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Safety is an essential requirement for air traffic management and control systems. Aircraft

are not allowed to get closer to each other than a specified safety distance, to avoid any

conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in

the number of flights. Subsequently, automated tools are needed to help air traffic controllers

resolve air born conflicts. In this dissertation, we consider the problem of conflict resolu-

tion of aircraft flows with the assumption that aircraft are flowing through a fixed specified

control volume at a constant speed. In this regard, several centralized and decentralized

resolution rules have been proposed for path planning and conflict avoidance. For the case

of two intersecting flows, we introduce the concept of conflict touches, and a collaborative

decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows.

The proposed rule is also able to resolved airborn conflicts that resulted from resolving an-

other conflict via the domino effect. We study the safety conditions under the proposed

conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analyt-

ically prove the convergence of conflict resolution dynamics under the proposed rule. The

analysis show that, under the proposed conflict resolution rule, the system of intersecting

aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded

time. Simulations are provided to verify the analytically derived conclusions and study the

convergence of the conflict resolution dynamics at different encounter angles. Simulation

results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are

bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.
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The proposed rule is powerful when the pilots of the collaborating aircraft, resolving a

potential conflict, are either humans or robots. However, when a human pilot is collaborating

with a robot pilot for the first time, the robot control should optimize its control criteria

to collaborate well with the human. Basically, the robot must adapt its output as it learns

from the human. We study the situation of the Human-in-the-Loop, assuming that human

will follow lateral maneuvers for conflict resolution. We model the human as an optimal

controller that minimizes the risk of collision. Based on that model, we use differential

game analysis to get an accurate estimate for the human control criteria. We propose a new

algorithm, based on least square minimization, to estimate the Kalman gain of the human’s

model, and therefore accurately estimate his optimal control criteria. Simulations of this

learned rule show that robot pilot can successfully learn from the human pilot actions, and

both can cooperate successfully to resolve any conflicts between their aircraft.
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PREFACE

This research work was motivated by the increased complexity of the air traffic manage-

ment and by the desire of automating the process of conflict detection and resolution. The

dissertation aims to propose automatic solutions for the air traffic management that reduce

that complexity and help the air traffic controllers with their workload. Beside proposing

decentralized collision avoidance control rules, this work provides a mathematical framework

to analyze the safety and the converge of the conflict resolution dynamics using Lyapunov

analysis.

This dissertation can be divided into three parts. The first part (Chapter 1) introduces

the existing air traffic management systems and efforts for collision avoidance and aircraft

conflict resolution. Chapter 2–4 constitute the second part of this dissertation. In this part,

the conflict resolution geometry is defined, followed by proposing an automatic collaborative

decentralized conflict resolution rule. Then, mathematical and numerical analysis was con-

ducted was derived to prove the safety and convergence of the conflict resolution dynamics

under the proposed automatic rule. This mathematical framework is based on Lyapunov

analysis of dynamical systems. The third part of this dissertation studies human-robot

collaboration for aircraft conflict resolution in Chapter 5. The work proposes a model to

estimate human control action to train a robot pilot that work collaboratively with human

pilot to resolve an existing conflict.

The work in this dissertation can be extended to build a framework to study multi-agent

networks. Therefore, this dissertation should be of interest to scholars working on air traffic

management systems, decentralized and networked control, human-robot interactions and

collaboration, and Lyapunov analysis.
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1.0 INTRODUCTION

Supported by decades of operation, the conventional geographical network based air traffic

control system, in which aircraft fly along fixed routes, is proven to be safe. However, the

continuous increase in number of daily flights, bring the entire system to a congested state;

and this triggered the evolution of new air traffic control rules. On the other hand, motivated

by the desire for more efficient handling of airborne traffic, Free Flight operations [5] depend

on navigation and surveillance technologies to increase the freedom of route planning. Free

Flight thus enables flexible routing systems and can replace the fixed routing structure,

especially with the increasing growth in air transportation. The concept of Free Flight

was enabled by the advent of global navigation satellite systems, e.g. GPS, that facilitated

precise positioning of aircraft and thus eliminated the routing constraints imposed by the

conventional fixed-route system. Under Free Flight, aircraft are able to optimize their own

trajectories according to some certain criteria, such as weather, safety, time of flight, and

cost of operation [6, 7]. It also enables larger traffic volume; potentially, airspace capacity

may be increased by at least a factor of three [8]. This confines with the Joint Planning and

Development Office stated goal of tripling the available capacity of the National Airspace

System by 2025 [9]. Free Flight motivates distributing the traffic control decisions based on

information available locally to potential sites of air traffic conflict, and emphasizes on the

possibility of using decentralized control strategies. This may lead to dismantling of most of

the current structure of the air traffic management system in favor of a seemingly chaotic but

more efficient management system. However, with this approach, Free Flight may increase

the complexity of conflict detection and resolution process on the air traffic controllers,

since distributed control may result in a lack of predictability of potential conflicts [10], and

more complex conflict scenarios may arise because of the unstructured trajectories resulted
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from pilot-preferred routing [11]. Moreover, ensuring safe separation has now become the

responsibility of each individual aircraft [12]. To be able to take this responsibility, individual

aircraft should have the capability of monitoring, detecting, and resolving any potential air-

born conflicts efficiently and without the intervention of the ground air traffic controllers.

Therefore, the effect of any Free Flight based approach on system efficiency and safety needs

to be proven by simulating the automated and optimal conflict detection and resolution

algorithms [3,13]. Examples of Free Flight systems that are introduced to overcome air traffic

complexity are the American Next Generation Air Transportation System (NextGen) [12],

and its European equivalent Single European Sky Air traffic management Research program

(SESAR) [14]. Both systems aim to automate the air traffic control operation and allow

a higher level of decision making by the pilots in response to changing flight conditions.

Hence, rather than depending on experience with reliable operation, such as the network

based system, new traffic management schemes should provide appropriate analysis and

mathematical modeling to verify its efficiency and safety.

1.1 CONFLICT DETECTION AND RESOLUTION PROCESS

1.1.1 National Airspace System

In order to understand air traffic management systems and the conflict resolution process,

it is important to learn about the composition of the National Airspace System (NAS).

The NAS, as operated by the Aviation Administration (FAA), enables the safe and efficient

transportation of aircraft [1]. It consists of a heterogeneous set of interacting units that

includes human operators, airspace, technologies, practices, procedures, and policies. Air

Route Traffic Control Centers (ARTCC) are essential functional components of the NAS

structure. There are 22 (20 in the continental US) ARTCC centers responsible for managing

en route aircraft, and controlling an airspace of up to 60,000 feet [15]. Figure 1 shows a

map of the 20 centers spanning the continental United States. Each center is structured

into multiple layers (low-altitude, high-altitude, and super-high-altitude), which are further

2



Figure 1: Map of the 20 Air Route Traffic Control Centers covering the continental United

States. (figure adopted from [1])

subdivided into en route sectors. For example, the map of the high-altitude sector boundaries

for Minneapolis Center (ZMP) is shown in Figure 2. Depending on traffic conditions, one or

two air traffic controllers are responsible for managing aircraft traffic in one sector. Within

each sector, navigation infrastructure(e.g., waypoints, jetways and navigation aids) is used to

help with the traffic flow management. As will be extensively described below, The primary

task of the air traffic controller working an en route sector is to ensure the proper separation

of aircraft all the time. For the operations near airports, air traffic control is managed

by control tower that handles arriving and departing flights at airports [16]. Towers are

equipped with tools and devices that enable human operators to perform efficiently. For

example, towers have radars that covers ground activities, air activity, radio communication,

meteorological surveillance and light control for taxi-ways and run-aways [17]. Therefore,

serving as a complementary element, Airport towers along side ARTCCs are used to control

the airspace within a specified range (e.g., sector) and ensure that safe and efficient traffic

flow is maintained.

3



Figure 2: Center map for Minneapolis Center (ZMP) with high-alitude sector boundaries.

(figure adopted from [1])

1.1.2 Air Traffic Management

Aircraft conflict resolution is an important aspect in air traffic management (ATM) and

safety. ATM aims to provide safe, orderly, and efficient operation of both civilian and un-

manned aircraft by imposing certain requirements on aircraft control [18, 19]. With the

increased demand of air traffic, avoidance of airborn collisions that may occur in a congested

network is a necessary requirement. Two main components constitute the ATM system,

namely the Traffic Flow Management (TFM) and Air Traffic Control (ATC). The TFM role

is to organize the flow patterns of aircraft to ensure efficient operation. In other words,

TFM manages the air traffic in the NAS based on system capacity and demand [15]. TFM

deals with demand management and typically deals with traffic at the ARTCC level. On

the other hand, the ATC ensures separation of aircraft as a means to avoid aircraft conflict

or collision [16,17]. ATM process conflict detection and resolution at three different levels:
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Figure 3: Structure of ATC operator training.

1. Long Range: At this level, conflict detection and resolution are performed at the level

of the entire national airspace system, over a relatively long time horizon that extends

for several hours [20, 21]. This process involves using large-scale integer and linear pro-

gramming techniques to predetermine flight trajectories and airlines schedules. This

guarantees that airports and air sectors capacities are not exceeded.

2. Mid-Range: Conflict detection and resolution are managed by the ATCs, over a time

horizon of the order of tens of minutes. Deviations from the originally planned trajectories

are instructed to each aircraft to ensure safe separation between aircraft.

3. Short Range: Conflict detection and resolution are performed in a decentralized fash-

ion. The detection and resolution are performed on board the aircraft by the flight

management systems, over a short time horizon of the order of seconds to few minutes.

For most of the operations, conflict detection and resolution are managed by trained

ATC operators. ATC operators must be trained before dealing with real conflict situations.

Figure 3 shows the structure of a typical training program. The training is conducted using

simulation tools for learning both general knowledge and site-specific knowledge. Simulation

tools are used, along with the theoretical framework, throughout the training course to train

operators on new equipment and new routines.

Simulation has proven to be an adaptable tool that is useful for many situations where real

life training might be risky or too expensive. Simulation tools are commonly used for ATC

operator because of their valuable features. By using simulators, ATCs have the ability freeze
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scenarios and directly evaluate other solutions. Also, simulators can record the whole training

session that can be replayed at a later time for further evaluation. However, simulators

cannot train the ATC operators under the stressful environment of real scenarios, where

they cannot compensate of fetal mistakes. Table 1 lists the advantages and disadvantages

associated with the use of simulation tools in ATC training and as an experimental tool.

1.1.3 ATC based Conflict Avoidance

Technically, ATC operators monitor flights in real time to ensure safe flight operations.

Therefore, ATC operators constitute an essential element for the ATM process due to their

ability to observe, integrate information, and make guided decisions. Figure. 4 shows the

components of conflict detection and resolution system. A conflict occurs when two or more

aircraft are close to each other, i.e., a loss of separation (c.f. Figure 5). The International

Civil Aviation Organization defines and enforces a safe separation zone for each aircraft.

The safety distance is defined by means of a minimum allowed horizontal separation and

a minimum vertical separation. Current en-route airspace regulations set the minimum

horizontal separation to 5 nautical miles (nm), while inside the terminal radar approach

control (TRACON) area it is reduced to 3 nm. The minimum vertical separation is 2000

ft above the altitude of 29000 ft (FL290), and 1000 ft below FL290. Thus, aircraft are in

conflict if their separation zones intersect (Figure 5).

Conflict avoidance is a two stage process. First, aircraft trajectories are continuously

monitored by air traffic control operators who handle detection and resolution of any possible

conflicts. The future positions of the aircraft are predicted based on their current trajectories

and flying conditions. A potential conflict is detected if the predicted positions of any pair

of aircraft violate the safe separation requirements at any time in the future. Second, to

avoid any possible collisions, the trajectories of the aircraft involved in each of the detected

conflicts are replanned to resolve that conflict. Conflict resolutions are performed through

conservative maneuvers, mainly a combination of speed and heading changes, and flight level

reassignment, to ensure aircraft separation rather than to reduce operations costs [22, 23].

However, the altitude changes are not common for many reasons such as fuel consumption,
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Table 1: Advantages and disadvantages of using simulation tools for ATC training and

experiments

Advantages Disadvantages

Software and Hardware

(a) test new tools and their

compatibility

(b) reveal bugs and technical

issues

Training

(a) low cost

(b) risk free

(c) easy to develop

(d) mimic real scenarios at

variety of conditions

(e) ability to freeze any

given scenarios

no feeling of real stress or

responsibility

Scenarios

(a) excellent for emergency

training

(b) ability to repeat scenarios

trainers could learn the

traffic pattern

Experiment

(a) ability to save data for

future analysis

(b) high accuracy and reliability

due to controlled environment

(c) ability to control every variable

during the experiment.

(a) need a detailed plan for

which data to be collected

(b) too much control might

not reveal unexpected results

Fidelity

(a) good for specific training

(b) ability to conduct experiments

and simulations using high and

low fidelity.
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Figure 4: Components of conflict detection and resolution. (figure adopted from [2])

Figure 5: Each aircraft is protected by a safety zone. Whenever the safety zones of two

aircraft overlap, a conflict is detected.
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passengers discomfort, and ease of monitoring. Air traffic control is thus a crucial stage in

the overall air traffic management, since it constrains the airspace structure and traffic flow.

Eurocontrol estimated a 50% increase in air traffic density by 2035 [24]. Consequently, the

FAA (Federal Aviation Administration) is making several efforts to improve the capacity and

throughput of existing airspaces by means of airspace redesign, trajectory based operations,

new traffic flow management tools, and automated data communication and navigation

systems. Also, the increase of air traffic would continuously increase the complexity of the

conflict detection and resolution process. Air traffic control complexity refers to a set of

descriptions of the prevailing air traffic patterns and sector characteristics that aid or hinder

in the management of aircraft conflict detection and resolution. This increasing complexity

adds intensive workloads to the ground controllers [25].

ATC operator workload associated with air traffic control corresponds to the stress, or

“ . . . the amount of effort, both physical and psychological, expended in response to system

demands (task load) and also in accordance with the operators internal standard of perfor-

mance” [26]. Beside air traffic control complexity, there are three other mediating factors

that influence the ATC operators workload: quality of equipment, individual differences,

and operator cognitive strategies [27, 28]. Quality of equipment considers, for example, the

accuracy of of tracking systems and (or) the usability of user interfaces for computer-assist

tools [1]. Individual differences, such as personality, age, and experience, have shown cor-

relation with ATC operators workload. The last actor, cognitive strategies, assimilates how

operators adapt their strategies in managing traffic according to pressures from increasing

traffic density. For example, at low traffic densities operators use a wide variety of infor-

mation and options in managing traffic, while at high traffic densities, operators limit the

amount of information they use and adapt their management strategies based on economical

constraints, including strategies for resolving potential conflicts.

Although, as previously discussed, human performance and human factors have been

considered to be of great importance to, and directly affect, air traffic system performance;

the increased work load would probably lead to failures and operational errors [2,29]. Subse-

quently, automated reliable tools will be needed to help ATC in accommodating this traffic

increase and the associated complexities and to facilitate air traffic management. Together,
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these automated tools would provide a safety net when normal procedures, and controller

and pilot actions fail to keep aircraft separated beyond established minimum safety distance.

One goal for these automated systems is to predict a conflict that is going to occur, convey

the detected conflict to an ATC operator, and assist in the resolution of the detected conflict

situation [2]. This process can be organized into modular phases as shown in figure. 6. The

system will be able to detect possible conflicts by first monitoring and (or) estimating the

current state of traffic situation. The traffic state is then used to project the states into the

future, by using the dynamic trajectory model, in order to predict the existence of possible

conflicts. If a conflict is detected and an action is considered necessary, the conflict resolution

phase may be initiated. Without the automated systems, conflict detection and resolution

would be manually handled through procedures. For example, visual flight rules place the

responsibility for collision avoidance on the pilot, who must visually scan for traffic (conflict

detection) and if a conflict is perceived, take appropriate action according to a predefined

set of rules (conflict resolution). Under instrument flight rules, an ATC operator monitors

traffic using radar and issues resolving maneuvers to pilots when a conflict is estimated to

occur (Figure. 7). However, as previously discussed, the use of automated systems would

be helpful in reducing the workload experienced by the ATC operators by aiding them, and

would be helpful in increasing the efficiency of the conflict detection and resolution process.

1.1.4 Airspace Redesign

In the face of the increasing traffic demand and as a means to reduce the workload on ATCs,

airspaces have been redesigned into smaller and more specialized sectors for ATC operators

to manage. Such division allows ATC controllers to monitor a smaller set of aircraft, while

decreasing variance in traffic patterns. Examples of such airspace redesign include sectors

ZMP15 and ZMP16 in Minneapolis center (Figure 2). Both are dominated by aircraft arrivals

into Minneapolis - St. Paul International Airport (MSP) and are significantly smaller than

other sectors in that center. However, there is a certain limit after which sectorization will no

longer be an efficient strategy for reducing ATC controller workload. Dividing the ARTCC
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Figure 6: Conflict detection and resolution phases. (figure adopted from [2])
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Figure 7: In traditional systems, ATC operators use radar and vocal communication systems

to monitor and issue commands to aircraft.

centers into smaller sectors basically reduces the amount of traffic that any single sector can

accommodate, and places restrictions on the types of conflict resolution maneuvers available

to ATC operators. Additionally, increasing the number of small sectors requires larger

number of ATC staff and higher level coordination between adjacent sectors. The advantage

of smaller sectors in terms of managing ATC operators workload and traffic complexity is

reaching its limits. Hence, while airspace redesign, along with the introduction of tighter

navigation standards, will result in further gains in capacity, these changes alone are not

sufficient to accommodate the anticipated growth in air traffic density. Therefore, the use

of advisory decision-support tools and automated conflict detection and resolution tools and

became a necessity.
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Figure 8: Conflict detection and resolution decision-support tools aid ATC operators by

providing them with possible resolution solutions.

1.1.5 Advisory Decision-Support Tools

Advisory conflict detection and resolution decision-support tools are used to aid ATC op-

erators, without replacing them. Advisory decision-support tools provide conflict resolution

options to ATC operators, and can be used as an alternative to fully- or semi-automated

systems that require advanced data communication and navigation sub-systems. Figure 8

shows a diagram of the control structure for human-in-the-loop (ATC operator in this case)

control with conflict detection and resolution decision-support tools. The conflict detection

and resolution decision-support tools detect potential conflicts and propose resolution ma-

neuver commands for the ATC operators to review and issue to aircraft. If ATC approved

the resolution strategy, the new trajectories are uploaded to the aircraft via data link for

pilot approval.

One advantage with use of the decision-support tools is the ability to design these tools to

handle large and complex traffic loads, and provide real time solutions. Moreover, there exist

a safety net associated with these tools, because these tools does not exclude the human ATC
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operator out of the loop, and (s)he can accept or reject the suggested solution. However,

there still some concerns about degraded performance of ATC operators and the propoer

design of the decision-support tools. For example, conflict detection and resolution systems

should be designed appropriately such that human controllers neither overly depend on the

support tool nor lack faith in the tool and disregard it [1, 30,31].

The design and implementation of conflict detection and resolution algorithms for decision-

support tools in human-based air traffic control operations should take a different approach,

because the existence of the human in the loop would require additional design specifications.

In other words, the method by which conflict detection and resolution algorithms identify

and resolve conflicts is critical to the function of a decision-support tool. For example, the

algorithms must explicitly acknowledge the role of the ATC human operators and accom-

modate their abilities. There is a need to ensure that the inclusion of conflict-resolution

decision-support tools will reduce, or at the very least not worsen ATC operator workload,

while improving service.

1.1.6 Mixed Automation for Conflict Resolution

Some research efforts, that are more consistent with human-factors constraints, was directed

toward mixed levels of automation of the conflict detection and resolution process. For exam-

ple, the En Route Air Traffic Soft Management Ultimate System (ERASMUS) project [32]

was funded by EUROCONTROL to study approaches that effectively integrate advanced

automation concepts consistent with controllers human factors issues. This project intro-

duced the concept of “subliminal control” [32, 33]. Under this concept, significant portions

of traffic are deconflicted or further spaced with minor automated speed control commands

within ±6%. The magnitude of this change is not perceptible to ATC operators or pilots.

Thus, the use of this minor change of speed to force separation of aircraft reduces both the

total number of aircraft that ATC operators actively monitor for potential conflicts and the

number of resolution commands that operators issue. Some simulation studies suggest that

controller workload is reduced using this approach [1].
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Although it may enhance the system performance, there are some concerns about the

subliminal control. The concerns address the applicability, practicality and ability to im-

plement the subliminal control based systems in the real world. For example, subliminal

control systems require very advanced data communication and navigation systems to con-

trol aircraft directly away from the pilot and the ATC operator. Moreover, mixed-modes of

operation that include dynamic allocation of separation tasks would lead to ambiguity about

who is in control and who is responsible for recovery in the case of system failure (pilots or

ATC operators). Also the use of mixed-automation systems may lead to loss of motivation

for the ATC operator, since most of the process is allocated to automation systems [34].

1.1.7 Automated Conflict Resolution

Automated conflict detection and resolution systems aim to increase the air traffic capacity

while reducing the ATC workload and system complexity, by automatically detecting con-

flicts and generating conflict free trajectories as a solution to the detected conflicts. The

resuction in ATC operators workload is achieved by decreasing the amount of time and

mental effort ATC controllers spend detecting and resolving potential conflicts [35]. On av-

erage, ATC operator takes around 27.6 seconds to resolve a potential conflict between two

aircraft [36]. However, the impact of the automated tools on the system performance should

be studied alongside investigating the practical implementation of these methods. Practi-

cal implementations are topic of concern, because automated systems need advanced digital

communication and navigation systems to directly communicate with, and control, aircraft.

Also, an automatic conflict detection and resolution system should provide provably safe

solutions while attempting to satisfy aircraft dynamic limitations [37,38]. In Section 1.2, we

review some of the recently proposed automatic conflict detection and resolution algorithms.
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1.2 PREVIOUS WORK

Trajectory prediction and conflict detection approaches can be categorized into three classes:

nominal, worst case, and probabilistic [2]. The nominal predictors project the current state

along a single trajectory into the future. Although being simple and straightforward, this

approach does not account for uncertainties that may lead to deviations in aircraft routes.

Worst case predictors (for example, [39] and [40]) are more conservative, since they assume

that the aircraft can perform any of a range of maneuvers, and report a conflict alarm if

any of these maneuvers could result in a conflict. In dense traffic situations, this approach

could cause high false alarm rate. The probabilistic approaches consider uncertainties in the

predicted aircraft trajectories. Probabilistic methods consider use an ensemble of sample

paths and compute the probability of projected conflicts. Thus, aircraft trajectories are

modeled as a probability density function, from which a probability of conflict is estimated.

This avoids the conservativeness of the worst case approach, but is still robust with respect to

uncertainty. Hence, for situations with a high density traffic and uncertainties, these methods

are useful in evaluating air traffic safety. However, it is difficult to build a simple but realistic

model the perturbations that affect aircraft trajectories. Wind and errors in tracking, control,

and navigation are the common sources of uncertainty that are taken into consideration

when designing a probabilistic model. Usually, the deviations from nominal trajectories are

modeled as the sum of independent random variables, each corresponds to one source of

uncertainty, acting in disjoint time periods [41]. Paielli and Erzberger [42] modeled tracking

errors by zero-mean Gaussian random variables. They proposed a closed form analytic

expression for the probability of conflict for level flight, assuming that the two aircraft fly

along straight lines with constant tracking errors over the whole time horizon. To get rid

of the errors that may be introduced if the simplifying assumptions in [42] are not satisfied,

Monte Carlo simulation, incorporating aircraft intent information, was used to estimate the

probability of conflict in [43]. This method can be applied under different scenarios and does

not require particular assumptions. It is not computationally efficient though. Prandini

et al. [41] have used a stochastic kinematic model in which uncertainties for short-term

trajectory prediction were modeled as a two-dimensional Brownian motion. This method
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does not require of flight plan, but its prediction error tends to grow quadratically with

time. Thus, this method is usually used for short-term trajectory and conflict predictions

of up to 5 min into the future. In [44], the heading change of an aircraft was modeled with

a Poisson distribution derived based on empirical data. This method does not explicitly

assume any intent information. NextGen [12] incorporates aircraft intent information into a

probabilistic framework by using both an aircraft dynamics model for short-term prediction

and an aircraft navigation model for long-term prediction. Irrespective of the approach used

to detect conflicts, once a conflict detected, a conflict resolution procedure must be initiated.

Since conflict resolution is the most important challenge to ATC, several centralized and

decentralized approaches have been proposed, in the last few years, to solve air conflicts

with dense traffic involved (e.g., [2,3,10,13,45–56]). For example, Bicchi and Pallottino [45]

introduced a heuristic heading change decentralized collaborative approach, i.e., all aircraft

involved in a conflict collaborate to its resolution, while Pallottino et al. [13] proposed a

centralized collaborative conflict resolution approach based on mixed integer linear pro-

gramming (MILP) optimization for an optimal path planning considering two cases: instan-

taneous velocity change and heading angle change. However, the velocity change approach

cannot be applied to every conflict situation, e.g., head-to-head conflict. Yoo and Deva-

sia [46] studied the effect of turn dynamics by bounding the heading change rate on the

space needed for a safe conflict resolution procedure. Christodoulou and Kodaxakis [47]

solved the conflicts in three dimensions with only velocity changes by minimizing the to-

tal flight time using mixed-integer nonlinear programming. However, this approach suffers

from a high computational time. Alonso-Ayuso et al. [48] combined velocity and altitude

changes to develop a MILP method. They showed interesting results in the perspectives

of computational time and the efficiency of resolution in situations with large number of

conflicts. However, altitude changes are not acceptable by airlines because of the high fuel

cost and passengers discomfort associated with altitude change maneuvers. Alejo et al. [49]

considered real time decentralized change of the velocity profile in three dimensions to main-

tain the safety distance separation. On the other hand, Bilimoria [50] proposed a geometric

approach designed to minimize the deviation from a nominal velocity vector. The model

sequentially solve conflicts involving multiple aircraft, consequently, the model cannot con-
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verge to a global optimal solutions. Rey et al. [51] introduced a subliminal speed control

model designed to reduce the impact of conflict onto air traffic controllers workload. Cafieri

and Durand [52] proposed nonlinear formulation to separate aircraft while minimizing the

deviation to aircraft nominal trajectories. Their model depends on velocity regulation using

mixed integer optimization. Omer [53] proposed a MILP based space-discretized model that

allows both velocity and heading maneuvers. These maneuvers are restricted to trapezoidal

patterns and aim to minimize fuel consumption while resolving existing conflicts. Compared

to a non linear hybrid time-discretized model [54], this method performed faster but with

a higher fuel consumption. Durand and Alliot [55] modeled aircraft trajectories as a path

in a graph and used ant colony optimization for conflict free path planning. However, this

method is restricted to piecewise-linear trajectories. Mao et al. [3] introduced a sequential

decentralized control rule to resolve conflicts in a specified control volume. Their model

considers only a one time bounded lateral maneuver for each aircraft entering the control

volume. The model was proven to be stable, and the lateral deviation has the same effect

in resolving conflicts as heading change procedure in [57]. In [56], Frazzoli et al. introduced

a hybrid method that combines decentralized aircraft speed vector preferences with central-

ized conflict resolution rule that minimizes aircraft deviations from the desired trajectories.

Their centralized conflict resolution approach is based on formulating a nonconvex quadratic

cost function and its solution using semidefinite programming with a randomization scheme

to obtain conflict free rectilinear trajectories. In [10], it has been proven that certain pe-

riodic planar partitions of space are able to provide conflict resolution for any distribution

of aircraft in the flows. Space partitioning is an offline optimization approach provides a

priori geometrical configuration for conflict avoidance. Mao et al. [10] studied space parti-

tions conflict avoidance for two and three intersecting flows. The idea is to generate a space

partition using appropriately constructed aisles aligned along relative velocity vectors. This

space partition will consequently create a collection of protected quadrilaterals for each flow

such that an aircraft may avoid conflict from the other flows whenever its circular protected

zone is located in a protected quadrilateral of the same flow. Using the aisles convention,

the conflict resolution is equivalent to finding a feasible partition of the planar space such

that the aisles are distributed in a way where aisles of one flow will not overlap aisles of
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the other flows. Feasible solutions are obtained if the airspace is partitioned and struc-

tured with different aisle width patterns for each of the four aircraft flow pairs. Mao et

al. [10] defined the requirements for a feasible space partition as: (1) all aircraft can find

safe locations in some protected quadrilaterals via lateral deviations and (2) the magnitude

of lateral deviation required of any aircraft is bounded. Barnier and Allignol [35] used con-

straint programming model with ground holding approach to solve all potential conflicts

occurring above a given flight level. However, their approach is computationally expensive,

especially for busy flight schedules. In the approaches proposed in [58–60], arriving aircraft

are guaranteed safe trajectories to choose from. Therefore, the available airspace and arrivals

runway capacities can be efficiently utilized. Resmerita et al. [60] proposed a two-phase (con-

flict resolution phase followed by an agent-accommodation phase) decentralized multi-agent

framework for conflict free navigation in a discrete environment. Beside the aforementioned

methods, effects of weather uncertainties [61], perturbations, navigational errors [62], and

airspace disturbances [63] on conflict resolution procedures were studied as well. A review

of some other conflict detection and resolution methods can be found in [2], [11], and [64].

Generally speaking, optimization approaches require a proper definition of the cost func-

tion. Usually, aircraft separation, fuel consumption, and (or) time delays are used to for-

mulate the cost function. Typically, optimization approaches combine a kinematic model

with a set of cost measures. An optimal resolution strategy is then determined by solving

for the trajectories that minimize the cost [2]. TCAS (Traffic Alert and Collision Avoidance

System), for example, searches through a set of possible climb or descent maneuvers and

chooses the least-aggressive maneuver that still ensures adequate protection [65]. One issue

with the optimization based method is the complexity of the models. These models can

be complex and would require a large computational time to converge to a feasible opti-

mum trajectories. On the other hand, decentralized approaches are more simpler than the

optimization approaches and do not require large computation time.
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1.3 INTRODUCTION TO THE PROPOSED WORK

This dissertation focuses on air traffic scenarios with intersecting aircraft flows. Intersect-

ing aircraft flows are considered for two main reasons. First, rearranging air traffic into

standard flows can reduce the traffic complexity [66, 67], and the conflict resolution of two

intersecting flows can be used to build an efficient global conflict resolution system by re-

solving local conflicts between every pair of intersecting aircraft flows [25,68,69]. Devasia et

al. defined the necessary and sufficient conditions to decouple conflicts within intersecting

flows, and they proved the existence of decentralized conflict resolution rules that satisfy

the decoupling conditions and ensure global conflict resolution. Second, in conflict man-

agement of intersecting flows, some difficult problems, such as the domino effect, may arise

and affect the efficiency of the global system [3, 22, 68]. In realistic traffic situations, it is

indispensable that a conflict resolution system be able to manage encounters involving more

than two aircraft. For example, in a pairwise approach, if one conflict resolution maneu-

ver induces a new conflict (the domino effect), the initial solution may be modified until a

conflict-free trajectory is obtained. Thus, extra care should be given to the stability and

design of conflict resolution procedures to overcome the associated problems that may arise.

Conditions for conflict resolution rules stability under intersecting flows were studied in [10],

and it was proven that a centralized solution is needed. In contrast to that, this work seeks

a decentralized procedure that guarantees safe conflict resolution of the intersecting flows.

The approach proposed here use flow shadows for conflict detection and is based on

decentralized collaborative conflict resolution rule for aircraft flowing through a finite control

volume of the airspace. In this collaborative resolution scheme, every aircraft involved in the

conflict makes a horizontal lateral maneuver to resolve this conflict. This resolution rule also

takes care of conflicts that may result via the domino effect, where one conflict resolution

maneuver creates new conflicts. Collaborative conflict resolution between aircraft has two

major benefits. First, the required magnitude of maneuvering for each aircraft involved in a

conflict situation may be reduced when the aircraft maneuver collaboratively when compared

against a case in which only one aircraft maneuvers. Second, collaboration helps ensure that

aircraft do not maneuver in a direction that could intensify or prolong the conflict [2].
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The main concern of this research is the aircraft flow safety and convergence of conflict

resolution dynamics under the proposed decentralized conflict resolution rule. Traditionally,

the convergence of control systems is related to the behavior of the dynamical system with

time, and whether it converges to a desired state or not. We focus on both analytical ap-

proaches and simulations to study the evolution of system dynamics and aircraft trajectories

within a control volume. Although many efforts have been used toward designing conflict

resolution systems, comparatively fewer efforts have been spent on analyzing these systems.

Although simulation provides a fast and efficient means to build intuition about the efficiency

and safety of the conflict avoidance systems, we believe that analytical arguments can also

provide important conclusions about the system dynamics. However, analytical approaches

usually require simplified assumptions and scenarios, because it sometimes can be an over-

whelming task to prove even the simplest statements about traffic flow properties. Therefore,

simulations and analytical approaches must be considered as complementary tools. We use

Lyapunov theory to analytically study the system dynamics behavior as time evolves, and to

prove the convergence of the system to conflict free trajectories under the proposed conflict

resolution control rule. Under air traffic managemen regulations, the aircraft safety can be

related to the requirement that aircraft attains safe operation, and be adequately separated

on conflict free trajectories, while being close enough to a pre-specified position. We define

the safety requirements of our model in Section 2.3. To confirm our analytically obtained

conclusions, we then simulate the two intersecting flows system at different scenarios in

Chapter 4.

Another concern of this dissertation is the human-machine collaboration. We study

the collaboration between human and robot pilots in resolving an existing conflict between

their aircraft. Both agents are assumed to follow lateral maneuvers to avoid the potential

collision, the maneuver rate is not known in prior though. We build a robot model that learn

from the human pilot actions to efficiently collaborate with the human partner. In order to

achieve that goal and train the robot, we first have to estimate the human control behavior.

Therefore, we assume the human as a human controller and we propose a model to estimate

the human control actions by estimating the human feedback gain given his previous actions

and observations of the surrounding environment, the output of this model can then be used
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to train the robot pilot. This assumption of an optimal controller is matching the human

nature for decision making, and is in agreement with the neurological studies. This human

model is proposed in Chapter 5 along with simulations of the human-robot collaboration

behavior based on the output of that model.

1.4 ORGANIZATION OF THE DISSERTATION

The proposal is organized as follows. In Chapter 2 the basic assumptions, and aircraft flow

model and geometry introduced. The proposed automatic conflict resolution rule is presented

and discussed in Section 2.3, followed by conditions to ensure safe navigation trajectories

for the flying aircraft. In Chapter 3, we study the necessary conditions for safty under the

proposed conflict resolution rule, and we mathematically prove the safety and convergence of

the conflict resolution dynamics using Lyapunov analysis. In Chapter 4, convergence results

are discussed along with numerical simulations. In Chapter 5, we propose a human-machine

co-learning based conflict resolution rule. The chapter presents a human controller model,

followed by an algorithm to train a robot-pilot, based on human actions, to collaborate with

a human pilot in resolving an existing conflict between their aircraft. Finally, the dissertation

concludes in Chapter 6.
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2.0 CONFLICT RESOLUTION MODEL

In this chapter, we describe the intersecting airflow model under consideration, and the

assumptions used in our analysis. Then, we review the possible maneuver models that can

be used in conflict resolution. The geometry of the conflict resolution problem is illustrated,

followed by proposing a continuous time collaborative conflict resolution control rule. The

chapter ends with defining the safety requirements to allow further analysis of system safety

and efficiency.

Section 2.3 presents the main contribution for this dissertation. In this section a de-

centralized, collaborative, conflict resolution rule is proposed; where aircraft involved in a

conflict situation make lateral maneuvers towards the least congested direction. We intro-

duce the concept of conflict touch, and the rate of the resolution maneuver taken by an

aircraft action depends on the number of touches on that aircraft.

2.1 BASIC ASSUMPTIONS AND MANEUVER MODEL

Defining an appropriate model is a significant challenge when considering problems in air

transportation. The study focuses on a system model that consists of a given volume of

airspace and a set of aircraft moving in and out of it (Figure 9). In our model, aircraft are

assumed to fly at a fixed altitude layer, i.e., a horizontal plane, through a finite portion of the

airspace. Thus, aircraft kinematics can thus be simplified as a point in a plane associated with

velocity vector, that defines the direction of motion, and a safety zone radius. Hence, within

the airspace volume under study, the dynamics of the system are determined by aircraft

position, speed, rate at which aircraft enter the volume, and their individual behaviors
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Figure 9: Aircraft flow in and out a defined control volume. (figure adopted from [3])

while they navigate within the airspace. The planar horizontal maneuvers seems to be more

strategic in conflict resolution than the the tactical vertical maneuvers [3]. Beside that,

horizontal maneuvers induce less discomfort for passengers, and does not require flight level

changes and thus does not perturb the vertical traffic structure that exists in the enroute

airspace.

Aircraft are also assumed to fly with a constant absolute speed, and they are able to

communicate with each other and can share information about their status, e.g. position.

The aircraft continuously attempt to maneuver and avoid conflicts at minimum effort using

lateral offset.

Two maneuver models for conflict resolution exist: (i) heading change model and (ii)

offset model. Figure. 10 illustrates both models. In the heading change model, aircraft make

a single heading change, while maintaining its speed constant, to modify its trajectory and

avoid conflict with other aircraft. These changes are assumed to occur instantaneously when

the aircraft makes the avoidance decision [3, 13].
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Figure 10: Heading change model vs. offset model. Left: The aircraft maneuver is a heading

change. Middle: The aircraft maneuver is a heading change followed by a second heading

change. Right: The aircraft maneuver is a relative position change. (figure adopted from [3])

In the lateral offset model, aircraft maneuvers change the trajectory by a lateral position

change, while keeping both heading angle and speed unchanged. Although it seems unreal-

istic, this model is simple for analysis and simulation purposes, and it has been proven to

closely approximate the heading change (fig. 10–left) and the two-stage maneuver (fig. 10–

middle) models [3]. If the distance to the conflict W is much larger than the offset lateral

displacement w, then w is equivalent to a heading change α = tan−1(w/W ) ≈ w/W ; and

the difference in longitudinal displacement between these two maneuver models is on the

order of w2/W , which is considered to be small. An experiment was done in [3] to study

the effect of both heading change and offset models on the deviations taken by each aircraft

in a conflict situation. Figure. 11 shows the comparison result of this experiment. There is
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Figure 11: Aircraft deviation amplitudes under heading change and offset maneuvers. (figure

adopted from [3])

no significant difference between the resulting aircraft deviation amplitudes, this proves that

the lateral displacement offset model is a valid approximation to the more realistic heading

model.

In this dissertation, we use the lateral displacement offset model to resolve conflicts

arising from intersecting aircraft flows in a specified control volume. A similar problem was

considered in [3]. However, the approach followed there allows each aircraft to make only

one lateral maneuver when it enters the control volume, and these one time maneuvers are

done sequentially. On the contrary, the approach presented here allows continuous time

conflict detection and resolution. Two aircraft can simultaneously do a lateral maneuver

to collaboratively resolve a conflict between both of them. New conflicts may hence be

introduced to the system as a result of the domino effect, but the proposed rule deals with

it in the same manner, until each aircraft reaches a safe path within the control volume.
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Figure 12: Aircraft fly on two flows, moving in and out a control volume. Shaded areas

define a shadow in which a conflict may occur.

2.2 AIRCRAFT FLOW AND CONFLICT GEOMETRY

In this work, we consider the case of two aircraft flows, oriented at angle θ ∈ (0, π) relative

to each other, entering a circular volume, both flows intersect at the center of the control

volume. The configuration is shown in Fig. 12, and was first introduced in [70]. Let v1 be

the velocity vector of aircraft in flow 1, and v2 be the velocity vector of aircraft in flow 2.

With the assumption that all aircraft fly at a constant speed (i.e., ‖v1‖ = ‖v2‖ ), then, for

two aircraft, one from each flow, entering the control volume at the same time instant, a

conflict will occur at the center of the control volume if no avoidance maneuver has been

made. Each aircraft is surrounded by a safety zone circular envelope, and the initial spacing

between successive aircraft could be arbitrary but must be larger than the safety distance ds

(current enroute air traffic control rules consider ds = 5 nautical miles (nm)). Each aircraft
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Figure 13: Two aircraft in conflict with (a) left touch, and (b) right touch. Solid line (blue)

corridors are associated with eastbound aircraft, and dashed line (red) corridors are associ-

ated with southbound aircraft. Dashed arrows represent the direction of lateral maneuver

taken by each aircraft to collaboratively resolve the conflict.

in the control volume has a shadow oriented at angle φ = π/2− θ/2, the angle between the

relative velocity vector v1− v2 and the velocity vector v1. The shadows are considered here

facilitate the detection of future conflicts and collisions. Therefore, the shadow associated

with each aircraft must confine with the safety zone and its width should equal to ds.

A conflict is detected whenever the projected straight paths of any aircraft pair, from

two different streams, lead them to a miss distance that is strictly less than ds. In other

words, whenever shadow of aircraft i from flow 1 overlaps with shadow of aircraft j from

flow 2, both aircraft will be in conflict and need to take a collaborative maneuver to resolve

this conflict. We define the notion of left and right touch, by which define the direction of

collision will occur from aircraft left side or right side. Fig. 13 illustrates the left and right

touch conflicts, and we consider a complete overlap of the flow shadows as a right touch.

This notion is used in defining the conflict resolution rule, in the following section.

The particular case of two intersecting flows is considered here because the analysis for

more than three intersecting flows tends to be very complicated. However, two intersecting
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Figure 14: Conflict resolution for four intersecting flows of aircraft. The control space is

divide into multiple conflict zones including pairs of intersecting flows. The conflict zone

area should be designed to guarantee that aircraft approaching the point of conflict can

resolve such conflict entirely, without straying outside the area.

flows can be used to build an efficient global conflict resolution system by resolving local

conflicts between every pair of intersecting aircraft flows. Basically, the multi-flows conflict

resolution problem can be divided into a sequence of sub-problems each involving only two

intersecting flows of aircraft. Then, by using the analytically obtained results for two inter-

secting flows, we can obtain safe trajectories and estimate the performance for cases including

more than three intersecting flows. This situation is described in figure. 14, where a con-

trol volume with four intersecting flow streams is decomposed into smaller non-overlapping
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conflict zones such that the flows insects in pairs within each zone. According to [25], a

conflict zone surrounding a pair of intersecting aircraft flows is defined as the minimum area

that guarantees resolving all the conflicts among the approaching pair of aircraft streams

without the necessity of straying any of the aircraft outside that area. At this point we

assume no parallel or anti-parallel flows, such that all flow pairs have a single intersection in

the finite horizon. Thus, for n mutually non-parallel flows converging on a control volume,

we have n − 1 points of potential conflict along a single flow stream line, or n(n − 1)/2

intersections in total. The decomposition of multiple flows is beyond the scope of this disser-

tation. The dissertation focuses on implementing and analyzing a new conflict resolution rule

considering two intersecting aircraft flows. The following section presents the proposed col-

laborative decentralized conflict resolution rule. Safety and analytical convergence analysis

of the proposed model are discussed in Chapter. 3.

2.3 CONFLICT RESOLUTION RULE

The conflict resolution scheme presented in this dissertation follows a collaborative decen-

tralized approach, whereby all aircraft involved in the conflict do lateral maneuver in the

opposite direction to the conflict touch such that the overlap in the flow shadow is reduced,

and thus the conflict is resolved. For example, if two aircraft are in a left touch conflict,

both aircraft make a right lateral maneuver to change their lateral position in a way that

decreases the flow shadow overlapping area (fig. 13(a)), and increases the miss distance,

while the nominal speed remains constant; whereas aircraft involved in a right touch conflict

do left lateral maneuvers (fig. 13(b)).

Generally, an aircraft may be in conflict with more than one aircraft at a given time

instance, and it may encounter both left and right touches at the same time. In this case,

the offset maneuver should be toward the direction that minimizes the total number of

touches experienced by this aircraft. We propose the following resolution rule for the rate of

change of lateral maneuver, L, of an aircraft Ai:

L̇i = −c (NRi −NLi) u⊥i , (2.1)
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where c is a positive constant, NRi and NLi are the number of right and left touches ex-

perienced by aircraft i respectively, and u⊥i is a unit vector normal (clockwise direction) to

the direction of flow of Ai. The rate of lateral maneuver depends on the number of colli-

sion threats on each side of the aircraft. However, if the detected touches from each side are

equal, the aircraft will not take any lateral maneuvers. Every aircraft involved in the conflict

will make a lateral maneuver in a direction opposing the highly congested touch direction

to minimize the total number of conflicts and hereby resolve this conflict situation, where

the projected aircraft shadows do not overlap. If a new conflict is created as a result of the

previous maneuver (domino effect), the aircraft will follow the same rule until it reaches a

safe conflict free path. We later prove that if L̇i = 0 for all aircraft in the control volume,

then the aircraft flow becomes safe with no further conflicts.

The following requirements must be met to ensure safe and efficient traffic management:

(i) all conflicts within the control volume are resolved, whether they are direct or as a result

of domino effect, and (ii) deviation of aircraft from their original trajectories, as a result

of conflict resolution maneuver remains bounded. The first point ensures that all aircraft

within the control volume have safe path to proceed flying without any further conflicts, and

the second point is considered about the maximum deviations taken, due to resolution of

detected conflicts, from the originally planned path. We use this set of conditions to prove

safety and efficiency of the proposed continuous time conflict resolution procedure (2.1) in

the next chapter.
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3.0 AIRCRAFT FLOW SAFETY AND CONFLICT RESOLUTION

CONVERGENCE

In this chapter, we provide the analysis of two intersecting aircraft flows system under the

flow geometry and conflict resolution rule described in section 2.3. The main goal here

is to prove that the proposed conflict resolution rule (2.1) will converge to a safe system

of aircraft flows within a finite time. First, we study the safety of the system under the

proposed conflict resolution rule and provide the conditions upon which the aircraft with

the control volume converge to safe trajectories. Second, we use Lyapunov stability theorem

to analytically prove the convergence of the system dynamics and define an upper bound for

the convergence time.

The main focus in this chapter is given to analytical approaches to evaluate the evolution

of aircraft within a control volume, defined in section 2.1. Despite the extensive work on

designing conflict avoidance systems (for example, [2, 3, 13, 45–55]), only few studies have

been focusing on analyzing these systems. Although simulations provide fast and efficient

means to build intuition about the efficiency and safety of the conflict management sys-

tems, we believe that analytical arguments can also provide useful information about the

system dynamics. However, analytical analysis usually requires simplified scenarios and

assumptions. Therefore, simulations and analytical approaches must be considered as com-

plementary tools. We use simulations in Chaper 4 to complement our analytical analysis in

this chapter.

To simplify the mathematical analysis in this dissertation, we only consider two perpen-

dicular flows, i.e., θ = π/2. Let flow 1 be an eastbound flow with Ne aircraft in the control
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volume, and flow 2 be a southbound flow with Ns aircraft in the control volume. Hence, the

unit vector u⊥e for the eastbound flow will be pointing toward south, and the unit vector u⊥s

for the southbound flow will be pointing toward west.

3.1 SAFETY UNDER CONFLICT RESOLUTION RULE

Safety is a crucial requirement for air traffic management. In this section, we study the

safety of the proposed conflict resolution resolution, and conclude the necessary conditions

that guarantee convergence of the system of aircraft to safe, conflict free, trajectories.

When an eastbound aircraft Aei is in conflict with a southbound aircraft Asj, both aircraft

follow the rules L̇ei and L̇sj respectively. If the conflict resolution rule converged to zero,

such that L̇ei = L̇sj = 0, for all aircraft flying within the control volume (i = 1, . . . , Ne and

j = 1, . . . , Ns), then all aircraft will be safe and no further conflicts will occur. To prove

this, consider the situation in figure. 15. Without loss of generality, assume that the right

most corridor covering the control volume is occupied by an eastbound aircraft Aek. Then,

with L̇ = 0 for all aircraft within the control volume, and since Aek can proceed to exit

the control volume from right, Aek does not experience any left touches. Hence, Aek will be

safe, and can proceed moving without creating any conflicts. Now consider the southbound

aircraft Asl in the corridor on the immediate left of that for Aek. Given that L̇sl = 0 and

Aek does not conflict with Asl (i.e., NLsl = NLek = 0), this implies that NRsl = 0. Therefor,

Asl has to be safe if L̇ = 0 for all other aircraft. Similarly, we can iterate through all other

aircraft and prove that they must be safe, as long as L̇ = 0 for all aircraft contained within

the control volume.

The previous proof can be generalized for aircraft flows oriented to each other at any

relative angle, θ, and the safety condition for the proposed collision avoidance rule (2.1) can

be summarized in Lemma 3.1.1. It is also worth to mention that overlapping shadows of

aircraft belonging to the same flow stream does not imply a conflict in this particular case.

This is because aircraft in one flow stream are guaranteed to be separated by a distance

greater than or equal to ds, as described in Section 2.2.
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Figure 15: Safe control volume, where L̇ = 0 for all aircraft within it.

(a) (b)

Figure 16: Conflicting aircraft with L̇ = 0 (a), and their conflict graph representation (b).

Lemma 3.1.1. For the case of intersecting aircraft flows within a specified control volume, no

matter what the value of the encounter angle is, if the conflict resolution rule (2.1) converged

to zero, such that L̇ = 0, for all aircraft flying within the control volume, then all aircraft will

be safe and no further conflicts will occur, i.e., all aircraft have converged to safe trajectories.
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Figure 17: Conflict graph representation for the case of two intersecting aircraft flows.

One remark here is that without the constraint of aircraft flying on intersecting flows,

the convergence of L̇ to zero does not necessarily mean convergence of aircraft to safe routes.

For example, consider the situation shown in Figure. 16(a), all aircraft within that control

volume have their lateral offset rate L̇ equal to zero, but none of them can fly safely under

this configuration. The conflict graph for this situation, Figure. 16(b), shows that any path

taken would lead to unresolved conflict, since none of the aircraft within the control volume

belong to one group. However, under the aircraft flows configuration, no conflict can occur

between pair of aircraft belonging to the same flow since they are guaranteed to be separated

by at least ds nm. Hence, an aircraft in a conflict can do a lateral maneuver and find a safe

path through an unoccupied shadow corridor within the control volume or maneuver to hide

in the shadow of an aircraft from the same flow in front of it (e.g., Figure. 15). A conflict

graph example of two aircraft flows case is shown in Figure. 17 , an aircraft can hide in the

shadow of another aircraft from the same flow, thus, if L̇ converged to zero, this means that

all aircraft have a feasible safe path.

3.2 CONVERGENCE OF CONFLICT RESOLUTION DYNAMICS

Systems with flying aircraft agents must be able to resolve conflicts to guarantee safety for

each individual agent. Conflict resolution not only deals with finding maneuvers for each
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aircraft to avoid potential collisions at any time instant, but also concerns with maintaining

the whole system stability as the system evolves over time, i.e., to ensure that all aircraft

will always be able to converge to feasible conflict free trajectories. This convergence aspect

of conflict resolution becomes critical, particularly for large-scale systems, where the inter-

actions among agents may be complicated, and the conflict resolution has to take care of

emergent issues such as the domino effect.

Safety of aircraft flows is guaranteed when L̇ei and L̇sj converge to zero for all aircraft

in the control volume, as proven in the previous section. Here, we study the convergence of

system dynamics under the proposed conflict resolution rule (2.1) for two intersecting flows

using Lyapunov stability theory (Appendix C).

Let V be the Lyapunov function associated with the system:

V ≡
Ne∑
i=1

Ns∑
j=1

max
{
ds − deisj , 0

}
(3.1)

where ds is the safety distance and deisj is the miss distance between aircraft Aei and Asj.

V will be greater than zero whenever there is a conflict, and it will converge to zero when

all aircraft converge to safe, conflict free, trajectories.

Lyapunov stability is determined based on conditions imposed on the values of Lyapunov

function, V , and its derivative, V̇ . In order to derive an expression for V̇ , we need to obtain

the derivative of deisj at the first place. The miss distance changes with the change in lateral

position of aircraft, and it should be increasing in response to the efforts that resolve the

existing conflict. Thus, the rate of change of deisj when performing a lateral maneuver (i.e.,

ḋeisj) can be computed as:

ḋeisj =
1√
2

(
−L̇ei − L̇sj

)
(3.2)

for right touch conflicts, and as:

ḋeisj =
1√
2

(
L̇ei + L̇sj

)
(3.3)
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for left touch conflicts. To combine the expressions in (3.2) and (3.3) into one formula,

we introduce a definition for the touch function, δij , to describe the “direction of touch”

between aircraft Aei and Asj:

δij =


1 if right touch conflict

0 if no conflict

−1 if left touch conflict.

(3.4)

With the definition in (3.4), the expression for ḋeisj in (3.2) and (3.3) can be reformulated

as

ḋeisj = − 1√
2
δij

(
L̇ei + L̇sj

)
(3.5)

and the lateral maneuver rule (2.1) can be rewritten using the touch function as:

L̇ei = −c
Ns∑
j=1

δij

(3.6)

L̇sj = −c
Ne∑
i=1

δij.

for eastbound (Aei) and southbound (Asj) aircraft respectively. Substituting (3.6) into (3.5),

the rate of change of the lateral distance, ḋeisj , can then be given by

√
2ḋeisj = −L̇eiδij − L̇sjδij (3.7)

= cδij

(
Ns∑
k=1

δik +
Ne∑
k=1

δkj

)
. (3.8)
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We use the above definitions to compute the derivative of the Lyapunov function, V̇ , to

prove the convergence of system dynamics:

√
2

c
V̇ = −

√
2

c

Ne∑
i=1

Ns∑
j=1

δ2ij · ḋeisj

= −
Ne∑
i=1

Ns∑
j=1

δ2ijδij

(
Ns∑
k=1

δik +
Ne∑
k=1

δkj

)

= −
Ne∑
i=1

Ns∑
j=1

δij

(
Ns∑
k=1

δik +
Ne∑
k=1

δkj

)

= −
Ne∑
i=1

(
Ns∑
j=1

Ns∑
k=1

δijδik

)
−

Ns∑
j=1

(
Ne∑
i=1

Ne∑
k=1

δijδkj

)

= −
Ne∑
i=1

(
Ns∑
j=1

δij

Ns∑
k=1

δik

)
−

Ns∑
j=1

(
Ne∑
i=1

δij

Ne∑
k=1

δkj

)

= −
Ne∑
i=1

(
Ns∑
j=1

δij

)2

−
Ns∑
j=1

(
Ne∑
i=1

δij

)2

. (3.9)

The right-hand side of (3.9) is always less than or equal to zero. Hence, V̇ ≤ 0, and

therefore, V is strictly decreasing with time when V̇ 6= 0. According to Lasalle’s invariance

principle [71], V̇ will converge to zero. In order that V̇ = 0,
∑Ns

j=1 δij has to be zero for

all i = 1, . . . , Ne and
∑Ne

i=1 δij has to be zero for all j = 1, . . . , Ns; that is L̇ei = L̇sj = 0,

for all the eastbound and southbound aircraft in the control volume (i = 1, . . . , Ne and

j = 1, . . . , Ns). Hence, according to Lemma 3.1.1, with the conflict resolution maneuver

rule (2.1) and with the assumption that all aircraft within the control volume are flying as

intersecting flows, all the aircraft in the control volume will find safe trajectories, and no

collision will occur during their navigation, as discussed in the previous subsection.

The analysis of the Lyapunov function, can be further extended to show that the conver-

gence time of the conflict resolution dynamics is bounded under the proposed rule. Theorem

3.2.1 defines an upper bound for the time of convergence to safe trajectories.

Theorem 3.2.1. For two intersecting flows within a specified control volume, the conflicting

aircraft following the collision avoidance maneuvers in (2.1) are guaranteed to converge to
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safe trajectories within a finite period of time. The convergence time, tconv, of conflict reso-

lution dynamics has an upper bound given by:

tconv ≤
√

2Ncds
c

(3.10)

where Nc is the initial number of conflicts within the control volume before any lateral ma-

neuver is taken, ds is the safety distance, and c is a positive constant.

Proof: Since the Lyapunov function reaches its maximum value when the shadows

of all the pairs of intersecting aircraft completely overlaps (i.e., deisj = 0), then for Nc

conflicts, the Lyapunov function is bounded by V ≤ 2Ncds. In addition, from (3.9), if

V̇ 6= 0, this means that
∑Ne

i=1

(∑Ns

j=1 δij

)2
6= 0 and

∑Ns

j=1

(∑Ne

i=1 δij

)2
6= 0. Moreover, since

δij ∈ {−1, 0, 1} is an integer, both
∑Ne

i=1

(∑Ns

j=1 δij

)2
and

∑Ns

j=1

(∑Ne

i=1 δij

)2
have to be greater

than or equal to 1, and therefore

√
2

c
V̇ ≤ −2 when V̇ 6= 0. Subsequently, the derivative

of Lyapunov function satisfies this inequality, V̇ ≤ −2c/
√

2 = −
√

2c when V̇ 6= 0. Hence,

based on the bounds imposed on V and V̇ , and according to the definition of convergence

time from Lyapunov theory, tconv is bounded by the expression given in (3.10).

This section focused on an analytical proof of convergence of system dynamics, under

the proposed conflict resolution and collision avoidance rule, based on the Lyapunov theory

and Lasalle’s stability principle (Appendix C. The analysis conducted in this section have

shown that the derivative of Lyapunov function is always less than or equal to zero and

it will eventually converge to zero, according to Lasalle’s invariance principle. Therefore,

the value of the Lyapunov function is always positive and is strictly decreasing with time.

Subsequently, it will converge to zero at equilibrium, within a finite time (tconv), when

all conflicts are resolved and all aircraft converged to safe trajectories. This satisfies the

Lyapunov theory stability conditions, and the system of two intersecting flows is stable in

the sense of Lyapunov under the proposed conflict resolution rule in (2.1).
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3.3 SUMMARY

This chapter focused on the mathematical analysis of the proposed automatic decentralized

conflict resolution rule (2.1). The chapter started by studying the necessary conditions for

safety of the intersecting aircraft flows under the proposed rule. Then, we defined a Lyapunov

function to study the convergence of the conflict resolution dynamics under the proposed rule.

The analysis showed that, according to Lyapunov theory and LaSalle’s invariance principle,

the system will converge to safe trajectories following the proposed conflict resolution rule.

Moreover, we were able to find an upper bound for the convergence time, based on the

Lyapunov analysis.
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4.0 SIMULATION OF AUTOMATIC CONFLICT RESOLUTION

Simulations provide fast and efficient means to build intuition about the efficiency and

safety of the conflict management systems. In this chapter, we use numerical simulations of

aircraft traffic under the prescribed conditions in Chapter 2.1 to gain more insight about flow

structure after resolution maneuvers, and to numerically verify the convergence and safety

of the conflict resolution rule (2.1). Also, the simulation results will allow us to complement

our analytical conclusions obtained in Chapter 3 by considering different scenarios.

In the simulations presented in this chapter, we consider a circular control volume of

radius ranging between 30 nm and 36 nm, and aircraft safety separation distance (ds) of 5

nm. We consider three different simulations with aircraft flows that have different encounter

angles (θ = 90◦, 60◦, and 45◦, respectively). For each case, we study the convergence of

aircraft to safe trajectories, net magnitude of performed lateral deviations, and the behavior

of Lyapunov function and its derivative over time.

4.1 CONVERGENCE TO SAFE TRAJECTORIES

Figure. 18 shows simulation of two aircraft flows that are orthogonal to each other (θ = π/2).

The figure shows the sequence of lateral conflict resolution maneuvers for eastbound and

southbound aircraft. Figures. 19 and 20 show the maneuvers sequence for two flows whose

encounter angle equals to 60◦, and 45◦ respectively. Through Figures 18–20, it is shown

that every aircraft involved in a conflict (overlapping of two flow shadows) takes a lateral

maneuver to resolve this conflict. This collaborative action may cause other conflicts (the

domino effect), for example, the transition from figure. 18(d)–(e)–(f). These newly born
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conflicts will be resolved in the same collaborative manner, until all aircraft converge to safe

trajectories without any future conflicts that may appear later as they proceed flying with

their nominal speed, e.g., figure. 18(l). Note that, aircraft with the same direction of flow

can safely have overlapping shadows since they are strictly separated by a distance that is

larger than or equal to ds.

It can be seen that, when aircraft converge to safe trajectories (Figure. 18(l), 19(h), and

20(j)), L̇ = 0 for aircraft in the control volume, this verifies the analytical results in

Section 3.1. Figure. 21 shows the summation of the magnitude of L̇ for all the aircraft,∑
i,j ‖L̇‖ ∀ i ∈ flow 1, and j ∈ flow 2, in the control volumes studied in Figures. 18, 19, and 20.

It is shown that conflict avoidance procedure at one time instance may introduce more other

conflicts due to the domino effect, reflected as an increase in the value of
∑

i,j ‖L̇‖. However,

the conflict resolution procedure continues to solve the newly born conflicts until no further

lateral maneuver is needed, i.e., L̇1i = L̇2j = 0 for all aircraft (i ∈ flow 1, and j ∈ flow 2)

within the control volume. Thus a safe trajectory is achieved for all the aircraft. Also, it

is worth noting that finding a safe and bounded solution (i.e., L̇ = 0 for all aircraft flying

within the control volume) was done within a finite bounded time.

We studied the convergence time of 100 simulation sequence instances for each of the

simulated flows, where each sequence instance has a different set of initial conditions (po-

sition, separation between aircraft, and number of conflicts). Table 2 shows the average

convergence time for θ = 90◦, 60◦, and 45◦ at two different values of the constant c. It can be

noted that the convergence time decreases with increasing the value of c. This is in agree-

ment with the definition of the time of convergence in theorem 3.2.1. The results also show

that the convergence time is bounded and is relatively short compared to the nominal speed

of flow. Hence, the system is guaranteed to converge to safe trajectories without imposing

any of the aircraft within the control volume to the risk of collision.

The simulations in this section have proved the convergence of the proposed conflict

resolution rule to safe trajectories within a finite period of time. Basically, whenever a

conflict situation is detected, all of the involved aircraft start to maneuver collaboratively

towards the direction that minimize the number of touches/conflicts. As a result of these

collaborative maneuvers new conflicts may emerge, but as the system evolves with time,
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Figure 18: Conflict resolution maneuver sequence with lateral maneuvers (θ = 90◦), at the

1st (a) – 4th (d) time steps. Solid (blue) lines represent the shadows of eastbound aircraft,

and dashed (red) lines represent the shadows of southbound aircraft.
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Figure 18: (cont.) Conflict resolution maneuver sequence with lateral maneuvers (θ = 90◦),

at the 5th (e) – 8th (h) time steps. Solid (blue) lines represent the shadows of eastbound

aircraft, and dashed (red) lines represent the shadows of southbound aircraft.
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Figure 18: (cont.) Conflict resolution maneuver sequence with lateral maneuvers (θ = 90◦),

at the 9th (i) – 12th (l) time steps. Solid (blue) lines represent the shadows of eastbound

aircraft, and dashed (red) lines represent the shadows of southbound aircraft.
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Figure 19: Conflict resolution maneuver sequence with lateral maneuvers (θ = 60◦), at the

1st (a) – 4th (d) time steps. Solid (blue) lines represent the shadows of flow 1 aircraft, and

dashed (red) lines represent the shadows of flow 2 aircraft.

46



x (nm)
-40 -30 -20 -10 0 10 20 30 40

y 
(n

m
)

-40

-30

-20

-10

0

10

20

30

40

x (nm)
-40 -30 -20 -10 0 10 20 30 40

y 
(n

m
)

-40

-30

-20

-10

0

10

20

30

40

(e) (f)

x (nm)
-40 -30 -20 -10 0 10 20 30 40

y 
(n

m
)

-40

-30

-20

-10

0

10

20

30

40

x (nm)
-40 -30 -20 -10 0 10 20 30 40

y 
(n

m
)

-40

-30

-20

-10

0

10

20

30

40

(g) (h)

Figure 19: (cont.) Conflict resolution maneuver sequence with lateral maneuvers (θ = 60◦),

at the 5th (e) – 8th (h) time steps. Solid (blue) lines represent the shadows of flow 1 aircraft,

and dashed (red) lines represent the shadows of flow 2 aircraft.
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Figure 20: Conflict resolution maneuver sequence with lateral maneuvers (θ = 45◦), at the

1st (a) – 4th (d) time steps. Solid (blue) lines represent the shadows of flow 1 aircraft, and

dashed (red) lines represent the shadows of flow 2 aircraft.
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Figure 20: (cont.) Conflict resolution maneuver sequence with lateral maneuvers (θ = 45◦),

at the 5th (e) – 8th (h) time steps. Solid (blue) lines represent the shadows of flow 1 aircraft,

and dashed (red) lines represent the shadows of flow 2 aircraft.
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Figure 20: (cont.) Conflict resolution maneuver sequence with lateral maneuvers (θ = 45◦),

at the 9th (i) and 10th (j) time steps. Solid (blue) lines represent the shadows of flow 1

aircraft, and dashed (red) lines represents the shadows of flow 2 aircraft.

any newly born conflict is resolved collaboratively following the same rule. Aircraft finally

can converge to an unoccupied corridor in the control volume or hide in the shadow of an

aircraft belonging to the same flow. According to lemma 3.1.1 and the analyses in Section 3.2,

convergence to safe trajectories (L̇ = 0) is guaranteed as long as aircraft fly in flows regardless

what the value of the encounter angle (θ) is.

4.2 MAGNITUDE OF LATERAL DEVIATIONS

In this section we study another aspect of the system. We study the bound of aircraft

lateral deviation from their nominal trajectory as a result of following the conflict resolution

rule to avoid any potential collections. Since the system of intersecting aircraft flows is

guaranteed to converge to safe trajectories within a bounded finite time, the magnitude of

lateral deviations is also bounded. Figure. 22, Figure. 23, and Figure. 24 show three examples
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(a)

(b)

Figure 21: Summation of the magnitude of L̇ for all the aircraft in the control volume flying

in flows with encounter angle is (a) 90◦, (b) 60◦, and (c) 45◦, c = 1.
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(c)

Figure 21: (cont.) Summation of the magnitude of L̇ for all the aircraft in the control volume

flying in flows with encounter angle is (a) 90◦, (b) 60◦, and (c) 45◦, c = 1.

Table 2: Average convergence time. (∆t ≡ sampling time)

Convergence time

Encounter angle c = 0.5ds tan(φ) c = 0.75ds tan(φ)

θ = π/2 15.1∆t 11.8∆t

θ = π/3 9.5∆t 6.2∆t

θ = π/4 11∆t 7.5∆t
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of lateral deviations of two selected aircraft, one from each of the analyzed flow directions.

The maximum deviation is 5.3 nm, 5.8 nm, and 2.35 nm for flows whose θ = 90◦, 60◦, and 45◦,

respectively. The lateral deviations are bounded as time evolve, and in comparison to results

presented in [3], these deviation magnitudes are less than the deviations resulted under their

decentralized conflict resolution rule. This bound is expected since under the geometry and

structure of the studied system, one aircraft can experience a maximum of two left or right

touches. Hence, the rate of lateral maneuver at a given time instance is limited by 2c, as

previously described in Chapter 2. The net change of each aircraft lateral position is shown

in Figures. 25, 26, and 27, for the three studied encounter angles θ = 90◦, 60◦, and 45◦,

respectively. These deviations are still bonded and lie within the control volume. Therefore,

the lateral maneuvers resulted from resolving conflicts do not have a severe effect on the

nominal, originally planned, trajectories, and subsequently, the proposed conflict resolution

rule does not affect the cost of operation severely to compromise for safety. In addition to

aforementioned simulation analysis, we studied the lateral deviations maneuvered by 100

aircraft constituting flows with different encounter angles. Figure. 28 shows a histogram of

the magnitude of lateral devotions taken by those 100 aircraft while resolving conflicts and

avoiding potential collisions. It is shown than 96% of the lateral maneuver deviations have

a magnitude that is less than 6 nm. These results prove that the conflict resolution control

procedure (2.1) leads to safe trajectories using bounded lateral maneuvers for aircraft within

the control volume, and this proves bounded convergence of the control system.

4.3 CONVERGENCE OF THE LYAPUNOV FUNCTION

Convergence of the Lyapunov function and its derivative over time give us more intuition

about the convergence of system dynamics under the proposed conflict resolution control rule.

Beside the mathematical analysis in Section 3.2, simulation analysis enables us to visualize

the system convergence over time and the constraints and conditions imposed by Lyapunov

theory and Lasalle’s stability principle. Figures. 29–31 show the change in Lyapunov function

V over time, for the three simulation scenarios, on which intersecting flows have encounter
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Figure 22: Example of aircraft lateral deviations for two perpendicular flows, eastbound

(solid) and southbound (dashed).

angle θ = 90◦, 60◦, and 45◦, respectively. It is clear that, under all the studied encounter

angles, V̇ is always less than or equal zero (i.e., it is negative along the trajectories of the

system), and it converged to zero when the aircraft did the lateral maneuvers to resolve all

the conflicts, and achieved safe, conflict free trajectories. This verifies the Lasalle’s stability

principle. Also, since V̇ is always negative, V is monotonically decreasing with time and

it has converged to zero when all aircraft converged to safe trajectories, this is numerically

verified in Figure. 29–31 as well as analytically proven in Section 3.2. This is in agreement

with the stability conditions of the Lyapunov theory and our mathematical analysis and

inferences in Section 3.2. These results numerically confirm the convergence of our conflict

resolution model dynamics, and confirms that the proposed system is stable in the sense of

Lyapunov.
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Figure 23: Magnitude of lateral deviation with time for two intersecting flows, θ = 60◦.

Figure 24: Magnitude of lateral deviation with time for two intersecting flows, θ = 45◦.
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Figure 25: Net magnitude of lateral deviations of the aircraft forming flows with an encounter

angle θ = 90◦.

4.4 SUMMARY

In this chapter, we have considered the simulation of aircraft conflict resolution in a specified

control volume, under the proposed decentralized conflict resolution and collision avoidance

rule. Simulations are important to gain more insight into the system dynamics and help to

understand system behavior for situations that could be hard to analytically derived. This

chapter simulated the lateral maneuvers of aircraft on intersecting flows at three different

encounter angles to study the evolution of each aircraft trajectory over time. Simulations

were provided to verify the validity of the proposed control rule band the convergence of

the conflict resolution dynamics. This was visualized by tracking the change of aircraft

trajectories when conflicts are detected and resolved, and by studying the numerical change of

the Lyapunov function and its derivative with time. The simulated maneuvers were bounded.

Additionally, the simulated aircraft reached safe trajectories that were close to their originally
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Figure 26: Net magnitude of lateral deviations of the aircraft forming flows with an encounter

angle θ = 60◦.

planned trajectory. Thus, the simulation results confirm the analytically derived conclusions

and numerically proved the safety, and efficiency of the proposed collaborative decentralized

conflict resolution rule.
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Figure 27: Net magnitude of lateral deviations of the aircraft forming flows with an encounter

angle θ = 45◦.

Figure 28: Histogram of lateral deviations for 100 aircraft.
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(a)

Figure 29: Lyapunov function V for two intersecting flows at θ = 90◦.
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(a)

Figure 30: Lyapunov function V for two intersecting flows at θ = 60◦.
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(a)

Figure 31: Lyapunov function V for two intersecting flows at θ = 45◦.
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5.0 HUMAN-MACHINE CO-LEARNING FOR CONFLICT RESOLUTION

Recent studies have shown that humans and machines are able to mutually adapt their

behavior, intentions, and communications. In this cooperative scheme, machines are being

partners, and not a tool, for humans. This collaboration can be modeled in a collaborative

differential game framework. In this shared responsibility, authority, goals framework, the

overall performance of the mission is increased.

In this chapter, we propose development of a conflict resolution controller that is based on

the human-machine co-learning framework. Both human pilot and robot pilot are assumed to

follow lateral maneuvers to collaboratively resolve an existing conflict between their aircraft.

However, the rate of maneuver is not know in prior to the collaboration. The robot controller

should adapt its output to human behavior in order to achieve the common goal of the

collision avoidance. We introduce a model of human as an optimal controller, and propose

an algorithm to estimate the human control criteria given his observed actions.

5.1 INTRODUCTION

Collaboration is essential in many situations of Human-Robot interaction (HRI) [72]. Most

of the work on human-robot interaction take an approach focusing on interactive communi-

cations, such as providing cognitive support, personalized chats, or pet-like affective therapy.

On the other hand, little research attention has been given to goal-oriented collaborative ac-

tivities between human and robot. In this kind of human-robot interaction, human agent

is actively involved in the joint task instead of just being a passive beneficiary of robot

assistance.

62



Humans and robots have complementary advantages. Humans have excellent cognitive

skills and are superior, over computers, in awareness and decision making. Therefore, robot

controller can be designed to learn from humans and seek their help in unstructured environ-

ments [72]. On the other hand, robots are capable of performing repetitive, high-load tasks

tirelessly and with high precision. This is because, robots are equipped with precise sensors,

computers, and powerful actuators. Subsequently, an efficient human-robot collaboration

(HRC) system should assign heavy loads to robots and achieve more robust performance in

unstructured environments by maximizing the complementary capabilities of humans and

robots [72]. In other words, varying the level of autonomy of a human-robot systems allow

maximizing the strengths of both the robot and the human. This enables the system to op-

timize the problem solving skills of a human and effectively balance that with the speed and

physical dexterity of a robotic system. An intelligent robot, in a collaborative environment,

should be able to learn how to control a task from its human partner and later complete

these tasks autonomously with human intervention only when requested by the robot [73].

Human-robot collaboration schemes have been studied in applications such as search

and rescue, construction, space applications, and healthcare (e.g., [4,73–80]). Moreover, the

introduction of HRI operating systems has enabled teams of humans and robots to work

collaboratively on missions that are well defined and narrow in scope. Generally, a team is

defined as a small number of agents, with complementary skills, who share a common goal and

approach for which they hold themselves mutually accountable. The same applies for human-

robot teams collaborating to achieve a common goal. Efficient human-robot collaboration

requires a common plan for all collaborating agents. To gain a joint intention, robot agents

need to know the intentions of the other team members. Based on that knowledge a robot

can plan its own control criteria that will eventually lead to satisfaction of the joint intention

by reaching the shared goal for the collaborative agents. In human-robot collaboration it will

be usually the human agent who sets that goal, while it is the mission of the robot agent to

assist the human. Subsequently, to plan a control action, one agent needs information about

the actions and intention of the other agent as well as knowledge about the abilities of all

partners and about the current state of the system. If one of the partners acts in a manner
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Figure 32: Robot mechanisms leading to joint action. (figure adopted from [4])

that was not predicted by the other agent, actions have to be re-planned. Accordingly

intention needs to be re-estimated all the time as system states and intentions change over

the time.

However, in many situations robots are still not “intelligent” enough to collaborate with

human beings in a natural and effective way. Therefore, in order to attain successful collab-

oration, a good understanding of intrinsic properties and human intentions is required.

Figure 32 shows the internal mechanism of a robot that enables it to achieve a joint

action in an HRC system. Robot uses sensors to observe the surrounding environment and

its partner actions. The observed data are then used by the robot to learn and expand

its own knowledge, then to gain an understanding of the current state of the environment

and the partner, and to estimate the intention of the partner. The intention of the robot

becomes to assist (or, cooperate with) the human to reach his or her intended goal. Then,

a set of actions are taken to satisfy the perceived intention and according to an action plan.

Of course, actions taken by either of the collaborating agents, or both, would lead to change

in the system’s current state. This should not be a problem for the robot, since it has

a closed-loop feedback system that enables it to observe the new states, and the actions

of itself and others. Therefore, sensors and perception mechanisms have to be chosen and

implemented individually depending on the purpose and desired functionality of the robot.

Also, the knowledge database has to be programmed and trained, according to the desired

functionality.
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5.2 MODELING OF HUMAN-ROBOT INTERACTIONS FOR AIRCRAFT

CONFLICT AVOIDANCE

When designing a human-machine interaction (HMI) system, the nature of the task and

how it constrains the choice of possible actions for each agent and their interactions must be

considered as design parameters. The control actions of each agent are then defined through

a cost function that needs to be minimized. This enables the use of tools from Game Theory,

optimal control and nonlinear adaptive control in order to derive control actions of the two

interacting agents and their adaptation [81].

Neuroscience studies have shown that human interact with different situations by min-

imizing error (e) and effort (u) [82]. This can be modeled as an optimal controller that

minimizes a cost function:

J(t) ≡ αe2(t) + βu2(t), α, β > 0. (5.1)

Moreover, when the dynamics states of the system change, the human is able to adapt his

control criteria (e.g., force, trajectories, etc.) to minimize such cost function [83,84].

In a collaboration tasks, there is a priori assignment of rule between agents, but sponta-

neous actions evolve based on the interactions history [81,85]. However, an uneven distribu-

tion of subtasks or roles during the task may exist. Hence, synchronization between human

and machine should be done to maintain the shared objective of the problem.

Generally, in collaboration games, both agents jointly try to develop a consensual solution

to solve a problem or achieve a common goal [81,86]. A cost function for each agent in such

system could be given as

Ji(t) = αie
2
i (t) + βiu

2
i (t) +

(
γiê

2
j(t) + σiû

2
j(t)
)
, i 6= j; i, j = 1, 2; and α, β, γ, σ ≥ 0. (5.2)

It is clear in (5.2) that each agent minimizes its own and the partner’s error and control

input. The value of the scaling parameters (α, β, γ, σ) defines the weight given by each agent

to his and his partner’s error and control input, and defines how much agents care about

optimizing their control input. The challenge here is to learn the human’s optimal control

criteria in response to the current scenario.
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In the collision avoidance problem, we assume that both human and machine controller

will follow a lateral displacement control criteria to resolve a potintial conflict between their

aircraft. However, the rate of lateral deviation maneuvers is unknown, and must be nego-

tiated and learned during the course of collaboration (i.e., human and robot should adapt

their control to resolve the existing conflict). Mainly, the robot control should learn the rate

from his human partner. We also assume that the human pilot and robot pilot are able to

estimate the position of each other, and therefore can compute an accurate estimate of the

miss distance (dij) between their aircraft. Therefore, the common goal for both the human

and robot agent is to do lateral maneuvers that maximizes the miss distance between their

aircraft. In other words, for a successful collaboration, the following condition must be met,

for two conflicting aircraft:

dij ≥ ds, for i = 1, 2; j = 1, 2; i 6= j. (5.3)

The lateral maneuver dynamics of one agent, who is collaboratively resolving a conflict,

can be defined as

pi(t+ ∆t) = pi(t) + vi(t)∆t (5.4)

vi(t+ ∆t) = vi(t) + ui(t)∆t (5.5)

where i = 1, 2, pi(t) is the lateral position of aircraft i, at time t, relative to its position

where the conflict was initially detected, vi(t) is the velocity of aircraft i at time t, and ui(t)

is the pilot i acceleration control input at time t. Since the later maneuvers are taken to

maximize the miss distance between the conflicting aircraft to satisfy the common goal of

the developed HRC system, we can define the error to the target as

ei(t) = pi(t)− p∗i (5.6)

where p∗i is a target position that satisfies the conflict resolution goal (5.3). From the

definition in (5.6), we can use the change of lateral position position dynamics (5.4) to define

the error dynamics for each agent as

ei(t+ 1) = ei(t) + vi(t)∆t, i = 1, 2. (5.7)
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Since both the human and robot pilots collaborate to solve a shared conflict, the coupled

error dynamics for the whole conflict resolution systems with two aircraft can be defined as

e(t) = e1(t) + e2(t). (5.8)

This definition of the coupled error function is equivalent to the following expression

e(t) =

 dij(t)− ds if dij(t) < ds

0 if dij(t) ≥ ds

(5.9)

where dij(t) is the miss-distance between the collaborating aircraft at time t. It is clear that

the expressions in (5.6), (5.8) and (5.9) model the conflict between two aircraft as an error

function that decreases with efforts that are trying to resolve the conflict. Minimizing that

error would be done by maximizing the miss distance and, therefore, resolving the existing

conflict.

The system dynamics equations in (5.4), (5.5), and (5.7) can be used to construct a state

space dynamical model for each agent. The state vector associated with each agent can be

defined as xi(t) = [ei(t), vi(t)]
T , i = 1, 2. Since both agents are working to collaboratively

resolve a shared conflict, we can use a coupled system dynamics, whose state vector can be

given as

x(t) = [e(t), v1(t), v2(t)]
T (5.10)

where e(t) is the coupled error dynamics, as defined in (5.8). Therefore the dynamics equation

for the coupled system can be given as:

x(t+ 1) =


e(t+ 1)

v1(t+ 1)

v2(t+ 1)

 =


e(t) + v1(t)∆t+ v2(t)∆t

v1(t) + u1(t)∆t

v2(t) + u2(t)∆t

 . (5.11)

The standard state space representation of system dynamics has the form

x(t+ 1) = Ax(t) +B1u1(t) +B2u2(t) (5.12)
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where A is the system dynamics matrix, Bi is the input matrix associated with agent i, i =

1, 2, and u1(t) and u2(t) are the control input for agent 1 and agent 2, respectively. The

coupled system dynamics (5.11) can be represented in the standard form as

x(t+ 1) =


1 ∆t ∆t

0 1 0

0 0 1

x(t) +


0

∆t

0

u1(t) +


0

0

∆t

u2(t). (5.13)

Equation (5.13) models the coupled system dynamics of collaborative conflict resolution

into a standard state space dynamical model. Theoretically, this model can be used into an

optimal control framework to get the optimal control inputs that minimize the error. How-

ever, since one of the agents is a human, we cannot design his control criteria. Fortunately,

this model matches with human control model given in (5.1), where we have an error func-

tion that needs to be minimized. Since human beings are superior in analysis and decision

making, an efficient control criteria for the robot agent can be obtained by learning from

the human agent while cooperating with him to maximize the miss-distance (minimize the

error) under the proposed dynamical model (5.13). In the next section, we model the conflict

resolution model as an optimal control problem under the presented dynamics (5.13), then

we try to estimate the human agent control criteria (equivalently his/her intentions).

5.3 ESTIMATION OF HUMAN CONTROL CRITERIA

To resolve a potential conflict, both the human and robot controller are assumed to em-

ploy optimal control strategies with a quadratic cost function. Since human and machine

collaboratively control the system, we can model the collaborative system using the lin-

ear quadratic regulator (LQR) framework [87]. A regulation problem with coupled system

dynamics (e.q.(5.13)) can be formulated as

{u∗, x∗} = argmin
u,x

∞∑
n=1

xTnQxn + uTnRun (5.14)

s.t. xn+1 = Axn +Bhuhn +Brurn,
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where Q ≥ 0 and R > 0 are the weight matrices associated with the states xn and control

inputs un =
[
uThn, u

T
rn

]T
respectively, uhn and urn are the human and robot controller control

inputs respectively, A is the coupled system dynamics matrix, and Bh and Br are the input

matrices associated with the human and robot inputs, respectively. The optimal human

control that minimizes (5.14) is obtained as:

uhn = −Kxn, (5.15)

where K is the optimal state feedback (Kalman) gain, and is given by:

K =
(
BTPB +R

)−1
BTPA, (5.16)

with P being the unique positive-semidefinite solution to the discrete-time algebraic Riccatti

equation (ARE)

ATPA− P −
(
ATPB

) (
BTPB +R

)−1
BTPA+Q = 0. (5.17)

Equations (5.15)–(5.17) give the optimal control criteria of human that minimize the

LQR problem (5.14). However, to be able to simulate this control response, either K, or

Q and R should be known. Unfortunately, this human control process is done internally in

the human’s brain and these parameters are inaccessible, only the actions can be measured.

Given the human control actions, few studies have bee proposed to determine a cost function

that would generate that control in some optimal sense. For example, Priess et. al. [88]

used the measured control and formulated an inverse LQR problem to estimate the weighting

matrices, Q and R, that would reproduce that control output, and applied the results on a

seated-balance model of the human subject.

In this section, we propose an algorithm to directly estimates the human control param-

eters by directly estimating the Kalman gain K instead of estimating Q and R and solving

the ARE equation, as previously developed in [88]. We continue this section, by first review-

ing the inverse LQR solution, and then present our algorithm for direct estimation of the

Kalman gain.
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5.3.1 The Inverse LQR Problem

The objective if the inverse LQR problem is that, given an estimate of Kh, the Kalman gain

of the human agent, an updated estimate of Q and R such that Q > 0, R > 0 and Kh

satisfies:

Kh =
(
BTPB +R

)−1
BTPA (5.18)

where P is the the unique positive-semidefinite solution to the discrete-time ARE (5.17).

This problem can be formulated as a convex optimization problem, subject to linear matrix

inequality (LMI):

(
Q̂, R̂, P̂ , δ̂

)
= argmin

Q,R,P,δ
δ2, such that (5.19)

P ≥ 0

ATPA− P − ATPBKe +Q = 0

BTPA− (BTPB +R)Ke = 0

I ≤

Q 0

0 R

 ≤ δI

where Ke is the full-state feedback gain matrix determined via a system identification method

from the experimental data [88], and δ is the condition number to ensure numerical stability

[88, 89]. Equation (5.19) is a convex optimization problem with strictly convex objectives

[90]. Therefore, if a feasible solution exists that minimizes the objective function, it will be

unique [88, 90]. However, if no exact solution exists, then an approximation K̂ minimizing

the residual error between K̂ and Ke can be found via a gradient descent algorithm [88].

This formulation can be used to get an estimate of the system weighing matrices Q, and

R. However, solving the optimization problem (5.19) either under the LMI constraints or

using gradient descent, may not be computationally efficient, and is not suitable for online

estimation of the human control criteria during a critical, time sensitive task, such as aircraft

conflict resolution. Therefore, we propose a direct estimate of the human’s feedback gain K

through an online least-square minimization framework.
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5.3.2 Least-Squares Estimation of Human Feedback Gain

This section presents our main contribution in this chapter. We use a least-squares framework

to estimate the human’s feedback gain K given an observed measurements of his/her control

criteria. Having a good estimate of K means that we can estimate humans control behavior.

Therefore, a robot agent can use this gain, K, to learn and predict its human partner actions.

Assuming that we have a sensory measurement of humans input for N time samples, we

can combine state estimation with the human input in a least square formulation to get an

estimate of the Kalman gain as follows:

K = −uh

(
xTx

)−1
x (5.20)

where x =
[
xT1 , . . . , x

T
N

]T
is the state history, uh = [u1, . . . , uN ]T is the human agent control

history, and N is the total number of observed time samples. The estimate of the K can be

updated online whenever a new observations of the system states and human agent control

input are available by just updating the parameters in (5.20).

Due to the time variance nature of the human’s actions, the control criteria of the human

agent could be non-stationary with time. This may affect the learned robot, because as time

evolves, the estimate of the human agent feedback gain may no longer be valid if we used all

the actions history to get an updated gain K. To overcome this issue, we divide the observed

response period into short segments of length w. Then, we obtain an estimate K for each

segment. Under this windowing approach, an estimate of K can be obtained by:

K(N + 1, w) = −uh(N,w)
(
xT (N,w)x(N,w)

)−1
x(N,w) (5.21)

where x(N,w) =
[
xTN−w, . . . , x

T
N

]T
is the state history for the most recent segment of length

w, uh(N,w) = [uN−w, . . . , uN ]T is the human agent control history for the most recent

segment of length w , and N is the total number of observed time samples. It is also

clear that, the Kalman gain can be estimated at every time step or every few time samples

periods. The algorithm uses the most recent state and human action observations to get

an updated estimate of the human’s control criteria K. Knowing the state feedback of the

human, will therefore enable us to estimate his action and train a robot controller that is

able to collaborate with him in resolving airborn conflicts.
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Equations (5.20) and (5.21) provide a direct method to estimate the human feedback

without the need of prior knowledge of the weighing matrices Q and R. Unlike the inverse

LQR formulation, this estimation criteria can be applied online to estimate the human actions

and directly train a robot controller. Moreover, the proposed algorithm does not require

solution of a constrained optimization problem. Beside these advantages, the proposed

algorithm in (5.21) accounts for the possible non-stationarity in the human control criteria

without increasing the cost of computation.

We conducted a human experiment to test out human-in-the-loop conflict resolution

algorithm. To train a robot controller,we used the estimate of human feedback gain using

(5.20) and (5.21). Thus, the robot pilot can collaboratively assist the human pilot to resolve

an existing conflict between their aircraft. The experimental setup and results for robot

learning and conflict resolution is presented in the next section.

5.4 EXPERIMENTAL RESULTS

To test the proposed Human-Machine collaborative framework, we conducted human exper-

iment to simulate the human-in-the-loop actions. The experiment in this section use the

proposed rules (5.20) and (5.21) to train a robot-pilot based on the observations from the

human partner. The shared goal between the collaborating agents (human and robot) is

to resolve an existing conflict between their aircraft by means of lateral maneuvers. The

lateral maneuvers should be in effect until both aircraft reach a target position, where the

conflict is completely resolved. The rate of maneuvering action should learned as the agents

collaborate together. Primarily, since the decision making capabilities of the human agent

are superior to that of the robot pilot, the human pilot should take the initiative and then

the robot pilot would learn from the human actions. Both agents then adapt their control

criteria, based on their combined actions, to meet the common goal of conflict resolution

and collision avoidance.
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Figure 33: Computer simulation framework for aircraft conflict resolution HRC system. Hu-

man can cooperate with the computer controller by using joystick to control the acceleration

of the lateral maneuver.

5.4.1 Experimental Setup

In order to observe the human control actions and train a robot-pilot, seven subjects were

recruited to conduct a human-in-the-loop experiment for HRC on aircraft conflict resolution.

We built a flight simulator with two aircraft in conflict. The human subject was assigned the

control of one aircraft, while the other aircraft was controlled by a computer based controller.

The human subject can control his aircraft lateral position via a control stick connected to the

simulation computer (Figure 33). However, (s)he does not have a control over the speed of

aircraft on its nominal direction of flow, since we use a constant speed model for both aircraft.

In other words, human agent can only control the rate of lateral maneuvering. To make the

system easier for the participants, we restricted the simulations to only horizontal and vertical

lateral maneuvers. Meaning that the human agent was controlling an aircraft heading in one

of the cardinal directions (i.e., eastbound/westbound and northbound/southbound).
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The objective of the experiment is to train the computer controller using estimates of the

human control plan by applying the estimation algorithm in (5.20) and (5.21). A successful

collaboration would result in a complete resolution of the existing conflict using bounded

lateral maneuvers within a bounded period of time.

Each human subject was informed with the system operation and the shared goal of

efficient conflict resolution. To get comfortable with the system and the control stick, each

subject was allowed a training session to explore the system and how to control it. This

training session would allow the human agent to understand how to control the acceleration

of the aircraft later maneuver, and how to precisely control his/her aircraft lateral position.

The training session can be done with or without a computer controller being involved. When

the participant is ready, the experiment starts to train the computer-pilot that collaboratively

interact with the human participant during the experiment.

5.4.2 Results

Figure 34 shows the estimated control behavior of the human agent. The figure compares

between the actual human control and the estimated control, and displays the resultant error

function for each input. It is clear that the change in the error function, e(t) in response to

the control input is exactly the same for the actual human input and the estimated control

input. On the other hand, the estimated control input appears to be smoother than the

actual control input. This is because both equations (5.20) and (5.21) use historical data,

from previous time samples, to estimate the current control signal. The human input, in

Figure 34, appears to be a little bit discretized because the joystick is not easy to control,

and we divided a distance of 6 nm onto 120 discrete steps. This estimated control behavior

is then used for online training of the computer controller.

Figures 35 and 36 show the results of Human-Robot collaboration for aircraft conflict

resolution at two different levels of collaboration. Initially, the shadows of both aircraft was

completely overlapping. Therefore, the miss-distance between the two aircraft dij(0) = 0 nm,

and the error function e(0) = ds nm (we used a safety distance of 5 nm in this experiment).

Figure 35 shows the control inputs where both the human and robot pilots was contributing
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Figure 34: Human participant control criteria (right) and his estimated criteria (left), mea-

sured for the error function e(t) (top), and the acceleration control input u(t) (bottom).
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equally to resolve the existing situation. On the other hand, Figure 36 show the control

inputs where the robot controller was designed to minimize the human efforts (input) and

do most of the job based on the estimated human intentions. Therefore, it is shown that

the robot’s control input is larger than the human input at this case. Both figures show the

convergence of the error function over time. We can see that the system converged to safe

trajectories within a finite period of time. Moreover, the control input at both cases was

bounded. Thus, both the collaborating agents were able to successfully collaborate to fulfill

the shared goal. Therefore, we can concluse the stability of the proposed human-machine

co-learning system for aircraft conflict resolution.

The results obtained in this section show that we was able to successfully train a robot

pilot to learn and and adapt its control input according to its human partner criteria. Both

human and robot pilots were able to adapt their actions and successfully collaborate to

minimize the error function, while keeping their inputs bounded, and achieve their common

goal of resolving the existing conflict.

5.5 SUMMARY

In this chapter, we proposed a human-machine collaboration framework to solve the problem

of aircraft conflict resolution. First, we modeled the system dynamics using the state-space

representation. To comply with the neuroscience studies which suggested human optimal

control strategies, we defined an error function that measure how successful an agent manage

to resolve the conflict. The value of the error function decreases with lateral maneuvers that

aim to resolve the conflict. Second, we formulated the collaboration between the human and

robot agents as an linear regulation optimal control problem. Then, to learn the human

intentions and estimate his/her control criteria, we proposed a least-squares based algorithm

to estimate the human feedback gain using observations of the current system state and

the human actions. Once, we obtain an estimate for the human feedback gain, we then

train a robot controller based on human behavior. The trained robot controller can then

collaborate with human and update its control actions in real time. The proposed framework
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Figure 35: Human-Robot collaboration to resolve a complete overlap of aircraft shadows, at

equal contribution level. (top) The error function in nm, (bottom) each agent control input.
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Figure 36: Human-Robot collaboration to resolve a complete overlap of aircraft shadows,

with the robot seeking to minimize the human input. (top) The error function in nm,

(bottom) each agent control input.

78



is considered a reverse-engineering of black-box controllers, and offers a new dimension of

information (control design cost function) beyond that available using traditional system

identification techniques.

We conducted a human experiment to study the human control action and test our

collaborative framework for aircraft conflict resolution. The experimental results showed that

we was able to accurately estimate the human control criteria and train a robot controller

that can collaborate with that human agent. The collaboration experiment to resolve an

existing conflict, shows that both human and robot agents was able to adapt and co-learn

their control criteria to achieve the common goal of conflict resolution. Both agents was able

to derive the aircraft system to safe trajectories with a finite time, using bounded control

inputs.
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6.0 CONCLUSIONS

In this dissertation, we have considered the problem of conflict resolution of intersecting

aircraft flows in a specified control volume. To approach this problem, we proposed to

decentralized collaborative frameworks. The first one is an automatic conflict resolution

rule, and the second is based on a human-robot co-learning framework. Based on the model

geometry, we defined an automatic decentralized collaborative conflict resolution rule, where

each aircraft involved in a conflict should make a lateral maneuver, that satisfies the defined

resolution rule, to resolve this conflict, and other conflicts that may be created via the

domino effect. The lateral deviations were taken in the direction that reduce congestion, and

thus increase the number of resolved conflict situations. Conflict resolution procedure not

only deals with finding maneuvers for each aircraft to avoid potential collisions at any time

instant, but also concerns with maintaining the whole system safe as the system dynamics

evolve over time, i.e., to ensure that all aircraft will always be able to find feasible conflict

free trajectories. The main focus was given to both analytical approaches and simulations

to evaluate the evolution of aircraft trajectories, within a control volume, over time. For

the analytical part, we defined a Lyapunov function to study the convergence of conflict

resolution dynamics under the proposed decentralized conflict resolution maneuvers, and we

analytically proved that the system will converge to safe, conflict free, trajectories in a finite

bounded time. Simulations of aircraft flows at different intersecting angles were provided

to verify the validity of the proposed control rule. The simulated maneuvers were bounded,

satisfying one of the ATM routing requirements. Additionally, the simulated aircraft reached

safe trajectories that were close to their original trajectories. Besides that, simulations

verified our analytically derived conclusions about dynamics convergence, obtained by using

the Lyapunov stability theorem. Thus, the simulation results proved the convergence, safety,
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and efficiency of the proposed collaborative decentralized conflict resolution rule. Therefore,

the proposed decentralized conflict resolution rule can be used for safe and efficient Free

Flight operations.

The human-machine co-learning based aircraft conflict resolution depends on the collabo-

ration between human and robot pilots to resolve an existing conflict. The conflict resolution

was also based on a lateral maneuver model. However, the maneuver rate is not known and

should be learned during collaboration. To achieve a successful, the robot pilot should be

designed based on the human pilot control criteria. We modeled the system as an optimal

control problem, where both collaborating agents aim to minimize the conflict while main-

taining a bounded control input. Then, the human control criteria and feedback gain was

estimated using a least-squares based solution. Knowing the state feedback gain of the hu-

man agent, will therefore enable us to estimate his action and train a machine controller that

is able to collaborate with him in resolving airborn conflicts. We then conducted a human

experiment to test our state feedback estimation algorithm and to test the human-machine

co-learning collaborative framework at different levels of collaboration. The experimental

results showed that we can accurately estimate the human control criteria and train a robot

pilot for the task of aircraft conflict resolution. The performance of the two collaborating

agents was measured at two differnt collaboration levels, and the results showed that both

agents were able to collaborate and adapt their control criteia to completely resolve the

existing conflict within a finite time. This suggests that the proposed human-machine co-

learning framework can be used for air traffic applications, when an autonomous aircraft can

collaborate with a human pilot to resolve potential conflicts and avoid collisions.
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APPENDIX A

ACRONYMS

ARE Algebraic Riccati Equation

ARTCC Air Route Traffic Control Center

ATC Air Traffic Control

ATCs Air Traffic Controllers

ATM Air Traffic Management

ERASMUS EN Route Air Traffic Soft Management Ultimate System project

Eurocontrol The European Organisation for the Safety of Air Navigation

FAA Federal Aviation Administration

HMI Human-Machine Interaction

HRC Human-Robot Collaboration

HRI Human-Robot Interaction

LMI Linear Matrix Inequality

LQR Linear Quadratic Regulator

MILP Mixed Integer Linear Programming

MSP Minneapolis - St. Paul International Airport

NAS National Airspace System

NextGen Next Generation Air Transportation System

nm Nautical Mile

SESAR Sky Air Traffic Management Research Program
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TCAS Traffic Alert and Collision Avoidance System

TFM Traffic Flow Management

TRACON Terminal Radar Approach Control

ZMP Minneapolis Air Route Traffic Control Center
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APPENDIX B

NOTATION

Flow and Conflict Geometry

θ Encounter angle between two intersecting flows

φ Angle of the relative velocity vector (Aircraft shadow angle)

Ai Aircraft i

Aki Aircraft i that belong to flow k

dij Miss-distance between aircraft i and aircraft j

ds, D
min
sep Safety (separation) distance

v1 Velocity vector of aircraft in flow 1

v2 Velocity vector of aircraft in flow 2

Conflict Resolution Rule

c Positive constant

L̇ Rate of lateral maneuvering

L̇i Rate of change of the lateral position of aircraft i

NLi Number of left touches currently experienced by aircraft i

NRi Number of right touches currently experienced by aircraft i

u⊥i The unit vector normal to the direction of flow of aircraft i
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Aircraft Flow Safty and Conflict Resolution Convergence

δij The touch function between aircraft i and aircraft j

ḋij The rate of change of the miss-distance between aircraft i and aircraft j

Nc The initial number of conflicts within the control volume before any lateral

maneuver is taken

Ne Number of eastbound aircraft

Ns Number of southbound aircraft

tconv Convergence time

V Lyapunov function

V̇ Drevative of Lyapunove function with time

Human-Robot Collaboration

α, γ Weighting coefficients associated with the error function

β, σ Weighting coefficients associated with the control input

∆t Sampling time

A System dynamics matrix

B Input matrix

e(t) Error function

J(t) Cost function

K State-feedback (Kalman) gain matrix

N Number of time samples

pi(t) Position of aircraft i at time t

p∗ Target position

P The unique positive-semidefinite solution to the discrete-time ARE

Q Weight matrix associated with the states

R Weight matrix associated with the control input

u(t) Control input

uh Human control input

85



uh The human agent control history vector

ur Robot control input

vi(t) Velocity of aircraft i at time t

w Window length

xi(t) State vector of agent i

x(t), xn State vector of the coupled system dynamics

x The state history vector
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APPENDIX C

LYAPUNOV THEORY AND LASALLE’S STABILITY PRINCIPLE

Lyapunov stability theory is a standard tool and one of the most important tools in the

analysis of nonlinear systems [71]. The idea of Lyapunov theory is to define an energy-like

function, called Lyapunov function. Then, by studying the change of this function over

time, the stability condition of the system under study can be concluded, without solving

its differential equation.

Consider the nonlinear autonomous system

ẋ = f(x), (C.1)

where f is a locally Lipschitz function. Suppose the system (C.1) has an equilibrium point

x̄, i.e. f(x̄) = 0. We would like to characterize if the equilibrium point x̄ is stable or not.

Lyapunov theory defines a continuously differentiable function, V , that contains the origin.

The rate of change of V along the trajectories of (C.1) is given by

V̇ (x) ,
d

dt
V (x) =

∂V

∂x
f(x) (C.2)

The main idea of Lyapunov’s theory is that if V̇ (x) is negative along the trajectories of

the system, then V (x) will decrease as time advances. Moreover, we do not really need to

solve the nonlinear ODE (C.1) for every initial condition. Stability conditions for Lyapunov

theory are listed in theorem C.0.1.
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Theorem C.0.1. Let x = x̄ ∈ D ⊂ Rn be an equilibrium point for ẋ = f(x). Let V : D → R

be a continuously differentiable function such that

V (x̄) = 0,

V (x) > 0, ∀x ∈ D (C.3)

V̇ (x) ≤ 0,∀x ∈ D

Then, x = x̄ is stable. Moreover, if

V̇ (x) < 0,∀x ∈ D (C.4)

then x = x̄ is asymptotically stable.

According to Lyapunov theory, condition C.4 is necessary for asymptotic stability. How-

ever, for some instances we can conclude asymptotic stability without that condition. LaSalle’s

theorem allows us to conclude asymptotic stability with only V̇ (x) ≤ 0, along with an ob-

servability type condition. Theorem C.0.2 states LaSalle’s Invariance Principle.

Theorem C.0.2. (LaSalle’s Invariance Principle) Let Ω ⊂ D be a compact set that is

positively invariant with respect to ẋ = f(x). Let V : D → R be a continuously differentiable

function such that V̇ (x) ≤ 0, in Ω. Let E be the set of all points in Ω where V̇ (x) = 0.

Let M be the largest invariant set in E. Then every solution starting in Ω approaches M as

t→∞.

Figure. 37 displays Theorem C.0.2 graphically. An important result that follows from

Theorem C.0.2 is the following corollary.

Corollary C.0.3. Let x = 0 ∈ D be an equilibrium point of the system ẋ = f(x). Let

V : D → R be a continuously differentiable positive definite function on the domain D, such

that V̇ (x) = 0, ∀x ∈ D. Let S , {x ∈ D|V̇ (x) = 0} and suppose that no solution can stay

identically in S, other than the trivial solution x ≡ 0. Then , the origin is asymptotically

stable.

Thus, four conditions are required to prove asymptotic stability of a system according

to LaSalle’s principle. These conditions are:

88



Figure 37: LaSalle’s Invariance Principle. Every solution starting in Ω approaches M as

t→∞.

1. V (0) = 0, V (x) > 0 ∀x 6= 0

2. V̇ (x) ≤ 0,∀x

3. V (x)→∞ as ‖x‖ → ∞

4. The only solution of ẋ = f(x), V̇ (x) = 0 is x = 0.

We use the result of theorem C.0.1 and Corollary C.0.3 to prove the convergence of the

system dynamics under proposed the conflict resolution system (2.1).
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