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COUPLING STOKES-DARCY FLOW WITH TRANSPORT ON

IRREGULAR GEOMETRIES

Pu Song, PhD

University of Pittsburgh, 2017

This thesis studies a mathematical model, in which Stokes-Darcy flow system is coupled with

a transport equation. The objective is to develop stable and convergent numerical schemes

that could be used in environmental applications. Special attention is given to discretization

methods which can handle irregular geometry.

First, we will use a multiscale mortar finite element method to discretize coupled Stokes-

Darcy flows on irregular domains. Especially, we will utilize a special discretization method

called multi-point flux mixed finite element method to handle Darcy flow. This method is

accurate for rough grids and rough full tensor coefficients, and reduces to a cell-centered

pressure scheme. On quadrilaterals and hexahedra the method can be formulated either

on the physical space or on the reference space, leading to a non-symmetric or symmetric

scheme, respectively. While Stokes region is discretized by standard inf-sup stable elements.

The mortar space can be coarser and it is used to approximate the normal stress on the

interface and to impose weakly continuity of normal flux. The interfaces can be curved and

matching conditions are imposed via appropriate mappings from physical grids to reference

grids with flat interfaces.

Another approach that we use to deal with the flow equations is based on non-overlapping

domain decomposition. Domain decomposition enables us to solve the coupled Stokes-Darcy

flow problem in parallel by partitioning the computational domain into subdomains, upon

which families of coupled local problems of lower complexity are formulated. The coupling

of the subdomain problems is removed through an iterative procedure. We investigate the
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properties of this method and derive estimates for the condition number of the associated

algebraic system.

To discretize the transport equation we develop a local discontinuous Galerkin mortar

method. In the method, the subdomain grids need not match and the mortar grid may be

much coarser, giving a two-scale method. We weakly impose the boundary condition on

the inflow part of the interface and the Dirichlet boundary condition on the elliptic part of

the interface via Lagrange multipliers. We develop stability for the concentration and the

diffusive flux in the transport equation.

Keywords: Stokes-Darcy flows, mortar finite element, mixed finite element, multiscale fi-

nite element, multipoint flux approximation, curved interface,non-overlapping domain

decomposition.
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1.0 INTRODUCTION

The coupled Stokes-Darcy model has been thoroughly investigated in recent years due to

its broad applications: interaction between surface and subsurface flows, fuel cells, flow in

fractured porous media, blood flow in vessels and industrial filtration. The mathematical

model is based on the experimentally derived Beavers–Joseph–Saffman interface condition

[5, 45] and other continuity conditions of flux and normal stress. In [36, 17], the existence

and uniqueness of a weak solution has been proved. Lots of numerical discretizations for this

model has been developed in [36, 16, 17, 44, 21, 34, 18, 39, 23, 24, 47].

In this thesis we assume the interaction between surface water and groundwater flows

as the physical interpretation of the model. Fresh water is essential to human and other

lifeforms. It is estimated that nearly 69 percent of the total fresh water on Earth is frozen in

glaciers and permanent ice covers in the Antarctic and the Arctic regions. About 96 percent

of the total unfrozen fresh water in the world is groundwater, which resides in the pores of

the soil or the rocks. A geologic formation containing water that can be withdrawn at wells

or springs is called an aquifer. One serious problem today is contamination of groundwater.

Many aquifers have been invaded by pollutants resulting from leaky underground storage

tanks, chemical spills and other human activities. Coupling the Stokes-Darcy equations with

a transport equation offers an effective tool for predicting the spread of the pollution and

assesing the danger to the fresh water resources.

In our model we consider a fluid region as a Stokes Region Ωs and a saturated porous

medium region as a Darcy Region Ωd (1.0.1). These are separated by an interface Γsd,

through which the fluid can flow in both directions. Both Ωs and Ωd are bounded domains

with Lipschitz continuous boundaries.The outward unit normal vector exterior to Ωs or Ωd

is denoted by ns or nd. We let us, ps, respectively ud, pd, be the velocity and pressure in
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Figure 1.0.1: Stokes-Darcy domain

the Stokes region and the Darcy region respectively.

1.1 FLOW EQUATIONS

1.1.1 Stokes equations

Two important variables in the characterization of fluid motion are the deformation (or

strain) rate tensor, which is defined as the symmetric part of the velocity gradient D(us) :=

1
2
(∇us+(∇us)

T ) and the Cauchy stress tensor T, which represents the forces exerted by the

fluid per unit infinitesimal area. For a Newtonian fluid, like water, T and D(us) are linearly

related. Assuming that the fluid is incompressible,

∇ · us = 0

and the stress-strain rate relation, also known as the Stokes law, is

T(us, ps) := −psI+ 2νsD(us)

2



where νs is the fluid viscosity. The resulting Stokes equations are suitable to describe the

creeping flow in a surface basin, e.g. lake:

−∇ ·T ≡ −2νs∇ ·D(us) +∇ps = fs in Ωs, (1.1.1)

∇ · us = 0 in Ωs, (1.1.2)

us = 0 on Γs. (1.1.3)

1.1.2 Darcy equations

Darcy’s experiments revealed a proportionality between the rate of unidirectional flow and

the applied pressure in a uniform porous medium. In three dimensions using modern notation

this relationship is expressed by

ud = −K

νd
∇pd

Here ud is the seepage velocity, which is the average velocity respective to a representative

volume incorporating both solid and fluid material, and K is a symmetric and positive

definite tensor representing the permeability. The permeability tensor can be brought into

diagonal form

K = diag{K1, K2, K3}

by introducing three mutually orthogonal axes called axes of principal directions of anisotropy.

It is well known that Darcys law can be obtained by averaging of the equations for incom-

pressible flow through porous medium.

1.1.3 Coupled Stokes-Darcy equations with interface and boundary conditions

In order to couple the flow equations in the free fluid region Ωs with the equations governing

the flow in the porous medium region Ωd appropriate conditions must be specified on the

interface Γsd. This is a challenging problem from both physical and mathematical point of

view. One difficulty stems from the fact that the definitions of the variables differ in the two

regions. Also there are no velocity derivatives involved in the Darcy’s law while the Stokes
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equation is of second order for the velocity. Another question to consider is whether the

interface conditions are compatible with the boundary conditions at Γsd ∩ ∂Ω.

The first interface condition comes from mass conservation and can be written as follows

us · ns + ud · nd = 0 on Γsd. (1.1.4)

Another condition is obtained by balancing the normal forces acting on the interface in

each region. The force exerted by the free fluid in Ωs on the boundary ∂Ωs is equal to −n ·T.

Since the only force acting on Γsd from Ωd is the Darcy pressure pd, the second interface

condition which also means continuity of normal stress on Γsd is

−(Tns) · ns ≡ ps − 2νs(D(us)ns) · ns = pd on Γsd. (1.1.5)

The last interface condition is the well-known Beavers-Joseph-Saffman law [5, 45] for

the slip with friction interface condition, where α > 0 is an experimentally determined

dimensionless constant

−(Tns) · τ j ≡ −2νs(D(us)ns) · τ j =
νsα√
Kj

us · τ j, j = 1, d− 1, on Γsd, (1.1.6)

Depending on the particular flow problem in Ωs there are different choices of possible

boundary conditions on Γs. To facilitate the notation in the flow problem formulation we will

use no slip boundary condition us = 0 on Γs, but computational results with combinations

of Dirichlet (prescribed velocity) and Neumann (prescribed normal and tangential stresses)

boundary data will be presented. For the Darcys equation we specify no flow boundary

condition ud · nd = 0 on Ωd, which corresponds to an impermeable rock surrounding the

aquifer.

Now the coupled Stokes-Darcy model can be presented as follows: Then the flow equa-

tions in Darcy region with no flow boundary condition are:

νdK
−1ud +∇ pd = fd in Ωd, (1.1.7)

divud = qd in Ωd, (1.1.8)

ud · n = 0 on Γd. (1.1.9)
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where qd denotes an external source or sink term in Ωd and is assumed to satisfy solvability

condition ∫
Ωd

qd dx = 0. (1.1.10)

1.2 TRANSPORT EUQATION

The transport equation can be considered as a advection-diffusion equation:

φct +∇ · (cu−D∇c) = φs ∀(x, t) ∈ Ω× (0, T ), (1.2.1)

where c(x, t) is the concentration of some chemical component, 0 < φ∗ ≤ φ(x) ≤ φ∗ is

the porosity of the medium in Ω2, D(x, t) is the diffusion/dispersion tensor assumed to be

symmetric and positive definite with smallest and largest eigenvaluesD∗ andD∗, respectively,

s(x, t) is a source term, and u is the velocity feild defined by u|Ωs = us, and u|Ωd
= ud. The

model is completed by the initial condition

c(x, 0) = c0(x), ∀x ∈ Ω (1.2.2)

and the boundary conditions

(cu+ z) · n = (cinu) · n on Γin, (1.2.3)

z · n = 0 on Γout, (1.2.4)

Here, Γin := {x ∈ ∂Ω : u · n < 0}, Γout := {x ∈ ∂Ω : u · n ≥ 0}, and n is the unit

outward normal vector to ∂Ω.
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1.3 MULTISCALE MORTAR MIXED FINITE ELEMENT METHOD

The use of Mixed Finite Element (MFE) methods is advantageous for its simultaneous high-

order approximation of both the primary variable and a second variable of physical interest.

Since the 1970’s, a robust theory has been developed to produce stable schemes for subsurface

ow, as well as applications in surface flow, electromagnetism, and elasticity. Moreover these

methods provide physical fidelity via the element-wise conservation of mass, a property that

standard Galerkin finite element methods do not possess. However, difficulties arise in porous

media flow applications, where the domain is quite large and the permeability tensor varies

on a fine scale. Resolving the solution on the fine scale is often computationally infeasible,

necessitating the use of multiscale approximations.

In this thesis we use a new multiscale mortar mixed method that uses the multipoint flux

mixed finite element (MFMFE) [57, 30] for Darcy subdomain discretization. The MFMFE

method was motivated by the multipoint flux approximation (MPFA) method.The latter

method was originally developed as a non-variational finite volume method. It is locally

mass conservative, accurate for rough grids and coefficients, and reduces to a cell-centered

system for the pressures. In that sense it combines the advantages of MFE and several

MFE-related methods.

MFE methods are commonly used for flow in porous media, as they provide accurate

and locally mass conservative velocities and handle well rough coefficients. However, the

resulting algebraic system is of saddle point type and involves both the pressure and the

velocity. Various modifications have been developed to alleviate this problem, including the

hybrid MFE method that reduces to a symmetric positive definite face-centered pressure

system, as well as more efficient cell-centered formulations [57, 4, 3] based on numerical

quadrature for the velocity mass matrix in the lowest order Raviart-Thomas [31] (RT0) case.

The MPFA method handles accurately very general grids and discontinuous full tensor

coefficients and at the same time reduces to a positive definite cell-centered algebraic system

for the pressure. The analysis of the MPFA method has been done by formulating it as

a MFE method with a special quadrature, see [57] and [30] for the symmetric version on

O(h2)-perturbations of parallelograms and parallelepipeds, respectively, as well as [56] for

6



the non-symmetric version on general quadrilaterals and hexahedra, respectively. A non-

symmetric MFD method on polyhedral elements that reduces to a cell-centered pressure

system using a MPFA-type velocity elimination is developed and analyzed in [37].

1.4 THESIS OUTLINE

The rest of this thesis is organized as follows: In Chapter 2, we will apply multi-scale mortar

multipoint flux mixed finite element method into Stokes-Darcy Model and show the stability

and error analysis for this method. Implementation on curved interfaces and simulation

with irregular geometry grids will also be presented. In Chapter 3, we will present a non-

overlapping domain decomposition method for Stokes-Darcy model with curved interfaces.

Condition number analysis and numerical results will also be presented. In Chapter 4, we

will formulate a Local Discontinous Galerkin (LDG) mortar method for transport equation

coupled Stokes-Darcy flow. Stability analysis and interesting numerical simulations will also

be presented.

7



2.0 MULTISCALE MORTAR FINITE ELEMENT METHODS FOR

COUPLED STOKES-DARCY FLOWS WITH CURVED INTERFACES

Coupled Stokes-Darcy model has been thoroughly investigated in recent years due to its

broad applications: interaction between surface and subsurface flows, industrial contam-

inants filtration, fuel cells and vascular flows. The mathematical model is based on the

experimentally derived Beavers–Joseph–Saffman interface condition [5, 45] and other conti-

nuity conditions of flux and normal stresses. In [36, 17], the existence and uniqueness of a

weak solution has been proved. Lots of numerical discretizations for this model hase been

developed in [36, 17, 44, 21, 34, 18, 39, 23, 24, 47].

In this thesis, we extend the method in [27] to handle irregular geometries where both

boundaries and interfaces are curved. We utilize multipoint flux mixed finite element

(MFMFE) [55, 29] to discretize Darcy subdomains and conforming Stokes elements for Stokes

subdomains on a fine scale. Both type subdomain grids are not necessarily matching on their

interfaces. Mortar finite element space on a coarse scale is used to impose weakly continuity

conditions between different type interfaces. In [36, 44, 21, 8], the mortar finite element space

has different physical meanings in different subdomains: it represents the pressure for Darcy

flow, respectively, normal stress for the Stokes flow. Mortar mixed finite element method

for the single Darcy region has been studied in [58, 1, 42, 2] and for the single Stokes region

has been investigated in [6, 7]. The former allows for mortar grids to be different from the

traces of subdomain grids with appropriate assumption on the mortar finite element space.

The MFMFE method was motivated by the multipoint flux approxmation (MPFA)

method. It handles accurately irregular girds and discontinuous full tensor coefficients and

reduces to a positive definite cell-centered algebraic system for the pressure with special

finite element spaces and numerical quadrature rule.
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Since we use a multi-domain discretization, then we should consider three type inter-

faces condition: On the Stokes-Stokes interfaces, the continuity of the whole velocity are

weakly imposed by the mortar functions which represents the entire stress vector. On the

Stokes-Darcy and Darcy-Darcy interfaces, we imposed weak continuity condition for the

normal velocity by the mortar funcions which represents pressure or lagrange multiplier in

the Darcy region and normal stress in the Stokes region. The mortar spaces are assumed

to satisfy suitable inf-sup conditions, allowing for very general subdomain and mortar grid

configurations.

To implement our method on the curved interfaces with non-mathcing grids, we employ

two type transformations based on three types interfaces conditions to map subdomain

and mortar grids into reference grids with flat interfaces. On Stokes-Darcy and Darcy-

Darcy interfaces, we employ Piola transformation which preserves the normal component of

velocity while on the Stokes-Stokes interfaces, the standard change of variables is used for

the mapping.

The error analysis relies on the construction of a bounded global interpolant in the

space of weakly continuous velocities that also preserves the velocity divergence in the usual

discrete sense and RT0 projections of the BDM1 or BDDF1 space. This is done in two steps,

starting from suitable local interpolants and correcting them to satisfy the interface matching

conditions. The correction step requires the existence of bounded mortar interpolants. This

is a very general condition that can be easily satisfied in practice. We present two examples in

2−D and one example in 3−D that satisfy this solvability condition. Our error analysis shows

that the global velocity and pressure errors are bounded by the fine scale local approximation

error and the coarse scale non-conforming error. Since the polynomial degrees on subdomains

and interfaces may differ, one can choose higher order mortar polynomials to balance the

fine scale and the coarse scale error terms and obtain fine scale asymptotic convergence. The

dependence of the stability and convergence constants on the subdomain size is explicitly

determined. In particular, the stability and fine scale convergence constants do not depend

on the size of subdomains, while the coarse scale non-conforming error constants deteriorate

when the subdomain size goes to zero. This is to be expected, as the relative effect of the

non-conforming error becomes more significant in such regime. However, this dependence
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can be made negligible by choosing higher order mortar polynomials.

Throughout this paper, we use for simplicity X . (&) Y to denote that there exists a

constant C, independent of mesh sizes h and H, such that X ≤ (≥) CY . The notation

X h Y means that both X . Y and X & Y hold.

2.1 NOTATION AND PRELIMINARIES

Let Ω be a bounded, connected Lipschitz domain of IRn, n = 2, 3, with boundary ∂Ω and

exterior unit normal vector n, and let Γ be a part of ∂Ω with positive n−1 measure: |Γ| > 0.

We do not assume that Γ is connected, but if it is not connected, we assume that it has a

finite number of connected components. In the case when n = 3, we also assume that Γ is

itself Lipschitz. Let

H1
0,Γ(Ω) = {v ∈ H1(Ω) ; v|Γ = 0}.

Poincaré’s inequality in H1
0,Γ(Ω) reads: There exists a constant PΓ depending only on Ω and

Γ such that

∀v ∈ H1
0,Γ(Ω) , ‖v‖L2(Ω) ≤ PΓ|v|H1(Ω). (2.1.1)

The norms and spaces are made precise later on. The formula (2.1.1) is a particular case of

a more general result (cf. [40, 9]):

Proposition 2.1.1. Let Ω be a bounded, connected Lipschitz domain of IRn and let Φ be a

seminorm on H1(Ω) satisfying:

1) there exists a constant P1 such that

∀v ∈ H1(Ω) , Φ(v) ≤ P1‖v‖H1(Ω), (2.1.2)

2) the condition Φ(c) = 0 for a constant function c holds if and only if c = 0.

Then there exists a constant P2 depending only on Ω, such that

∀v ∈ H1(Ω) , ‖v‖L2(Ω) ≤ P2

(
|v|2H1(Ω) + Φ(v)2

)1/2
. (2.1.3)
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We recall Korn’s first inequality: There exists a constant C1 depending only on Ω and Γ

such that

∀v ∈ H1
0,Γ(Ω)

n , |v|H1(Ω) ≤ C1‖D(v)‖L2(Ω), (2.1.4)

where D(v) is the deformation rate tensor, also called the symmetric gradient tensor:

D(v) =
1

2

(
∇v +∇vT

)
.

We shall use the Hilbert space

H(div; Ω) =
{
v ∈ L2(Ω)n ; div v ∈ L2(Ω)

}
,

equipped with the graph norm

‖v‖H(div;Ω) =
(
‖v‖2L2(Ω) + ‖div v‖2L2(Ω)

)1/2

.

The normal trace v · n of a function v of H(div,Ω) on ∂Ω belongs to H−1/2(∂Ω) (cf. [25]).

The same result holds when Γ is a part of ∂Ω and is a closed surface. But if Γ is not a closed

surface, then v ·n belongs to the dual of H
1/2
00 (Γ). When v ·n = 0 on ∂Ω, we use the space

H0(div; Ω) = {v ∈ H(div; Ω) ; v · n = 0 on ∂Ω} .
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2.2 NON-OVERLAPPING DOMAIN DECOMPOSITION WEAK

FORMULATION

Let Ωs, respectively Ωd, be decomposed into Ms, respectively Md, non-overlapping, open

Lipschitz subdomains:

Ωs = ∪Ms
i=1Ωs,i , Ωd = ∪Md

i=1Ωd,i.

Set M = Md + Ms; according to convenience we can also number the subdomains with a

single index i, 1 ≤ i ≤ M , the Darcy subdomains running from Ms +1 to M . Let ni denote

the outward unit normal vector on ∂Ωi. For 1 ≤ i ≤ M , let the boundary interfaces be

denoted by Γi, with possibly zero measure:

Γi = ∂Ωi ∩ ∂Ω,

and for 1 ≤ i < j ≤ M , let the interfaces between subdomains be denoted by Γij, again with

possibly zero measure:

Γij = ∂Ωi ∩ ∂Ωj.

In addition to Γsd, let Γdd, respectively Γss, denote the set of interfaces between subdomains

of Ωd, respectively Ωs. Then, assuming that the solution (u, p) of (1.1.7)–(1.1.6) is slightly

smoother, we can obtain an equivalent formulation by writing individually (1.1.7)–(1.1.6)

in each subdomain Ωi, 1 ≤ i ≤ M , and complementing these systems with the following

interface conditions

[ud · n] = 0 , [pd] = 0 on Γdd, (2.2.1)

[us] = 0 , [σ(us, ps)n] = 0 on Γss, (2.2.2)

where the jumps on an interface Γij, 1 ≤ i < j ≤ M , are defined as

[v · n] = vi · ni + vj · nj, [σn] = σini + σjnj, [v] = (vi − vj)|Γij
,

using the notation vi = v|Ωi
. The smoothness requirement on the solution is meant to ensure

that the jumps [ud · n], respectively [σ(us, ps)n], are well-defined on each interface of Γdd,

respectively Γss.

12



Finally, let us prescribe weakly the interface conditions (2.2.1), (3.1.1), and (1.1.4) by

means of Lagrange multipliers, usually called mortars. For this, it is convenient to attribute

a unit normal vector nij to each interface Γij of positive measure, directed from Ωi to Ωj

(recall that i < j). The basic velocity spaces are:

Xd = {v ∈ L2(Ωd)
n ; vd,i := v|Ωd,i

∈ H(div; Ωd,i), 1 ≤ i ≤ Md,

v · nij ∈ H−1/2(Γij),Γij ∈ Γdd ∪ Γsd,v · n = 0 on Γd},

Xs = {v ∈ L2(Ωs)
n ; vs,i := v|Ωs,i

∈ H1(Ωs,i)
n, 1 ≤ i ≤ Ms,v = 0 on Γs},

(2.2.3)

and the mortar spaces are:

∀Γij ∈ Γss , Λij =
(
H−1/2(Γij)

)n
,

∀Γij ∈ Γsd ∪ Γdd , Λij = H1/2(Γij).
(2.2.4)

Then we define the gobal velocity space by

X = {v ∈ L2(Ω)n ; vd := v|Ωd
∈ Xd,vs := v|Ωs ∈ Xs}, (2.2.5)

we keep W = L2
0(Ω) for the pressure, and we define the mortar spaces

Λs = {λ ∈
(
D′(Γss)

)n
; λ|Γij

∈
(
H−1/2(Γij)

)n
for all Γij ∈ Γss},

Λsd = {λ ∈ L2(Γsd) ; λ|Γij
∈ H1/2(Γij) for all Γij ∈ Γsd},

Λd = {λ ∈ L2(Γdd) ; λ|Γij
∈ H1/2(Γij) for all Γij ∈ Γdd}.

(2.2.6)

We equip these spaces with broken norms:

|||v|||Xd
=

( Md∑
i=1

‖v‖2H(div;Ωd,i)

)1/2

, |||v|||Xs
=

( Ms∑
i=1

‖v‖2H1(Ωs,i)

)1/2

, |||v|||X =
(
|||v|||2Xd

+|||v|||2Xs

)1/2

,

|||λ|||Λs
=

( ∑
Γij∈Γss

‖λ‖2H−1/2(Γij)

)1/2

, |||λ|||Λsd
=

( ∑
Γij∈Γsd

‖λ‖2H1/2(Γij)

)1/2

,

|||λ|||Λd
=

( ∑
Γij∈Γdd

‖λ‖2H1/2(Γij)

)1/2

.

Note that in most geometrical situations, Xd (and hence X) is not complete for the above

norm, but none of the subsequent proofs require its completeness.

13



The matching condition between subdomains is weakly enforced through the following

bilinear forms:

∀v ∈ Xs,∀µ ∈ Λs , bs(v,µ) =
∑

Γij∈Γss

〈[v],µ〉Γij
,

∀v ∈ Xd,∀µ ∈ Λd , bd(v, µ) =
∑

Γij∈Γdd

〈[v · n], µ〉Γij
,

∀v ∈ X,∀µ ∈ Λsd , bsd(v, µ) =
∑

Γij∈Γsd

〈[v · n], µ〉Γij
.

(2.2.7)

For the velocity and pressure in the Darcy and Stokes regions, we use the following bilinear

forms:

∀(u,v) ∈ Xs ×Xs , as,i(u,v) = 2 νs

∫
Ωs,i

D(us,i) : D(vs,i)

+
n−1∑
l=1

∫
∂Ωs,i∩Γsd

νsα√
Kl

(us · τ l)(vs · τ l) , 1 ≤ i ≤ Ms,

∀(u,v) ∈ Xd ×Xd , ad,i(u,v) = νd

∫
Ωd,i

K−1ud,i · vd,i , 1 ≤ i ≤ Md,

∀v ∈ X,∀w ∈ L2(Ω) , bi(v, w) = −
∫
Ωi

wdiv vi , 1 ≤ i ≤ M.

(2.2.8)

Then we set

∀(u,v) ∈ X ×X , a(u,v) =
Ms∑
i=1

as,i(u,v) +

Md∑
i=1

ad,i(u,v),

∀(v, w) ∈ X × L2(Ω) , b(v, w) =
M∑
i=1

bi(v, w).

The second variational formulation reads: Find (u, p, λsd, λd,λs) ∈ X ×W × Λsd × Λd × Λs

such that

∀v ∈ X , a(u,v) + b(v, p) + bsd(v, λsd) + bd(v, λd) + bs(v,λs) =

∫
Ω

f · v,

∀w ∈ W , b(u, w) = −
∫
Ωd

w qd,

∀µ ∈ Λsd , bsd(u, µ) = 0,

∀µ ∈ Λd , bd(u, µ) = 0,

∀µ ∈ Λs , bs(u,µ) = 0.

(2.2.9)
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It remains to prove that (2.2.9) is equivalent to (1.1.7)–(1.1.6) when the solution is

sufficiently smooth. Since we know from Theorem 2.1 in [27] that (1.1.7)–(1.1.6) has a

unique solution, equivalence will also establish that (2.2.9) is uniquely solvable.

Theorem 2.2.1 ([27], Theorem 2.2). Assume that the solution (u, p) of (1.1.7)–(1.1.6)

satisfies

∀Γij ∈ Γdd ∪ Γsd , (ud · nd)|Γij
∈ H−1/2(Γij) , ∀Γij ∈ Γss , (σ(us, ps)ns)|Γij

∈ H−1/2(Γij)
n.

Then (2.2.9) is equivalent to (1.1.7)–(1.1.6).

Remark 2.2.1. From above theorem, we can easily get the well posedness of (2.2.9), since

the exsitence and uniqueness of the solution to (1.1.7)–(1.1.6) has been proposed in [27]

2.3 FINITE ELEMENT DISCRETIZATION

In this section, we will discuss finite element discretization for both Stokes and Darcy regions.

In Stokes region, we used standard conforming finite element while in Darcy region, we

employ a multipoint flux mixed finite element method to handle irregular geometries which

is base on ased on the lowest order BDM1 or BDDF1 elements with a quadrature rule, which

allows for local velocity elimination and reduction to a cell-centered scheme for the pressure.

The method is presented for simplices and general quadrilaterals and hexahedra. Thus, let

us first introduce this method for Darcy flow.

2.3.1 Finite element mappings in Darcy flow

Let T h
d,i be a conforming, shape-regular, quasi-uniform partition of Ωd,i, 1 ≤ i ≤ Md .

Then we denote T h
d = ∪Md

i=1T h
d,i to be the partition of the whole Darcy domain. The elements

considered are two and three dimensional simplexes, convex quadrilaterals in two dimensions,

and hexahedra in three dimensions. The hexahedra can have non-planar faces. For any

element E ∈ T h
d,i, there exists a bijection mapping FE : Ê → E, where Ê is a reference

element. Denote the Jacobian matrix by DFE and let JE = det(DFE) where we assume that
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sign(JE) > 0. Denote the inverse mapping by F−1
E , its Jacobian matrix by DF−1

E , and let

JF−1
E

= det(DF−1
E ). We have that

DF−1
E (x) = (DFE)

−1(x̂), JF−1
E
(x) =

1

JE(x̂)
.

In the case of convex hexahedra, Ê is the unit cube with vertices r̂1 = (0, 0, 0)T , r̂2 =

(1, 0, 0)T , r̂3 = (1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T , r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , and

r̂8 = (0, 1, 1)T . Denote by ri = (xi, yi, zi)
T , i = 1, . . . , 8, the eight corresponding vertices

of element E as shown in Figure 1 in [54]. We note that the element can have non-planar

faces. The outward unit normal vectors to the faces of E and Ê are denoted by ni and n̂i,

i = 1, . . . , 6, respectively. In this case FE is a trilinear mapping given by

FE(r̂) = r1(1− x̂)(1− ŷ)(1− ẑ) + r2x̂(1− ŷ)(1− ẑ) + r3x̂ŷ(1− ẑ) + r4(1− x̂)ŷ(1− ẑ)

+ r5(1− x̂)(1− ŷ)ẑ + r6x̂(1− ŷ)ẑ + r7x̂ŷẑ + r8(1− x̂)ŷẑ

= r1 + r21x̂+ r41ŷ + r51ẑ + (r34 − r21)x̂ŷ + (r65 − r21)x̂ẑ + (r85 − r41)ŷẑ

+ (r21 − r34 − r65 + r78)x̂ŷẑ,

(2.3.1)

where rij = ri − rj. It is easy to see that each component of DFE is a bilinear function of

two space variables:

DFE(r̂) = [r21 + (r34 − r21)ŷ + (r65 − r21)ẑ + (r21 − r34 − r65 + r78)ŷẑ,

r41 + (r34 − r21)x̂+ (r85 − r41)ẑ + (r21 − r34 − r65 + r78)x̂ẑ,

r51 + (r65 − r21)x̂+ (r85 − r41)ŷ + (r21 − r34 − r65 + r78)x̂ŷ].

(2.3.2)

In the case of tetrahedra, Ê is the reference tetrahedron with vertices r̂1 = (0, 0, 0)T ,

r̂2 = (1, 0, 0)T , r̂3 = (0, 1, 0)T , and r̂4 = (0, 0, 1)T . Let ri, i = 1, . . . , 4, be the corresponding

vertices of E. The linear mapping for tetrahedra has the form

FE(r̂) = r1(1− x̂− ŷ − ẑ) + r2x̂+ r3ŷ + r4ẑ (2.3.3)

with respective Jacobian matrix and its determinant

DFE = [r21, r31, r41] and JE = 2|E|, (2.3.4)
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where |E| is the area of element E.

The mappings in the cases of quadrilaterals and triangles are described similarly to the

cases of hexahedra and tetrahedra, respectively. Note that in the case of simplicial elements

the mapping is affine and the Jacobian matrix and its determinant are constants. This is

not the case for quadrilaterals and hexahedra.

Using the above mapping definitions and the classical formula ∇φ = DF−T
E ∇̂φ̂, for

φ(r) = φ̂(r̂), it is easy to see that for any face or edge ei ⊂ E,

ni =
DF−T

E n̂i

|DF−T
E n̂i|

. (2.3.5)

Also, the shape regularity and quasi-uniformity of the grids imply that for all elements

E ∈ T h
d ,

‖DFE‖0,∞,Ê . h, ‖JE‖0,∞,Ê h hd, ‖DF−1
E ‖0,∞,E . h−1, ‖JF−1

E
‖0,∞,Ê h h−d. (2.3.6)

2.3.2 Mixed finite element spaces in Darcy flow

We introduce four finite element spaces with respect to the four types of elements considered

in this paper. Let X̂d(Ê) and Ŵd(Ê) denote the finite element spaces on the reference

element Ê.

For simplicial elements, we employ BDM1 [19] on triangles and BDDF1 [20] on tetrahedra:

X̂d(Ê) = (P1(Ê))d, Ŵd(Ê) = P0(Ê), (2.3.7)

where Pk denotes the space of polynomials of degree ≤ k.

On the unit square, we employ BDM1 [19]:

X̂d(Ê) = (P1(Ê))2 + r curl(x̂2ŷ) + s curl(x̂ŷ2), Ŵd(Ê) = P0(Ê), (2.3.8)

where r and s are real constants.

On the unit cube, we employ the enhanced BDDF1 space [29]:

X̂d(Ê) = BDDF1(Ê) + r2curl(0, 0, x̂
2ẑ)T + r3curl(0, 0, x̂

2ŷẑ)T + s2curl(x̂ŷ
2, 0, 0)T

+ s3curl(x̂ŷ
2ẑ, 0, 0)T + t2curl(0, ŷẑ

2, 0)T + t3curl(0, x̂ŷẑ
2, 0)T ,

Ŵd(Ê) = P0(Ê),

(2.3.9)
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where the BDDF1 space on unit cube [20] is defined as

BDDF1(Ê) = (P1(Ê))3 + r0curl(0, 0, x̂ŷẑ)
T + r1curl(0, 0, x̂ŷ

2)T + s0curl(x̂ŷẑ, 0, 0)
T

+ s1curl(ŷẑ
2, 0, 0)T + t0curl(0, x̂ŷẑ, 0)

T + t1curl(0, x̂
2ẑ, 0)T ,

where ri, si, ti, i = 0, . . . 3, are real constants.

Note that in all four cases

∇̂ · X̂d(Ê) = Ŵd(Ê). (2.3.10)

On any face (edge in 2D) ê ∈ Ê, for all v̂ ∈ X̂d(Ê), v̂ · n̂ê ∈ P1(ê) on the reference square

or simplex, and v̂ · n̂ê ∈ Q1(ê) on the reference cube, where Q1(ê) is the space of bilinear

functions on ê.

The degrees of freedom for X̂d(Ê) are chosen to be the values of v̂ · n̂ê at the vertices

of ê, for each face (edge) ê. This choice gives certain orthogonalities for the quadrature rule

introduced in the next section and leads to a cell-centered pressure scheme.

The spaces Xd(E) and Wd(E) on any physical element E ∈ T h
d are defined, respectively,

via the Piola transformation

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E

and standard scalar transformation

w ↔ ŵ : w = ŵ ◦ F−1
E .

Under these transformations, the divergence and the normal components of the velocity

vectors on the faces (edges) are preserved [11]:

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê. (2.3.11)

In addition, (2.3.5) implies that

v · ne =
1

|JEDF−T
E n̂ê|

v̂ · n̂ê, (2.3.12)

and (2.3.11) implies that

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x). (2.3.13)

On quadrilaterals or hexahedra, ∇ · v 6= constant since JE is not constant.
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The finite element spaces Xh
d,i and W h

d,i on subdomain Ωd,i are given by

Xh
d,i =

{
v ∈ Xd : v|E ↔ v̂, v̂ ∈ X̂d(Ê), ∀E ∈ T h

d,i

}
,

W h
d,i =

{
w ∈ Wd : w|E ↔ ŵ, ŵ ∈ Ŵd(Ê), ∀E ∈ T h

d,i

}
.

(2.3.14)

The global mixed finite element spaces in Darcy flow are defined as

Xh
d =

n⊕
i=1

Xh
d,i, W h

d =
n⊕

i=1

W h
d,i.

We recall the projection operator in the space Xh
d,i. The operator R̂h

d : (H1(Ê))d → X̂d(Ê)

is defined locally on each element by

〈(R̂h
d q̂− q̂) · n̂ê, q̂1〉ê = 0, ∀ê ⊂ ∂Ê, (2.3.15)

where q̂1 ∈ P1(ê) when Ê is the unit square or simplicial element, and q̂1 ∈ Q1(ê) when Ê

is the unit cube. The global operator in Darcy flow Rh
d : Xd ∩ (H1(Ω))d → Xh

d on each

element E is defined via the Piola transformation:

Rh
dq ↔ R̂h

dq, R̂h
dq = R̂dq̂. (2.3.16)

Furthermore, (2.3.11), (2.3.15), and (2.3.16) imply that Rh
dq ·n is continuous across element

interfaces, which gives Rh
dq ∈ Xh

d,i, and that

(∇ · (Rh
dq− q), w)Ωd,i

= 0, ∀w ∈ Wh,i. (2.3.17)

In the analysis, we also need similar projection operators onto the lowest order Raviart-

Thomas [41, 31] spaces. The RT0 spaces are defined on the reference cube and the reference

tetrahedron, respectively, as

X̂
RT

d (Ê) =


r1 + s1x̂

r2 + s2ŷ

r3 + s3ẑ

 , ŴRT
d (Ê) = P0(Ê), (2.3.18)

and

X̂
RT

d (Ê) =


r1 + sx̂

r2 + sŷ

r3 + sẑ

 , ŴRT
d (Ê) = P0(Ê), (2.3.19)
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with similar definitions in two dimensions, where s, ri, si (i=1,2,3) are constants.

In all cases ∇̂ · X̂
RT

d = ŴRT
d (Ê) and v̂ · n̂e ∈ P0(ê). The degrees of freedom of X̂

RT

d (Ê)

are chosen to be the values of v̂ ·n̂ê at the midpoints of all faces (edges) of Ê. The projection

operator R̂RT
d : (H1(Ê))d → X̂

RT

d (Ê) satisfies

〈(R̂RT
d q̂− q̂) · n̂ê, q̂0〉ê = 0, ∀ê ⊂ ∂Ê, ∀q0 ∈ P0(Ê). (2.3.20)

The spaces XRT
d and WRT

d on Ω and the projection operator RRT
d : (H1(Ω))d → XRT

d,h are

defined similarly to the case of Xh and W h. By definition, we have

XRT
d,i ⊂ Xh

d,i WRT
d,i = W h

d,i. (2.3.21)

The projection operator RRT
d satisfies

(∇ · (RRT
d q− q), w)Ωd,i

= 0, ∀w ∈ WRT
d,i , (2.3.22)

∇ ·RRT
d v = ∇ · v, ∀v ∈ Xh

d,i, (2.3.23)

and for all element E ∈ T h
d,i,

‖RRT
d v‖E . ‖v‖E, ∀v ∈ Xh

d,i. (2.3.24)

Furthermore, due to (2.3.15) and (2.3.20),

RRT
d Rh

dq = RRT
d q. (2.3.25)
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2.3.3 A quadrature rule for MFMFE in Darcy flow

In Darcy flow, its mixed finite element discretization needs to compute the integral (K−1q,v)Ωd,i

for q,v ∈ Xh
d,i. The MFMFE method employs a quadrature rule for the velocity mass ma-

trix, in order to reduce the discrete problem on each subdomain to a cell-centered finite

difference system for the pressure. We follow the development in [55, 29]. The integration

on each element E is performed by mapping to the reference element Ê, where the quadrature

rule is defined. Using the definition (2.3.14) of the finite element spaces, for q,v ∈ Xh
d,i,

(K−1q,v)E =

(
1

JE
DF T

EK
−1(FE(x̂))DFEq̂, v̂

)
Ê

≡ (MEq̂, v̂)Ê,

where

ME =
1

JE
DF T

EK
−1(FE(x̂))DFE. (2.3.26)

Define a perburbed M̃E as

M̃E =
1

JE
DF T

E (r̂c,Ê)K
−1

E (FE(x̂))DFE. (2.3.27)

where r̂c,Ê is the centroid of Ê and KE denotes the mean of K on E. In addition, denote

the trapezoidal rule on Ê by Trap(·, ·)Ê:

Trap(q̂, v̂)Ê ≡ |Ê|
nv

nv∑
i=1

q̂(r̂i) · v̂(r̂i) (2.3.28)

where {r̂i}nv
i=1 are vertices of Ê.

The symmetric quadrature rule is based on the original ME while the non-sysmetric one

is based on the perturbed M̃E. The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡


Trap(MEq̂, v̂)Ê =

|Ê|
nv

nv∑
i=1

ME(r̂i)q̂(r̂i) · v̂(r̂i), symmetric,

Trap(M̃Eq̂, v̂)Ê =
|Ê|
nv

nv∑
i=1

M̃E(r̂i)q̂(r̂i) · v̂(r̂i), non-symmetric.

(2.3.29)
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Mapping back to the physical element E, we have the quadrature rule on E as

(K−1q,v)Q,E =


1

nv

nv∑
i=1

JE(r̂i)K
−1
E q(ri) · v(ri), symmetric,

1

nv

nv∑
i=1

JE(r̂i)(DF−1
E )T (ri)DF T

E (r̂c,Ê)K
−1

E q(ri) · v(ri), non-symmetric.

(2.3.30)

The non-symmetric quadrature rule has certain critical properties on the physical elements

that lead to a convergent method on rough quadrilaterals and hexahedra.

Then the global quadrature on Ωd is then given as

(K−1q,v)Q,Ωd
=

∑
E∈T h

d

(K−1q,v)Q,E.

Note that

(K−1q,v)Q,Ωd
=

∑
E∈T h

d

(K−1q,v)Q,E =
∑
c∈Ch

d

vT
c Mcqc, (2.3.31)

where Ch
d denotes the set of corner or vertex points in T h

d , qc := {(q · ne)(xc)}nc
e=1, xc is the

coordinate vector of point c, and nc is the number of faces (or edges in 2D) that share the

vertex point c.

The numerical quadrature error on each element is defined as

σE(q,v) ≡ (K−1q,v)E − (K−1q,v)Q,E, (2.3.32)

and the global numerical quadrature error is given by σ(q,v)Ωd
≡ (K−1q,v)Ωd

−(K−1q,v)Q,Ωd
.

Lemma 2.3.1 ([55, 29]). The symmetric bilinear form (K−1·, ·)Q is coercive in Xh
d and

induces a norm in Xh
d equivalent to the L2 -norm:

(K−1q,q)Q,Ωd
h ‖q‖2Ωd

∀q ∈ Xh
d . (2.3.33)

The analysis of the non-symmetric MFMFE method requires some additional assump-

tions.
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Lemma 2.3.2. Assume that Mc is uniformly positive definite for all c ∈ Ch
d :

hdξTξ . ξTMcξ, ∀ξ ∈ Rnc . (2.3.34)

Then the non-symmetric bilinear form (K−1·, ·)Q,Ωd
is coercive in Xh

d and satisfies (2.3.33).

If in addition

ξTMT
c Mcξ . h2dξTξ, ∀ξ ∈ Rnc . (2.3.35)

then the following Cauchy-Schwarz type inequality holds:

(K−1q,v)Q,Ωd
. ‖q‖Ωd

‖v‖Ωd
, ∀q,v ∈ Xh

d . (2.3.36)

2.3.4 Meshes and discrete spaces

In view of discretization, we assume from now on that Ω and all its subdomains Ωi, 1 ≤ i ≤

M , have polygonal or polyhedral boundaries. Since none of the subdomains overlap, they

form a mesh, Td of Ωd and Ts of Ωs, and the union of these meshes constitutes a mesh TΩ of

Ω. Furthermore, we suppose that this mesh satisfies the following assumptions:

Hypothesis 2.3.1. 1. TΩ is conforming, i.e. it has no hanging nodes.

2. The subdomains of TΩ can take at most L different configurations, where L is a fixed

integer independent of M .

3. TΩ is shape-regular in the sense that there exists a real number σ, independent of M such

that

∀i, 1 ≤ i ≤ M ,
diam(Ωi)

diam(Bi)
≤ σ, (2.3.37)

where diam(Ωi) is the diameter of Ωi and diam(Bi) is the diameter of the largest ball

contained in Ωi. Without loss of generality, we can assume that diam(Ωi) ≤ 1.

As each subdomain Ωi is polygonal or polyhedral, it can be entirely partitioned into

affine finite elements. Let h > 0 denote a discretization parameter, and for each h, let T h
i

be a regular family of partitions of Ωi made of triangles or tetrahedra T in the Stokes region

and triangles, tetrahedra, parallelograms, or parallelepipeds in the Darcy region, with no

matching requirement at the subdomains interfaces. Thus the meshes are independent and

the parameter h < 1 is allowed to vary with i, but to reduce the notation, unless necessary,
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we do not indicate its dependence on i. By regular, we mean that there exists a real number

σ0, independent of i and h such that

∀i, 1 ≤ i ≤ M, ∀T ∈ T h
i ,

hT

ρT
≤ σ0, (2.3.38)

where hT is the diameter of T and ρT is the diameter of the ball inscribed in T . In addition

we assume that each element of T h
i has at least one vertex in Ωi. For the interfaces, let

H > 0 be another discretization parameter and for each H and each i < j, let T H
ij denote

a regular family of partitions of Γij into segments, triangles or parallelograms of diameter

bounded by H, with no matching conditions between interfaces.

On these meshes, we define the following finite element spaces. In the Stokes region, for

each Ωs,i, let (X
h
s,i,W

h
s,i) ⊂ H1(Ωs,i)

n × L2(Ωs,i) be a pair of finite element spaces satisfying

a local uniform inf-sup condition for the divergence. More precisely, setting Xh
0,s,i = Xh

s,i ∩

H1
0 (Ωs,i)

n and W h
0,s,i = W h

s,i ∩ L2
0(Ωs,i), we assume that there exists a constant β?

s > 0,

independent of h and the diameter of Ωs,i, such that

∀i, 1 ≤ i ≤ Ms , inf
wh∈Wh

0,s,i

sup
vh∈Xh

0,s,i

∫
Ωs,i

whdiv vh

|vh|H1(Ωs,i)‖wh‖L2(Ωs,i)

≥ β?
s . (2.3.39)

In addition, since Xh
0,s,i ⊂ H1

0 (Ωs,i)
n, it satisfies a Korn inequality: There exists a constant

α? > 0, independent of h and the diameter of Ωs,i, such that

∀i, 1 ≤ i ≤ Ms , ∀vh ∈ Xh
0,s,i , ‖D(vh)‖L2(Ωs,i) ≥ α?|vh|H1(Ωs,i). (2.3.40)

There are well-known examples of pairs satisfying (2.3.39) (cf. [25]), such as the mini-element,

the Bernardi-Raugel element, or the Taylor-Hood element. Similarly, in the Darcy region,

for each Ωd,i, let (Xh
d,i,W

h
d,i) ⊂ H(div; Ωd,i) × L2(Ωd,i) be a pair of mixed finite element

spaces satisfying a uniform inf-sup condition for the divergence. More precisely, setting

Xh
0,d,i = Xh

d,i ∩ H0(div; Ωd,i) and W h
0,d,i = W h

d,i ∩ L2
0(Ωd,i), we assume that there exists a

constant β?
d > 0 independent of h and the diameter of Ωd,i, such that

∀i, 1 ≤ i ≤ Md , inf
wh∈Wh

0,d,i

sup
vh∈Xh

0,d,i

∫
Ωd,i

whdiv vh

‖vh‖H(div;Ωd,i)‖wh‖L2(Ωd,i)

≥ β?
d . (2.3.41)
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Furthermore, we assume that

∀i, 1 ≤ i ≤ Md , ∀vh ∈ Xh
d,i , div v

h ∈ W h
d,i. (2.3.42)

Again, there are well-known examples of pairs satisfying (2.3.41) and (2.3.42) (cf. [25]

or [11]), such as the Raviart-Thomas elements, the Brezzi-Douglas-Marini elements, the

Brezzi-Douglas-Fortin-Marini elements, the Brezzi-Douglas-Duràn-Fortin elements, or the

Chen-Douglas elements. Since in this paper we only consider MFMFE method for efficient

discretization of Darcy flow with irregular grids which is based on the lowest order BDM1

space on simplices or quadrilaterals or an enhanced BDDF1 space on hexahedra, then above

conditions (2.3.41)–(2.3.42) still hold for MFMFE method and we take Xh
d,i and W h

d,i to be

spaces defined in (2.3.14).

Thus, the global finite element spaces are defined by:

Xh
d = {v ∈ L2(Ωd)

n ; v|Ωd,i
∈ Xh

d,i, 1 ≤ i ≤ Md,v · n = 0 on Γd},

Xh
s = {v ∈ L2(Ωs)

n ; v|Ωs,i
∈ Xh

s,i, 1 ≤ i ≤ Ms,v = 0 on Γs},

and we set

W h
d = {w ∈ L2(Ωd) ; w|Ωd,i

∈ W h
d,i} , W h

s = {w ∈ L2(Ωs) ; w|Ωs,i
∈ W h

s,i},

Xh = {v ∈ L2(Ω)n ; v|Ωd
∈ Xh

d ,v|Ωs ∈ Xh
s } , W h = {w ∈ L2

0(Ω) ; w|Ωd
∈ W h

d , w|Ωs ∈ W h
s }.

The finite elements regularity implies that Xh
d ⊂ Xd, X

h
s ⊂ Xs and Xh ⊂ X. Of course,

W h ⊂ W .

In the mortar region, we take a finite element space ΛH
s , a finite element space ΛH

d , and

a finite element space ΛH
sd. These spaces consist of continuous or discontinuous piecewise

polynomials. We will allow for varying polynomial degrees on different types of interfaces.

Although the mortar meshes and the subdomain meshes so far are unrelated, we need com-

patibility conditions between ΛH
s , Λ

H
sd and ΛH

d on one hand, and Xh
d and Xh

s on the other

hand.
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1. For all Γij ∈ Γss ∪ Γsd, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
s,i, v

h = 0 on

∂Ωs,i \ Γij satisfying ∫
Γij

vh · nij =

∫
Γij

v · nij. (2.3.43)

2. For all Γij ∈ Γss, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
s,j, v

h = 0 on ∂Ωs,j \ Γij

satisfying

∀µH ∈ ΛH
s ,

∫
Γij

µH · vh =

∫
Γij

µH · v. (2.3.44)

3. For all Γij ∈ Γdd ∪ Γsd, i < j, and for all v ∈ X̃, there exists vh ∈ Xh
d,j, v

h · nj = 0 on

∂Ωd,j \ Γij satisfying

∀µH ∈ ΛH
d ,∀µH ∈ ΛH

sd ,

∫
Γij

µHRRT
d vh · nij =

∫
Γij

µHv · nij. (2.3.45)

Condition (2.3.43) is very easy to satisfy in practice and it trivially holds true for all

examples of Stokes spaces considered in this paper. Conditions (2.3.44) and (2.3.45) state

that the mortar space is controlled by the traces of the subdomain velocity spaces. Both

conditions are easier to satisfy for coarser mortar grids. Condition (2.3.44) is more general

than previously considered in the literature for mortar discretizations of the Stokes equations

[6, 7]. The condition (2.3.45) is closely related to the mortar condition for Darcy flow in

[58, 1, 42, 2] on Γdd and more general than existing mortar discretizations for Stokes-Darcy

flows on Γsd [36, 44, 21, 8].

In the case of curved interfaces, we need following compatibility conditions on the refer-

ence grids:

1. For all Γ̂ij ∈ Γ̂ss ∪ Γ̂sd, i < j, and for all v̂ ∈ X̂, there exists v̂h ∈ X̂h
s,i, v̂

h = 0 on

∂Ω̂s,i \ Γ̂ij satisfying ∫
Γ̂ij

v̂h · n̂ij =

∫
Γ̂ij

v̂ · n̂ij. (2.3.46)

2. For all Γ̂ij ∈ Γ̂ss, i < j, and for all v̂ ∈ X̂, there exists v̂h ∈ X̂h
s,j, v̂

h = 0 on ∂Ω̂s,j \ Γ̂ij

satisfying

∀µ̂H ∈ Λ̂H
s ,

∫
Γ̂ij

µ̂H · v̂h =

∫
Γ̂ij

µ̂H · v̂. (2.3.47)
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3. For all Γ̂ij ∈ Γ̂dd ∪ Γ̂sd, i < j, and for all v̂ ∈ X̂, there exists v̂h ∈ X̂h
d,j, v̂

h · n̂j = 0 on

∂Ω̂d,j \ Γ̂ij satisfying

∀µ̂H ∈ Λ̂H
d ,∀µ̂H ∈ Λ̂H

sd ,

∫
Γ̂ij

µ̂HRRT
d v̂h · n̂ij =

∫
Γ̂ij

µ̂H v̂ · n̂ij. (2.3.48)

2.3.5 Non-overlapping domain decomposition variational formulations and uni-

form stability of the discrete problem with straight interfaces

With above finite element spaces, the multiscale mortar multipoint flux mixed finite element

discretiztion for this coupled model is given by: find(uh, ph, λH
sd, λ

H
dd,λ

H
ss) ∈ Xh×W h×ΛH

sd×

ΛH
d × ΛH

s such that

∀vh ∈ Xh , ah(uh,vh) + b(vh, ph) + bhsd(v
h, λH

sd) + bhd(v
h, λH

dd) + bs(v
h,λH

ss) =

∫
Ω

f · vh,

∀wh ∈ W h , b(uh, wh) = −
∫
Ωd

wh qd,

∀µH ∈ ΛH
sd , b

h
sd(u

h, µH) = 0,

∀µH ∈ ΛH
d , bhdu

h, µH) = 0,

∀µH ∈ ΛH
s , bs(u

h,µH) = 0.

(2.3.49)

where ah(uh,vh) = ahs (u
h,vh)+ ahd(u

h,vh) , ahs (u
h,vh) = as(u

h,vh) in Ωs and ahd(u
h,vh) =∑Md

i=1 νd(K
−1uh,vh)Q,Ωd,i

in Ωd based on the quadrature rule defined in subsection (2.3.3).

The discrete interface bilinear form bhd(·, ·) and bhsd(·, ·) on quadrilaterals and hexahedra are

given by:

∀v ∈ Xh
d , ∀µ ∈ ΛH

d , bhd(v, µ) =
∑

Γij∈Γdd

〈[RRT
d v · n], µ〉Γij

,

∀v ∈ Xh,∀µ ∈ ΛH
sd , b

h
sd(v, µ) =

∑
Γij∈Γsd

〈[RRT
d v · n], µ〉Γij

,
(2.3.50)
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where [RRT
d v · n] = RRT

d vd
i · ni + RRT

d vd
j · nj for Darcy-Darcy interfaces and [RRT

d v · n] =

RRT
d vd · nd + vs · ns for Stokes-Darcy interfaces. Then we can define following spaces:

V h
d = {v ∈ Xh

d ; ∀µ ∈ ΛH
d , b

h
d(v, µ) = 0},

V h
s = {v ∈ Xh

s ; ∀µ ∈ ΛH
s , bs(v,µ) = 0},

V h = {v ∈ Xh ; v|Ωd
∈ V h

d ,v|Ωs ∈ V h
s , ∀µ ∈ ΛH

sd, b
h
sd(v, µ) = 0},

Zh = {v ∈ V h ; ∀w ∈ W h, b(v, w) = 0}.

(2.3.51)

With above spaces definition, we can have a equivalent form of (2.3.74) : Find uh ∈ V h,

ph ∈ W h such that

∀vh ∈ V h, ah(uh,vh) + b(vh, ph) =

∫
Ω

f · vh,

∀wh ∈ W h, b(uh, wh) = −
∫
Ωd

wh qd.
(2.3.52)

Remark 2.3.1. The appearance of RRT
d in the case of quadrilaterals and hexahedra is not

standard. It is necessary to have RRT
d in MFMFE weak formulation for accuracy. More pre-

cisely, the numerical quadrature error can only be controlled when one of arguments belongs

to XRT
d,h . On the other hand, in case of simplicial elements such as triangles and tedrahera,

the numerical quadrature error bound still hold when the arguments are in Xh
d . Thus, for

simplicial elements, we just need to replace RRT
d by Rh

d ,which means removing RRT
d . As a

result, terms of the type vd −RRT
d vd drop out.

Lemma 2.3.3. Under assumptions (2.3.44) and (2.3.45), the only solution
(
λH
sd, λ

H
d ,λ

H
s

)
in

ΛH
sd × ΛH

d × ΛH
s to the system

∀vh ∈ Xh , bs(v
h,λH

s ) + bhd(v
h, λH

d ) + bhsd(v
h, λH

sd) = 0 (2.3.53)

is the zero solution.
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Proof. Consider any Γij ∈ Γdd with i < j; the proof for the other interfaces being the same.

Take an arbitrary v in H0(div; Ω) and vh associated with v by (2.3.45), extended by zero

outside Ωd,j. Then on one hand,∫
Γij

λH
d v · nij =

∫
Γij

λH
d R

RT
d vh · nij = bd(v

h, λH
d ),

and on the other hand,

bs(v
h,λH

s ) = bhsd(v
h, λH

sd) = 0.

Therefore

∀v ∈ H0(div; Ω) ,

∫
Γij

λH
d v · nij = 0,

thus implying that λH
d = 0.

Lemma 2.3.4. Problems (2.3.74) and (2.3.77) are equivalent.

Proof. Clearly, (2.3.74) implies (2.3.77). Conversely, if the pair (uh, ph) solves (2.3.77),

existence of λH
sd, λ

H
d ,λ

H
s such that all these variables satisfy (2.3.74) is an easy consequence

of Lemma 2.3.9 and an algebraic argument.

In view of this equivalence, it suffices to analyze problem (2.3.77). From the Babuška–

Brezzi’s theory, uniform stability of the solution of (2.3.77) stems from an ellipticity property

of the bilinear form a in Zh and an inf-sup condition of the bilinear form b. Let us prove

an ellipticity property of the bilinear form a, valid when n = 2, 3. For this, we make the

following assumptions on the mortar spaces:

Hypothesis 2.3.2. 1. On each Γij ∈ Γdd ∪ Γsd, Λ
H
d |Γij

and ΛH
sd|Γij

contain at least IP 0.

2. On each Γij ∈ Γss, on each hyperplane F ⊂ Γij, Λ
H
s |F contains at least IP n

0 .

3. On each Γij ∈ Γss, Λ
H
s |Γij

contains at least IP n
1 .

The second assumption guarantees that nij ∈ ΛH
s |Γij

; it follows from the third assumption

when Γij has no corner. The third assumption is solely used for deriving a discrete Korn

inequality; it can be relaxed, as we shall see in the 3−D example. The first two assumptions

imply that all functions vh in V h satisfy

M∑
i=1

∫
Ωi

div vh =
M∑
i=1

∫
∂Ωi

vh · ni =
∑
i<j

∫
Γij

[vh · n] = 0.
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Therefore, the zero mean-value restriction on the functions of W h can be relaxed. Thus the

condition vh ∈ Zh implies in particular that

∀wh ∈ W h
d,i ,

∫
Ωd,i

whdiv vh
d = 0.

With (2.3.42), this means that div vh
d = 0 in Ωd,i, 1 ≤ i ≤ Md. Hence

∀vh ∈ Zh , |||vh
d |||Xd

= ‖vh
d‖L2(Ωd). (2.3.54)

First, we treat the simpler case when |Γs| > 0 and Ωs is connected.

Lemma 2.3.5. Let |Γs| > 0 and Ωs be connected. Then under Hypothesis 2.3.3, we have

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+ 2
νs
C2

2

|||vh
s |||

2
Xs
, (2.3.55)

where the constant C1 is independent of mesh sizes h and H and C2 only depends on the

shape regularity of Ts.

Proof. As |Γs| > 0 and Ωs is connected, we have vh
s |Γs = 0. In addition, since vh

s ∈ V h
s and

IP n
1 ∈ ΛH

ss|Γij
for each Γij ∈ Γss, then P1[v

h
s ] = 0, where P1 is the orthogonal projection on

IP n
1 for the L2 norm on each Γij. Therefore, inequality (1.12) in [10] gives

∀vh
s ∈ V h

s ,
Ms∑
i=1

|vh
s |2H1(Ωs,i)

≤ C2
2

Ms∑
i=1

‖D(vh
s )‖2L2(Ωs,i)

, (2.3.56)

where the constant C2 only depends on the shape regularity of Ts. Hence we have the

analogue proof of proposition 2.1 in [27] and use (3.31)in [54]:

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+ 2
νs
C2

Ms∑
i=1

|vh
s |2H1(Ωs,i)

. (2.3.57)

Finally the above argument permits to apply formula (1.3) in [9] in order to recover the full

norm of Xs in the right-hand side of (2.3.82). In fact, it is enough that IP n
0 ∈ ΛH

ss|Γij
for each

Γij ∈ Γss.

Now we turn to the case when Ωs is connected and |Γs| = 0, consequently Γsd = ∂Ωs, up

to a set of zero measure.
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Lemma 2.3.6. Let |Γs| = 0 and Ωs be connected, i.e. Γsd = ∂Ωs. Then under Hypothe-

sis 2.3.3, we have

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+
νs
C2

2

min
(
2,

α√
λmax|Γsd|

)
|||vh

s |||
2
Xs
, (2.3.58)

where constant C1 is independent of mesh sizes h and H and C2 only depends on the shape

regularity of Ts.

Proof. The proof is almost same as the proof of Lemma 3.4 in [27] and the only difference is

using (3.31)in [54] to hand coercivity of discrete bilinear form in Darcy part.

The case when Ωs is not connected follows from Lemmas 2.3.11 or 2.3.12 applied to each

connected component of Ωs according to if it is adjacent to Γs or not.

Note that ah(·, ·) is continuous on Xh ×Xh:

∀(uh,vh) ∈ Xh ×Xh , |ah(uh,vh)| ≤ νd
λmin

‖uh
d‖L2(Ωd)‖v

h
d‖L2(Ωd) + 2 νs‖∇uh

s‖L2(Ωs)‖∇vh
s‖L2(Ωs)

+
n−1∑
l=1

νsα√
λmin

‖uh
s · τ l‖L2(Γsd)‖v

h
s · τ l‖L2(Γsd),

(2.3.59)

and b(·, ·) is continuous on Xh ×W h:

∀(vh, wh) ∈ Xh ×W h , |b(vh, wh)| ≤ ‖vh‖X‖wh‖L2(Ω). (2.3.60)

To control the bilinear form b in Ωs, we make the following assumption: There exists a

linear approximation operator Θh
s : H1

0 (Ω)
n 7→ V h

s satisfying for all v ∈ H1
0 (Ω)

n:

•

∀i, 1 ≤ i ≤ Ms ,

∫
Ωs,i

div
(
Θh

s (v)− v
)
= 0. (2.3.61)

• For any Γij in Γsd, ∫
Γij

(
Θh

s (v)− v
)
· nij = 0. (2.3.62)
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• There exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms,

such that

|||Θh
s (v)|||Xs

≤ C|v|H1(Ω). (2.3.63)

The construction of the operator Θh
s is presented in Section 4 in [27]. In particular, a

general construction strategy discussed in Section 4.1 in [27] gives an operator that satisfies

(2.3.86) and (2.3.62). The stability bound (2.3.88) is shown to hold for the specific examples

presented in Sections 4.2-4.4, see Corollary 4.2 in [27].

Lemma 2.3.7 ([27], Lemma 3.5). Assuming that an operator Θh
s satisfying (2.3.86)–(2.3.88)

exists, then there exists a linear operator Πh
s : H1

0 (Ω)
n 7→ V h

s such that for all v ∈ H1
0 (Ω)

n,

∀wh ∈ W h
s ,

Ms∑
i=1

∫
Ωs,i

whdiv(Πh
s (v)− v) = 0, (2.3.64)

∀Γij ∈ Γsd ,

∫
Γij

(
Πh

s (v)− v
)
· nij = 0, (2.3.65)

and there exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms,

such that

|||Πh
s (v)|||Xs

≤ C|v|H1(Ω). (2.3.66)

The idea of constructing the operator Πh
s via the interior inf-sup condition (2.3.39) and

the simplified operator Θh
s satisfying (2.3.86) and (2.3.88) is not new. It can be found for

instance in [26] and [7].

To control the bilinear form b in Ωd, we make the following assumption: There exists a

linear operator Πh
d : H1

0 (Ω)
n 7→ V h

d satisfying for all v ∈ H1
0 (Ω)

n:

•

∀wh ∈ W h
d ,

Md∑
i=1

∫
Ωd,i

whdiv
(
Πh

d(v)− v
)
= 0. (2.3.67)

• For any Γij in Γsd,

∀µH ∈ ΛH
sd ,

∫
Γij

µH
(
RRT

d Πh
d(v)− Πh

s (v)
)
· nij = 0. (2.3.68)
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• There exists a constant C independent of v, h, H, and the diameter of Ωd,i, 1 ≤ i ≤ Md,

such that

|||Πh
d(v)|||Xd

≤ C|v|H1(Ω). (2.3.69)

The construction of the operator Πh
d is presented in Section 2.4. In particular, the general

construction strategy discussed in Section 2.4.1 gives an operator that satisfies (2.3.92) and

(2.3.68). The stability bound (2.3.94) is shown to hold for various cases in Section 2.4.2.

The next lemma follows readily from the properties of Πh
s and Πh

d .

Lemma 2.3.8. Under the above assumptions, there exists a linear operator Πh ∈ L(H1
0 (Ω)

n;V h)

such that for all v ∈ H1
0 (Ω)

n

∀wh ∈ W h ,
M∑
i=1

∫
Ωi

whdiv
(
Πh(v)− v

)
= 0, (2.3.70)

|||Πh(v)|||X ≤ C|v|H1(Ω), (2.3.71)

with a constant C independent of v, h, H, and the diameter of Ωi, 1 ≤ i ≤ M .

Proof. Take Πh(v)|Ωs = Πh
s (v) and Πh(v)|Ωd

= Πh
d(v). Then (2.3.95) follows from (2.3.89)

and (2.3.92). The matching condition of the functions of V h at the interfaces of Γsd holds by

virtue of (2.3.68). Finally, the stability bound (2.3.96) stems from (2.3.91) and (2.3.94).

The following inf-sup condition between W h and V h is an immediate consequence of a

simple variant of Fortin’s Lemma [25, 11] and Lemma 2.3.14.

Theorem 2.3.1. Under the above assumptions, there exists a constant β? > 0, independent

of h, H, and the diameter of Γij for all i < j such that

∀wh ∈ W h, sup
vh∈V h

b(vh, wh)

|||vh|||X
≥ β?‖wh‖L2(Ω). (2.3.72)

Finally, well-posedness of the discrete scheme (2.3.77) follows from Lemma 2.3.11 or

2.3.12 and Theorem 2.3.2.
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Corollary 2.3.1 ([27],corollary 4.1). Under the above assumptions, problem (2.3.77) has a

unique solution (uh, ph) ∈ V h ×W h and

|||uh|||X + ‖ph‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖qd‖L2(Ωd)

)
, (2.3.73)

with a constant C independent of h, H, and the diameter of Γij for all i < j.

2.3.6 Non-overlapping domain decomposition variational formulations and uni-

form stability of the discrete problem with curved interfaces

In this subsection, we will propose a numerical scheme with curved interfaces: find (uh, ph, λH
sd,

λH
dd,λ

H
ss) ∈ Xh ×W h × ΛH

sd × ΛH
d × ΛH

s such that

∀vh ∈ Xh , ah(uh,vh) + b(vh, ph) + b̂hsd(v
h, λH

sd) + b̂hd(v
h, λH

dd) + b̂s(v
h,λH

ss) =

∫
Ω

f · vh,

∀wh ∈ W h , b(uh, wh) = −
∫
Ωd

wh qd,

∀µH ∈ ΛH
sd , b̂

h
sd(u

h, µH) = 0,

∀µH ∈ ΛH
d , b̂hdu

h, µH) = 0,

∀µH ∈ ΛH
s , b̂s(u

h,µH) = 0.

(2.3.74)

where ah(uh,vh) = ahs (u
h,vh)+ ahd(u

h,vh) , ahs (u
h,vh) = as(u

h,vh) in Ωs and ahd(u
h,vh) =∑Md

i=1 νd(K
−1uh,vh)Q,Ωi

in Ωd based on the quadrature rule defined in subsection (2.3.3). The

discrete interface bilinear form b̂s(·, ·),b̂hd(·, ·) and b̂hsd(·, ·) on quadrilaterals and hexahedra are
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given by:

∀v ∈ Xh
s ,∀µ ∈ ΛH

s , b̂s(v,µ) =
∑

Γij∈Γss

〈[v],µ〉Γij
=

∑
Γ̂ij∈Γ̂ss

〈[v̂], µ̂〉Γ̂ij
, ∀v̂ ∈ X̂s,∀µ̂ ∈ Λ̂H

s

∀v ∈ Xh
d ,∀µ ∈ ΛH

d , b̂hd(v, µ) =
∑

Γij∈Γdd

〈[RRT
d v · n], µ〉Γij

=
∑

Γ̂ij∈Γ̂dd

〈[RRT
d v̂ · n̂], µ̂〉Γ̂ij

∀v̂ ∈ X̂d, ∀µ ∈ Λ̂H
d ,

∀v ∈ Xh, ∀µ ∈ ΛH
sd , b̂

h
sd(v, µ) =

∑
Γij∈Γsd

〈[RRT
d v · n], µ〉Γij

=
∑

Γ̂ij∈Γ̂sd

〈[RRT
d v̂ · n̂], µ̂〉Γ̂ij

, ∀v̂ ∈ X̂, ∀µ ∈ Λ̂H
sd

(2.3.75)

where[v̂ · n̂] = v̂s
i · n̂i + v̂s

j · n̂j denotes the jump for Stokes-Stokes interfaces, [RRT
d v̂ · n̂] =

RRT
d v̂d

i ·n̂i+RRT
d v̂d

j ·n̂j is the jump for Darcy-Darcy interfaces and [RRT
d v̂ ·n̂] = RRT

d v̂d ·n̂d+

v̂s · n̂s defines the jump for Stokes-Darcy interfaces. Then we can define following spaces:

V h
d = {v ∈ Xh

d ; ∀µ ∈ ΛH
d , b̂

h
d(v, µ) = 0},

V h
s = {v ∈ Xh

s ; ∀µ ∈ ΛH
s , b̂s(v,µ) = 0},

V h = {v ∈ Xh ; v|Ωd
∈ V h

d ,v|Ωs ∈ V h
s , ∀µ ∈ ΛH

sd, b̂
h
sd(v, µ) = 0},

Zh = {v ∈ V h ; ∀w ∈ W h, b(v, w) = 0}.

(2.3.76)

With above spaces definition, we can have a equivalent form of (2.3.74) : Find uh ∈ V h,

ph ∈ W h such that

∀vh ∈ V h, ah(uh,vh) + b(vh, ph) =

∫
Ω

f · vh,

∀wh ∈ W h, b(uh, wh) = −
∫
Ωd

wh qd.
(2.3.77)
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Remark 2.3.2. The appearance of RRT
d in the case of quadrilaterals and hexahedra is not

standard. It is necessary to have RRT
d in MFMFE weak formulation for accuracy. More pre-

cisely, the numerical quadrature error can only be controlled when one of arguments belongs

to XRT
d,h . On the other hand, in case of simplicial elements such as triangles and tedrahera,

the numerical quadrature error bound still hold when the arguments are in Xh
d . Thus, for

simplicial elements, we just need to replace RRT
d by Rh

d ,which means removing RRT
d . As a

result, terms of the type vd −RRT
d vd drop out.

Lemma 2.3.9. Under assumptions (2.3.47) and (2.3.48), the only solution
(
λH
sd, λ

H
d ,λ

H
s

)
in

ΛH
sd × ΛH

d × ΛH
s to the system

∀vh ∈ Xh , b̂s(v
h,λH

s ) + b̂hd(v
h, λH

d ) + b̂hsd(v
h, λH

sd) = 0 (2.3.78)

is the zero solution.

Proof. Consider any Γ̂ij ∈ Γ̂dd with i < j; the proof for the other interfaces being the same.

Take an arbitrary v̂ in Ĥ0(div; Ω) and v̂h associated with v̂ by (2.3.45), extended by zero

outside Ω̂d,j. Then on one hand by Piola transformation,

∫
Γij

λH
d v · nij =

∫
Γ̂ij

λ̂H
d v̂ · n̂ij =

∫
Γ̂ij

λ̂H
d R

RT
d v̂h · n̂ij =

∫
Γij

λH
d R

RT
d vh · nij = b̂d(v

h, λH
d ),

and on the other hand,

b̂s(v
h,λH

s ) = b̂hsd(v
h, λH

sd) = 0.

Therefore

∀v ∈ H0(div; Ω) ,

∫
Γij

λH
d v · nij = 0,

thus implying that λH
d = 0.

Lemma 2.3.10. Problems (2.3.74) and (2.3.77) are equivalent.

Proof. Clearly, (2.3.74) implies (2.3.77). Conversely, if the pair (uh, ph) solves (2.3.77),

existence of λH
sd, λ

H
d ,λ

H
s such that all these variables satisfy (2.3.74) is an easy consequence

of Lemma 2.3.9 and an algebraic argument.
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In view of this equivalence, it suffices to analyze problem (2.3.77). From the Babuška–

Brezzi’s theory, uniform stability of the solution of (2.3.77) stems from an ellipticity property

of the bilinear form a in Zh and an inf-sup condition of the bilinear form b. Let us prove

an ellipticity property of the bilinear form a, valid when n = 2, 3. For this, we make the

following assumptions on the mortar spaces:

Hypothesis 2.3.3. 1. On each Γij ∈ Γdd ∪ Γsd, Λ
H
d |Γij

and ΛH
sd|Γij

contain at least IP 0.

2. On each Γij ∈ Γss, on each hyperplane F ⊂ Γij, Λ
H
s |F contains at least IP n

0 .

3. On each Γij ∈ Γss, Λ
H
s |Γij

contains at least IP n
1 .

The second assumption guarantees that nij ∈ ΛH
s |Γij

; it follows from the third assumption

when Γij has no corner. The third assumption is solely used for deriving a discrete Korn

inequality; it can be relaxed, as we shall see in the 3−D example. The first two assumptions

imply that all functions vh in V h satisfy

M∑
i=1

∫
Ωi

div vh =
M∑
i=1

∫
∂Ωi

vh · ni =
∑
i<j

∫
Γij

[vh · n] = 0.

Therefore, the zero mean-value restriction on the functions of W h can be relaxed. Thus the

condition vh ∈ Zh implies in particular that

∀wh ∈ W h
d,i ,

∫
Ωd,i

whdiv vh
d = 0.

With (2.3.42), this means that div vh
d = 0 in Ωd,i, 1 ≤ i ≤ Md. Hence

∀vh ∈ Zh , |||vh
d |||Xd

= ‖vh
d‖L2(Ωd). (2.3.79)

First, we treat the simpler case when |Γs| > 0 and Ωs is connected.

Lemma 2.3.11. Let |Γs| > 0 and Ωs be connected. Then under Hypothesis 2.3.3, we have

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+ 2
νs
C2

2

|||vh
s |||

2
Xs
, (2.3.80)

where the constant C1 is independent of mesh sizes h and H and C2 only depends on the

shape regularity of Ts.
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Proof. As |Γs| > 0 and Ωs is connected, we have vh
s |Γs = 0. In addition, since vh

s ∈ V h
s and

IP n
1 ∈ ΛH

ss|Γij
for each Γij ∈ Γss, then P1[v

h
s ] = 0, where P1 is the orthogonal projection on

IP n
1 for the L2 norm on each Γij. Therefore, inequality (1.12) in [10] gives

∀vh
s ∈ V h

s ,

Ms∑
i=1

|vh
s |2H1(Ωs,i)

≤ C2
2

Ms∑
i=1

‖D(vh
s )‖2L2(Ωs,i)

, (2.3.81)

where the constant C2 only depends on the shape regularity of Ts. Hence we have the

analogue proof of proposition 2.1 in [27] and use (3.31)in [54]:

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+ 2
νs
C2

Ms∑
i=1

|vh
s |2H1(Ωs,i)

. (2.3.82)

Finally the above argument permits to apply formula (1.3) in [9] in order to recover the full

norm of Xs in the right-hand side of (2.3.82). In fact, it is enough that IP n
0 ∈ ΛH

ss|Γij
for each

Γij ∈ Γss.

Now we turn to the case when Ωs is connected and |Γs| = 0, consequently Γsd = ∂Ωs, up

to a set of zero measure.

Lemma 2.3.12. Let |Γs| = 0 and Ωs be connected, i.e. Γsd = ∂Ωs. Then under Hypothe-

sis 2.3.3, we have

∀vh ∈ Zh , ah(vh,vh) ≥ νdC1|||vh
d |||

2
Xd

+
νs
C2

2

min
(
2,

α√
λmax|Γsd|

)
|||vh

s |||
2
Xs
, (2.3.83)

where constant C1 is independent of mesh sizes h and H and C2 only depends on the shape

regularity of Ts.

Proof. The proof is almost same as the proof of Lemma 3.4 in [27] and the only difference is

using (3.31)in [54] to hand coercivity of discrete bilinear form in Darcy part.
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The case when Ωs is not connected follows from Lemmas 2.3.11 or 2.3.12 applied to each

connected component of Ωs according to if it is adjacent to Γs or not.

Note that ah(·, ·) is continuous on Xh ×Xh:

∀(uh,vh) ∈ Xh ×Xh , |ah(uh,vh)| ≤ νd
λmin

‖uh
d‖L2(Ωd)‖v

h
d‖L2(Ωd) + 2 νs‖∇uh

s‖L2(Ωs)‖∇vh
s‖L2(Ωs)

+
n−1∑
l=1

νsα√
λmin

‖uh
s · τ l‖L2(Γsd)‖v

h
s · τ l‖L2(Γsd),

(2.3.84)

and b(·, ·) is continuous on Xh ×W h:

∀(vh, wh) ∈ Xh ×W h , |b(vh, wh)| ≤ ‖vh‖X‖wh‖L2(Ω). (2.3.85)

To control the bilinear form b in Ωs, we make the following assumption: There exists a

linear approximation operator Θh
s : H1

0 (Ω)
n 7→ V h

s satisfying for all v ∈ H1
0 (Ω)

n:

•

∀i, 1 ≤ i ≤ Ms ,

∫
Ωs,i

div
(
Θh

s (v)− v
)
= 0. (2.3.86)

• For any Γ̂ij in Γ̂sd, ∫
Γ̂ij

(
Θh

s (v̂)− v̂
)
· n̂ij = 0. (2.3.87)

• There exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms,

such that

|||Θh
s (v)|||Xs

≤ C|v|H1(Ω). (2.3.88)

The construction of the operator Θh
s is presented in Section 4 in [27]. In particular, a

general construction strategy discussed in Section 4.1 in [27] gives an operator that satisfies

(2.3.86) and (2.3.62). The stability bound (2.3.88) is shown to hold for the specific examples

presented in Sections 4.2-4.4, see Corollary 4.2 in [27].
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Lemma 2.3.13 ([27], Lemma 3.5). Assuming that an operator Θh
s satisfying (2.3.86)–

(2.3.88) exists, then there exists a linear operator Πh
s : H1

0 (Ω)
n 7→ V h

s such that for all

v ∈ H1
0 (Ω)

n,

∀wh ∈ W h
s ,

Ms∑
i=1

∫
Ωs,i

whdiv(Πh
s (v)− v) = 0, (2.3.89)

∀Γ̂ij ∈ Γ̂sd ,

∫
Γ̂ij

(
Πh

s (v̂)− v̂
)
· n̂ij = 0, (2.3.90)

and there exists a constant C independent of v, h, H, and the diameter of Ωs,i, 1 ≤ i ≤ Ms,

such that

|||Πh
s (v)|||Xs

≤ C|v|H1(Ω). (2.3.91)

The idea of constructing the operator Πh
s via the interior inf-sup condition (2.3.39) and

the simplified operator Θh
s satisfying (2.3.86) and (2.3.88) is not new. It can be found for

instance in [26] and [7].

To control the bilinear form b in Ωd, we make the following assumption: There exists a

linear operator Πh
d : H1

0 (Ω)
n 7→ V h

d satisfying for all v ∈ H1
0 (Ω)

n:

•

∀wh ∈ W h
d ,

Md∑
i=1

∫
Ωd,i

whdiv
(
Πh

d(v)− v
)
= 0. (2.3.92)

• For any Γ̂ij in Γ̂sd,

∀µ̂H ∈ Λ̂H
sd ,

∫
Γ̂ij

µ̂H
(
RRT

d Πh
d(v̂)− Πh

s (v̂)
)
· n̂ij = 0. (2.3.93)

• There exists a constant C independent of v, h, H, and the diameter of Ωd,i, 1 ≤ i ≤ Md,

such that

|||Πh
d(v)|||Xd

≤ C|v|H1(Ω). (2.3.94)

The construction of the operator Πh
d is presented in Section 2.4. In particular, the general

construction strategy discussed in Section 2.4.1 gives an operator that satisfies (2.3.92) and

(2.3.68). The stability bound (2.3.94) is shown to hold for various cases in Section 2.4.2.

The next lemma follows readily from the properties of Πh
s and Πh

d .
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Lemma 2.3.14. Under the above assumptions, there exists a linear operator Πh ∈ L(H1
0 (Ω)

n;

V h) such that for all v ∈ H1
0 (Ω)

n

∀wh ∈ W h ,

M∑
i=1

∫
Ωi

whdiv
(
Πh(v)− v

)
= 0, (2.3.95)

|||Πh(v)|||X ≤ C|v|H1(Ω), (2.3.96)

with a constant C independent of v, h, H, and the diameter of Ωi, 1 ≤ i ≤ M .

Proof. Take Πh(v)|Ωs = Πh
s (v) and Πh(v)|Ωd

= Πh
d(v). Then (2.3.95) follows from (2.3.89)

and (2.3.92). The matching condition of the functions of V h at the interfaces of Γsd holds by

virtue of (2.3.68). Finally, the stability bound (2.3.96) stems from (2.3.91) and (2.3.94).

The following inf-sup condition between W h and V h is an immediate consequence of a

simple variant of Fortin’s Lemma [25, 11] and Lemma 2.3.14.

Theorem 2.3.2. Under the above assumptions, there exists a constant β? > 0, independent

of h, H, and the diameter of Γij for all i < j such that

∀wh ∈ W h, sup
vh∈V h

b(vh, wh)

|||vh|||X
≥ β?‖wh‖L2(Ω). (2.3.97)

Finally, well-posedness of the discrete scheme (2.3.77) follows from Lemma 2.3.11 or

2.3.12 and Theorem 2.3.2.

Corollary 2.3.2 ([27],corollary 4.1). Under the above assumptions, problem (2.3.77) has a

unique solution (uh, ph) ∈ V h ×W h and

|||uh|||X + ‖ph‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖qd‖L2(Ωd)

)
, (2.3.98)

with a constant C independent of h, H, and the diameter of Γij for all i < j.
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2.4 CONSTRUCTION OF THE APPROXIMATION OPERATORS ΘH
S AND

ΠH
D

The Stokes interpolation operator Θh
s with values in V h

s , satisfying (2.3.86)–(2.3.88), uni-

formly stable with respect to the diameter of the subdomains and interfaces has been con-

strcuted in [27] . Thus, in this section we only propose a construction of Darcy approximation

operator Πh
d .A general construction of Πh

d in Ωd can be found in [1], and we shall adapt it

so that it matches suitably Θh
s on Γsd.

2.4.1 General construction strategy

We propose the following two-step construction algorithm in Ωd.

1. Starting step. Set P h
d (v) = Rh

d(v) ∈ Xh
d , where R

h
d(v) is a standard mixed approximation

operator associated with W h
d . It preserves the normal component on the boundary:

∀Γij ⊂ ∂Ωd,k, 1 ≤ k ≤ Md , ∀vh ∈ Xh
d ,

∫
Γij

vh · nij

(
Rh

d(v)|Ωd,k
− v

)
· nij = 0, (2.4.1)

and satisfies

∀1 ≤ i ≤ Md , ∀wh ∈ W h
d ,

∫
Ωd,i

whdiv
(
Rh

d(v)− v
)
= 0. (2.4.2)

2. Correction step. It remains to prescribe the jump condition. For each Γij ∈ Γdd ∪ Γsd

with i < j, correct P h
d (v) in Ωd,j by setting:

P h
d (v)|Ωd,j

:= P h
d (v)|Ωd,j

+ chj,Γij
(v),

where chj,Γij
(v) ∈ Xh

d,j, c
h
j,Γij

(v) · nj = 0 on ∂Ωd,j \ Γij, div c
h
j,Γij

(v) = 0 in Ωd,j,

∀µH ∈ ΛH
d ,

∫
Γij

µHRRT
d chj,Γij

(v) · nij =

∫
Γij

µH
(
RRT

d Rh
d(v)|Ωd,i

−RRT
d Rh

d(v)|Ωd,j

)
· nij,

∀µH ∈ ΛH
sd ,

∫
Γij

µHRRT
d chj,Γij

(v) · nij =

∫
Γij

µH
(
Πh

s (v)|Ωs,i
−RRT

d Rh
d(v)|Ωd,j

)
· nij,

(2.4.3)
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and chj,Γij
(v) satisfies adequate bounds. Existence of a non necessarily divergence-free

chj,Γij
(v) (without bounds) follows from (2.3.45); it suffices to extend suitably Rh

d(v)|Ωd,j

and Rh
d(v)|Ωd,i

or Πh
s (v)|Ωs,i

. The zero divergence will be prescribed in the examples. Note

that chj,Γij
(v) has no effect on interfaces other than Γij and no effect on the restriction of

P h
d (v) in Ωd,i or on that of Πh

s (v) in Ωs,i. Therefore these corrections can be superimposed.

When step 2 is done on all Γij ∈ Γdd ∪ Γsd with i < j, the resulting function P h
d (v) has zero

normal trace on Γd, it belongs to V h
d since, due to the first equation in (2.4.3), it satisfies for

all Γij ∈ Γdd with i < j

∀µH ∈ ΛH
d ,

∫
Γij

µH [RRT
d P h

d (v) · n] = 0, (2.4.4)

and, as the corrections are assumed to be divergence-free in each subdomain,

∀wh ∈ W h
d , ∀1 ≤ i ≤ Md ,

∫
Ωd,i

whdiv
(
P h
d (v)− v

)
= 0. (2.4.5)

Furthermore, due to the second equation in (2.4.3), it satisfies for all Γij ∈ Γsd,

∀µH ∈ ΛH
sd ,

∫
Γij

µH
(
Πh

s (v)|Ωs,i
−RRT

d P h
d (v)|Ωd,j

)
· nij = 0. (2.4.6)

Therefore, taking Πh
d(v) = P h

d (v) in Ωd, it satisfies (2.3.92) and (2.3.68).

We need to refine the assumptions on the meshes at the interfaces and refine Hypothesis

2.3.1 on the mesh of subdomains.

Hypothesis 2.4.1. For i < j, let T be any element of T h
i that is adjacent to Γij, and let

{T`} denote the set of elements of T h
j that intersect T . The number of elements in this set

is bounded by a fixed integer and there exists a constant C such that

|T`|
|T |

≤ C.

The same is true if the indices i and j of the triangulations are interchanged. These constants

are independent of i, j, h, and the diameters of the interfaces and subdomains.
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Hypothesis 2.4.2. 1. Each Ωi, 1 ≤ i ≤ M , is the image of a “reference” polygonal or

polyhedral domain by an homothety and a rigid body motion:

Ωi = Fi(Ω̂i) , x = Fi(x̂) = AiRix̂+ bi, (2.4.7)

where Ai = diam(Ωi), Ri is an orthogonal matrix with constant coefficients and bi a

constant vector.

2. There exists a constant σ1 independent of M such that for any pair of adjacent subdo-

mains Ωi and Ωj, 1 ≤ i, j ≤ M , we have

Ai

Aj

≤ σ1. (2.4.8)

By (2.4.7) diam(Ω̂i) = 1. In addition, it follows from Hypothesis 2.3.1 that on one hand

the reference domains Ω̂i can take at most L configurations and on the other hand,

∀i, 1 ≤ i ≤ M , diam(B̂i) ≥
1

σ
, (2.4.9)

where B̂i is the largest ball contained in Ω̂i and σ is the constant of (2.3.37).

2.4.2 A construction of chj,Γij
(v) in Ωd.

Here we construct a correction chj,Γij
(v) in Ωd satisfying (2.4.3) and suitable continuity bounds

that are needed to establish the stability estimate (2.3.94). Recall that the existence of

chj,Γij
(v) relies on (2.3.45). In the construction below we directly show that (2.3.45) holds

for a wide range of mesh configurations.

Let v be given in H1
0 (Ω)

n. Recall that the mixed approximation operator Rh
d defined in

each Ωd,i takes its values in Xh
d and satisfies (2.4.1) on each Γij ⊂ ∂Ωd,k, 1 ≤ k ≤ Md, and

(2.4.2) in each Ωd,i, 1 ≤ i ≤ Md. Furthermore there exists a constant C independent of h

and the geometry of Ωd,i, such that

∀v ∈ H1
0 (Ω)

n , ‖Rh
d(v)‖H(div;Ωd,i) ≤ C‖v‖H1(Ωd,i), 1 ≤ i ≤ Md. (2.4.10)
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This is easily established by observing that the moments defining the degrees of freedom of

Rh
d(v) are invariant by homothety and rigid-body motion; in particular the normal vector is

preserved. In addition, it satisfies (2.3.42):

∀i, 1 ≤ i ≤ Md , ∀vh ∈ Xh
d,i , div v

h ∈ W h
d,i.

The above properties also imply (2.3.41): for all i, 1 ≤ i ≤ Md,

inf
wh∈Wh

0,d,i

sup
vh∈Xh

0,d,i

∫
Ωd,i

whdiv vh

‖vh‖H(div;Ωd,i)‖wh‖L2(Ωd,i)

≥ β?
d ,

with a constant β?
d > 0 independent of h and Ai.

Now, let Γij ∈ Γdd ∪ Γsd; by analogy with the situation in the Stokes region, we denote

by Xh
d,j,Γij

the trace space of Xh
d,j on Γij. Following [1], we define the space of normal traces

Xn
j,Γij

= {w · nij ; w ∈ Xh
d,j,Γij

},

and the orthogonal projection Qh
j,Γij

from L2(Γij) into Xn
j,Γij

. Then we make the following

assumption: There exists a constant C, independent of H, h, i, j, and the diameters of Γij

and Ωd,j, such that

∀µH ∈ ΛH
d ,∀µH ∈ ΛH

sd , ‖µH‖L2(Γij) ≤ C‖Qh
j,Γij

(µH)‖L2(Γij). (2.4.11)

It is shown in [58] that (2.4.11) holds for both continuous and discontinuous mortar spaces,

if the mortar grid T H
ij is a coarsening by two of T h

j,Γij
. A similar inequality for more general

grid configurations is shown in [42]. Formula (2.4.11) implies that the projection Qh
j,Γij

is

an isomorphism from the restriction of ΛH
sd, respectively ΛH

d , to Γij, say ΛH
sd,ij respectively

ΛH
d,ij, onto its image in Xn

j,Γij
, and the norm of its inverse is bounded by C. Then a standard

algebraic argument shows that its dual operator, namely the orthogonal projection from

Xn
j,Γij

into ΛH
sd,ij, respectively ΛH

d,ij, is also an isomorphism from the orthogonal complement

in Xn
j,Γij

of the projection’s kernel onto ΛH
sd,ij, respectively ΛH

d,ij, and the norm of its inverse

is also bounded by C. As a consequence, for each f ∈ L2(Γij), there exists vh · nij ∈ Xn
j,Γij

such that

∀µH ∈ ΛH
d , ∀µH ∈ ΛH

sd ,

∫
Γij

µHRRT
d vh · nij =

∫
Γij

fµH ,
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and there exists a constant C independent of h, and the diameter of Γij, such that

‖vh · nij‖L2(Γij) ≤ C‖f‖L2(Γij).

This implies that (2.3.45) holds. Furthermore, the solution vh ·nij is unique in the orthogonal

complement of the projection’s kernel and by virtue of this uniqueness, vh · nij depends

linearly on f . This result permits to partially solve (2.4.3).

Lemma 2.4.1. Let v ∈ H1
0 (Ω)

n. Under assumption (2.4.11), for each Γij ∈ Γdd ∪Γsd, there

exists wh · nij ∈ Xn
j,Γij

such that

∀µH ∈ ΛH
d ,

∫
Γij

µHRRT
d wh · nij =

∫
Γij

µH
[
RRT

d Rh
d(v) · n

]
,

‖wh · nij‖L2(Γij) ≤ C‖
[
Rh

d(v) · n
]
‖L2(Γij),

(2.4.12)

∀µH ∈ ΛH
sd ,

∫
Γij

µHRRT
d wh · nij =

∫
Γij

µH
(
Θh

s (v)|Ωs,i
−RRT

d Rh
d(v)|Ωd,j

)
· nij,

‖wh · nij‖L2(Γij) ≤ C‖
(
Θh

s (v)|Ωs,i
−Rh

d(v)|Ωd,j

)
· nij‖L2(Γij),

(2.4.13)

with the constant C of (2.4.11). The mapping v 7→ wh · nij is linear.

Lemma 2.4.1 constructs a normal trace wh ·nij on Γij and we must extend it inside Ωd,j.

To this end, let `h ∈ L2(∂Ωd,j) be the extension of wh ·nij by zero on ∂Ωd,j. Next, we solve

the problem: Find q ∈ H1(Ωd,j) ∩ L2
0(Ωd,j) such that

∆ q = 0 in Ωd,j ,
∂q

∂nj

= `h on ∂Ωd,j. (2.4.14)

Lemma 2.4.2 (Lemma 4.8, [27]). Problem (2.4.14) has one and only one solution q ∈

H3/2(Ωd,j) ∩ L2
0(Ωd,j) and

|q|H1(Ωd,j) ≤ C
√

Aj‖[Rh
d(v) · n]‖L2(Γij),

|q|H3/2(Ωd,j)
≤ C‖[Rh

d(v) · n]‖L2(Γij), Γij ∈ Γdd, (2.4.15)

|q|H1(Ωd,j) ≤ C
√

Aj‖
(
Θh

s (v)|Ωs,i
−Rh

d(v)|Ωd,j

)
· nij‖L2(Γij),

|q|H3/2(Ωd,j)
≤ C‖

(
Θh

s (v)|Ωs,i
−Rh

d(v)|Ωd,j

)
· nij‖L2(Γij), Γij ∈ Γsd, (2.4.16)

with constants C independent of h, H, q, i, j, and the diameters of Γij and Ωd,j.
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Now define c = ∇ q in Ωd,j. Then c belongs to H(div; Ωd,j) ∩H1/2(Ωd,j)
n and div c = 0.

Therefore Rh
d(c) is well defined [11] and satisfies the approximation property for divergence-

free functions [38]

‖c−Rh
d(c)‖L2(Ωd,j) ≤ Chr|c|Hr(Ωd,j), 0 < r ≤ 1/2, (2.4.17)

with a constant C independent of h, j, and the diameter of Ωd,j. We are now ready to

define the correction chj,Γij
(v). In particular, take chj,Γij

(v) = Rh
d(c) applied in Ωd,j. Note

that chj,Γij
(v) belongs to Xh

d,j, and (2.4.2) and (2.4.1) imply that div chj,Γij
(v) = 0 in Ωd,j and

chj,Γij
(v) · nj = `h = wh · nij on Γij. Therefore (2.4.12) and (2.4.13) imply that chj,Γij

(v)

satisfies (2.4.3). Furthermore, (2.4.17) yields

‖chj,Γij
(v)‖L2(Ωd,j) ≤ ‖Rh

d(c)− c‖L2(Ωd,j) + ‖c‖L2(Ωd,j) ≤ Ch
1/2
j |c|H1/2(Ωd,j)

+ ‖c‖L2(Ωd,j),

with a constant C independent of the geometry of Ωd,j. Considering that hj ≤ Aj, Lemma 2.4.2

gives

‖chj,Γij
(v)‖L2(Ωd,j) ≤ C

√
Aj‖[Rh

d(v) · n]‖L2(Γij), Γij ∈ Γdd, (2.4.18)

‖chj,Γij
(v)‖L2(Ωd,j) ≤ C

√
Aj‖(Θh

s (v)|Ωs,i
−Rh

d(v)|Ωd,j
) · nij‖L2(Γij), Γij ∈ Γsd, (2.4.19)

with a constant C independent of h, H, v, i, j, and the diameters of Γij and Ωd,j.

Corollary 2.4.1 (Corollary 4.3, [27]). The approximation operator Πh
d constructed in Sec-

tion 2.4.1 with corrections chj,Γij
(v) described above satisfies assumption (2.3.94).

47



2.5 ERROR ANALYSIS

In this section we establish a priori error estimates for our method. Let us assume that

the finite element spaces Xh
s and W h

s in Ωs contain at least polynomials of degree rs and

rs − 1, respectively. Let Xh
d and W h

d in Ωd contain at least polynomials of degree rd and

ld, respectively. Since here we employ MFMFE in Darcy flow, then rd = ld = 0. Let

ΛH
sd, Λ

H
d , and ΛH

s contain at least polynomials of degree rsd, rdd, and rss, respectively. In

the analysis we will make use of the following well known approximation properties of the

mixed interpolants on simplicial, h2-parallelogram, and h2-parallelepiped grids, the following

bounds hold on any element E:

‖q−RRT
d q‖E + ‖q−Rh

dq‖E . h‖q‖1,E, (2.5.1)

‖∇ · (q−RRT
d q)‖E + ‖∇ · (q−Rh

dq)‖E . h‖∇ · q‖1,E. (2.5.2)

The above bounds can be found in [11, 32] for simplicial elements, [33, 15] for h2-parallelograms,

and [29] for h2-parallelepipeds. A higher order approximation property also holds for sim-

plicial, h2-parallelogram, and regular h2-parallelepiped grids:

‖q−Rh
dq‖E . h2‖q‖2,E. (2.5.3)

On general quadrilaterals, bound (2.5.1) is also valid [15]. However, in this case for the

divergence bound it only holds for

‖∇ · (q−Rh
dq)‖E . ‖∇ · q‖E.

We will need following well-know estimates for the non-symmetric MFMFE error analysis.

There exits s1 ∈ P1(E) such that

‖p− s1‖j,E . h2−j‖p‖2,E, j = 0, 1, (2.5.4)

and

‖p− s1‖E . h‖p‖1,E. (2.5.5)

We also have

‖K −KE‖E . h‖K‖1,E. (2.5.6)
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Lemma 2.5.1. The following estimates hold for all q ∈ (H1(E))d:

‖Rh
dq‖E . ‖q‖E + h|q|1,E, (2.5.7)

The following lemma for symmetric MFMFE has been shown in [55, 29].

Lemma 2.5.2. For all elements E,

‖Rh
dq‖j,E . ‖q‖j,E, ∀q ∈ Hj(E)d, (2.5.8)

holds for j = 1, 2 on simplicial elements, h2-parallelograms, and regular h2-parallelepipeds, as

well as j = 1 on h2-parallelepipeds. Furthermore, on simplicial elements, h2-parallelograms,

and h2-parallelepipeds,

‖RRT
d q‖1,E . ‖q‖1,E, ∀q ∈ H1(E)d. (2.5.9)

Lemma 2.5.3. Under assumption (5.24) in [54], there exists a projection operator Πh
d :(

H1/2+ε(Ω)
)d ∩Xd → V h

d such that

(∇ · (Πh
dq− q), w)Ωd,i

= 0, w ∈ Wh, 1 ≤ i ≤ n, (2.5.10)

‖Πh
dq−Rh

dq‖Ωd
. ‖q‖r+1/2h

rH1/2, 0 < r ≤ 1, (2.5.11)

‖Πh
dq− q‖Ωd

.
n∑

i=1

‖q‖1,Ωd,i
h+ ‖q‖r+1/2h

rH1/2, 0 < r ≤ 1, (2.5.12)

Lemma 2.5.4 ([55, 29]). On h2-parallelograms and h2-parallelepipeds, if K−1 ∈ W 1,∞
T h
d

, then

for all v ∈ Xh
d,

|(K−1Rh
du,v −RRT

d v)Q,Ωd
| .

M∑
i=Ms+1

h|||K−1|||1,∞‖u‖1,Ωi
‖v‖Ωi

. (2.5.13)

Lemma 2.5.5 ([55, 29]). On simplicial elements, h2-parallelograms, and h2-parallelepipeds,

if K−1 ∈ W 1,∞
Th , then for all q ∈ Xh

d and for all v ∈ XRT
d,h , the numerical quadrature error

satisfies

|σ(K−1q,v)Ωd
| .

∑
E∈T h

d

h‖K−1‖1,∞,E‖q‖1,E‖v‖0,E. (2.5.14)

We begin with the following approximation result for the operator Πh defined in Lemma

2.3.14.

49



Lemma 2.5.6 ([27], Lemma 5.1). Under the assumptions of Lemma 2.3.14, the operator

Πh ∈ L(H1
0 (Ω)

n;V h) satisfies for all v ∈
(
H t(Ω) ∩H1

0 (Ω)
)n
, t ≥ 1,

|||v − Πh(v)|||Xs
≤ Chr|v|Hr+1(Ω), 0 ≤ r ≤ min(rs, t− 1), (2.5.15)

|||v − Πh(v)|||Xd
≤ C

(
hr‖v‖Hr+1/2(Ω) + hq‖div v‖Hq(Ω) + hs‖v‖Hs+1(Ω)

)
,

1/2 ≤ r ≤ min(1, t− 1/2), 0 ≤ q ≤ min(1, t− 1), 0 ≤ s ≤ min(rs, t− 1).

(2.5.16)

Proof. The proof is almost same as Lemma 5.3 in [27] by using the continuity of Raviart-

Thomas interpolant (2.3.24).

Next, we need to approximate the functions for the pressure. For any q ∈ L2(Ωi), let

Phq be its L2(Ωi)-projection onto W h
i = W h|Ωi

,

(q − Phq, wh) = 0, ∀wh ∈ W h
i ,

satisfying the approximation property

‖q − Phq‖0,Ωi
≤ C hr|q|r , 0 ≤ r ≤ ri + 1, (2.5.17)

where ri is the polynomial degree in the space W h
i : ri = rs − 1 in Ωs and ri = ld in Ωd.

Lemma 2.5.7. There exists a constant C independent of h, H, and the diameters of the

subdomains such that, for all vh ∈ Xh:

|bs(vh,λs − IH(λs))| ≤ C Hs

Ms∑
i=1

A
−1/2
i ‖vh‖H1(Ωs,i)|λs|Hs(∂Ωs,i∩Γss∪O), 0 ≤ s ≤ rss + 1,

(2.5.18)

provided λs is sufficiently smooth.

Proof. The proof is same as Lemma 5.2 in [27].
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Lemma 2.5.8. Under Hypothesis 5.1 in [27], there exists a constant C independent of h,

H, and the diameters of the subdomains such that, for all vh ∈ Xh:

|bhsd(vh, λsd−IH(λsd)) + bhd(v
h, λd − IH(λd))|

≤ C
( Md∑

i=1

‖vh‖H(div;Ωd,i)

(
Hq−1/2|λ|Hq(∂Ωd,i∩Γdd∪O) +Hr−1/2|λ|Hr(∂Ωd,i∩Γsd∪O)

)
+

Md∑
i=1

∑
j

A
−1/2
j ‖vh‖H1(Ωs,j)H

r|λ|Hr(∂Ωd,i∩Γsd∪O)

)
,

1/2 ≤ q ≤ rdd + 1, 1/2 ≤ r ≤ rsd + 1,

(2.5.19)

provided λsd and λd are sufficiently smooth, and where the last sum runs over all Ωs,j adjacent

to Ωd,i.

Proof. The proof is almost same as Lemma 5.3 in [27] by using the continuity of RRT
d (2.3.24)

.

Lemma 2.5.9. There exists a constant C independent of h, H, and the diameters of the

subdomains such that, for all vh ∈ Xh:

|b̂s(vh,λs − IH(λs))| ≤ C Hs

Ms∑
i=1

A
−1/2
i ‖vh‖H1(Ωs,i)|λs|Hs(∂Ωs,i∩Γss∪O), 0 ≤ s ≤ rss + 1,

(2.5.20)

provided λs is sufficiently smooth.

Proof. The proof is almost same as Lemma 5.2 in [27] by assuming that there exist a the

global smooth map to guarantee ‖λ̂‖ . ‖λ‖ and ‖v̂‖ . ‖v‖ .
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Lemma 2.5.10. Under Hypothesis 5.1 in [27], there exists a constant C independent of h,

H, and the diameters of the subdomains such that, for all vh ∈ Xh:

|b̂hsd(vh, λsd−IH(λsd)) + b̂hd(v
h, λd − IH(λd))|

≤ C
( Md∑

i=1

‖vh‖H(div;Ωd,i)

(
Hq−1/2|λ|Hq(∂Ωd,i∩Γdd∪O) +Hr−1/2|λ|Hr(∂Ωd,i∩Γsd∪O)

)
+

Md∑
i=1

∑
j

A
−1/2
j ‖vh‖H1(Ωs,j)H

r|λ|Hr(∂Ωd,i∩Γsd∪O)

)
,

1/2 ≤ q ≤ rdd + 1, 1/2 ≤ r ≤ rsd + 1,

(2.5.21)

provided λsd and λd are sufficiently smooth, and where the last sum runs over all Ωs,j adjacent

to Ωd,i.

Proof. The proof is almost same as Lemma 5.3 in [27] by using the continuity of RRT
d (2.3.24)

and assuming that there exist a the global smooth map to guarantee ‖λ̂‖ . ‖λ‖ and ‖v̂‖ .
‖v‖ .

2.5.1 Error estimates with straight interfaces

In order to get error estimates for the global veolicty and pressure, we first need to get the

error equations for Darcy part and then combine Stokes part error equation to get the global

error estimates. Since we have symmetric and non-symmetric MFMFE for Darcy flow, we

first present an analysis based on the symmetric scheme, then we propose a non-symmetric

analysis for the non-symmetric scheme.
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Theorem 2.5.1. The symmetric MFMFE of coupled Stokes-Darcy problem has following

optimal convergence results:

|||u− uh|||X + ‖p− ph‖W

≤ C
(
hr1(‖u‖Hr1+1(Ω) + ‖p‖Hr1 (Ω)) + hr2‖u‖Hr2+1/2(Ω) + hr3(‖divu‖Hr3 (Ω) + ‖p‖Hr3 (Ω))

+ A−1Hr4(‖us‖Hr4+3/2(Ωs)
+ ‖ps‖Hr4+1/2(Ωs)

)

+ A−1/2Hr5−1/2‖pd‖Hr5+1/2(Ωd)
+ A−1/2Hr6−1/2‖pd‖Hr6+1/2(Ωd)

)
,

0 ≤ r1 ≤ rs, 1/2 ≤ r2 ≤ 1, 0 ≤ r3 ≤ 1,

0 < r4 ≤ rss + 1, 1/2 ≤ r5 ≤ rdd + 1, 1/2 ≤ r6 ≤ rsd + 1.

Proof. From Darcy weak formulation, we have

∀vd ∈ Xd νd(K
−1ud,vd)Ωd

−
Md∑
i=1

(pd,∇ · vd)Ωd,i
= −

∑
Γij∈Γdd

〈λdd,vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd,vd · nij〉Γij
+ (f d,vd)Ωd

.

(2.5.22)

By symmetric MFMFE, we have

∀vd ∈ Xh
d νd(K

−1uh
d ,vd)Q,Ωd

−
Md∑
i=1

(phd ,∇ · vd)Ωd,i
= −

∑
Γij∈Γdd

〈λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λH
sd, R

RT
d vd · nij〉Γij

+ (f d, R
RT
d vd)Ωd

.

(2.5.23)

Then, from above two equations, we can have the error equation for Darcy flow: for all

vd ∈ V h
d such that ∇ · vd = 0 in each subdomain,

νd(K
−1ud,vd)Ωd

− νd(K
−1uh

d ,vd)Q,Ωd
= −

∑
Γij∈Γdd

〈λdd, (vd −RRT
d vd) · nij〉Γij

−
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd,vd · nij〉Γij
+

∑
Γij∈Γsd

〈λH
sd, R

RT
d vd · nij〉Γij

+(f d,vd −RRT
d vd)Ωd

.

(2.5.24)
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Taking vd −RRT
d vd as a test function in (2.5.22) :

νd(K
−1ud,vd −RRT

d vd)Ωd
= −

∑
Γij∈Γdd

〈λdd, (vd −RRT
d vd) · nij〉Γij

−
∑

Γij∈Γsd

〈λsd, (vd −RRT
d vd) · nij〉Γij

+ (f d,vd −RRT
d vd)Ωd

.
(2.5.25)

Here we use the identity (3.23) in [54]. Then from (2.5.24) and (2.5.25), we have:

νd(K
−1uh

d ,vd)Q,Ωd
= νd(K

−1ud, R
RT
d vd)Ωd

+
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

+
∑

Γij∈Γsd

〈λsd − λH
sd, R

RT
d vd · nij〉Γij

.
(2.5.26)

By using (2.5.26), we rewrite νd(K
−1(Πh

dud − uh
d),vd)Q,Ωd

as

∀vd ∈ V h
d νd(K

−1(Πh
dud − uh

d),vd)Q,Ωd
= νd(K

−1Πh
dud,vd)Q,Ωd

− νd(K
−1ud, R

RT
d vd)Ωd

−
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd − λH
sd, R

RT
d vd · nij〉Γij

= νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd − λH
sd, R

RT
d vd · nij〉Γij

.

(2.5.27)

From Stokes error equation we have:

∀vs ∈ V h
s ahs (us − uh

s ,vs) + bs(vs, ps − phs ) + bs(vs,λs − λH
s ) +

∑
Γij∈Γsd

〈vs · nij, λsd − λH
sd〉Γij

= 0,

(2.5.28)

where bs(·, ·) =
∑Ms

i=1 bi(·, ·). We can rewrite above equation as

∀vs ∈ V h
s ahs (Π

h
sus − uh

s ,vs) = −ahs (us − Πh
sus,vs)− bs(vs, ps − phs )− bs(vs,λss − λH

ss)

−
∑

Γij∈Γsd

〈vs · nij, λsd − λH
sd〉Γij

.

(2.5.29)
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Then by (2.5.27) and (2.5.29), ∀v ∈ Zh, ∀ph ∈ Wh we have

ah(Πhu− uh,v) = −ahs (us − Πh
sus,vs)− b(v, p− ph)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−bhsd(v, λsd − λH
sd)− bhd(v, λdd − λH

dd)− bs(v,λss − λH
ss)

= −ahs (us − Πh
sus,vs)− b(v, p−Php)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−bhsd(v, λsd − IH(λsd))− bhd(v, λdd − IH(λdd))− bs(v,λss − IH(λss))

(2.5.30)

The first two terms on the right hand side of (2.5.30) can be bounded by using continuity

property of bilinear form (2.3.84) and (2.3.85). The third and sixth terms on the right hand

side of (2.5.30) can be estimated by using (2.5.11) and (2.5.1), respectively:

νd
(
K−1(Πh

dud −Rh
dud),vd

)
Q,Ωd

. hrdH1/2‖ud‖rd+1/2‖vd‖, 0 < rd ≤ 1, (2.5.31)

νd
(
K−1(Rh

dud − ud), R
RT
d vd

)
Ωd

.
M∑

i=Ms+1

h‖ud‖1,Ωi
‖vd‖Ωi

, (2.5.32)

where we have also used (2.3.24). Using (2.5.14), (2.3.24), and (2.5.8), we bound the fifth

term on the right in (2.5.30) as

|νdσ(K−1Rh
dud, R

RT
d vd)Ωd

| .
∑
E∈T h

d

h‖Rh
dud‖1,E‖RRT

d vd‖E .
M∑

i=Ms+1

h‖ud‖1,Ωi
‖vd‖Ωi

.

(2.5.33)

The fourth term can be bounded by Lemma 2.5.4.

|νd(K−1Rh
dud,vd −RRT

d vd)Q,Ωd
| .

M∑
i=Ms+1

h|||K−1|||1,∞‖ud‖1,Ωi
‖vd‖Ωi

. (2.5.34)

The last three terms on the right hand side of (2.5.30) can be estimated from Lemma

2.5.7 and Lemma 2.5.8 .

Now let v = Πhu−uh,then the proof is done with coercivity of ah(·, ·), triangle inequality

and Lemma 2.5.6,.
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In the case of the non-symmetric scheme, we have the following convergent result:

Theorem 2.5.2. The non-symmetric MFMFE of coupled Stokes-Darcy problem has follow-

ing optimal convergence results:

|||u− uh|||X + ‖p− ph‖W

≤ C
(
hr1(‖u‖Hr1+1(Ω) + ‖p‖Hr1 (Ω)) + hr2‖u‖Hr2+1/2(Ω)

+ hr3(‖divu‖Hr3 (Ω) + ‖p‖Hr3 (Ω) + ‖pd‖Hr3+1(Ωd))

+ A−1Hr4(‖us‖Hr4+3/2(Ωs)
+ ‖ps‖Hr4+1/2(Ωs)

)

+ A−1/2Hr5−1/2‖pd‖Hr5+1/2(Ωd)
+ A−1/2Hr6−1/2‖pd‖Hr6+1/2(Ωd)

)
,

0 ≤ r1 ≤ rs, 1/2 ≤ r2 ≤ 1, 0 ≤ r3 ≤ 1,

0 < r4 ≤ rss + 1, 1/2 ≤ r5 ≤ rdd + 1, 1/2 ≤ r6 ≤ rsd + 1.

Proof.

∀vd ∈ Xh
d νd(K

−1uh
d ,vd)Q,Ωd

−
Md∑
i=1

(phd ,∇ · vd)Ωd,i
= −

∑
Γij∈Γdd

〈λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λH
sd, R

RT
d vd · nij〉Γij

+ (f d, R
RT
d vd)Ωd

.

(2.5.35)

then combine with (2.5.22) we have error equation for Darcy flow with non-symmetric scheme

by using ∇ · vd = 0 on each subdomain:

νd(K
−1(Rh

dud − uh
d),vd)Q,Ωd

= −νd(K
−1ud,vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd

−
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd − λH
sd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γdd

〈λdd, (vd −RRT
d vd) · nij〉Γij

−
∑

Γij∈Γsd

〈λsd, (vd −RRT
d vd) · nij〉Γij

+(f d,vd −RRT
d vd)Ωd

.

(2.5.36)
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Choosing vd −RRT
d vd as a test function in (2.5.22), we have :

νd(K
−1ud,vd −RRT

d vd)Ωd
− (f d,vd −RRT

d vd)Ωd
= −

∑
Γij∈Γdd

〈λdd, (vd −RRT
d vd) · nij〉Γij

−
∑

Γij∈Γsd

〈λsd, (vd −RRT
d vd) · nij〉Γij

.

(2.5.37)

Here we use the identity (3.23) in [54]. Combining with (2.5.36), we can have the new error

equation for the non-symmetric MFMFE:

νd(K
−1(Rh

dud − uh
d),vd)Q,Ωd

= −νd(K
−1ud, R

RT
d vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd

−
∑

Γij∈Γdd

〈λdd − λH
dd, R

RT
d vd · nij〉Γij

−
∑

Γij∈Γsd

〈λsd − λH
sd, R

RT
d vd · nij〉Γij

.
(2.5.38)

Together with stokes error equaion (2.5.28), we can have the global error equation for the

non-symmetric scheme:

ah(Πhu− uh,v) = −ahs (us − Πh
sus,vs)− b(v, p− ph)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

− νd(K
−1ud, R

RT
d vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd

−bhsd(v, λsd − λH
sd)− bhd(v, λdd − λH

dd)− bs(v,λss − λH
ss)

= −ahs (us − Πh
sus,vs)− b(v, p− Php)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

− νd(K
−1ud, R

RT
d vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd

−bhsd(v, λsd − IH(λsd))− bhd(v, λdd − IH(λdd))− bs(v,λss − IH(λss))

(2.5.39)

The first three and last three terms on the right hand side of (2.5.39) can be estimated same

as symmetric schemes. By using (2.5.22) and integration by parts we can rewrite fourth and

fifth terms on right hand side of (2.5.39) as:

−νd(K
−1ud, R

RT
d vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd
=

Md∑
i=1

(∇pd, R
RT
d vd)Ωd,i

+
∑
E∈T h

d

νd(K
−1Rh

d(ud + ν−1
d KE∇s1),vd)Q,E −

∑
E∈T h

d

(K−1Rh
dKE∇s1,vd)Q,E

−(f d, R
RT
d vd)Ωd

(2.5.40)

where s1 is defined in (2.5.4).
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The second term on the right hand side of (2.5.40) can be written as:

I2 =
∑
E∈T h

d

νd(K
−1Rh

d(ud + ν−1
d K∇s1),vd)Q,E =

∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E

+
∑
E∈T h

d

νd(K
−1Rh

d(R
h
dud + ν−1

d K∇s1),vd)Q,E =
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E

+
∑
E∈T h

d

νd(K
−1(Rh

dud + ν−1
d K∇s1), RRT

d vd)Q,E

=
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E +

∑
E∈T h

d

νd(K
−1
(Rh

dud

+ ν−1
d K∇s1), RRT

d vd)E =
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E

+
∑
E∈T h

d

(νdK
−1
Rh

dud

+∇pd, R
RT
d vd)E +

∑
E∈T h

d

(∇(s1 − pd), R
RT
d vd)E

=
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E +

∑
E∈T h

d

(νdK
−1
ud

+∇pd, R
RT
d vd)E +

∑
E∈T h

d

(∇(s1 − pd), R
RT
d vd)E

+
∑
E∈T h

d

(νdK
−1
(Rh

dud − ud), R
RT
d vd)E

=
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E +

∑
E∈T h

d

(νdK
−1ud

+∇pd, R
RT
d vd)E +

∑
E∈T h

d

(∇(s1 − pd), R
RT
d vd)E

+
∑
E∈T h

d

(νdK
−1
(Rh

dud − ud), R
RT
d vd)E +

∑
E∈T h

d

(νd(K
−1 −K−1), RRT

d vd)E

=
∑
E∈T h

d

νd(K
−1Rh

d(ud −Rh
dud),vd)Q,E + (f d, R

RT
d vd)Ωd

+
∑
E∈T h

d

(∇(s1 − pd), R
RT
d vd)E

+
∑
E∈T h

d

(νdK
−1
(Rh

dud − ud), R
RT
d vd)E +

∑
E∈T h

d

(νd(K
−1 −K−1), RRT

d vd)E

≡ (f d, R
RT
d vd) + T1(vd)

(2.5.41)
58



Then (2.5.40) can be written as

− νd(K
−1ud, R

RT
d vd)Ωd

+ νd(K
−1Rh

dud,vd)Q,Ωd
=

Md∑
i=1

(∇pd, R
RT
d vd)Ωd,i

−
∑
E∈T h

d

(K−1Rh
dKE∇s1,vd)Q,E + T1(vd) ≡ I1 + I2 + T1

(2.5.42)

By Lemma 3.11, Lemma 2.2, and Lemma 2.4 in [53], the term I2 can be written as

−I2 = (K−1Rh
dKE∇s1,vd)Q,E = (K−1KE∇s1,vd)Q,E = (K−1Rh

dKE∇s1, RRT
d vd)Q,E

= (∇s1, RRT
d vd)E

(2.5.43)

Then we have

|I1 + I2| = |
∑
E∈T h

d

(∇(pd − s1), RRT
d vd)E| .

∑
E∈T h

d

‖∇(pd − s1)‖E‖RRT
d vd‖E . h‖p‖2‖vd‖Ωd

,

(2.5.44)

where we have used (2.5.4) and (2.3.24). Substituting (2.5.42) into (2.5.39), we only left

T1(vd) to be estimated. Actually by using Lemma 2.5.1,(2.5.1),(2.5.4) and (2.5.6) we can

immediately get the bound for T1(vd):

T1(vd) . h(‖p‖2 + ‖ud‖1)‖vd‖. (2.5.45)

Now let v = Πhu − uh, with coercivity of ah(·, ·), triangle inequality and Lemma 2.5.6,we

can finish the proof.

Remark 2.5.1. In the above estimate, the fine scale subdomain approximation error terms

are of optimal order with constants independent of the size of the subdomains A. The con-

stants of the coarse scale mortar consistency error terms deteriorate with decrease in A, since

in that case the number of interfaces grows. Nevertheless, higher order mortar polynomials

can be employed to balance the error terms, giving optimal fine scale convergence.
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2.5.2 Error estimates with curved interfaces

In order to get error estimates for the global veolicty and pressure with curved interfaces,

we still first need to get the error equations for Darcy part and then combine Stokes part

error equation to get the global error estimates. Here we only present sysmetric scheme, the

non-symmetric scheme is done by the similar way.

Theorem 2.5.3. The symmetric MFMFE of coupled Stokes-Darcy problem with curved in-

terfaces has following optimal convergence results:

|||u− uh|||X + ‖p− ph‖W

≤ C
(
hr1(‖u‖Hr1+1(Ω) + ‖p‖Hr1 (Ω)) + hr2‖u‖Hr2+1/2(Ω) + hr3(‖divu‖Hr3 (Ω) + ‖p‖Hr3 (Ω))

+ A−1Hr4(‖us‖Hr4+3/2(Ωs)
+ ‖ps‖Hr4+1/2(Ωs)

)

+ A−1/2Hr5−1/2‖pd‖Hr5+1/2(Ωd)
+ A−1/2Hr6−1/2‖pd‖Hr6+1/2(Ωd)

)
,

0 ≤ r1 ≤ rs, 1/2 ≤ r2 ≤ 1, 0 ≤ r3 ≤ 1,

0 < r4 ≤ rss + 1, 1/2 ≤ r5 ≤ rdd + 1, 1/2 ≤ r6 ≤ rsd + 1.

Proof. From Darcy weak formulation and Piola transformation, we have

∀vd ∈ Xd νd(K
−1ud,vd)Ωd

−
Md∑
i=1

(pd,∇ · vd)Ωd,i
= −

∑
Γ̂ij∈Γdd

〈λ̂dd, v̂d · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂sd, v̂d · n̂ij〉Γ̂ij
+ (f d,vd)Ωd

.

(2.5.46)

By symmetric MFMFE and Piola transformation, we have

∀vd ∈ Xh
d νd(K

−1uh
d ,vd)Q,Ωd

−
Md∑
i=1

(phd ,∇ · vd)Ωd,i
= −

∑
Γ̂ij∈Γ̂dd

〈λ̂H
dd, R

RT
d v̂d · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂H
sd, R

RT
d v̂d · n̂ij〉Γ̂ij

+ (f d, R
RT
d vd)Ωd

.

(2.5.47)
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Then, from above two equations, we can have the error equation for Darcy flow: for all

vd ∈ V h
d such that ∇ · vd = 0 in each subdomain,

νd(K
−1ud,vd)Ωd

− νd(K
−1uh

d ,vd)Q,Ωd
= −

∑
Γ̂ij∈Γ̂dd

〈λ̂dd, (v̂d −RRT
d v̂d) · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂dd

〈λ̂dd − λ̂H
dd, R

RT
d v̂d · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂sd, v̂d · n̂ij〉Γ̂ij
+

∑
Γ̂ij∈Γ̂sd

〈λ̂H
sd, R

RT
d v̂d · n̂ij〉Γ̂ij

+(f d,vd −RRT
d vd)Ωd

.

(2.5.48)

Taking vd −RRT
d vd as a test function in (2.5.22) :

νd(K
−1ud,vd −RRT

d vd)Ωd
= −

∑
Γ̂ij∈Γ̂dd

〈λ̂dd, (v̂d −RRT
d v̂d) · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂sd, (v̂d −RRT
d v̂d) · n̂ij〉Γ̂ij

+ (f d,vd −RRT
d vd)Ωd

.
(2.5.49)

Here we use the identity (3.23) in [54]. Then from (2.5.48) and (2.5.49), we have:

νd(K
−1uh

d ,vd)Q,Ωd
= νd(K

−1ud, R
RT
d vd)Ωd

+
∑

Γ̂ij∈Γ̂dd

〈λ̂dd − λ̂H
dd, R

RT
d v̂d · n̂ij〉Γ̂ij

+
∑

Γ̂ij∈Γ̂sd

〈λ̂sd − λ̂H
sd, R

RT
d v̂d · n̂ij〉Γ̂ij

.
(2.5.50)

By using (2.5.50), we rewrite νd(K
−1(Πh

dud − uh
d),vd)Q,Ωd

as

∀vd ∈ V h
d νd(K

−1(Πh
dud − uh

d),vd)Q,Ωd
= νd(K

−1Πh
dud,vd)Q,Ωd

− νd(K
−1ud, R

RT
d vd)Ωd

−
∑

Γ̂ij∈Γ̂dd

〈λ̂dd − λ̂H
dd, R

RT
d v̂d · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂sd − λ̂H
sd, R

RT
d v̂d · n̂ij〉Γ̂ij

= νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−
∑

Γ̂ij∈Γ̂dd

〈λ̂dd − λ̂H
dd, R

RT
d v̂d · n̂ij〉Γ̂ij

−
∑

Γ̂ij∈Γ̂sd

〈λ̂sd − λ̂H
sd, R

RT
d v̂d · n̂ij〉Γ̂ij

.

(2.5.51)
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From Stokes error equation we have:

∀vs ∈ V h
s ahs (us − uh

s ,vs) + bs(vs, ps − phs ) + b̂s(vs,λs − λH
s )

+
∑

Γ̂ij∈Γ̂sd

〈v̂s · n̂ij, λ̂sd − λ̂H
sd〉Γ̂ij

= 0,
(2.5.52)

where bs(·, ·) =
∑Ms

i=1 bi(·, ·). We can rewrite above equation as

∀vs ∈ V h
s ahs (Π

h
sus − uh

s ,vs) = −ahs (us − Πh
sus,vs)− bs(vs, ps − phs )− b̂s(vs,λss − λH

ss)

−
∑

Γ̂ij∈Γ̂sd

〈v̂s · n̂ij, λ̂sd − λ̂H
sd〉Γ̂ij

.

(2.5.53)

Then by (2.5.51) and (2.5.53), ∀v ∈ Zh, ∀ph ∈ Wh we have

ah(Πhu− uh,v) = −ahs (us − Πh
sus,vs)− b(v, p− ph)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−b̂hsd(v, λsd − λH
sd)− b̂hd(v, λdd − λH

dd)− b̂s(v,λss − λH
ss)

= −ahs (us − Πh
sus,vs)− b(v, p−Php)

+νd(K
−1(Πh

dud −Rh
dud),vd)Q,Ωd

+ νd(K
−1Rh

dud,vd −RRT
d vd)Q,Ωd

−νdσ(K
−1Rh

dud, R
RT
d vd) + νd(K

−1(Rh
dud − ud), R

RT
d vd)

−b̂hsd(v, λsd − IH(λsd))− b̂hd(v, λdd − IH(λdd))− b̂s(v,λss − IH(λss))

(2.5.54)

The first two terms on the right hand side of (2.5.54) can be bounded by using continuity

property of bilinear form (2.3.84) and (2.3.85). The third and sixth terms on the right hand

side of (2.5.54) can be estimated by using (2.5.11) and (2.5.1), respectively:

νd
(
K−1(Πh

dud −Rh
dud),vd

)
Q,Ωd

. hrdH1/2‖ud‖rd+1/2‖vd‖, 0 < rd ≤ 1, (2.5.55)

νd
(
K−1(Rh

dud − ud), R
RT
d vd

)
Ωd

.
M∑

i=Ms+1

h‖ud‖1,Ωi
‖vd‖Ωi

, (2.5.56)
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where we have also used (2.3.24). Using (2.5.14), (2.3.24), and (2.5.8), we bound the fifth

term on the right in (2.5.54) as

|νdσ(K−1Rh
dud, R

RT
d vd)Ωd

| .
∑
E∈T h

d

h‖Rh
dud‖1,E‖RRT

d vd‖E .
M∑

i=Ms+1

h‖ud‖1,Ωi
‖vd‖Ωi

.

(2.5.57)

The fourth term can be bounded by Lemma 2.5.4.

|νd(K−1Rh
dud,vd −RRT

d vd)Q,Ωd
| .

M∑
i=Ms+1

h|||K−1|||1,∞‖ud‖1,Ωi
‖vd‖Ωi

. (2.5.58)

The last three terms on the right hand side of (2.5.54) can be estimated from Lemma

2.5.9 and Lemma 2.5.10 .

Now let v = Πhu−uh,then the proof is done with coercivity of ah(·, ·), triangle inequality

and Lemma 2.5.6,.

2.6 NUMERICAL TESTS

In this section we will present several numerical examples to verify our analysis. In all tests

the computational domain is taken to be Ω = Ωs ∪ Ωd, where Ωs = (0, 1) × (1
2
, 1) and

Ωd = (0, 1)× (0, 1
2
). For simplicity we set

σ(us, ps) = −psI + νs∇us

in the Stokes equation in Ωs, and

K = KI

in the Darcy equation in Ωd, where K is a positive constant.
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To test for convergence we construct two analytical solutions satisfying the flow equations

in Ωs and Ωd along with the conditions on the interface Γsd. In example 1, we use:

us =

 sec(x+ 0.45) + tan(x+ 0.45)

(1 + sin(x+ 0.45))ey

 ,

ud =

 sin(x+1.45)
cos(x+0.45)

+ ((x+ 0.45)sin(x+ 0.45))ey

(sin(x+ 0.45) + 1− (x+ 0.45)cos(x+ 0.45))ey

 ,

ps = ln(
(cos2(x+ 0.45)sin(x+ 0.45)

1 + sin(x+ 0.45)
) + ((x+ 0.45)cos(x+ 0.45)

+sin2(x+ 0.45)− 1)e(0.5− ln(sin(x+ 0.45))) + sin(x+ 0.45) + 0.5 + y,

pd = ln(
cos(x+ 0.45)

sec(x+ 0.45) + tan(x+ 0.45)
) + ((x+ 0.45)cos(x+ 0.45)

−sin(x+ 0.45)− 1)ey,

while in example 2, we use:

us =

 (2− x)(1.5− y)(y − ξ)

−y3

3
+ y2

2
(ξ + 1.5)− 1.5ξy − 0.5 + sin(ωx)

 ,

ud =

 ω cos(ωx)y

χ(y + 0.5) + sin(ωx)

 ,

ps = −sin(ωx) + χ

2K
+ νs(0.5− ξ) + cos(πy),

pd = − χ

K

(y + 0.5)2

2
− sin(ωx)y

K
,

where

νs = 0.1, K = 1, α = 0.5, G =

√
νsK

α
, ξ =

1−G

2(1 +G)
, χ =

−30ξ − 17

48
, and ω = 6.0.

The right hand sides f s, f d, and qd for the Stokes-Darcy flow system are obtained by plugging

the analytical solution into flow equations. The boundary conditions are as follows: for the

Stokes region, the velocity us is specified on the left and top boundaries, and the normal and

tangential stresses (σns)·ns and (σns)·τ s are specified on the right boundary; for the Darcy

region, the pressure pd is specified on the bottom, left and right boundaries. Each region Ωs

and Ωd is divided into two subdomains, giving a total of four subdomains. The subdomain
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grids do not match across the interfaces. The Stokes subdomains are discretized by the

Taylor–Hood triangular finite elements with quadratic velocities and linear pressures (rs =

2). The Darcy subdomains are discretized by the lowest order Raviart–Thomas rectangular

finite elements (rd = ld = 0). We use discontinuous piecewise linear mortars on all interfaces

(rss = rdd = rsd = 1). To test convergence, we solve the problem on a sequence of grid

refinements. On the coarsest level, the subdomain grids are 3× 4 in the lower left and upper

right subdomains and 2 × 3 in the other two subdomains. We test two cases, H = 2h and

H =
√
h. In both cases the coarsest mortar grids have a single element per interface. In

the first case the mortar grids are refined by two each time the subdomain grids are refined

by two. In the second case the mortar grids are refined by two each time the subdomain

grids are refined by four. Figures 1–2 show the vertical velocity and errors for each example.

In Example 1, the vertical velocity is not continuous across the Stokes-Darcy interface, as

the latter is not flat, but the normal velocity is continuous. In Example 2, the vertical

velocity is normal to the Stokes-Darcy interface and it is continuous. In both cases the

velocity is continuous across the Stokes-Stokes and Darcy-Darcy interfaces. The depicted

errors show that the error is generally smaller in the Stokes region, while the larger error in

the Darcy region is associated with the non-matching interface or the corners of the domain.

Figure 3-5 show that multiscale solution has a good match with fine scale solution, but

multicale solution only takes 80 total CG iterations instead of 256 iterations for matching

grids solution, which means less expensive for a multiscale solution. The numerical errors

and convergence rates on all refinement levels are reported in Tables. In the case H = 2h

we observe convergence for the Stokes velocity and pressure of order between h3/2 and h2, as

well as first order convergence for the Darcy velocity and pressure. We note that the optimal

convergence rates for stand alone discretizations are second order for Stokes and first order

for Darcy. The reduction in the Stokes convergence in the coupled case is expected, due to

the coupling with the lower order Darcy discretization and the effect of the non-matching

mortar error. In the case H =
√
h, we observe approximately O(h) convergence for all error

norms. Note that in this case the interface consistency error terms are O(h(rss+1)/2) = O(h)

and O(h(rdd+1/2)/2) = O(h(rsd+1/2)/2) = O(h3/4), so their effect on the convergence in the

Stokes and Darcy regions is more significant. In this multiscale case, one may utilize higher
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order mortars to recover optimal fine scale subdomain convergence, see [2] for the Darcy

case.

Figure 2.6.1: Computed vertical velocity (left) and error (right) on subdomain meshes 8×12

and 12× 16 for Example 1.
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Figure 2.6.2: Computed vertical velocity (left) and error (right) on subdomain meshes 8×12

and 12× 16 for Example 2.

Figure 2.6.3: Permeability in Example 3.

Figure 2.6.4: Computed multiscale solution with horizontal (left) and vertical velocity (right)

in Example 3.

67



Figure 2.6.5: Computed fine scale solution with horizontal (left) and vertical velocity (right)

in Example 3.

mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − phs‖L2(Ωs) rate

2x3 3x4 2.68e+00 7.27e-01

4x6 6x8 1.02e+00 1.39 1.72e-01 2.08

8x12 12x16 3.09e-01 1.72 3.20e-02 2.43

16x24 24x32 8.28e-02 1.90 5.74e-03 2.48

32x48 48x64 2.12e-02 1.97 2.19e-03 1.39

Table 1: Test 1: H = 2h. Numerical errors and convergence rates in Ωs

mesh ‖ud − uh
d‖H(div,Ωd)

rate ‖pd − phd‖L2(Ωd) rate

2x3 3x4 2.91e+00 5.23e-01

4x6 6x8 3.92e-01 2.89 2.67e-01 0.97

8x12 12x16 1.15e-01 1.77 1.32e-01 1.02

16x24 24x32 3.62e-02 1.66 6.60e-02 1.00

32x48 48x64 1.31e-02 1.47 3.30e-02 1.00

Table 2: Test 1: H = 2h. Numerical errors and convergence rates in Ωd
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mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − phs‖L2(Ωs) rate

2x3 3x4 3.55e-01 3.06e-02

4x6 6x8 9.27e-02 1.94 7.57e-03 2.01

8x12 12x16 2.17e-02 2.09 1.86e-03 2.02

16x24 24x32 5.42e-03 2.00 5.07e-04 1.88

32x48 48x64 1.51e-03 1.84 1.59e-04 1.67

Table 3: Test 2: H = 2h. Numerical errors and convergence rates in Ωs

mesh ‖ud − uh
d‖H(div,Ωd)

rate ‖pd − phd‖L2(Ωd) rate

2x3 3x4 4.96e-01 1.09e-01

4x6 6x8 2.44e-01 1.02 5.41e-02 1.01

8x12 12x16 1.22e-01 1.00 2.71e-02 1.00

16x24 24x32 6.07e-02 1.00 1.36e-02 0.99

32x48 48x64 3.03e-02 1.00 6.78e-03 1.00

Table 4: Test 2: H = 2h. Numerical errors and convergence rates in Ωd

mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − phs‖L2(Ωs) rate

2x3 3x4 2.68e+00 7.27e-01

8x12 12x16 3.09e-01 1.55 3.44e-02 2.20

32x48 48x64 2.13e-02 1.93 3.00e-03 1.75

Table 5: Test 1: H =
√
h. Numerical errors and convergence rates in Ωs
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mesh ‖ud − uh
d‖H(div,Ωd)

rate ‖pd − phd‖L2(Ωd) rate

2x3 3x4 2.91e+00 5.23e-01

8x12 12x16 2.68e-01 1.72 1.33e-01 0.99

32x48 48x64 1.27e-01 0.54 3.30e-02 1.01

Table 6: Test 1: H =
√
h. Numerical errors and convergence rates in Ωd

mesh ‖us − uh
s‖H1(Ωs) rate ‖ps − phs‖L2(Ωs) rate

2x3 3x4 3.55e-01 3.06e-02

8x12 12x16 5.79e-02 1.31 4.12e-03 1.45

32x48 48x64 1.05e-02 1.23 7.29e-04 1.24

Table 7: Test 2: H =
√
h. Numerical errors and convergence rates in Ωs

mesh ‖ud − uh
d‖H(div,Ωd)

rate ‖pd − phd‖L2(Ωd) rate

2x3 3x4 4.96e-01 1.09e-01

8x12 12x16 1.82e-01 0.72 2.72e-02 1.00

32x48 48x64 6.25e-02 0.77 6.82e-03 1.00

Table 8: Test 2: H =
√
h. Numerical errors and convergence rates in Ωd
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3.0 DOMAIN DECOMPOSITION FOR STOKES-DARCY FLOWS WITH

CURVED INTERFACES

In this paper, we consider a multidomain formulation, where the simulation domain is de-

composed into a union of non-overlapping subdomains of either Stokes or Darcy type. The

subdomains are discretized by appropriate stable finite elements on a fine scale, allowing for

the grids to be non-matching across interfaces. Coarse scale mortar finite elements are used

to impose weakly continuity conditions [27]. Since we consider multiple subdomains, we

must account for three types interfaces conditions: Stokes-Darcy, Darcy-Darcy and Stokes-

Stokes. On Stokes-Darcy interfaces, normal velocity and normal stress are continuous. On

Stokes-Stokes interfaces, both normal and tangential velocity and stress are continuous. On

Darcy-Darcy interfaces, normal velocity and pressure are continuous. We employ a non-

overlapping domain decomposition (DD) [28, 43, 48] method to reduce the global problem

to an interface problem which is solved by the conjugate gradient method. Each iteration

involves solving subdomain problems of either Stokes or Darcy type, which is done in parallel.

We consider efficient and accurate discretizations for subdomains with curved interfaces,

allowing for the grids to be non-matching across interfaces. In the Darcy region we employ

the multipoint flux mixed finite element (MFMFE) method [55, 29, 54]. The method can

handle irregular grids and reduces to cell-centered finite differences for the pressure. Standard

conforming Stokes elements are used in the Stokes region. Interface mortar conditions on

curved interfaces with non-matching grids are imposed by mapping the physical grids to

reference grids with flat interfaces.
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3.1 DOMAIN DECOMPOSITION VARIATIONAL FORMULATION

Let Ωs, respectively Ωd, be decomposed into Ns, respectively Nd, non-overlapping polyhedral

subdomains: Ωs = ∪Ns
i=1Ωs,i, Ωd = ∪N

i=Ns+1Ωd,i, where N = Ns+Nd. We can also number the

subdomains with a single index 1 ≤ i ≤ N , the Stokes subdomains running from 1 to Ns.

We denote Γij = ∂Ωi ∩ ∂Ωj, 1 ≤ i < j ≤ N . Let Γss and Γdd denote the set of Stokes-Stokes

and Darcy-Darcy interfaces: Γss = ∪1≤i<j≤Ns (∂Ωi ∩ ∂Ωj), Γdd = ∪Ns+1≤i<j≤N (∂Ωi ∩ ∂Ωj).

The union of all the interfaces is denoted by Γ = Γsd ∪Γdd ∪Γss. In addition to the interface

conditions on Γsd, we have

[ud · n] = 0, [pd] = 0 on Γdd, [us] = 0, [T(us, ps)n] = 0 on Γss, (3.1.1)

where the jumps on an interface Γij, for 1 ≤ i < j ≤ N , are defined as: [v·n] = vi ·ni+vj ·nj,

[Tn] = Tini + Tjnj, and [v] = (vi − vj)|Γij
, where vi = v|Ωi

and ni denotes the outward

unit normal vector on ∂Ωi.

In the fluid region Ωs, the velocity and pressure spaces are given by

Xs =
{
vs ∈ L2(Ωs)

d : vs,i ∈ H1(Ωs,i)
d,vs = 0 on Γs

}
and Ws = L2(Ωs).

In the porous medium region Ωd, we define the velocity and pressure spaces by

Xd =
{
vd ∈ L2(Ωd)

d : vd,i ∈ H(div; Ωd,i),vd · nd = 0 on Γd

}
and Wd = L2(Ωd),

where H(div; Ωd,i) = {vd ∈ (L2(Ωd,i))
d : ∇ · vd,i ∈ L2(Ωd,i)}. The spaces on the whole

domain are defined by

X = Xs ⊕Xd and W =

{
w = (ws, wd) ∈ Ws ⊕Wd :

∫
Ω

w dx = 0

}
.
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The interface space Λ is the dual of the trace of us on Γss or the normal trace ud · n on

Γsd and Γdd. The non-overlapping domain decomposition weak formulation for the coupled

problem is given by: find (u, p,λ) ∈ X ×W × Λ such that

a(u,v) + b(v, p) + bΓ(v,λ) =

∫
Ω

f · v, ∀v ∈ X, (3.1.2)

b(u, w) = −
∫
Ωd

qdw, ∀w ∈ W (3.1.3)

bΓ(u,µ) = 0, ∀µ ∈ Λ, (3.1.4)

where the bilinear forms are defined as

∀ (us,vs) ∈ Xs ×Xs , as,i(us,vs) = 2 νs

∫
Ωs,i

D(us,i) : D(vs,i)

+
d−1∑
j=1

∫
∂Ωs,i∩Γsd

νsα√
Kj

(us,i · τ j)(vs · τ j) , 1 ≤ i ≤ Ns,

∀ (ud,vd) ∈ Xd ×Xd , ad,i(ud,vd) = νd

∫
Ωd,i

K−1ud,i · vd,i , 1 ≤ i ≤ Nd,

∀ (v, w) ∈ X ×W , bi(v, w) = −
∫
Ωi

wi ∇ · vi , 1 ≤ i ≤ N,

a(u,v) =
Ns∑
i=1

as,i(u,v) +

Nd∑
i=1

ad,i(u,v), b(v, w) =
N∑
i=1

bi(v, w),

and the global interface bilinear form is given by:

∀ (v,µ) ∈ X × Λ , bΓ(v,µ) =

∫
Γss

[v]µ+

∫
Γdd

[v · n]µ+

∫
Γsd

[v · n]µ.

Existence and uniqueness of a solution to (3.1.2)–(3.1.4) are shown in [27], see also [36].
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3.2 FINITE ELEMENT DISCRETIZATION

Let T h
i to be a family of shape regular partitions of Ωi consisting of triangles or tetrahedra

in the Stokes region and triangles, tetrahedra, quadrilaterals, or hexahedra in the Darcy

region, where h is the maximum element diameter. Partitions T h
i and T h

j may not match on

the interface Γij. On the interface we define a coarse scale partition T H
ij with a maximum

element size H consisting of segments, triangles, or parallelograms.

In the Stokes region, for each Ωs,i, let (Xh
s,i,W

h
s,i) ⊂ H1(Ωs,i)

n × L2(Ωs,i) be a pair of

finite element spaces which satisfy a uniform discrete inf-sup condition for the divergence

and Korn inequality for the deformation tensor, such as the MINI elements, the Taylor-

Hood elements or the Bernardi-Raugel elements [11]. We assume that each pair contains

at least polynomials of degree rs and rs − 1 for velocity and pressure, respectively. In the

Darcy region, let (Xh
d,i,W

h
d,i) ⊂ H(div; Ωd,i) × L2(Ωd,i) be a pair of mixed finite element

spaces which satisfy a uniform discrete inf-sup condition for the divergence, such as the

Raviart-Thomas (RT) elements, the Brezzi-Douglas-Marini (BDM) elements, the Brezzi-

Douglas-Fortin-Marini (BDFM) elements or the Brezzi-Douglas- Duràn-Fortin (BDDF) ele-

ments [11]. We assume that each pair contains at least polynomials of degree rd and ld for

velocity and pressure, respectively, where ld = rd or ld = rd − 1. We also consider a special

mixed element method called the multipoint flux mixed finite element (MFMFE) method

for efficient discretizations of Darcy flow on irregular grids [55, 29, 54]. The method employs

the lowest order BDM1 space on simplices or quadrilaterals or an enhanced BDDF1 space on

hexahedra. These spaces have the property that on each element edge of face with s vertices,

the velocity space has s normal degrees of freedom, one associated with each vertex. This

allows for the velocity to be eliminated locally around each vertex in terms of neighboring

pressures through the use of an appropriate quadrature rule, resulting in a cell-centered sys-

tem for the pressure. The mixed finite element spaces in Darcy are defined on a reference

element Ê and via a bijection mapping FE : Ê → E on the physical elements as

Vh(E) =
1

JE
DFEV̂(Ê) ◦ F−1

E , Wh(E) = Ŵ (Ê) ◦ F−1
E ,
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where the Piola transformation is used to preserve normal components of the velocity. Here

DFE and JE = |det(DFE)| are the Jacobian matrix and its determinant, respectively. In

the MFMFE method, we employ the quadrature rule on an element E for the local velocity

elimination as

(K−1q,v)Q,E ≡ (K−1q̂, v̂)Q̂,Ê ≡ |Ê|
s

s∑
i=1

K−1(r̂i)q̂(r̂i)·v̂(r̂i), where K = JDF−1K̂(DF−1)T .

Note that this the trapezoidal quadrature rule on the reference element. It localizes the

interactions of the velocity degrees of freedom and gives a block diagonal velocity mass

matrix with blocks associated with mesh vertices. It is then inexpensive to eliminate the

velocities resulting in a positive definite pressure system. The global finite element space

are Xh := ⊕N
i=1X

h
i , W h := ⊕N

i=1W
h
i ∩ L2

0(Ω). On each interface, let ΛH
ij be a finite element

space associated with T H
ij consisting of continuous or discontinuous piecewise polynomials of

degree at least rss on Γss, rdd on Γdd, and rsd on Γsd. The global mortar finite element space

is ΛH :=
⊕

ΛH
ij .

The multiscale mortar finite element discretization for the Stokes-Darcy system is given

by: find (uh, ph,λH) ∈ Xh ×W h × ΛH such that

∀vh ∈ Xh, ah(u
h,vh) + b(vh, ph) + bΓ(v

h,λH) =

∫
Ω

f · vh, (3.2.1)

∀wh ∈ W h , b(uh, wh) = −
∫
Ωd

wh qd, (3.2.2)

∀µH ∈ ΛH , bΓ(u
h,µH) = 0, (3.2.3)

where ah(·, ·) = a(·, ·) in Ωs and Ωd, when standard mixed finite element discretizations are

used, and it is an approximation to a(·, ·) in Ωd based on the quadrature rule in the case of

the MFMFE method.

Remark 3.2.1. To handle domains with curved non-matching grid interfaces, the continuity

condition (3.2.3) is imposed by mapping the subdomain and mortar grids to reference grids

with flat interfaces. On Stokes-Darcy and Darcy-Darcy interfaces, we employ the Piola

transformation for the velocity, which preserves the normal component of the vector: u ·

n|e| = û · n̂|ê|. The matching condition 〈[uh · n], µH〉 = 0 is imposed on the reference grid

configuration by projecting the normal component on each side onto the reference mortar

75



grid. On Stokes-Stokes interfaces, the grids are also mapped to reference grids to impose

〈[uh], µH〉 = 0. Since full vector continuity is imposed, the standard change of variables is

used to map the velocity space in this case.

The following convergence result has been shown in [27, 46].

Theorem 3.2.1. Assuming sufficient smoothness of the solution, there exists a positive

constant C independent of h and H such that

‖u− uh‖V + ‖p− ph‖W ≤ C(hrs + hrd+1 + hld+1 +Hrss+1/2 +Hrdd+1/2 +Hrsd+1/2).

3.3 A NON-OVERLAPPING DOMAIN DECOMPOSITION ALGORITHM

In this section, we present a non-overlapping domain decomposition algorithm [50]. We show

that the algebraic system (3.2.1)–(3.2.3) can be reduced to a mortar interface problem for λH

that can be solved by a Krylov space iterative method. Each iteration requires computing

the action of the interface operator, which is done by solving subdomain problems of either

Stokes or Darcy type in parallel.

Following [28], each local problem can be split into two parts. One part has specified

normal stress in Stokes or pressure in Darcy on the interface and zero source term and

boundary conditions. The other part is the complementary problem with zero normal stress

or pressure on the interface and the given source term and boundary conditions. In the

Darcy subdomains Ωi, NS + 1 ≤ i ≤ N , given pressure λn on Γij, the first problem is: find

(u∗
i (λn), p

∗
i (λn)) ∈ Xh

d,i ×W h
d,i such that

ai(u
∗
i (λn),vi) + bi(vi, p

∗
i (λn)) = −〈λn,vi · ni〉∂Ωi\∂Ω, vi ∈ Xh

d,i, (3.3.1)

bi(u
∗
i (λn), wi) = 0, wi ∈ W h

d,i, (3.3.2)

and the corresponding complementary problem is: find (ūi, p̄i) ∈ XD
h,i ×WD

h,i such that

ai(ūi,vi) + bi(vi, p̄i) = (fi,vi)Ωi
, vi ∈ Xh

d,i,

bi(ūi, wi) = −(qi, wi)Ωi
, wi ∈ W h

d,i.
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In the Stokes subdomains Ωi, 1 ≤ i ≤ NS, given normal stress λ = (λn,λτ ), where

λn is specifies on ∂Ωi \ ∂Ω and λτ = (λ1
τ , . . . , λ

d−1
τ ) on Γss, the first problems is: find

(u∗
i (λ), p

∗
i (λ)) ∈ Xh

s,i ×W h
s,i such that

ai(u
∗
i (λ),vi) + bi(vi, p

∗
i (λ)) = −〈λn,vi · ni〉∂Ωi\∂Ω −

d−1∑
l=1

〈λl
τ ,vi · τ l

i〉∂Ωi∩Γss , vi ∈ Xh
s,i,

bi(u
∗
i (λ), wi) = 0, wi ∈ W h

s,i,

and the corresponding complementary problem is: find (ūi, p̄i) ∈ Xh
s,i ×W h

s,i such that

ai(ūi,vi) + bi(vi, p̄i) = (fi,vi)Ωi
, vi ∈ Xh

s,i, (3.3.3)

bi(ūi, wi) = 0, wi ∈ W h
s,i. (3.3.4)

Note that the first type problem has boundary conditions on the interfaces

−(Tni) · ni = λn, −(Tni) · τ l
i = λl

τ , 1 ≤ l ≤ d− 1, 1 ≤ i ≤ NS, on Γss,

and

−(Tni) · ni = λn, −(Tni) · τ l
i −

µsα0√
Kl

ui · τ l
i = 0, 1 ≤ l ≤ d− 1, 1 ≤ i ≤ NS, on Γsd.

It is easy to see that solving (3.2.1)–(3.2.3) is equivalent to solving the interface problem:

find λH ∈ Λh such that

s(λH ,µH) ≡ −bΓ(u
∗(λH),µH) = bΓ(ū,µ

H), µH ∈ ΛH . (3.3.5)

After solving interface problems, one can recover the global velocity and pressure by uh =

u∗(λH) + ū, ph = p∗(λH) + p̄.

Let us introduce the Steklov–Poincaré type operator S : ΛH → ΛH ,

∀ λH ∈ ΛH , (SλH ,µH) = s(λH ,µH) ∀ µH ∈ ΛH .

Then the interface problem (3.3.5) can be written as: find λH ∈ ΛH such that

SλH = b, (3.3.6)

where b : ΛH → R, b(µH) = bΓ(ūh,µ
H), ∀µH ∈ ΛH .
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The matrix form of the above method is as follows. We use u, p, and λ to represent

the degrees of freedom for velocity, pressure, and Lagrange multipliers, respectively. The

discrete right hand side functions in the coupled system are denoted by F and Q. The linear

system arising in (3.2.1)–(3.2.3) is of the form
A B C

Bt 0 0

Ct 0 0




u

p

λ

 =


F

Q

0

 ⇔

 R C̃

C̃t 0

 x

λ

 =

 η

0

 ,

where x = (u, p)t is the vector of subdomain unknowns and η = (F,Q)t. Then the matrix

form of the interface problem (3.3.6) corresponds to the Schur complement system

C̃tR−1C̃λ = C̃tR−1η. (3.3.7)

Note that a Krylov space iterative method for solving (3.3.7) requires at each iteration

computing the action of

R−1 =


R−1

1

. . .

R−1
N

 ,

which is achieved by solving local subdomain problems in parallel. The following result on

the properties of the interface operator has been shown in [50] for the case H = O(h).

Theorem 3.3.1. The bilinear form s(·, ·) is symmetric and positive definite on ΛH \ R.

Moreover, there exist positive constants C1 and C2 independent of h and H such that

C1 min

{
h,

K2
min

Kmax

}
≤ s(λ,λ)

‖λ‖2Γ
≤ C2max

{
1,

Kmax

h

}
, ∀λ ∈ ΛH \ R, (3.3.8)

where Kmin and Kmax are the smallest and largest eigenvalues of K, respectively.

The above result implies that the Conjugate Gradient method can be employed for the

solution of the interface problem (3.3.5). The condition number of the interface operator is

O(h−2). Efficient interface preconditioners such as balancing [14, 42] can be employed to

speed up the iteration. Another possibility is to employ a multiscale flux basis [22] to reduce

the cost of each interface iterations.
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3.4 NUMERICAL RESULTS

In this section, we present three numerical examples to study the behavior of the method.

In the numerical tests we consider the case T(us, ps) = −psI + ν∇us in Ωs. In the first

two examples we take K = KI in Ωd, where K is a positive constant. In the last example

we test heterogeneous permeability. In the first example, we test the numerical convergence

and the condition number of the interface algebraic system. The analytical solution is as in

the numerical tests in [27]. It is designed to satisfy the interface conditions (1.1.4)–(1.1.6).

The computational domain Ω = Ωs ∪Ωd is a smooth map of the reference domain Ω̂, where

Ω̂s = (0, 2)× (1
2
, 1) and Ω̂d = (0, 2)× (0, 1

2
). The boundary conditions are defined as follows.

In the Darcy region, the pressure is specified on the left, right, and bottom boundaries, while

in the Stokes region, the velocity is specified on the left and top boundaries, and normal

and tangential stress are specified on the right boundary. We split the domain into eight

subdomains, four in Stokes and four in Darcy. The subdomain girds are non-matching on

the interfaces. We use the lowest order Taylor–Hood triangular finite elements (rs = 2) to

discretize the Stokes subdomains and the MFMFE method on quadrilaterals (rd = ld = 0)

to discretize the Darcy subdomains. Discontinuous piecewise linear mortar finite elements

are used on all interfaces (rss = rsd = rdd = 1). To test convergence, we run a sequence of

nested grid refinements. The coarsest level girds are alternating 3×4 and 2×3 and H = 2h.

The computed vertical velocity and its numerical error on the second level are shown in

Figure 3.4.1. Note that the vertical velocity, which is normal to the Stokes-Darcy interface

is continuous. The numerical errors and convergence rates are reported in Tables 9 and 10,

where l denotes the grid level. We observe convergence for the Stokes velocity and pressure

of order between h3/2 and h2, as well as first order convergence for the Darcy velocity and

pressure. The optimal convergence rates for stand alone discretizations are second order for

Stokes and first order for Darcy. The reduction in the Stokes convergence in the coupled

case is expected, due to the coupling with the lower order Darcy discretization and the effect

of the non-matching grids error, see Theorem 3.2.1. In Table 11 we report the extreme

eigenvalues and condition number of the interface operator and the number of CG iterations

on all grid levels. We confirm that smallest eigenvalue is O(h) and the largest eigenvalue is
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O(h−1), leading to condition number is O(h−2), as predicted by Theorem 3.3.1.

V

0.5
0.3
0.1

-0.1
-0.3
-0.5
-0.7
-0.9
-1.1
-1.3

V-error

0.08
0.04

-0.01
-0.05
-0.09
-0.13
-0.17
-0.22
-0.26
-0.30

Figure 3.4.1: Computed vertical velocity (left) and error (right) on subdomain grids 4 × 6

and 6× 8 in Example 1.

l ‖us − us,h‖1,Ωs rate ‖p− ps,h‖Ωs rate

1 5.89e-01 4.58e-02

2 1.49e-01 1.98 1.15e-02 1.99

3 3.66e-02 2.03 2.82e-03 2.03

4 9.65e-03 1.92 7.61e-04 1.89

5 2.96e-03 1.70 2.43e-04 1.65

Table 9: Numerical errors and convergence rates in Ωs for Example 1.

In Example 2, we present a more realistic geometry domain, see Figure 3.4.2. In the

Stokes region we specify inflow condition on the the left boundary and zero stress on the right

boundary. On the top surface boundary of the Stokes region, a combination of horizontal

velocity and zero normal stress is specified. In the Darcy region, we specify no flow condition

on the left and right boundaries and Dirichlet pressure condition on the bottom boundary.

There are no external forces. In this example we study the effect of changing the permeability

on the interface condition number. We run three tests with K = 1.0, 0.1, 0.01 on the same

sequence of grid refinements as in Example 1. The results are presented in Tables 12–14. In

all three cases the smallest eigenvalue is approximately a constant, which indicates that the

constant term on the left in (3.3.8) is dominant. In the case K = 1.0, the largest eigenvalue is
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l ‖ud − ud,h‖H(div,Ωd)
rate ‖p− pd,h‖Ωd

rate

1 7.20e-01 1.51e-01

2 3.61e-01 1.00 7.50e-02 1.01

3 1.81e-01 1.00 3.76e-02 1.00

4 9.04e-02 1.00 1.88e-02 1.00

5 4.51e-02 1.00 9.40e-03 1.00

Table 10: Numerical errors and convergence rates in Ωd for Example 1.

O(h−1) as expected by the theory. In the cases K = 0.1 and K = 0.01, the largest eigenvalue

is approximately constant, which indicates that for small enough permeability the constant

term on the right in (3.3.8) is dominant. We also observe that the largest eigenvalue scales

with K, which is consistent with the right inequality in (3.3.8).

The final example is a simulation of coupled surface water and ground water flows using

the realistic geometry from Example 2 and heterogeneous permeability K given by a single

realization of a stochastic permeability field. A Karhunen-Loève (KL) expansion for the

log permeability Y = ln(K) (a scalar quantity) is computed from the specified covariance

function

CY (x, x̄) = σ2
Y exp

[
−|x1 − x̄1|

η1
− |x2 − x̄2|

η2

]
.

The parameters used for this test are mean value 1.0, correlation lengths η1 = 0.1, η2 = 0.05,

and variance σY = 2.1. The series is truncated after 400 terms. The permeability is shown in

Figure 3.4.3. The boundary conditions are as in Example 2, except that no flow is specified

on the right boundary in Stokes. The grids are as in Example 2, except that they have been

refined by 2 in the x-direction. The computed solution on the second refinement level is

plotted in Figure 4.3.14. The eigenvalues and condition number of the interface operator are

presented in Table 15. Since Kmin is approximately 0.1 and Kmax is approximately 10, the

term
K2

min

Kmax
is dominant on the left inequality in (3.3.8) and the term Kmax

h
is dominant in the

right inequality, resulting in smallest eigenvalue O(1) an largest eigenvalue O(h−1).
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l eig.min. eig.max. cond(Sh) iter.num.

1 0.546 18.639 34.2 30

2 0.200 36.441 182.2 69

3 8.237e-02 90.086 1093.7 153

4 3.423e-02 158.217 4622.0 279

5 1.511e-02 318.619 21087.7 585

Table 11: Interface condition number and number of CG iterations in Example 1.

U

0.04
0.02
0.01

-0.00
-0.01

V

-0.001
-0.003
-0.004
-0.006
-0.008
-0.009

Figure 3.4.2: Computed horizontal (left) and vertical velocity (right) on subdomain grids

4× 6 and 6× 8 in Example 2.

l eig.min. eig.max. cond(Sh) iter.num.

1 0.313 16.515 52.8 36

2 0.11 33.886 288.0 64

3 8.243e-02 62.297 755.8 101

4 5.836e-02 115.363 1976.7 135

5 7.878e-02 222.677 2826.6 179

Table 12: Interface condition number and number of CG iterations in Example 2: K = 1.0.
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l eig.min. eig.max. cond(Sh) iter.num.

1 0.297 21.685 73.0 43

2 9.406e-02 15.654 166.4 53

3 4.604e-02 17.664 383.6 72

4 4.038e-02 15.324 379.5 71

5 3.472e-02 21.074 607.0 86

Table 13: Interface condition number and number of CG iterations in Example 2: K = 0.1.

l eig.min. eig.max. cond(Sh) iter.num.

1 2.443e-02 341.748 13990.2 165

2 6.697e-02 258.815 3864.5 137

3 3.788e-02 255.276 6739.1 150

4 2.867e-02 220.372 7685.4 176

5 2.243e-02 236.620 10550.8 158

Table 14: Interface condition number and number of CG iterations in Example 2:K = 0.01.

permX

9
7.5
6
4.5
3
1.5

Figure 3.4.3: Permeability in Example 3.
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U

0.08
0.06
0.04
0.02
0

V

-0.002
-0.006
-0.01
-0.014
-0.018
-0.022

Figure 3.4.4: Computed horizontal (left) and vertical velocity (right) on subdomain grids

8× 6 and 12× 8 in Example 3.

l eig.min. eig.max. cond(Sh) iter.num.

1 0.317 98.914 312.3 65

2 0.115 182.041 1585.2 127

3 6.705e-02 427.515 6375.8 191

4 8.180e-02 937.411 11459.3 268

5 9.633e-02 2863.566 29725.9 398

Table 15: Interface condition number and number of CG iterations in Example 3.
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4.0 COUPLING STOKES-DARCY FLOW WITH TRANSPORT ON

IRREGULAR GRIDS

In this chapter, We employ the Local Discontin Galerkin (LDG) mortar method to discretize

transport equation which is based on [49, 35]. The method is locally mass conservative and

due to a built-in upwinding mechanism it accurately approximates sharp fronts. The LDG

mortar method can be formulated on general unstructured grids and allows one to vary

the degree of the approximating polynomials from element to element. The LDG mortar

method combines ideas from the DG and the mortar MFE methods, since it approximates

both the concentration and the diffusive flux using functions, which are discontinuous across

the inter-element boundaries.

In the method, the subdomain grids need not match and the mortar grid may be much

coarser, giving a two-scale method. We weakly impose the boundary condition on the inflow

part of the interface and the Dirichlet boundary condition on the elliptic part of the interface

via Lagrange multipliers, for subdomain problems. We provide the matching condition on

the interface by weakly imposing the continuity of the total flux on the interface and the

continuity of the solution on the elliptic part of the interface via mortar finite elements. The

(discrete) problem is now solvable in each subdomain in terms of Lagrange multipliers and the

resulting algorithm is easily parallelizable. By using a higher order mortar approximation,

we are able to compensate for the coarseness of the grid scale and maintain good(fine scale)

overall accuracy.When the interface is not resolved well while the subdomain scales are fine

enough, our approach also makes it easy to improve global accuracy by simply refining the

local mortar grid where needed. We also extend previous LDG tranport analysis [13, 12]to

nondivergence free velocity.
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4.1 LDG MORTAR METHOD FOR TRANSPORT

The Stokes-Darcy flow system is coupled with transport equation on Ω = Ω1 ∪ Ω2. We

rewrite the transport equation in a mixed form by introducing the diffusive flux:

z = −D∇c (4.1.1)

The original system is equivalent to

φct +∇ · (cu+ z) = φs ∀(x, t) ∈ Ω× (0, T ), (4.1.2)

where c(x, t) is the concentration of some chemical component, 0 < φ∗ ≤ φ(x) ≤ φ∗ is

the porosity of the medium in Ω2, D(x, t) is the diffusion/dispersion tensor assumed to be

symmetric and positive definite with smallest and largest eigenvaluesD∗ andD∗, respectively,

s(x, t) is a source term, and u is the velocity feild defined by u|Ωi
= ui, i = 1, 2. The model

is completed by the initial condition

c(x, 0) = c0(x), ∀x ∈ Ω (4.1.3)

and the boundary conditions

(cu+ z) · n = (cinu) · n on Γin, (4.1.4)

z · n = 0 on Γout, (4.1.5)

Here, Γin := {x ∈ ∂Ω : u ·n < 0}, Γout := {x ∈ ∂Ω : u ·n ≥ 0}, and n is the unit outward

normal vector to ∂Ω. The set of all interior edges (2d) or faces (3d) is denoted by Γh(Ωi).

Let Γh = Γh(Ω1)∪Γh(Ω2) and ∂Ωi denote the boundaries of Ωi, i = 1, 2. Γ12 = ∂Ω1 ∩ ∂Ω2

.

We define averages and jumps by

{φ} =
1

2
(φ− + φ+), [φ] = φ−n− + φ+n+

. Let WE = H1(E),VE = (WE)
d .
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Then we define bilinear forms and linear functionals for the LDG mortar method in

Ωi, i = 1, 2:

B1
i (z,v) =

∑
E∈εh(Ωi)

∫
E

D−1zv −
∑

E∈εh(Ωi)

∫
E

c∇ · v +
∑

γ∈Γh(Ωi)

∫
γ

c̄v− · ndσ

+
∑

γ∈∂Ωi\Γ12

∫
γ

c−v− · nΩi

(4.1.6)

B2
i (c, z;ω) =

∑
E∈εh(Ωi)

∫
E

φctωdx−
∑

E∈εh(Ωi)

∫
E

(cu+ z) · ∇ωdx

+
∑

γ∈Γh(Ωi)

∫
γ

(cuu+ z̄) · nΩi
ω−|Ωi

dσ +
∑

γ∈Γout\Γ12

∫
γ

c−u · nΩi
ω−|Ωi

dσ

(4.1.7)

L1
i (v, λ) = −

∑
τ∈ΓH

∫
τ∩Γ12

λv− · nΩi (4.1.8)

L2
i (ω, µ) =

∑
E∈εh(Ωi)

∫
E

φsωdx−
∑

γ∈Γin\Γ12

∫
γ

cinω
−|Ωi

u · nΩi
dσ

−
∑
τ∈ΓH

∫
τ∩Γ12

(cuu+ z̄) · nΩi
µdσ

(4.1.9)

Then the semidiscrete LDG mortar scheme to approximate the solution to (4.1.1)–(4.1.5)

is then to find c(·, t) ∈ L2(Ω) such that c(·, t)|Ωi
∈ X(Ωi) for i = 1, 2 and λ ∈ Λ such that

B1
i (z,v) = L1

i (v, λ) i = 1, 2, t ∈ [0, T ) ∀v ∈ VE (4.1.10)

B2
i (c, z;ω) = L2

i (ω, µ) i = 1, 2, t ∈ [0, T ) ∀ω ∈ WE∀µ ∈ Λ (4.1.11)

∑
i=1,2

∑
τ∈ΓH

∫
τ∩Γ12

[z]µdσ = 0 ∀µ ∈ Λ. (4.1.12)

c(·, 0) = c0 (4.1.13)

where V := L2(Ω)d ,X(Ωi) = {q ∈ L2(Ωi) : ∀E ∈ εh(Ωi), q|E ∈ Hs(E)}, s > 3/2, i = 1, 2

and Λ = H1/2(Γ12).
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4.2 FINITE ELEMENT DISCRETIZATION

4.2.1 LDG mortar finite element method

For the LDG discretization we will use the finite element spaces:

Xh(Ωi) = {qh ∈ L2(Ωi) : ∀E ∈ εh(Ωi), qh|E ∈ Pr(E)}, i = 1, 2, r ≥ 1.

V h(Ωi) = {vh ∈ (L2(Ωi))
d : ∀E ∈ εh(Ωi),vh|E ∈ (Pr(E))d}, i = 1, 2, r ≥ 1.

where Pr(E) is the space of all polynomials of degree ≤ r on E.

On the interface we will use a mortar finite elment space to approximate c and weakly

impose continuity of flux and c :

ΛH = {µH ∈ L2(Γ12) : ∀τ ∈ ΓH , µh|τ ∈ Pr̄(τ)}, (̄r) ≥ 1.

B1
i,h(Z,v) =

∑
E∈εh(Ωi)

∫
E

D−1Zv −
∑

E∈εh(Ωi)

∫
E

C∇ · v +
∑

γ∈Γh(Ωi)

∫
γ

C̄v− · ndσ

+
∑

γ∈∂Ωi\Γ12

∫
γ

C−v− · nΩi

(4.2.1)

B2
i,h(C,Z;ω) =

∑
E∈εh(Ωi)

∫
E

φCtωdx−
∑

E∈εh(Ωi)

∫
E

(CU+ Z) · ∇ωdx

+
∑

γ∈Γh(Ωi)

∫
γ

(CuU+ Z̄) · nΩi
dσ +

∑
γ∈Γout\Γ12

∫
γ

C−U · nΩi
ω−|Ωi

dσ

+
∑

E∈εh(Ωi)

1

2

∫
E

C∇ · (u−U )ω +
∑

γ∈Γout\Γ12

1

2

∫
γ

C−(u−U ) · nΩi
ω−dσ

−
∑

γ∈Γin\Γ12

1

2

∫
γ

C−(u−U) · nΩi
ω−dσ

(4.2.2)

L1
i,h(v, λ) = −

∑
τ∈ΓH

∫
τ∩Γ12

λv− · nΩi (4.2.3)
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L2
i,h(ω, µ) =

∑
E∈εh(Ωi)

∫
E

φsωdx−
∑

γ∈Γin\Γ12

∫
γ

cinω
−|Ωi

u · nΩi
dσ

−
∑
τ∈ΓH

∫
τ∩Γ12

(CuU+ Z̄) · nΩi
µdσ

(4.2.4)

Then the semidiscrete LDG mortar scheme to approximate the solution to (4.1.1)–(4.1.5)

is then to find C(·, t) ∈ L2(Ω) such that C(·, t)|Ωi
∈ X(Ωi) for i = 1, 2 and λ ∈ Λ such that

B1
i,h(Z,v) = L1

i,h(v, λ) i = 1, 2, t ∈ [0, T ) (4.2.5)

B2
i,h(C,Z;ω) = L2

i,h(ω, µ) i = 1, 2, t ∈ [0, T ) (4.2.6)

∑
i=1,2

∑
τ∈ΓH

∫
τ∩Γ12

[Z]µdσ = 0 ∀µ ∈ Λ. (4.2.7)

C(·, 0) = C0 (4.2.8)
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4.2.2 Stability of the LDG mortar finite element method

We present a stability analysis with matching grids over a LDG motar schemes. In this

case Cu will canceled when sum over two neighboring domain edges Γ12.Then the rest proof

will be almost same as in [49]. By adding (4.2.5) and (4.2.6), using integration by parts,

summing over the two subdomain Ω1 and Ω2, and integrating over t, we obtain the equivalent

formulation

BU(C,Z;ω,v;λ, µ) = −
∫ T

0

〈cinu · n, ω−〉Γin\Γ12dt+

∫ T

0

∑
i=1,2

∑
E∈εh(Ωi)

(φs, ω)Edt (4.2.9)

where

BU(C,Z;ω,v;λ, µ) :=

∫ T

0

{
∑
i=1,2

∑
E∈εh(Ωi)

{(φCt, ω)E − (CU+ Z,∇ω)E + 〈C−U · nE, ω
−〉∂E∩Γout

+ 〈(CuU+ Z̄) · nE, ω
−〉∂E\Γ + (D−1Z,v)E − (C,∇ · v)E + 〈C̄,v− · nE〉∂E\Γ

+ 〈C−,v− · nE〉∂E∩Γ +
1

2
(∇ · (u−U)C, ω)E +

1

2
(C−(u−U) · nE, ω

−)∂E∩Γout

− 1

2
(C−(u−U) · nE, ω

−)∂E∩Γin
}+

∑
i=1,2

∑
τ∈ΓH

∫
τ∩Γ12

λH [v]dσ

+
∑
i=1,2

∑
τ∈ΓH

∫
τ∩Γ12

[CU+ Z]µdσ} dt.

(4.2.10)

Taking ω = C, v = Z ,µ = λ and using (4.2.7) and (4.2.8) we have

BU(C,Z;C,Z) = Θ1 +Θ2 +Θ3 (4.2.11)

where

Θ1 =

∫ T

0

∑
E

{(φCt, C)E + (D−1Z,Z)E}dt

Θ2 =

∫ T

0

∑
E

{−(CU,∇C)E + 〈CuU · nE, C
−〉∂E\Γ〈C−U · nE, C

−〉∂E∩Γout

+
1

2
(C∇ · (u−U), C)E +

1

2
(C−(u−U) · nE, C

−)∂E∩Γout

− 1

2
(C−(u−U) · nE, C

−)∂E∩Γin
}dt
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Θ3 =

∫ T

0

∑
E

{−(Z,∇C)E + 〈Z̄ · nE, C
−〉∂E\Γ − (C,∇ · Z)E

+ 〈C̄,Z− · nE〉∂E\Γ + 〈C−,Z− · nE〉∂E∩Γ}dt

Then the rest argument is same as in [49], we obtain following stability result.

Theorem 4.2.1. The solution to the semidiscrete LDG method (4.2.5) – (4.2.8) satisfies

|‖(C,Z)‖| ≤ eLT/2(φ∗‖c0‖2 +
∫ T

0

〈|u · n|, (c2in)〉Γin
dt)1/2 + eLT

∫ T

0

‖φ1/2s‖dt, (4.2.12)

where L := ‖φ−1(∇ · u)−‖0,∞

4.3 NUMERICAL RESULTS

4.3.1 Convergence tests

In this section, we will present several convergence tables to confirm our theories. In all

these convergence tests we use both forward Euler and second-order RungeKutta method

to discretize the transport equation in time. he final time is T = 2, and the time step is

∆t = 10−3 , all numbers being dimensionless. The time step is chosen small enough so that

the time discretization error is smaller than the spatial discretization error even for the finest

grids used. In all test cases, we choose φ = 1.

In the all convergence tests, the true velocity field is:

u1 =

 (2− x)(1.5− y)(y − ξ)

−y3

3
+ y2

2
(ξ + 1.5)− 1.5ξy − 0.5 + sin(ωx)

 ,

u2 =

 ω cos(ωx)y

χ(y + 0.5) + sin(ωx)

 ,

p1 = −sin(ωx) + χ

2K
+ µ(0.5− ξ) + cos(πy),

p2 = − χ

K

(y + 0.5)2

2
− sin(ωx)y

K
,
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mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.49e-05 2.11e-04

8x8 3.99e-06 1.90 5.64e-05 1.90

16x16 1.03e-06 1.95 1.46e-05 1.95

32x32 2.61e-07 1.98 3.69e-06 1.98

Table 16: Convergence table for concentration using forward euler with Final time = 0.01

time step =0.01 in two Darcy region with D = 10−3I

The true concentration of the transport equation is

c(x, y, t) = t(cos(πx) + cos(πy))/π.

The computed concentraion and error is shown in Figure 4.3.1. The convergence rates for the

transport equation are studied by solving the coupled flow-transport system on several levels

of grid refinement. The numerical errors and convergence rates for the all tests are reported

in following tables. In all test cases we observe experimental convergence of order for the

concentration error in O(h2) for the concentraion error in L∞(0, T ;L2(Ω)) and approaching

O(h) for the diffusive flux error in L2(0, T ;L2(Ω)). Theoretical results predicted O(h) for

both variables. In our case, there are additional terms contributing to the transport nu-

merical error that are coming from the discretization error in the StokesDarcy velocity. For

our particular choice of flow discretization these terms are O(h2)from Stokes and O(h)from

Darcy. The observed second-order convergence of the concentration may be due to the su-

perconvergence of the RaviartThomas velocity at the edge midpoints, which are used to

obtain the bilinear velocity for the transport scheme. Further theoretical investigation of

this phenomenon will be a topic of future work.
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mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 1.65e-07 2.33e-06

8x8 8.50e-08 0.96 1.20e-06 0.96

16x16 4.31e-08 0.98 6.09e-07 0.98

32x32 2.16e-08 1.00 3.05e-07 1.00

Table 17: Convergence table for flux using forward euler with Final time = 0.01 time step

=0.01 in two Darcy region with D = 10−3I

mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.83e-05 2.59e-04

8x8 6.68e-06 1.45 9.44e-05 1.45

16x16 2.84e-06 1.23 4.01e-05 1.24

32x32 1.34e-06 1.08 1.90e-05 1.07

Table 18: Convergence table for concentration using RK2 with Final time = 0.01 time step

=0.01 in two Darcy region with D = 10−3I

mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 2.08e-07 2.94e-06

8x8 1.57e-07 0.41 2.22e-06 0.41

16x16 1.03e-07 0.61 1.45e-06 0.61

32x32 6.29e-08 0.71 8.90e-07 0.70

Table 19: Convergence table for flux using RK2 with Final time = 0.01 time step =0.01 in

two Darcy region with D = 10−3I
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mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.35e-05 2.46e-04

8x8 4.15e-06 1.70 7.94e-05 1.63

16x16 1.31e-06 1.66 2.57e-05 1.63

32x32 4.24e-07 1.62 8.36e-06 1.62

Table 20: Convergence table for concentration using forward euler with Final time = 0.01

time step =0.001 in two Darcy region with D = 10−3I

mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 1.51e-07 2.80e-06

8x8 9.51e-08 0.67 1.87e-06 0.58

16x16 5.03e-08 0.92 9.77e-07 0.94

32x32 2.42e-08 1.06 4.61e-07 1.08

Table 21: Convergence table for flux using forward euler with Final time = 0.01 time step

=0.001 in two Darcy region with D = 10−3I

mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.38e-05 2.52e-04

8x8 4.31e-06 1.68 8.22e-05 1.61

16x16 1.36e-06 1.66 2.65e-05 1.63

32x32 4.41e-07 1.62 8.60e-06 1.62

Table 22: Convergence table for concentration using RK2 with Final time = 0.01 time step

=0.001 in two Darcy region with D = 10−3I
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mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 1.55e-07 2.89e-06

8x8 9.98e-08 0.64 1.95e-06 0.56

16x16 5.23e-08 0.93 1.01e-06 0.95

32x32 2.50e-08 1.06 4.76e-07 1.09

Table 23: Convergence table for flux using RK2 with Final time = 0.01 time step =0.001 in

two Darcy region with D = 10−3I

mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.37e-05 2.52e-04

8x8 4.27e-06 1.68 8.19e-05 1.62

16x16 1.35e-06 1.66 2.64e-05 1.63

Table 24: Convergence table for concentration using forward euler with Final time = 0.01

time step =0.0001 in two Darcy region with D = 10−3I

mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 1.55e-07 2.88e-06

8x8 9.88e-08 0.65 1.94e-06 0.57

16x16 5.18e-08 0.93 1.01e-07 0.94

Table 25: Convergence table for flux using forward euler with Final time = 0.01 time step

=0.0001 in two Darcy region with D = 10−3I
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mesh ‖c− C‖L2(L2) rate ‖c− C‖L∞(L2) rate

4x4 1.37e-05 2.52e-04

8x8 4.29e-06 1.68 8.22e-05 1.61

16x16 1.35e-06 1.67 2.64e-05 1.64

Table 26: Convergence table for concentration using RK2 with Final time = 0.01 time step

=0.0001 in two Darcy region with D = 10−3I

mesh ‖z −Z‖L2(L2) rate ‖z −Z‖L∞(L2) rate

4x4 1.55e-07 2.89e-06

8x8 9.92e-08 0.64 1.95e-06 0.56

16x16 5.20e-08 0.93 1.01e-06 0.95

Table 27: Convergence table for flux using RK2 with Final time = 0.01 time step =0.0001

in two Darcy region with D = 10−3I

Figure 4.3.1: Computed concentraion (left) and err (right)
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4.3.2 Contaminant transport examples

In this section, we present two realistic simulation examples: Example 1 is that circle con-

taminant simulation originated at the top Stokes region(surface water region) and then trans-

ported into Darcy region(porous media region). Example 2 is that inflow of the contaminant

is specified on part of the left boundary in the surface water region. The contaminant front

eventually reaches and penetrates into the subsurface water region. In all these simulations,

the computational domain is taken to be Ω = Ω1 ∪ Ω2where Ω1 = [0, 1] × [1
2
, 1] represents

Stokes region and Ω2 = [0, 1]× [0, 1
2
] represents Darcy region.The flow equations are solved

via domain decomposition using the TaylorHood triangular finite elements in Ω1 and the

lowest order RaviartThomas rectangular finite elements in Ω2. We present two simulations

of coupled surface and subsurface flow and contaminant transport. The Stokes region Ω1

represents a lake or a river, which interacts with an aquifer occupying the Darcy region Ω2.

The porous medium is heterogeneous with permeability varying approximately two orders

of magnitude.

In both examples, we use the following flow boundary conditions. In the Stokes region

we set parabolic inflow on the left boundary, no normal flow and zero tangential stress on

the top boundary, and zero normal and tangential stress on the right (out- flow) boundary.

In the Darcy region we set no flow on the left and right boundaries and specify pressure on

the bottom boundary to simulate a gravity force.

In example 1, the plume stays compact while in the surface water region. When it

reaches the groundwater region, it starts to spread due to the heterogeneity of the porous

media. The discontinuity in the tangential velocity along the interface causes some of the

contaminant to lag behind and even move in the opposite direction. Similar behavior is

observed in example 2, where the contaminant front maintains a relatively flat interface in

the surface water region and spreads nonuniformly in the porous media.

We also compared simulations of transport on two different grids (Figure 4.3.4 – Figure

4.3.8). One is on rectangular grids and one is on quads. As you can see, They are almost

same. But it makes more sense by using the irregular grids. We also simulate two tranport

senarios: one has a unit circle concentration at Stokes region then move into Darcy region;
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One has a intial plume concentraion at the left boundary of Stokes region. All these cases

used irregular grids and slope limiter to reserves sharp discontinuities in the concentration

without numerical oscillations.

Figure 4.3.2: Transport simulation horizontal velocity feild with map (left) and without map

(right)
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Figure 4.3.3: Transport simulation vertical velocity feild with map (left) and without map

(right)
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Figure 4.3.4: Transport simulation with map (left) and without map (right) on time = 0.2
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Figure 4.3.5: Transport simulation with map (left) and without map (right) on time = 5.025
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Figure 4.3.6: Transport simulation with map (left) and without map (right) on time = 9.849

100



Figure 4.3.7: Transport simulation of moving front with map (left) and without map (right)

on time = 0.11

Figure 4.3.8: Transport simulation of moving front and velocity feild with map (left) and

without map (right) on time = 2.97
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Figure 4.3.9: Permeability in example 1

Figure 4.3.10: Horizontal velocity(left) and vertical velocity(right) in example 1
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Figure 4.3.11: Transport simulation with map at time = 0.201(left) and at time = 5.025

(right) in example 1
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Figure 4.3.12: Transport simulation with map at time = 7.638(left) and at time = 9.849

(right) in example 1
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Figure 4.3.13: Transport simulation with map at time = 0.401(left) and at time = 10.02

(right) in example 2
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Figure 4.3.14: Transport simulation with map at time = 14.84(left) and at time = 19.65

(right) in example 2
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5.0 CONCLUSION AND FUTURE WORKS

In chapter 2, We mainly focused on studying steady state Stokes-Darcy model on irregular do-

mains. We applied a new mixed finite element method called Multi-point Flux Mixed Finite

Element (MFMFE) method to handle Darcy flow in irregular porous media regions [29, 55].

This method reduces to a cell-centered finite difference scheme for the scalar variable and is

accurate for discontinuous full tensor coefficients on h2-perturbed parallelograms, simplicial

grids, and h2-perturbed parallelepipeds. Cell-centered discretizations are very efficient and

widely used for modeling complex multiphase multicomponent fluid flows in porous media,

since multiscale spatial variability of the material properties often necessitate millions of cells

for accurate approximations [47, 52]. This method has a symmetric and a non-symmetric

version. The symmetric method can handle h2-perturbed parallelograms, simplicial grids,

and h2-perturbed parallelepipeds, while the non-symmetric method can deal with more gen-

eral quadrilaterals and hexahedra. This is a typical grid encountered in geological models.

Furthermore, hexahedral grids can represent highly irregular geometries with significantly

reduced number of elements compared to tetrahedral grids. This is especially important in

computationally intensive applications such as carbon sequestration in saline aquifers. The

symmetric MFMFE method has been designed to be a cell-centered pressure scheme that

is accurate for both smooth and discontinuous full tensor permeability, but unfortunately

it is not accurate on general hexahedral grids. As in the non-symmetric MPFA method

on quadrilaterals, a coercivity condition needs to be satisfied for the well-posedness of the

non-symmetric MFMFE method. The condition depends on the element distortion and per-

meability anisotropy. Although the non-symmetric method converges on rough grids, where

the convergence of the symmetric method deteriorates, for some highly anisotropic prob-

lems, the non-symmetric method loses coercivity, while the symmetric method still works.

105



Therefore one or the other method may be preferable, depending on the properties of the

grids and the permeability coefficient. This choice can be made element by element. In

Stokes flow, we use a traditional stable Galerkin finite element method on triangular mesh.

We proved stability of the scheme and derived error analysis for both symmetric and non-

symmetric MFMFE method by assuming suitable compatibility and inf-sup conditions for

mortar functions [46]. The stability and convergence analysis relies on the construction of a

bounded global interpolant in the space of weakly continuous velocities that also preserves

the velocity divergence in the usual discrete sense. This is done in two steps, starting from

suitable local interpolants and correcting them to satisfy the interface matching conditions.

The correction step requires the existence of bounded mortar interpolants. This is a very

general condition that can be easily satisfied in practice. We present two examples in 2-D

and one example in 3-D that satisfy this solvability condition. Our error analysis shows that

the global velocity and pressure errors are bounded by the fine scale local approximation

error and the coarse scale non-conforming error. Since the polynomial degrees on subdo-

mains and interfaces may differ, one can choose higher order mortar polynomials to balance

the fine scale and the coarse scale error terms and obtain fine scale asymptotic convergence.

The dependence of the stability and convergence constants on the subdomain size is ex-

plicitly determined. In particular, the stability and fine scale convergence constants do not

depend on the size of subdomains, while the coarse scale non-conforming error constants

deteriorate when the subdomain size goes to zero. This is to be expected, as the relative

effect of the non-conforming error becomes more significant in such regime. However, this

dependence can be made negligible by choosing higher order mortar polynomials, as men-

tioned above. Our multiscale Stokes-Darcy formulation can be viewed as an extension of

the mortar multiscale mixed finite element (MMMFE) method for Darcy. The MMMFE

method provides an alternative to other multiscale methods in the literature such as the

variational multiscale method and the multiscale finite element method [2, 54]. All three

methods utilize a divide and conquer approach: solve relatively small fine scale subdomain

problems that are only coupled on the coarse scale through a reduced number of degrees of

freedom. The mortar multiscale approach is more flexible as it allows for employment of a

posteriori error estimation to adaptively refine the mortar grids where necessary to improve
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the global accuracy. Following the non-overlapping domain decomposition approach, it can

be shown that the global Stokes-Darcy problem can be reduced to a positive definite coarse

scale interface problem. The latter can be solved using a preconditioned Krylov space solver

requiring Stokes or Darcy subdomain solves at each iteration. Sub-domain problems can be

solved in parallel for efficiency[51].

We implemented the curved interfaces problems by mapping them back to a reference

domain with straight interfaces and performing all the calculations there. On the physical

domain we approximate the curved interfaces with piecewise linear segments. Although

other references utilize blending elements to get a perfect approximation to the the curved

interfaces, the idea of the implementation for the curved interfaces is still the same as ours

and our methods are much cheaper and easier to implement.

In chapter 3, We also presented domain decomposition method for the coupled Stoke-

Darcy flow with curved interfaces. The effectiveness of the domain decomposition depends

on the rate at which the interface iterations converge. The latter is characterized by the

condition number of the algebraic problem. We investigated the dependence of the condition

number on the subdomain mesh size, permeability and the interface type. The number

of subdomains also has effect on the convergence. Due to the lack of global information

exchange between the subdomains the condition number increases rapidly as the number of

subdomain increases. Therefore, in order to be able to solve in parallel a large scale problem

by employing a large number of processors, one for each subdomain, we need a suitable

preconditioning technique. Numerical results were presented to confirm theories.

In chapter 4, We developed a LDG mortar method to discretize transport equation

which will allow for non-matching grids on neighboring subdomains. We developed stability

analysis and also presented several numerical simulations under irregular gemotery with

matching grids.

We will develop convergence analysis for the concentration and diffusive flux on non-

matching grids. The numerical error may be a combination of the DG discretization error,

mortar error and the error from the discretization of the Stokes-Darcy velocity. The main

difficulties here are the implementation of our method on non-matching grids and conver-

gence analysis of the scheme. Then, we can consider the complete coupled problem where
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the velocity from Stokes-Darcy flow impacts the concentration and the change of concen-

tration influences the Stokes-Darcy velocity. For the current results, we pre-compute the

Stokes-Darcy velocity and plug it into the transport equation as a known flow field. After

the implementation of transport on irregular grids with non-matching grids and convergence

analysis for the method on non-matching grids, we may consider this challenging problem in

the near future.
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