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Input-output (IO) models have been used in Life Cycle Assessment (LCA) to help 

understand the economy-wide impacts of goods and services, expanding the boundaries of more 

traditional process-based studies. IO models are particularly suitable for studies focusing on 

industries that are part of the supply chain of many other processes, as is the case with electricity 

generation. However, existing IO-LCA tools usually fail to account for the large variation in 

regional electricity consumption mixes within the economies they describe, providing only 

average emissions estimates for electricity use. Using average emissions estimates can lead to 

misleading results when studying a process that differs significantly from the economy-wide 

mix.    

This dissertation addresses this shortcoming by creating a multi-region input-output model 

(MRIO) focusing on the power generation and supply (PGS) sector that features a mixed-unit PGS 

sector disaggregated by generation type. The sector disaggregation procedure is combined with 

region-specific electricity information as well as electricity trading data to yield a technologically 

and geographically disaggregated model. This method allows for better modeling of both regional 

supply chains and emissions, yielding for region specific estimates that can be used with process-

based methods to build more accurate hybrid LCA studies. While the focus is on the U.S. economy, 

the methodology can be easily adapted to any region(s) for which the relevant data is available. 
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The model is used explored in two different cases studies. First, environmental effects of 

national and regional changes in electricity consumption are analyzed using electricity projections 

to the year 2030. This scenario examines changes to greenhouse gas (GHG) emissions and water 

consumption (WC) by state and industry given the projected changes. The results show that 

tradeoffs between GHG and WC emissions per MWh differ for specific states and industries.  The 

second case study looks at the use of electricity by data centers, both at a regional scale and from 

a practical business perspective, and explores the possible tradeoffs related to switch from regional 

grid electricity to dedicated renewable sources for operating data centers. The results focus on the 

effect that geographic distribution of data centers in the U.S. have on their emissions.
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1.0  INTRODUCTION 

 

1.1 MOTIVATION 

 

Electricity generation is a critical industry in the U.S., representing about 2% of GDP in 2015 (U.S. 

Bureau of Economic Analysis 2017). Its importance extends beyond its direct economic output, as 

availability of electricity is a necessary input for most sectors in the economy, without which the 

availability of many goods and services would be severely impacted. Electricity generation is also 

one of the primary sources of many environmental burdens for most products and processes, 

representing 38% of CO2 equivalent emissions (U.S. Environmental Protection Agency 2017) and 

45% of water withdrawals (Maupin 2014) in the United States. The widespread need of electricity 

is met by many different electricity generation technologies, which use distinct primary inputs and 

thus have different supply chains and associated environmental impacts. This makes analysis of 

the economic and environmental impacts of power generation both vital for energy policy at 

national and regional scales, and challenging to perform. 

Life cycle assessment (LCA) has become a standard method to evaluate environmental 

impacts of goods and services, and can be a useful tool to help us understand the impacts of 

electricity generation. However, performing a traditional process-based LCA can be an expensive 

and time-consuming task, with relatively narrow boundaries that cannot provide much information 

beyond the direct impacts of power generation (Lenzen 2000). An alternative approach is to use 
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national economic accounts and environmental emissions data to produce fast, economy wide 

impacts of electricity generation; Economic Input-Output (IO) LCA is an example of this approach 

(Green Design Institute 2013). However, since IO models consist of aggregated data, they suffer 

from a different problem: the level of aggregation makes this approach inadequate for analyses of 

specific locations and/or processes difficult.  

A way of dealing with the constraints of process-based and IO-LCA approaches is to 

combine them in what is called a hybrid LCA (Suh et al. 2004), using the IO model to help define 

the scope, boundaries and/or indirect impacts of power generation, while using a process based 

LCA to determine the more direct impacts. Still, combining the IO and process-based LCAs in a 

consistent manner may prove difficult, due to different functional units, geographic scales, and 

industrial processes represented by each approach. For power generation, this is especially true, 

given that this industry is represented by a single sector in the U.S. IO tables, but represents many 

diverse energy technologies. Such a broadly defined and aggregate sector limits the utility of the 

IO accounts for energy policy analysis, as it cannot distinguish the sources specific sources of 

emissions found in the grid.  

In this work, national Input Output Accounts developed by the U.S. Bureau of Economic 

Analysis for the U.S. economy are supplemented with additional data for electricity generation to 

create an electricity focused multi-regional input-output model (MRIO). This model disaggregates 

the single sector electricity in the IO accounts using plant specific data that better represents the 

individual electricity generation technologies and makes it more compatible with electricity 

generation processes usually found in bottom-up approaches (Swiss Centre for Life Cycle 

Inventories 2010), thus facilitating the creation of hybrid models. Physical data, in the form of 

electricity flows, are introduced in the economic transactions of the MRIO tables to reduce the 
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biasing effect that price can introduce in monetary models (i.e. making the physical quantity and 

price interaction inherent in economic models explicit). Finally, state-specific information that 

better represents the industries present in individual states as well as state-specific electricity 

generation mixes are included. The resulting MRIO model has the ability to estimate regional 

economic and environmental impacts of electricity consumption and individual electricity 

generation technologies, while still showing economy-wide monetary and energy flows associated 

with those impacts, a feature that process-based approaches lack. 

The above steps constitute a useful framework for more than just modeling electricity 

generation. They can be adapted for any sector for which there is geographic, economic, and 

environmental data that can be included in the MRIO model (e.g., for mining sectors where there 

is data for each type of mine). They also allow for better modeling of hypothetical or projected 

policy scenarios since the supply chain demands and purchases of the new PGS technologies can 

be tailored to more detailed sectors, at the regional level, and without price distortions. The 

methods used here can be used for other commodities besides electricity generation so that they 

can be tracked in physical flows, using the unit that is most appropriate for the particular 

commodity under consideration given that price data is available (e.g. tracking natural gas flows 

in cubic feet for the Natural Gas Distribution sector). Finally, the addition of regional information 

and creation of a multi-regional model can add geographic context to any location-specific LCA 

study. 
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1.2 RESEARCH QUESTIONS 

1. How can the MRIO model be used to evaluate the environmental impacts and energy flows 

associated with major nationwide changes to the electricity sector? 

 

Introducing individual states as sectors in the model reduces the burden on the model user 

by removing their need to include or adjust for differences in regional electricity grids. States have 

considerable authority when implementing energy and environmental policy regarding electricity 

generation, which makes them the right spatial scale to address both region wide issues (when 

considered individually or as a combination of a few states) or nationally (when considering the 

aggregate effect of the individual state policies). While there are several Multi-Regional models 

for other countries and regions (Wiedmann et al. 2010; Lenzen et al. 2013c; Su and Ang 2014; 

Wood et al. 2015), there are fewer models that include distinct regions in the U.S. (Cicas et al. 

2007; Caron et al. 2014). However, these do not represent the individual electricity generation 

technologies and their interactions with other sectors of the economy, and the PGS sector is not 

detailed at the state level. The model’s capability of representing complex regional electricity 

scenarios and their effects on other economic sectors makes it a valuable tool that can be used on 

its own for screening analyses or in conjunction with other methods that focus more specifically 

on deployment of electric power generation technologies, such as the Regional Energy 

Deployment System (ReEDS) or MARKet Allocation (MARKAL) models (Short et al. 2011; Shay 

et al. 2008). 

The MRIO model can be used to evaluate various scenarios ranging from future electricity 

production projections at the national level to impacts of electricity consumption for private 

industries. To explore this range of applications, two example scenarios were developed (and 
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described in Chapter 4 in detail). The first scenario demonstrates how the MRIO model can be 

used to evaluate the potential impacts of national energy policies. EIA projections are used as a 

basis for developing a scenario of future electricity consumption at the state level in the year 2030. 

Impacts in terms of greenhouse gas (GHG) emissions and Water Consumption (WC) changes at 

both the national and state levels, as well as the effects that such changes have on other industries 

in the economy, are estimated.  The second scenario demonstrates how the model can be used as 

a screening tool for exploring changes not only at the state level, but also by an individual industry 

committed to achieving ambitious sustainability goals. This scenario focuses on the GHG and 

water consumption impacts related to changes in electricity consumption for a single IO industry: 

data centers. The model is used to estimate emissions changes caused by a hypothetical relocation 

of data centers throughout the U.S., as well emissions reductions caused when privately owned 

data centers are powered using dedicated renewable electricity generation. These scenarios are two 

examples of the types of questions the model was designed to address, and provide an example of 

how the model can be used to explore effects of electricity policies at several different levels 

(national, state, individual industry and even company level). 

 

2. How do emissions estimates change when flows are tracked in economic vs. physical flows in 

an IO framework?  

 

By introducing energy units in the IO model, emissions are directly connected to the 

physical amount of consumed electricity rather amount of economic activity generated by 

electricity consumption, and decrease the uncertainty associated with fluctuating prices of 

commodity and produced electricity. This increases the confidence of impact estimates associated 
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with life cycle assessments of power generation, and of different products, processes, and end-

users of electricity.  By having the IO model use energy units, model results are more directly 

compatible with process-based approaches, which measure impacts in terms of physical units. The 

increased compatibility and accuracy in PGS related results is beneficial for LCA practitioners and 

policy makers wishing to understand PGS’s impact from cradle to grave by providing a screening 

tool that tracks electricity flows throughout the economy while still remaining less complex than 

other energy modeling efforts which usually rely on detailed optimization procedures (such as the 

National Energy Modeling System, NEMS). 

 

3. How can we add resolution to IO models while maintaining its national (economy-wide) scope? 

 

By disaggregating one sector into multiple constituent sectors in input-output life cycle 

assessment (LCA) models, we can introduce process-level detail into an IO context that allow 

more specific questions. In particular, by disaggregating the Power Generation and Supply sector 

into individual generation-specific sectors we can more easily investigate energy policy questions 

with the IO framework, such as what the economy-wide impacts of individual renewable 

generation technologies are. Further, we can make use of existing process level detail for 

individual PGS technology types to validate that the disaggregation process results in similar 

emissions estimates, as shown in Chapter 2. In this way the disaggregated model can be used for 

hybrid LCA studies since the emissions estimates are compatible with bottom-up approaches while 

still maintaining the economic connections of the PGS sectors to the rest of the economy, 

something that is rare for most process-level data sets (Majeau-Bettez et al. 2011).  
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1.3 BACKGROUND 

1.3.1 Electricity 

Electricity generation, distribution, and consumption plays an integral part in the U.S. 

economy. Directly, electricity consumption represents roughly 40% of total residential energy 

consumption (U.S. Energy Information Administration 2010a); over 80% of total energy 

consumption in commercial buildings (U.S. Energy Information Administration 2012); and over 

13% of total energy consumption by manufacturing sectors (U.S. Energy Information 

Administration 2010b). However, the importance of electricity for the economy is greater than that 

suggested by its direct consumption, as can be surmised by the consequences of not having 

continuous access to electricity. The best example of this is the North East blackout of 2003, which 

remains the largest black out in U.S. history. It affected only 8 states in the U.S. for a period of 

only a few days, yet it is estimated to have cost up to $10 billion in lost productivity (EIA 2004). 

For comparison, the total profit of the electric power industry in 2003 was $29 billion (U.S. Energy 

Information Administration 2004). This indicates that the influence of power generation extends 

beyond its direct economic contributions, and that any policies that affect this industry have the 

potential to affect the many different consumers that rely on it. 

In addition to being an important piece of the economy, the Power Generation and Supply 

(PGS) sector is equally or perhaps even more important from an environmental perspective. Due 

to the large scale of electricity generation as well as the many different power generation 

technologies that are part of the U.S. grid, the PGS sector produces many different types of 

pollutants, such as CO2, NOx, SO2, P.M., etc. that have varied and adverse effects on the 

environment.   This work focuses on two specific environmental effects of electricity generation: 
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greenhouse gas (GHG) emissions and water use. Electricity generation was responsible for as 

much as 38% of GHG emissions in the U.S. in 2015 (U.S. Environmental Protection Agency 2017) 

and up to 45% of all water withdrawals in 2010 (Maupin 2014). As one of the main drivers of 

climate change, GHG emissions are subject to national, regional, and local regulation (e.g., 

Renewable Portfolio Standards, Clean Power Plan, etc.), as well as corporate tracking and 

management efforts, while water use has come under increased scrutiny in recent years due to 

extreme droughts and limited water availability in southwestern U.S. states. In particular, water 

use for power generation is the focus of  U.S. Department of Energy’s Energy-Water nexus effort, 

which seeks to improve the modeling and analysis of power generation systems with the intent to 

assist in policy formulation with regards to climate change and energy security (U.S. Department 

of Energy 2014).  

Besides regulations and policies set by various levels of government, there are other factors 

that are likely to cause the electricity industry to undergo considerable changes. These factors 

include variability in the prices and supplies of different fuels, such as natural gas and coal; the 

aging and decommissioning of baseload coal and nuclear power plants; and continued research 

and development of solar, wind, biomass, and other renewable electricity technologies. Given the 

potential for swift and extensive change to the power generation industry, it is important for policy 

and decision makers to analyze the system-wide impacts of their actions, since the implications of 

their choices could have long lasting effects. 

1.3.2 Life Cycle Assessment 

One tool that is ideally suited for comparing the various options in policies and 

technologies for power generation policies and deployment is life cycle assessment (LCA). LCA 
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is a method which quantifies the environmental impacts throughout the life of a product, service 

or sector. This type of analysis is useful for understanding the environmental effects of a product 

or process in each part of its life cycle, from raw material extraction to disposal and end-of-life. A 

fundamental aspect of LCA is its requirement for a set of elements to ensure any comparisons of 

processes or technologies is intrinsically fair and “apples-to-apples”. This is crucial when 

considering impacts of electricity, given the significant differences in electricity generation 

technologies that make up the U.S. power grid. Additionally, LCA is flexible and broad enough 

that it can also be used to analyze not just individual products but also effects of policies (whether 

government or corporate), including the potential economic, environmental, and even social 

impacts (e.g. forced labor, health and safety conditions for workers, etc.) (Arcese et al. 2013). 

Several organizations have developed standards for LCA, including the Society for Environmental 

Toxicology and Chemistry (SETAC) (Fava 1991), the Environmental Protection Agency, and the 

International Standards Organization, as part of the ISO 14000 Environmental Management 

Systems standards  (International Standards Organization 2006). Figure 1.1 shows common life 

cycle stages considered in LCA. 

 

Figure 1.1: Common life cycle stages considered in LCA 
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1.3.2.1 Process Based LCA 

Initially, the standards developed for LCA studies were focused mostly on individual 

products or services and focus on defining a product system with individual unit processes that 

described the transformation of inputs of the product system (e.g., barrel of oil) to outputs (e.g. 

diesel gas). This method is known as process-based LCA, and constitutes a bottom-up approach 

in which different types of data (e.g., energy, emissions, costs, etc.) are collected for each unit 

process needed to generate the product under study. There are two main ways data for process 

LCA are modeled: process-flow diagrams or using a process matrix.  Figure 1.2 is an example of 

a process flow diagram of product system for coal generation, and shows how or how product 

systems and system boundaries are usually depicted for process LCA. The second main approach 

for modeling a process LCA is using process matrix, where the different processes in the product 

system are organized such that rows represent the physical balance of the different types of product 

outputs in the system (e.g., kWh, gallons of diesel, etc.) and each column represents a unique 

process. For either representation (diagrams or matrices), as the number of processes in a study 

increases, the LCA becomes more complex and the data requirements more onerous, requiring a 

boundary to limit the system to a manageable size.   
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Figure 1.2 Conceptual representation of product system and system boundary for coal-
based electricity production 

 

Despite being addressed in the standards (e.g. using methods such as substitution of 

products and system expansion), these boundaries are often arbitrary and significant portions of 

the product’s supply chain may be neglected leading to incomplete, inaccurate, or uncertain results 

(Lenzen and Dey 2000; Williams et al. 2009a; Matthews et al. 2008), normally referred to as 

truncation errors. Even for process LCAs that rely on large datasets with connected process flows, 

such as those conducted with proprietary software (PE International 2008; Pré Consultants 2008) 

and data (Swiss Center for LCI 2009), the boundary issue is a problem, as it is likely that certain 

sectors of the economy are underrepresented in such datasets (Majeau-Bettez et al. 2011) 

(Weinzettel et al. 2014) or that the assumptions and boundary choices are different between 
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datasets and not transparent to those who view the results. For practitioners, choosing the right 

balance between completeness, practicality, transparency, and costs is difficult, and dissimilar 

boundaries for similar products cause problems for comparing across studies. 

1.3.2.2 Environmentally Extended Input Output (EEIO) LCA 

An alternate approach to LCA that compensates for the boundary selection problem, which 

can be used in conjunction with the process-based approach, is to use top-down economic IO 

methods for estimating environmental impacts. This approach is based on methods originally used 

for macroeconomic analysis (Leontief 1987; Leontief 1986; Leontief et al. 1970), and enables the 

expansion of the system boundary of process-based studies by using the monetary transactions of 

the economy as a way of measuring the production of goods and services.  The Economic Input-

Output Life Cycle Analysis (EIO-LCA) (Hendrickson et al. 1998; Lave et al. 1995; Horvath and 

Hendrickson 1997; Joshi and Lave 1998) and the Ecologically Based Life Cycle Assessment 

model (Eco-LCA) (Bakshi and Small 2011) are example implementations of this method. As this 

is the main focus of this work, this framework is explained in more detail in this section. 

In the U.S., EEIO LCA models can be constructed from the U.S. Bureau of Economic 

Analysis survey data which records what industries produced and what they purchased to produce 

it; the latest data is for the year 2007 and covers approximately 390 distinct industries and 

commodities (U.S. Bureau of Economic Analysis 2013). The basic components of the IO model 

are the Supply and Use tables. The Supply table has commodities (types of goods and services 

produced) on the rows and industries (the different producing sectors) on the columns, and shows 

the sources of commodity production by industries. The Use table is similarly arranged, and shows 

the use of commodities by industries (i.e. each industry’s supply chain). The Use table additionally 

has value-added rows, such as wages and taxes, and final demand columns. Together, these tables 
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describe the monetary flows of the economy. Their use for input-output calculations follows. (Note 

that if the industry and commodity sectors are the same, the Use table is equivalent to the square 

input-output table).  

Let U represent the inter-industry transactions part of the Use table with n commodities 

and m industries (i.e., excluding the value-added and final demand portions of the Use table). U is 

size n × m where uij represents the amount of commodity i used by industry j. Similarly, let V 

represent the n × m supply table where vij represents the amount of commodity i produced by 

industry j. Let g be a 1 × m vector where gi represents industry i's total output. Finally, let q be an 

n × 1 vector where qi represents the total amount of commodity i produced.  Then the direct 

requirements (or technical coefficients) B matrix can be found as  

 

𝐵𝐵 = 𝑈𝑈𝑔𝑔�−1                                                                (1-1) 

 

 where 𝑔𝑔� indicates a square matrix where the elements of the vector are on the diagonal. 

This matrix defines, for each industry, the amount of each commodity needed per unit output. 

Similarly, the market share matrix D, which defines the proportion of each commodity produced 

by each industry, can be found as  

 

𝐷𝐷 = 𝑉𝑉′𝑞𝑞�−1                                                                (1-2) 

 

where 𝑉𝑉′ indicates the matrix transpose. For the U.S. IO tables, the market share matrix is 

adjusted for the production of scrap by removing the value of scrap in each industry from the 
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industry’s total output; let W refer to this adjusted matrix. After this adjustment, we can find the 

industry by commodity total requirements matrix, L1:  

 

𝐿𝐿 = 𝑊𝑊(𝐼𝐼 − 𝐵𝐵𝐵𝐵)−1                                                       (1-3) 

 

Note that there are several different approaches to constructing the model’s total 

requirements tables, depending on what technology assumptions are used (i.e., industry-based vs. 

commodity-based technology assumptions) and how the final demand and total impacts need to 

be expressed (i.e., industry by industry, commodity by commodity, or industry by commodity). In 

this work we are using the industry by commodity, industry-based technology assumption. This is 

because we want to look at the impact that different prices of one commodity, PGS, have for 

different industries (thus necessitating industry by commodity total requirements), and the desire 

to keep the input structure of PGS consistent (thus necessitating an industry based technology 

assumption). More detail in the derivation and use of these different total requirements matrices 

and technology assumptions can be found in Miller and Peter D. Blair (1985). 

 

 

 

                                                 

1 Note that this equation is the industry by commodity equivalent of the more commonly used square matrix 

representation of the Leontief Inverse: 

     𝐿𝐿 = (𝐼𝐼 − 𝐴𝐴)−1     

where A is the square direct requirements matrix.  
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This matrix can then be used in the standard Leontief equation, 

 

𝑋𝑋 = 𝐿𝐿 ∗ 𝑌𝑌                                                                      (1-4) 

 

where Y is an n × 1 vector of commodities representing the final demand and X is a 1 × m vector 

of industry throughput necessary to meet that final demand.  

This economic framework can be extended for use in LCA by creating a vector of 

emissions intensities per unit of output for each industry (e.g., Tonnes of CO2 equivalent per $M 

of output). Let R be a 1 × m vector containing these emissions intensities. Then we can use equation 

(1-5) to calculate the emissions associated with the production specified in the final demand vector 

Y: 

𝐸𝐸 = 𝑅𝑅 ∗ 𝐿𝐿 ∗ 𝑌𝑌                                                               (1-5) 

 

where E is a 1 × m vector of resulting emissions. If R is expanded to represent k different 

pollutants, then R becomes a k×m matrix and the use of equation (1-5) results in E being a k × m 

matrix of emissions associated with the production specified in Y. Figure 1.3 shows the final 

components of the EEIO LCA framework. 

 

Figure 1.3: EEIO Framework for LCA 
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The EEIO framework as described above does not suffer from truncation errors due to 

system boundary constraints, as it effectively expands the boundary considered in an LCA to 

include the entire economy. However, this approach has its drawbacks as well. A trade-off for the 

increased scope is that individual processes cannot be considered at the same level of detail as with 

process LCAs, and instead process with similar products but possibly dissimilar production 

characteristics are grouped into the same sector, resulting in errors due to aggregation. 

Additionally, the data used to create these models are difficult to collect, and such work is often 

only done by governments at multi-year intervals, leading to a time lag in data. Finally, this same 

data is often only collected in terms of economic, rather than physical, outputs. While this is useful 

for comparing different products with a common unit, measuring outputs in economic subjects the 

estimates to economic alterations (e.g., price fluctuations, inflation) not encountered when 

accounting in physical units as is often done with process LCA. 

1.3.3 Hybrid LCA Models 

Since process LCA and EEIO LCA complement each other’s main drawbacks (boundary 

selection limits and lack of process level detail, respectively), researchers have combined both 

methods, creating was is called hybrid LCA. There are several ways in which this is done; the most 

common approaches are outlined by Suh et al. (2004), and briefly described here.  

The first approach is to produce a detailed process LCA for specific aspects of a particular 

product or system of interest, and use the EEIO framework to estimate the impacts of the rest of 

the system. This method is termed tiered hybrid LCA, as the process and EEIO frameworks 

constitute distinct tiers in the analysis, where the matrix coefficients of the EEIO framework are 
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usually left unchanged. An example of this type of analysis was performed by Dong et al. (2013), 

where they used a process level detail to calculate the direct and downstream (e.g. construction, 

use, maintenance) impacts, while using EEIO to calculate the upstream (e.g. raw material 

extraction) impacts of the  Shenyang Economic and Technological Development Zone industrial 

park in China.  

A second approach is to disaggregate sectors in an EEIO model is input-output based 

hybrid analysis. In this approach, an original sector in the IO framework is divided into multiple 

sectors using more detailed monetary data than that used in the original model (or alternatively, 

process level data) to inform the disaggregation. Usually, the detailed data is used to derive weights 

by which to distribute the coefficients of the original sector in the direct requirements matrix. Joshi 

(2000) used this method to compare the environmental impacts of different types of automobile 

fuel tank systems. His method is explained in greater detail in Chapter 2, where we describe the 

similarities and differences between this type of hybrid approach and the disaggregation of the 

PGS sector in this work.  

In a third type of hybrid LCA analysis, process level data is organized into a process matrix, 

as described above. Process matrices are conceptually similar to the EEIO Use and Supply tables 

and processes in the process matrices can be mapped to IO sectors in the EEIO tables that most 

closely represent each process creating flows that cross the border between the two systems. This 

type of analysis is called the integrated hybrid model, as it explicitly connects the process and IO 

level matrices in a single mathematical framework. An example of this approach is the study by 

Wiedmann et al. (2011), where they use an integrated hybrid model to estimate the potential 

environmental impacts of wind power in the U.K.  
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As a result of the use of multiple types of units and Input-Output elements in the model, 

integrated hybrid models can also be classified as type Mixed-Unit Input-Output (MUIO) model. 

More generally, however, MUIO models do not necessarily need distinct process IO matrices; an 

IO matrix that measures different sectors’ outputs in different types of units can be considered to 

be a MUIO model. An early MUIO model was used by Bullard and Herendeen (1975) for wide 

scale energy analysis during the energy crisis in the 1970s. More recently, Hawkins (2007) created 

an MUIO model used to calculate and track the flows and environmental impacts of cadmium, 

lead, nickel and zinc, using detailed material data from the U.S. Geological Survey in conjunction 

with the BEA I.O. accounts. This approach is similar to the work described in this thesis, as we 

use process-and-plant level data as well as detailed price data for electricity and link electricity 

production in energy units with the rest of the economy for use with the MRIO model. This is 

described in more detail in Chapter 3.  

1.3.4 Multi-regional Input-Output models 

While the different types of hybrid LCA models address the issue of aggregation and 

truncation errors for individual processes and sectors, IO models in general are still limited in one 

important regard: they generally describe the entire economy as a single region. For an economy 

as extensive, both geographically and industrially as the U.S., this represents a different type of 

aggregation, one where regions as different as the arid southwestern states and the more temperate 

Midwest are lumped together. A way of addressing this issue in IO models is by creating Multi-

Regional Input Output (MRIO) models. 

There are two primary approaches to create MRIO models. The most common approach 

involves using data from existing IO tables for different regions and merging them together. This 
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is usually done by deciding on specific set of IO sectors, adjusting the existing IO tables to include 

only sectors of the specified set, and linking the tables from different regions through their inter-

regional trade by using import and export data between them as a way to reconcile the flows of 

goods between regions and balance the tables. Several studies follow this approach, including the 

EXIOPOL project in the European Union (Wood et al. 2013), the Global Trade Analysis Project 

or GTAP (Narayanan 2012), and the EORA project (Lenzen et al. 2013), among others.  

The advantage of using independent IO tables for building the MRIO model is that the 

regional economies are well represented, as these tables form the basis on which the model is built. 

The downside is that if there are regions without IO accounts, they cannot be included in the model. 

An alternate approach, then, is to use the IO accounts for an existing economy and modify Use 

and Supply tables to include regional information. This is done by creating new, regional sectors 

in the IO model, modifying the existing values in the IO tables to match the regional economy 

using regional data, and linking the different regions using trade between regions and industries 

(i.e., inter-industry flows). This results in modified coefficients in the direct requirements and 

Leontief matrices that better represent regional supply chains. This is the approach that is used 

with the U.S. economy to create an MRIO model, as is done by RIMS II (Bureau of Economic 

Analysis 2014) and IMPLAN (IMPLAN Group), and that will be used in this dissertation due to 

the lack of independent IO accounts for different sub-regions of the U.S.  

In this thesis, I present an MRIO model that includes individual PGS generation sectors, 

tracks the flow of electricity from these sectors in energy units, and represents the electricity mixes 

of individual U.S. states. To do this, data from the BEA’s latest benchmark economic accounts 

will be combined with state-level electricity production and emissions data, as well as geographic 

data detailing the distribution of industries throughout the U.S. The intent is to create a model 
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capable of estimating emissions for the entire U.S. economy and individual states within the U.S., 

while keeping track of the impact that individual states have on the larger economy. This will 

enable the model to provide an accurate estimate of electricity consumption, GHG emissions and 

Water Consumption for any type of electricity scenarios and energy policies.  

The rest of this thesis is organized as follows. Chapter 2 discusses the disaggregation of 

the original electricity sector found in the BEA IO accounts into 10 electricity sectors that describe 

distinct generation technologies, as well as emissions factors for the newly disaggregated sectors. 

Chapter 3 describes the creation of a Mixed-Unit Input-Output model based on the disaggregated 

PGS sectors, using electricity price data at the industry level to enable the model to track flows of 

electricity in physical units (MWh) rather than monetary. Chapter 4 discusses the creation of the 

Multi-Regional Input-Output model by including state level electricity generation, consumption, 

and trading data. It also discusses application of the model on two different scenarios: a projection 

electricity consumption by different states in the year 2030, and a case study involving 

consumption of electricity at national and state levels. Chapter 5 summarizes the contributions of 

this dissertation and provides commentary on future work on the MRIO model, from the 

development of new emissions factors to additional components that could be incorporated into 

the model.
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2.0  DISAGGREGATION OF POWER GENERATION AND SUPPLY FOR 

ENVIRONMENTALLY-EXTENDED INPUT-OUPUT MODEL  

Context of disaggregation for the MRIO model  

Before we can create an electricity specific MRIO model for the U.S., we need to introduce 

the individual power generation technologies in the base U.S. IO model. One of the most important 

reasons, as described in this chapter, is that aggregation bias is particularly egregious for PGS in 

the IO model. Both the requirements and emissions produced by different types of electricity 

generation technologies vary considerably, such that a single sector in the IO framework is a poor 

representation of an industry that plays a role in most other economic processes in the U.S. This is 

especially important given that the mix of generation technologies has changed significantly in the 

past few years, and is projected to continue to change in the coming decades (Energy Information 

Administration 2015). Additionally, to answer the types of research questions we want to explore 

with the full MRIO model, we need to provide this division between generation types. It is difficult 

to estimate the national or regional impacts of increased renewable generation, for example, if the 

IO model does include these sectors: even if electricity generation estimates are present for 

individual technologies at the process level (and this is not always the case), most such process 

flows lack the connections to the other sectors of the economy that are present in this framework, 

as there is a considerable lack of coverage in the areas process level datasets currently consider 

(Majeau-Bettez et al. 2011) and thus indirect impacts could be missed. This is explored in the
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context of economic activity and GHG emissions in this chapter, and in the context of Water 

Consumption in Chapter 4.0 .Finally, from a development perspective, performing disaggregation 

of the PGS sector as a first step allowed for the introduction of mixed units and individual regions 

with individual energy generation technologies, facilitating the implementation of the overall 

MRIO model. Figure 2.1 below shows a conceptual representation of the disaggregated EEIO 

framework (compare with Figure 1.3). 

 

 

Figure 2.1: EEIO Framework with Disaggregated PGS Sectors  

 

The disaggregation procedure presented here shares some similarities with the one built by 

Marriott (2007), but presents significant revisions (see Appendix A). In addition to using more 

recent economic and environmental data, we provide a more thorough, operational description of 

the disaggregation procedure than has been previously provided. The disaggregation procedure, 

and the algorithms implemented to carry them out, were redesigned to allow for a more refined 

allocation schemes for both the disaggregated PGS sectors and the non-PGS sectors affected by 

the disaggregation (e.g., allocation electricity production to both natural gas PGS and biomass PGS 

as secondary product by Paperboard Mills sector). Finally, this work provides validation of the 
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disaggregation procedure by providing a comparison between process-based and the disaggregated 

IO estimates for GHG emissions. 

This chapter is the peer reviewed version of the following article:  

 

Vendries Algarin, J., Hawkins, T. R., Marriott, J., Matthews, H.S., and Khanna, V. (2015), 

Disaggregating the Power Generation Sector for Input-Output Life Cycle Assessment. Journal of 

Industrial Ecology, 19: 666–675. doi:10.1111/jiec.12207 

 

which has been published in final form at http://dx.doi.org/10.1111/jiec.12207. This article may 

be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-

Archiving. 
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2.1 INTRODUCTION 

Over the past two decades, life cycle assessment (LCA) has become the standard method 

to estimate the environmental impacts of goods and services. The most popular LCA approach, 

called Process-LCA, defines a finite boundary by selecting the most important processes in a life 

cycle. However, such arbitrary and partial selection of life cycle boundaries is also susceptible to 

truncation error and conflicting conclusions by LCA practitioners (Lenzen 2000; Suh et. al 2004). 

Conversely, by using nation-wide economic and environmental emissions data, Environmentally 

Extended Input-Output life cycle assessment (EE IO LCA) allows practitioners to estimate impact 

inventories throughout the entire supply chains of goods and services. However, the level of 

aggregation inherent in IO data make it impossible to obtain the same level of detail for individual 

goods as can be achieved by process LCA.  To address this limitation, we can disaggregate 

existing IO models by combining top-down economic information with bottom-up 

emissions data to better represent the underlying economic transactions, supply chains and 

emissions of goods and services, resulting in more detailed and accurate impact estimates.  

In this work, we focus on the disaggregation of the U.S. power generation sector, from a 

single sector into multiple sectors that model electricity production to reflect different generation 

technologies. The power generation is particularly well suited for disaggregation: electricity 

generation is an enormous industry, representing about 2.5% of GDP in 2011(EIA 2013) (Bureau 

of Economic Analysis 2013b) as well as being primary component of environmental emissions for 

most products and processes, representing 38% of CO2 equivalent emissions from the United 

States in 2011 (U.S. EPA 2013). Despite this economic and environmental importance, the 

functions of power generation and supply are often aggregated into a single sector in input-output 

tables, as is the case for the U.S.  (Bureau of Economic Analysis 2008). A diverse set of 
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technologies, supply chains and environmental and social impacts are represented in this single 

electricity sector (Bergerson and Lave 2004). We take a step towards rectifying this imbalance by 

disaggregating the power generation sector for use in input-output based life cycle assessment 

(LCA). We build a flexible framework for creating new disaggregated sectors, direct inputs and 

emission factors for the generation, transmission and distribution portions of the electric power 

industry. This disaggregation can then be used as a basis to introduce more detail to the electricity 

sector in future works, including incorporating physical electricity flow information and region 

specific mixes. 

2.2 BACKGROUND 

2.2.1 Motivation 

During the data collection phase of the national economic accounts used for input-output 

models, industries with conceptually similar products but different production processes, input 

requirements and emission intensities are often combined in a single sector. This leads to a sector 

where the average emissions intensity may be significantly different from the individual process 

used to create it, making the sector not representative of any of its constituent processes and 

consequently has high aggregation uncertainty (Williams et al. 2009b; Lenzen 2000). It has been 

shown that even the most detailed input-output models will have sectors with significant 

aggregation error (Suh et al. 2004), and that this bias is more influential in modeling errors than 

the uncertainty introduced by sector disaggregation, even if done with limited data (Lenzen 2011).  
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Aggregation bias can easily be seen in the power generation sector.  For example, 

representing an LCA of 1,000 megawatt-hours (MWh) of nuclear power at $0.02/kWh using the 

power generation and supply (PGS) sector in an unmodified version of an IO-LCA tool (Green 

Design Institute (2013)) results in 178 metric tons of direct CO2e emissions.  This can be contrasted 

with a process-based LCA of nuclear electricity, which results in about 0.2 tons of direct CO2e 

emissions (Swiss Centre for Life Cycle Inventories 2010). However, using an IO-LCA tool, an 

uninformed practitioner assigns carbon from coal, petroleum and natural gas fired power plants to 

the nuclear power plant. This makes the PGS sector an excellent candidate for disaggregation. 

Recent studies that deal with sector disaggregation do so in the context of multi-regional 

input-output (MRIO) models. For example, the EXIOPOL project expands number of sectors of 

the IO tables for the 27 EU member states. By combining IO and auxiliary data from different 

countries, they produce a more consistent and detailed set of sectors for the entire EU and selected 

non-EU countries (Wood et al. 2013). Similarly, the EORA database is used in for an MRIO model 

that harmonizes the published IO tables of 187 countries (Lenzen et al. 2013c). While these studies 

provide greater level of detail than the original IO tables offer, they do so in the context of regional 

transactions, where the main goal is the harmonization of international accounts. 

Several studies have made use of IO models with disaggregated power sectors. Liu et al. 

(2012) and Lindner et. al (2013) disaggregated the electric power sector of Taiwan and China’s IO 

tables, respectively, and used their expanded model to better estimate the emissions intensities 

using the updated coefficient matrix. While the aim of these studies is similar, their methodology 

relies on the symmetric input-output tables as a starting point. The U.S. publishes supply and use 

tables (SUT), which allow for a different approach to the disaggregation given that we can adjust 

the production of primary and secondary commodities by the different disaggregated industries. 
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In this regard, the study by Wiedmann et al. (2011) is more comparable, as they use the U.K.’s 

SUT framework as a starting point, though their focus is on the use of hybrid MRIO LCA to assess 

the feasibility of wind power for greenhouse gas reduction rather than the disaggregation 

procedure.  

Previous disaggregation work on the U.S. electricity sector has focused on exploring the 

effect of different electricity generation and consumption mixes on carbon emissions. Marriott and 

Matthews (2005) disaggregated the generation mix used by the different economic sectors in the 

U.S. into 6 sectors, split by fuel type, and showed that inter-state trading of electricity produces an 

averaging effect on carbon emissions between different states and industries. However, they also 

showed that even with electricity trading there remains significant regional and industry variation 

with regards to consumption mixes, which can have substantial effects on the carbon emissions 

(Marriott et al. 2010). Choi et. al (2010) used a disaggregated PGS sector while keeping smaller 

size  tables (31 sectors) to better track the physical flows of fossil fuels in the power generation 

sector in order to estimate the effects of a carbon tax on prices and emissions of carbon intensive 

industries. In this article, we focus on the disaggregation method itself rather than on the 

consumption mixes of the other sectors in the economy, using the detailed U.S. SUT framework 

(which contain over 400 sectors) and applying it to the PGS sector. We use plant level data to in 

order to both create more accurate emissions factors and show how bottom-up environmental 

datasets can be integrated with the newly disaggregated IO sectors as opposed to using point 

estimates found in the literature . By showing in detail how to apply this procedure to the PGS 

sector, we provide an example of how to reconcile top-down IO data with bottom-up process data 

to create a harmonized IO based hybrid LCA framework, as suggested by Majeau-Bettez et al. 

(2011) and Suh et al. (2004). We validate the disaggregation procedure and the emission factor 
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calculation by comparing results from the disaggregated sectors to analogous process-level 

electricity LCI datasets. 

2.2.2 Disaggregation Overview 

Joshi (2000) describes three methods for performing an input-output LCA of an aggregated 

product or process not explicitly accounted for in the input-output tables The first of these is to 

assume that the process of interest is similar to an existing sector in the economy.  We showed 

above, with our example of a nuclear power plant, that this can lead to significant errors, even if 

the power generation emissions vector were changed to zero for CO2 – this would mean the entire 

economy used power with zero direct emissions. 

The second method would add a new sector to the technical coefficients matrix of the 

economy representing the product or process of interest.  This would reduce the error in our 

example by allowing for separate emissions vectors for nuclear power and all other power. 

However, this new sector will double count the impacts of nuclear power since it was not explicitly 

removed from the existing power sector, meaning additional steps are required to correctly 

represent the new nuclear power sector (Strømman et al. 2009).  

The third method laid out by Joshi calls for multiplying each element in the row and column 

of the technical coefficients matrix of interest by a parameter s, where s is the percentage of that 

element associated with the product of interest and 1-s is the percentage associated with all other 

products in that sector.  Mathematically, if: 

A = {ai,j}                                                                  (2-1) 
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where A is the direct requirements matrix; ai,j is the technical coefficient for row i, column j; and  

i,j = {1, 2, …, n}, where n = 428, then consider 

 

A* = {a*
i,j}                                                                  (2-2) 

 

where now A* and a*i,j  refer to the expanded matrix and technical coefficients of the added sectors, 

respectively, and i,j = {1, 2, …, n+m}, where m is the number of additional sectors.  Further, 

 

a*
i,j = sn+m a*

i,n+m                                                                                               (2-3) 

 

where sn,m is the share of output from industry sector n allocated to new industry sector nm.   

The trouble in this method, for the case of power generation, is that we need to come up 

with multiple s parameters, which have different values for each of the 428 row elements and 428 

column elements.  There is an additional difficulty working within the dollar per dollar fractions 

in the technical coefficients matrix, where there is no final demand for commodities, only inter-

industry purchases. In our method, rather than try to obtain new technical coefficients a*
i,j, which 

are unit-less amounts and difficult to conceptualize, we modify the supply and use tables by 

building new sectors using economic and environmental datasets. This allows a detailed 

disaggregation using the SUT framework based on monetary and emissions information rather 

than relying only on the weight factors (sm).  From these modified supply and use tables, we 

construct a new technical coefficients matrix and add new emissions vectors. An overview of the 

disaggregation method, as well as discussion of the BEA and eGrid datasets used in the creation 

of the disaggregated sectors, can be found in the first section of Appendix A.  



 30 

2.3 METHODS 

2.3.1 Selection of Disaggregated Sectors 

The first issue that must be addressed is deciding which new sectors should be included to 

replace the original sector in the final model. The first requirement for disaggregation to be useful 

is that the sector represents a diverse set of processes. As discussed above, the PGS sector has high 

variability in generation technologies and emission intensities, fulfilling this requirement. The 

second constraint for disaggregation is data availability. For the PGS sector, quality data for the 

constituent power generation technologies can be found from several sources (U.S. EPA 2012b; 

EIA 2013). 

The next step consists of gathering the data needed to create the disaggregated model, as 

well as the corresponding environmental emission factors. Table 2.1 summarizes the inputs 

required. The following subsections explain how each of these parameters are created and used 

from the inputs.  

 
Table 2.1: Disaggregated Model Inputs   

 Input Units 
1 U.S. Benchmark Supply & Use Tables $ 
2 Electricity Generation Mix % 
3 CO2e Emission Rates (per sector) tonnes/kWh 
4 CO2e Emission Factors (per sector) tonnes/$ 
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2.3.2 Consolidation of Private, Federal, State, and Local Government Electricity 

Production 

According to the entry in the supply table for the electricity commodity, six industries 

produce electricity, shown in Table 2.2. There are three industries in the use and supply tables 

whose primary commodity production is electricity: the main Power Generation and Supply (95% 

of total economic output); Federal Electric Utilities (99%); and State and Local Utilities (100%). 

Since the amount of secondary economic activity is negligible, and the data available for the 

electricity sector is not divided into private and public electricity generation sources but rather by 

generation technology, we can aggregate these three sectors into a single electricity production 

sector to simplify the system prior to the disaggregation. It should be noted that there are other 

industries that produce the electricity commodity as a secondary activity; however, this accounts 

for less than 2% of total production. Given that secondary production of electricity is such a small 

amount, we don’t have to aggregate these industries with the three main power generation 

industries, and we can use the electricity grid mix as representative of their electricity generation 

mix. 
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Table 2.2: Structure of various electricity-related commodities and industries in 2002 prior 
to aggregation, all values in $M  

 

Industry Sector Industry Output Commodity Produced Commodity Output 

 PGS $224,934 Electricity $214,207 
   Natural Gas distribution 

Water, Sewage & Other  
Other 

$8,607 
$2,107 
$13 
 

 Natural Gas 
Distribution 

$83,255 Electricity 
Other 

$4,258 
$78,944 

     
 Paperboard 
Mills 

$21,101 Electricity $63 

   Other  
 

$21,038 

 Federal Electric 
Utilities 

$9,820 Electricity 
Other 

$9,795 
$25 

 
 
 
 

State and local 
government 
electric utilities 

 

$21,791 Electricity 
Other 

$21,791 
$0 

 Other state and 
local 
government 
enterprises 

$100,206 Electricity 
Other  

$17 
$100,189 

    $250,158 
Source: (Bureau of Economic Analysis 2008) 

 

To aggregate the sectors at the use and supply table level, we added the values in the 

rows and columns of both the use and supply tables for the three sectors, replacing the original 

PGS sector with the aggregate values, and removing the two government sectors, following the 

aggregation procedure outlined by Miller and Blair (1985). A more detailed explanation can be 

found in Appendix A. 
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2.3.3 Allocation Methods for Disaggregation 

In order to begin the disaggregation, we have to decide how to allocate the values found in 

the aggregated PGS sector rows and columns of the BEA use and supply tables among the 

disaggregated sectors. Since we cannot gather the data necessary from the industry to accurately 

assess these allocations, we can either allocate values manually, or we can use a default allocation 

method.  

 

Manual allocations can be decided upon a sector-by-sector basis in cases where we have 

relevant information or can make reasonable assumptions. For example, consider the Natural Gas 

Distribution sector, as shown in Table 2.2. In the supply table, this industry produces around $4.2 

billion of electricity. It is reasonable to assume that most of this electricity is produced using 

natural gas. Thus, we can allocate this electricity production to the newly disaggregated natural 

gas electricity commodity. In a similar fashion, the aggregated PGS industry produces about $8.6 

billion of the Natural Gas Distribution commodity. It makes sense to allocate this production to 

the disaggregated natural gas electric power industry, since none of the other disaggregated sectors 

would produce such a large amount of a natural gas related commodity. 

 

If there isn’t relevant information to make decisions for manual allocations, we assign the 

values using a default allocation method. To create the allocation, we multiply the values in the 

original PGS sector by U.S. generation mix percentages for the different generation types (shown 

in Table 2.1). While there have been significant changes to the mix in the U.S. in recent years, 

such as the increased penetration of renewables, increased use of natural gas, and the 

corresponding decrease in use of petroleum and coal, we are trying to match the money spent in 
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the 2002 tables with the generation that occurred that year. The percentages created by this 

allocation method are then adjusted by subtracting the manually allocated values in the rows and 

columns of the tables to preserve the correct commodity and industry output totals. This results in 

a distribution of dollar values to the disaggregated sectors, where the sum of the disaggregated 

sector throughputs equal the original, aggregate industry and commodity totals.  

 

Table 2.3: 2002 U.S. generation mix (Aabakken 2005) 

IO 
sector 

U.S. Grid 
Mix 

Coal 50% 
NG 18% 
Oil 2% 
Nuclear 20% 
Hydro 7% 
Geo 0% 
Bio 2% 
Wind 0% 
Solar 0% 
Other 0% 
Total 100% 

 

By using the U.S. mix, we are effectively assigning a constant and equal price to the 

disaggregated sectors, which is useful as a first order approximation. Electricity prices vary by 

generation type, and calculating the price of electricity is a complicated process which takes into 

consideration different types of data, like the spot or long-term contract price of fuels, taxes and 

regulatory environment, transmission infrastructure, type of consumer, etc. (Stewart 1979), all of 

which can be difficult to obtain. In addition, the supply and use tables represent the electricity 

produced over a specific timeframe (2002 in this case), but the costs associated with that 

production are spread over different periods of time, and differently for different sectors (i.e., most 
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of the cost for solar electricity is included in the construction of the PV cells, whereas for natural 

gas electricity the cost comes from the fuel itself).  There are ways to address these issues, such as 

by building a construction supply chain (Marriott 2007)  for the disaggregated sectors, but this is 

beyond the scope of this article.  

Spending on transmission and distribution also needs to be taken into account, since those 

functions of the industry will be part of the disaggregation. The total amount spent on transmission 

and distribution in 2002 represent about 1.9% and 1.6% of total industry expenses (EIA 2013). In 

the default allocation, the percentages for generation are normalized to account for the industry 

dollars spent on these two transmission sectors. 

2.3.4 Disaggregating the Use and Supply Tables 

Using both the manual and default allocations methods described above, we can build the 

disaggregated use and supply tables. We broke down this process as follows: 

 

Use table columns: 

The use table columns represent the direct inputs to the electricity generation, or the ‘supply 

chain’ for electricity production. The allocations made along the columns represent the purchases 

each generation industry made from the other sectors for electricity production. Most of the manual 

allocations in the disaggregation were made here. 

 

Use table rows: 

A row in the use table represents purchases of a commodity by different industries. In our 

case, this means which type of electricity commodity (coal, natural gas, etc.) each industry 
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purchases for its operations. Here we used the default allocation for all the disaggregated sectors, 

since to manually allocate these values, we would need to know which type of electricity 

generation each industry purchases and in what quantities, which is information that is not readily 

available. 

 

Supply Table Columns 

Allocations along the columns of the supply table represent production of electricity sector 

output (commodities) by generation type (e.g., Natural Gas Distribution commodity assigned to 

the natural gas electric power industry). 

 

Supply Table Rows 

Allocations along the rows of the disaggregated sectors represent assigning electricity 

produced by other industries besides PGS (i.e., secondary electricity production).  

 

PGS Intersection 

The intersection of PGS with itself in both tables merits special attention. For the supply 

table, this corresponds to the amount of electricity produced by the PGS industry. When doing the 

disaggregation, the assumption used for this analysis is that a generation type will only produce 

that type of electricity.  Additionally, the amounts produced by each generation type are assumed 

to be proportional to the default allocation described above, resulting in no off-diagonal values 

along the disaggregated supply intersection. A similar assumption for electricity purchases by 

electricity sectors is applied in the use table, except for transmission and distribution, where it is 

assumed that all generation technologies purchase some amount of those services. These 
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assumptions may not be strictly true, but they provide a good first order approximation. The result 

of these assumptions in the use table intersection, as well as more information on the manual 

default allocation procedures can be found in Appendix A. 

 

2.3.5 Calculating Emissions Factors for the Disaggregated Sectors 

In order to generate environmental output from an economic model, the data, which is 

normally available in units of mass per unit physical output, needs to be converted to mass per 

dollar output using electricity costs.  For each new sector, we calculated the emission factors using 

equation (2-4): 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =   𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑂𝑂2𝑒𝑒

𝑘𝑘𝑘𝑘ℎ
 ∗ #𝑘𝑘𝑘𝑘ℎ ∗ 1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝
                  (2-4) 

 

The data for CO2e emission rates was obtained from EPA’s eGrid 2012 Database (U.S. EPA 

2012b) (U.S. EPA 2012a), which contains national plant level data for each generation type. By 

looking at the net generation and net emissions of individual plants, we are able to screen out those 

which require more electricity from the grid than what they contribute to it (i.e., those with negative 

net generation), as well as plants with extremely high emission rates (i.e., positive low net 

generation but high emissions, which usually indicates that electricity generation is not the primary 

function of the plant). Appendix A has further information on how the plant level data was used 

to create an emissions estimate per kWh of electricity generated for each technology.  

The electricity production by technology from NREL’s Power Technologies Energy Data 

book (Aabakken 2005). While there is uncertainty in these numbers, we used point estimates that 
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fell within the ranges shown in Table 2.4 (Bergerson 2005; Sathaye 2011; EIA 2011).  The sector 

throughputs are the Supply table column sums (i.e., total industry output) of the disaggregated 

PGS sectors. Table 2.4 shows the CO2 equivalent emission factors for each new electricity sector 

in tons per million dollars. Sectors that have no emission estimates (e.g., hydroelectric, wind, etc.) 

are assumed to have negligible direct CO2 equivalent emissions during their operation.  

It should be noted that the emission rates and resulting emission factors provided in Table 

2.4 represent direct, operational discharges. This accounts for the high biomass emission factor. 

Ideally, the uptake of carbon during biomass growth should be accounted for in the sectors 

producing the biomass (which would be represented by negative emission factors). Currently there 

is no economic sector in the model that is specific to biomass growth for electricity production, 

but given the data is available such a sector could be added either as a new sector in the supply 

and use tables or through further disaggregation of the existing tables. 

Table 2.4: CO2e emission rates and factors  

Technology Direct Emission 
Rates, 

g CO2e / kWh 

IO Emission Factors,  
Ton CO2e/$Million 

Coal 900 – 1,200             15,550  
Natural Gas 410 – 680               6,230  
Petroleum 800 – 1,000             13,600  
Nuclear 0 – 10                    90  
Hydroelectric -                      -  
Geothermal 0 – 30                  470  
Biomass 0 – 600               6,100  
Wind -                      -  
Solar -                      -    
Transmission -                      -    
Distribution -                      -    

Sources: U.S. EPA 2012; EIA 2011; Bergerson 2005; Sathaye 2011 
Note: Emission factors represents direct emissions estimates  
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2.3.6 Building the Model with the Disaggregated Tables 

Once the use and supply tables have been disaggregated and the emission factors 

calculated, we can create the disaggregated electricity model following the procedure specified by 

the BEA (Bureau of Economic Analysis 2009).  The model’s main component is a new direct 

requirements matrix, which in turn is the primary component of the Leontief equation. This new 

matrix will have 9 additional rows and columns (12 new sectors less the three main electricity 

producing sectors in the original model), where each entry is the fraction of a dollar’s worth of 

sector input needed to produce a dollar’s worth of sector output.   

To “run” the model, an additional vector or set of vectors is created to model the final 

demand of the scenario being run.  This could be some future amount of kilowatt-hours of 

electricity demand converted to dollars, or a life cycle assessment represented by the final demand 

of a combination of electricity generation and other sectors.  This vector and the vector of emission 

factors are multiplied using the Leontief equation: 

 

𝐸𝐸 = 𝑅𝑅 ∗ 𝐿𝐿 ∗ 𝑌𝑌                                                                 (2-5) 

 
where  

R is a vector of emissions factors, one for each sector; 

L is the disaggregated total requirements (or Leontief Inverse) matrix; 

Y is the final demand vector, which is user-specified, and 

E is the model output, a vector of total emissions for each sector generated from the 

economic activity needed to meet the final demand. 
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2.4 RESULTS 

As a test run, a final demand of $1 million worth of electricity (distributed among the 

disaggregated sectors as per the default allocation percentages) was compared with the same final 

demand using the original aggregate model. Figure 2.2 shows that given the same final demand 

vector, both models show an equivalent amount of economic activity needed to meet the final 

demand. This is a verification that the calculations are done correctly throughout the model. 

However, the disaggregated model additionally shows the contributions to both the total economic 

activity and CO2e emissions from the different electricity sectors, which shows that the amount of 

economic activity is not the main driver in CO2e emissions. For example, while electricity 

generation from coal is responsible for about one third of the total economic activity, it is 

responsible for over 70% of the emissions. It should be noted that the overall difference in GHG 

emissions between the two models is due to the use of different emission factors used in building 

them.  
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Figure 2.2: Total economic activity and total CO2e emissions for $1M of electricity 
production. 
 

 

The above results are useful to confirm that the IO model is built correctly. In order to 

further validate the results, we compared our model with results from other LCA studies by 

comparing the CO2e emissions of producing 1 kWh of electricity from different generation 

technologies. In order to compare the IO results on a per kWh basis, we divided the total industry 

throughput of all the PGS sectors by the total electricity production in the U.S. in 2002. This way 

we obtain the constant price we assumed when using the default allocation when building the 

model. This implied production price comes out to be $0.063/kWh. We can then use this value as 

a final demand and run the model with this value for each of the individual electricity generation 

sectors. The results for the model are shown in Figure 2.3, labeled as USIO. 

The IO results are compared to estimates obtained from several sources including process-

based datasets. We used the Ecoinvent 2.2 database to simulate 1 kWh of electricity from the 

processes most analogous to the disaggregated sectors, using U.S. processes where available 
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(Swiss Centre for Life Cycle Inventories 2010). We also obtained life cycle GHG estimates from 

the National Renewable Energy Laboratory’s LCA Harmonization Project (Sathaye 2011), a study 

from the National Technology Energy Laboratory (Skone 2013) (Schivley 2013), and Argonne 

National Laboratory’s GREET Model. The results from these sources are labeled EI 2.2, NREL, 

NETL, and GREET in Figure 2.3, respectively. 

This comparison is useful because it allows us to compare the accuracy of our top-down 

based hybrid approach with more traditional bottom-up estimates. Understanding where the 

differences between the different approaches are allows us to use them to complement each other 

in future studies.  Several authors, including Lenzen (2000), Suh et al. (2004), Lenzen (2000) and  

(Wiedmann et al. 2011) describe the advantages of top-down vs. bottom-up LCA practices. 

Generally speaking, process-based approaches are more accurate for the process they describe, but 

suffer from systemic truncation errors due to the necessary application of system boundary 

selection. IO-based approaches expand the boundary by consideration all the interactions in the 

supply chain, but lack specificity with regards to specific products. The disaggregation of the PGS 

sector introduces more specificity in the supply chain of the disaggregated sectors as well as in the 

environmental data used to create the emissions factors with regards to the original model, making 

it more compatible with bottom-up approaches (see Appendix A for a comparison of LCA 

approaches). 

The results in Figure 2.3 show that the IO emissions estimate for coal electricity falls within 

the estimates for the other sources, while the estimates for oil are about 5% higher than EI 2.2 

estimate, the closest comparable study. The IO estimates for non-fossil technologies are generally 

lower than the estimates in the other studies. This is usually due to the use of direct emissions 
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estimates for the sectors in the IO model. Despite these discrepancies, the results for these sectors 

are generally comparable to the results from the other studies.   

The estimates for biomass and natural gas emissions from the IO model merit further 

attention. For natural gas, the lower estimate for the IO result when compared to the other sources 

is due to a couple of reasons. Part of the difference is the low direct emissions rate obtained from 

eGrid used in calculating the IO factor, which is comparable to NETL (about 10% higher) but 

lower than all the other sources. Additionally, the indirect gas emissions in the IO model represent 

the lowest percent of total gas emissions, which is comparable to the GREET model (14% for 

both) but lower than the other estimates. This discrepancy could be due to economic allocation 

inherent to IO models, as opposed to process estimates. For example, fugitive gas leaks along the 

supply chain, which can account for up to 30% of the indirect emissions (Skone 2013), produce 

no economic activity and are not taken into account by the IO model; however, they do contribute 

to global warming potential, thus explaining some of the difference. This combination of low total 

emissions and low percentage of indirect emissions accounts for the relatively low natural gas 

estimate. 

The difference in the biomass estimates is due to the fact that in calculating the emissions 

factor we used direct emissions estimates (as is the case for the other IO sectors), which do not 

take into account avoided emissions like (for example) NREL’s estimate (Moomaw 2011), since 

there is no sector(s) that could accurately be credited for the carbon uptake. Additionally, the IO 

biomass sector encompasses different types of biomass emission types, while other sources deal 

with specific biomass sources (e.g., wood or co-fired biogas for Ecoinvent). As a result, the 

biomass IO estimate is greater than the net emissions (direct plus indirect, minus carbon uptake) 

from Ecoinvent processes, but lower than the direct emissions estimates from these same sources, 
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as shown in Figure 2.3. These differences highlight the need for top-down and bottom-up 

approaches to be used to complement each other, and the value that sector disaggregation adds to 

hybrid LCAs. 

 

Figure 2.3: Emissions for 1 kWh of electricity produced, from selected sources. The region 
is U.S. average unless otherwise indicated (RER: European average, CH: Switzerland, SE: 
Sweden). Note: Starred (*) entries indicate that the source does distinguish between direct and 
indirect emissions. 
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While the above comparisons are useful for validation purposes, the utility of the 

disaggregated IO model can be better seen when applied to scenario analysis. As an example, we 

chose to compare the emissions resulting from an equal final demand of $1 million worth of 

electricity production using different consumption mixes. We chose to use the electricity mixes of 

the NERC regions defined by eGrid (2012a), since these are realistic consumption scenarios that 

an industry located in these regions might experience.  The NERC regions and their PGS mixes 

are further described in Appendix A. We also used the U.S. average mix, as detailed in Table 2.3; 

the Indiana state mix, which is over 90% coal; and the Idaho state mix, which is about 80% 

hydroelectric. The CO2e emissions for each grid are shown in Figure 2.4. Since we are using the 

national U.S. tables and applying the electricity consumption of the different regions as the final 

demand, we intrinsically assume that the regions have the same economic structure as the U.S. 

However, this example serves to illustrate how the model can be used. 

The model results highlight the composition of the different grids. In most grids the 

majority of emissions are from coal based electricity, which is reflected in the national average 

results, most of the emissions of the Hawaiian and Alaskan grids (HICC and ASCC, respectively) 

are due to petroleum based electricity. When comparing individual states, the differences are even 

more apparent: while the U.S. mix results in about than 10,000 tonnes of CO2e emissions, the 

Indiana mix exceeds 16,000 tonnes, while the Idaho mix barely reaches 3,000 tonnes. These results 

show that having the option to tailor electricity consumption to the specific mix being used results 

in much more accurate models than what would be possible without the disaggregation. While this 

is just one example, the model could be used to create any number of scenarios, such as modeling 

the emissions resulting from achievement of the goals set by different states’ renewable portfolio 

standards. 
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Figure 2.4: NERC, Indiana, Idaho, and U.S. total CO2e emissions for $1M of electricity 
production (U.S. EPA 2012a) 

2.5 CONCLUSIONS 

The primary focus in this article is to expand the IO model using the SUT framework for 

disaggregation. While we recreate the 2002 U.S. electricity mix here, the disaggregation process 

to create is flexible and expandable.  Specific power generation sectors can be added or modified 

to model to better reflect the consumption mix of a particular company or even product within a 

company, allowing increasingly detailed hybrid LCA studies. 

Future research directions include developing more emission factors to allow for a more 

comprehensive analysis which allows for estimates for different impact categories (acidification, 
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water consumption, etc.) as well as the building of a mixed unit IO model featuring energy and 

economic flows. Such a model could directly address the issue of price inhomogeneity in the PGS 

sector, and its resulting effects on the shift in the environmental burdens between consumer types 

(industrial, household, and service).  

Building on the case study with the different grid mixes, future research could also focus 

on developing multi-region IO (MRIO) models which includes inter-regional trading as shown by 

Marriott (2005), to show how different scales of analysis represented by the aggregate national 

model, disaggregated MRIO model, and process-scale results affect federal and state level policies 

for meeting stated environmental standards. With industry sectors such as Power Generation & 

Supply, which are extremely important to many life cycle inventories, and for which a large 

amount of more process-specific data exists, this type of work can make the widespread use of 

hybrid LCA models easier.  For practitioners, this work enables a greater level of detail for LCAs 

which include industry, and also provides a framework and case study for sector disaggregation.
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3.0  USE OF MIXED UNITS FOR POWER GENERATION AND SUPPLY IN 

ENVIRONMENTALLY-EXTENDED INPUT-OUTPUT MODEL  

Due to the large amount of data requirements, MUIO models remain difficult to create and 

maintain. Despite this difficulty, using mixed units in for PGS presents useful benefits in the conext 

of the overall MRIO model. Firstly, by using prices to convert economic units to physical, the 

MUIO model removes the allocation bias inherent to monetary models, where emissions are 

attributed to those sectors that pay more, rather than those that use more. Which allocation scheme 

to use is debatable, but most process level studies assume the second allocation (explicitly or not), 

and this change brings the IO model more in line with most process-level studies. This is explained 

in more detail in this chapter.  

The second benefit of using physical units is that it removes the user’s need to account for 

the monetary effects, such as price fluctuation and inflation, for analyses involving the physical 

unit. This is useful for electricity generation, where each technology type is subjected to different 

types of price pressures and different amounts of price volatility for the different fuel feedstocks. 

By incorporating mixed units directly into the model, the user can focus on obtaining results 

directly in terms of energy rather worry about using the correct adjustment factors. 

Using physical units also removes the effects of prices from the coefficients that make up 

the supply chains in the direct and Leontief matrices. The resulting coefficients thus become more 

similar to process inputs in process LCAs (thus making this model a type of integrated hybrid 
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model, as discussed earlier). This is a desirable quality: although the benchmark accounts used in 

creating the model represent a single year (2007 in this case2), these types of models are often used 

to extrapolate beyond their base year, as is done in one of the scenario analyses in this thesis. Given 

price fluctuations and inflation, it is usually the case that economic inputs vary considerably more 

than process inputs, as technologies tend to be developed and adapted more slowly. This in turns 

means that the economic production recipe or supply chain undergoes greater changes than the 

process-based recipe, making economic models less generalizable and in greater need of frequent 

updates. This is especially true for electricity generation, as prices fluctuate not only across time, 

but across customers, as alluded to previously. By including energy units for electricity in the 

MRIO model, we reduce these uncertainties tied to price fluctuation and end-user and put the focus 

back impacts of electricity generation rather than market allocations. Figure 3.1 below shows a 

conceptual representation of the mixed-unit EEIO framework (compare with Figure 1.3 and Figure 

2.1). 

 

Figure 3.1: EEIO Framework with Disaggregated, Mixed-Unit PGS Sectors  

 

                                                 

2 Note that while Chapter 1 uses the 2002 Benchmark accounts to describe the disaggregation procedure, this 
procedure was applied to the most recent Benchmark accounts (2007). Chapters 3 and 4 therefore use the 
disaggregated version of the 2007 tables.  
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3.1 INTRODUCTION 

Input-output (IO) analysis is an economic technique that tracks the interactions between 

different sectors of an economy. Initially used as a method for evaluating the relationship between 

final demand and economy-wide production activities, this technique found additional applications 

when the economic framework was combined with other data, such as the use of energy data to 

estimate the embodied energy of goods and services (Bullard and Herendeen 1975). In recent 

years, IO analysis has been used with increasing frequency for life cycle assessment (LCA), 

allowing studies to focus on economy wide emissions of different products and services 

(Hendrickson 2005). 

In creating an economy-wide input-output life cycle assessment (IO-LCA) model, it is 

common to combine environmental emissions data with the monetary data described in the 

economic accounts that form the basis of the IO tables (e.g., aluminum production). By using such 

a model to estimate supply chain emissions, a modeler makes the implicit assumption that the 

releases and associated impacts from each sector are proportional to each sector’s monetary 

expenditures. In other words, the total environmental impact of a sector is allocated according to 

the monetary value of its output, which in turn is a function of both the quantity and price of the 

sector’s physical output. This approach can be contrasted with many bottom-up process LCA 

studies where the outputs of processes are described in physical units (e.g., kilograms, megaJoules, 

etc.). In these studies, the implicit assumption is that the impacts of a process are assigned to a 

product or service solely on the basis of its output in physical terms, without considering price. 

This difference has been a source of debate between practitioners of the two methods and is often 

cited as one of the main reasons for the differences in results between them (Junnila 2006; Liang 

and Zhang 2013).  
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There is a fundamental question: should environmental impacts be allocated based on 

physical or monetary outputs? This debate will likely go on for some time; however, holding it out 

of the context of specific applications is somewhat unproductive. Here we ask a question we can 

make progress with: how much difference does it make whether we track the output of a sector in 

physical versus monetary (i.e., dollar-only) units? Similar questions regarding the effect that the 

choice of functional unit has on the results of LCA studies have been explored by others in the 

context of process based studies (Matheys et al. 2007; Choudhary et al. 2014), but we ask it here 

specifically in the context of the IO framework, where the functional unit is usually in monetary 

terms. It is worth noting that in this framework, the difference between physical and monetary 

terms is due to the implied prices assigned to each sector’s output. That is, if a given sector’s output 

is purchased at an equal price by all other sectors (i.e., the model assumes that each purchasing 

sector pays the same dollar value for a given unit of another sector’s output), monetary and 

physical functional units can be considered equivalent (Weisz and Duchin 2006; Liang and Zhang 

2013). This being the case, to understand the difference between the environmental impacts 

estimated by monetary and physical IO models, we investigate a case where the equal price 

assumption for each purchaser does not hold. In other words, we ask: does the assumption of equal 

price paid by different purchasers for the same unit output affect the emissions estimates obtained 

with IO-LCA models? And if so, how does the introduction of heterogeneous prices paid by 

industry sectors for a given sector’s output affect the emissions estimates of IO-LCA models? 

By introducing heterogeneous prices, and by extension, physical units and thus creating a 

mixed unit IO framework, the intent is to make the resulting IO model analogous to the use of a 

process-based LCI database where emissions in the supply chains are assigned based on energy 

use.  To better understand the effects of introducing physical units on emissions estimates, we 
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focus on a single IO commodity, electricity, in a one-region model of the U.S. The Power 

Generation and Supply (PGS) sector is one of the main sources of environmental impacts in the 

economy, as nearly all sectors use electricity for their operation. In addition, electricity is a 

commodity where impacts are dependent on the amount supplied, but where prices for equal 

amounts of electricity supply can vary considerably among different consumers. For example, in 

2007 (the latest benchmark year for U.S. IO accounts) the average price for residential electricity 

was almost double the average price for industrial users (EIA 2013). Additionally, the price of 

electricity also varies considerably based on where that electricity was produced (EIA 2013), or 

even with the time of day. This variability in prices makes the PGS sector ideally suited to examine 

the implicit allocation bias in environmental burdens introduced by the homogeneous price 

assumption. 

3.2 BACKGROUND 

3.2.1 Monetary, Physical, and Mixed-Unit IO Models  

Previous work has studied the effects of prices in IO models in the context of physical and 

mixed-unit input-output models (PIO and MUIO, respectively). These are often employed when 

tracking of physical products throughout the economy is required, such as in material flow analysis 

(MFA) or for the different life cycle stages in LCA. Physical IO models have been used for a wide 

variety of purposes, including calculating raw material consumption (Schoer et al. 2012) and waste 

management (Dietzenbacher et al. 2009; Liang and Zhang 2012). Analogous to EIO, PIO models 

replace flows measured in monetary values (e.g., dollars) with physical units (e.g., kg, joules, etc.); 
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by doing so, they avoid dealing with price explicitly, as transactions are recorded in physical units. 

However, it has been shown that when the assumption of price homogeneity within sectors holds 

for EIO and PIO models that track the same economic activities, the models are effectively 

equivalent (Weisz and Duchin 2006); (Hoekstra and van den Bergh 2006). Additionally, PIO 

models remain rare, mostly due to the difficulty in obtaining the raw data needed for their creation. 

MUIO models are a middle ground between the purely monetary EIO and purely physical 

PIO models, as they have physical flows for some sectors and monetary flows for others. By 

combining economic information of sectors for which there is little physical data (such as service 

sectors) with physical flows for sectors where the data is available (such as mineral extraction 

sectors), MUIO are able to present a more complete picture of the transactions in the economy 

than either MIO or PIO can on their own. Examples of MUIO include the pioneering work by Isard 

(1969); a model for waste management (Nakamura et al. 2007); a model tracking heavy metal 

sectors use in the U.S. (Hawkins 2007); and a mixed unit energy model for China  (Lindner and 

Guan 2014). More recently, Majeau-Bettez et al. (2015) proposed an alternative to MUIO tables 

that uses multi-layered IO tables, with each layer tracking the flows of individual commodity in a 

unique unit (e.g., monetary layer, energy layer, mass layer, etc.). 

While the different models and approaches discussed above have the same ultimate goals 

of tracking economy-wide flows within the economy and their associated environmental impacts, 

the results they provide can be significantly different. Studies by (Giljum and Hubacek 2004), 

Weisz and Duchin (2006), and Liang and Zhang (2013), among others, argue that the differences 

arise due to several reasons In particular, they found that the level of aggregation, the way the 

models deal with service sectors (e.g., IT), accounting of waste, and the unique sectoral price 

assumption have a determining influence in the inter-sectoral relationships of the models and drive 
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the differences between them. It is this last assumption that we seek to explore in this work, though 

there are other studies that have explored this issue. Merciai and Heijungs (2014) show that when 

performing impact analysis where purchasing sectors pay different prices for the same input, mass 

balances are violated for those sectors that use said input, since an equal monetary consumption 

by these sectors does not equate to an equal physical consumption. Zhang et al. (2014) compare 

fossil fuel consumption in the economy using demand side survey data, supply side data with 

homogenous prices and supply side data with heterogeneous prices, with results indicating that the 

energy balance of the IO model was violated when using the heterogeneous price dataset. Choi et 

al. (2010) used heterogeneous prices for energy commodities for select end-use sectors as well as 

the price model to estimate the effects of a possible carbon tax applied in the U.S.  

3.2.2 Use of electricity prices in the U.S. IO Tables  

The issue of price in IO models has also been studied in the context of price valuation, 

most recently due to price issues encountered when integrating IO tables from different regions to 

create a multi-regional model (Tukker et al. 2009) ;(Lenzen et al. 2013b) . Since we are interested 

in exploring what the effects of using monetary versus physical accounting in IO analysis are when 

estimating electricity related GHG emissions for different end-users, it is important to understand 

the price components for electricity. In reality, electricity prices are dynamic and fluctuate due to 

many different factors, including temporal (e.g. time of day) and geographical (e.g. by city), among 

others. Such variations occur at a resolution that is difficult to capture using an IO approach. 

Accordingly, we use electricity price data that better aligns with the economic data used to create 

the model: average electricity prices for 2007 (the benchmark IO year) for the different economic 

sectors present in the Use and Make tables (Energy Information Administration 2015) (U.S. 



 56 

Census Bureau 2007) . Given this constraint, we proceed to examine how electricity price is 

handled in the benchmark tables, and how the price data we use to create the MUIO model relates 

to the tables.  

It is usually not feasible to construct a physical IO table for electricity, as this physical data 

is not readily available for the detailed IO industry sectors. Using prices as a way of approximating 

physical flows is the next best approach. There are several different ways prices are handled in IO 

accounts. The U.S. BEA (U.S. Bureau of Economic Analysis 2013) publishes Use and Make (a 

transpose of the Supply table with some minor adjustments) tables in producer prices. Producer 

prices include taxes and subsidies, but exclude trade and transport margins. The Use table is also 

available in purchaser prices, which reflect the price paid by the final consumer, after expenses 

such as transportation, wholesale and retail margins are included in the price. Taxes and subsidies 

are included as a row in the value added section of the Use table for both producer and purchaser 

price versions. Product-related taxes are accounted for on the column of the producing industry or 

service sector. A third approach used in IO accounts is to use basic prices. This method, which has 

been used outside of the U.S. (KEMA Consulting GmbH 2005), mainly differs from producer 

prices in that taxes on production are included in producer prices, but not in basic prices, and that 

basic prices include transportation margins, whereas producer prices do not. Currently, there are 

no tables in basic price tables for the U.S. Converting between producer and basic price tables is a 

non-trivial task, since much of the data needed to perform the conversion is not publically available 

or not at the resolution needed for the BEA tables. As such, the use of basic prices is beyond the 

scope of this work. 

In the BEA tables, electricity flows are represented as PGS commodity values consumed 

or produced by different industries (Use and Make tables, respectively). As this one sector includes 
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transmission and distribution (i.e. what would constitute the transportation, wholesale, and retail 

margins; see section 2.2 in the S.I for more detail), the PGS values are indeed equal when 

considering purchaser or producer prices in the Use table. This allows us to use price data for end-

users from EIA and the US Census, which are collected on the consumer side. Additionally, since 

the Make table is only available on a producer price basis, this price scheme is used for this 

analysis. It is worth noting that given the inclusion of transmission and distribution with generation 

in the PGS sector, the effect of choosing producer price over purchaser prices is limited to 

differences in total GHG estimates throughout the supply chain of non-PGS sectors. Since we 

compare the differences when using two versions of the same model (monetary vs. physical), the 

relative differences we explore in our analysis will not be affected by the choice or purchaser or 

producer price. Discussion of distinct electricity price components and their relation to the PGS 

sector in the IO tables is included in Appendix B. 

Given the above constraints, we present a new mixed-unit IO (MUIO) model to explore 

the effects that heterogeneous sectoral prices have on environmental impacts of electricity 

production within an IO framework. This model of the U.S. economy tracks PGS in energy (MWh) 

units while leaving the rest of the sectors in economic terms, and includes specific electricity prices 

for the industry sectors. This allows us to track physical consumption on a per sector basis; 

investigate both the direct and indirect (supply chain) effects of different electricity pricing for 

distinct end users have on the way environmental burdens are assigned by the IO model; and 

provides insights as to whether physical or economic accounting is more appropriate for different 

types of consumers. 
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3.3 METHODS 

We use the most recent, detailed Supply and Use (SUT) tables available for the U.S. 

economy in this analysis (U.S. Bureau of Economic Analysis 2013, 2009). Figure 3.2 contains a 

flow chart to serve as a visual aid to the method presented in the following section. 

 

Figure 3.2: Detailed method diagram for creating the MUIO model. Parentheses denote 
data source or reference. 
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3.3.1 Modifying the IO Accounts 

In Chapter 2, the IO Accounts were modified by disaggregating the original PGS sector 

into 10 Power Generation sectors, each representing a specific generation technology. To create 

the MUIO model we need to reallocate entries in the disaggregated PGS industry sectors of the 

Supply table that correspond to secondary products (i.e., commodities other than electricity 

produced by the PGS sectors). This is necessary due to modeling constraints imposed by the IO 

framework: to create the total requirements table, we need to sum the industry production of 

different commodities to obtain total industry output. Without reallocation, the PGS industries 

would have elements in both monetary and physical units, making summation of the industry totals 

impossible. By reallocating these values we can overcome this obstacle, ensuring that only the 

PGS industries produce electricity. Most of the values moved in these reallocations constitute less 

than 0.5% of the total industry output, ensuring their effect on model results is minimal. After 

making these changes in the Supply table, we adjust the Use table by moving the assumed inputs 

needed to produce the secondary commodities to match the reallocations performed in the Supply 

table. The reallocation necessary to create the MUIO is described in more detail in Appendix B. 

While the reallocations described are small percentages of total industry production, such 

reallocations could still have the potential to change total requirements coefficients, thereby 

changing emissions estimates with respect to the original model. To analyze the effects of different 

electricity prices on emissions without fear of this distorting effect, we build a “base” monetary 

model, with all units in monetary terms but include the reallocations needed to create a MUIO 

model. As mentioned previously, Weisz and Duchin showed that when price is equal for all sectors, 

economic and physical input-output models are equivalent (2006). In the rest of this article, any 

reference to the EIO model is referring to the reallocated monetary model.  
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3.3.2 Creating Mixed-Unit model   

Once the reallocations have been performed, the mixed unit model is created by combining 

physical electricity generation data and sector-specific electricity prices for different sectors of the 

U.S. economy with the IO Accounts. We use the U.S. EPA’s eGrid database (2012) for the physical 

quantity of electricity produced in the year 2007. These values replace the monetary data in the 

Supply table for each PGS sector (e.g. coal electricity generation values in MWh replace the coal 

PGS commodity values in dollars). In the Use table, the prices paid by consumers of electricity are 

used to convert the dollar values to megawatt-hours (MWh). For manufacturing sectors, electricity 

prices for the BEA manufacturing sectors present in the IO model were obtained from the 2007 

Economic Census (EC) conducted by the U.S. Census Bureau (2007) and mapped to their specific 

IO industry (e.g. the electricity price mapped to the Primary Aluminum Production industry is 

different than the price mapped to the Ferroalloy Manufacturing Industry) . Non-manufacturing 

industrial prices, as well as commercial, residential, and transportation electricity prices were not 

available at the same level of detail in the EC, and thus average prices were obtained from the 

(EIA (2014), 2013)). These prices were mapped more broadly (i.e., one price for all transportation 

sectors, including rail transportation, pipeline transportation, etc.).  It should be noted that the 

prices provided by these sources are yearly average prices for the relevant sectors; in reality, 

electricity prices are variable even within the detailed industry sectors (e.g. Primary Aluminum 

Production), not to mention the more aggregate classifications (i.e., transportation sectors). To 

understand the effects of electricity price variability on the energy balance of the MUIO model, 

we perform a sensitivity analysis using high and low electricity prices provided by the EIA (2014). 

The sensitivity analysis is performed for the different end-use categories by varying electricity 
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prices across the range of values for the different categories in different states. Details on the use 

of these prices to create the sensitivity estimates and the results can be found in Appendix B. 

Using the sources mentioned above, we assign different prices to the different IO industry 

sectors that purchase electricity. This was accomplished by mapping the EC data by NAICS codes 

to their corresponding IO sectors, and mapping the EIA classifications for non-manufacturing 

sectors. A partial mapping is shown in Table 3.1, and a full mapping is provided in Appendix B. 

Using these prices, we multiply each element in the PGS sector rows by the appropriate price 

inverse to convert the monetary values to MWh in the Use table.  That is,  

 

𝑈𝑈𝑀𝑀 = 𝑈𝑈𝑃𝑃𝑃𝑃𝑃𝑃,. ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1                                                          (3-1) 

 

where U denotes the Use table; the first subscript denotes the row the operation is 

performed on, while the second denotes the column; P denotes the price mapping for each column 

of the Use table; and the dot (.) notation denotes that the multiplication operation is done along the 

entire dimension it replaces (in this case, the columns of the Use table). 
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Table 3.1: End-Use Classification to BEA mapping for select sectors. Prices in $/kWh for 
year 2007. 
 

End-Use 
Classification 

BEA Sector 
Code Sector Description Sector Average 

Price, $/kWh 

Industrial 11-22, Agriculture, Mining, Utilities 0.064 

Industrial 33131A Primary Aluminum Manufacturing 0.042 

Industrial 31-33, Other Manufacturing Individually mapped 

Commercial 42-49 Wholesale, Retail, Warehousing 0.097 

Residential F01 Private consumption 0.107 

Commercial 531ORE  Other Real Estate 0.097 

Commercial 51-92, F02-F09 
Information, Finance, Public 
Administration, Exports, Gov. 
Consumption 

0.097 

  

3.3.3 MUIO Case Studies 

To explore the effects of mixed units in our IO framework, we created a created a vector 

of commodity inputs for each industry and used them as final demand input for the MUIO model 

(Y in the standard Leontief equation). These vectors were populated using the Use table columns 

inputs of each industry, scaled to $1M, for both the EIO and MUIO models (i.e., divided every 

element in a given Use table column by the column sum). This gives us a sense of which sectors 

in the economy are most affected by a change in the price of electricity. For the MUIO model, the 

appropriate physical values were used (found by using the individual industry prices) for the 

electricity inputs for each industry to ensure that the total value was $1M for the entire column. 

In addition, we examine the vectors of commodity inputs for three specific industries from 

the above run in more detail. These are the supply chains for the Private Consumption (PC), 

Alumina Refining and Primary Aluminum Production (Al), and Other Real Estate (ORE) sectors. 
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These were chosen because they each represent important sectors of the U.S. economy but their 

supply chain purchases are distinct from each other: 

 

1) Private consumption represents expenditures by U.S. households. Direct 

consumption of electricity constitutes less than 2% of total private consumption in 

monetary terms, however electricity contributes significantly to the supply chains of the 

goods and services purchased. Private consumption also pays the highest price for direct 

electricity use compared with other sectors in the model.  

2) Aluminum production is an industrial sector with high electricity requirements 

and low electricity prices. Electricity represents roughly 11% of aluminum production 

sector expenditures. Similar to other industrial and manufacturing sectors in the U.S., 

aluminum production experiences lower electricity prices than the transportation, service, 

and final demand sectors. 

3) Other real estate is a sector with a relatively large percentage of its consumption 

expenditures for electricity (approximately 7%) and is an example of sector with a service 

commodity (i.e. non-manufacturing IO industry). This industry sector consists of 

establishments engaged in leasing and rental of non-residential real estate, such has office 

or storage space. 

 

The supply chains of each of these sectors were scaled to $1M in order to allow for easier 

comparison of results across sectors. Demand for these sectors is also run with the MUIO model 

based on low and high electricity prices, to examine the sensitivity of results to changes in price 

within sectors. Results from this sensitivity analysis are discussed in Appendix B.  
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3.4 RESULTS 

3.4.1 Results for all BEA sectors 

Figure 3.3 shows the difference in total emissions for running the Use table column inputs 

of each BEA sector, scaled to $1M, between the MUIO and EIO models. Figure 3.4 shows the 

ratios between the two sets of results. For equivalent models, values would lie along the y = 0 and 

y = 1 lines, respectively. It is important to note that the further from these lines of equivalence the 

points are on the graph, the greater is the impact of the relative price differences between the 

models. In both figures, most values do not fall along the lines that indicate equivalence. The 

biggest differences can be observed in the BEA manufacturing, mining and drilling, and utility 

sectors, all of which lie above the equivalence lines, with aluminum production being the sector 

farthest from equivalence. As IO sectors, these industries on average pay lower electricity prices 

in the MUIO model than the average U.S. electricity price they pay in the EIO model; this is 

reflected in the MUIO model price mapping, which drives this difference.  In contrast, non-

manufacturing the sectors lie closer to or below the equivalence lines. Those that lie below have 

lower emissions estimates from the MUIO model, such as some commercial sectors or final users 

(e.g. warehousing and private consumption, respectively). These sectors are assigned higher 

electricity prices in the MUIO model than the U.S. average used in the EIO model, resulting in 

lower emissions estimates. Those that deviate the most below the line (i.e., real estate and 

warehousing) usually have electricity use as a large component in their supply chains. However, 

these sectors below the equivalence lines do not achieve differences as large as those above due to 

a combination of two factors: 1) they have a relatively smaller amount of electricity use when 

compared to manufacturing and mining sectors, meaning these high prices produce a smaller effect 
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in decreasing emissions when compared to the effect that low prices paid by manufacturing sectors 

have in increasing emissions, and 2) most sectors in their supply chains pay either lower electricity 

prices or at least U.S. average prices, which drives emissions up, counteracting the effects of high, 

direct electricity prices. 

Perhaps the most interesting observation from Figures Figure 3.3 and Figure 3.4 are that 

few sectors greatly deviate from the equivalence lines. Even among those sector groups where 

prices were mapped in most detail (e.g., manufacturing), under 10% of the sectors experience an 

increase in emissions greater than 20%, while over 80% of sectors experience a reduction in price 

of over 20% (this can be seen in Figure 3.4, as few sectors are outside the 0.9-1.1 ratio range). The 

few sectors that diverge significantly from the equivalence lines are those that have significant 

electricity consumption, both directly as a higher proportion of their supply chain, and indirectly, 

through a high demand of sectors that themselves require high electricity consumption. This is the 

case for the Aluminum production sector, which in both Figures Figure 3.3 and Figure 3.4 is the 

highest point in the graphs; this industry consumes significant amounts of electricity directly, as 

well as having a high proportion of mining sectors in its supply chain.   
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Figure 3.3: Difference in Total Emissions between MUIO and EIO model results (MUIO-
EIO)  
Each bubble represents the difference in total emissions from running the supply chain for a 
particular BEA sector, scaled to $1M. Bubbles are grouped by aggregate BEA sector labels. The 
bubbles starting with the Wholesale & Retail Trade label are expanded and shown in a lower scale 
in the box above them. 
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Figure 3.4: Ratio of Total Emissions between MUIO and EIO model results (MUIO/EIO) 

 

3.4.2 Results for PC, AL, and ORE sectors 

Figure 3.5 provides a comparison of life-cycle GHG emissions resulting from the supply 

chains of PC, Al, and ORE sectors for the EIO model and MUIO models in absolute terms. To 

highlight the differences between model results, each bar is divided into emissions from these 

sectors’ direct electricity use, i.e. Scope 2, and emissions from all other supply chains, including 

electricity supply chains, i.e. Scope 3. Note that direct emissions, i.e. Scope 1 (WBCSD; WRI 

2004) are equivalent in both models, as the only changes between models are related to electricity 

use being described in energy versus monetary terms. Accordingly, differences in the Other 

Emissions portions of the bars in Figure 3.5 (which corresponds to Scope 1 and 3 emissions) can 



 68 

unambiguously be attributed to the change in electricity prices along the supply chains of the 

selected sectors.  

 

 

Figure 3.5: EIO vs. MUIO emissions differences  
EIO vs. MUIO model for three supply chains: Private Consumption (PC), Primary Aluminum 
Production (Al), and Other Real Estate (ORE).  
Scope 2: Direct emissions from electricity generation associated with direct purchases of 
electricity.  
Scope 2 Difference: Difference in emissions between the MUIO and EIO models due to electricity 
purchases. The color inside the red lined box indicates which emissions were increased, whether 
scope 2 (blue, for AL) or scope 3 (green, for PC and ORE). 
Other: Emissions caused by each sector’s consumption of goods other than electricity in their 
operation (Scopes 1 and 3). Black error bars present the sensitivity of Scope 2 emissions due to 
high and low electricity price estimates for the MUIO model.  
 

Figure 3.5 highlights a few results. First, for the MUIO model the amount of Scope 2 

emissions change significantly for the Al sector, and less significantly for the PC sector and ORE 
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sectors. The red-lined box shows the difference in electricity generation emissions between the 

EIO and MUIO models. As mentioned previously, this is due to the price mapping applied when 

creating the models. On average, the residential sector pays the highest price for electricity 

consumption (see Table 3.1). This higher price results in a reduction of MWh consumed by the PC 

sector in the MUIO model, leading to a decrease in Scope 2 emissions from residential use. The 

Scope 2 share of total emissions associated with PC has decreased by roughly 5%, a substantial 

amount considering purchases of electricity account for only 2% of total expenditures in monetary 

terms. Compared with the monetary model, Scope 2 emissions from private consumption are 20% 

lower in the mixed-unit model. A similar trend can be observed for the ORE sector, which pays a 

higher than average price (though not quite as high as PC); ORE Scope 2 emissions decreased by 

roughly 15%. Conversely, the lower price paid by the Al sector results an increase in the amount 

of electricity directly consumed by this industry as computed by the MUIO model, increasing the 

resulting emissions. For the Al sector, Scope 2 emissions almost doubled (from 1,322 to 2,593 

Tonnes of CO2-eq) when compared to the EIO model; however, there is also an increase in supply 

chain emissions, as Scope 2 emissions only increased by approximately 9% as share of total 

emissions (4,097 Tonnes CO2-eq) in the MUIO model. These result highlights the fact that in 

monetary IO models, sectors that pay higher than average prices are allocated more Scope 2 

emissions than physical accounting would suggest, while sectors that pay a lower than average 

price are assigned fewer Scope 2 emissions. 

Second, the change from U.S. average prices in the EIO model to sector-specific prices in 

the MUIO results in the increase of Scope 1 and 3 emissions for sectors where indirect electricity 

consumption is prevalent throughout the supply chain. This is seen in the green portion of the bars 

in Figure 3.5, which are larger for the MUIO result of Al than they are for the EIO results (even 
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after accounting for changes in Scope 2 emissions), resulting in an overall increase in emissions 

from this (and similar) sectors. For PC and ORE, the increased emissions along the supply chain 

are almost enough to offset the decrease in Scope 2 emissions, such that the net emissions from 

the MUIO and EIO models for PC are fairly similar. The decrease in total emissions is more 

notable for the ORE sector than PC since PGS consumption constitutes a larger percentage of the 

supply chain (7% vs. 2%, approximately). 

The combination of these two effects – shifting Scope 2 emissions responsibility to 

different parts of the supply chain and potentially affecting the total emissions estimates – suggest 

that the choice of economic vs. physical models based on sector specific prices has the potential 

to significantly impact results of a study using the IO framework. Which is the better choice 

depends on the context of the study, as discussed in Section 5, below. 

3.5 DISCUSSION AND CONCLUSIONS 

The results presented in this analysis highlight that the choice of energy versus monetary 

units to represent the reference flow for electricity generation can have a significant effect on 

emissions results for specific IO sectors, ranging from a notable decrease in scope 2 emissions 

(20% decrease in scope 2 emissions for PC) to over 50% increase of total emissions (Aluminum 

sector). We have demonstrated that the difference in GHG emissions results is larger for sectors 

with a higher share of electricity expenditures and which pay a price that is significantly different 

from the economy-wide average, and that emissions for sectors with a higher share of electricity 

expenditures may be affected. These conditions occur most significantly in the case of industrial 

sectors that pay low electricity prices. Additionally, estimated emissions burdens along different 
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parts of the supply chain can be affected as well when comparing EIO vs. MUIO models with 

sector-specific prices (i.e. changes in Scope 2 and Scope 3 emissions), as shown in the sectors 

chosen for detailed analysis in this study. These sectors have similar consumption profiles to 

several other sectors in the economy; that is, aluminum has a high share of electricity consumption 

in its supply chain, similar to other manufacturing sectors, whereas the opposite is true for ORE 

and other services sectors (these similarities can be seen in the trends in Figure 3.3 and Figure 3.4). 

The repercussions of this implicit bias depend on the intent with which the IO framework is used. 

For LCA and other studies that focus on estimating electricity emissions, whether the effort 

required to map electricity prices (and thus use a physical allocation for the IO framework) is 

warranted it depends on: 1) whether physical allocations reflect the driving motivations for 

electricity production and the related emissions, and, 2) if the price differences between end users 

of a commodity are enough to produce significant emissions or energy balance differences between 

the two approaches.  

One way to determine which model to use is to consider the intent for which the electricity 

is used. Using a physical allocation for the electricity generation is a sensible approach when 

looking at a study that uses electricity as an input to another process (e.g., producing aluminum) 

rather than as commodity for end use consumption (e.g. to operate domestic appliances). In these 

cases, electricity use is a function of the production of the primary process, and the emissions 

resulting from that electricity production can be attributed to the end result of the process. In this 

regard, the MUIO model can be used to link physical processes with the rest of the supply chain 

to better estimate the electricity flows and emissions at a national level. Conversely, the economic 

allocation that is inherent in EIO models is better suited for studies where determining the cause 

of consumption (and thus the cause of emissions) of electricity by end-users is a main goal. It is 
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these end use sectors that are ultimately responsible for the production of the commodity in the 

first place (e.g. electricity produced at higher prices for the PC sector would not be created without 

this user base, as industrial users would have used cheaper electricity).  This is conceptually similar 

to the consumption-based approaches for carbon accounting used in other IO studies (Vetőné 

Mózner 2013).Several factors influencing electricity production, such as time of energy use (e.g. 

marginal electricity produced by peaking power plants) are not easy to physically relate to the 

amount of emissions produced, suggesting economic causality (and thus an EIO approach) is 

appropriate (Ardente and Cellura 2012). These differences in the two allocation approaches are 

similar to the ones discussed by Dietzenbacher et al. (2009), where different allocation schemes 

are proposed for wastes in physical IO tables based on where the responsibility of the waste 

produced for a given final demand lies.   

Another factor that might affect which model is a better option is whether the price paid by 

a specific sector deviates significantly from the assumed average price. In this case, using the 

MUIO model will allow a better representation of emissions. Significant deviations might occur 

due to issues such as geography, or increasing price variability. Indeed, while all the prices used 

in this study are 2007 prices to match the BEA benchmark year IO Accounts, most recent 

electricity prices have greater variability, as shown in Table 3.2. This increase in price variability 

has the potential to exacerbate the differences between EIO and MUIO models presented in this 

work.  
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Table 3.2: Differences between 2007 and 2013 prices for different end-use sectors (i.e. 
customers) (EIA 2014). All prices in 2007 dollars. 2013 prices adjusted using the U.S. 

Bureau of Labor Statistics (2015) CPI inflation calculator. 
 Average price High Price Low Price 

Residential '07 10.65 24.12 6.36 
Residential '13 10.79 32.91 7.74 
Commercial '07 9.65 21.91 5.14 
Commercial '13 9.15 26.74 6.56 
Industrial '07 6.39 18.38 3.87 
Industrial '13  6.09  26.59 3.76 

 

 

The framework presented in this study can be expanded to other sectors beyond electricity 

generation in order to study the effects of price on those sectors, or to build a mixed unit model 

with additional unit types. For example, a suitable sector could be petroleum refineries, as this 

sector produces several commodities that vary in price in a manner similar to electricity (i.e., 

different end-users pay different prices for petroleum products).  Choosing between the EIO vs. 

MUIO models should be done on a case-by-case basis, after considering what the intent of the 

study is and whether gathering the additional price data to include in the MUIO model is a 

reasonable investment. For this electricity focused MUIO model, the investment in finding 

additional data is better justified for studies focusing on manufacturing sectors, as these tend to be 

more sensitive to the choice between physical and economic allocation.
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4.0  INTRODUCTION OF REGIONAL DATA IN THE EEIO FRAMEWORK – 

DEVELOPING THE MULTI-REGIONAL INPUT-OUTPUT MODEL 

This chapter introduces the regional aspect to the IO model, along with the disaggregated 

(Chapter 2) and mixed-unit (Chapter 3) aspects of electricity generation to create the final 

electricity-specific Multi-Regional model. Bringing together these three different components 

aims to tackle some of the limitations inherent to input-output environmental analysis. The distinct 

electricity technology sectors tackle the technology aggregation bias in electricity. Introducing 

physical units by using detailed, sector-specific electricity pricing in the model to create a physical 

rather than monetary flow assumption for electricity generation and consumption reduces the 

uncertainty associated with monetary allocations, such as inflation and price fluctuations. Finally, 

including distinct regions addresses the geospatial uncertainty with regards to electricity 

generation and consumption, and can be used to estimate emissions at their point of release (due 

to generation) or at their point of probable cause (consumption).   

Figure 4.1 shows a conceptual representation of the finalized MRIO framework. In this 

representation the electricity flows (in physical units) from the top left to the bottom right of the 

Leontief Inverse (or Total Requirements) table, as the individual PGS technologies inform the state 

consumption of electricity, which in turn drive the electricity use of the different industries in the 

economy. The rest of this chapter discusses the implementation of this framework given the 

components available from Chapters 2 and 3 plus the addition of geographical information.
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Figure 4.1: MRIO Framework with Disaggregated, Regional, Mixed-Unit PGS Sectors  
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4.1 INTRODUCTION 

Continuous electric power generation is necessary for the normal operation of modern 

economies. In the United States, electricity production accounts for 39% of primary energy 

consumption (Energy Information Administration 2016b) and approximately 2% of economic 

activity (U.S. Bureau of Economic Analysis 2017). Such production requires vast use of resources; 

an interconnected grid to transmit the electricity from production centers to consumption sites; and 

creates significant environmental impacts. Given the interconnectedness between the economy, 

energy and the environment, it is critically important that policies regarding electric power 

generation be carefully evaluated to ensure that they fulfill their intended goals and that unintended 

consequences are not overlooked. 

U.S. policies concerning electric power generation can be set at different regulatory levels. 

An example of a national policy is the Clean Power Plan, which was planned at the federal level 

and required a reduction in greenhouse gas (GHG) emissions from power plants by 30% by the 

year 2030 from 2005 emissions levels (U.S. Environmental Protection Agency 2015b). Even 

though such policies are aimed at national emissions reductions, their implementation is often 

executed at other regulatory levels. In particular, states often have considerable flexibility in the 

implementation of such policies within their borders, as they are the ones that set specific 

requirements that power generation companies must adhere to in order to meet national goals. In 

addition to carrying out federal mandates, states usually have individual goals that may not be 

directly tied to the national policy but interact with them in some way, such as specific Renewable 

Portfolio Standards (RPS) or energy efficiency targets (N.C. Clean Energy Technology Center 

2016). Since electricity flows between states are linked through trading, both of electricity and 

other commodities, what happens in one state may affect other states, either directly or indirectly; 



 77 

for example, electricity imported out of state leaves emissions impacts in the original exporting 

state. Given this reality, any analysis of national energy policy must consider the state level 

implementation of those policies to better capture the effects caused by the connections between 

states. 

Environmentally Extended Input-Output (IO) models are often used to analyze both the 

environmental and economic impacts of policies at the national level, not only for the U.S. but also 

for many different countries. IO models and the corresponding data for individual countries can 

be connected to create Multi-Regional Input-Output (MRIO) models to provide a complete picture 

of the supply chain of goods and services in interlinked economies. Recent studies have used this 

approach to analyze and account for supply chain emissions related with particular products or 

services across international borders (Lenzen et al. 2013a; Wood et al. 2015). However, even 

though MRIO models are usually created to bridge gaps in flows between regions with existing 

IO models, they can also be created when there is sufficient data to transform a single region into 

multiple sub regions while maintaining the links between them.  

In this study, we present a method for creating an environmentally-extended, electricity-

focused MRIO model of the U.S., aimed at evaluating the environmental effects of electricity 

policy at both the national and state level, as well as understanding how changes in those policies 

affect the environmental impacts not only of states but also of non-electricity sectors in the 

economy. To explore the potential of the model, we developed two different scenarios. The first 

scenario aims to estimate the GHG and water consumption (WC) impacts related to projected 

changes in the U.S. electricity grid, according to EIA, and is intended to show the model’s 

applicability as a tool for government policy evaluation at the state and national levels. The second 

scenario aims to demonstrate the utility of the model to analyze electricity consumption impacts 
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due to a specific industry, data centers, both as an overall component of the U.S. economy, and as 

an plausible environmental impact analysis pursued by private corporations that rely on data 

centers for their business operations.  

The MRIO model presented is capable of tracking electricity produced by several different 

technology types in megawatt-hours (MWh), resulting in electricity emissions estimates based on 

physical rather than economic basis. We also take into account electricity trading between states, 

which allows the model to report not only impacts due to production, but also consumption-based 

estimates, a concept that is gaining recognition as a key element in better understanding the 

embodied emissions in traded goods and services and thus useful for policy formulation (Vetőné 

Mózner 2013). The model takes into consideration the geographic distribution of the economic 

sectors it contains, so that each sector draws from their appropriate electricity generation 

technologies and can thus assess the upstream impact of changes to the electricity supply used by 

these sectors.. We focus on GHG emissions because, beyond its importance as an indicator for 

global warming potential, most clean power policies focus on GHG reductions. Additionally, GHG 

emissions are strongly correlated with other combustion related impacts, such as smog formation, 

respiratory effects and human health impacts, and even acidification, making it a good proxy 

indicator for these effects even though data collection for these impacts is beyond the scope of this 

work. We also focus on water consumption associated with electricity use, given its critical 

importance in electricity generation, the localized nature of water consumption impacts, and the 

growing awareness of the importance of the energy-water nexus (Bauer et al. 2014).  

Section 4.2 provides a brief overview of recent literature concerning assessments of 

regional electricity impacts, as well as recent development and use of MRIO models. Section 4.3 
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provides an overview of the MRIO model creation. Sections 4.4 and 4.5 describe scenario 

development and results, while section 4.6 contains concluding remarks. 

4.2 BACKGROUND 

Recent studies have looked at the potential development and environmental impacts of U.S. 

electricity sector, focusing on different aspects of electricity production and using a variety of 

methods. A common approach is to use bottom-up, process-specific models that describe 

electricity generation in great detail. Such approaches often include methods for estimating 

changes in the grid due to renewable energy expansion, changing energy costs, and for diverse 

types of environmental impacts. Examples include the MARKAL (Shay et al. 2008) and ReEDs 

(Short et al. 2011), bottom-up linear optimization models that have been used to analyze the 

impacts of climate mitigation scenarios in the U.S. Regional and national policies are usually 

adapted for analysis by creating specific scenarios that explore their  potential impacts, such as 

reductions in regional air quality (Rudokas et al. 2015) and possible technology pathways for 

electricity generation (and concomitant GHG emissions) in the  near to midterm future (Sullivan 

et al. 2014).  These studies rely on a comprehensive set of inputs and parameters that drive their 

calculations, and can produce detailed results concerning impacts of electricity production. 

However, while they may include non-electricity related data, they do not encompass the entire 

economic supply chain, and are usually focused on impacts of electricity production rather than 

consumption. 

Another approach for analyzing impacts of electricity production is to use methods that 

rely on economic, material, and environmental data compiled by governments and used for 
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analysis at the national level. MRIO models are an example of this type of approach. Recently, 

many different models have been built and used for policy assessment, usually emphasizing the 

impact of international trade on resources and embedded carbon flows (Steen-Olsen et al. 2012; 

Lenzen et al. 2013a; Wood et al. 2015; Aguiar et al. 2016). Though less common, MRIO models 

are also gaining use as tools to assess policies and environmental impacts of regions within 

individual countries (Wiedmann et al. 2010; Su and Ang 2014; Bachmann et al. 2015). In the U.S., 

MRIO models have been developed both with a focus on economic (Bureau of Economic Analysis 

2014; IMPLAN 2016; Regional Economic Models 2016) as well as environmental analyses as 

main objectives.  For example, Cicas et al. (2007) developed an 8-region model of the U.S. for 

regional policy assessment based on the BEA 1997 benchmark accounts, adjusting national totals 

for economic and environmental emissions with state and regional economic multipliers. Caron et 

al. (2014) created an MRIO model (using IMPLAN as a basis for the economic multipliers) to 

estimate the CO2 content of consumption across regions of the U.S. Although regional electricity 

production and the related emissions is an important consideration for both of these studies, they 

do not distinguish between types of electricity generation technologies, nor estimate water use.  

Taken together, the models currently available for estimating impacts of electricity in the 

U.S. are well suited for in-depth analyses of different electricity generation trends and impacts 

using highly detailed models and input requirements, or broader economic and environmental 

analyses that incorporate electricity in a more aggregate manner. However, it is more difficult to 

investigate regional environmental effects related to but not only consisting of changes in 

electricity consumption, issues that might not suit the scale of either approach: what are the 

environmental effects of changes in economic activity that depend on electricity consumption 

when they shift towards regions with cleaner electricity? What are the secondary (supply-chain) 
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effects of these industries’ cleaner electricity consumption? Are they comparable to effects caused 

by direct consumption changes? The MRIO model is ideally suited to tackle these questions, as it 

can estimate both regional and supply chain effects of by different end-users, and put the changes 

in environmental impacts in context with the rest of the economy. Additionally, it allows the 

evaluation of secondary effects of regional shifts, such as environmental impacts of employment 

and labor related to these shifts. Finally, it is created using publically available data, and the final 

model will also be publically available. 

4.3 METHODS 

4.3.1 Building the MRIO model  

Figure 4.2 contains a flowchart that shows the data used to create the MRIO model; 

how those data are used; and the use of the completed model. Figure 4.3 shows a simplified 

representation of the original Use table (part A), and a representation of the final MRIO 

Use table (part B) after all the model development steps in Figure 4.2 have been 

implemented.  

 



 82 

 

Figure 4.2: Flowchart for MRIO model creation 
First column are data inputs; second column represent major model development steps; third 
column represents finalized model use. 
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Figure 4.3: Use table of the Model before (part A) and after (part B) of MRIO modifications. 
Part A represents the original Use table with: one Electricity Sector in economic terms; all non-
electricity sectors (approx. 400),  represented by the Economic Transactions rows;  and multiple 
Final Demand columns (represented here in one consolidated column); Part B represents the 
MRIO Use table that, in addition to the sections in Part A, also contains multiple (disaggregated) 
Electricity Technology Sectors, State Power Generation Sectors,, and State Power Consumption 
Sectors, all in energy terms. The areas in gray color have a value of 0. Tables are color coded 
according to row classifications. 

4.3.1.1 Introducing Regional Electricity Sectors 

In this model, we include each U.S. state, the District of Columbia, Canada, and Mexico 

as individual regions for the reasons described as follow. First, energy policies are often set at the 

state level. Using a more aggregate geographic approach such as NERC regions would limit the 

ability of the model to represent individual state policies. Second, states are the highest geographic 

resolution for which we could obtain the data necessary to model regional electricity flows, their 

associated environmental impacts, and the interactions of regional electricity consumption with 

the rest of the economy (i.e. electricity supply chain) while still maintaining the IO framework at 

a reasonable size. Finally, including Canada and Mexico as states allows the model to contain the 
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entirety of the electricity produced and consumed by the U.S. (even though trade accounts for less 

than 1% of U.S. electricity consumption), thus accounting for the international trade of electricity 

occurring in the North American grid. For simplicity, all regions are referred to as states going 

forward. 

The MRIO model as shown in Figure 4.3B represents the interactions between generation 

technologies, state generation, state consumption, and industry consumption of electricity. These 

interactions are intended to flow from left to right, up to down in the figure. Thus, generation 

technologies flow into state generation mixes; generation mixes inform state consumption mixes; 

and consumption mixes are used to create industry consumption profiles. The rest of this section 

explains the creation of the MRIO model starting from the original IO model. Additional details 

relating to MRIO model creation can be found in the Appendix C. 

4.3.1.2 BEA PGS sector disaggregation and use of mixed economic and energy units 

 

To build the MRIO model, we combined data from several different sources. The main 

component of the model is based on the 2007 producer value BEA Benchmark Input-Output 

accounts (U.S. Bureau of Economic Analysis 2013), which contain the detailed Supply and Use 

tables for the U.S. economy. Each table is a Commodity by Industry matrix. For the Use table, 

each column represents the use of different commodities by each industry, while for the Supply 

table each column is the amount of commodity output from each industry. 

The use of electricity by the economy is described by Power Generation and Supply (PGS) 

sector in the tables. We complemented the Use and Supply tables with electricity generation data, 

which was used to disaggregate the original BEA PGS sector into 10 distinct electricity generation 

technologies: coal, natural gas, oil, nuclear, hydroelectric, geothermal, biomass, wind, solar, and 
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other. The disaggregation is described in detail in Vendries et al. (2015) and is represented in 

Figure 4.3 by the change from the Electricity Sector in part A to the Electricity Generation by 

Technology industries and commodoties sectors in part B. 

The model tracks electricity flows in the economy in energy units. For this purpose we 

used electricity price information (U.S. Census Bureau 2007; EIA 2014) to convert the monetary 

data in the PGS sectors to energy units, in effect creating a Mixed-Unit Input-Output (MUIO) 

model. This step is necessary to reduce emissions estimates errors present in the IO model due to 

the implicit assumption that all economic sectors pay the same price for their electricity 

consumption, as well as allow the model to more easily track electricity trading between states. 

Additional details on this process can be found in (Vendries Algarin et al. 2015; Vendries Algarin 

et al. 2016). Again this is represented in Figure 4.3, as the Electricity sector changes from being 

tracked in dollars ($) in part A to MWh in part B. 

4.3.1.3 Electricity Generation and Consumption by State  

 

Electricity generation and consumption data by state for 2007 (the IO benchmark year) was 

obtained from U.S. EPA’s eGRID database (2017). Import and export data to Canada and Mexico 

was obtained from EIA (2016a), Canadian, and Mexican government reports (Griffin 2017) 

(Secretaria de Energia 2015). These sources list net electricity generation and net consumption by 

state, which was used to create the first expansion to the MRIO model: the addition of Input-Output 

sectors that represent the amount of electricity generated in each state by each technology type. 

This is shown in “State Generation Mixes by Technology” block in Figure 4.3. Here, rows 

represent disaggregated electricity sectors and columns represent regions. The full-scale model 

contains 10 distinct electricity sectors, as well as rows and columns for regional generation mixes. 
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Electricity production values by state and generation type are based on eGRID (U.S. EPA 2017). 

The values are allocated such that the row totals match the national generation mix by technology 

type and the column totals match each region’s share of total electricity production, making the 

sum of all values in the State Generation Mixes block match total U.S. electricity production.  

Electricity consumption by state is shown in the “Consumption Mixes by State” block in 

Figure 4.3. This is the intersection of Electricity Generation by State row and Electricity 

Consumption by State column, which respectively correspond to all 53 generation and 

consumption regions in the full scale model. The difference between generation and consumption 

regions is that the latter incorporates the effects of electricity trading, and classifies states as net 

exporting or net importing. Interstate electricity trade was estimated using the net generation, net 

consumption, and net Export/Import data as inputs to a linear optimization model whose objective 

function minimizes the distance electricity must travel between net exporting states and net 

importing states (Marriott and Matthews 2005). This method is not meant to model all the 

individual interactions and transmissions between generation and consuming locations, but rather 

to provide an estimate of the net flows of electricity trading at the scope required by the MRIO 

model. Indeed, the difficulty in precisely tracking real time electricity flows from generation to 

consumption point translates to a lack of detailed electricity consumption data (Kodra et al. 2015) 

(Weber et al. 2009), making net import/export data the best estimates available at the state level. 

4.3.1.4 Consumption by Industry 

  

Electricity consumption by industry is allocated to the states where those industries are 

located. This allocation is created by aggregating County Business Patterns (CBP) data from the 

U.S. Census Bureau (2009) to the state level, and mapping the resulting state level employment 
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data to the BEA IO Industry sectors. Some industries have no data available for mapping because 

data for these sectors is either classified (no estimate given) or aggregated in such a way that the 

CBP reports a range estimate for employment (e.g. small, medium, large businesses).  For these 

sectors we found industries that were the most similar in their description or purpose in the BEA 

classification, and used their geographic distribution to replace the absent CBP estimates (see 

Table C.1) (Bureau of Economic Analysis 2009). Allocation by geographic distribution creates 

slight discrepancies between the row and column totals of the “Electricity Use by Industry 

Production” block, so a RAS procedure was used to rebalance them (Miller and Blair 1985). This 

procedure results in a state by industry matrix where each column describes the geographic 

distribution of a given industry in the U.S., represented by the blocks along the “Electricity 

Consumption by State” row in Figure 4.3. This row shows electricity consumption “commodities” 

for all 53 states. The “Electricity Use by Electricity” block represents the electricity required by 

the individual generation technologies to produce electricity; the “Electricity Use by Industry 

Production” block is the electricity required by all non-PGS industries for their operation. The 

final block on the row, “Non-Industrial Use of Electricity” is the different Final Demand sectors 

specified by the IO accounts, e.g. residential  and government consumption of electricity, exports, 

etc. for each state (EIA 2016b).  

Interindustry transactions other than electricity are included in the “Economic 

Transactions, excluding Electricity” rows in both the Original IO and MRIO Use tables. The 

“Economic Use for Electricity Production” block represents inputs to electricity technology 

sectors, including value added requirements (compensation for labor, taxes, operating surplus) 

based on Vendries Algarin et al. (2015).  The “Economic use for Industry Production” block 
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represents the economic requirements of the non-PGS sectors based on the BEA benchmark 

(Bureau of Economic Analysis 2013a). 

4.3.1.5 GHG and WC Impact Factors & Running the MRIO model 

 

In order for the model to be used for environmental impact assessments, the MRIO model 

needs impact factors for each individual sector for each type of impact category under 

consideration.  The GHG emissions factors for the economic sectors were obtained from 

(Department of Defense 2015) and were developed for the disaggregated electricity sectors from 

a previous publication (Vendries Algarin et al. 2016). Water consumption estimates are developed 

based on Blackhurst et al. (2010) and updated to 2007 values (Maupin et al. 2014; Solley et al. 

1998; Statistics Canada 2015; National Agricultural Statistics Service 2009). We used data from 

Torcellini et al. (2003), (Macknick et al. (2011); 2012), Mekonnen and Hoekstra (2012), Meldrum 

et al. (2013), and Diehl and Harris (2014) to create water consumption estimates for the individual 

PGS technologies.  

The MRIO Supply table mirrors the structure of the Use table, but the values for the new 

blocks lie exclusively along the diagonal and are equal to the total commodity value (i.e. 

corresponding Use table row sum). To create the final MRIO model, the Use and Supply tables 

are combined with the Impact Factors as described in Chapter 1, and equation (1-5) is used to run 

the model.  
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4.4 MRIO SCENARIO: ELECTRICITY PROJECTIONS TO THE YEAR 2030 

4.4.1 Modeling future electricity trends with the MRIO model 

Electricity generation in the U.S. has undergone considerable changes in the past decade. 

Since 2007, electricity produced from coal has declined both in total generation and as a percentage 

of total electricity production, while natural gas and renewables have increased. These trends can 

be seen in Figure 4.4. 

 

 

Figure 4.4: Yearly electricity production by Generation Technology, 2007-2015, EIA data 
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The goal of the MRIO model in this example is to evaluate regional electricity policies for 

both their regional and aggregate (national) effects, in terms of electricity flows and environmental 

impacts. We use recent trends in electricity production in the U.S. as well as EIA projections for 

electricity generation (Energy Information Administration 2017) to extrapolate a future electricity 

scenario for the year 2030. EIA data assumes trend improvement in known technologies, economic 

and demographic trends that reflect the central views of leading economic and demographic 

forecasts, and unchanging laws and regulations throughout the projection period (notably 

including the Clean Power Plan, as it was still the intended national policy at the time the data was 

published). This data provides a good guideline for future electricity production as they consider 

multiple energy technologies and have regional (but not state) specificity. Using EIA and eGRID 

data (U.S. EPA 2017)  we build two new state generation mixes: one 2014 as a base year, reflecting 

the most up-to-date individual state generation data available for distinct PGS technologies, and 

another mix for 2030, reflecting the continuing increase in the use of shale gas for electricity 

generation, as well as moderate increase in renewable generation.  

Some additional assumptions are made for this scenario, beyond the change in electricity 

generation mixes. The model still uses the BEA 2007 Input-Output accounts as a basis, as this is 

the most recent benchmark year data for the U.S. economy. It is also assumed that electricity 

trading patterns and industry distributions do not change, allowing the focus to remain on the 

effects of changes in generation mixes. However, a development that does influence supply chain 

emissions of the natural gas generation sector is increasing use of shale gas (Stephenson et al. 

2011; Cooper et al. 2016) . Evolution of upstream emissions for natural gas are accounted for by 

modifying the GHG and WC factors for the Oil and Gas Extraction BEA sector shown in Table 

4.1. 
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Table 4.1: Emissions factors for the Oil & Gas Extraction BEA sector, by year 

 

 

Once the generation mixes for 2014 and 2030 and emissions factors adjustments are 

finished, we create two MRIO models using the methods described in Section 3: the Base Case 

(2014 mix) and Projections Case (2030 mix).  We then we ran a series of final demand vectors for 

each model and compared their supply chain GHG emissions and WC. The Final Demand Vectors 

are listed below.  

 

1) 100 MWh of electricity consumption for each state; 

2) One million dollars ($1M) in final demand for each non-PGS sector, as well as 100 

MWh in final demand for each individual PGS technology (coal, natural gas, etc.), and  

3) A private consumption vector, which represents the final demand of all commodities in 

the economy from residential users. It is important to note that the final demand for 

electricity in this vector is supplied by the state consumption sectors, rather than the 

individual PGS sectors (e.g. final demand for Coal PGS is zero; instead demand for Coal 

PGS is relayed through individual states). 
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4.4.2 Results for 2030 Projection Scenario 

4.4.2.1 GHG and WC Results for 100 MWh of electricity consumption by State 

 

Figure 4.5 shows the changes in emissions intensities resulting from 100 MWh of 

electricity consumption in each state with the Projected 2030 and Base 2014 MRIO models in 

terms of GHG emissions and WC. Each bar represents a single state. The left part of Figure 4.5 

shows the differences in GHG emissions, while the right shows the differences in WC (Projected 

– Base). 
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Figure 4.5: Difference between Projected (2030) and Base (2014) MRIO model results for 
100 MWh of PGS consumption by state.  
Negative values are shown in parenthesis, and indicate emissions reductions in the 2030 case with 
respect to 2014. States classified as net importing/exporting based on current electricity trading 
patterns. 
Left: GHG emissions difference, Projected 2030 – Base 2014, Tonnes CO2e.  
Right: WC difference, Projected 2030 – Base 2014, kGal. 
 

There are several things to note from Figure 4.5. The first and most observable is that there 

is a decrease in GHG emissions per unit electricity consumption for most states. However, not all 

states’ GHG emissions decrease equally, with states like New Mexico (NM) and Oklahoma (OK) 

registering the greatest decreases, while for two states, NJ and NY, emissions increase slightly. A 
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closer look at the consumption mixes used in the 2014 and 2030 models gives a better 

understanding of these trends for these states.  

 

Table 4.2 Consumption Mix Difference (Projected - Base) for select states.  

 
Positive values mean increase of that technology's share for that state. Row sums may not add to 
0 due to rounding. 

 

  
Table 4.2 suggests that the driving forces for the reduction in GHG emissions for NM and 

OK are the reduction in Coal and NG PGS, along with a marked increase in Wind PGS. As net 

exporting states, these changes exclusively represent shifts in the states’ generation mix (i.e. net 

additions of wind farms and decommissioning of Coal and NG power plants within NM and OK). 

For NJ and NY, the situation is different; not only are the changes in their consumption mixes 

reflecting a net increase in NG consumption and virtually no changes in renewable generation, but 

as net importers their consumption mix is not solely dependent on in-state generation. NY imports 

approximately 9% of its total electricity consumption, while NJ imports 29%. Pennsylvania (PA) 

is the source of electricity imports to these states. PA has a higher share of Coal and NG PGS in 

the 2030 projection mix than either NY or NJ have in their 2014 Base mix, meaning that the GHG 

intensity of imports is higher than the generation mix in those states. These factors outweigh NJ’s 

decrease in in-state Coal use, and add to NY’s in-state generation increase of NG PGS production, 

resulting in a small net increase in GHG intensity for these two states. 

In contrast to the GHG results, there is a roughly even split between states that show net 

decrease and net increase in WC intensity. There are several reasons for these differences. The 
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most influential element for these results is the share of Hydro PGS used by each state’s 2030 

generation mix combined with the WC factor for Hydro PGS, which is considerably larger than 

the WC of other technology types (e.g. almost 10 times higher than Nuclear PGS, the second most 

water consumptive technology) (Macknick et al. 2011; Meldrum et al. 2013).  While the overall 

U.S. mix of Hydro PGS does not increase substantially (from 6 to 8%), individual states’ Hydro 

PGS generation shares can have larger variations between 2014 and 2030, either increasing or 

decreasing, depending on the state. For example, states like South Dakota (SD) and Maine (ME) 

have the greatest decrease in share Hydro PGS, at -7% and -5% respectively, which results in their 

overall decrease in WC per 100 MWh. On the other hand, Montana (MT) and Idaho (ID) have the 

largest increase in Hydro PGS share (13% and 6%, respectively) resulting in their higher rates of 

WC per 100 MWh. For these states, increases in Hydro PGS share outweigh any reductions 

obtained from gains from other low-water intensive alternatives (e.g. solar, wind, geothermal) or 

indeed even fossil power plants.  

Although Hydro PGS is the technology driving most of the changes, for certain states’ WC 

this is not the case. For example, the reduction of WC in New Mexico (NM) are due almost entirely 

to that state’s decreased share of Coal PGS generation between 2014 and 2030, which is mostly 

replaced by Wind PGS. Conversely, Arkansas’ increase in WC is driven mostly by increase in 

Nuclear PGS. It is important to note, however, that in these instances the changes in Hydro PGS 

are relatively small compared to the changes in shares of other PGS technologies (e.g., NM does 

not have any Hydro PGS generation in state and as an exporting state, does not import Hydro 

PGS). This combination of factors is rare, but it highlights the fact the decreasing share of fossil 

fuel technologies and use of renewables is a good combination for decreasing WC in electricity 

generation overall.  
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4.4.2.2 Results for $1M of final demand in non-PGS sectors, and 100 MWh of final demand 

for individual PGS technologies 

 

Figure 4.6 shows projected changes in GHG and WC intensities (Tonnes CO2e/MWh, 

kGal/MWh respectively) for BEA IO sectors. Most sectors show reductions in GHG emissions 

associated with their operation for the Projected 2030 model. The reductions in absolute terms are 

greatest in the manufacturing sectors that are characteristically heavy users of electricity. For 

example, Primary Aluminum Manufacturing (labeled in Figure 5A) shows the greatest absolute 

reduction in GHG intensity in the 2030 projections, due to its high amount of electricity use for 

operations and its high presence in states with high reductions in GHG intensities (WA, OH, TX). 

This 275 Tonnes CO2e/MWh reduction corresponds to approximately a 10% decrease in 

emissions intensity, which represents about 70 million Tonnes of CO2e reductions (~1% of total 

U.S. GHG emissions in 2014) given primary aluminum production for 2014 (U.S. Geological 

Survey 2015; Burns 2009). However most sectors experience reductions in emissions intensities, 

not just manufacturing. For example, the Other Real Estate sector also benefits from having an 

overall less carbon intensive grid, as this is a sector present in most states. Reductions for most 

sectors are less than ten percent.  
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Figure 4.6: Comparison between Projected and Base MRIO model for $1M of final 
demand by each BEA IO sector.  
Each bubble represents one BEA IO sector. Values above the dotted lines represent increase in  
emissions for that particular sector; values below represent decrease in emissions. Bubbles are 
clustered into the highest level economic categories described by the BEA. 
Top (part A): GHG emissions difference, Tonnes CO2e.  
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Bottom (part B): WC Difference, kGal 
 

An interesting observation is that the sector with the largest absolute decrease is not 

necessarily the sector with most reductions as a percentage of original emissions. In this case, 

Wind PGS is the sector with the largest relative decrease in emissions, with a decrease of about 

25% in the Projected Scenario. Since Wind PGS has a direct GHG emissions factor of 0, its 

emissions are caused indirectly through its supply chain; accordingly the cleaner grid in the 2030 

projection causes the decrease in supply chain emissions to have a greater effect on total GHG 

emissions in this sector than other sectors where total emissions are a combination of direct and 

indirect effects. 

The only sectors with significant GHG emissions increase are Oil & Gas Extraction and 

Petroleum Refineries. This is caused by the change in the GHG emissions factor between the 2014 

and 2030 models for Oil & Gas Extraction (shown in Table 4.1), which represents increased share 
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of shale natural gas use. This change, which can be thought of as emissions at the extraction site, 

results in direct emissions increase for Oil & Gas extraction sector, and upstream emissions for 

Petroleum Refineries. For Oil & Gas Extraction sector, the results suggests that the projected 

increased in renewable electricity sources are likely to be comfortably offset by the emissions 

increase from extraction of shale gas sources. For the Petroleum Refineries sector, the increase 

may be overestimated. While petroleum refineries do use some amount of natural gas, their 

primary feedstock is crude oil, but this commodity is aggregated with natural gas in a single sector 

in the IO model. 

Figure 4.6 shows that for most sectors there is a slight increase in water consumption from 

electricity use in the projected case. As with Figure 4.5, this can be traced to the slight increase in 

hydroelectric power use for most states. This, combined with the fact that most sectors are spread 

out across states, results in these slightly higher consumption values. The increase is most 

prominent in the manufacturing sectors. Interestingly, Primary Aluminum Manufacturing is the 

sector with the highest increase in water consumption, just as it was the sector with highest 

decrease in GHG emissions. On the other hand, the Iron Ore, gold, silver, and other metal ore 

sector exhibits the greatest decrease in WC. For both of these sectors, these trends are explained 

by their high electricity use and geographic distribution in the U.S. 87% of Primary Aluminum 

Manufacturing is spread across 11 states where Hydro PGS mix increased between the Base and 

Projected models, whereas 85% of Iron ore, gold, silver and other metal ore is concentrated in two 

states (MN and NV) where Hydro PGS mix decreased. Oil & Gas extraction presents an increase 

in WC as well due to the added extraction of shale gas. The results in Figure 4.6 corroborate the 

findings highlighted by Figure 4.5. 
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4.4.2.3 GHG and WC Results for Private Consumption (PC) 

 
When running the PC final demand vector in the Base 2014 and Projected 2030 models, 

the assumption is that personal consumption expenditures remain fixed but the electricity sector 

evolves as expected. Figure 4.7 shows the differences in these two scenarios with the differences 

calculated as Projected 2030- Base 2014 results from the PC final demand vector for GHG and 

WC.  GHG reductions come mostly from the decrease in emissions from Coal PGS, Oil PGS, and 

Coal Mining sectors as shown in Figure 4.7A. Most other sectors included in the PC final demand 

vector show negligible emissions changes (less than 0.01% difference between Projected and Base 

results). Emissions reductions from Coal and Oil PGS result from their decrease share in the U.S. 

mix (approximately 13% and 1% reduction, respectively). As the main sector providing fuel for 

Coal PGS, the Coal Mining sector decreases in economic output which results in the sector’s 

decrease in emissions. There are some sectors with no GHG emissions either because of no (direct) 

demand from PC, or a GHG emissions factor of zero (e.g., Wind & Solar PGS). Finally, a few 

sectors increase in GHG emissions in the projections. NG PGS has the highest absolute and relative 

emissions increase, caused by an increase of approximately 5% of its share in the U.S. mix and 

higher share of shale gas use. This is followed by Oil & Gas Extraction, which is supplying more 

natural gas to meet the demands of NG PGS in addition to its increase use of shale gas. The other 

two sectors with a noteworthy increase are Geothermal PGS, which doubles its share in the U.S. 

mix (0.4 to 0.8%), and Pipeline Transportation, which is the main delivery system for natural gas 

to power plants and uses Oil and Gas Extraction’s production as input to its operation, which drives 

its emissions up indirectly. 

Figure 4.7B highlights the PC results with regards to WC, which mirror similar trends to 

GHG emissions. As with Figure 4.7A, a large number of sectors show negligible changes in water 
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consumption. The Biomass, Oil, and Coal PGS show the largest decreases in water consumption, 

caused by their overall reduction in the U.S. mix. The increase in hydroelectricity in the U.S. mix 

(from 6.5 to 7.7%) also drives the increase Hydro PGS, while the increase in shale gas drives the 

WC increase for NG PGS and Oil & Gas extraction sectors Overall, the large drop in fossil based 

PGS technologies and slight increase in Hydro PGS largely cancel out WC changes nationally. 

The net effect is that, given constant private consumption patterns between the two periods, the 

projected changes in the electricity grid will result in a 1% increase in total WC and 9% decrease 

in total GHG emissions. 

 

Figure 4.7: Emissions comparison for Private Consumption.  
Note that the scale on the Y axis is not continuous, with jumps indicated by dotted lines towards 
the upper and lower portions of the figures.  
Top (part A): GHG emissions difference, Tonnes CO2e 
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Bottom (part B): WC difference, kGal 

4.5 MRIO SCENARIO: ENVIRONEMTNAL IMPACTS OF DATA CENTER 

ELECTRICITY CONSUMPTION 

4.5.1 Data Centers and the MRIO model  

Data centers present an excellent case study for demonstrating the utility of the MRIO model 

for several reasons. These are explained as follows. Data centers are energy intensive, and their 

environmental impacts are heavily related to their electricity use and thus local grid composition 

(Arushanyan et al. 2014) (Dandres et al. 2016). Data centers are one of the primary components 

of continued growth of the information and communication technologies industries (ICTs), as 
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shown by the continued increase in economic output from the Data Processing, Hosting, and 

Related Services industry (NAICS sector 518200) in Figure 4.8. They can be installed in most 

regions in the U.S, as evidenced by sector 518200’s presence in almost every state (U.S. Census 

Bureau 2009). Additionally, data center energy use and investment in clean electricity to operate 

them has become a focus for large ICT and information technology (IT) companies as they pursue 

their sustainability goals (Amazon Web Services 2017; Google Inc. 2016). The combination of 

continued growth potential and geographic flexibility make data centers an opportunity for 

regional economic development. Coupled with the increasing use of renewable technologies to 

power data centers due to corporate sustainability goals, regions with cleaner electricity grids could 

provide an incentive for companies to locate in these regions. 
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Figure 4.8: Economic output from the Data Processing, Hosting, and Related Services 
(NAICS 518200), 1997-2014, real 2014 USD (U.S. Bureau of Economic Analysis 2017) 

 

In this section, two different scenarios regarding data center use are explored. The first 

scenario is based on the hypothetical question: what would the benefits be, in terms of GHG and 

WC reductions, of a wide-scale relocation of data center operations to states with the “cleanest” 

(i.e. low GHG intensity) grids, given current generation mixes in the U.S.? The second scenario is 

a look at the use of electricity by individual firms, where we adapt the stated data center 

sustainability goals of Amazon Web Services (AWS) and estimate the potential impacts of their 

electricity consumption goals for data centers in terms of GHG emissions and WC. Note that for 

these following scenarios, the emphasis is on changes in industry location only, not on projected 

changes to the U.S. grid (i.e. 2014 consumption mixes are used for these scenarios). 
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4.5.2 Data Center Relocation Scenario Implementation 

While the economic value of ICTs is expected to continue to grow in the future, current efforts 

are underway to consolidate and optimize data center deployment, maintenance, and operations 

costs, and promote energy efficient and sustainable use of information technology. This trend can 

be seen from different types of data center users, including the U.S. government’s Federal Data 

Center Consolidation Initiative (U.S. Department of Homeland Security 2011), as well as by 

private users’ trend of moving to cloud-based computing rather than maintenance of their own 

infrastructure (International Data Corporation 2016). There are many factors that affect the ways 

in which data center consolidation and relocation is decided upon, such as the organization owning 

the data centers, cost and legal considerations, the extent of existing internet infrastructure, 

environmental factors that can impact operations (such as average temperature), etc. For the 

purposes of this work, we restrict our attention to considerations regarding GHG and WC 

reductions. As such, for the purposes of this scenario we assume the following: 

 

1) Total economic output from sector 518200, and data centers in particular, does not change. 

2) The main consideration is moving to the closest state with the cleanest grid. In this context, 

“closest” is considered to be the state in each NERC region with the cleanest grid; 

“cleanest” grid translates to the states with the highest share of Hydro, Geothermal, 

Biomass, Wind, and Solar PGS consumption. These states are shown in Table 4.3. 

3) The trends of consolidation, optimization, closure, and implementation of sustainability 

initiatives with regards to data centers are modeled as a net change in location of data 

centers, reducing their locations from their original presence in many states (labeled 2014 
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distribution) to having a presence only in these “clean” states (labeled NERC Distribution). 

These distributions are shown in Table 4.4. 

 

It is important to note that these considerations are not intended to result in a realistic new 

distribution of data centers in the U.S. Rather, they are intended to produce a distribution that 

results in data centers being relocated such that their electricity emissions were caused by operating 

locations where electricity consumption changed to match what are currently the cleanest available 

grid mixes in the U.S. In other words, the NERC distribution represents a “what if” case for 

environmental emissions using current generation technology mixes. Subsequent use of the term 

“data centers” in the context of scenario development refers to NAICS industry 518200, for 

simplicity. 

Table 4.3: States with most renewable share of consumption by NERC region 
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Table 4.4 Distributions for the different data center scenarios.  

 

Three different spatial distributions shown for data center locations: 2014 distribution (base), 
NERC distribution (used in relocation scenario), and Amazon distribution (used in Amazon 
scenario). 
 

Having established the different spatial distributions of the data centers before the relocation 

(2014 distribution) and after (NERC distribution), the next step is to estimate the changes in 

electricity related emissions caused by the relocation. These changes can be caused by the 

differences in electricity directly consumed by the data centers for their operations (e.g., electricity 

used to maintain the servers operational), termed here direct PGS effects, and by the differences 

in electricity consumed by those industries that service data centers (e.g. electricity used by 

employees, restaurants, and elsewhere in the supply chain), termed indirect PGS effects. It is 

important to emphasize that these estimates pertain only to electricity consumption of data centers 

and electricity consumption of the data center supply chain, rather than emissions estimates of all 

activities in the supply chain. As such, final demand vectors for these scenarios consist exclusively 

of PGS entries (as opposed to the final demand vector in the PC scenario, for example). 
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The Base 2014 model from the previous section was retained, and a new model was created 

using NERC distributions by changing the 518200 industry presence from the 2014 to the NERC 

distribution shown above; these are referred to here as the 2014 and NERC models). The two 

models are otherwise the same. To estimate the direct PGS effects, we ran a final demand vector 

that consists of the total electricity consumption (by state) of data centers in the U.S., spread 

geographically according to each distribution (U.S. Census Bureau 2009). Recent literature places 

the total electricity consumption by data centers in the U.S. in 2014 at approximately 70 million 

MWh, which is quite different from the BEA estimate. Since this source (Shehabi et. al 2016) is 

more recent and focuses specifically on data center activities, their reported value for direct data 

center electricity consumption is used in the direct final demand vector, and a scaling factor is used 

to adjust the values in the indirect final demand vector proportionally. Using this method and the 

distributions shown in Table 4.4, the direct PGS consumption from data centers in Texas, for 

example, is 7.21 and 6.09 million MWh for the 2014 and NERC models, respectively.  

To estimate the indirect PGS effects, a final demand vector that contains the PGS consumption 

required by industries that service data centers was created. This is accomplished by finding the 

amount of monetary purchases that the 518200 industry purchased from all the industries along its 

supply chain, and for each of these industries, finding how much they spend on electricity 

consumption as a percent of their total purchases. Multiplying these values yield the electricity 

purchases by sectors in the supply chain for the purposes of meeting their sales obligations to 

sector 518200. Finally, these purchases are converted to energy units using the appropriate industry 

price (as discussed in Chapter 3) and adjusted using the scaling factor derived for the direct final 

demand vector.  
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After running the final demand vectors for direct and indirect effects using equation (1-5), 

the results are combined in a final estimate to show the total effects, as shown in the next section. 

4.5.3 Data Center Relocation Scenario Results 

The change in distributions, from 2014 to NERC, means that the states from which data 

centers draw their PGS consumption changes between models. This, in turn, means that the 

underlying PGS consumption mix changes to reflect the new data center locations. This is shown 

in Figure 4.9. As expected when moving to locations with more renewable consumption, Coal, 

Natural Gas and Nuclear PGS shares decrease from 2014 to NERC, with the shift occurring mostly 

to Hydro PGS, although Wind and Biomass show a slight increase as well.  

 

 

Figure 4.9: Comparison of electricity consumption mix, 2014 vs NERC distributions 
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Figure 4.10: Comparison of total GHG and WC impacts due to PGS consumption of Data 
Centers, 2014 vs. NERC Distribution 

 

The change in consumption mix drives the changes in GHG emissions and WC, as shown 

in Figure 4.10. For GHG emissions, the lower amount of Coal and Natural Gas PGS included in 

the mix explain the decrease in overall emissions. It is worth noting that direct and indirect PGS 

consumption contribute approximately equally in terms of total GHG and WC numbers seen in 

Figure 4.10; thus, for the 2014 estimate, approximately 45 million Tonnes of CO2eq are caused 

directly by the electricity consumed by the data centers in the U.S. This estimate of direct CO2eq 

emissions is comparable to other estimates in the literature (Brown et al. 2007). For WC, the 2014 

estimate differs significantly from other estimates in the literature of direct water consumption by 

data centers, with the main difference being the assumed water consumption rate per MWh. For 
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example, Shehabi et. al (2016) assume an average water consumption value for electricity 

generation of 2,000 gal/MWh, whereas the MRIO model has estimates for individual PGS 

technologies. In particular, the estimate for Hydro PGS is more than double at 4,500 gal/MWh, 

and the large increases in Hydro PGS share in the NERC scenario make this difference more 

relevant in the results. Again, these results serve to illustrate the tradeoff between GHG emissions 

reductions and WC increases, as was the case with the EIA projections scenario. 

4.5.4 Amazon Web Services Scenario Implementation 

The second data center focused scenario is aimed at showcasing the use of the MRIO model 

by a private business. Amazon Web Services (AWS) is a good option as they have ambitious 

sustainability goals related to electricity use by their data centers website (Amazon Web Services 

2017); they have data centers located in different states; and their webhosting services are expected 

to continue to grow. The main question this scenarios asks is: how does changing from average 

state supplied electricity to dedicated renewable electricity affect GHG and WC of AWS’s data 

centers? Additionally, this scenario is an example of a more localized application of the MRIO 

model: instead of focusing on the nationwide effects caused by state level changes, this example 

shows that the model can focus on regional issues.  

To implement this scenario, AWS’s sustainability goals for 2017 were adapted for use with 

the MRIO model. These goals can be found at AWS’s sustainability website. In particular, they 

mention four states and two PGS technologies (Wind and Solar PGS) they are purchasing 

electricity from, rather than using the state grids. These locations will be the focus of this analysis, 

and are summarized in Table 4.5. Their main objective is to consume electricity for their data 

centers directly from the dedicated renewable sources in these areas. 
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Table 4.5: AWS PGS consumption goals for the new Data Center sites for 2017 

 

State: IN = Indiana; NC = North Carolina; OH = Ohio; VA = Virginia 
Distribution: For this scenario, AWS will purchase electricity in these 4 states, with the percent 
split shown in this column. 
PGS Tech: The type of electricity purchased by AWS in each particular state 
 

 
To run this scenario, again two different MRIO models are used: the Base 2014 distribution 

model, and an Amazon-specific distribution as specified in Table 4.5. The final demand for the 

2014 distribution in this case is the amount of MWh specified for each specific state. For the 

Amazon distribution, the final demand is the amount of the specific electricity generation type, 

rather than by state as was the case for the NERC run. The direct PGS final demand vector for the 

Amazon scenario consists of a demand 2,070,000 MWh for Wind PGS and 570,000 MWh for 

Solar PGS. 

The Indirect PGS final demand vector is created using the same steps as described in the NERC 

run, with the exception that the scaling factor is not applied. This is because the values in the Direct 

PGS final demand vector for this scenario did not exceed the BEA estimates of data center PGS 

consumption, and not applying the scaling factor preserves the linear relationship of the 

interindustry transactions in the model. Importantly, however, the final demand values are assigned 

not to individual electricity generation technologies, but to the states listed in Table 4.5.  
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4.5.5 Amazon Web Services Scenario Results 

 
Figure 4.11 shows the electricity consumption mix for the Base 2014 and Amazon 

distributions given the final demand vectors discussed above. For the Base 2014 case, the 

consumption mix reflects the electricity generation technologies available in the four states under 

consideration. For the Amazon data centers, Wind and Solar PGS constitute a much larger 

proportion of their consumption mix given that they constitute the entirety of the direct PGS 

consumption; consumption of other electricity generation technologies is due to the indirect 

consumption from the state grids.  

 

 

Figure 4.11: Comparison of electricity consumption mix, 2014 state vs Amazon scenarios. 
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Figure 4.12: Comparison of total GHG and WC impacts due to PGS consumption of Data 
Centers, 2014 state vs Amazon Scenarios  

 

Figure 4.12 shows the GHG and WC results for this run. As in the NERC case, 

consumption from the Amazon distribution display a reduction in total GHG emissions as 

compared to the Base distribution, again due to the reduction in fossil fuel based technologies. 

However, this scenario also shows a net reduction in WC. By substituting the entire direct 

electricity consumption of the data centers wind and solar electricity, Amazon can avoid the higher 

water consumption associated with state supplied hydroelectricity in favor of less WC intensive 

technologies. Additionally, where these emissions are coming from in the Amazon scenario also 

differs from the NERC scenario. Since emissions are reduced significantly in the direct portion of 

electricity consumed, the vast majority of emissions now come from the indirect sources in the 

supply chain (which uses state grid electricity). Emissions generated indirectly by employees and 



 115 

real estate services lead in both GHG and WC categories. This suggests that further reductions in 

emissions from direct data center consumption is unlikely for these locations. If additional 

reductions from electricity consumption are sought, the best route would be to purchase services 

from industries in these locations that also use renewable sources.  

4.6 CONCLUSIONS 

This article describes the development and implementation of an electricity-specific U.S. 

MRIO model. In particular, the model considers the state level electricity generation, interstate 

electricity trading and geographic industry distribution in the U.S. to estimate electricity 

consumption. This level of geographic detail combined with the potential to evaluate supply chain 

impacts makes the model useful to identify regional and national trends arising from state level 

electricity policies and their effects on specific industries. The model can be used to analyze the 

stated goals for reduction of carbon-intensive electricity sources and provide insight with regards 

to water consumption due to electricity, commonly referred to as the energy-water nexus, in a 

world with increasingly unpredictable weather patterns. Additionally, the model framework was 

developed such that it is able to accommodate changing underlying assumptions (i.e. changes in 

electricity trading) and possible policies, which can be done by modifying the individual model 

components and source data (shown in Figure 1). A beneficial feature of this model is that it can 

be extended with other types of electricity-related impacts beyond WC and GHG, provided that 

the appropriate electricity data are available. While electricity is regionalized, other sectors are 

not, which reduces the data burden usually required for multi-region models while providing an 

increased resolution with regards to electricity specifically.  
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Here the model is used to evaluate projected electricity trends in the U.S. out to the year 

2030 and the consumption of electricity consumption by data centers. For the 2030 projections, 

overall results suggest that the 2030 U.S. grid will produce fewer GHG emissions, while slightly 

increasing the water consumption from electricity use for most states and industries. This could be 

a critical consideration for water scarce southern and western states. Electricity trading is also an 

important factor, as increases in water consumption due to electricity might not always be local. 

For example, California is a net importer of electricity; as such, while all of its electricity 

consumption happens within California, some of the water may actually be consumed in the states 

where the electricity is coming from, such as Arizona, another water constrained state. This 

highlights the difficulty in designing state level policies in isolation. More broadly, the result 

shows that while the expected trends are for reductions in GHG emissions, other potential impacts 

should not be ignored when developing policies at state or federal levels, as there may be important 

trade-offs that may otherwise be overlooked. 

An important observation from the results presented in Section 5 is that in most instances 

Hydro PGS is the main driver of water consumption increases. While it may seem unusual that 

only one sector influences the results to such a degree, there is key difference between Hydro PGS 

and other PGS water use. While the other PGS technologies have comparable or even higher water 

withdrawal rates that Hydro PGS, most of the water is returned to the source. In contrast, the nature 

of most Hydroelectric power generation – the use of dams – means that the water withdrawn is 

exposed to larger retention periods in exposed, open air locations, which causes higher rates of 

evaporation. In our calculations, we used the lower estimates of water evaporation and 

consumption for Hydro PGS present in the literature (Mekonnen, M.M. and Hoekstra, A.Y. (2012); 

P. Torcellini, N. Long, and R. Judkoff (2003); Timothy H. Diehl and Melissa A. Harris (2014)), 
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assuming that future additions would tend to be more water efficient than existing facilities, as  

most additions to Hydro PGS are expected to be in the form of expansion to existing dams or 

construction of new ones with smaller nameplate capacities (Clean Energy States Alliance, 2013). 

Even using this conservative approach, however, the fact remains that Hydro PGS is the most 

water consumption intensive from of electricity generation considered in this work. 

While results from the model can provide valuable insight, the MRIO model does have 

several limitations. As with any input-output model, results from the MRIO model are not intended 

to be exact estimates of power generation needs or impacts. Despite the improvement in 

geographical resolution for electricity production, the data is still aggregate in nature, especially 

for non-PGS sectors, which means the model is better suited to identify hotpots and broader trends 

caused by policy decisions rather than for estimating individual power plant impacts. Another 

concern is the uncertainty in the data inputs to the model.  For our analysis, we used comparative 

rather than absolute assessments from the model in an effort to minimize the effects of data 

uncertainty and model sensitivity. This is an area where future research identifying the sources of 

uncertainty would benefit the results and interpretations obtained from the model. In particular, 

coupling the MRIO model with more detailed network modeling approaches might improve the 

model’s capacity to estimate the effects of electricity trading by allowing the model to regard all 

states as importers and exporters. With the exception of electricity, all other production 

technologies remain static as the supply chains for other sectors are likely to evolve as well. 

Finally, while we focus on GHG and WC in this study, it is possible to expand the model to include 

other environmental impacts, such as energy use, air particulates, and other pollutants relevant to 

national environmental policy.
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5.0  CONCLUSIONS AND FUTURE WORK 

5.1 SUMMARY 

This model represents the first electricity focused, multi-regional input-output tool for LCA and 

policy analysis for the U.S. An overview of the contributions of this work is shown in Table 5.1. 

 

Creation of an electricity focused Multi-Regional Input-Output Model  

The detailed 2007 U.S. Benchmark Input-Output Accounts were combined with electricity 

price data, geographic distributions, and region specific generation and consumption mixes to 

create the MRIO model. The technologically and geographically disaggregated Use and Supply 

tables are used to create the Multi-Regional model with disaggregated electricity sectors. The 

additional electricity and regional sectors allow the model to assess changes by individual region, 

individual industry, or combinations of each for different types of emissions under consideration. 

Results from the model can be used to evaluate trends for electricity consumption and tradeoffs 

both nationally and for particular regions.  

 
GHG and Water Consumption Factors 

The MRIO model features updated GHG emissions intensities for all IO sectors in the 

original 2007 BEA IO Benchmark Accounts, in addition to GHG intensities developed specifically 

for the disaggregated electricity sectors. Additionally, Water Consumption factors for all IO 
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sectors and electricity technologies were also developed. In addition to their use in this thesis, these 

factors can provide additional information to analyses performed with other EIO LCA or MRIO 

models of the U.S. 

 
Table 5.1: Contributions of the MRIO model presented in this disseration  

 

 

Validation of disaggregated IO PGS results with process-based estimates 

The GHG emissions intensities of the disaggregated electricity sectors were compared 

against emissions intensities of process based models and found to be comparable. Additionally, 
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the GHG and WC impacts caused by electricity consumption analyzed in the case studies were 

compared against existing literature estimates, when applicable (i.e. data center case study). 

 

Inclusion of mixed units for electricity  

The model includes specific electricity prices for over half of the detailed IO industry 

sectors, which were used to estimate physical flows of electricity throughout the economy. The 

choice of monetary vs. physical units for tracking commodity flows in IO models was investigated 

and found to have significant effects on emissions estimates for specific sectors, given that the 

industries that comprise a single IO sector have enough variation in the prices they pay for 

electricity. For electricity use, this is especially significant in the case of industrial sectors and 

residential users. Industrial sectors typically pay a lower than average price for electricity, which 

results in economic models implicitly assigning fewer emissions per kilowatt-hour, while the 

opposite is true for residential users. The inclusion of energy units for tracking electricity through 

sector-specific prices ensures that emissions are allocated based on the amount of electricity 

consumed. 

 

Model Applicability 

Two different scenarios were analyzed using the completed model. In the first scenario the 

MRIO model was used to estimate the changes in emissions intensities for individual states and 

industries arising from projected changes to the U.S. grid to the year 2030, showcasing the 

interconnectedness of electricity with every other sector in the economy. Results showed that 

reductions in GHG emissions intensity in the U.S. grid due to increased use of renewable electricity 

generation comes at the risk of increase in water consumption. This increase is primarily caused 
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by increased share in hydroelectricity use, and can be a critical consideration for regions that 

consume electricity generated where water resources are scarce. The second scenario explores the 

effects of electricity use of data centers, first with a national and then with a business specific 

perspective. Results concerning GHG estimates caused by data center electricity consumption 

were found to be comparable to literature estimates. Conversely, results for water consumption 

estimates differed from the literature, which highlights the benefit of considering individual 

electricity generation technologies when analyzing electricity consumption by specific industries.    

 

Model Availability 

The model and results presented in this dissertation were achieved with data sources that 

are all publically available which allows for independent replication and evaluation of this work.  

The files used to create the model are available upon request by email to jav66@pitt.edu.  

5.2 RECOMMENDATIONS FOR FUTURE WORK 

5.2.1 Expanding vector of emissions intensities   

The MRIO model developed in this work and the case studies explored focused on impacts 

related to changes in electricity consumption from different regions and PGS technologies. This is 

a greater level of resolution than was previously available for U.S. IO models, with the GHG and 

WC intensity (R) vectors representing the individual technologies more accurately. However, 

including additional information to represent variations in technologies according to location 

(state) in addition to technology type would further improve the conclusions drawn from the use 

mailto:jav66@pitt.edu
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in the model. In particular, renewable electricity generation technologies such as solar, wind, and 

hydro are more dependent on local conditions that more traditional technologies such as coal or 

nuclear generation. Indeed, it is likely that hydro PGS consumes less water per kWh in a state like 

Washington than a drier state like Arizona. Adding state-specific emissions intensity differences 

for these technologies would allow the model to provide greater accuracy for state level emissions 

estimates when using the MRIO model.  

In addition to including state specific emissions intensities for renewable technologies, 

adding estimates for other types of emissions beyond GHG and WC would also expand the 

capabilities of the MRIO model, as it could be used to consider more types of tradeoffs between 

electricity generation technologies and the emissions they produce. Previous IO models such as 

EIO-LCA and Eco-LCA (Hendrickson 2005; Bakshi and Small 2011) include additional types of 

environmental intensities, including toxic releases, hazardous waste, exergy, or particulate matter. 

Including other types of types of emissions could be used to analyze scenarios similar to Rudokas 

et al. (2015), who analyzed GHG, SOx, and NOx emissions of the U.S. energy sector related to 

several climate mitigation scenarios. Unfortunately, creating emissions intensities for these types 

of pollutants for every IO sector in the 2007 Benchmark Accounts is a non-trivial and time 

consuming endeavor, which is why such vectors were not created.  

Another addition that would benefit the model would be to include an “employment 

intensity” vector. The implementation would be similar to the GHG or WC vectors already 

developed for the model, except that instead of measuring environmental impacts per dollar worth 

of output for each IO sector (or MWh for PGS sectors), it would indicate the amount of 

employment required by each sector. This information would be beneficial because it could be 

used to provide estimates of employment changes in specific regions related to grid changes in 
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said regions. For example, it could be used to augment the Amazon Data Center case study 

explored in this thesis. In addition to providing estimates on GHG and WC associated with the 

renewable electricity used by data centers in the states in which they are deployed, the model could 

also estimate the changes in employment related building those solar and wind farms. Such 

information could provide additional incentives for states to invest in renewable energy, as they 

could be seen as a way to attract employment for specific regions.   

5.2.2 Including additional details on PGS sectors  

Expanding the emissions intensities vector would benefit the MRIO model by providing 

additional information for all sectors included in the model. However, there is also additional data 

that could be included to further complement the PGS sectors. From the perspective of the 

disaggregated PGS sectors, data on the infrastructure and capital goods required to build these 

power generation sources could be included to form a construction layer in the MRIO model. 

Because IO models are often used for economic planning, analyses conducted with them do not 

usually focus on capital investments and their impacts. Currently, the MRIO model accounts for 

these impacts in one sector of the Use table, which describes all products or commodities 

purchased as capital investments. Future work can focus on expanding this sector by including 

results of LCA studies that describe the environmental impacts associated with the purchase of 

capital goods for the individual PGS technologies, and assign them to these sectors per kWh of 

electricity produced over the lifetime of each technologies’ major components.  

Finally, while the model does include trading of electricity between regions, the limited 

nature of the trading data available combined with the need to harmonize that data with the rest of 

the MRIO model components limits the insights that can be gained from trading at the state level. 
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Obtaining or estimating trading data that allow modeling of states and regions as both importing 

and exporting between each other, as is the case for the North American grid, would provide 

greater accuracy and detail when estimating production vs. consumption based accounting with 

the MRIO model.
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER 2: PGS DISAGGREGATION 
Appendix A.  

 
 

This Appendix is the peer reviewed version of the Supplemental Information for the 

following article:  

Vendries Algarin, J., Hawkins, T. R., Marriott, J., Scott Matthews, H. and Khanna, V. 

(2015), Disaggregating the Power Generation Sector for Input-Output Life Cycle Assessment. 

Journal of Industrial Ecology, 19: 666–675. doi:10.1111/jiec.12207 

 

which has been published in final form at http://dx.doi.org/10.1111/jiec.12207. This article may 

be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-

Archiving. 

 

A.1. Disaggregation Overview  

The steps of the disaggregation method are described in Chapter 2. Here we provide additional 

details of the disaggregation as they pertain to the electric power generation sector.

Figure A.1 provides a conceptual overview of the disaggregation process.  

http://dx.doi.org/10.1111/jiec.12207
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Figure A.1: Disaggregation of the power generation sector diagram 

 

 The disaggregation procedure highlighted in Chapter 2 and this Appendix has some 

similarities with the one built by Marriott (2007), but contains significant revisions. The most 

significant of these are:  

-including multiple manual allocations in both the Use and Supply tables, along both the rows and 

columns for PGS and non-PGS sectors alike, and implementing said capability in the IO-LCA 

software; 

-use of the updated 2007 BEA Benchmark Input-Output accounts; 

-use of plant level emissions data for creation of GHG factors, and validation of those factors by 

comparing with other process-based emissions estimates; 

-setting up the framework for inclusion of mixed units and individual regions 
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 These revisions are described in more detail below. 

 

A.1.1. Model Discussion and Data Selection 

 

The U.S. Bureau of Economic Analysis (BEA) publishes the economic data used to create the 

IO model. BEA’s input-output tables are created from the economic census done every five years 

in the United States.  While there is some uncertainty in these numbers due to survey methods, 

assumptions made, etc., use of these data sources is widespread and accepted.  The benchmark 

data are available for every five years (1992, 1997, and 2002), usually with a five-year lag (the 

2007 input-output data should be available in late 2013).  In order to build a new input-output 

model, we need to modify or replace the components of the benchmark data: the use and supply 

tables. It is worth noting that while the BEA uses the conventions established by Miller and Blair 

(1985), make and use tables, in this work we frame the disaggregation in terms of supply and use 

tables to be consistent with international standards (United Nations 2009).  

While it would be preferable to use financial data obtained directly from the electric power 

industry to build the disaggregated model, such data is generally considered confidential and is not 

readily available. The federal government currently requires that utilities make some of this 

information publicly available, but the partially deregulated industry would like to have this 

financial reporting requirement removed, or at least made completely confidential (Raymond 

2006). Additionally, there is variability in the way utilities report the data due to different 

accounting practices, the size of the utility, and the types and age of the generation assets the utility 

operates.  The data in some cases is very general – like fuel purchases, which could be easily 

mapped to a sector like “coal mining” or “oil and gas extraction”, or very detailed, like the purchase 
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of a specific piece of environmental control equipment for a particular power plant, which is 

difficult to map to a specific sector.  Finally, very few purchases, with the exception of fuel, are 

attributed to a particular plant or fuel type, making the information difficult to use in our model.  

Because of these problems with industry data, we chose instead to directly modify the use and 

supply table information. 

Environmental emissions due to electricity generation are available from many different 

sources, which we use to calculate emission factors, or the output of a pollutant per unit output, 

for the disaggregated sectors.  Emission factors can be based on top-down methods, where the 

amount of a pollutant is divided by the output of the process that created it, like those created by 

the U.S. EPA (U.S. EPA 2012b); some are bottom-up, where the input and efficiencies of a process 

are analyzed with a mass balance to calculate the emission factors. As a result, emission rates 

estimates vary considerably.  Since we need average data for all power plants of a certain fuel type 

in the United States, a top-down approach works better.  For the most part, the emission factors 

are adapted from the U.S. EPA’s eGrid model, which are in turn based on the AP-42 emission 

factors (U.S. EPA 2012b). 

   

A.2. Disaggregation Methodology 

A.2.1. Number of Disaggregated Sectors 

The choice of number of sectors to disaggregate to was mainly constrained by data availability. 

We chose the sectors that had a reasonable level of detailed data available in terms of electricity 

generation (EIA 2011) (Aabakken 2005) and fuel price information (EIA 2011) for the year 2002, 

the latest benchmark year for the BEA make and use tables (Bureau of Economic Analysis 2008). 



 129 

The sectors are specified in Table A.1. We introduce a NAICS sector code appropriate to the 

technology in question.  Italicized entries denote the disaggregated sectors implemented. 

 

Table A.1: Disaggregated PGS sectors and code definitions  
 

NAICS Code IO Model Code NAICS Sector Definition 
2211 -- Power Generation and Supply 
22111 --    Fossil Fuel Power Generation 
221111     221101       Coal  
221112 221102       Natural Gas  
221113 221103       Petroleum  
22112 --    Renewable Power Generation 
221121 221105       Hydroelectric  
221122 221106       Geothermal  
221123 221107       Biomass  
221124 221108       Wind  
221125 221109       Solar  
22113 --    Other Power Generation 
221131 221104       Nuclear  
221132 221110       Other Power Generation 
22114 --    Power Supply 
221141 221111       Transmission 
221142 221112       Distribution 

 

The technologies included in the sector definitions used here are the same as those used in 

Table 7.1 of NREL’s Power Technologies Energy Data Book (Aabakken 2005) for the sectors 

with the same name, with the exception of the biomass power generation sector. In this work, the 

biomass sector combines NREL’s Wood and Waste generation sources, which utilize the following 

generation feedstocks for electricity generation: 

 

Wood: Wood, black liquor, and other wood waste. 

Waste: Municipal solid waste, landfill gas, sludge waste, tires, agricultural byproducts, 

and other biomass. 
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A.2.2. Disaggregated Model Inputs 

BEA Make and Use Tables 

The main input to the model is BEA’s make and use tables. In this work, we use the 2002 

Benchmark Input-Output Make and Use tables at the detailed level, revised in 2008 (Bureau of 

Economic Analysis 2008).  

 

U.S. Electricity Mix 

Table A.2 shows the electricity mix used in this work. The electricity generation mix are 

derived from values in Table 7.1 from NREL’s Power Technology Energy Data Book 2006 

(Aabakken 2005). As part of the aggregated PGS sector, Transmission and Distribution need to be 

taken into account. Since we cannot directly compare the service performed by these two sectors 

with the physical electricity produced by generation sectors, we compare them on a monetary 

basis. To do so, we note that about 1.6~1.8% of operating expenses are spent on transmission and 

distribution (Table 8.1 in (EIA 2011)). Accordingly, we normalize the generation mix for the 

power generation technologies across the remaining 96%.  
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Table A.2: U.S. electricity generation mix, 2002 

Sector 2002 Gen Mix 2002 Gen Mix with Trans. & Dist. 
Coal 50.13% 48.36% 

Nat. Gas 17.92% 17.29% 
Petroleum 2.46% 2.38% 
Nuclear 20.23% 19.51% 

Hydroelectric 6.85% 6.60% 
Geothermal 0.36% 0.35% 

Biomass 1.61% 1.55% 
Wind 0.26% 0.25% 
Solar 0.03% 0.03% 
Other 0.16% 0.15% 

Transmission - 1.88% 
Distribution - 1.65% 

 

Emission Rates 

Emission rates were calculated using EPA’s Emissions and Generation Resource Integrated 

Database (eGrid) 2012 plant scale data for the U.S. (U.S. EPA 2012b). This data is presented in 

the main manuscript in table 4 and reproduced below for convenience. The point estimates 

represent the values used for the model runs presented in this work. 

Table A.3: CO2e emission rates 

Technology Emission Rates 
Ranges, Ton CO2e / 

GWh 

Emission Rates Point 
Estimates, Ton CO2e / GWh 

Coal    900 – 1,400  973.56  
Natural Gas    410 – 1,100  428.42  
Petroleum   800 – 1000  851.68  
Nuclear   0 – 20  5.49  
Hydroelectric -  0.05  
Geothermal   0 – 30  29.70  
Biomass     0 – 600  380.24  
Wind -  0.00  
Solar -  -    
Transmission -  558.10  
Distribution -  -    
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A.2.3. Aggregation of Electricity Producing Sectors 

Before the disaggregation of the new electricity sectors from the original PGS sector, we 

combine all the industries that have the PGS commodity as their main output. These sectors are 

PGS, Federal State Utilities, and State and local utilities (NAICS 221100, S00101, and S00202, 

respectively). The general procedure used was adapted from Miller and Blair (1985), and its 

application to the PGS sector is described below. 

We define S as a k by n matrix of ones and zeros, where k is the desired number of sectors in 

the matrix to be created and n is the number of sectors in the original matrix. S is referred to as the 

aggregation matrix. The location of ones in row i of this matrix indicates which sectors will be 

combined as sector i in the aggregated table.   

In our case, we need to create S matrices for the Use and Supply tables. However, the procedure 

for aggregating them is identical. In both cases, the S matrices are 428 by 430 (all sectors in the 

columns, and all sectors less S00101 and S00202 in the rows), and consist of zeros everywhere, 

with the following exceptions: 

• The main diagonal, where all entries are one except for the intersections of S00101 and 

S00202 with themselves, which are 0, and 

• The intersection of the PGS row with the Federal Utilities and State and Local utilities 

columns, which are one. These are the only off-diagonal entries, and their placement in 

this row indicates their incorporation into the main PGS sector. 

 

Finally, if we denote the inter-industry transactions sections of the Use and Supply tables 

as Z, we can obtain aggregated version of both tables, denoted as Z*, as follows: 
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𝑍𝑍∗ = 𝑆𝑆 ∗ 𝑍𝑍 ∗ 𝑆𝑆′         (A-1) 

A.2.4. Disaggregation of Use and Supply Tables

In this section, manual allocations refer to how the values in the aggregate PGS rows and 

columns in the Use and Supply tables were distributed to the disaggregated PGS sectors. The main 

manuscript describes the motivations for using either a manual or a default allocation for each 

disaggregated sector either in the Use or Supply tables. Below we present these allocations in more 

detail. 

Manual Allocations 

Allocation of disaggregated Supply Table rows 

Table A.4 shows the disaggregated Supply table rows that were manually allocated  (i.e., 

allocation of commodity production to disaggregated PGS industries). 

Table A.4: Supply table disaggregated PGS rows allocation 

Industry 221200 322130 S00203 
Commodity NGD Paper Gov. 
Coal 0% 0% 50.1% 
NG 100% 91.8% 17.9% 
Oil 0% 0% 2.5% 
Nuclear 0% 0% 20.2% 
Hydro 0% 0% 6.9% 
Geo 0% 0% 0.4% 
Biomass 0% 8.2% 1.6% 
Wind 0% 0% 0.3% 
Solar 0% 0% 0.03% 
Other 0% 0% 0.2% 
Transmission 0% 0% 0% 
Distribution 0% 0% 0% 
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Sector 221200 is Natural Gas Distribution (NGD), which was used as an example for 

manual allocation (and explained in) in the main manuscript. 

Sector 322130 is the Paperboard mills. This sector is allocated manually on the assumption 

that the electricity generated by the paperboard mills industry is gas and biomass based. 

Percentages are the ratios of the national outputs of those two generation types. For example, 

electricity generated by natural gas in the paperboard mill sector was derived was follows: 

%𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑮𝑮𝑮𝑮𝑮𝑮
%𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝑮𝑮𝑮𝑮𝑮𝑮+% 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩

= .𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏+.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎

=  .9175 or 91.75% (A-2) 

where %Natural gas and % Biomass refer to the respective U.S. mix percentages. Similarly, 

the biomass percentage is .0161/(.1792+.0161) = 0.0825 or 8.25%. 

Sector S00203 is Other state and local government enterprises. The percentages for this 

sector were generated by taking the national average for each sector and dividing by the sum of 

the national average of the other sectors, except transmission and distribution. This is equivalent 

to assuming that this sector produces electricity from all generation technologies, but does not 

distribute the electricity itself (i.e., for this it depends on the transmission and distribution sectors). 

Allocation of disaggregated Supply Table columns 

Table A.5 shows the disaggregated Supply table columns that were manually allocated 

(i.e., allocation of industry output to the disaggregated PGS commodities). 
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Table A.5: Supply table disaggregated PGS columns allocation 

Industry Coal NG Oil Nuclear Hydro Geo Biomass Wind Solar Other Trx Dtx 
Commodity 
221200 NGD 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
221300 Water 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 

Sector 221200 is Natural Gas Distribution (again refer to the example in the main 

manuscript). Sector 221300 is Water, sewage and other systems. The assumption here is that the 

commodity is water distribution, and that hydroelectric utilities are more likely to deliver this 

commodity. 

Allocation of the disaggregated Use table columns 

Table A.6 shows the disaggregated Use table columns that were manually allocated (i.e., 

allocation of commodity purchases by the disaggregated industries, or ‘supply chain’). 

Table A.6: Use table disaggregated PGS columns allocation 

Industry Coal NG Oil Nuclear Hydro Geo Biomass Wind Solar Other Trx Dtx 
Commodity 
211000 Extraction 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
221200 Mining 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
324110 Refining 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
482000 Rail 

Pipeline 
100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

486000 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Sector 211000 is Oil and Gas Extraction. 

Sector 221200 is Coal Mining. We assume that all of the mined coal used in electricity 

generation is purchased by the coal power generation sector. 
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Sector 324110 is Petroleum Refineries. We assumed that all of the oil used in electricity 

generation is purchased by the oil power generation sector. 

Sector 482000 is Rail Transportation. We assumed the only power generation sector in 

need of this service is coal power generation. 

Sector 486000 is Pipeline Transportation. 

Allocation of the disaggregated Supply Table intersection 

We follow the assumption that all disaggregated power generation industries only produce 

their corresponding electricity commodity. That is, coal generation only produces coal electricity; 

nuclear plants only produce nuclear electricity, etc. This is represented by having no off-diagonal 

values in the Supply table intersection of the disaggregated PGS sectors, and 100% allocation 

along the main diagonal. 

Allocation of the disaggregated Use Table intersection 

The diagonal assumption is also followed in the Use table intersection, except for the Transmission 

and Distribution sectors. It is assumed that all of the other sectors will purchase services from these 

sectors in order to get the electricity they produce to costumers. We use the default price based 

allocation percentages here to determine how much each disaggregated PGS sector will purchase. 

The result is shown in Table A.7. Note that there were no manual allocations made to the use table 
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rows, due to data constraints, the procedure is for allocation is similar as the one described for the 

supply table, and due to word count considerations. Accordingly, we assumed the average mix for 

the industries in the U.S. in this disaggregation. However, a general explanation of the physical 

meaning behind allocating the use table rows can be found under the subheading “Disaggregating 

the Use and Supply tables”. 

Table A.7: Use table PGS Allocation ($M) 

Default Allocations 

Most sectors were not allocated manually, either in the Supply or Use table. For these sectors 

(for both industries and commodities), we used a default allocation scheme. In order to perform 

the allocation correctly, we need to keep in mind two constraints to maintain the structure of the 

IO tables: 

• The PGS industry and commodity totals must remain equal before and after aggregation.

This ensures we are not shifting economic activity to or from the PGS sector.

Coal Nat. Gas Oil Nuclear Hydro Geo Biomass Wind Solar Other Trans Dist
Coal 37.46 -           -   -           -   -           -   -           -   -           -   -
Nat. Gas - 10.91 -           -   -           -   -           -   -           -   -           -   
Oil -           -   1.11 -           -   -           -   -           -   -           -             -   
Nuclear -           -   - 18.63 -           -   -           -   -           -   -           -   
Hydro -           -   -           -   7.11 -           -   -           -   -           -   -
Geo -           -   -           -   - 0.33 -           -   -           -   -           -   
Biomass -           -   -           -   -           -   1.48 -           -   -           -             -   
Wind -           -   -           -   -           -   - 0.24 -           -   -           -   
Solar -           -   -           -   -           -   -           -   0.02 -           -   -
Other -           -   -           -   -           -   -           -   - 0.14 -           -   
Trans 0.87 0.31 0.04 0.35 0.12 0.01 0.03 0 0 0 0.03 0.03
Dist 0.76 0.27 0.04 0.31 0.1 0.01 0.02 0 0 0 0.03 0.03

Industries

Co
m

m
od

iti
es
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• The disaggregated PGS commodity and industry totals must be equal in the Use and

Supply tables. Equality of commodity and industry totals across tables is a characteristic

present in the original BEA tables, and as such it should be maintained.

In order to abide by these constraints, we allocate the values in each of the sectors allocated 

by default using the equation below:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 % = (𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇∗𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡)−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

(A-3) 

where: 

PGSTotal is the aggregate total industry or commodity output (for column or  row 

disaggregation, respectively); 

GenMixSector is the generation mix (including transmission and distribution) of each sector 

as indicated in Table A.2, and; 

ManAllocSector is the sum of the manual allocations performed in this sector. 

Table A.8 shows the result of applying this in order to perform the disaggregation of the 

PGS Supply row. The columns in Table A.8 are as defined for above; Default Alloc represents the 

amount allocated by applying equation (A-3). Note that the sum of the ManAlloc and Default Alloc 

totals equals the aggregate PGS commodity total, as shown in table 3 in the main manuscript (slight 

differences due to rounding). The same procedure is followed for the disaggregation of the PGS 

Supply column (industries), as well as the PGS Use row and column. By adjusting the allocation 
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percentages for each step of the disaggregation, the disaggregated industry and commodity totals 

remain the same across tables, thus following the system constraints. 

Table A.8: Default allocation for disaggregated rows (commodities) in the Supply table 

A.2.5. Creating the disaggregated economic model

We followed the procedure described in chapter 12 of BEA’s Concepts and Methods of the

U.S. Input-Output Accounts (Bureau of Economic Analysis 2009) in order to create the new total 

requirements matrix (the main component of the IO model) from the disaggregated Use and Supply 

tables. We used the industry by commodity assumption in calculating the new total requirements 

table. 

A.2.6. Calculating Emissions Factors

Direct Emissions 

PGS Sector Percent Mix  ManAlloc ($M) % Allocation Default Alloc($M) 
Coal 48.36%              8.42 49.21% 120,966.59 
NG 17.29%       4,346.03 15.83% 38,899.56 
Petroleum 2.38%              0.42 2.42% 5,945.07 
Nuclear 19.51%              3.40 19.86% 48,812.18 
Hydro 6.60%              1.15 6.72% 16,521.04 
Geo 0.35%              0.06 0.36% 876.12 
Biomass 1.55%              5.45 1.58% 3,874.77 
Wind 0.25%              0.04 0.25% 625.80 
Solar 0.03%              0.01 0.03% 62.58 
Other 0.15%              0.03 0.15% 375.48 
Trans. 1.88% - 1.92% 4,710.44 
Dist. 1.65% - 1.68% 4,124.28 
Total 100% 4,365.01 100% 245,793.89 
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The emissions factors were calculated using data from eGrid’s plant data for 2009 (U.S. EPA 

2012b). The reasons for choosing this source are twofold: first, this is the closest data set to the 

year 2002 we could find that gives us detailed information by generation type; second, it allows 

us to view both general technology emission trends as well as individual plant outputs. By looking 

at the net generation and net emissions of individual plants, we are able to screen out those which 

require more electricity from the grid than what they contribute to it (i.e., those with negative net 

generation), as well as plants with extremely high emission rates (i.e., positive low net generation 

but high emissions, which usually indicates that electricity generation is not the primary function 

of the plant).  

In order to calculate the average U.S. direct emissions rate for each generation type, we added 

the total CO2e emissions for each type as defined by eGrid and which matched one of the 

disaggregated sectors (biomass, coal, gas, geothermal, hydro, nuclear, oil, other fossil, solar, and 

wind) and divided by the total net generation of those same plants. As mentioned above, some 

plants had negative emissions rates or very high emissions rates. This happened for coal, natural 

gas, and oil technologies. For these sectors, we established limits that ruled out extreme emissions 

rates (e.g., for coal generation we did not include plants with negative rates or rates above 1,600 

gCO2e). The upper limits were established by calculating the highest possible emissions rate for 

each technology, as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑂𝑂2𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑓𝑓
ℎ𝑓𝑓
∗ 𝐶𝐶𝐶𝐶𝑂𝑂2

𝐶𝐶𝑚𝑚
(A-4) 

Where: 

cf = specific carbon content in the fuel (kgC/kgfuel) 
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hf = specific energy content (kWh/kgfuel) 

Cm = specific mass Carbon (kg/mol Carbon) 

CCO2 = specific mass Carbon Dioxide (kg/mol CO2) 

These limits were compared to literature ranges (U.S. EPA 2012b; EIA 2013; Bergerson 2005; 

Sathaye 2011) to ensure they were reasonable.  The remaining plants all have reasonable emission 

rates to net generation rations, as shown in Figures A.2-A.4 (data from eGrid (U.S. EPA 2012b)). 

Figure A.2: Coal Plants emission rates vs. net generation 
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Figure A.3: Natural Gas Plants emission rates vs. net generation 

Figure A.4: Oil Plants emissions rates vs. net generation 
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Once these direct emissions rates were calculated, the IO emissions factors were obtained as 

described in Chapter 2.  

A.3. Additional Information for Disaggregation Results

A.3.1. Comparison between the aggregate and disaggregated models using $1 million final

demand in electricity 

We ran both models as indicated in (1-5. For the aggregate model, we used a final demand of 

$1 million in the aggregate PGS sector. For the disaggregated model, we used a final demand of 

$1 million distributed in the disaggregated PGS sectors according to the U.S. generation mix with 

transmission and distribution shown in Table A.2. Results are shown in figure 2 of the main 

manuscript. 

A.3.2. Comparison of 1 kWh of electricity generation between the disaggregated IO sectors and

selected sources 

Comparison of LCA methods 

See Lenzen (2000), Suh et al. (2004), and  (Wiedmann et al. 2011) for further information. 
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Table A.9: Comparison of IO-LCA approaches 

Data Sources for emissions estimates 

In order to compare the IO on a kWh basis, we ran each disaggregated sector using a final 

demand value obtained as shown below:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔ℎ𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑘𝑘𝑘𝑘ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 2002

(A-5) 

=
$ 241,324,180,000

3,856,000,000,000 𝑘𝑘𝑘𝑘ℎ

= $0.063/𝑘𝑘𝑘𝑘ℎ 

Approach Strength Weaknesses 
Input-Output LCA Includes the entire economy 

in the system boundary 
Accounts for service sectors, 
which are usually omitted in 
process-based studies 

High sector aggregation  
Requires care in 
interpretation of results if 
sectors are highly 
inhomogeneous 

Process-based LCA Models system at a very 
detailed level 
Allows for direct comparison 
between products/systems 

Usually has high truncation 
errors due to difficulty in 
incorporating all elements of 
the system within the system 
boundary 

Disaggregated Input-Output 
LCA 

Incorporates process –level 
data with nationwide system 
boundary 
Allows customization of 
product supply chain at the 
IO level 

High data requirements 
needed in order to perform 
disaggregation accurately 
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The electricity production by technology was obtained from NREL’s Power Technologies 

Energy Data book (Aabakken 2005). The results can be seen in Figure 2.3 in Chapter 2, labeled as 

USIO, and in Table A.10. 

Table A.10: IO results emission results for 1 kWh for each disaggregated sector 
(gCO2e/kWh) 

 

The results from the Ecoinvent unit processes were obtained by simulating 1 kWh of electricity 

production from each individual processes in Simapro 7.3, using TRACI 2 V3.01 characterization 

method. The processes are listed in Table A.11. 

Table A.11: Ecoinvent emission results for 1 kWh for selected unit processes 

 

Ecoinvent 2.2 Unit Process  gCO2e 
1 kWh Electricity, hard coal, at power plant/US U  1,185 
1 kWh Electricity, nuclear, at power plant/US U  13 
1 kWh Electricity, natural gas, at power plant/US U  678 
1 kWh Electricity, production mix photovoltaic, at plant/US U  46 
1 kWh Electricity, hydropower, at power plant/SE U  5 
1 kWh Electricity, hydropower, at pumped storage power plant/US U  1,092 
1 kWh Electricity, oil, at power plant/UCTE U  884 
1 kWh Electricity, lignite, at power plant/UCTE U  1,231 
1 kWh Electricity, industrial gas, at power plant/UCTE U  1,756 
1 kWh Electricity, at wind power plant/RER U  12 
1 kWh Electricity, at cogen 6400kWth, wood, allocation exergy/CH U  30 
1 kWh Electricity, at cogen with biogas engine, allocation exergy/CH U  164 
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Values for GREET were obtained for coal, natural gas, and oil electricity using Model 1.8c 

(ANL 2009).  Values for NREL (Sathaye 2011) and NETL (Skone 2013) were obtained from 

the referenced publications. 

 

A.3.3. Comparison of NERC regions, Indiana, Idaho, and U.S. average generation mixes 

 

We ran all results as indicated in (1-5. For the each mix, we used a final demand of grid mixes 

presented in Table A.14. The NERC region mixes were obtained from eGRID. The acronyms used 

in Figure 2.4 in Chapter 2 are expanded in Table A.12 (U.S. EPA 2012a). The different generation 

types from the NERC regions were mapped to the IO sectors as shown in Table A.13. 

 

Table A.12: NERC acronyms and names 

 

 

 

 

NERC 
Acronym 

Region NERC Name 

ASCC Alaska Systems Coordinating Council 
FRCC Florida Reliability Coordinating 

Council 
HICC Hawaiian Islands Coordinating 

Council 
MRO Midwest Reliability Organization 
NPCC Northeast Power Coordinating Council 
RFC Reliability First Corporation 
SERC SERC Reliability Corporation 
SPP Southwest Power Pool 
TRE/ERCOT Texas Regional Entity 
WECC Western Electricity Coordinating 

Council 
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Table A.13: NERC generation types to IO sector mapping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IO 
sector 

NERC Gen Type NERC Gen Type 
Abbrev. 

Coal NERC region coal generation percent (resource mix) NRCLPR 
NG NERC region gas generation percent (resource mix) NRGSPR 
Oil NERC region oil generation percent (resource mix) NROLPR 

Nuclear NERC region nuclear generation percent (resource mix) NRNCPR 
Hydro NERC region hydro generation percent (resource mix) NRHYPR 
Geo NERC region geothermal generation percent (resource mix) NRGTPR 
Bio NERC region biomass generation percent (resource mix) NRBMPR 

Wind NERC region wind generation percent (resource mix) NRWIPR 
Solar NERC region solar generation percent (resource mix) NRSOPR 
Other NERC region other fossil  generation + other unknown/ 

purchased fuel generation percent (resource mix) 
NROFPR+NROPP  
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Table A.14: NERC and select region mixes 
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER 3: MIXED UNITS FOR PGS 

Appendix B.  
This chapter is the peer reviewed version of the Supplemental Information for following 

article:  

Vendries Algarin, J., Hawkins, T. R., Marriott, J. and Khanna, V. (2016), Effects of Using 

Heterogeneous Prices on the Allocation of Impacts from Electricity Use: A Mixed-Unit Input-

Output Approach. Journal of Industrial Ecology. doi:10.1111/jiec.12502 

 

which has been published in final form at http://dx.doi.org/10.1111/jiec.12502. This article may 

be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-

Archiving.

 

B.1. Creation of the MUIO Model  

B.1.1. Reallocation of the Use and Supply Tables 

In the supply table: 

When moving values from non-PGS columns (i.e., industries) to the PGS columns, this 

means that no other industries produce electricity (i.e., there is no off-diagonal production of 

http://dx.doi.org/10.1111/jiec.12502
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electricity). Using the notation introduced earlier, this means moving the value from its original 

location in the Supply table, vi,j, from column j to column i, where i is one of the PGS sectors, such 

that vi,j = 0. This value is added to a new location which is on the main diagonal of the Supply 

table, i.e., v*
i,i  = vi,i + vi,j, where vi,i  is the original value at the intersection and v*

i,i  the value after 

reallocation.  Table B.1 shows which commodities were reallocated from non-PGS to PGS 

industries. 

 

Table B.1: Values reallocated from non-PGS to PGS columns. Columns represent Industry 
sectors, while rows represent Commodity Sectors in the BEA Supply and Use tables. 

 

 

 

When moving values from the PGS columns to non-PGS columns, this means assuming 

that PGS does not produce any other commodity. That is, we are moving the value vi,i in the Supply 

table from column i (a PGS sector) to column j (non-PGS), such that vi,i = 0 and v*
j,j =  vj,j + vi,i.. 

Table B.2 shows which commodities were reallocated from PGS to non-PGS industries. 

 

Table B.2: Values reallocated from PGS to non-PGS columns. Columns represent Industry 
sectors, while rows represent Commodity Sectors in the BEA Supply and Use tables. 

 

Row Description Row Code Original Column Description Original Column Code Reallocated Column Description Reallocated Column Code
Coal PGS 221101 Other state and local government enterprices S00203 Coal PGS 221101
Natural Gas PGS 221102 Natural Gas Distribution 221200 Natural Gas PGS 221102
Natural Gas PGS 221102 Other state and local government enterprices S00203 Natural Gas PGS 221102
Oil PGS 221103 Other state and local government enterprices S00203 Oil PGS 221103
Nuclear PGS 221104 Other state and local government enterprices S00203 Nuclear PGS 221104
Hydroelectric PGS 221105 Other state and local government enterprices S00203 Hydroelectric PGS 221105
Geothermal PGS 221106 Other state and local government enterprices S00203 Geothermal PGS 221106
Biomass PGS 221107 Other state and local government enterprices S00203 Biomass PGS 221107
Wind PGS 221108 Other state and local government enterprices S00203 Wind PGS 221108
Solar PGS 221109 Other state and local government enterprices S00203 Solar PGS 221109
Other PGS 221110 Other state and local government enterprices S00203 Other PGS 221110

Row Description Row Code Original Column Description Original Column Code Reallocated Column Description Reallocated Column Code
Other Real Estate 531ORE Coal PGS 221101 Other Real Estate 531ORE
Natural Gas Distribution 221200 Natural Gas PGS 221102 Natural Gas Distribution 221200
Other Real Estate 531ORE Natural Gas PGS 221102 Other Real Estate 531ORE
Other Real Estate 531ORE Oil PGS 221103 Other Real Estate 531ORE
Other Real Estate 531ORE Nuclear PGS 221104 Other Real Estate 531ORE
Other Real Estate 531ORE Hydroelectric PGS 221105 Other Real Estate 531ORE
Other Real Estate 531ORE Geothermal PGS 221106 Other Real Estate 531ORE
Other Real Estate 531ORE Biomass PGS 221107 Other Real Estate 531ORE
Other Real Estate 531ORE Wind PGS 221108 Other Real Estate 531ORE
Other Real Estate 531ORE Solar PGS 221109 Other Real Estate 531ORE
Other Real Estate 531ORE Other PGS 221110 Other Real Estate 531ORE
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In the Use table: 

In the Use table, moving values from PGS columns to non-PGS columns (and vice-versa) 

means shifting parts of the supply chain from electricity industries to industries that produce other 

commodities (e.g., shifting the gas used to produce natural gas electricity to producing natural gas 

distribution). The Use table is reallocated based on the movements done on the Supply table to 

ensure that the column and row totals match. Using the nomenclature introduced in Section 1.3.2.2, 

the procedure used to do this is as follows: 

 

1. When moving values in the Supply table, we calculate the percentage of the total column 

(industry) that the value to be moved represents. Using the notation introduced earlier, the 

column percent, Cp, is  

 

𝐶𝐶𝑝𝑝 = 𝑣𝑣𝑖𝑖,𝑗𝑗
𝑔𝑔𝑗𝑗

                                                          (B-1) 

 

2. In the Use table, multiply each element of column j by Cp to obtain r, the industry values 

to be reallocated. Note that the dot (.) notation in the subscripts indicates that this operation 

is done along the entire dimension it replaces (i.e., u.,j means the operation is done for each 

row of column j in the use table)  

 

𝑟𝑟.,𝑗𝑗 = 𝑢𝑢.,𝑗𝑗 ∗ 𝐶𝐶𝑝𝑝                                                       (B-2) 

 
3. Subtract the percent fractions from column j: 
 
 

𝑢𝑢.,𝑗𝑗
∗  = 𝑢𝑢.,𝑗𝑗 − 𝑟𝑟.,𝑗𝑗                                                    (B-3) 
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4. Add r to the column (industry) that the value was moved to in the supply table, column k. 
 

 
𝑢𝑢.,𝑘𝑘
∗  = 𝑢𝑢.,𝑘𝑘 + 𝑟𝑟.,𝑗𝑗                                                     (B-4) 

 
After this computation, the column and row totals are compared against the corresponding 

values in the Supply table to ensure that they are equal. This way, the constraints needed for the 

creation of the IO model are met. 

The reallocations described above result in the creation of a “base” homogenous price 

model that allows us to explore the effects of heterogeneous prices more easily. However, when 

using the model for emissions estimates the changes introduced by the reallocations have to be 

taken into account. Fortunately, the reallocations performed on the SUT are minimal for the most 

part. Of the 22 reallocations performed, most consist of either moving the Other Real Estate 

(531ORE) commodity produced by the PGS industries to the Other Real Estate industry, or moving 

PGS commodity production from the Other state and local government enterprises industry 

(S00203) to the PGS industries. The values moved in these reallocations constitute less than 0.5% 

of the total production of the respective industries (i.e., less than 0.5% of the column total), 

meaning that the effects these changes have on emissions estimates are minimal. However, there 

is one reallocation that is significant: approximately 20% of Natural Gas PGS sector’s output, 

which corresponds to this sector’s Natural Gas Distribution commodity, is moved to Natural Gas 

Distribution sector. This has two noteworthy implications. First, the purchase values in the Use 

table are also changed, meaning the “production recipe” for each of these sectors is altered by the 

same amount for both sectors. Secondly, the emissions estimates for the Natural Gas Distribution 

sector may be underestimated, as a larger production value is used as a denominator to create the 

sector’s environmental emissions factor (emissions factors are computed as total sectoral 
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emissions divided by total sector production value), while the opposite happens to the Natural Gas 

PGS sector’s emissions (i.e., they may be overestimated). When the MUIO model is used to 

estimate emissions from these two sectors, care should be taken to properly assess the impact of 

this reallocation on their emissions intensities.  

 

B.1.2. Electricity price components in the MUIO model  

 

The MUIO model we are using is a producer price model with a PGS sector that 

encompasses generation and delivery of electricity (which makes the electricity sector effectively 

equal in both producer and purchaser prices). In this section we describe how electricity price 

components influence the prices used in the MUIO model. 

Electricity prices are generally broken down into three major components: taxes, costs of 

energy production, and costs of grid use for delivery (KEMA Consulting GmbH 2005) (Energy 

Information Administration 2015). Fortunately, average electricity price data is available at a 

resolution adequate for many sectors in the IO model for broad categories of end users from several 

sources (Energy Information Administration 2015; U.S. Census Bureau 2007), as described in 

Section 3 of the main manuscript. Unfortunately, data for the price components of electricity for 

different end users is almost completely unavailable. Nevertheless, we can make a rough 

breakdown of how the major electricity price components are included in the BEA tables: 

 

Taxes: As mentioned previously, taxes in the producer price model are included in 

the Use table value-added row “taxes on production and imports less subsidies”. In the 

BEA tables the tax rates for commodities, such as PGS, are applied evenly to all 
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transactions for items that are subject to tax (U.S. Bureau of Economic Analysis 2009). 

This means that the tax rate in the tables is equal for all end-users of electricity. It should 

be noted that none of the price sources used in this work explicitly mention tax rates for 

electricity; thus, we cannot ascribe tax burden differences to end-use sectors. 

Costs of energy production: This constitutes the main portion of electricity costs 

(Energy Information Administration 2015), and the values that represent those costs are 

found in the Use table PGS row (commodity). However, as is the case for taxes, there is 

no readily available breakdown of costs of electricity production allocated to different end 

use sectors. While individual consumers may be able to arrange long term or large power 

draw contracts with specific utilities (mostly industrial consumers), most end-use sectors 

consume electricity available in the grid at large rather than obtaining their energy use from 

specific suppliers.  

Costs of grid use for delivery: As with the energy production costs, the costs for 

transmission and distribution are found in the Use table PGS row. The Energy Information 

Administration (2015) indicates that the costs of transmission and distribution vary 

significantly between different types of consumers. Unfortunately they do not provide 

specific differences in transmission and distribution costs between consumers, just the 

differences in overall costs of electricity.  

 

Given the limited data availability, it is impossible to produce a valuation that accurately 

describes the price components of electricity for each industry in the IO table. We can either 

produce a rough valuation for the different price components for all IO industries using national 

price data, similar to other studies (KEMA Consulting GmbH 2005), or assign a specific price to 
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individual IO industries without considering the individual price components. For this analysis, 

we chose the latter approach. Since we are specifically interested in exploring differences in 

electricity emissions by different sectors, it is more important that we prioritize distinguishing 

between sectors than it is between price components of electricity. Additionally, it is likely the 

case that generation costs are relatively constant between different end-use categories (Energy 

Information Administration 2015), (2016a). This reinforces our approach as it enables us to treat 

the differences in price components and the difference in overall prices interchangeably, allowing 

us to use price differences between consumers as a way of distinguishing between monetary and 

mixed unit models. 

 

 

B.1.3. Estimating Greenhouse Gas Emissions factors in physical units 

 

The emissions intensity vector (R) derived in Chapter 2 is calculated by dividing total 

emissions by the total output of each sector, in monetary units for non-PGS sectors and in monetary 

and energy units for the PGS sectors. Their derivation is otherwise unchanged from the process 

described in Chapter 1. 

 

B.2. Detailed MUIO price mapping 

 

As explained in Chapter 3, the prices are mapped using the Detailed Industry Statistics for 

the 2007 Economic Census (EC) for manufacturing sectors (i.e., those sectors that begin NAICS 

Code 3) and EIA end-use classification for non-manufacturing sectors. The BEA industry sectors 
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are not as detailed as the EC manufacturing sectors; accordingly, there is a one-to-many mapping 

between these data sets for certain BEA sectors. The full mapping can be seen in the tables below. 

Table B.3 shows the price mapping for the Input-Output non-industry sectors, based on EIA’s end-

use classification (EIA 2013). The numbers in parenthesis indicate the first digit of the NAICS 

code that has an assigned price. Table B.4 shows the U.S. Census Bureau (2007) Economic Census 

to BEA (2013) Input-Output manufacturing sector mappings, along with the electricity price 

assigned to the corresponding BEA sector.  

 

Table B.3: End-Use sector pricing by EIA (2013) classification, used for non-
industry sectors 

 

 

Table B.4: : BEA IO Industry Sector Codes for manufacturing to NAICS 6-digit Industry 
Codes for manufacturing price mapping. Prices in cents/kWh (2007 US Dollars) 

 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

321100 3211 5.77 
321200 3212 5.55 
321910 32191 6.14 
3219A0 32192, 32199 5.95 
327100 3271 6.16 
327200 3272 5.77 
327310 32731 5.72 
327320 32732 6.27 
327330 32733 6.63 
327390 32739 6.52 
327400 3274 5.79 
327910 32791 6.63 

End Use Sector Price (cents/kWh), 2007 US Dollars 
EIA Residential (Private Consumption) 10.65 
EIA Commercial (NAICS CODE 44, 5-8) 9.65 
EIA Industrial (NAICS CODE 1,2) 6.39 
EC Industrial (NAICS CODE 3) Individually Mapped (see below) 
EIA Transportation 9.70 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

327991 327991 6.08 
327992 327992 6.17 
327993 327993 5.80 
327999 327999 6.82 
331110 3311 4.57 
331200 3312 5.52 
33131A 331311-2 4.21 
331314 331314 3.75 
33131B 331315, 331316, 331319 4.93 
331411 331411 4.60 
331419 331419 4.16 
331420 33142 6.11 
331490 33149 5.56 
331510 33151 5.63 
331520 33152 5.59 
33211A 332111-2, 332117 6.17 
332114 332114 6.43 
33211B 332115-6 6.43 
332200 3322 6.74 
332310 33231 6.39 
332320 33232 6.53 
332410 33241 6.18 
332420 33242 6.43 
332430 33243 6.57 
332500 3325 6.75 
332600 3326 6.43 
332710 33271 6.58 
332720 33272 7.06 
332800 3328 6.56 
33291A 332911-2, 332919 6.67 
332913 332913 7.32 
332991 332991 5.91 
33299A 332992-5 6.81 
332996 332996 6.37 
33299B 332997-9 6.16 
333111 333111 5.13 
333112 333112 6.04 
333120 33312 5.26 
333130 33313 6.88 
33329A 33321, 333291-4, 333298 6.62 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

333220 33322 6.34 
333295 333295 7.89 
33331A 333311, 333312, 333319 6.17 
333313 333313 6.19 
333314 333314 7.80 
333315 333315 9.06 
33341A 333411-2 6.61 
333414 333414 6.71 
333415 333415 5.82 
333511 333511 6.48 
33351A 333512-3 6.59 
333514 333514 6.52 
33351B 333515, 333516, 333518 6.60 
333611 333611 5.50 
333612 333612 5.80 
333613 333613 6.46 
333618 333618 5.62 
33391A 333911, 333913 6.36 
333912 333912 6.20 
333920 33392 6.13 
333991 333991 6.67 
33399A 333992, 333997, 333999 8.26 
333993 333993 6.76 
333994 333994 6.05 
33399B 333995-6 5.42 
334111 334111 6.42 
334112 334112 6.69 
33411A 334113, 334119 6.12 
334210 33421 7.18 
334220 33422 8.42 
334290 33429 4.52 
334300 3343 6.18 

33441A 
334411, 334412, 334414-7, 

334419 7.70 
334413 334413 6.25 
334418 334418 7.05 
334510 334510 6.88 
334511 334511 7.78 
334512 334512 6.48 
334513 334513 7.71 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

334514 334514 5.62 
334515 334515 8.84 
334516 334516 7.17 
334517 334517 7.62 
33451A 334518-9 6.94 
334610 33461 6.38 
335110 33511 5.59 
335120 33512 6.37 
335210 33521 5.95 
335221 335221 5.26 
335222 335222 5.54 
335224 335224 5.54 
335311 335311 5.52 
335312 335312 5.77 
335313 335313 6.45 
335314 335314 6.68 
335911 335911 5.36 
335912 335912 5.61 
335920 33592 6.45 
335930 33593 6.73 
335991 335991 4.90 
335999 335999 8.35 
336111 336111 5.39 
336112 336112 4.97 
336120 33612 6.45 
336211 336211 6.02 
336212 336212 6.05 
336213 336213 5.06 
336214 336214 5.91 
336310 33631 5.52 
336320 33632 5.63 
3363A0 33633-4 5.38 
336350 33635 5.37 
336360 33636 5.03 
336370 33637 5.94 
336390 33639 5.63 
336411 336411 6.48 
336412 336412 6.49 
336414 336414 7.23 
33641A 336415, 336419 5.75 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

336500 3365 5.63 
336611 336611 5.93 
336612 336612 6.45 
336991 336991 7.02 
336992 336992 5.34 
336999 336999 5.54 
337110 33711 6.52 
337121 337121 5.59 
337122 337122 5.96 
33712A 337124, 337125, 337129 4.95 
337127 337127 6.70 
33721A 337211, 337212, 337214 5.93 
337215 337215 6.78 
337900 3379 7.43 
339112 339112 7.11 
339113 339113 6.98 
339114 339114 7.26 
339115 339115 7.28 
339116 339116 6.42 
339910 33991 6.28 
339920 33992 7.40 
339930 33993 7.90 
339940 33994 5.75 
339950 33995 6.59 
339990 33999 6.79 
311111 311111 5.75 
311119 311119 6.13 
311210 31121 5.86 
311221 311221 4.86 
31122A 311222-3 5.14 
311225 311225 5.64 
311230 31123 5.54 
311300 3113 6.28 
311410 31141 6.00 
311420 31142 6.91 
31151A 311511-2 6.70 
311513 311513 5.77 
311514 311514 6.01 
311520 31152 6.65 
31161A 311611-3 5.85 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

311615 311615 5.70 
311700 3117 6.87 
311810 31181 6.92 
3118A0 31182-3 6.56 
311910 31191 6.19 
311920 31192 6.89 
311930 31193 7.57 
311940 31194 6.86 
311990 31199 6.71 
312110 31211 7.14 
312120 31212 6.59 
312130 31213 10.04 
312140 31214 5.29 
312200 3122 8.22 
313100 3131 5.03 
313200 3132 5.14 
313300 3133 6.39 
314110 31411 5.22 
314120 31412 6.16 
314900 3149 5.41 
315000 315 6.43 
316000 316 6.21 
322110 32211 5.00 
322120 32212 4.73 
322130 32213 4.96 
322210 32221 6.83 
322220 32222 6.24 
322230 32223 6.05 
322291 322291 5.84 
322299 322299 6.53 
323110 32311 6.57 
323120 32312 6.96 
324110 32411 6.20 
324121 324121 7.01 
324122 324122 7.03 
324190 32419 5.52 
325110 32511 5.92 
325120 32512 5.00 
325130 32513 5.21 
325180 32518 4.54 
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Table B.4 (Continued) 

BEA Industry Codes NAICS 6-digit Industry Codes 
Electricity Price per 
BEA Industry Code 

325190 32519 5.42 
325211 325211 6.11 
3252A0 325212, 32522 5.49 
325310 32531 4.82 
325320 32532 5.85 
325411 325411 7.01 
325412 325412 6.68 
325413 325413 8.72 
325414 325414 7.20 
325510 32551 6.29 
325520 32552 6.64 
325610 32561 6.48 
325620 32562 7.25 
325910 32591 6.57 
3259A0 32592, 32599 6.29 
326110 32611 5.89 
326120 32612 5.99 
326130 32613 6.20 
326140 32614 6.26 
326150 32615 6.31 
326160 32616 6.60 
326190 32619 6.21 
326210 32621 4.99 
326220 32622 5.54 
326290 32629 6.22 

 

The electricity price for each BEA manufacturing industry was calculated using the 

detailed electricity purchase data from the mapped EC manufacturing industry sectors, which is 

specified both in dollars and kilowatt-hours for each 6-digit NAICS manufacturing industry. For 

each of these sectors, we calculated an average price by dividing the total electricity purchase 

amount, in dollars, of the mapped sectors by the total megawatt-hours of those same sectors. As 

an example, BEA sector 321100 (Sawmills and wood preservation) is composed of the individual 

NAICS sectors 321113 and 32114 (sawmills, wood preservation, respectively), shown below. 
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Table B.5: Electricity purchase data for the Sawmills and Wood preservation sectors in the 
2007 Economic Census (2007) 
 

Sector 
Code 

Industry 
Description 

Electricity Purchased 
($M) 

Electricity Purchased 
(MWh) 

321113 Sawmills  421   7,332  
321114 Wood preservation  37   613  

 

 

Using this data, the price for the BEA Sawmills and wood preservation industry is  $M 

458/ MWh 7,945, or 5.77 cents/kWh as shown in the first row of Table B.4. 

 

Despite having detailed mapping for most industrial sectors, there was not equally detailed 

data for other sectors in the IO tables (agriculture, retail, etc.) publically available, which is why 

the broader mapping detailed in Table 3.1 was used for these sectors. However, even with the more 

detailed information, there is still some aggregation occurring, as these prices reflect the sector 

average. While this is more detailed than previous IO models, it is still not the case that every farm 

pays $0.06/kWh nor every sawmill pays $0.057/kWh for their electricity consumption, for 

example. This suggests that the approach used here, while reducing the overall price homogeity 

bias, does not completely eliminate it. One way to see the effects of this is to use a sensitivity 

analysis, as shown below. Including price information from individual businesses is not feasible, 

and moreover, is something that a process- or hybrid-based LCA approach focusing on a more 

limited product system would be more suitable for.  
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B.3. Comparing Total and Scope 2 Emissions between MUIO and EIO models 

 

The main question we want to answer is “how do emissions change when tracked in 

physical vs. monetary units”? To answer this question, we need to carefully define what it is we 

want to measure in terms of outputs from the MUIO model.  The main difference we want to 

explore is the changes in proportion of direct vs. total emissions for the final demand of a particular 

commodity (in this case electricity) caused by differences in prices. This implies two distinct 

comparisons of the EIO and MUIO models: 1) direct emissions from electricity consumption and 

2) total emissions. In input-output terms, direct emissions are the first round of emissions produced 

by the given final demand of electricity (equivalent to Scope 2 emissions according the GHG 

protocol (WBCSD; WRI 2004)), while total emissions are those produced by the entire round by 

round effects produced by the entire final demand (not just electricity consumption). Total 

emissions from the electricity sector can be calculated using (1-5, using a Y vector composed on 

of all the purchases of the sectors under consideration (i.e., Private Consumption, Aluminum 

Production, and Other Real Estate). The direct emissions can be calculated using use the direct 

requirements table as shown below3, and specifying only the PGS demand of the sectors under 

consideration: 

 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐹𝐹 ∗ (𝑊𝑊𝑊𝑊 + 𝑊𝑊 ∗ (𝐵𝐵𝐵𝐵) ∗ 𝑌𝑌)                                  (B-5) 

 

                                                 

3 This is the industry by commodity formulation of the first round, direct effects of commodity production. The 
equivalent formulation for a square input-output tables is  

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐹𝐹 ∗ (𝑌𝑌 + 𝐴𝐴𝐴𝐴) 
where A is the square direct requirements matrix. See Miller and Blair (1985) for a detailed derivation of the power 
series approximation of the Leontief equation and round by round effect estimates. 
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The results from these two equations for each final demand vector are found in Figure 4 in 

Chapter 3, as well as in Figure B.1 below for the PC, AL, and ORE scaled supply chains. 

 

 

Figure B.1: Share of PGS Scope 2 CO2e Emissions as percent of total emissions for EIO 
and MUIO models.  
The values in the blue part of the bars represents Scope 2 emissions. Values in the red-outlined 
box represent changes in scope 2 emissions, either increasing scope 2 (box colored blue) or 
decreasing scope 2 (box colored green). Values in the green part represent Other emissions. All 
values in Tonnes CO2eq/$M. 

 

B.4. Price Sensitivity 

 

We do not have information of the variability of electricity price for the detailed NAICS 

industry sectors. However, we do have price variability information in the form of state prices for 

the more general EIA end-use classification sectors (residential, industrial, commercial) (EIA 
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2014). We use the highest and lowest state electricity prices for each end-use sector and compare 

them with the average end-use electricity prices to create a percent increase and decrease, 

respectively. This average price for each end-use sector is then multiplied by the high and low 

percent change to create high and low price estimates. The results are shown in Table C.2. These 

values are then used to create high and low price estimates for the MUIO model, which creates the 

energy conservation imbalances described in the main text. 

 

Table B.6: Average, Low, and High electricity prices, by end-use sector (EIA 2013). Price 
estimates in 2007 cents/kWh. 

 Residential  Commercial Industrial Transportation 
Average price 10.65 9.65 6.39 9.7 
High price estimate 24.12 21.91 18.38 14.18 
Low price estimate 6.36 5.14 3.87 5.74 
High:Average price ratio 226% 227% 288% 146% 
Low:Average price ratio 60% 53% 61% 59% 

 

For BEA sectors that have no price mapping (i.e., they use the default price used in the EIO 

model), we used the percent change of all end-use sectors combined. For the manufacturing sectors 

that were mapped using the EC data, we use the same percent difference as for the BEA industrial 

sectors. We then multiply each price mapped to the BEA sectors by these percent changes to create 

high and low electricity price scenarios. These new price scenarios are run using the same vector 

of commodity inputs described in the main manuscript to obtain a high and low bound on emissions 

estimates and electricity flows with the MUIO model. These results are included in the error bars 

in Figure 4 in the main manuscript. 
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Effects of Low and high prices in MUIO models 

 

In order to understand the effect of variation in electricity prices within the sectors of the 

detailed model, we perform sensitivity analysis using estimates for high and low prices for each 

mapped electricity price. We perform this analysis by modifying the physical value of electricity 

in the SUTs according to different electricity prices, re-creating the IOT using these modified 

SUTs, and then running the resulting IOT. The high and low price estimates are obtained from 

state-level electricity prices estimates for each end-use classification sector (EIA 2014). This helps 

us understand the effect of variability of electricity prices on both the energy flows and emissions 

when running IO models. When using these high and low price estimates to create the MUIO 

model, the equivalence in total physical output of the PGS sectors between the use and supply 

tables is not maintained. In other words, the overall energy balance in the economy is violated. 

Table 2 shows the amount of electricity, in megawatt-hours, represented by the different price 

assumptions used to build the MUIO models. 

 

Table B.7: Physical electricity consumption implied by different price assumptions 

Price used Model Million MWh MUIO Use:EIO Use ratio 
EIO Use table  3,810* 100% 
MUIO Use table average prices 3,643 96% 
MUIO Use table low prices 6,355 164% 
MUIO Use table high prices 1,744 47% 

*The megawatt-hour value is what the monetary value represents in MWh using the U.S. average 
price of 8.5 cents per kWh. 

 

As seen above, variability in electricity prices can have a large impact in the amount of 

electricity represented in the MUIO model, which in turn impacts emissions estimates. When using 
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average prices for the MUIO model, the total amount electricity represented is similar to that in 

the EIO model. PC consumes approximately 45% of the total PGS commodity and pays the highest 

electricity price of any sector. Conversely, the manufacturing, mining and utilities sectors (which 

pay lower prices for electricity) account for over half of all sectors in the BEA tables. This results 

in a counterbalancing effect between the high number of sectors that on average pay low electricity 

prices (increasing the total MWh represented in the economy), and the large amount of electricity 

consumed by the PC sector (decreasing the total MWh in the economy); this is consistent with the 

results shown in Figure 3.5. However, this is not the case when using the high and low prices for 

the MUIO model. The error bars in Figure 3.5 in the main manuscript show this imbalance: when 

using low prices in the MUIO model, the emissions estimates increase (represented by the top of 

the error bars in the figure) whereas for the high price model the emissions estimates decrease 

(represented by the bottom of the error bars). Table S.8 shows the underlying energy balance 

violation for the specific example of the PGS consumed by the PC sector for different prices. It 

should be noted that while the total monetary value remains the same ($1M), different electricity 

prices results in differences in total electricity flows.  

 

Table B.8: PGS consumption in the Private Consumption supply chain ($1 million) when 
using different price assumptions.   
 

Model Price ($/kWh) Private Consumption PGS 
demand ($ or MWh) 

PGS Monetary Value ($) N/A $14,670  
U.S. Average Electricity Price  0.085  171.94*  
MUIO average price mapping 0.107  137.75 
MUIO low price mapping 0.064  230.67 
MUIO high price mapping 0.241    60.82 

*The megawatt-hour value is what the monetary value represents in MWh using the U.S. average 
price of 8.5 cents per kWh.
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APPENDIX C 

SUPPLEMENTAL INFORMATION FOR MRIO DEVELOPMENT 

Appendix C.  
C.1. Data Requirements for the MRIO model and example model creation 

 

The MRIO model requires several separate data inputs to operate correctly. Below is a brief 

description of the data sources required and how they are used for creating the model. This section 

illustrates how the different data sources are used to create the MRIO model with simple 2-sector 

example. 

 

C.1.1. Data Uncertainty in the MRIO Model  

 

Input-Output models have multiple sources of uncertainty, such as survey errors, temporal 

bias, aggregation errors, etc. (Williams et al. 2009b).  While important, addressing all the different 

sources of uncertainty related to IO models generally is a non-trivial task, and beyond the scope 

of this work. In an effort to minimize the effects of data uncertainty, the scenarios and results 

shown in this work offer comparisons between different configurations of the MRIO model such 
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that that external sources of uncertainty are included in equal measure in such thus less influential 

for the conclusions drawn.  

Uncertainty associated with the data incorporated into the MRIO model during its creation 

is relevant and addressed throughout the different stages in which these data are added; a brief 

summary is these different sections is provided below, with references to other sections in this 

document (or other documents) where this is addressed, as appropriate. 

 

C.1.2. BEA Use and Supply tables (Base EIO model) 

 

The Use and Supply tables are the main components of the Economic Input-Output model 

of the U.S. These tables are economic accounts of the U.S., which describe the economic activity 

of a given year in terms of commodities used and produced by industries. For this work we use the 

most recent Benchmark Accounts, which correspond to the year 2007. The Use table is a 

commodity by industry matrix, where each column corresponds to the supply chain or production 

recipe for a given industry. The Supply table is an industry by commodity matrix, and shows which 

industries produce which commodities. Here we use the Supply table (which is essentially a 

transpose of the Make table as provided by the BEA) when creating the MRIO model, to be in 

alignment with the Supply and Use Table (SUT) formulation for creating IO models, which is 

common outside the U.S. 

Here we focus on the modifications to the PGS sector to create the MRIO model; the 

Chapter 1 provides details on how to transform the SUT to a complete Input-Output model. Figure 

C.1 shows an example Supply and Use table that we will use to demonstrate the creation of the 

MRIO model. These example tables have a PGS sector, representing electricity flows, and a 
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mining sector, which represents the treatment of all non-PGS sectors in the model. Additionally, 

the Use table shows the Final Demand and Exports columns. Final Demand represents purchasers 

by ultimate consumers, usually private households and governments; Exports represents 

commodities sold to customers outside the U.S.  

 

Figure C.1: Example 2-sector Supply and Use tables  
The Use table is a commodity by industry matrix where columns specify the supply chain or 
“recipe” for each industry. The Supply table is a commodity by industry table where columns 
represent the amount of each commodity produced. The numbers next to the sector description 
denote row or column number (e.g., row 1 in the Use table corresponds to PGS commodity; column 
1 to PGS industry; column 3 to the Final Demand sector, etc.).Total PGS commodity Output is 
$200M in this example 

 

C.1.3. Electricity Generation by Technology (PGS Disaggregation) 

 

The base EIO model created using the Use and Make tables contain only a single sector 

describing electricity use in the U.S.: the Power Generation, Transmission, and Distribution (PGS) 

Sector. We use electricity generation data from the U.S. EPA’s eGrid database (2017), which 
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contains data for the year 2007 by generation technology, to disaggregate the single BEA PGS 

sector into several sectors, each describing a unique power generation technology (coal, natural 

gas, solar, etc.). We use eGrid’s data as a basis to allocate the values contained in the original PGS 

sector to the newly disaggregated sectors.  

Details on this procedure can be found in Chapter 1 (Vendries Algarin et al. 2015), where 

discussion on the effect of disaggregation has on aggregation bias and discussion of the accuracy 

PGS emissions factor estimates (and comparisons to other model results) can be found (Appendix 

A). Applying this method to the 2 sector model example, and assuming a PGS technology mix 

consisting of 50% coal, 35% nuclear, and 15% wind power, the disaggregated version of the 2 

sector economy is shown below. 

 

Figure C.2: Example 2-sector Supply and Use tables disaggregation 

 

C.1.4. Data Requirements for the Mixed-Unit (MUIO) model 

 

Once the IO model has been disaggregated, the next step is to create a mixed-unit (MUIO) 

model that allows the tracking of electricity in the economy in physical terms. This transformation 
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is accomplished by assigning a price to the electricity consumed by every industry in the Use table. 

This electricity consumption per sector is then divided by the individual industry price to obtain 

electricity use in energy units.  

The electricity price data is obtained from the 2007 Economic Census (EC) conducted by 

the U.S. Census Bureau (2007) for manufacturing sectors, and from the (EIA (2014), 2013)) for 

all other sectors. The individual electricity prices per industry are used as a basis to convert from 

monetary to physical units.  

Details on this process can be found in Chapter 2 (Vendries Algarin et al. (2016)), where 

discussion of the introduction of detailed price information on emissions can be found, as well as 

a sensitivity analysis on the prices used (Appendix B). Applying this method to the 2 sector model 

example, and assuming a uniform PGS price of $0.10/kWh, the mixed unit version of the 2-sector 

economy is shown below. Notice that the rows in the Use and the Supply Tables are now measured 

in physical units.  

 

Figure C.3: Example 2-sector Supply and Use tables disaggregation 
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C.1.5. State Electricity Generation Mixes 

Electricity generation data by technology type was obtained from the eGRID database 

(U.S. EPA 2017) for the disaggregation of the PGS sector. eGRID also contains this information 

on a state-by-state basis. This enables the computation of generation mixes for each state by 

dividing the net negation by each technology type in each state by the total state generation. In 

addition to allowing the calculation of emissions caused by electricity generation by state, this data 

is also used (in conjunction with electricity trading and industry presence data) to calculate 

electricity consumption by state, and consequently emissions caused by electricity consumption 

on a state basis. For the 2 sector example, the assumed mixes are shown below for a 4 region 

economy. 

 

 

Figure C.4: Example Generation Mixes for the 2 economy sector for the 4 component states 
Values chosen for ease of computation 

 

C.1.6. Net electricity production, net import/export, and net consumption by state 

In addition to net electricity generation totals for each U.S. state (plus Washington, D.C.), 

eGRID also compiles the net state consumption for each state, and calculates the net imports by 

state by subtracting net consumption from net generation. Thus, states that consume more than 

they generate have a positive net import value, while those that produce more than they consume 
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have a negative net import value. For this work, the assumption is that states with positive net 

consumption values are net electricity importers, while states with negative net consumption are 

net electricity exporters. While both generation and import/export values are taken from eGRID, 

the total electricity production values are not equal due to assumptions regarding transmissions, 

distribution, and exports. In order avoid an inconsistency in the amount of electricity generation 

used in the model, the import/export numbers by state are scaled to match the U.S. total electricity 

produced by technology type.  

The figure below shows the way this data is organized for use in the MRIO model, using 

the four sample regions and electricity totals introduced earlier. 

 

Figure C.5: Example State Generation and Import/Export data for 2 sector economy 

 

C.1.7. State Import/Export optimization 

 

The net generation, consumption, and net Export/Import data are used to calculate how 

electricity is traded between net exporting and net importing states. These data are used as inputs 

to a linear optimization whose objective function minimizes the distance electricity must travel 

between net exporting states and net importing states. To account for the reduced trading between 

different interconnects in the North American grid, the distances between states that belong to 

different interconnects is artificially increased such that trading between interconnects is reduced 
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substantially but does not completely disappear. Constraints were also imposed such that only 

states border Canada/Mexico can trade with these countries. The optimization results in a state 

import-export (STIE) matrix, where states that have a net electricity surplus (rows) export that 

surplus to one or more states with a net electricity deficit (columns). Additional details for the 

procedure used to create this optimization can be found in (Marriott and Matthews 2005). 

The figure below shows an example output from the optimization procedure suitable for 

building the MRIO table. 

 

 

Figure C.6: Example State Import/Export (STIE) matrix result from trading optimization 
model 

 

C.1.8. State Industry Presence Data 

 

Data from U.S. Census Bureau (2009) was mapped to the MRIO BEA sectors to create 

industry distribution by state. There are some industries for which there was no data available for 

mapping. This is usually because data for these sectors is either classified (no estimate given) or 

aggregated in such a way that the CBP reports a range estimate for employment. For these sectors 

we found industries that were the most similar in their description or purpose in the BEA 

classification, and used their geographic distribution to fill in the absent CBP estimates. The 

sectors for which this was done, and the sectors whose distributions were used, are shown in Table 

C.1 below.  
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Table C.1: Sectors with no original geographic distribution 

 

Sectors with no original geographic PGS distribution after census mapping (top), and the sectors 
used to replace non-existent distribution (bottom). Note that blue highlighted sectors have no PGS 
use in the original BEA Use table (included for completeness). 

 

The figure below shows the example distribution of the Mining sector for the 2 sector 

economy example. 

 

Figure C.7: Example distribution for the mining sector for the 2 sector economy  
 

C.1.9. State Consumption Mixes 

 

The result of the optimization is used along with state generation and industry presence 

data to build each industry’s electricity consumption profile. Net exporting states are assumed 

supply all their electricity needs and thus have the same generation and consumption mix. Net 

importing states have a consumption mix calculated based on a weighted average of their own 

generation mix and the generation mix of the states they import electricity from. 
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Example consumption mix – net exporters 

 

 

Example consumption mix – net importer: MD 
 

 

Example consumption mix – net importer: NJ 

Figure C.8: Example 2 sector economy consumption mixes by state 

Top: Consumption mix of net exporter 
Middle: Consumption mix of MD, a net importing state 
Bottom: Consumption mix of NJ, a net importing state 
 
 

C.1.10. Finalized MRIO Use and Supply Table 

The data shown above is combined as described in Chapter 4 to build the MRIO Use and 

Supply tables.  

For the 2 sector economy example, the result is shown in the figure below. The generation 

mixes are used to populate the intersection of rows 101-103 and columns 104-107. The 

consumption mixes are used to populate the intersection of rows 104-107 and columns 108-111. 

The consumption mixes combinued with the industry presences are used to populate the 

intersection of rows 108-111 and columns 101, 102, 103, 2, and FD. The Mining and Value added 
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rows are unmodified from Figure C.3. The values of the Supply table are assigned along the 

diagonal for SUT computation purposes.  

 

Figure C.9: Example 2 sector economy finalized Use and Supply tables 

 

C.2. Emissions Factors 

C.2.1. GHG emissions factors 

Derivation of the GHG emissions factors for the PGS industries is described in detail in 

Chapter 2. Emissions factors for the rest of the BEA sectors are obtained from Department of 

Defense (2015). 

 

C.2.2. PGS WC factors 

 

Meldrum et al. (2013) provide an overview and harmonization for both consumption and 

withdrawals of water for different PGS technologies. For most technologies, the median water 

 
Example Use table 
 

 
Example Supply table 
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consumption and withdrawal estimates were created based on the harmonization data. For 

technologies were information is incomplete, unavailable, or unsuitable for MRIO, the data from 

this source was complemented with data from Torcellini et al. (2003), (Macknick et al. (2011); 

2012), Mekonnen and Hoekstra (2012), Meldrum et al. (2013), and Diehl and Harris (2014). 
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Figure C.10: Water Consumption and Withdrawal factors for PGS sectors. 
Top: Water Consumption for all PGS sectors. 
Middle: Water Consumption for all PGS sectors except Hydroelectricity.  
Bottom: Water Withdrawal for all PGS sectors.  

Notes for individual PGS sectors follow: 

-For Coal, NG, and Nuclear PGS technologies, a weighted average for different cooling

technologies was created using EIA statistics on the prevalence of these technologies and used to 

create a single IO water consumption estimate.  

- Solar CSP produced most of the electricity in 2007, but since PV has greatly increased,

becoming the dominant form of Solar PGS technology. Values for 2007 and 2014 Solar WC factor 

reflect their respective market share in those years, with the 2014 value used in the MRIO model. 

- For Biomass PGS, it is worth noting that the values shown above are for power plant

operation and do not include the water used for crop growth. 

-For Hydropower, withdrawal values shown are evaporation estimates from hydropower

reservoirs. All water evaporative losses are assumed to be consumption (Torcellini et al. 2003; 

Macknick et al. 2011; Mekonnen and Hoekstra 2012) making withdrawal and consumption factors 
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equivalent. Water use per MWh produced by hydroelectricity vary widely in these sources. This 

work uses estimates on the lower end of the ranges, with the assumption that the lower estimates 

are representative of power generation from the more efficient hydroelectric sources, and that 

future expansion of hydroelectricity will tend to match these efficiencies. The net result is that the 

water consumption estimates may be underestimated for current generation, but is hopefully more 

reflective of future installed capacity, given limits imposed by regulation. For most states, these 

include a requirement for no new dams, but rather expansions to current production (either in 

reservoir size or generation capacity). Specific states have additional limitations, such as a 

maximum nameplate capacity for new dams (30 MW or less for most states), no pumped hydro, 

or meeting additional environmental regulations (Stori 2013). 

C.2.3. WC factors for non PGS BEA sectors

The WC factors developed for this work follow the procedure from Blackhurst et al. 

(2010), updated for the latest available data. These factors are shown below. 

Table C.2: Water Consumption factors for BEA IO Sectors 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

1111A0 Oilseed farming 41,637.87 

1111B0 Grain farming 119,997.89 

111200 Vegetable and melon farming 105,438.85 

111300 Fruit and tree nut farming 93,665.66 

111400 
Greenhouse, nursery, and 
floriculture production 21,664.73 

111900 Other crop farming 276,043.85 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors  
kGal/$M for non PGS 
kGal/MWh for PGS 

1121A0 

Beef cattle ranching and 
farming, including feedlots and 
dual-purpose ranching and 
farming 

                                                                   
21,159.31  

112120 Dairy cattle and milk production 
                                                                     

1,778.31  

112A00 
Animal production, except cattle 
and poultry and eggs 

                                                                   
93,795.85  

112300 Poultry and egg production 
                                                                        

777.19  

113000 Forestry and logging 
                                                                            

4.37  

114000 Fishing, hunting and trapping 
                                                                          

35.47  

115000 
Support activities for agriculture 
and forestry 

                                                                                
-    

211000 Oil and gas extraction 
                                                                        

125.70  

212100 Coal mining 
                                                                          

70.56  

2122A0 
Iron, gold, silver, and other 
metal ore mining 

                                                                     
8,012.95  

212230 
Copper, nickel, lead, and zinc 
mining 

                                                                     
3,275.57  

212310 Stone mining and quarrying 
                                                                   

16,990.14  

2123A0 
Other nonmetallic mineral 
mining and quarrying 

                                                                   
17,247.95  

213111 Drilling oil and gas wells 
                                                                          

71.60  

21311A 
Other support activities for 
mining 

                                                                        
459.87  

221101 Coal PGS 
                                                                            

0.33  

221102 Natural Gas PGS 
                                                                            

0.16  

221103 Oil PGS 
                                                                            

0.00  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

221104 Nuclear PGS 0.55 

221105 Hydro PGS 4.49 

221106 Geothermal PGS 0.01 

221107 Biomass PGS 0.47 

221108 Wind PGS 0.00 

221109 Solar PGS 0.79 

221110 Other PGS 0.83 

221200 Natural gas distribution 0.37 

221300 Water, sewage and other systems 304.01 

230301 
Nonresidential maintenance and 
repair 7.81 

230302 
Residential maintenance and 
repair 16.98 

233210 Health care structures 9.03 

233230 Manufacturing structures 7.80 

233240 
Power and communication 
structures 4.09 

233262 
Educational and vocational 
structures 8.88 

233293 Highways and streets 8.15 

2332A0 
Commercial structures, 
including farm structures 14.92 

2332B0 Other nonresidential structures 8.57 

233411 
Single-family residential 
structures 35.85 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

233412 
Multifamily residential 
structures 16.45 

2334A0 Other residential structures 15.97 

321100 Sawmills and wood preservation 97.08 

321200 

Veneer, plywood, and 
engineered wood product 
manufacturing 155.44 

321910 Millwork 135.27 

3219A0 
All other wood product 
manufacturing 127.55 

327100 
Clay product and refractory 
manufacturing 168.34 

327200 
Glass and glass product 
manufacturing 120.33 

327310 Cement manufacturing 156.81 

327320 
Ready-mix concrete 
manufacturing 149.00 

327330 
Concrete pipe, brick, and block 
manufacturing 147.79 

327390 
Other concrete product 
manufacturing 168.53 

327400 
Lime and gypsum product 
manufacturing 110.56 

327910 Abrasive product manufacturing 122.28 

327991 
Cut stone and stone product 
manufacturing 147.22 

327992 
Ground or treated mineral and 
earth manufacturing 102.79 

327993 Mineral wool manufacturing 232.28 

327999 
Miscellaneous nonmetallic 
mineral products 122.34 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

331110 
Iron and steel mills and 
ferroalloy manufacturing 512.10 

331200 
Steel product manufacturing 
from purchased steel 504.56 

33131A 
Alumina refining and primary 
aluminum production 504.40 

331314 
Secondary smelting and alloying 
of aluminum 540.04 

33131B 

Aluminum product 
manufacturing from purchased 
aluminum 482.42 

331411 
Primary smelting and refining of 
copper 281.58 

331419 

Primary smelting and refining of 
nonferrous metal (except copper 
and aluminum) 329.37 

331420 
Copper rolling, drawing, 
extruding and alloying 555.47 

331490 

Nonferrous metal (except copper 
and aluminum) rolling, drawing, 
extruding and alloying 428.74 

331510 Ferrous metal foundries 651.47 

331520 Nonferrous metal foundries 595.58 

33211A 
All other forging, stamping, and 
sintering 54.42 

332114 Custom roll forming 47.93 

33211B 

Crown and closure 
manufacturing and metal 
stamping 43.06 

332200 
Cutlery and handtool 
manufacturing 44.51 

332310 
Plate work and fabricated 
structural product manufacturing 38.21 



187 

Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

332320 
Ornamental and architectural 
metal products manufacturing 46.94 

332410 
Power boiler and heat exchanger 
manufacturing 26.22 

332420 
Metal tank (heavy gauge) 
manufacturing 49.14 

332430 

Metal can, box, and other metal 
container (light gauge) 
manufacturing 41.90 

332500 Hardware manufacturing 68.81 

332600 
Spring and wire product 
manufacturing 43.35 

332710 Machine shops 50.05 

332720 
Turned product and screw, nut, 
and bolt manufacturing 44.07 

332800 
Coating, engraving, heat treating 
and allied activities 91.94 

33291A 
Valve and fittings other than 
plumbing 45.77 

332913 
Plumbing fixture fitting and trim 
manufacturing 52.15 

332991 
Ball and roller bearing 
manufacturing 37.63 

33299A 
Ammunition, arms, ordnance, 
and accessories manufacturing 33.30 

332996 
Fabricated pipe and pipe fitting 
manufacturing 56.38 

33299B 
Other fabricated metal 
manufacturing 54.63 

333111 
Farm machinery and equipment 
manufacturing 15.15 

333112 
Lawn and garden equipment 
manufacturing 7.89 

333120 
Construction machinery 
manufacturing 16.06 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

333130 
Mining and oil and gas field 
machinery manufacturing 13.88 

33329A 
Other industrial machinery 
manufacturing 28.89 

333220 
Plastics and rubber industry 
machinery manufacturing 35.82 

333295 
Semiconductor machinery 
manufacturing 22.78 

33331A 

Vending, commercial laundry, 
and other commercial and 
service industry machinery 
manufacturing 17.11 

333313 Office machinery manufacturing 4.10 

333314 
Optical instrument and lens 
manufacturing 22.46 

333315 
Photographic and photocopying 
equipment manufacturing 22.69 

33341A 
Air purification and ventilation 
equipment manufacturing 21.23 

333414 

Heating equipment (except 
warm air furnaces) 
manufacturing 29.64 

333415 

Air conditioning, refrigeration, 
and warm air heating equipment 
manufacturing 14.25 

333511 Industrial mold manufacturing 19.74 

33351A 
Metal cutting and forming 
machine tool manufacturing 32.12 

333514 
Special tool, die, jig, and fixture 
manufacturing 34.22 

33351B 

Cutting and machine tool 
accessory, rolling mill, and other 
metalworking machinery 
manufacturing 28.02 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors  
kGal/$M for non PGS 
kGal/MWh for PGS 

333611 
Turbine and turbine generator set 
units manufacturing 

                                                                          
26.58  

333612 

Speed changer, industrial high-
speed drive, and gear 
manufacturing 

                                                                          
18.90  

333613 
Mechanical power transmission 
equipment manufacturing 

                                                                          
30.69  

333618 
Other engine equipment 
manufacturing 

                                                                          
26.71  

33391A 
Pump and pumping equipment 
manufacturing 

                                                                          
24.71  

333912 
Air and gas compressor 
manufacturing 

                                                                          
21.05  

333920 
Material handling equipment 
manufacturing 

                                                                          
16.82  

333991 
Power-driven handtool 
manufacturing 

                                                                            
4.39  

33399A 
Other general purpose 
machinery manufacturing 

                                                                          
28.14  

333993 
Packaging machinery 
manufacturing 

                                                                          
14.96  

333994 
Industrial process furnace and 
oven manufacturing 

                                                                          
22.91  

33399B Fluid power process machinery 
                                                                          

19.98  

334111 
Electronic computer 
manufacturing 

                                                                          
22.96  

334112 
Computer storage device 
manufacturing 

                                                                          
16.77  

33411A 

Computer terminals and other 
computer peripheral equipment 
manufacturing 

                                                                          
28.34  

334210 
Telephone apparatus 
manufacturing 

                                                                          
39.54  

334220 
Broadcast and wireless 
communications equipment 

                                                                          
28.35  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

334290 
Other communications 
equipment manufacturing 30.23 

334300 
Audio and video equipment 
manufacturing 36.57 

33441A 
Other electronic component 
manufacturing 48.11 

334413 
Semiconductor and related 
device manufacturing 28.96 

334418 

Printed circuit assembly 
(electronic assembly) 
manufacturing 30.90 

334510 

Electromedical and 
electrotherapeutic apparatus 
manufacturing 23.12 

334511 
Search, detection, and navigation 
instruments manufacturing 36.08 

334512 
Automatic environmental control 
manufacturing 46.17 

334513 
Industrial process variable 
instruments manufacturing 35.99 

334514 
Totalizing fluid meter and 
counting device manufacturing 12.15 

334515 
Electricity and signal testing 
instruments manufacturing 45.48 

334516 
Analytical laboratory instrument 
manufacturing 24.54 

334517 
Irradiation apparatus 
manufacturing 27.40 

33451A 

Watch, clock, and other 
measuring and controlling 
device manufacturing 28.03 

334610 
Manufacturing and reproducing 
magnetic and optical media 25.78 

335110 
Electric lamp bulb and part 
manufacturing 36.13 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

335120 Lighting fixture manufacturing 39.87 

335210 
Small electrical appliance 
manufacturing 30.69 

335221 
Household cooking appliance 
manufacturing 39.39 

335222 
Household refrigerator and home 
freezer manufacturing 30.88 

335224 
Household laundry equipment 
manufacturing 67.91 

335228 
Other major household appliance 
manufacturing 48.48 

335311 

Power, distribution, and 
specialty transformer 
manufacturing 25.82 

335312 
Motor and generator 
manufacturing 23.76 

335313 
Switchgear and switchboard 
apparatus manufacturing 30.71 

335314 
Relay and industrial control 
manufacturing 24.65 

335911 Storage battery manufacturing 28.47 

335912 Primary battery manufacturing 8.08 

335920 
Communication and energy wire 
and cable manufacturing 26.76 

335930 Wiring device manufacturing 77.31 

335991 
Carbon and graphite product 
manufacturing 50.39 

335999 

All other miscellaneous 
electrical equipment and 
component manufacturing 35.93 

336111 Automobile manufacturing 20.52 

336112 
Light truck and utility vehicle 
manufacturing 15.08 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

336120 Heavy duty truck manufacturing 12.85 

336211 
Motor vehicle body 
manufacturing 17.53 

336212 Truck trailer manufacturing 26.29 

336213 Motor home manufacturing 573.09 

336214 
Travel trailer and camper 
manufacturing 565.60 

336310 
Motor vehicle gasoline engine 
and engine parts manufacturing 20.36 

336320 

Motor vehicle electrical and 
electronic equipment 
manufacturing 30.73 

3363A0 

Motor vehicle steering, 
suspension component (except 
spring), and brake systems 
manufacturing 23.72 

336350 
Motor vehicle transmission and 
power train parts manufacturing 26.09 

336360 
Motor vehicle seating and 
interior trim manufacturing 15.69 

336370 Motor vehicle metal stamping 22.79 

336390 
Other motor vehicle parts 
manufacturing 28.41 

336411 Aircraft manufacturing 13.88 

336412 
Aircraft engine and engine parts 
manufacturing 40.52 

336413 
Other aircraft parts and auxiliary 
equipment manufacturing 58.70 

336414 
Guided missile and space vehicle 
manufacturing 12.82 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors  
kGal/$M for non PGS 
kGal/MWh for PGS 

33641A 

Propulsion units and parts for 
space vehicles and guided 
smissiles 

                                                                          
30.31  

336500 
Railroad rolling stock 
manufacturing 

                                                                          
61.20  

336611 Ship building and repairing 
                                                                          

16.53  

336612 Boat building 
                                                                          

36.93  

336991 
Motorcycle, bicycle, and parts 
manufacturing 

                                                                          
30.41  

336992 

Military armored vehicle, tank, 
and tank component 
manufacturing 

                                                                          
22.33  

336999 
All other transportation 
equipment manufacturing 

                                                                          
14.57  

337110 
Wood kitchen cabinet and 
countertop manufacturing 

                                                                          
69.45  

337121 
Upholstered household furniture 
manufacturing 

                                                                          
35.54  

337122 
Nonupholstered wood household 
furniture manufacturing 

                                                                          
85.01  

33712A 
Other household nonupholstered 
furniture 

                                                                          
69.12  

337127 
Institutional furniture 
manufacturing 

                                                                          
54.76  

33721A 

Office furniture and custom 
architectural woodwork and 
millwork manufacturing 

                                                                          
69.03  

337215 
Showcase, partition, shelving, 
and locker manufacturing 

                                                                          
47.22  

337900 
Other furniture related product 
manufacturing 

                                                                          
30.85  

339112 
Surgical and medical instrument 
manufacturing 

                                                                          
30.12  

339113 
Surgical appliance and supplies 
manufacturing 

                                                                          
27.42  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

339114 
Dental equipment and supplies 
manufacturing 35.38 

339115 
Ophthalmic goods 
manufacturing 48.69 

339116 Dental laboratories 44.16 

339910 
Jewelry and silverware 
manufacturing 23.76 

339920 
Sporting and athletic goods 
manufacturing 38.90 

339930 
Doll, toy, and game 
manufacturing 34.70 

339940 
Office supplies (except paper) 
manufacturing 61.66 

339950 Sign manufacturing 52.01 

339990 
All other miscellaneous 
manufacturing 46.90 

311111 Dog and cat food manufacturing 90.26 

311119 
Other animal food 
manufacturing 81.87 

311210 
Flour milling and malt 
manufacturing 91.73 

311221 Wet corn milling 177.19 

31122A 
Soybean and other oilseed 
processing 79.42 

311225 
Fats and oils refining and 
blending 107.53 

311230 Breakfast cereal manufacturing 101.59 

311300 
Sugar and confectionery product 
manufacturing 129.00 

311410 Frozen food manufacturing 130.99 

311420 
Fruit and vegetable canning, 
pickling, and drying 125.70 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

31151A 
Fluid milk and butter 
manufacturing 94.36 

311513 Cheese manufacturing 79.57 

311514 
Dry, condensed, and evaporated 
dairy product manufacturing 81.19 

311520 
Ice cream and frozen dessert 
manufacturing 160.46 

31161A 

Animal (except poultry) 
slaughtering, rendering, and 
processing 91.15 

311615 Poultry processing 134.42 

311700 
Seafood product preparation and 
packaging 120.52 

311810 
Bread and bakery product 
manufacturing 113.48 

3118A0 
Cookie, cracker, pasta, and 
tortilla manufacturing 90.45 

311910 Snack food manufacturing 100.40 

311920 Coffee and tea manufacturing 82.03 

311930 
Flavoring syrup and concentrate 
manufacturing 91.13 

311940 
Seasoning and dressing 
manufacturing 96.60 

311990 All other food manufacturing 135.38 

312110 Soft drink and ice manufacturing 133.70 

312120 Breweries 117.38 

312130 Wineries 142.08 

312140 Distilleries 95.66  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors  
kGal/$M for non PGS 
kGal/MWh for PGS 

312200 Tobacco product manufacturing 
                                                                          

75.31  

313100 Fiber, yarn, and thread mills 
                                                                          

83.59  

313200 Fabric mills 
                                                                          

90.28  

313300 
Textile and fabric finishing and 
fabric coating mills 

                                                                        
135.59  

314110 Carpet and rug mills 
                                                                        

113.21  

314120 Curtain and linen mills 
                                                                          

81.14  

314900 Other textile product mills 
                                                                          

63.74  

315000 Apparel manufacturing 
                                                                          

59.16  

316000 
Leather and allied product 
manufacturing 

                                                                          
46.01  

322110 Pulp mills 
                                                                     

2,051.78  

322120 Paper mills 
                                                                     

1,822.82  

322130 Paperboard mills 
                                                                     

1,685.45  

322210 
Paperboard container 
manufacturing 

                                                                     
1,772.81  

322220 
Paper bag and coated and treated 
paper manufacturing 

                                                                     
1,835.59  

322230 
Stationery product 
manufacturing 

                                                                     
2,166.09  

322291 
Sanitary paper product 
manufacturing 

                                                                     
1,750.15  

322299 
All other converted paper 
product manufacturing 

                                                                     
1,938.39  

323110 Printing 
                                                                          

49.84  

323120 Support activities for printing 
                                                                          

41.59  

324110 Petroleum refineries 
                                                                        

343.16  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

324121 
Asphalt paving mixture and 
block manufacturing 398.10 

324122 
Asphalt shingle and coating 
materials manufacturing 466.93 

324190 
Other petroleum and coal 
products manufacturing 382.70 

325110 Petrochemical manufacturing 400.75 

325120 Industrial gas manufacturing 580.80 

325130 
Synthetic dye and pigment 
manufacturing 418.12 

325180 
Other basic inorganic chemical 
manufacturing 465.88 

325190 
Other basic organic chemical 
manufacturing 599.27 

325211 
Plastics material and resin 
manufacturing 411.10 

3252A0 

Synthetic rubber and artificial 
and synthetic fibers and 
filaments manufacturing 400.37 

325310 Fertilizer manufacturing 281.82 

325320 
Pesticide and other agricultural 
chemical manufacturing 409.85 

325411 
Medicinal and botanical 
manufacturing 470.47 

325412 
Pharmaceutical preparation 
manufacturing 393.35 

325413 
In-vitro diagnostic substance 
manufacturing 321.48 

325414 
Biological product (except 
diagnostic) manufacturing 322.08 

325510 Paint and coating manufacturing 399.28 

325520 Adhesive manufacturing 386.11 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

325610 
Soap and cleaning compound 
manufacturing 363.75 

325620 Toilet preparation manufacturing 377.01 

325910 Printing ink manufacturing 378.27 

3259A0 
All other chemical product and 
preparation manufacturing 356.36 

326110 

Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 45.98 

326120 

Plastics pipe, pipe fitting, and 
unlaminated profile shape 
manufacturing 53.75 

326130 

Laminated plastics plate, sheet 
(except packaging), and shape 
manufacturing 65.44 

326140 
Polystyrene foam product 
manufacturing 36.12 

326150 

Urethane and other foam product 
(except polystyrene) 
manufacturing 43.97 

326160 Plastics bottle manufacturing 28.78 

326190 
Other plastics product 
manufacturing 52.67 

326210 Tire manufacturing 61.65 

326220 
Rubber and plastics hoses and 
belting manufacturing 53.09 

326290 
Other rubber product 
manufacturing 43.94 

420000 Wholesale trade 13.48 

441000 Motor vehicle and parts dealers 20.43 

445000 Food and beverage stores 42.13 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors  
kGal/$M for non PGS 
kGal/MWh for PGS 

452000 General merchandise stores 
                                                                          

14.91  

4A0000 Other retail 
                                                                          

22.77  

481000 Air transportation 
                                                                            

3.95  

482000 Rail transportation 
                                                                            

3.77  

483000 Water transportation 
                                                                        

194.77  

484000 Truck transportation 
                                                                            

5.40  

485000 
Transit and ground passenger 
transportation 

                                                                        
274.74  

486000 Pipeline transportation 
                                                                                

-    

48A000 

Scenic and sightseeing 
transportation and support 
activities for transportation 

                                                                          
40.97  

492000 Couriers and messengers 
                                                                            

1.14  

493000 Warehousing and storage 
                                                                          

12.64  

511110 Newspaper publishers 
                                                                          

12.46  

511120 Periodical Publishers 
                                                                            

8.92  

511130 Book publishers 
                                                                            

5.27  

5111A0 
Directory, mailing list, and other 
publishers 

                                                                            
3.69  

511200 Software publishers 
                                                                            

1.30  

512100 
Motion picture and video 
industries 

                                                                            
5.03  

512200 Sound recording industries 
                                                                          

12.33  

515100 
Radio and television 
broadcasting 

                                                                          
25.54  
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

515200 
Cable and other subscription 
programming 1.78 

517110 
Wired telecommunications 
carriers 26.19 

517210 
Wireless telecommunications 
carriers (except satellite) 33.13 

517A00 

Satellite, telecommunications 
resellers, and all other 
telecommunications 11.99 

518200 
Data processing, hosting, and 
related services 5.42 

5191A0 

News syndicates, libraries, 
archives and all other 
information services 4.78 

519130 

Internet publishing and 
broadcasting and Web search 
portals 5.30 

52A000 
Monetary authorities and 
depository credit intermediation 5.34 

522A00 

Nondepository credit 
intermediation and related 
activities 21.18 

523A00 

Securities and commodity 
contracts intermediation and 
brokerage 30.53 

523900 
Other financial investment 
activities 3.46 

524100 Insurance carriers 0.96 

524200 
Insurance agencies, brokerages, 
and related activities 10.41 

525000 
Funds, trusts, and other financial 
vehicles -   

5310HS Housing -
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

531ORE Other real estate 44.53 

532100 
Automotive equipment rental 
and leasing 6.28 

532A00 
Consumer goods and general 
rental centers 5.90 

532400 

Commercial and industrial 
machinery and equipment rental 
and leasing 3.16 

533000 
Lessors of nonfinancial 
intangible assets 19.00 

541100 Legal services 3.02 

541511 
Custom computer programming 
services 1.18 

541512 
Computer systems design 
services 2.11 

54151A 
Other computer related services, 
including facilities management 2.80 

541200 

Accounting, tax preparation, 
bookkeeping, and payroll 
services 2.63 

541300 
Architectural, engineering, and 
related services 5.12 

541400 Specialized design services 9.28 

541610 Management consulting services 9.91 

5416A0 
Environmental and other 
technical consulting services 28.01 

541700 
Scientific research and 
development services 2.72 

541800 
Advertising, public relations, 
and related services 3.01 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

5419A0 

Marketing research and all other 
miscellaneous professional, 
scientific, and technical services 3.81 

541920 Photographic services 3.48 

541940 Veterinary services 6.85 

550000 
Management of companies and 
enterprises 4.91 

561100 Office administrative services 9.42 

561200 Facilities support services 106.49 

561300 Employment services 2.16 

561400 Business support services 11.93 

561500 
Travel arrangement and 
reservation services 15.20 

561600 
Investigation and security 
services 19.23 

561700 
Services to buildings and 
dwellings 11.95 

561900 Other support services 18.33 

562000 
Waste management and 
remediation services 36.13 

611100 
Elementary and secondary 
schools 121.14 

611A00 

Junior colleges, colleges, 
universities, and professional 
schools 736.72 

611B00 Other educational services 3.74 

621100 Offices of physicians 6.99 



203 

Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

621200 Offices of dentists 12.99 

621300 
Offices of other health 
practitioners 0.53 

621400 Outpatient care centers 17.84 

621500 
Medical and diagnostic 
laboratories 14.18 

621600 Home health care services 5.78 

621900 
Other ambulatory health care 
services 7.83 

622000 Hospitals 25.80 

623A00 
Nursing and community care 
facilities 44.72 

623B00 

Residential mental retardation, 
mental health, substance abuse 
and other facilities 25.65 

624100 Individual and family services 10.32 

624A00 

Community food, housing, and 
other relief services, including 
rehabilitation services 23.20 

624400 Child day care services 27.75 

711100 Performing arts companies 12.65 

711200 Spectator sports 9.71 

711A00 

Promoters of performing arts and 
sports and agents for public 
figures 33.60 

711500 
Independent artists, writers, and 
performers 6.84 

712000 
Museums, historical sites, zoos, 
and parks 33.25 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

713100 Amusement parks and arcades 59.69 

713200 
Gambling industries (except 
casino hotels) 25.50 

713900 
Other amusement and recreation 
industries 1,095.68 

721000 Accommodation 100.05 

722110 Full-service restaurants 56.60 

722211 Limited-service restaurants 29.66 

722A00 
All other food and drinking 
places 8.21 

811100 
Automotive repair and 
maintenance 17.88 

811200 

Electronic and precision 
equipment repair and 
maintenance 3.30 

811300 

Commercial and industrial 
machinery and equipment repair 
and maintenance 5.90 

811400 
Personal and household goods 
repair and maintenance 7.55 

812100 Personal care services 20.66 

812200 Death care services 17.12 

812300 
Dry-cleaning and laundry 
services 131.58 

812900 Other personal services 6.87 

813100 Religious organizations 45.59 

813A00 
Grantmaking, giving, and social 
advocacy organizations 3.50 

813B00 
Civic, social, professional, and 
similar organizations 77.50 
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Table C.2 (Continued) 

BEA Code BEA Description 

Water Consumption Factors 
kGal/$M for non PGS 
kGal/MWh for PGS 

814000 Private households -   

S00500 
Federal general government 
(defense) 38.52 

S00600 
Federal general government 
(nondefense) 26.16 

491000 Postal service 90.97 

S00102 
Other federal government 
enterprises 322.30 

S00700 
State and local general 
government 112.81 

S00201 
State and local government 
passenger transit 35.50 

S00203 
Other state and local government 
enterprises 56.57 

C.3. Additional Information for the 2030 projection scenario

The 2030 projection scenario uses two distinct mixes: a 2014 mix to represent the most up 

to date grid data, and a projected 2030 mix. The 2014 mix is obtained directly from the eGrid 2014 

database, which has data on electricity generation by state, by technology. Creating the 2030 mix 

requires additional steps, as it is based on a combination of EIA projections for 2030 and eGrid 

regional generation data. 
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C.3.1. Creating the 2030 Mix for individual states

EIA projections data is organized according to Electricity Market Modules (EMMs), which 

are groups of states that are geographically connected. These modules usually contain a few states, 

with the largest module having 7. eGRID contains sub region data which maps almost 1-to-1 

with the EIA EMM regions. eGrid’s sub region categories and plant generation data, along with 

EIA’s EMM regions, are used to create an appropriate mapping for each state. Additionally, 

the EIA projections contain data for the individual renewable PGS technologies for each EMM 

region. The procedure to create the EIA 2030 projection state mixes is as follows: 

1) For states that have no projections the eGRID 2014 mixes were used (AK, HI).

2) For states that map one to one with the EIA EMM regions (i.e. there is only one state in

an EIA EMM region), the projected mix for that region was used for the corresponding

state.

3) For instances where multiple states map to one region, eGrid’s plant data was used to

create a contribution mix by state and by PGS technology to the region. For example,

both EIA and eGRID contain a region which called MRO East. This region contains

generation produced in 3 states, as seen in Table C.3. Using eGrid’s generation values,

87% of EIA 2030’s projected coal values for this EMM is assigned to WI and 13% to MI.

This is done for each PGS tech and EMM/state combination. The resulting allocation

produces the national mix shown in Table C.4, under EIA 2030 Projections.
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Table C.3: MRO East sub region generation by PGS type 

Table C.4: Percent of total U.S. generation by technology type, for 2014 and 2030 mixes 

MRO East COAL GAS OIL NUCLEAR
Total MWh 17,830,223.17       2,141,599.92         161,200.00       9,447,148.00      

IL 0% 0% 0% 0%
MI 13% 1% 0% 0%
WI 87% 99% 100% 100%

MRO East HYDRO GEOTHERMAL BIOMASS SOLAR WIND OTHF Total
Total MWh 1,193,339.00         - 1,482,685.15 - 1,265,100.00 32,208.00        33,553,503.24 
IL 1% 0% 0% 0% 0% 0% 0%
MI 22% 0% 46% 0% 0% 0% 10%
WI 78% 0% 54% 0% 100% 100% 90%
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C.4. Additional Results for the 2030 projection scenario

C.4.1. Additional results for $1M final demand of non PGS sectors, and 100 MWh final demand 

of PGS technologies 

Figure C.11 complements Figure 4.6, showing the Projected 2030/Base 2014 ratios for 

GHG and WC. These ratios add context, showing that sometimes the sectors with the greatest 

absolute change in emissions (e.g. Primary Aluminum) are always the ones with the greatest 

relative change (e.g. Wind PGS). Likewise, Figure C.12 complements Figure 4.7. 

Figure C.11:  Ratio Comparison between Projected and Base MRIO model for $1M of final 
demand by each BEA IO sector.  
Each bubble represents one BEA IO sector. Values above the dotted lines represent increase in 
emissions for that particular sector; values below represent decrease in emissions. Bubbles are 
clustered into the highest level economic categories described by the BEA. 
Top (part A): GHG Emissions ratio  
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Bottom (part B): WC  ratio 

C.4.2. Aluminum GHG reduction calculations

2.75 Tonnes CO2e/MWh reduction in the Projected 2030 scenario 

1.72 Million Metric tons (Tonnes) of primary aluminum produced in the U.S. in 2014 (U.S. 

Geological Survey 2015) 

Average of 15 MWh/Tonnes of Primary Aluminum produced (Burns 2009) 

15 MWh/Tonne Primary Aluminum * 1,720,000 Tonnes Primary Aluminum * 2.75 Tonnes 

CO2e/MWh = 70,950,000 Tonnes CO2e 

Total U.S. CO2e emissions in 2014 = 6,870,000,000 Tonnes CO2e (U.S. Environmental Protection 

Agency 2015a) 

% reduction of total U.S. GHG emissions in 2014 would be 70,950,000/6,870,000,000 ~ 1% 

reduction in national GHG emissions.  
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C.4.3. Additional results for Private Consumption Run

Figure C.12: Ratio comparison for PC. 
Magnified part towards the right of the charts included for ease of reference due to different 
scales.  
Top (part A): GHG emissions ratio.   
Bottom (part B): WC ratio 
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C.5. Additional information for the Data Center Scenarios

C.5.1. Creation of the Direct PGS Final Demand vector for NERC run

The direct PGS final demand vector is based on the PGS consumption of the Data 

processing, hosting, and related services sector (518200) as found in the BEA IO accounts. 

However, the MWh value found when converting the monetary value found in the original 

accounts using the price conversion as per Chapter 3 (Vendries Algarin et al. 2016) is not 

comparable to more data center-specific estimates found in the literature for total electricity 

consumption by data centers in the U.S: 

From BEA (Bureau of Economic Analysis 2013a) 

The total use of PGS by 518200 is $M538 (from the original Use table) in 2007 

This value results in a total of about 6.1 billion kWh in the MRIO model*. 

Price: $0.095/kWh  

From Report to congress by Berkeley National Lab (Brown et al. 2007) 

Total electricity consumption estimate: 61 billion kWh in 2006. 

Total electricity costs:     $4.5 Billion 

Implied price:    $0.074/kWh 

Berkeley National Lab report update (Shehabi et. al 2016) 

Total electricity consumption estimate: 70 billion kWh in 2014. 
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*This assumes the price conversion as per Chapter 3 and allowing for adjustments due to 

RAS procedure when creating the MRIO table. 

This discrepancy suggests that the electricity consumption by the 518200 sector is 

underestimated in the BEA IO accounts, as it does not compare well with more recent and 

dedicated sources and is unlikely that the electricity price used in creating the MRIO model is 

incorrect by approximately a factor of 10. Additionally, even considering other data center related 

sectors in the BEA IO accounts does not make up the difference, as the total kWh use of 

Information Technology sectors still underestimate the total consumption when compared to 

Shehabi et. al (2016): 

 

Figure C.13: Electricity Consumption by IT sectors in the BEA IO accounts.  
Yellow highlighted sectors are those most likely involved with data center operations (according 
the NAICS operational description). Assumes $0.095/kWh. 

 

Given these differences, the determination was taken to preserve the structure of the IO 

model with regards to data center electricity consumption but rather use the estimate by Shehabi 
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et. al (2016) in the MRIO scenarios. Further modifications to the BEA IO accounts to adjust the 

electricity consumption of data centers requires detailed data about overall industry expenditures 

and purchases that are not publically available and are beyond the scope of this work. However, 

to ensure that the direct and indirect effects remain proportional, a scaling factor was created to 

ensure that the linear relationships established in the IO accounts are upheld:  

 
Data Center Electricity consumption scaling factor  

 

=
Berkeley Data Center Electricity  Consumption Estimate
 BEA IO Data Center Electricity Consumption Estimate

 

 

=
70 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀ℎ
6.1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀ℎ

= 11.5 
 

 

The Direct PGS Final demand vector, which represents the amount of electricity directly 

used for data center operations, thus consists 70 million MWh distributed throughout the 53 

regions in the model according to the 2014 and NERC distributions. 

 

C.5.2. Creation of Indirect PGS Final Demand Vector for NERC run 

 

To create the Indirect PGS Final Demand vector, the following steps were followed: 

1) For each commodity in the data center supply chain, the corresponding industry producing 

that commodity (as a main product) was found.  

 

a. For example, the largest expenditure in the data center supply chain is Employee 

compensation (Sector V00300), at $19.5 billion. As this “commodity” is value 

added, there is no corresponding industry sector. However, the Private 
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Consumption (PC) Use table column (Sector F00100) can be used to represent 

average expenditures by employees. Thus, the PC Use table column can be 

considered the industry, just as Employee compensation Use table row can be 

considered the commodity, and are thus mapped together. 

 

2) The amount that each industry in data center’s supply chain expends on its own electricity 

requirements, as a percent of total expenditures, is found.  

 

a. Continuing the above example, PGS represents approximately 1.52% of the total 

economic expenditure of the Private Consumption Use table column.   

 

3) These two values – the amount that data centers spend on the different industries in its 

supply chain, and the percent that said industries spend on PGS consumption – are then 

multiplied together, to obtain an estimate of PGS consumption needed by industries 

supplying data centers.  

 

a. For Employees, this value is $19.5 billion * 1.52%, = $296 million. 

 

4) The resulting value is converted to MWh using the same procedure and values used in the 

conversion of the MRIO model from monetary to physical units in Chapter 3 (Vendries 

Algarin et al. 2016), and distributed between states in the final demand vector using the 

corresponding distribution (2014 or NERC). 
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a. The assigned price for the PC sector for PGS consumption is $0.1065/kWh, this 

results in approximately 3.1 million MWh. 

 

5) The Indirect PGS consumption value is multiplied by the Data Center Electricity 

Consumption Scaling Factor described above. 

 

a. For example, this increases the indirect MWh final demand from Employees from 

about 3.1 Million MWh to approximately 35 Million MWh.  

 

C.5.3. Additional Results for Data Center Scenarios 

 

The figures below compare the source of the emissions from the supply chain (i.e. whether 

emissions are caused by direct and indirect consumption of electricity) for both the NERC and 

Amazon runs.  Note that emissions for the NERC run are split evenly between direct and indirect 

sources, whereas emissions for the Amazon run are almost entirely based on indirect electricity 

consumption. 
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Figure C.14: Comparison of Direct vs Supply Chain Impacts, 2014 Base (state) vs NERC  
scenarios. 

 

 

Figure C.15: Comparison of Direct vs Supply Chain Impacts, 2014 Base (state) vs Amazon 
scenarios.
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