A.  

The Q factor unloaded to loaded ratio of the TEM volume resonator was 240/90.  

 

ii)  Bench Measurements:  The tuning/matching of the Tx coil was minimally affected by the 

receive loops after turning on the active decoupling (see Figure. 4.3B for Ports 1 and 2). 
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Figure 4.3 S parameter comparisons. 

A: Correlation between the FDTD calculated scattering parameters (S11, S22 and S12) and 

those measured utilizing the network analyzer for the TEM coil; and  B: TEM active 

Detuning (with DC ON) for S11 and S22. 
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iii)  Imaging Measurements:  Measured B1
+ maps demonstrate very good agreement with the 

simulated B1
+ field distribution, as shown in Figure 4.4. The B1

+ field coverage and 

homogeneity are excellent, except near the drive ports (towards wrist).  Homogenous T2W 

DESS images shown in axial, coronal and sagittal planes covering the whole volume of the 

forearm are demonstrated in Figure. 4.5.   

 

iv)  Simulations: The FDA [146]  and International European Commission (IEC) [147] have 

formulated safety limits based on SAR.  In extremities, the IEC 60601-2-33 states that MRI 

systems must limit locally deposited RF power to under 20 W/kg/10g under combined 

mode of tissue without cranial exposure [147].  For 3ms square RF pulse, a B1
+ field 

intensity of 1.97µT is required to generate 90° excitation. Based on a continuous 1.97µT 

(averaged over the volume of the arm inside the TEM coil), the average SAR is 2.02 W/Kg 

and peak SAR is 8.98 W/Kg/10g.  As expected with smaller (when compared to the human 

head at 7T) electrical size loads, the simulated SAR (Figure. 4.4) shows higher SAR 

intensities near the periphery [41]. 
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Figure 4.4 B1+ field and SAR map.  

7T experimental B1+ field maps for a muscle phantom (A: axial, E: sagittal and I: coronal) 

and human subject (B: axial, F: sagittal and J: coronal).  Simulated B1+ maps (C: axial, G: 

sagittal and K: coronal) and SAR (W/kg per 10g; D: axial, H: sagittal and L: coronal) 

obtained using anatomically detailed human arm. 
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Figure 4.5 7T T2 DESS over the complete volume of the forearm in axial (elbow to wrist), 

coronal and sagittal planes. 
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           4.3.1.2     Receive Array 

 

i) Bench measurements:  All eight receive channels had a minimum reflection coefficient 

of -15dB (as shown in Figures. 4.6A and 4.6B for Rx Channels 2 and 4) and transmission 

coefficient (between adjacent neighbors and next to adjacent neighbors) ≤ -13 dB (< 5 %, 

as shown in Figure. 4.6C).  These isolation measurements were carried out inside the 

resonator while decoupling the Tx coil using active DC bias.   

 

ii) Bench measurements:  Active decoupling was measured to be ≤ -18 dB using a decoupled 

flux probe and switching the power supply mode (E530712, Hewlett-Packard (HP) 

universal power source, USA).  Also, an active detuning circuit was turned ON using DC 

bias and measured on a network analyzer, as shown in Figure. 4.6D (Rx Channel 4 with 

DC ON).  
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Figure 4.6. Receive coil measurements.   

A: S22 measurement (Channel 2 of 8);  B: S44 measurement (Channel 4 of 8);  C: S42 

(isolation) measurement (Channels 2 and 4); and  D: Active Detuning (with DC ON) for 

Channel 4. 
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iii) Imaging Measurements:  Figure. 4.7A shows a typical noise correlation matrix for the 

receive-only array acquired using the 7T system.  The average off-diagonal correlation is 

-20.5dB and only higher coupling (-9.7dB) was found between opposite elements 3 and 

6. 

 

iv) Imaging Measurements:  Figure. 4.7B shows measured SNR for five slices throughout 

the forearm for each acceleration factor (AF = 0, 1, 2, and 4).  The average SNR (mean 

of five slices) falls down to one third for AF = 4 (SNR = 23) compared to AF = 0 (SNR 

= 66) where the SNRs for AF = 1 and AF = 2 were 56 and 41, respectively.  For AF = 0, 

1, and 2, the quality goes from excellent to good (based on clear delineation of various 

anatomical structures) but picture becomes substantially blurry for AF = 4, as shown in 

Figure. 4.7C.   
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Figure 4.7 Noise Correlation, SNR vs AF, T1 VIBE images for AF=0, 1, 2, and 4. 

A: Noise correlation matrix for receive-only array; B: SNR vs acceleration factor (AF) map, 

each set (five bars) represents five slices throughout the forearm volume; and C: Respective 

images (center slice) for AF as shown in B. 
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          4.3.2     In-vivo Imaging  

 

 Figure. 4.8 presents a comparison of 3T vs 7T for three sequences (T1 VIBE, T2 DESS 

and T2* SWI).  The 3T and 7T protocols were optimized for the same scanning time, comparing 

i) higher resolution 3T vs 7T Protocol (the protocol was optimized for best 7T quality/resolution 

and the same scans were acquired for 3T) ii) lower resolution 3T vs 7T protocol (the protocol was 

optimized for best 3T quality/resolution and the same scans were acquired at 7T).    
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Figure 4.8 3T vs. 7T imaging.   

Protocols are described in Table 4.2.  The circles show nerve and small vessel finding in 3T 

vs 7T. 
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          4.3.2.1     T1 VIBE:   Figures. 4.9A1-5 demonstrate high resolution on T1 VIBE images, 

 identifying various anatomical structures as follows:  

A1: forearm (vessel wall delineation (arrow), brachial artery bifurcation and its branches);  

A2: micro-vasculature; radial and median nerves and their branches;  

A3: forearm superficial radial nerve;  

A4: supracondylar joint anatomy with osseocartilagenous detail; and  

A5: median and radial nerves (arrows) and arterial sections (radial artery) with vessel wall 

delineation. 

 

          4.3.2.2     T2 DESS:   High resolution T2 3D gradient echo imaging is carried out by DESS 

 sequence.  Figures. 4.9B1 and 4.9B2 show excellent high intensity signal separating nerves 

 and exquisite contrast for viewing cartilage and synovial fluid, with excellent cartilage 

 delineation and joint structures. B1 specifically shows the axial view of trochlear cartilage and 

 trabecular bone structure and ulnar nerve (arrow).  B2 shows synovial and cartilagenous 

 delineation of the radiohumeral joint with trabecular detail (arrow). 

 

4.3.2.3     T2* SWI (typically not used in upper extremity imaging):  Figure. 4.9C shows 

improved contrast that is complementary to the conventional spin-density, T1, and T2 imaging 

methods [9].  Figure. 4.9C1 shows a T1 VIBE image displaying an axial section with vascular 

branching detail.  Figure. 4.9C2 shows the corresponding SWI image with marked enhancement 

of the vascular patterns of the brachial and radial arteries and muscular perforators. 
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4.3.2.4     Diffusion Tensor Imaging (DTI):  Figures. 4.9D1 and 4.9D2 represent T1 VIBE (D1) 

and FA color coded map (D2) slices in the forearm identifying the radial (RN) and median nerve 

(MN)  locations (yellow circles).  Figure. 4.9D3 presents a 3D view of both corresponding nerves 

(stretched yellow arrows).  Also, Figure. 4.9D4 shows the fiber tractrography for the median and 

radial nerve after post-processing using DSI studio [148]. 
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Figure 4.9 7T Arm (Forearm and Elbow) imaging. 
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Table 4.3 7T and 3T protocols (See Figure. 4.8)  

 

MRI System: 

 

Imaging: 

Parameters 

7T 

TR/TE 

Fov/Acquisition Matrix 

Scan time/Slices 

3T 

TR/TE 

Fov/Acquisition Matrix 

Scan time/Slices 

T1VIBE: 

7T-Resolution 

12/4.49 ms 

95 x 160 mm2/277 x 512 

5:34 min/288 

 12/5.21 ms 

95 x 160 mm2/277 x 512 

5:34 min/288 

T1VIBE: 

3T-Resolution 

 12/4.47 ms 

93 x 100 mm2/273 x 320 

4:36 min/288 

 12/5.14 ms 

95 x 159 mm2/191 x 352 

4:01 min/288 

T2 DESS: 

7T-Resolution 

 18/5.22 ms 

105 x 160 mm2/270 x 448 

4:43 min/288 

 18/5.22 ms 

105 x 160 mm2/270 x 448 

4:43 min/288 

T2 DESS: 

3T-Resolution  

  18/5.22 ms 

91 x 140 mm2/193 x 320 

3:36 min/176 

 18/5.22 ms 

104  x 159 mm2/232 x 384 

4:08 min/240 

T2*SWI: 

7T-Resolution 

 23/15 ms 

105 x 160 mm2/302 x 512 

6:08 min/128 

 23/14.2 ms 

118  x 180 mm2/302 x 512 

6:08 min/128 

T2* SWI: 

3T-Resolution 

 23/15 ms 

118  x 180 mm2/227 x 384 

4:42 min/128 

 23/14.2 ms 

118  x 180 mm2/227 x 384 

4:42 min/128 

 

        

 

 



 
 

94 
 

 

4.3.2.5     MRI (Non-contrast) Angiography:  Figure. 4.10 shows not only first and second order 

arteries (superficial palmar and deep palmar arch) but also the smaller proper palmar digital arteries 

in the fingers and pulps.  Figure. 4.10A1 is a cross-sectional transmetacarpal view highlighting the 

intrinsic muscles, the flexor and extensor tendon (T) apparatus with synovial sheaths (S) as well 

as ligamentous structures (L), and the intermetacarpal vasculature (V).  Figure. 4.10A2 is a 

minimum intensity projection and Figure. 4.10A3 a 3D texture reconstruction of the hand.  Figure. 

4.10B1 presents an excellent depiction of all of the proper palmer digital arteries, digital tendons 

and synovial sheaths on a transverse view with the fingers towards the palm.  Figure. 4.10B2 shows 

a transverse slice close to the finger tips showing capillaries (red circles) branching out.  Figure. 

4.10B3 demonstrates capillaries in the finger pulps utilizing volume rendering and minimum 

intensity projection.  
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Figure 4.10: 7T Hand and Finger imaging. 
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4.4 DISCUSSION AND CONCLUSION 

 

4.4.1     RF Coil 

 

 This is the first successful demonstration of a homogeneous volume resonator in 

conjunction with an eight-channel receive-only array for a targeted field of view UHF upper 

extremity imaging.  This RF coil system was optimized for the human forearm but can be utilized 

to image the hand, wrist, arm or even elbow as there is no significant change in tuning properties 

required.  With a small filling factor, the use of a combined transmit and receive coil is ideal to 

detect the incoming signal with nearly homogeneous excitation [149-152].  Furthermore, the Tx 

coil’s B1
+ field homogeneity can be further improved with more elements.  It is also noted that 

there are other designs like a smaller loop [153] or a birdcage coil [154] that could be used in a 

transmit–receive design for specific applications like for the wrist or joint.    

 

Since the receive array does not significantly affect the distribution/intensity of the B1
+ 

field [155], the receive coil could possibly be replaced with higher density designs that have 

acceptable decoupling/isolations (12-16 channels given satisfactory isolation between receive 

elements, as shown in 32-ch head arrays [156]).  This could further improve the SNR of RF coil 

system.  In addition to overlapping geometry and inductive decoupling, preamp decoupling is also 

extremely important to achieve the desired operation as ionic currents in the tissues can induce 

electromagnetic force in the Rx array, which can cause correlated noise in the coil and reduction 

in SNR values [141, 157].    
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 The Tx coil and Rx-only insert sizes were chosen to accommodate for anthropometric 

parameters consistent with bigger forearms.  These sizes help the coil to be positioned comfortably 

anywhere from the arm (shoulder) to the hand (including digits).  The coil placement allows the 

patient to lay comfortably on a padded MRI table in prone (superman or statue of liberty) position 

with arm or forearm in extension for the duration of the study.  In order to make safe use of the 

coil, 1) the Preamplifiers were kept close to the matching circuit and balun, and 2) extra 

consideration was given to the cable arrangement by keeping the cables away from the patient.  

 

4.4.2     3T vs. 7T 

 

 Visualization of small forearm vessels and nerves in both the superficial and deep soft 

tissues at high and low resolution 7T imaging is clearly superior to that of 3T imaging (as marked 

by yellow circles in Figure. 4.8).  Delineation of muscle fibers/fascial plane interfaces as well as 

cortical bone/soft tissue interfaces is significantly enhanced at 7T, illustrating the benefit of higher 

CNR.  Figure. 4.8 also shows superior delineation of the radial and median nerves, small vessel 

detail without the use of contrast agents, higher delineation of muscle planes, and details of osseous 

trabecular when compared those at to 3T.  Specifically, the superior eminence of small vessels 

(and finer details of soft tissues) is the result of overall less noise at 7T compared to the 3T images.  

Noting that two different coil designs were utilized at 3T and 7T but both with 8 receive channels, 

the overall clarity of the 7T images as compared to 3T demonstrates the advantage of having a 

high SNR ratio associated with higher field strength. 
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4.4.3     Characterization of 7T Images 

 

 According to Musculoskeletal radiologists, AFs = 0, 1 and 2 (Figure. 7C) provide excellent 

quality to depict various anatomical structures (nerves, macro-and-micro vasculature, cartilage, 

synovial fluidic areas between cartilage, tendons, ligaments, osseous bone anatomy).  On the other 

hand, AF = 4 results in poor image quality (Figure. 7C). 

 

MR Diffusion imaging accesses water diffusion parameters like fiber anisotropy (FA) and 

the apparent diffusion coefficient (ADC) in nerves.  This can be a non-invasive and non-disruptive 

strategy for sequential assessment of pre- and post-surgeries, including post-surgical nerve 

regeneration repair or transplantation related outcomes.  As a result, reconstructive surgeries 

and/or evaluation of transplantations [133, 158] may use i) volume (and texture)-based rendering 

and ii) 3D depiction of the course of the peripheral nerves (as shown Figure. 4.9D).  As shown in 

Figure. 4.9, 7T provides superior delineation of the radial and median nerves, without the use of 

contrast agents.   

 

Contrast-enhanced MR angiography using commercial MR scanners (≤ 3T) have been 

extensively used in imaging of intracranial vessel diseases [159, 160] and 7T imaging has also 

been explored [161].  Limited, if any, imaging with 7T MRI has been reported of the extremities, 

except that specifically focusing on wrist [162] or hand [163] and limited to the palmer vasculature.  

The current work goes beyond the wrist and palmer region to high resolution non-contrast 

enhanced imaging of the digital arteries in the fingers and their pulps, as shown in Figure. 4.10 

(TOF).  The fact that this may be accomplished without the use of intravenous contrast is 
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invaluable in patients with vasculitis associated with either autoimmune disorders or diabetes, as 

these diseases often have concomitant renal vasculitis and renal insufficiency.   

 

Moreover, detection of small vessel anatomy using high resolution 7T imaging has a 

potential in preoperative planning [164] of neovascularity associated with both soft tissue as well 

as osseous tumors.  7T TOF imaging also allows for excellent depiction of the microvascularity of 

the hand, forearm, and hand (wrist), which may be invaluable in upper extremity surgery and/or 

monitoring the microvascularity integrity as it relates to certain vascular disease processes [165, 

166].  In addition, SWI (Figures. 4.9C2) could be especially useful in various micro-vascular 

conditions like vascular trauma, abnormalities, visualizing blood products and the vascularization 

of tumors, and high-resolution MR venography [9, 167, 168]  

 

In conclusion, an in-house built TEM volume resonator in conjunction with an eight 

channel receive only array was designed, built and successfully evaluated at 7T to confirm the 

potential for next generation UHF imaging in upper extremity applications.  A wide variety of 

outstanding images with high spatial resolution, SNR, and CNR were achieved and fovorably 

compared to those acquired at 3T. 
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5.0 EVALUATING THE CLINICAL FEASIBILITY OF UPPER EXTREMITY 

IMAGING AT 7T MRI. 

 

5.1 ULTRA-HIGH FIELD UPPER EXTREMITY PERIPHERAL NERVE AND NON-

CONTRAST ENHANCED NEURO-VASCULAR IMAGING. 

 

5.1.1     INTRODUCTION 

 

As we explored coil design in an earlier chapter, this chapter will provide background as 

to MRI use in clinical imaging and discuss in-vivo imaging in detail.  Ultra-high field (UHF) (≥ 

7T) human magnetic resonance imaging (MRI) typically provides superior SNR and CNR ratios 

when compared to lower field (≤ 3T) MRI [21, 137].  Although commercially (1.5T/3T) MRI is 

routinely used in upper extremity imaging (shoulder, forearm, hand, and wrist), the resolution 

achieved can be limited. UHF MRI could significantly improve the resolution capabilities of 

conventional MRI [18, 169].  However, 7T human MRI is fraught with technical challenges, 

mainly related to radiofrequency (RF) field inhomogeneity and safety concerns for neurologic and 

whole-body imaging applications [21, 37, 170-172].  The upper extremity offers the advantage of 

a compact isolated anatomy with relatively smaller electric size (when compared to the 

head/abdomen).  Therefore, it can be relatively easier to generate uniform and safer RF field 
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distributions for 7T in upper extremity imaging.  As a result, significantly higher anatomical 

resolution and further improvements in  the contrast of tissue interfaces can potentially be achieved 

at 7T for upper extremity applications without increased scanning times and/or considerable 

compromise in overall image quality.   

 

Higher SNR/CNR can be useful in providing intricate detail in neural [173], vascular [174], 

cartilage [175], tendon [176] and joint [177] imaging.  As described in [158, 178, 179], 2D and 3D 

multi planar high resolution T1 weighted (T1) volumetric interpolated breath-hold exam (VIBE) 

imaging produces optimal anatomic detail and reveals high resolution structures.  Nerves 

demonstrate a signal similar to adjacent soft tissue [178, 180]. High resolution T2 weighted (T2) 

double-echo steady state (DESS) can achieve excellent SNR/CNR for discriminating nerves from 

muscle, fascia, cartilage and synovial tissue in the forearm and joint structures [181].  According 

to [182],  susceptibility weighted imaging (SWI) is particularly useful for visualization of 

vasculature since it is highly sensitive to deoxyhemoglobin in venous blood, making it useful in 

imaging vascular trauma and abnormalities and in visualizing neovascularization of tumors.  

Diffusion-based sequences specifically monitor the random movement of water molecules in 

anisotropic tissue [183, 184].   

 

One of the major obstacles in UHF MRI  remains the limited availability of custom-

designed coils  [185] optimized for musculoskeletal applications.  Some prior studies have 

demonstrated the utility and feasibility of customized coil designs for high-resolution wrist 

imaging at 7T [18, 153, 154, 186].  Our group has recently developed a custom-designed 

forearm/hand MRI RF coil system [187-189] for 7T UHF imaging.  The combination of such a 
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coil system in conjunction with 7T UHF MRI and many of the aforementioned sequences could 

hold significant potential in upper extremity imaging applications.  Some of these applications 

include  1) sequential monitoring of regeneration after peripheral nerve (PN) repair, which is 

critical for evaluation of re-innervation and in planning treatment strategies [133, 190] and 2) 

monitoring vascular pathology or outcomes after vascular interventions without the need for 

potentially nephrotoxic or anaphylotoxic contrast agents [165, 191]. 

 

In this study utilizing a custom-designed RF coil system, we present the results and findings 

from various MR sequences (T1 VIBE, T2 DESS, SWI, time-of-flight (TOF), diffusion tensor 

imaging (DTI), and diffusion spectrum imaging (DSI)) that were optimized for 7T upper extremity 

imaging while keeping scanning times similar to or lesser than those used at 3T.  We show detailed 

SNR and CNR comparisons of 3T vs. 7T for T1 VIBE and T2 DESS sequences.  Furthermore, we 

show nerve tractography (diffusion imaging), vessel segmentation (nCE magnetic resonance 

angiography), and imaging of cartilage, synovial fluid, bone marrow and joint anatomy in the 

forearm, hand, and elbow at 7T.    
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5.1.2     MATERIALS AND METHODS  

 

5.1.2.1     MR Hardware and Study Participants 

 

Briefly, a shielded design of an actively detuned transverse electromagnetic TEM resonator 

[187, 188] with two ports driven by a quadrature hybrid was used in this study.  An in-house finite 

difference time domain (FDTD) package was utilized [37, 113] in order to calculate the B1
+ field 

(transmit field responsible for excitation) and SAR [192] parameters.  An eight-channel receive-

only insert array was designed and utilized with the TEM coil [187].  The array consisted of eight 

inductively decoupled surface loops [106] (each loop 18x8 cm2 in size) distributed evenly to fit 

inside the structure of the Tx coil and cover the region of interest.  The 7T RF coil system (Tx and 

Rx) covers 18 cm (in length) of anatomy (hand, forearm or elbow). 

 

This prospective MRI study of upper extremity (forearm, hand, and elbow) was approved 

by the University of Pittsburgh Investigational Review Board (IRB).  It was performed on three 

volunteers with appropriate written informed consent approved by above-mentioned IRB protocol.  

Volunteers were screened to exclude those with musculoskeletal disease, upper extremity trauma, 

surgery, and/or comorbidities associated with musculoskeletal abnormalities (neuropathies, 

rheumatoid syndromes etc.)  
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5.1.2.2     MR Examination 

 

Imaging was performed using a 7T whole-body MRI system (Magnetom, Siemens 

Healthcare, Erlangen, Germany) and 3T whole-body MRI system (Tim Trio, Siemens Healthcare, 

Erlangen, Germany) at the University of Pittsburgh.  The above-mentioned RF coil system was 

utilized at 7T. [187-189].  A dedicated eight-channel extremity coil (Siemens, Erlangen, Germany) 

was used at 3T.  The coils were positioned in the center of the magnet bore during all imaging 

sessions.  Subjects were positioned prone within the coil with the hands (forearm, and elbow) 

placed over the head and immobilized with cushions, pads and sandbags to avoid discomfort.   

 

5.1.2.3     MR Imaging  

 

The five imaging sequences (T1 VIBE, T2 DESS, SWI, DTI, DSI, and TOF) were 

optimized by a highly experienced MR application scientist using a clinical MRI protocol for upper 

extremity pathologies.  3T and 7T protocols were optimized for the same scanning time comparing 

a i) Higher Resolution (HR) protocol (optimized for best 7T quality/resolution, with the same scans 

acquired at 3T) and ii) Lower Resolution (LR) protocol (optimized for best 3T quality/resolution, 

with the same scans acquired at 7T).  This study compares T1 VIBE and T2 DESS qualitatively 

and quantitatively (SWI was only qualitatively compared).  3T vs. 7T diffusion and TOF 

comparisons were not performed for this study.  All of the sequence parameters are documented 

in Tables 5.1 and 5.2.  In the case of the 7T diffusion sequences, the specific b-values were 

optimized by balancing b-field directions (64) with higher b–values (DTI: 0 to 1300; DSI: 0 to 

2000) while obtaining 1) smaller voxel resolution, and 2) acceptable time of acquisition (183) and 
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SAR.  7Ts with a parallel imaging factor of 2 and 3 were utilized to achieve the results shown 

(Tables 5.1 and 5.2). 
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Table 5.1 7T and 3T T1VIBE, T2 DESS and T2* SWI Forearm protocols for HR: higher and 

LR: lower resolution sequences. These sequences cover Figure. 5.1.1, 5.1.2, 5.1.3 and 5.1.4. 

 

 

MR Sequences 

(Forearm) 

T1 VIBE (Figure. 5.1) T2 DESS (Figure. 5.2) T2* SWI (Figure. 5.4) 

Field Strength 7T HR 3T HR 7T HR 3T HR 7T HR 3T HR 

TR/TE (ms) 12/4.49  12/5.21  18/5.22 18/5.22 23/15  23/14.2 

Slice  288 288 238 288 128 128 

FOV (mm2) 95x160 95x160 105 x 160 105 x 160 105 x 160 118 x180 

Acquisition 
Matrix 

277x512 277x512 270x448 270x448 302x512 302x512 

Pixel Res(mm3)  0.3 0.3 0.4 0.4 0.8 0.8 

Voxel Size 
(mm3) 

0.31x0.31
x0.30 

0.34x0.31
x0.30 

0.36x0.36
x0.40 

0.36x0.36x
0.40 

0.31x0.31x
0.80 

0.35x0.35x0.80 

FA 10 10 25 25 20 20 

Acceleration 
factor 

2 2 2 2 2 2 

Bandwidth(hz/p
x) 

150 150 169 169 119 119 

Acquisition 
time (min) 

5:34  5:34  4:43 4:43 6:08 6:08 
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Table 5.1 (Continued) 

 

Field Strength 7T LR 3T LR 7T LR 3T LR 7T LR 3T LR 

TR/TE (ms) 12/4.47  12/5.14  18/5.22 18/5.22 23/15 23/14.2 

Slice  288 288 176 240 128 128 

Fov(mm2) 93x100  95x160  91 x 140  105  x 160 118 x180 118  x 180 

Acquisition 
Matrix 

273x320 191x352 193 x 320 232 x 384  227 x 384 227 x 384 

Pixel Res(mm3)  0.4 0.3  0.5 0.4  0.8 0.8 

Voxel Size 
(mm3) 

0.31x0.31
x0.41 

0.49x0.45
x0.30 

0.44x0.44
x0.50 

0.42x0.42x
0.40 

0.47x0.47x
0.80 

0.47x0.47x0.80 

FA 10 10 25 25 20 20 

Acceleration 
factor 

2 2 2 2 2 2 

Bandwidth(hz/p
x) 

150 150 195 194 119  119 

Acquisition 
time (min) 

4:36 4:01 3:36 4:08 4:42 4:42 
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Table 5.2 7T in-vivo imaging protocols for Elbow, Forearm, and Hand (Figures. 5.1.3, 5.1.5-

5.1.8;  T1VIBE, T2 DESS, T2* SWI, DTI, and TOF).  

 

 

MR  

Sequences  T1 VIBE 

(Elbow) 

T2 DESS 

(Elbow) 

DTI ( 

Forearm, 

Dir:64, 

b=0,1300) 

DSI (Forearm, 

b=0 to 2000) 

TOF (Hand)  

Orientation Coronal Coronal Axial Axial A/S/C 

FOV (mm2) 93 x 100 91 x 140 70 x 62 70 x 62  85 x 208 

Acquisition 
matrix 273 x 320 

 
193x320 
 

490x434 490x434 236x640 

TR (ms) 12 18 7000 8000 12 

TE (ms) 4.49 5.22 83 80 4.5 

Slices 
240 176 65 65 

254 (single 
slab) 

Bandwidth 150 195 - - 163 

Acquisition 
time 

5:34 3:36 27 45 - 

FA 10 25 180 90 19 

Acceleratio
n factor 

2 2 2 2 3 

Voxel Size 
(mm3) 

0.34 x 0.31 x 0.41 0.44x0.44x0.5 1.43x1.43x3 1.72x1.72x1.7 0.33x0.3x0.4 
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5.1.2.4     MR Data Analysis 

 

5.1.2.4.1     Quantitative Analysis 

 

  Quantitative 3T and 7T SNR and CNR were measured for T1 VIBE, and T2 DESS 

sequences over the complete volume of the forearm (presented in Figures. 5.1 and 5.2).  

Specifically, SNR was measured by calculating average signal intensity over a selected circular 

region (approximately encapsulates the forearm area excluding the skin) in each slice divided by 

the mean standard deviation (SD) of the background noise going from slice 1 (starting from the 

dorsal aspect) to slice 5 (close to the volar aspect).  The CNR was defined as the difference in 

mean signal intensity between the bright tissue (vessel) and the adjacent bone signals (and /or 

background noise).  Two musculoskeletal radiologists with over thirty-five years of combined 

clinical experience blindly evaluated the images and sequences.  All measurements were 

performed by the same researcher and verified by the MR application scientist and both 

musculoskeletal radiologists.  

 

5.1.2.4.2     Qualitative Analysis 

 

Criteria for Evaluation of Image Quality:  Contrast resolution, sharpness and clarity were the 

criteria considered in the evaluation of image quality using the following scale:  1-nondiagnostic, 

2- poor, 3-fair, 4-good and 5-excellent (Table 5.3).   
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Evaluation of Imaging Artifacts: Presence of chemical shift, susceptibility artifacts and motion 

artifacts were considered in evaluation of the artifacts using the following scale:  1-absent, 2-

present but not affecting anatomic detail and 3-present and severely affecting image interpretation.  

Evaluation of image quality and artifacts were both carried out for 3T and 7T T1 VIBE, T2 

DESS, and T2* SWI images (Figures. 5.1, 5.2, 5.3-5.6).  The sequences were evaluated 

retrospectively and independently by two musculoskeletal radiologists who were blinded to the 

imaging parameters. 
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Table 5.3 3T/7T MRI Analysis (Image Quality Scale: 1-nondiagnostic, 2- poor, 3-fair, 4-good 

and 5-excellent; Artifacts scale:  1-absent, 2-present but not affecting anatomic detail and 3-

present and severely affecting image interpretation).  

 

 

Qualitative Analysis Image Quality factor Artifact factor 

Field Strength 3T 7T 3T 7T 

T1 VIBE Lower Resolution 

(Figure. 5.1-Left) 

3 3.5 1 1.5 

T1 VIBE Higher Resolution 

(Figure. 5.1-Left) 

3.5 4 2 2 

T2 DESS Lower Resolution 

(Figure. 5.2-Left) 

2.5 3 2.5 1.5 

T2 DESS Higher Resolution 

(Figure. 5.2-Left) 

2 3 1 1 

T2* SWI Lower 

Resolution(Figure. 5.4) 

1.5 2 2.5 2.5 

T2* SWI Higher 

Resolution(Figure. 5.4) 

1.5 2 3 2.5 

 

 

5.1.2.5     MR Image Processing 

 

For post-processing, diffusion-weighted images were used to perform a fiber tractography 

of the peripheral nerves in the forearm, and the principal fiber directions were used to conduct 

streamline fiber tracking.  After the DTI data were transferred to a local computer, FSL (FMRIB, 
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Oxford, UK) and DSI Studio (CMU, Pittsburgh, PA) were used for distortion correction and fiber 

tracking, respectively.  Geometric distortion in different acquisition directions may be induced by 

an eddy current.  This eddy current is produced in the conductive materials/parts of an RF coil by 

the MRI gradient coils [183, 193, 194].  Combined with subject/patient motion, it can severely 

damage the diffusion estimation due to a pixel mismatch in the temporal image series [183].  Using 

the eddy-correct library available in FSL [194], eddy current and motion correction were 

implemented where the input reference image was a non-diffusion weighted image (b=0).  Then 

T1 and T2 weighted images with DTI derived maps (Figures. 5.7C-F as later discussed in the 

Results Section) were utilized to locate the forearm nerves.  Circular regions of interest (ROIs) 

were placed in the anatomic location of the nerves from the FA (Figure. 5.7D) and color-coded 

maps (Figure. 5.7F).   

 

The fiber trajectories generated by an orientation distribution function–streamlined version 

of the Fiber Assignment by Continuous Tracking algorithm [148, 195, 196] were used to sample 

the FA and apparent diffusion coefficient (ADC) maps.  Using a random seeding approach, we 

initiated tracking from each random position within the seed mask in the direction of the most 

prominent fiber.  The following parameters were optimized in order to distinguish nerves from the 

surrounding various anatomical structures: an anisotropy threshold of 0.25, a step size of 0.35 to 

0.5 mm, minimum fiber length of 0 to 20 mm, and a turning angle threshold of 60 degrees.  The 

tracking was terminated when the relative fractional anisotropy for the incoming direction dropped 

below a preset threshold of ~0.2 (heavily dependent on SNR of the specific subject’s scan data) or 

the turning angle exceeded 60 degrees.  Each trajectory generated one profile, and all profiles were 

averaged to obtain the trend of the index along the fiber orientation.  After anatomic confirmation 
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of the nerve tract, mean FA and ADC values were calculated as discussed later in the results 

section. 

 

Non-contrast Enhanced (nCE) Angiographic Imaging and vessel segmentation:  nCE MRA (TOF) 

techniques were utilized to image the digital proper palmar arteries at 7T.  In order to extract the 

three dimensional structure of the vasculature in the forearm, the T1 VIBE DICOM images were 

exported in DICOM format to MIPAV [197].  A mask was created manually using the paint grow 

segmentation method in MIPAV, which utilizes the concept of voxel aggregation by grouping the 

seed points within the volume of interest (selected manually by minimum intensity projection 

(MIP)).  The vasculature structures were manually traced in order to avoid errors in identifying the 

arteries and venous structure.  After masking each segment (without skeletonizing or dilating to 

preserve structural vessel information), a surface and texture volume-rendering module was used 

to enable 3D visualization of the anatomy and segmented structures.  

 

 

5.1.3     RESULTS 

 

5.1.3.1     3T vs 7T  

 

5.1.3.1.1     Quantitative Analysis:  Figures. 5.1, 5.2, 5.3, and 5.4 demonstrate quantitative SNR 

and CNR measurements over the complete volume of the forearm in the T1 VIBE and T2 DESS 

images.  For the HR protocol, the minimum SNR gain at 7T is ~ 1.8 (T1 VIBE) and ~ 2.2 (T2 

DESS) times that of 3T; and the minimum CNR gain at 7T is ~ 2.2 (T1 VIBE) and ~ 2.2 (T2DESS) 
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times that of 3T.  For the LR protocol, the minimum SNR gain at 7T is ~ 1.4 (T1 VIBE) and ~ 1.8 

(T2 DESS) times that of 3T; and the minimum CNR gain at 7T is ~ 1.3 (T1 VIBE) and ~ 1.7 (T2 

DESS) times that of 3T.  As slices close to the dorsal part of the forearm do not have anatomic 

structures suitable for measuring CNR, some slices were excluded.   
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Figure 5.1 T1 VIBE (Higher and Lower Resolution) imaging. 

3T vs. 7T T1 VIBE images on both higher (HR, which is optimized for 7T) and lower (LR, 

which is optimized for 3T) resolutions (as described in Table 5.1).  In the 3T images (A, B, C, 

G, H and I), smaller order vessels as indicated by arrows are barely visible while in the 7T 

images they are well detected (D, E, F, J, K and L).  Yellow arrows indicate micro-vessel 

branches and yellow ellipses delineate nerves from the surrounding muscle plane.  Note that 

there are motion and pulsatile flow artifacts (bands of bright points) from the median artery 

in the anterior to posterior phase encoding direction. 
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Figure 5.2: SNR and CNR charts for T1 VIBE images (Right). 

(A and B) and (C and D) represent SNR and CNR, respectively.  The 7T SNR and CNR were 

~ 2/1.5 times that of 3T for the HR/LR scans, respectively.  
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Figure 5.3 T2 DESS (Higher and Lower Resolution) imaging. 

3T vs. 7T T2 DESS images on both higher (HR, which is optimized for 7T) and lower (LR, 

which is optimized for 3T) resolutions (as described in Table 5.1).  Small order vessels [yellow 

arrows] and nerve [yellow circles] signals as indicated by circles are difficult to identify on 

the 3T (A, B, C, G, H and I) images but are well delineated on the 7T (D, E, F, J, K, L) images.  
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Figure 5.4 SNR and CNR charts for T1 VIBE images. 

(A and B) and (C and D) represent SNR and CNR, respectively.  The 7T SNR and CNR were 

~ 2/1.5 times that of 3T for the HR/LR scans, respectively.  
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 In terms of RF homogeneity (a significant issue [37] at 7T), the T1 VIBE and T2 DESS 

images (Figure. 5.5) demonstrate uniform excitation in the axial, coronal and sagittal planes, 

covering the complete volume of the forearm.  On the 1st subject, the uniformity was optimized by 

iteratively fine tuning the RF Tx coil utilizing the experimentally measured B1
+ field inside the 

coil’s volume of interest.  That tune was then utilized for all the remaining subjects.  The B1
+ field 

homogeneity demonstrated by COV (Coefficient of variation) was calculated to be 21% in the 

forearm (encapsulated within the coil’s volume) [187].  Also, IEC guidelines were followed and 

the SAR was numerically calculated using an in-house FDTD method [37, 113].  Based on a 

continuous 1.97µT (averaged over the volume of the arm inside the TEM coil), the average SAR 

was 2.02 W/Kg and peak SAR was 8.98 W/Kg/10g [187] as IEC 60601-2-33 specifically states 

that MRI systems must limit locally deposited RF power to under 20 W/kg/10g.  In order to 

demonstrate the comprehensiveness of the 7T RF coil system in upper extremity imaging, the 

volunteers were scanned in three different regions -- hand, forearm and elbow -- as shown in 

Figures. 5.1-5.11 and discussed below. 
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Figure 5.5 7T T1 VIBE and T2 DESS showing homogeneous excitation. 

7T T1 VIBE and T2 DESS images of the forearm demonstrating homogeneous excitation in 

the axial (elbow to wrist), coronal and sagittal planes.  The B1+ field coefficient of variation 

was calculated to be 21% in the forearm (encapsulated within the coil volume). 
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Figure 5.6  T2* SWI (Higher and Lower Resolution) imaging. 

3T/7T T2* SWI: Intramuscular vascular branches (off the radial artery) are shown on the 

HR/LR 3T (A, B, C, G, H and I) images, but are significantly more delineated on the 7T (D, 

E, F, J, K and L) images.  The yellow arrows and circles indicate micro-vessel branches. The 

above data is from a single volunteer. 
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5.1.3.1.2     Qualitative Analysis:  Figures. 5.1, 5.2, 5.3, 5.4 and 5.6 compare three sequences (T1 

VIBE, T2 DESS and T2* SWI) for 3T vs 7T for two cases:  i) HR (Optimized for 7T) and ii) LR 

(Optimized for 3T).  Resolution of the small forearm vessels and nerves in both the superficial and 

deep soft tissues at HR and LR 7T imaging is shown and compared to those at 3T.  Delineation of 

the muscle fibers/fascial plane interfaces as well as the cortical bone/soft tissue interfaces is 

enhanced at 7T, illustrating the benefit of higher CNR. 

 

5.1.3.1.3     Image Quality and Artifacts Evaluation:  Table 5.3 lists all of the results of the 

qualitative analysis regarding image quality and artifacts.  The overall image quality of T1, T2 and 

T2* images at 7T is significantly higher when compared to that at 3T.  The overall total of artifacts 

increased from 3T to 7T, but these did not impact the image quality. 

 

5.1.3.2     In-vivo Imaging 

  

5.1.3.2.1     T1 VIBE and T2 DESS:  Figure. 5.7 shows high resolution forearm and elbow T1 

VIBE and T2 DESS 7T images.  The elbow images show the median, radial and ulnar nerves as 

smaller branches of the median nerves.  Three T1 and T2 comparison images show various 

anatomical structures (close to the hand, middle of the forearm, and the elbow).  These include 

fine delineated fascial planes, nerve fiber bundles, major arteries and smaller branches, fine 

cartilagenous boundaries with a bright signal showing synovial fluid in between, and joint anatomy 

and bones (radiohumeral with trabecular detail and trochlea of ulna in the forearm).  

A1 (T1 VIBE): Radial and Median nerve delineation; 
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A2 (T2 DESS): It shows the ulnar nerve (arrow); 

B1-B3 (T1 VIBE) and corresponding T2 DESS (B4-B6): show three axial slices (close to elbow, 

forearm, and close to wrist) that depict radial, median and ulnar nerves (yellow arrows, circles) in 

addition to the major arteries (red arrows); Note that there are motion and pulsatile flow artifacts 

(band of bright points) from the median artery in the anterior to posterior phase encoding direction; 

C1-C2: (T1 VIBE) and C3-C4: (T2 DESS) show joint anatomy depicting bone, cartilage, and 

synovial fluid. 
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Figure 5.7 7TArm (Forearm and elbow) T1 and T2 imaging. 
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5.1.3.2.2     Susceptibility Weighted Imaging (SWI):  Figure. 5.8 displays SWI [199] images 

which show macro and micro vessels in addition to vessel walls without the use of any kind of 

contrast dye/liquid.  In comparison to the T1 VIBE slices in the top row, the SWI in the bottom 

row clearly depicts the arterial vascular pattern and muscular perforators, highlighting the 

importance of SWI at ultra-high fields.  
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Figure 5.8 Comparison of T1 VIBE and T2* SWI. 

7T T2* SWI (bottom row) show marked enhancement of vascular patterns of arteries, veins 

and muscular perforators (marked with yellow arrows) when compared to the T1 VIBE 

images (top row).  
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5.1.3.2.3     Diffusion Tensor Imaging (DTI):  Figure 5.9 presents forearm nerves where 3D 

volume rendering and fiber tractography are shown.  The quantitative track analysis results are 

shown in Table 5.4.  The hand and forearm nerves correspond to the known anatomic distribution 

of the radial, ulnar and median nerves. Figure 5.9 shows Top (A to I) and bottom (1 to 5) row 

representing 7T DTI with T1 VIBE and T2 DESS validation, and 7T fiber tractography, 

respectively. 

A and B:  It shows T1 VIBE and T2 DESS respectively demonstrating all three nerves for 

validation of the locations of the forearm nerves (yellow circles);   

C, D, E and F:  It represent ADC, FA, TRACEW, and color-coded DTI map identifying forearm   

nerves, respectively (Note: The rotation of the T1 VIBE and T2 DESS images to match the DTI 

images); 

G and H:  An FA map in sagittal view showing median (m) and radial (r) nerves using multiple 

intensity projection (MIP); 

I:  It demonstrates multiple intensity projection (MIP) of combined m and r nerves;  

1, 2 and 3:  It shows DTI FA maps demonstrating separate forearm nerves with anatomical   

validation (yellow rectangles) side by side;   

4 and 5:  It demonstrate 3D DTI and DSI rendering showing forearm nerves tractography, 

respectively. 
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Figure 5.9 DTI imaging. 
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Table 5.4 Quantitative DTI track analysis values for forearm nerves as shown in Figure. 5.9 

(FA: Fiber Anisotropy, ADC: Apparent diffusion coefficient, Ax: Axial/Longitudinal, Diff: 

Diffusivity, sd: standard deviation, and Rad: Radial). 

 

 

Tract Nerve 3 RN_Nerve1 MN_Nerve2  

FA mean 0.41 0.79 0.62 

FA sd 0.07 - 0.12 

ADC mean 0.95 0.95 0.92 

ADC sd 0.15 0.25 0.19 

Ax_diff_mean 1.33 1.59 1.53 

Ax_diff_sd 0.19 0.63 0.31 

Rad_diff_mean 0.71 0.57 0.59 

Rad_diff_sd 0.12 0.10 0.19 

 

 

 

 

5.1.3.2.4     Time of Flight (TOF) Imaging:  Figure 5.10 demonstrates not only more highly 

anatomical structural hand and finger images but also non-contrast enhanced angiography images.  

The hand and finger images depict first and second order arteries (superficial palmar and deep 

palmar arch), smaller proper palmar digital arteries (fingers), and fine arterial branches (finger 

tips).  

A (TOF):  It demonstrates eight proper palmar digital arteries (two of them are yellow circled), 

digital tendons and synovial sheaths in axial view; 



 
 

130 
 

B (T1 VIBE):  shows proper palmer arteries and two proper palmer digital arteries in thumb and 

cross-sectional transmetacarpal view, highlighting intrinsic muscles, flexor digitorum superficialis 

and profundus tendons apparatus with synovial sheaths, ligamentous structures, and inter-

metacarpal vasculature.   

C demonstrates multiple intensity projection (MIP) of the hand vasculature; 

(D, E and F):  It shows TOF (non-contrast enhanced MR angiographic) images of the palmar and 

digital microvasculature in the hand;   

G demonstrates a 3D view of volume rendering texture. 
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Figure 5.10 7T Hand imaging. 

 

 

 

5.1.3.2.5     Vasculature segmentation:  Figure. 5.11 shows the selected area of interest and the 

whole segmented forearm vasculature from T1 VIBE multiple intensity projection images.  Figure. 

5.11 also shows the major artery (ulnar) and part of the brachial bifurcation 
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Figure 5.11 7T Vasculature segmentation. 

A presents a coronal image as an example of the paint grows segmentation method using T1 

VIBE images.  B displays forearm vasculature segmentation (3D view) showing the brachial 

artery and its branches [198] as well as the venae comitans and superficial arteriovenous 

networks.  C shows the complete ulnar artery (arrow) and D presents the radial (arrow) and 

brachial bifurcation (arrow) in the forearm. 
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5.1.4 DISCUSSION 

 

 

While there are no upper extremity commercial coils available at 7T (except [185]),  a 

customized 7T RF coil was built and compared with available extremity coils at 3T with similar 

receive elements and comparable dimensions.  The use of a combined transmit and receive coil 

with a small filling factor would be favorable to detect receive signals from a homogeneously 

excited zone of anatomy of interest.  A few studies [150, 152, 201, 202] have shown that the SNR 

obtained from a combined transmit and receive only system could be higher even with a limited 

FOV.  In parallel imaging, the noise distribution is heterogeneous throughout the images, so SNR 

calculation is approximate but won’t be exactly accurate using the ROI method (signal mean in 

anatomy of interest and noise standard deviation in background).  One detailed coil analysis study  

[203] covers the noise pre-scan method (pseudo-replica method).  When comparing a birdcage coil 

to a TEM coil, the current produced in end rings of the birdcage coil can generate a considerably 

high magnetic field component, which is coaxially aligned with the B0 static field, and therefore 

does not result in spin excitation.  Such a component can increase Ohmic loss by inducing 

conduction currents in tissue [204].  Other groups have developed birdcage-based commercial 

coils and HEM-mode-based resonators demonstrating promising imaging capabilities limited to 

the wrist [185, 186, 205].  In contrast, and to our knowledge, our current study is the first to explore 

the utility and relevance of 7T UHF MRI for the upper extremity encompassing the hand, wrist, 

forearm and elbow. 
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The quantitative analysis performed on the T1 VIBE and T2 DESS images (Figures. 5.1, 

5.2, 5.3, and 5.4) demonstrates that higher SNR/CNR were achieved at 7T, almost twice those of 

3T (most especially in the HR protocol).  As with parallel imaging, the noise distribution is 

heterogeneous throughout the images, therefore SNR calculation could be a crude approximation 

using the ROI method: signal mean in anatomy of interest over standard deviation of the noise in 

background.  Additionally, Figure. 5.5 shows that homogenous excitation (a typical hurdle for 7T 

imaging) is quite possible for the forearm with coverage that extends from wrist to elbow.  As a 

part of the qualitative analysis seen in Figure. 5.1, the T1 VIBE images at 7T have less overall 

noise when compared to the 3T images as the conspicuity of small vessels is superior.  T2 DESS 

imaging (Figure. 5.3) shows improvement in nerve signal and better contrast between muscle 

planes and visualization of finer osseous trabecular detail at 7T when compared to 3T.  In Figure. 

5.6, there is greater contrast and delineation of cortical bone and improved detection of small vessel 

detail at 7T.  The high resolution obtained with 7T is clearly not achievable when utilizing 3T, as 

demonstrated in Figures. 5.1, 5.2, 5.3, 5.4 and 5.6. 

 

Diffusion-based MRI is utilized as a non-invasive, non-disruptive strategy for 

sequential assessment of forearm nerves.  It is quantified by water diffusion parameters 

(FA and ADC) as indirect correlates or surrogates of neuroregeneration after transection repair or 

transplant related nerve outcomes.  In order to increase the reliability and interpretation of results, 

DTI derived maps [FA, ADC, and color-coded] are defined in conjunction with T1 and T2 

anatomical validation.  High resolution imaging of peripheral nerves may have application in the 

detection of neuropathy and monitoring to assess disease progression or response to appropriate 

therapy [133, 158] [125].  Moreover, volume rendering and 3D depiction of the course of the 
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forearm nerves (as shown Figure. 5.9) may prove useful in the broader realm of reconstructive 

surgical or vascularized composite allotransplantation (VCA) applications.  While comparison to 

3T (in terms of DTI) was outside of the scope of this study, the presented 7T images show very 

good delineation of the forearm nerves without the use of contrast agents. 

  

7T TOF imaging (shown Figure. 5.10) and the corresponding vascular segmentation 

(shown in Figure. 5.11) allow depiction of the macro and microvascular anatomy of the hand, 

forearm, and palmer region (and wrist) in 2D monitoring of microvascular integrity as it relates to 

certain vascular disease processes [165, 206].  In addition, SWI (Figure. 5.8) could be especially 

useful in visualizing various macro or micro-vascular pathologies secondary to vascular trauma, 

thrombotic/embolic occlusion, and neovascularization of tumors, and in high-resolution MR 

venography [165, 167, 182].  While contrast enhanced imaging is utilized extensively [200],  the 

fact that 7T high quality vascular imaging can be accomplished without the use of intravenous 

contrast is invaluable in patients with organ transplantation, autoimmune vasculitis or diabetic 

peripheral vascular disease as these conditions often have concomitant renal vasculitis and/or renal 

insufficiency. 

  

MR angiography using 1.5T imaging has been previously described in evaluating 

neuropathic leg pain [207] and other diabetic vasculopathy [208].  3T imaging has been reported 

in evaluation of the brachial plexus [209, 210].  In addition, 3T MR angiography has also been 

used in imaging of intracranial vessel disease/vasculitis [159, 160].  7T MR angiography has also 

been explored [161], specifically in the upper extremity focusing on wrist [211] or hand [205] but 
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limited to the palmar vasculature.  The work presented here expands higher resolution MRA to 

other, including the digital vasculature and capillary networks in the pulps of fingers.   

 

The choice of CT Angiography (CTA) vs MRA or vice versa for specific indications is still 

a debatable issue [212-214].  The choice of CTA usually depends upon the region of interest -- 

involved in either neuro[215-217], coronary [192, 218-221] or rest of the body [222, 223] related 

applications.  However, the merits of MRA over CTA cannot be ignored especially in the case of 

UHF 7T MRA.  Work in 7T TOF, nCE MRA, SWI, and other MR based methods (DCE_MRA, 

MRV, DTI, etc.) could open new possibilities for nCE vascular imaging, as confirmed by our study 

and validated by other research studies [161, 182, 223-227].  While CTA faces contrast-agent 

related nephrotoxic or anaphylotoxic risks, it has the advantage of a faster scan time. which could 

be important in emergent clinical indications such as pulmonary embolism or acute 

cerebrovascular disease [217].  Earlier work, however, has shown that the diagnostic performance 

of 3T CE whole-heart coronary MR angiography approaches the diagnostic performance of 64-

section CT [228].  In addition, 7T UHF MRI and parallel imaging with a higher number of receive 

channels could produce highly improved SNR/CNR, faster scanning time, and a significant 

advantage for repeated or longitudinal/sequential imaging applications [228-230].  Furthermore, 

the avoidance of radiation by MR offers a critical advantage in pediatric imaging, especially of the 

craniofacial skeleton (in concussion or traumatic brain injury) [231].  When compared to MR 

related research studies, a significant growth in research utilization of CT has been observed [232].  

However, there is need for more MRA studies (especially utilizing UHF MRI) [161, 182, 223-

227].  Non-invasive methods like nCE MRA, TOF, SWI, and diffusion related methods have very 

high potential in safe, non-radiation, nCE detection of high-signal-intensity plaque, coronary 
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arterial wall disease [218], and atherosclerotic vascular disease [233, 234] as well as in a host of 

other indications [161, 182, 215-219, 222-224, 235].  UHF 7T imaging can alleviate and overcome 

several imaging challenges encountered in imaging neurovascular disease at lower field strengths 

(1.5T and 3T), such as venous contamination obscuring underlying arterial architecture or 

delineation of contextual anatomical structures [217] .  

 

 

5.1.5 CONCLUSION 

 

 

High quality non-contrast enhanced ultra-high resolution neuro-vascular upper extremity 

imaging is possible at 7T.  High quality 7T images were obtained using T1 VIBE, T2 DESS and 

T2* SWI sequences as well as TOF, DTI, and DSI sequences in conjunction with a custom-

designed RF coil system.  Analyses demonstrate that 1) CNR/SNR at 7T are almost two fold (for 

T1 VIBE and T2 DESS sequences) of that achieved at 3T for upper extremity applications and 2) 

broader clinical potential is present for 7T imaging in musculoskeletal applications. 
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5.2 CASE REPORT: ULTRA-HIGH FIELD (7T) MAGNETIC RESONANCE 

MUSCULOSKELETON IMAGING IN UPPER EXTREMITY 

ALLOTRANSPLANTATION – PRELIMINARY RESULTS IN VASCULAR 

COMPOSITE ALLOTRANSPLANTATION (VCA). 

 

 

5.2.1 INTRODUCTION 

  

 

Reconstructive arm transplantation is a clinical reality, with more than a dozen countries 

across the world performing unilateral and bilateral transplantation [236].  Statistics indicate that 

upper extremity [UE] trauma constitutes 39% of combat injuries [237-239].  As of 2005, 1.6 

million civilians suffer from limb loss in the US alone. Of these, 34,000 had major loss of an UE 

[237].  These numbers are expected to go up to 3.6 million by 2050 [236, 237].  If only 1% of this 

population qualifies to undergo transplant surgery, that mandates the need for additional transplant 

infrastructure in addition to standardized pre and post-surgical evaluation and monitoring methods.  

Over the past 15 years, 17 patients have undergone Upper Extremity Transplantation (UET) in the 

United States alone.  Multiple conventional imaging modalities have been used to screen patients 

as well as monitor outcomes after UET.  These include X-ray [lungs, respiratory tract, bone 
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density], CT angiogram [vasculature, adjacent bone and soft tissue (injecting IV through blood 

vessel], and MRI [fMRI pre and post-transplant brain assessment].  MRI is the undisputed choice 

of imaging modality when it comes to monitoring and evaluating soft tissue conditions.  These can 

include peripheral neuropathy, dystrophic lesions, nonosseus structures, avascular necrosis, occult 

fractures, nerve and joint diseases, carpel tunnel release  hamartomas, rare neoplastic lesions, 

sports-related injuries, orthopedic and a variety of pathological hand conditions, and vastly 

growing pre and post-transplant applications [28, 127, 240-244].  Commercially (<=3T) available 

MR scanners lack the capability to provide critical anatomical resolution when compared to 

ultrahigh (UHF) field scanners (>=7T), which enable significantly superior SNR, higher image 

resolution, and reduced scan time [6].   

 

An early detection of vascular abnormalities and other irregularities [connective tissue 

disorders, collagen accumulation, vascular wall injuries, extreme micro vessels damage, including 

endothelial impairment, lumen narrowing and fibrosis of the microvasculature, typically 

characterized by pathobiology [245] can be extremely useful to investigate the pathogenesis in 

neuropathy and transplant applications.  Intra-arterial digital subtraction angiography [28] is still 

considered the reference standard for the diagnosis of vascular pathologies of the fingers.  As an 

invasive procedure, the inherent limitations have made it not so widely used in practice.  Recent 

years have seen the clinical implementation of magnetic resonance angiography (MRA) with and 

without the use of contrast material as a reliable and accurate modality for evaluation of vascular 

pathologies of the hand and fingers [28, 243].  Imaging the small vessels of the finger, however, 

faces specific challenges.  Specifically, high resolution is necessary to accurately depict the digital 

vessels, which are often < 1mm in diameter.  To our knowledge, the current study is the first ever 
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case report of 7T imaging after UET.  We present results from a bilateral UET subject 4 years after 

surgery as part of a post–transplant clinical MR assessment. 

 

 

5.2.2 MATERIALS AND METHODS 

 

 

All of the 7T MR experiments were performed on a 7T Siemens Magnetom scanner.  A 

38-year-old subject (female) with a bilateral hand transplant was recruited under a university 

approved IRB, and informed consent was obtained from the participant.  In-vivo images were 

acquired using an actively detuned TEM resonator (with a two-port quadrature hybrid drive) in 

conjunction with an inductively decoupled eight channel receive only insert array (each one is 

18x8 cm2) custom designed for UE (description is provided in Chapter 4).  The subject was 

positioned in a comfortable prone position with the coil being in the center of the magnet.  Imaging 

parameters were optimized to achieve high resolution, SNR, CNR, and minimal scan time. 

 

The selection of an in-house made UE RF coil was made based on the high SNR/CNR it 

exhibited compared with a 3T commercial extremity coil when used on the same volunteer (same 

anatomical region with similar orientation).  3D T1VIBE, T2DESS, and TOF MRI were optimized 

to utilize multi-planar capabilities for evaluating and identifying the size, location, and 3D 

contextual anatomy of interest.  T1VIBE was optimized to provide high-resolution spatial 

anatomical detail.  T2DESS was optimized to improve higher spatial resolution and CNR/SNR.  A 
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non-contrast enhanced TOF MR Angiography technique was used to provide the advantage of a 

longer T1 relaxation constant at 7T.   

 

3T imaging was performed on the bilateral hand transplant patient using a 3T whole-body 

MRI system (Tim Trio, Siemens Healthcare, Erlangen, Germany) at New Jersey Hackensack 

University Medical Center.  The 3T parameters were optimized to approximately match the 7T 

parameters for the purpose of comparison and are listed in Table 5.5.  A dedicated eight-channel 

extremity coil (Siemens, Cleveland, OH, USA) was used at 3T.   

 

Both coils (for 3T and 7T) were positioned in the center of the magnet bore during all 

imaging sessions.  The subject was positioned prone within the coil, with the hands (forearm, and 

elbow) placed over the head and immobilized with cushions, pads and sandbags to avoid 

discomfort.   
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Table 5.5 7T and 3T MR Sequence Parameters. 

 

 

Field 

Strength 

7T 3T 

T1VIBE  TR/TE: 12/4.42 ms 

Slices: 288 

Pixel Res: 0.3 X 0.3 X 0.3 mm3 

FA: 10 

Slice Thickness: 0.3 mm 

Acquisition time: 5:34 min 

TR: 12/4.69 ms 

Slices: 128 

Pixel Res: 0.3  X 0.3  X 0.3 mm3 

FA: 10 

Slice Thickness: 0.3 mm 

Acquisition time: 5:27 min 

T2 DESS 

HR 

TR: 18/5.22 ms 

Slices: 238 

Pixel Res: 0.34 X 0.34 X 0.4 mm3 

FA: 25 

Slice Thickness: 0.4 mm 

Acquisition time: 6:38  min 

TR: 18/5/22 ms 

Slices: 160 

Pixel Res: 0.4 X 0.4 X 0.4 mm3 

FA: 25 

Slice Thickness: 0.4 mm 

Acquisition time: 6:39 min 

TOF  TR/TE: 12/4.5 ms 

Slices: 128 

Pixel Res: 0.3 X 0.3 X 0.4 mm3 

FA: 19 

Slice Thickness: 0.4 mm 

Acquisition time: 6:08 min 

TR/TE: 27/6 ms 

Slices: 160 

Pixel Res: 0.3 X 0.3 X 0.4 mm3 

FA: 19 

Slice Thickness: 0.4 mm 

Acquisition time: 7:13 min 
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5.2.3 RESULTS 

 

 

A primary MR image reviewer and a peer reviewer, both with more than twenty years of 

experience in radiology and blinded to the status of the subject, independently reviewed all MR 

images.  Images were primarily displayed on Siemens Syngo software and post-processed using a 

custom written image-processing software package, MIPAV[197]. 

 

Double amputee transplant patient 7T imaging data (RH: right hand, LH: left Hand) is 

shown in Figure 5.12.  T1VIBE 7T imaging depicts (A (axial), B, C, E (coronal)), (O (axial- veins 

and arteries), and (P, Q, R, S (sagittal)) slices. The left hand shows exquisite high resolution 

anatomy for assessing phalangeal, metacarpal and carpal bone edema, erosion, cartilage, tendon 

and other soft tissue anatomy in patients, as well as the neurovascular anatomy (proper palmar 

digital (PPD) arteries) and its branches (including capillaries on finger pulps (B,C,E)).  T2DESS 

imaging (F, G, and H) and (T-W) shows more contrast in identifying the vessels and nerves.  TOF 

imaging ((I-K, X-Z: axial), (L-N, Z1-Z2: 3D volume rendering from Siemens software) clearly 

shows not only digital arteries but the branches and capillary bed all the way towards the finger 

tips. 
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Figure 5.12: 7T left and right hand images of double-amputee transplant patient data (RH: 

right hand; LH: left hand). 
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Healthy volunteer data is shown in Figure 5.13.  7T T1VIBE imaging (A (axial), E (volume 

rendering) for the right hand; C, D (Axial) for the left hand) shows high resolution anatomical 

detail and smaller vasculature.  Volume rendering and intensity projection were performed as 

shown in Figure 5.13; (F, J) show the right hand (ventral) deep-palmer arch whereas (G, K, L) 

show the right hand (dorsal) and the superficial palmer arch. (H, M) show maximum intensity 

projection of the vasculature.  TOF imaging (I, M) shows the ulnar artery, common palmer arteries, 

proper palmer arteries, and digital palmer arteries. 
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Figure 5.13: T1 VIBE, TOF and volume rendering of healthy volunteer 7T images. 
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Figure 5.14 shows a comparison of the vessel diameters of the PPD artery of the volunteer 

and patient’s index (I) and middle finger (M). The mean diameters for all four fingers are: Ring 

finger: 2 ± 0.6 mm (volunteer: V), and 1 ± 0.4 mm (patient: P); Middle Finger: 2.6 ± 0.6 mm (V), 

and 1.55 ± 0.4 mm (P); Index finger: 1.4 ± 0.4 mm (V), and 0.97 ± 0.4 mm (P); and little finger: 

1.55 ± 0.6 mm (V), and 1.23 ± 0.4mm (P).  

 

 

 

 

 

Figure 5.14: 7T Comparison of vessel diameter of PPD artery of volunteer (V) and patient 

(P) index (I) and middle fingers (M). 
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5.2.3.1   3T vs 7T 

 

5.2.3.1.1     Time of Flight (Non-Contrast Enhanced) Imaging:  Figure 5.15 shows 3T (left 

hand: A) vs 7T (left hand: B) data.  The left hand comparison shows that proper digital palmer 

arterial branches are clearly visible in the index and middle finger at 7T (yellow arrows).  TOF 

Imaging of the left hand (C, D) images of the double-amputee transplant patient data shows proper 

digital palmer arterial branches clearly visible in the index and middle finger at 7T (D) when 

compared to 3T (C), as shown by the yellow oval and circles.  TOF Imaging of the left hand (E, 

F) of the double-amputee transplant patient data shows that proper digital palmer arterial branches, 

the synovial sheath, and the ligamentous structures are clearly visible in the index and middle 

finger at 7T (F)  when compared to 3T (E), as demonstrated by the yellow oval and arrows. 
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Figure 5.15. 3T vs 7T TOF imaging of left hand images of double-amputee transplant patient 

data.  
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Figure 5.16 shows 3T (right hand: A) vs 7T (right hand: B) data.  Similar observations to 

those in Figure 5.15 can be seen.   

 

 

 

 

Figure 5.16. 3T vs 7T TOF Imaging of right hand of double-amputee transplant patient data.  
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5.2.3.1.2     T2DESS imaging:  Figure 5.17 shows the comparison of T2DESS images for 3T (left 

hand : O) and 7T (left hand: P).  It demonstrates a very fine delineation of palmer ligament plates 

(arrow), fibrous sheaths (circle), and bone structures (arrow) in detail, with much higher contrast 

at 7T.  T2DESS imaging of the right hand (Q, R) of the double-amputee transplant patient shows 

a comparison of 3T (right hand : Q) and 7T (right hand: R).  It shows a very fine delineation of 

tendons, fibrous sheaths, arteries, and bone structures in detail, with much higher contrast at 7T.  

T2DESS imaging of the right hand (S, T) of the double-amputee transplant patient shows a very 

fine delineation of fibrous sheaths, tendons, arteries and bone structures with a much higher 

contrast in 7T. 
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Figure 5.17. 3T vs 7T T2DESS imaging of left hand (O, P) and right hand (Q-T) of the double-

amputee transplant patient.  
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5.2.3.1.3     T1VIBE imaging:  Figure 5.18 shows a T1VIBE imaging (left hand) comparison of 

3T (U) and 7T (V), demonstrating the various anatomical details viewable at high resolution.  V 

shows a clear distinction between the fibrous and synovial (tendon) sheaths of the finger and flexor 

digitorum superficialis (profundus) tendon (yellow circles).  T1VIBE (left hand: W, X) imaging 

of the double-amputee transplant patient data is also shown.  X shows a clearer distinction of the 

volar branches of the proper palmer digital branches of the digital arteries, proper palmer artery, 

capillaries and minute branches of the digital artery at the finger pulps.  T1VIBE (Y, Z) imaging 

of the double-amputee transplant patient data also shows high resolution details of various 

anatomical structures.  Z depicts the palmer ligament plates (yellow circles), annular parts of the 

fibrous sheath over (synovial) flexor tendon sheaths (red ovals), and the tendons of the flexor 

digitorum superficialis and profundus muscles (yellow arrows).  The 7T right hand images (1, and 

2) also depict a fine delineation of digital arterial branches, tendon, and ligaments when compared 

to its counterparts at 3T. 
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Figure 5.18: 3T vs 7T T1VIBE imaging 
of double-amputee transplant 
patient data. 
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5.2.4 CONCLUSION 

 

This study shows the potential of using UHF MRI in post-transplant evaluation after UET 

and potentially in hand surgery practice, including in the diagnosis and interpretation of scaphoid 

fractures, avascular necrosis, carpal dislocations, triangular cartilage tears, connective tissue 

disorders, and other micro-vascular disease conditions. 
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6.0 CONCLUSION AND FUTURE WORK 

 

6.1 SUMMARY AND CONTRIBUTION 

 

6.1.1     Development of multi-channel transmit only whole body coil  

 

A newly in-house built thirty-two channel Tx coil with parametric coupling design 

approach was developed to target and excite the nuclei utilizing the B1
+ field in a circularly 

polarized arrangement for whole body imaging at 7T while keeping acceptable SAR limits as per 

FDA guidelines. This study presents a numerically developed RF Tx array which was also 

evaluated experimentally at 7T MRI. This RF system was built without the Rx-only insert, thus 

SNR/contrast was compromised.  Results from preliminary studies indicate that the presented RF 

Tx coil can generate CP mode in simulation as well as experimentally in the outlined body phantom 

images using the modular highly coupled multichannel transmit coil. 

 

6.1.2     Evaluation and in-vivo imaging of whole body transmit and receive only coil 

 

The combined thirty-two channel Tx – sixteen-channel Rx only coil was designed and 

developed.  This configuration has increased SNR approximately 3 to 3.5 times using a 
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multichannel Rx-only array in conjunction with the Tx coil design as discussed earlier in Chapter 

3 in detail. Also, the clinical feasibility of parallel imaging was shown by G-factor measurements, 

which also show that R=3, 4 and above affects image quality. The noise correlation matrix provides 

good isolation between all the Rx channels. The in-vivo images show excellent anatomical detail 

in the liver and abdomen where the Rx coil is located. The stomach region doesn’t benefit from 

Rx as much as the liver because the Rx coil only covers a limited region, not the entire 

circumference. Thus, utilizing a thirty-two channel TTT Body coil at UHF shows excellent 

potential for whole body imaging at ultra-high field (7T) within acceptable SAR limits. 

 

6.1.3 Development of a TEM transmit and receive only array for upper extremity 

application 

 

This study presents the first successful demonstration of a homogeneous volume resonator 

in conjunction with an eight-channel Rx only array for a targeted field of view UHF upper 

extremity imaging. This RF system was optimized for the human forearm but can be utilized to 

image the hand, wrist, arm or even elbow in extension as there is no significant change in tuning 

properties.  With a small filling factor, the use of combined Tx and Rx coil is ideal to detect the 

incoming signal with nearly homogeneous excitation [149-152]. The in-house built TEM volume 

resonator in conjunction with an eight-channel Rx only array was successfully evaluated at 7T to 

confirm the potential for next generation UHF imaging in upper extremity applications. In-vivo 

images and a nearly homogenous B1
+ field (shown in simulation, and experiment) demonstrate 

excellent coverage over the desired anatomy of interest with high SNR and CNR, revealing 

exquisite structures like nerve branches and fascicles, vessel lumens and walls, and cartilage and 
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synovial fluid delineation with the precise detail and resolution required for various extremity 

diseases and pre and post-surgery applications. A wide variety of images with high spatial 

resolution, SNR, and CNR were achieved and compare favorably  to those aquired at 3T. 

 

6.1.4  In-vivo feasibility evaluation of 7T upper extremity RF coil and non-contrast 

enhanced neuro-vascular imaging  

 

A customized 7T RF coil was built and compared with available extremity coils at 3T with 

similar dimensions and the same number of elements.  High SNR and CNR were achieved at 7T, 

with image quality significantly exceeding that at 3T, most especially in the HR protocol.  

Additionally, it shows that homogenous excitation (a typical hurdle for 7T imaging) is quite 

possible for the forearm with coverage that extends from wrist to elbow.  T1W VIBE images at 

7T have less overall noise when compared to the 3T images as the conspicuity of small vessels is 

superior.  T2W DESS imaging shows improvements in nerve signal and better contrast between 

muscle planes at 7T when compared to 3T, with visualization of finer osseous trabecular detail.   

Moreover, there is greater contrast and delineation of cortical bone and improved detection of 

small vessel detail at 7T.  Such resolution is clearly not available when utilizing 3T. Extended 

coverage (forearm, elbow and wrist) and exquisite image quality utilizing optimized pulse 

sequences (T1W VIBE, T2W DESS, DTI and TOF) in conjunction with custom-designed RF coil 

demonstrate the potential of 7T imaging for upper extremity applications.  
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6.2 FUTURE WORK 

 

The TTT coil [26] presented here is a distinctive design to be used with 7T UHF body 

imaging in combination with a decoupled Rx-only-insert to reduce noise to provide excellent SNR 

[106]. This TTT design has never been applied in body imaging before. Few research groups have 

published work on RF shimming in different parts of the human body [12-15, 17, 19, 246]. The 

complex interaction (loading) between the biological tissue and the coil has been problematic due 

to the variation in electromagnetic properties as well as geometrical properties [37-39, 42, 43]. 

Future work will implement RF shimming techniques reliably. The transmission field (B1
+) should 

be correctly measured from the ROI being imaged every time, which is unfeasible and time 

consuming [25]. The TTT RF coil is inherently highly coupled (higher RF transmission properties 

associated with highly coupled coils), which in turn enables it to negate the aforementioned loading 

effects (ultra-high field electromagnetic effects), and that helps overcome the loading dependency 

[20, 25, 26] which in turn will help in implementing circularly polarized B1
+ field reliably without 

the need for frequent measurement of transmission field (B1
+).  

 

 In the case of extremity coil, we focused on forearm/elbow imaging. Also, due to the small 

electrical size of the load, the TEM resonator was almost load insensitive and the Rx array didn’t 

affect the tuning significantly, so the Rx coil was replaceable. In cases of high density design (ex: 

twelve or sixteen channels) being used instead of eight channels without affecting Tx performance 

SNR  would be boosted even further, or a different geometrical/structural Rx design could be used 

(i.e. future work includes various geometrical design for extremity (wrist, finger joints, hand) 
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imaging). Furthermore, the TEM’s B1
+ field homogeneity could be further improved by adding 

more strut elements. In addition to developing hardware, we plan to concentrate our efforts on 

developing and applying optimized sequences to various clinical applications utilizing on-site and 

post-processing software to benefit from the advantages offered by 7T.  
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