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OF CLINICAL TRIALS

Judah Abberbock, PhD

University of Pittsburgh, 2017

ABSTRACT

There has been a shift in the conduct of early-stage breast cancer trials in recent years from

long adjuvant trials with overall or disease-free survival as the efficacy endpoint to shorter

neoadjuvant trials with pathological complete response (pCR), a binary marker, at time of

surgery as the endpoint. The Food and Drug Administration (FDA) currently embraces this

transition and deems evidence in pCR improvement sufficient for drug approval on condition

that long-term data are collected to eventually show efficacy in survival. Incorporating data

on pCR in the design and analysis of such a trial is therefore of public health interest.

Here, we propose one method to assess the power and sample size of such a trial with

using observed neoadjuvant data and another method to estimate certain causal treatment

effects on survival conditional on pCR. In the first part, we propose an exponential mixture

model for survival time with parameters for the response rates and an estimated benefit in

survival from achieving response. Under a fixed sample size, we obtain the empirical power

through simulations from the proposed mixture model. We also propose a more efficient

method than the empirical approach by applying an estimated average hazard ratio to the

Schoenfeld formula. The performance of our methods is assessed via simulation studies. Data

from two neoadjuvant cancer clinical trials are used to illustrate these methods. Second, we

propose a method under the principal stratification framework to estimate the causal effect

of treatment on a binary outcome, conditional on a post-treatment binary response marker

in randomized controlled clinical trials. Specifically, we estimate the treatment effect among
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those who would achieve response if given the treatment. We are able to identify this causal

effect under two assumptions. First, we model the counterfactual probability of achieving

response under treatment given baseline clinical markers and the outcome. Second, we

assume a monotonicity condition: a patient who responds under control would respond

under treatment as well. We compared the performance of proposed method with other

standard approaches in simulation studies. Data from a neoadjuvant breast cancer clinical

trial are used to demonstrate the proposed method.

Keywords: binary response marker, survival, power, sample size, neoadjuvant, cancer clin-

ical trials, principal stratification, causal inference.
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1.0 INTRODUCTION

1.1 OVERVIEW

Testing new drug therapies in general and for breast cancer in particular has become harder

as standard treatments have improved over time. Because of this, new drug testing requires

larger sample sizes and longer follow-up in order to demonstrate statistical significance for

smaller treatment effects. An example of a typical phase III breast cancer trial is the National

Surgical Adjuvant Breast and Bowel Project (NSABP) B-40 study where 1206 women with

HER2-negative breast cancer were randomized to one of three docetaxel-based neoadjuvant

regimens and whether to receive bevacizumab or not. Long-term survival follow-up data were

collected from Oct 31, 2007 to March 27, 2014. Median follow-up was 4.7 years. Because

large and long trials like this are not always feasible, researchers often prefer to find an

intermediate endpoint which can accurately predict the drug’s treatment effect on the long-

term outcomes before they occur to make new drug trials shorter and less costly. Such an

intermediate endpoint is known as a surrogate endpoint.

While there are varying definitions of a surrogate endpoint, we adopt the definition of

Wittes, Lakatos and Probstfield as “an endpoint measured in lieu of some other so-called

‘true’ endpoint” [40]. This definition describes the purpose of a surrogate endpoint, but

makes no assumption of the relationship between the surrogate and true endpoint. The

type of questions that can be answered about the true endpoint with measurement on the

surrogate depends on the relation between treatment, surrogate, and true endpoint.

For this reason, it is important to distinguish between two types of surrogates: a prog-

nostic surrogate and a treatment efficacy surrogate. A prognostic surrogate is statistically

associated with the true endpoint of interest. For example, tumor response is a prognos-
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tic surrogate for survival if tumor responders have improved survival over non-responders.

Prognostic surrogates, while not the focus of this dissertation, are important nonetheless.

Prognostic surrogates are useful to inform patients of their likely outcomes well before these

outcomes are predicted to occur. This knowledge can help determine the proper course of

action for future treatment and/or patient care.

The focus of this dissertation is on the second type of surrogate, the treatment efficacy

surrogate. An efficacy surrogate is an intermediate variable whose association with treatment

can predict a treatment effect on the true endpoint. Such a surrogate is important in

drug development, where investigators would like to predict a treatment effect on a patient

important “true” outcome by showing the drug has an effect on the surrogate measure.

Running a randomized clinical trial with the surrogate as the primary endpoint has the

potential of saving time and resources, as well as accelerating a drug’s FDA approval.

However, it is possible and quite common for a surrogate to have little or no efficacy

value, even though a proposed mechanism of action seems plausible to the investigator. One

famous historical example is ventricular arythmia. Ventricular arythmia is associated with

a four-fold increase in mortality due to cardiovascular complication, making it plausible as

a surrogate for the “true” endpoint of mortality. However, ventricular arythmia proved

to be a poor efficacy surrogate for overall mortality. Of the three drugs approved by the

FDA for reducing ventricular arythmias, all 3 eventually showed an increased mortality rate

compared to placebo in the Cardiac Arrhythmia Suppression Trial (CAST) [24, 37]. Fleming

and Demets [17] have documented these “failures” of surrogate endpoints across a wide range

of conditions including cardiologic conditions, cancer, and other diseases. Therefore, unless

a surrogate is well-established as an efficacy surrogate, the FDA will not grant approval to

the drug with a surrogate endpoint as its primary efficacy outcome.

Furthermore, even a prognostic surrogate is not necessarily a treatment efficacy surrogate

for the same “true” endpoint. As an example, consider a drug that shows efficacy on a

surrogate response measure. Additionally, patients achieving this surrogate response have

a better prognosis than those non-responders, regardless of treatment assignment. Such a

drug may still not have an effect on the true endpoint. Such a scenario is depicted in Table

1.
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Table 1: Example data of a prognostic surrogate with no overall treatment effect

Surrogate True Endpoint

Treatment Responders 20 Responders 10

(N=40) Non-responders 10

Non-responders 20 Responders 5

Non-responders 15

Control Responders 10 Responders 5

(N=40) Non-responders 5

Non-responders 30 Responders 10

Non-responders 20

In this scenario, 50% of subjects on treatment achieve surrogate response compared to

25% of control subjects. Additionally, 50% (15/30) of surrogate responders achieve the

true endpoint compared to 30% (15/50) of surrogate non-responders. However, there is no

treatment effect on the true endpoint as both groups have 15/40 responders to true endpoint.

For cancer studies with tumor response as a possible surrogate, Anderson et al. [1] cau-

tion investigators about the problem of confusing a prognostic surrogate with a treatment

efficacy surrogate. They report that “common practice” at the time was for an investigator

to present comparisons between tumor responders and non-responders, known as a “respon-

der analysis.” If responders survive significantly longer than non-responders investigators

would conclude that increasing tumor response would be a way to increase survival. The

investigators’ error is to equate the prognostic surrogate of tumor response as necessarily

implying tumor response is a valid efficacy surrogate. However, as the authors state, “It is

generally impossible to refute the possibility that response is just a marker which selects the

good prognosis patients: those who would have survived longer even if the therapy has no

effect at all.”
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1.2 METHODS FOR SURROGATE ENDPOINT VALIDATION

Because potential surrogate endpoints may not be treatment efficacy surrogates, there is a

need to develop criteria to validate potential surrogates as efficacy surrogates. Only after a

surrogate has been validated can the surrogate replace the true endpoint in clinical studies.

As reviewed by Molenberghs et al. [29] there have been a number of methods proposed to

assess the validity of a potential surrogate.

1.2.1 Prentice’s Criteria

Prentice [31] was the first to give a formal definition of a valid surrogate endpoint. He

defined such a surrogate as “a response variable for which a test of the null hypothesis

of no relationship to the treatment groups under comparison is also a valid test of the

corresponding null hypothesis based on the true endpoint.” This definition captures the

purpose of a surrogate endpoint in clinical trials: to use the surrogate instead of the true

endpoint in order to concluded the treatment effective on the true endpoint measure.

Prentice proposed four criteria, that, when true, would validate a surrogate endpoint.

For treatment indicator Z, surrogate S, and true endpoint T, the criteria are the following:

f(S|Z) 6= f(S) (1.1)

f(T |Z) 6= f(T ) (1.2)

f(T |S) 6= f(T ) (1.3)

f(T |S,Z) = f(T |S) (1.4)

These criteria, in words, say that treatment has a significant effect on both the surrogate

(1.1) and true endpoint (1.2), the surrogate has a significant effect on the true endpoint

(1.3), and the full effect of treatment is captured by the effect of the surrogate on treatment

(1.4)[9].

As an example of the validation procedure, Molenberghs et al. [29] consider a continuous

outcome Tj with binary treatment Zj and binary surrogate Sj for subject j. The following

four models can be used to evaluate Prentice’s criteria:
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Sj = µS + αZj + εSj; (1.5)

Tj = µT + βZj + εTj (1.6)

Tj = µ+ φSj + εj (1.7)

Tj = µ0 + βSZj + φSj + ε, (1.8)

where εSj and εTj are multivariate normal with mean 0 and variance-covariance:

Σ =

 σSS σST

σST σTT

 (1.9)

The first three criteria are inequalities and can be verified by a rejection of a null hypothesis

that α, β, and φ of (1.5), (1.6), and (1.7) are equal to 0. The fourth criteria requires βS

from equation (1.8) to equal 0. Because this requirement is an equality, this fourth critirea

cannot be verified by rejection of a null hypothesis. Additionally, these criteria would fail to

validate a surrogate endpoint in which only part of the treatment effect is explained by the

surrogate endpoint, a situation where βS from equation (1.8) would be nonzero. Because of

this Freedman et al. [19] introduced the concept of “proportion explained” by the surrogate

to estimate the extent of surrogacy of an intermediate endpoint.

1.2.2 Freedman’s Proportion Explained

Freedman et al. [19] proposed to estimate the proportion of the treatment effect that is

captured by the surrogate (PE). Using the above models and notation, PE(T,S,Z) is defined

as:

PE(T, S, Z) =
β − βS
β

. (1.10)

As βS becomes closer to zero, the closer this proportion is to one, indicating the extent

to which the surrogate captures the full treatment effect on the true endpoint. However,

PE is not restricted to values between 0 and 1 as there is no restriction that βS be smaller

than β. Thus the intuitive explanation of PE as a proportion is not accurate. Furthermore,
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Freedman et al. [19] pointed out that if the model in (1.8) is incorrect and an interaction

term between Z and S exists, PE could not be used. Molenberghs et al. [9] suggested using

the relative effect (RE), defined as α
β

in the above models (1.5) (1.6), instead of PE. It has

been shown that a one-to-to correspondence between PE and RE exists [29]. Thus there are

no statistical advantages to RE over PE, as RE is simply a reparameterization of PE.

1.2.3 Meta-analytic Framework

An additional measure of surrogacy has been proposed [10] for a meta-analytic validation of

a surrogate endpoint. With data from multiple trials, one can regress the observed treatment

effects on the observed treatment effects on the surrogate. The model is then used to

predict the relation between the observed trial effects on the surrogates and the observed

trial effects on the true endpoint. A valid surrogate should have a high correlation between

these two measures. The full details of this Meta-analytic validation approach are described

by Molenberghs et al. [30].

1.3 APPLICATIONS TO NEOADJUVANT BREAST CANCER TRIALS

The surrogate endpoint which is the topic of this dissertation is pathological complete re-

sponse, pCR, at the time of surgery following neoadjuvant therapy. The three most com-

monly used definitions of pCR, according to the Food and Drug Administration (FDA) [38]

are as follows:

1. ypT0/Tis: absence of invasive cancer in the breast.

2. ypT0/Tis ypN0: absence of invasive cancer in the breast and axillary nodes.

3. ypT0 ypN0: absence of invasive and in situ cancer in the breast and axillary nodes.

In a meta-analysis of 11,955 patients [12], all three definitions of pCR were related to

improved event-free survival (EFS) and overall survival (OS). This provides evidence of

pCR as a prognostic surrogate for survival which can be useful for clinical decision making

a patient care. However, the meta-analysis failed to prove treatment surrogacy using the
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meta-analytic approach [30]. Possible explanations for this failure are lack of power due to

small effect sizes on pCR, the heterogeneity of the patient population for the trials included,

or that pCR is not in fact, a valid treatment surrogate for survival endpoints.

Chapter 2 will focus on how to design a Neoadjuvant Clinical Trial with a survival

outcome when there is information about the drug’s effect on pCR. Chapter 3 will focus

on how to conduct causal inference when conditioning on the poct-randomization variable

pCR.

1.4 ASSESSMENT OF EFFECT SIZE AND POWER FOR SURVIVAL

ANALYSIS THROUGH A BINARY SURROGATE ENDPOINT IN

CLINICAL TRIALS

The second chapter of this dissertation explains how to determine the power and effect size of

a clinical trial with a survival endpoint, when there is information on a binary intermediate

endpoint associated with both treatment assignment and survival. Specifically, we propose to

model the survival function of each group as a mixture of exponential models with the mixing

proportion determined by the intermediate endpoint data and hazard rates determined by

historical data. We use simulations to estimate the power of the trial using our models and

propose to use average hazard ratio over the study period as a measure of the treatment

effect size. Additionally, we show how Schoenfeld’s formula for survival endpoints assuming

proportional hazards can be used to estimate power, using the calculated average hazard

ratio instead of the constant hazard ratio in the formula. We extend our approach to a

setting with continuous accrual and follow-up and compare it with a single point of accrual

setting. To illustrate our approach we apply our method to two neoadjuvant breast cancer

clinical trials where we use data on pCR to determine the power of the trial for a survival

endpoint.
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1.5 PRINCIPAL STRATIFICATION FOR CAUSAL EFFECTS

CONDITIONING ON POST-TREATMENT VARIABLES

The third chapter this dissertation relates to causal inference in the presence of a post

randomization variable. In particular, we would like to limit our analysis to those patients

who would achieve pCR under treatment and would therefore be likely to benefit from the

added treatment. We use the method of principal stratification developed by Frangakis

and Rubin [18]. Principal stratification creates subgroups of patients based on the patient’s

potential value of a post-randomization variable if assigned to treatment or control. For

a binary surrogate S such as pCR, there are a total of four basic principal strata: (1)

those who would not achieve pCR regardless of having added treatment, (2) those who

would achieve pCR only if they receive added treatment, (3) those who would achieve pCR

regardless of added treatment, and (4) those who would achieve pCR only if they do not

receive added treatment. Conditioning on these strata maintains a causal interpretation

because the conditioning is done on potential outcomes instead of observed outcomes. Using

this approach we can therefore condition on those who would achieve pCR under a specific

treatment but cannot condition on observed pCR response status. The former is independent

of treatment assignment while the latter is dependent on treatment, and conditioning on it

could introduce bias because we are no longer comparing completely randomized groups.

We will apply this method to data from the NSABP B-40 trial. In this trial women

with operable human epidermal growth factor receptor 2 (HER2)-negative breast cancer

were randomly assigned to receive (N=604) or not to receive (N=602) bevacizumab along

with their neoadjuvant chemotherapy regimens [3]. Bevacizumab significantly increased the

proportion of pCR (28.2% vs. 34.5%, P=.02). Median follow-up time was 4.7 years. In

the long-term outcomes analysis, patients on bevacizumab did show improvement in DFS

compared to the control patients, although the improvement was not statistically significant

(HR=.80, P=.06) [4]. We will assess the treatment effect among those patients who would

achieve pCR had they been assigned treatment.

The difficulty in the method is identifying those patients in the control group who would

be pCR responders under treatment. To identify this we make two assumptions. First, we

8



assume that pCR responders in the control group would be pCR responders had they received

treatment as well. This is known as the monotonicity assumption. Second, we assume a

parametric model form for the probability of a control pCR non-responder achieving pCR

under treatment. Once we estimate the parameters of the model we use the model to impute

pCR status under treatment. After imputation we conduct the stratified analysis among the

subgroup of patient that would be pCR responders under treatment drug. To account for

uncertainty in the imputed values we use the technique of bootstrap resampling [27].
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2.0 ASSESSMENT OF EFFECT SIZE AND POWER FOR SURVIVAL

ANALYSIS THROUGH A BINARY SURROGATE ENDPOINT IN

CLINICAL TRIALS

2.1 INTRODUCTION

We have seen a major shift in the conduct of breast cancer clinical trials in recent years.

Historically, an experimental drug or treatment was administered with standard systemic

therapy following surgery to one group of randomly assigned patients while patients ran-

domly assigned to the control group received the standard therapy alone. Then patients

from the two groups were followed over time for comparison of long-term outcomes such as

disease-free survival (DFS), overall survival (OS) and progression-free survival (PFS). How-

ever, in recent years, there have been an increasing number of neoadjuvant trials where many

of the systemic therapies are administered prior to the surgery of the breast [38].

The primary endpoint in recently initiated neoadjuvant breast cancer clinical trials is

pathological complete response (pCR), a binary variable that categorizes tumors into respon-

ders and nonresponders. The US Food and Drug administration’s (FDA) latest guidance

accepts pCR definitions of either absence of invasive cancer in the breast and axillary nodes

or absence of invasive and in situ cancer in the breast and axillary nodes (ypT0/Tis ypN0

and ypT0 ypN0 respectively in the current American Joint Committee on Cancer (AJCC)

staging system) [38]. The rationale for using pCR as the trial endpoint is that efficacy of

treatment can be determined at the time of surgery, usually six to seven months after ther-

apy commences, instead of the typical 5-10 years of follow-up required to show improved

efficacy on survival endpoints in the adjuvant setting. Furthermore, the strong prognostic
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link between pCR and survival has been well documented [12, 39], making pCR an attractive

candidate surrogate marker for survival.

It is important to note, however, that pCR has yet to be validated as a surrogate for

treatment efficacy on survival endpoints. Furthermore, a recent meta-analysis [12] of 12

neoadjuvant trials failed to show evidence that pCR is a valid surrogate endpoint. That being

said, while the FDA does not usually accept surrogate endpoints to demonstrate efficacy,

it makes exceptions in cases of unmet need. The FDA has therefore cautiously accepted

pCR as an endpoint for accelerated approval in high-risk subsets of breast cancer patients,

provided certain additional requirements are met, including the recruitment of patients for

a larger confirmatory trial with a survival endpoint [38].

This chapter addresses the power and sample size calculation for this confirmatory trial.

Specifically, we will show how to use observed data from a neoadjuvant trail with pCR data

to determine the sample size and power for the FDA-mandated confirmatory trial. This will

provide a tool for investigators in the planning stage of the larger confirmatory trial.

Recently, two approaches of sample size determination for these confirmatory trials have

been proposed. Berry and Hudis [7] advocate using the FDA meta-analysis [12] patient-level

relations between pCR responders and non-responders to estimate the treatment effect size

by considering each treatment arm as a mixture distribution of pCR responders and non-

responders. Alternatively, Hatzis et al. [22] calculate the sample size using biased bootstrap

resampling from the survival data of 127 triple negative breast cancer patients. We adopt

the first approach in our method and rely on external estimates of the relative risk between

pCR responders and non-responder.

To illustrate our approach, we consider two examples of neoadjuvant breast cancer trials

with data on both pCR (defined in both as the absence of invasive cancer in the breast) and

long-term follow-up. We use the available data on pCR to estimate the power and effect

size of the two trials and compare it to the long term data available. The first trial is the

National Surgical Adjuvant Breast and Bowel Project (NSABP) B-27 study [2]. Women

with operable breast cancer were randomly assigned to receive preoperative doxorubicin and

cyclophosphamide (AC) (N=804) or docetaxel (T) added to AC (N=805). A third arm was

randomly assigned to preoperative AC and post-operative T (n=802), but is excluded from
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this analysis because the postoperative drug may confound the relation between pCR and

survival. For the two arms with exclusively neoadjuvant therapy, there was a significant

difference (P < 0.001) between the pCR proportion in T+AC (26.1%) and AC (12.9%).

Median follow-up time was 6.5 years. In the long-term outcomes analysis there was no

significant difference in DFS between T+AC and AC (HR=0.90, P=0.22).

The second trial is the NSABP B-40 study. Women with operable human epidermal

growth factor receptor 2 (HER2)-negative breast cancer were randomly assigned to receive

(N=604) or not to receive (N=602) bevacizumab along with their neoadjuvant chemotherapy

regimens [3]. Bevacizumab significantly increased the proportion of pCR (34.5% vs. 28.2%,

P=0.02). Median follow-up time was 4.7 years. In the long-term outcomes analysis, patients

on bevacizumab did show improvement in DFS compared to the control patients, although

the improvement was not statistically significant (HR=0.80, P=0.06) [4].

The rest of the chapter is organized as follows. In section 2.2 we briefly review the basic

model and calculation used in clinical trials to determine an appropriate sample size for

testing a significant treatment effect on survival. In section 2.3 we propose two alternative

models which are more intuitive for neoadjuvant data with information on a binary surrogate

endpoint. The characteristics of the model are then laid out. In section 2.4 we provide details

on how to use the models for sample size and power calculations. In section 2.5 we conduct a

simulation study to determine the power of the trial under a range of parameters. In section

2.6 we illustrate our method through data collected from the NSABP B-27 and NSABP B-40.

We conclude by discussing how our results provide a better understanding of neoadjuvant

clinical trials and its effect size and sample size determination.

2.2 A STANDARD APPROACH FOR RANDOMIZED CLINICAL TRIALS

WITH TIME-TO-EVENT ENDPOINT

For a placebo-controlled two arm clinical trial with OS or DFS as its primary endpoint,

the logrank test is used to test the null hypothesis of equal distribution of event times

for the two groups [13, 28]. This test is robust as it makes no assumptions about the
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underlying distribution for each group’s survival. To determine an appropriate sample size to

achieve sufficient power, however, additional assumptions are required about the underlying

distributions. The usual distributional assumption is that each group’s survival time follows

an exponential distribution with a given hazard rate. This assumption results in a constant

hazard ratio over time between the two groups, also known as the proportional hazards

assumption. Under this assumption the required sample size, N , for a two-sided logrank test

of size α to achieve a power of β, assuming equal allocation and a hazard ratio of λ between

the two groups is the following:

N =
4(zβ + z1−α/2)

2

ρ(log2λ)
(2.1)

where z1−α/2 and zβ are quantiles of the normal distribution and ρ is the proportion of events

among study participants at the time of analysis [34]. This sample size calculation is popular

due to its simplicity and few required inputs.

In the neoadjuvant setting we assume that pCR acts as a mediating variable for survival

as suggested by findings that patients who achieved pCR had much better prognosis than

those who did not [12, 39]. We would therefore like to allow for different survival distributions

based upon pCR status. This is the underlying motivation for our model. Our model can

then be used to provide power estimation for the comparison of long-term outcomes with

the data available at the conclusion of the neoadjuvant component of the clinical trial.

2.3 METHODS

2.3.1 Mixture Models for Survival Data

There is a rich literature on using mixture models to model survival data. Boag [8] and

Berkson and Gage [5] first used them to describe survival data where some of the study

population is cured from the disease and will not have an observed event during the study

period. These “cure models” have since been studied for their asymptotic properties [20]

and for estimation under specific conditions, such as the proportional hazards assumption
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[36]. Here we stratify patients by their treatment arm and pCR status and the distribution

of time to event within each patient stratum is modeled parametrically. We assume two

treatment arms (treatment vs. control). In both NSABP B-27 and B-40 very few patients

(< 1%) died before the primary surgery was performed. Therefore, for simplicity we assume

in our models that all patients survive through the conclusion of the neoadjuvant component

and have information regarding pCR status.

2.3.2 Model 1

Denote the pCR proportion among patients randomized to the control arm as δ. At the

end of the neoadjuvant component, we assume that the improvement on pCR due to the

intervention is ∆. We model a patient’s pCR status from group i (0=control, 1=treatment)

as a Bernoulli random variable with parameter δ and δ + ∆ for the control and treatment

group, respectively.

We then assume that conditional on pCR status j ∈ {0, 1}, a patient’s survival time T

following surgery follows an exponential distribution with parameter λj. Here we assume

that all patients survive up to pCR assessment and consider survival time T = 0 to be time

of surgery. Assuming the hazard ratio between pCR and non-pCR patients as β1 we have

λ1 = λ0β1. Estimates of β1 are available in the literature for different subpopulations [12]

and generally range from .2 to .6.

As a starting point we assume the survival functions depend only on pCR status irre-

spective of treatment group, that is, pCR is a perfect surrogate marker of survival. We refer

to this as Model 1. Subsequently we will relax this assumption to reflect that differences

in patient survival after pCR assessment between pCR and non-pCR groups may vary by

treatment arms. We refer to this relaxed model as Model 2.

Model 1 can be thought of as the mixture of two exponential distributions with a mixing

probability corresponding to the pCR proportion for each treatment group. Each group’s

probability density function for survival time, fi(t), is the following:

f0(t) = (1− δ)λ0e−λ0t + δλ0β1e
−λ0β1t (2.2)

f1(t) = (1− δ −∆)λ0e
−λ0t + (δ + ∆)λ0β1e

−λ0β1t (2.3)
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Additionally each group’s survival and hazard function, Si(t) and hi(t) respectively, are

easily derived from (2.2) and (2.3) :

S0(t) = (1− δ)e−λ0t + δe−λ0β1t

S1(t) = (1− δ −∆)e−λ0t + (δ + ∆)e−λ0β1t

h0(t) =
(1− δ)λ0e−λ0t + δλ0β1e

−λ0β1t

(1− δ)e−λ0t + δe−λ0β1t
(2.4)

h1(t) =
(1− δ −∆)λ0e

−λ0t + (δ + ∆)λ0β1e
−λ0β1t

(1− δ −∆)e−λ0t + (δ + ∆)e−λ0β1t
(2.5)

Dividing equation (2.5) by (2.4) yields the hazard ratio between the 2 groups:

β(t) =

[
(1− δ −∆)λ0e

−λ0t + (δ + ∆)λ0β1e
−λ0β1t

] [
(1− δ)e−λ0t + δe−λ0β1t

]
[(1− δ −∆)e−λ0t + (δ + ∆)e−λ0β1t] [(1− δ)λ0e−λ0t + δλ0β1e−λ0β1t]

(2.6)

2.3.3 Model 2

Since PCR may not be a perfect surrogate of patient survival, we also consider the case

when the treatment may be associated with lower event rate, compared to the controls, even

within the pCR and non-pCR stratum. We model this by adding a parameter β2 to capture

an additional benefit from treatment. For patients on the control arm, their hazard rate

is still λ0 λ0β1 and pCR non-responders and responders, respectively. For patients on the

treatment arm their hazard rate would become λ0β2 and λ0β1β2 for pCR non-responders

and responders, respectively. The parameter β2 is interpreted as the hazard ratio between

treatment and control among those with the same pCR status. Accordingly, we have the

following formula for the hazard ratio between the two groups:

β(t) =

[
(1− δ −∆)λ0β2e

−λ0β2t + (δ + ∆)λ0β1β2e
−λ0β1β2t

] [
(1− δ)e−λ0t + δe−λ0β1t

]
[(1− δ −∆)e−λ0β2t + (δ + ∆)e−λ0β1β2t] [(1− δ)λ0e−λ0t + δλ0β1e−λ0β1t]

(2.7)

We refer to this model as Model 2. Because of the complex nature of our models we rely

on simulation instead of asymptotic theory to determine the power of a given trial based on

our models.
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2.4 POWER CALCULATION

2.4.1 Empirical Power

Using the above survival models we propose the following two methods for calculating the

power of a trial. The first method is to use the observed neoadjuvant data to calculate the

parameters of the survival models and then calculate empirical power. For the above models

δ is calculated as the proportion of pCR responders in the control arm and ∆ as the increased

proportion of pCR responders observed in the treatment arm. λ0 and β1 can be estimated

based on historical data describing the survival of pCR responders and non-responders for

the subgroup of patients in the trial such as that found in the FDA meta-analysis [12]. We

suggest treating β2 as a sensitivity parameter and initially setting it to 1.0 as in Model 1.

Other values of β2 can then be chosen to calculate the power under the assumption of an

additional survival difference between treatment and control within each pCR arm.

Once the parameter values are chosen, we propose to calculate the empirical power using

simulations. First, for the given sample size and study end time, Tend, simulate the patient’s

pCR status by a Bernoulli draw with probabilities δ and δ+∆ for the control and treatment

group, respectively. Then simulate the event time following surgery of each patient from an

exponential distribution with hazard rates of λ0β2 and λ0β1β2 for pCR responders and non-

responders respectively, with Model 1 simulations corresponding to β2 = 1. An event time

greater than Tend is considered censored for purposes of analysis to reflect administrative

censoring. Then we compare the survival of the two study arms following the conclusion

of the neoadjuvant component with a 2-sided logrank test with a predetermined α level.

Then repeat the simulation many (1,000 or 10,000) times. The proportion of logrank tests

that achieve statistical significance will be the empirical power of the randomized trial. This

procedure can be repeated with different sample sizes until the desired power is achieved.

2.4.2 Approximate Power using Schoenfeld’s Formula

The second method to determine the power of the study is an approximation using Schoen-

feld’s formula (2.1). In the equation ρ can be calculated based on the survival functions at
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time Tend. Because our model incorporates a mixture of distributions, the hazard ratio be-

tween treatment and control changes over time and must be calculated based on the assumed 

parameters of our model. To simplify calculating the hazard ratio between the two groups at a 

given time point in the study, we initially assume all patients are accrued at a single time point 

and followed until time Tend, the time from surgery to study close. We propose to approximate 

the treatment effect size by numerically approximating the average hazard ratio given in 

equations (2.6) and (2.7) over the length of follow-up time. We numerically approximate by 

averaging the hazard ratio calculated at 1000 equidistant points over the entire post-surgery 

period. The average hazard ratio during the follow-up period will be used to replace the 

constant hazard ratio in Schoenfeld’s formula (2.1) to approximate the sample size required to 

achieve a chosen power or vice versa.

To validate this approximation for the effect size we first plot the hazard ratio over time to 

see its trajectory for a given set of parameter values. Using average hazard ratio would be 

most informative as an effect size if the hazard ratio trajectory is mostly flat. Additionally, we 

check the validity of replacing λ with average hazard ratio in Schoenfeld’s equation (2.1) by 

comparing our approximation method with our empirical power calculation. First we 

calculate the required sample sizes to achieve 80 and 90 percent power using Schoenfeld’s 

equation (2.1), replacing λ with the calculated average hazard ratio and calculating ρ based on 

the modeled survival function. We calculate these required sample sizes for a total of 288 

combinations of parameter values (δ ∈ {0.1, 0.3, 0.5}, ∆ ∈ {0.1, 0.2, 0.3, 0.4}, λ0 ∈ {0.08, 0.12, 

0.16}, β1 ∈ {0.2, 0.3, 0.4, 0.5}, β2 ∈ {1, 0.9} for Tend = 5). We then calculate the empirical 

power using our first method (with 1,000 runs) for the sample sizes obtained from the 

approximation under our model assumptions along with its 95% confidence interval using a 

normal approximation for proportions. If the empirical power matches its target of 80 and 90 

used to calculate the approximate sample sizes, this would validate the using the average 

hazard ratio in Schoenfeld’s formula for approximate power and sample size calculations and 

provide for a more efficient tool for sample size determination over simulations.
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2.4.3 Accounting for Continuous Accrual and Follow-up

In practice, patients are accrued continuously over a period of time. We also extended our

models to incorporate this feature. In the extension we assume a uniform distribution of

entry time over the accrual period. Additionally, we assume that no patient dies before

the primary surgery and pCR assessment, which we assume is half a year after accrual for

every subject. First, we derive the survival and hazard functions for each treatment group.

Through simulations we then calculate the empirical power of the logrank test assuming

continuous accrual of 2 years, with 4.5 years of follow-up after the last patient accrual,

with other parameter values equivalent to the single point accrual setting. We choose these

accrual and follow up times so that the average follow-up time equals the follow up time

assumed in our original setting of a single accrual time point and results of the two can be

compared. Finally, we approximate the required sample sizes using Schoenfeld’s formula,

by applying the average hazard ratio in place of constant hazard ratio, to acheive 80 and

90 percent power and calculate the empirical power under these estimated sample sizes to

ascertain the accuracy of our estimation technique at achieving their target. Because the

results of this extension are similar to the results assuming a single time point accrual, we

choose to present the derivation and simulation details in the appendix.

2.5 SIMULATION STUDIES

2.5.1 Setup

We conducted simulations to assess the empirical power for detecting a treatment difference

in patient survival for a randomized neoadjuvant trial with a total of N patients allocated

equally to two groups. In each run, we first simulated the patient’s pCR status by a Bernoulli

draw with probabilities δ and δ + ∆ for the control and treatment group, respectively. We

then simulated the event time of each patient from an exponential distribution with hazard

rates of λ0β2 and λ1β2 for pCR responders and non-responders respectively, with Model 1

simulations corresponding to β2 = 1. Administrative censoring was considered to reflect
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the closure of long-term outcome data in multi-center clinical trials. Therefore, an event

time after this closure, Tend, was considered censored for purposes of analysis. We compared

the survival following the conclusion of the neoadjuvant component with a 2-sided logrank

test with α = 0.05 chosen for significance. We repeated each simulation 10,000 times. The

proportion of logrank tests that achieved significance equals the power of the randomized

trial. All simulation were performed in R Version 3.1.2 [32].

The above simulation was carried out for Tend = 5, δ = 0.3 along with every combination

of the following parameters for Model 1: N = 1000, 2000; λ0 =, 0.08, 0.12; ∆ = 0.1, 0.2, 0.3;

β1 = 0.2, 0.3, 0.4. For Model 2 we ran a simulation with N = 1000 and β2 = 1, 0.95, 0.9

assuming λ0 = .08, ∆ = 0.2, and β1 = 0.3 to evaluate the sensitivity of the model with

respect to β2, the treatment effect within each pCR strata.

2.5.2 Simulation Results

Results of our simulation studies on the empirical power under Model 1 are presented in

Table 2. The average hazard ratio between treatment and control ranged from 0.92 (β1 =

0.4, δ = 0.1) to 0.67 (β1 = 0.2, δ = 0.3). Increasing λ0, the hazard for those who did not

achieve a pCR, from 0.08 to 0.12 did not substantially change the average HR between

groups. However, increasing λ0 did increase power, with a greater gain in power for ∆ = 0.2

and 0.3. Decreasing β1 caused a marginal decrease in the average HR. For example, holding

∆ at 0.2 and λ0 at .08, a decrease in β1 from 0.4 to 0.3 corresponded to a decrease in average

HR from 0.848 to 0.814 and an increased power from 0.457 to 0.616 under N=2000.

An increase in ∆ led to a large decrease in average HR and increased power. For example,

holding β1 at 0.3 and λ0 at 0.08, an increase in ∆ from 0.1 to 0.2 decreased the average HR

from 0.91 to .81 and led to an absolute increase in power of 0.24 and 0.42 for N = 1000, 2000

respectively.

Eighty percent power, a common threshold in clinical trial design, was not achieved

for all scenarios where ∆ = 0.1. For ∆ = 0.2, eighty percent power was achieved only

for N = 2000, β1 = 0.2 and λ0 = 0.12. The change in sample size from N = 1000 to N = 2000

caused an marked increase in power, particularly for ∆=0.2 or 0.3. For example, or λ0 = .08, β1 

= 0.3, and ∆ = 0.2 the power almost doubled from 0.36 to 0.61.
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Table 2: Average HR and Empirical Power for the log-rank test on survival difference under

Model 1 with various parameter values setting δ=.3, Tend=5

λ0 = .08 λ0 = .12

Empirical Power Empirical Power

β1 ∆ Average HR N=1000 N=2000 Average HR N=1000 N=2000

0.4 0.1 0.922 0.102 0.152 0.921 0.122 0.193

0.4 0.2 0.848 0.264 0.457 0.845 0.352 0.607

0.4 0.3 0.774 0.530 0.805 0.772 0.670 0.923

0.3 0.1 0.906 0.126 0.199 0.902 0.161 0.264

0.3 0.2 0.814 0.364 0.616 0.810 0.489 0.774

0.3 0.3 0.725 0.694 0.932 0.720 0.836 0.985

0.2 0.1 0.886 0.155 0.259 0.882 0.210 0.357

0.2 0.2 0.776 0.484 0.762 0.770 0.642 0.897

0.2 0.3 0.669 0.838 0.985 0.663 0.942 0.999
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Table 3 shows the results of the simulation for Model 2 with the relevant comparisons from

Model 1, corresponding to β2 = 1. As β2, the hazard ratio of treatment to control irrespective

∆ β2 Average HR Empirical Power

0.2 1 0.814 0.364

0.2 0.95 0.775 0.505

0.2 0.9 0.735 0.654

0.3 1 0.725 0.694

0.3 0.95 0.69 0.803

0.3 0.9 0.655 0.885

parameters: N = 1000, δ=0.3, λ0=0.08, Tend=5

of pCR status, decreases, the corresponding average hazard ratio of the complete treatment

and control groups decreases as well and power increases. For the examples in Table 2 the

magnitude of the change in average HR is slightly less than the magnitude in change of

β2. The gain in power from Model 1 to Model 2 is quite substantial. With N = 1000 and

∆ = 0.2 in Table 2 the power increased from 0.364 to 0.654 when changing β2 from 1 to 0.9.

Figures 1-4 show the plots of the hazard ratio given in equation (2.6) over time for a

variety of parameter settings.

For all of these the hazard ratio appears stable over time, making the average hazard ratio

a useful measure of effect size. Applying the average hazard ratio to Schoenfeld’s equation

(2.1) to determine sample size yielded consistent results compared to the empirical power.

Overall, empirical power achieved its target, with the average empirical power of 79.4% and

89.5% for 80% and 90% power targets respectively over the 288 scenarios tested. Among the

288 scenarios 93.4 and 94.4 percent of the 95% confidence intervals contained their targets of

80 and 90 percent power, respectively. This validates the use of the average hazard ratio as

a measure of effect size for the parameter range of our simulations and gives a more efficient

method of calculating a sample size for a specific power target.
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Figure 1: Plots of hazard ratio over time.δ = .3, λ0 = .08, β1 = .3, β2 = 1
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Figure 2: Plots of hazard ratio over time. ∆ = .2, λ0 = .08, β1 = .3, β2 = 1
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Figure 3: Plots of hazard ratio over time.δ = .3,∆ = .2λ0 = .08, β2 = 1
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Figure 4: Plots of hazard ratio over time. δ = .3,∆ = .2λ0 = .08, β1 = .3
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Figure 5 displays the relationship between pCR treatment effect (δ) the total required

sample size using Schoenfeld’s equation (2.1) to achieve 80% power. The greatest decrease in

Figure 5: Plots of total sample size by ∆.

Both plots assume baseline pCR rate (δ) of .3, hazard rate for control non-pCR group (λ0)

of .08 and follow-up time of 5 years. A: Model 1 with β1 = .3, .4. B: Model 2 with β1 = .3, .4 and

β2 = .9

required sample size occurs from increasing ∆ from 0.10 to 0.20 than any other equal increase

in ∆. Additionally, Model 2, with β2 = 0.9 compared to Model 1 with other parameters equals

requires a substantially lower sample size and is not as sensitive to ∆ compared to Model 1.

Using a continuous accrual process produced nearly identical average hazard ratios and

empirical power to a process modeled by a single accrual point at the mean of the total accrual

time (Tables A1 and A2 in appendix). Based on these results, the power of a neoadjuvant
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trial with a continuous uniform accrual process can be reasonably estimated by assuming all

participants are accrued at a single point in time at the mean accrual period. The time of

study end in the power calculation is then the mean accrual plus follow-up length after last

accrual. This simplifies the calculations for the average hazard ratios.

2.6 ILLUSTRATION OF METHOD WITH NSABP B-27 AND B-40 DATA

We applied our simulation technique using the neoadjuvant data of NSABP B-27 and B-40

to show how our method can be used in practice and to compare our results with the ob-

served long-term survival data available from these studies. In NSABP B-27 a total of 1535

subject were randomized to the two strictly neoadjuvant arms. There was an observed pCR

increase of 0.132 in the T+AC arm (pCR proportion=26.1%) over the T arm (pCR propor-

tion=12.9%). To incorporate these results in our power calculation we set the parameters

of our NSABP B-27 simulation to N=1536 (rounded up to nearest even number to create

equal groups), δ = 0.129 (reflecting pCR proportion in the control group), and ∆ = 0.132

(reflecting observed pCR difference between the two groups).

In NSABP B-40 a total of 1186 subjects had data on pCR status. There was an ob-

served pCR increase of 0.063 in the bevacizumab group (pCR proportion=34.5%) over the

no bevacizumab group (pCR proportion=28.2%). To incorporate these results in our power

calculation we set the parameters of our NSABP B-27 simulation to N=1186, δ = 0.282

(reflecting pCR proportion in the control group), and ∆ = 0.063 (reflecting observed pCR

difference between the two groups).

For our method we require an estimate of the HR between a pCR responder and non-

responder. For our simulations we used β1 = 0.35, 0.45 for both trials to reflect the variability

of the observed pCR responder vs. non-responder hazard ratios for DFS of 0.45 and 0.42

of B-27 and B-40 respectively. In reality, information on β1 will not be available after the

neoadjuvant component but can be estimated from the FDA meta-analysis [12] for a given

subpopulation under study. To assess sensitivity to treatment differences within pCR strata,

we ran our simulation for β2 = 1, 0.9, 0.8, with β2 corresponding to the HR of treatment vs.
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control for patients within the same pCR stratum. Each simulation was rerun 1,000 times

to calculate the empirical power.

We present the results of the simulation for NSABP B-27 and NSABP B-40 in Table 4.

Assuming β2 = 1 in B-27, the average hazard ratio is about 0.898 which is similar to the

NSABP B-27 NSABP B-40

Average Empirical Estimated Average Empirical Estimated

β1 β2 HR Power Power HR Power Power

0.35 1 0.898 0.199 0.205 0.946 0.075 0.071

0.35 0.9 0.810 0.579 0.588 0.854 0.279 0.279

0.35 0.8 0.721 0.906 0.912 0.761 0.630 0.643

0.45 1 0.916 0.150 0.153 0.957 0.065 0.059

0.45 0.9 0.826 0.508 0.516 0.863 0.257 0.258

0.45 0.8 0.735 0.881 0.883 0.768 0.623 0.630

Parameter values: B-27:N=1536, δ=0.129, ∆=0.132; B-40:N=1186, δ=0.282, ∆=0.063

hazard ratio of 0.90 actually reported after long term follow-up. Additionally, the follow-up

data [2] did not show a significant treatment difference in DFS in either pCR or non-pCR

patients which corresponds to β2 = 1 in our models. In B-40, where bevacizumab was

given post-surgery in addition to neoadjuvantly, it is reasonable to suspect there may be

an additional treatment effect beyond pCR. Indeed, the reported hazard ratio of 0.80 after

follow-up falls between β2 = 0.9 and β2 = 0.8 in our model. In both scenarios our simulations

show that there was a severe lack of power to detect a significant result for the long-term

survival analysis.
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2.7 DISCUSSION

Through our parametric model, we link the effect size of pCR with the predicted survivial

effect size. This enables us to assess power for treatment comparison in survival outcomes

for neoadjuvant trials or similar studies. The results of our simulations show that a pCR

proportion reduction can have a modest effect on long-term survival, disregarding any addi-

tional benefit the treatment may have. Achieving ∆ = 0.2, as per the latest FDA guidance

[38] would correspond to an average hazard ratio of 0.85, 0.81, and 0.78 for β1 at 0.4, 0.3,

and 0.2 respectively with λ0 = 0.08 and δ = 0.3. These treatment effects would require

sample sizes of 4486, 3042, and 2136 respectively to achieve 80% power for a confirmatory

trial with a survival endpoint and 5 years of follow-up following surgery. A similar approach

of using subpopulation estimates for sample size determination, based on Berry and Hudis

[7], is currently being used in the I-SPY 3 Trials and is described elsewhere [6, 14].

Our simulations offer a possible explanation why the recent meta-analysis failed to val-

idate pCR as a surrogate endpoint. As the authors of that study note, most of the clinical

trials included in the meta-analysis failed to increase pCR by more than 10 percent. Based

on our simulations even a sample size of 2, 000 patients, which most of the trials did not re-

cruit, would yield insufficient power to detect a statistically significant difference in survival

within five years. This can explain why no trend was observed in the meta-analysis, even if

pCR were a valid surrogate endpoint.

Furthermore, the results of our Model 2 show that effect size is highly sensitive to the

value of β2. Therefore, the magnitude of binary pCR increased by treatment may not be

enough by itself to predict accurately the effect size of survival. This phenomenon is apparent

comparing the results of B-27 to B-40. Although B-27 had double the effect size on pCR

compared to B-40 (0.132 vs. 0.063) the estimated magnitude of the effect size for B-40 was

much greater that than observed in B-27 (HR of 0.80 vs. 0.90).

One limitation of our paper is that it assumes the exponential distribution for survival.

This is the most basic parametric form for time-to-event data but may not fit a particular

dataset well. Further research is necessary to use more flexible models for the survival

functions. Additionally, both of our models assume that pCR is a valid surrogate for survival,
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either totally in Model 1 or partially in Model 2. This assumes that any treatment difference

in pCR leads to a beneficial change in survival. This is an assumption that is currently not

yet verified and is the subject of recent debate [11, 14–16, 25]. As such, this paper does not

address the validity of pCR as a surrogate endpoint. Rather, by using our models which

assumes pCR is a valid surrogate, well-powered trials can be conducted to definitively answer

this critical question.
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3.0 PRINCIPAL STRATIFICATION FOR CAUSAL EFFECTS

CONDITIONING ON POST-TREATMENT VARIABLES

3.1 INTRODUCTION TO CAUSAL EFFECTS

New interventions are constantly being proposed to improve our health, safety, and soci-

ety. These can range from new governmental policy proposals to drugs targeted at specific

diseases. The evaluation of new interventions is critical in determining which ones are worth-

while to implement. The essential objective of such an evaluation is to show that, compared

with standard approach, the new intervention causes or yields some benefit or improvement.

The exact definition of this “causal effect” has been formalized by Rubin [33].

Rubin’s definition of the “causal effect” makes use of counterfactuals. A counterfactual

is a hypothetical quantity which would have been observed if, counter to the facts, some

other course of events had taken place. For example, in a randomized clinical trial, a patient

assigned to an intervention group has a counterfactual potential outcome had him or her

been assigned to the placebo group. Using the notion of counterfactuals, the causal effect

of an intervention on a study subject in the intervention group is the difference between the

outcome under the intervention and the counterfactual outcome had the intervention not

taken place. For example, when one says his headache was “caused” by lack of sleep, he

means that had he had adequate sleep he would not have a headache. The essential problem

of proving causation, is that we cannot observe both the outcome under an intervention and

the outcome without the intervention for each individual. To show that a new drug improves

a person’s survival we would have to compare the person’s survival under treatment to his

or her survival without the treatment, and we do not have the benefit of observing both.
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Before addressing how such a comparison can be carried out we first introduce the formal

definition of a “causal effect” under the framework of Rubin’s Causal Model (RCM).

3.2 RUBIN’S CAUSAL MODEL

Let Zi ∈ {0, 1} be the treatment assignment of subject i = 1, 2, ..., n. Let Yi(j) be the

endpoint of interest for subject i under treatment j (possibly counterfactual). For individual

i, Yi(Zi) represents the observed endpoint value, since subject i is assigned to treatment Zi.If

Zi = 1, then Yi(1) is observed and Yi(0) is counterfactual; if Zi = 0, then Yi(0) is observed

and Yi(1) is counterfactual.

The causal effect on individual i is Yi(1)−Yi(0); i = 1, .., n. For example, consider a study

comparing survival under a new chemotherapy regimen (Z = 1) to that under the standard

care (Z = 0). Yi(j) is a binary variable indicating survival status after a predetermined

number of year following initiation of the study. The individual causal effect on individual

i is the difference in survival status of that individual if given the new drug and his or her

survival status if given the standard of care. For each subject in the population, we can

define the individual causal effect based on the counterfactual outcomes. The average of all

these effects, known as the average causal effect (ACE) is:

E[Yi(1)− Yi(0)]

Had {Yi(0), Yi(1)} been observed for all subjects the ACE can be estimated by:

1

n

n∑
i=1

{Yi(1)− Yi(0)}

In any trial or experiment we cannot observe the causal effect of a given intervention on

an individual since we never know his or her unobserved counterfactual outcome. However,

with the following two assumptions we can estimate the average (or “typical” in Rubin’s

words) causal effect by taking the difference between the average response of the two groups:

1. Random assignment: Pr(Zi = 0)=Pr(Zj = 0) & Zi ⊥ Zj i, j = 1, ..., n.
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2. Stable Unit Treatment Value Assumption (SUTVA): Treatment assignment of other

individuals do not effect the potential outcomes of any individual i.

SUTVA ensures that an individual’s potential outcomes is independent of other’s as-

signed treatment. This assumption is usually valid for treatment of non-infectious diseases.

For infectious diseases there may be an association between one individual’s treatment as-

signment and another individual’s outcome, since the disease can be transmitted between

individuals on different treatment arms. Randomization ensures that the average outcome

for subjects in each treatment group Z is an unbiased estimate of E[Yi(Z)]. This is because

individuals from each group is representative of the study population. Taking the differ-

ence between the average observed outcomes between the two groups leads to an unbiased

estimator of the ACE.

Without randomization, the average outcome for each group may be biased in estimating

Yi(Z). The bias can be introduced through the treatment selection process if, for example,

the intervention group is healthier on average than the control group. In such a case, an

observed effect may be wrongly attributed to the new intervention even though the inter-

vention has no effect on the outcome of interest. Randomization eliminates such bias by

comparing two groups with the similar characteristics, measured or unmeasured, except the

treatment and outcome of interest.

3.3 POST-TREATMENT VARIABLE ADJUSTMENT OF CAUSAL

EFFECTS

Randomized trials allow for the estimation of causal effects by creating two comparable

groups with the only difference being treatment assignment. Adopting the notation of the

Rubin Causal Model (RCM), Frangakis and Rubin [18] define a causal effect to be a com-

parison between the potential outcomes on a common set of subjects:

{Yi(1) : i ∈ E} and {Yi(0) : i ∈ E}
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where E is a subset of the study population. In a randomized trial we estimate the average

causal effect of the intent to treat population by taking the difference between the observed

outcomes from the two groups. Randomization creates two subsets who are equally rep-

resentative of the study population. There are situations however, where we would like

to condition on a post-treatment variable to study the treatment effect within levels of the

post-treatment variable. The following examples were discussed in Frangakis and Rubin [18]:

(1) Investigators would like to estimate the causal effect of a treatment among those indi-

viduals who complied with the treatment. Here treatment compliance is the post-treatment

variable.

(2) Many individuals drop out from a study with long follow-up. Investigators would like

to estimate the causal effect of treatment among those who did not drop out. Here dropout

can be considered a post-treatment variable.

(3) The causal effect of a treatment with information on a surrogate marker, such as

tumor response or disease progression is of interest. Investigators would like to estimate

the causal effect of treatment among those patients with the same surrogate response, for

example those whose tumors responded. The surrogate marker is the post-treatment variable

in this scenario.

The last example will be discussed in this dissertation, where the relevant surrogate marker

and post-treatment variable under consideration is pCR.

3.3.1 Naive Adjustment for Post-treatment Variables

Let Si(j) ∈ {0, 1} be a binary intermediate variable, for example pCR in neoadjuvant trials,

of subject i under treatment j (possibly counterfactual). A naive method of adjusting for

post-treatment variables is to compare the outcomes for given values of the post-treatment

variable between the two groups:

{i : Si(1) = s} and {i : Si(0) = s}, s = 0, 1.

If treatment has any effect on the post-treatment variable then the above comparison
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is not causal, as it violates the condition that the potential outcomes should be compared

among the same set of individuals. Specifically, {i : Si(1) = s} and {i : Si(0) = s} are

not the same subpopulation since an individual i may have a different intermediate response

under treatment and control, that is Si(1) 6= Si(0). To illustrate this problem, consider the

following data on four individuals’ counterfactual data in Table 5. Let Yi(z) = 1 denote a

binary outcome for patient i if given treatment Z. Values in parenthesis denote unobservable

counterfactals. Here consider the comparison of the observed outcome between treatment

Table 5: Illustration of Naive Adjustment: Sample counterfactual data of 4 patients

i Z S(0) S(1) Y(0) Y(1)

1 0 0 (1) 0 (0)

2 0 1 (1) 1 (1)

3 1 (0) 1 (0) 0

4 1 (1) 1 (1) 1

and control for those subjects with S=1. This would be a comparison between patient 2 from

Z = 0 with those of patients 3 and 4 from Z = 1. Such a comparison would yield a conclusion

that among the subgroup S=1 treatment group Z=0 had a better outcome since patient 2 has

Y(0)=1 and only one (patient 4) has a value of Y(1)=1. In reality, patient 2 should only be

compared with patient 4, since both have identical counterfactual characteristics Si(0) = Si(1)

= 1. Such a comparison would lead to a different conclusion that the 2 treatments were

equivalent in outcome Y.

Because of this issue, Frangakis and Rubin [18] developed a new framework of principal

stratification to allow the introduction of post-treatment variables while maintaining a causal

interpretation.
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3.4 PRINCIPAL STRATUM EFFECT

For a two-arm trial with a binary intermediate endpoint there are a total of four basic

principal strata as defined by Frangakis and Rubin [18]. Each takes the form (Si(0), Si(1)).

Let Ejk = {i : Si(0) = j, Si(1) = k}. In the case of pCR, a principal stratum is represented

by an individual’s potential pCR status under control and under treatment. There are a total

of four basic principal strata: { E00, E01, E10, E11 }. Using our example of pCR as the binary

intermediate endpoint, E00 consists of individuals who would not achieve pCR, regardless

of receiving treatment or control drug. E01 consists of individuals who would achieve pCR

if they receive treatment but not if they receive control drug. E10 consists of individuals

who would achieve pCR if they receive control drug, but not they received treatment. E11

consists of individuals who would achieve pCR regardless of receiving treatment or control

drug.

Each individual falls into only one of these four groups, depending on their counterfactual

pCR responses under treatment and under control. Using the principal stratum notation,

Frangakis and Rubin [18] define a principal effect as a comparison between Yi(1) and Yi(0)

among individuals i who are members of a specific principal stratum. This effect meets the

definition of a causal effect since it is a comparison of the two potential responses among

the same subpopulation, namely those belonging to a particular principal stratum. Each

principal stratum is by definition independent of treatment assignment since it contains

information on counterfactual, or potential outcomes rather than the observed outcome for

a specific treatment assignment. Additionally, any union of the four basic principal stratum

would also be a valid principal stratum as it leads to comparisons among a common set of

individuals. In this thesis, we are interested in comparing potential outcomes among the

union of E01 ∪ E11, those that would respond to the treatment regardless of whether or not

they would respond under control.

Without additional assumptions, we cannot identify which subjects belong to each of the

four basic principal strata and therefore cannot estimate the principal strata causal effects.

Frangakis and Rubin [18] suggest two general approaches for estimating principal strata

causal effects. One is to incorporate plausible restrictions to identify an individual’s principal
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stratum membership. For example, they suggest using covariates to predict principal strata

membership. Then one can use a maximum likelihood approach to estimate the causal effect.

The second is to use the principal stratum framework to conduct a sensitivity analysis for

the causal effects. This is done by exploring a range of values for the unobserved quantities

and how they impact the estimated causal effect of interest.

3.4.1 Treatment effect among treatment-responders

For our analysis we will compare potential survival outcomes under treatment and control

among those individuals who would be pCR responders had they received the treatment:

{Yi(1)|Si(1) = 1} and {Yi(0)|Si(1) = 1} (3.1)

Such a comparison has the advantage of excluding patients whose tumors are not responsive

to treatment and are unlikely to gain in survival from taking the treatment. By excluding

these patients it may be possible to observe a treatment effect that would not have been

observed in the overall trial since these excluded subjects could dilute the treatment effect.

This can be viewed as a subgroup analysis where this strategy is employed to identify subjects

among whom there is a treatment effect. We refer this subset as treatment-responders. A

comparison between potential outcomes among treatment-responders would have a causal

interpretation.

Without further assumptions, principal stratum (PS) individual membership for any

individual i cannot be identified from the observed data because only one of their potential

responses can be observed. Further assumptions are needed to identify PS membership so

that causal inference conditional on PS strata can be carried out.

3.5 CURRENT APPROACHES TO IDENTIFY PRINCIPAL STRATUM

CAUSAL EFFECTS

In this section, we review two recent approaches in the literature that identify causal effects

for a given principal stratum. One is a Bayesian approach and the other employs a sensitivity
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analysis technique. We will briefly review these approaches in the context of their specific

applications before introducing our method.

Li et. al. [26] use a Bayesian approach to analyze data from the Collaborative Initial

Glaucoma Treatment Study (CIGTS). This is a randomized study comparing the effects

of surgery (Z=1) and medicine (Z=0) on intraocular pressure (IOP), defined as a binary

measure with 18mmHg as the cutoff. In their analysis IOP measured at 12 months (S)

is considered as a surrogate for IOP measured at 96 months (T). Let {s(0), s(1)} be the

counterfactual measure of IOP at 12 months with s(0) denoting the IOP value that would

be obtained under the control assignment and s(1) denoting the IOP value that would be

obtained under the treatment assignment. Likewise, let {t(0), t(1)} be a counterfactual mea-

sure of IOP at 96 months. Then each patient falls into one of 16 categories describing their

counterfactual measure of IOP at 12 months and their counterfactual measure of IOP at 96

months. Table 6 illustrates the 16 possible categories with pij being the probability of an

individual falling into each category.

Table 6: Probabilities of the Counterfactual Model with Binary Intermediate and Outcome

Variables

{t(0),t(1)}

{s(0), s(1)} (0,0) (0,1) (1,0) (1,1)

(0,0) p11 p12 p13 p14

(0,1) p21 p22 p23 p24

(1,0) p31 p32 p33 p34

(1,1) p41 p42 p43 p44

A goal is to assess the chance of improvement in IOP at 96 months due to surgery

among those individuals who would experience improvement due to surgery in IOP at 12

months. If there is an observed improvement at 96 months among this subset, this would

give clinicians assurance that IOP improvement at 12 months is a good surrogate measure
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for IOP improvement at 96 months. Using the notation from Table 6, this quantity is

p22/(p21 + p22 + p23 + p24) in the above table, referred to by the authors as the associated

proportion (AP).

Li et al. [26] proposed to estimate AP using a log-linear model. A saturated model

requires 15 parameters since there is one restriction that the table probabilities sum to

one. However, the data can only provide 6 parameter restrictions, since we can estimate

from the observed data Pr(T = t, S = s|Z) for each treatment arm (4 · 2 = 8 estimates).

Additionally, there is a restriction that Pr(T = t, S = s|Z) sum to 1 within each treatment

arm (8− 2 = 6 parameter restrictions). To estimate all parameters of the log-linear model,

additional restrictions are required.

To estimate AP, Li et. al. [26] first impose a monotonicity assumption on the data for

both IOP at 12 and 96 months. Under this assumption, a patient receiving surgery cannot

have a worse IOP at either 12 or 96 months than had they received medication. Formally,

this assumes Si(1) ≥ Si(0) and Ti(1) ≥ Ti(0) for all i. In the above table this restriction sets

p13, p23, p33, p43, p31, p32, p34 to 0. This reduces the free parameters from 15 to 8. Because only

6 parameters are supported by the data the authors assume a prior distribution for these

probabilities and employ a Bayesian approach to make inference on the log-linear model.

They assume prior distributions on the parameters of the log-linear model and use data

augmentation to estimate the parameters.

This approach allows inference on all the model parameters. However, because these

estimates are only possible through assuming prior distributions, they can vary based upon

the chosen priors. The authors chose priors to incorporate their belief that T is likely to

match the values of S [26]. This key assumption leads to the identifiability of the causal

parameters. An additional assumption helping identification is monotonicity on the outcome,

Ti(1) ≥ Ti(0), which assumes the outcome under treatment is no worse than the outcome

under control. In many applications it is unreasonable to assume this, since treatment may

in fact be inferior to control.

Gilbert et. al. [21] use a sensitivity analysis to make causal inference for a vaccine

clinical trial in which HIV infection is a surrogate for viral load. HIV infection, a binary

variable, is the post-treatment variable and viral load is the final outcome of interest. Among
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those vaccinated some individuals still become infected with HIV. It is believed that in these

individuals the vaccine still may be helpful in reducing viral load compared to the viral load

had the subject not been vaccinated. To quantify such an effect, it is of interest to estimate the

causal effect of a vaccine on viral load among those who became infected with HIV. We cannot

simple condition on HIV status since this is a post-randomization variable and any inference

of a treatment effect is not guaranteed to be causal. In order to maintain a causal

interpretation while conditioning on HIV infection status, the authors condition on the

principal stratum of individuals who would be infected with HIV regardless of whether they

took the vaccine or not. Without further assumptions, this is not estimable as we cannot

determine individual membership to this stratum.

To estimate this causal effect the authors imposed two assumptions. First, they assume

monotonicity on HIV infection. This means that any subject that had an HIV infection

after taking vaccine is assumed to have had HIV infection had they not taken vaccine as

well. Additionally, the authors impose a logistic model for the probability of being infected

under vaccine predicted by HIV status under placebo as a binary indicator and observed viral

load as a continuous variable. The parameters of this model are not estimable as there are

no subjects with data on both potential HIV status under placebo and vaccine. Therefore,

the authors employ a sensitivity analysis to estimate the causal effects under a range of

parameter values in the logistic model. Shepard et. al [35] extend this sensitivity approach

where there is information on baseline covariates. This type of sensitivity analysis is useful

to give researchers a range of values for the treatment effect under difference values of the

sensitivity parameter. However, it is often unclear what values of the sensitivity parameter

to assume, since we cannot obtain estimates of this parameter from the data. Investigator

must rely on their intuition and understanding of the disease studied to set plausible values

of this parameter.
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3.6 A NEW METHOD FOR ESTIMATING A PRINCIPAL STRATUM

EFFECT

In this section we develop a new method for estimating a principal stratum effect with the

following data setup from a randomized controlled trial. Let Zi ∈ {0, 1} be the treatment

assignment of subject i = 1, 2, ..., n. Let Xi ∈ Γ = {0, 1, .., l} be an observed baseline categor-

ical variable, consisting of l + 1 categories, for subject i. In cases were the baseline variable

is continuous, we can create Xi by choosing cutoff values for each category. The cutoffs

should be chosen based on scientific knowledge of the variable and so that no category has

very few subjects, which would make estimates in that category unstable. Let Si(j) ∈ {0, 1}

be a binary post-randomization intermediate variable (possibly counterfactual) for subject i.

Let Yi(j) ∈ {0, 1} be a binary endpoint of interest for subject i under treatment j (possibly

counterfactual). For individual i, {Si(Zi), Yi(Zi)} represents the observed intermediate and

final endpoint values. If Zi = 1, then Yi(1) is observed and Yi(0) is counterfactual; if Zi = 0,

then Yi(0) is observed and Yi(1) is counterfactual.

Our goal is to estimate the casual treatment effect among those who would achieve

response on the intermediate variable had they been assigned treatment, {i : Si(1) = 1}.

Formally, we want to estimate the expected treatment difference:

E[Yi(1)− Yi(0)|Si(1) = 1] = E[Yi(1)|Si(1) = 1]− E[Yi(0)|Si(1) = 1] (3.2)

This requires us to stratify the study population based upon their potential intermediate

response to treatment, Si(1). Let E+1 be the principal stratum of treatment responders,

{i : Si(1) = 1}. The E+1 prinicipal stratum contain the following three subgroups:

{i : Zi = 1, Si(1) = 1}

{i : Zi = 0, Si(0) = 1, Si(1) = 1}

{i : Zi = 0, Si(0) = 0, Si(1) = 1}
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{Si(1), Yi(1)} is observable for individuals in the first subgroup of E+1: {i : Zi = 1, S(1) =

1}. Because of randomization this subgroup is representative of the entire E+1 principal

stratum of interest. We can therefore estimate E[Yi(1)|Si(1) = 1] by:

p̂1 =

∑
i I(Zi = 1, Si(1) = 1, Yi(1) = 1)∑

i I(Zi = 1, Si(1) = 1)
, where I() is the indicator function.

This leaves us with the following two control subgroups that need to be identified in

order to estimate E[Yi(0)|Si(1) = 1]:

{i : Zi = 0, Si(0) = 1, Si(1) = 1}

{i : Zi = 0, Si(0) = 0, Si(1) = 1}

. However, for individuals in the control group, we observe Si(0) and Yi(0) but cannot

observe Si(1), their potential intermediate outcome had they received treatment. In order to

estimate E[Yi(0)|Si(1) = 1] we first need to identify which individuals in the control group

(Z=0) are part of the E+1 principal stratum, or those who would respond to treatment. We

solve this problem in different ways for each of the two subgroups. To identify the subgroup

{i : Zi = 0, Si(0) = 1, Si(1) = 1} we impose the following monotonicity assumption on

(Z, S):

Si(0) ≤ Si(1) (3.3)

Under the monotonicity assumption (3.3) it is impossible for an individual to achieve response

under control but not under treatment: Si(0) = 1, Si(1) = 0. If a subject responded under

control, monotonicity assumes that they would respond if given treatment as well. This

makes the principal stratum E10 empty. Therefore, any individual in the placebo group with

Si(0) = 1 will have Si(1) = 1. This identifies the second subgroup of the E+1 principal

stratum: {i : Zi = 0, Si(0) = 1, Si(1) = 1}. What remains is to identify those control

subjects who were non-responders but would respond had they been given treatment. These

individuals make up the last subgroup E01 : {i : Zi = 0, Si(0) = 0, Si(1) = 1}.
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In the following we propose an imputation method to estimate E[Yi(0)|i ∈ E+1]. First we

model the probability of response under treatment for a control subject who did not achieve

response. The model will incorporate the baseline covariate Xi and the final outcome Yi(0):

Pr[Si(1) = 1|Si(0) = 0, Yi(0) = j,Xi = x],

where Yi(0) is a binary indicator of the final endpoint with a value of 1 for success and 0 for

failure and Xi is the categorical baseline variable of patient i. After estimating the model

parameters, we impute the response status under treatment for those control subjects who

did not achieve response under control. After imputation we estimate E[Yi(0)|i ∈ E+1] as

the sample proportion of those who achieve final endpoint under placebo, among the placebo

individuals who make up the E+1 principal stratum as identified by their imputed values.

To account for variability introduced by estimating the model parameters and imputation,

we use bootstrap to create confidence intervals.

The motivation of our model choice to identify those control nonresponders who would

respond under treatment comes from the following equivalence relation:

Pr(Si(1) = 1|Si(0) = 0, Xi = x)

=
1∑
j=0

[Pr(Si(1) = 1|Si(0) = 0, Yi(0) = j,Xi = x)]

· [Pr(Y (0) = j)|Si(0) = 0, Xi = x]; x ∈ Γ = {0, 1, .., l}. (3.4)

Let

GL(x) = Pr(Si(1) = 1|Si(0) = 0, Xi = x)

GR(x, j) = Pr(Yi(0) = j|Si(0) = 0, Xi = x)

GM(x, j;β) = Pr(Si(1) = 1|Si(0) = 0, Yi(0) = j,Xi = x),

where β is a vector of model parameters. We have a different equation for each level of the

baseline variable X. In total we have l + 1 equations of the form:

GL(x) =
∑
j

[GM(x, j;β) ·GR(x, j)], x ∈ Γ (3.5)
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The component GM(x, j;β) in (3.5) is the model we use to predict Si(1) for control subjects.

This model has Si(1) as the outcome which is unobserved for all control subjects. Since

Si(1) is never observed for subjects on the control arm, we cannot use standard regression

techniques to estimate model parameters. We propose to use the equation system (3.5) to

estimate the model parameters, β. In order to proceed we need to estimate GL(x) and

GR(x, j) for all x ∈ Γ, j = 0, 1. First we consider GL(x) = Pr(Si(1) = 1|Si(0) = 0, Xi = x).

Recall the monotonicity assumption imposed on the data:

Si(0) ≤ Si(1)

Because this assumption is on the individual level i, it is true regardless of the tumor size

category X of patient i. We therefore have for (Z, S,X):

Si(0) ≤ Si(1), given Xi = x. (3.6)

We use this monotonicity assumption to estimate GL(x) = Pr(Si(1) = 1|Si(0) = 0, Xi = x)

as follows. Let

Ejkx = {i : Si(0) = j, Si(1) = k|Xi = x}, j, k = 0, 1, x ∈ Γ

denote the principal stratum for baseline category x. Because of the monotonicity assumption

the principal stratum E10x is empty since there are no individuals with S(0) = 1 and S(1) =

0. Let

pjkx = Pr[Ejkx] = Pr(Si(0) = j, Si(1) = k|Xi = x)

denote the conditional probability of each principal stratum given x ∈ Γ. For each x, Pr[Ejkx]

can be estimated from the observed data. These are derived as solving for the MLEs treating

the data as arising from a multinomial distribution with each principal stratum having its

own probability of membership. Let Nzsx be the total number of subjects with baseline

category x with Z = z, S = s with
∑

Z;S=0,1;X Nzsx = n. Then the likelihood function for

(p00x, p01x, p11x) is:

L(p00x, p01x, p11x|N00x, N01x, N10x, N11x) ∝ (p00x + p01x)
N00xpN01x

11x p
N10x
00x (p01x + p11x)

N11x (3.7)
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The resulting MLEs are the following:

p̂00x = P̂ r[Si(0) = 0, Si(1) = 0|Xi = x)] =

∑
i [I(Si(1) = 0, Zi = 1, Xi = x)]∑

i I(Zi = 1, Xi = x)
=

N10x

N10x +N11x

p̂11x = P̂ r[Si(0) = 1, Si(1) = 1|Xi = x] =

∑
i [I(Si(0) = 1, Zi = 0, Xi = x)]∑

i I(Zi = 0, Xi = x)
=

N01x

N00x +N01x

p̂01x = P̂ r[Si(0) = 0, Si(1) = 1|X = x] = 1− p̂00x − p̂11x.

p̂00x is estimated by the proportion of subjects in the treatment arm who did not achieve

response among subjects with baseline category x; p̂11x is estimated by the proportion of

subjects in the control arm who are responders with baseline category x.

Then for each level of x we have the following nonparametric estimate of GL(x):

ĜL(x) =
P̂ r(E01|x))

P̂ r(Si(0) = 0|x)

=
1−

∑
i [I(Si(1)=0,Zi=1,Xi=x)]∑

i I(Zi=1,Xi=x)
−

∑
i [I(Si(0)=1,Zi=0,Xi=x)]∑

i I(Zi=0,Xi=x)∑
i [I(Si(0)=0,Zi=0,Xi=x)]∑

i I(Zi=0,Xi=x)

=
p̂01x

p̂00x + p̂01x

=
p̂01x

1− p̂11x
(3.8)

Next consider the estimation of GR(x, j) = Pr(Yi(0) = j|Si(0) = 0, Xi = x).

{Yi(0), Si(0), Xi} are observed for all control subjects. We therefore have the following

nonparametric estimate of GR(x):

ĜR(x, j) =

∑
i [I(Si(0) = 0, Zi = 0, Xi = x, Yi(0) = j)]∑

i I(Si(0) = 0, Zi = 0, Xi = x)
(3.9)

For each X = x ∈ Γ = {0, 1, .., l}, substituting with the estimates {ĜL(x), ĜR(x)} in

equation (3.4) yields l + 1 equations of the form:

ĜL(x) =
∑
j

[GM(x, j;β) · ĜR(x, j)], x ∈ Γ (3.10)

A popular model for the predicted probability of a binary outcome which we assume for

our method is the logistic regression model with independent additive effects such as:

Pr(Si(1) = 1|Si(0) = 0, Yi(0) = j,Xi = x) =
exp(β0 + β1j + β2x)

1 + exp(β0 + β1j + β2x)
(3.11)
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Assumption (3.11) is the predicted probability resulting from a logistic regression model

with Yi(0) and Xi as independent predictors of Si(1) = 1. This is the probability of achieving

a response (Si(1) = 1) for individuals who did not respond to placebo (Si(0) = 0, Zi = 0)

given their baseline X category and Yi(0) values. The choice of model is similar to assumption

2 of Gilbert et. al [21]. Here, we assume the independent effect of x is proportional to the

category level. Because of this, the unknown parameters are fixed at 3 (β0, β1, β2), but the

number of equations in the system depend on the number of categories of X. If there are

fewer than three categories, we cannot uniquely solve for all the unknown parameters since

there are more unknown parameters than equations in the system. If there are exactly three

categories, we can solve for an exact solution for β = (β0, β1, β2) using the system of three

equations of the form (3.5). However, because of the variability involved in estimating ĜL(x)

and ĜR(x, j), the solution will be “overfitted” to these estimated quantities. We therefore

suggest having more than three categories.

In such a situation we have an overparameterized system of equations. We solve for β̂

as follows:

β̂ = arg min
β

l∑
X=0

[
ĜL(x)−

1∑
j=0

GM(x, j;β) · ĜR(x, j)
]2

(3.12)

This minimizes the sum of the squared differences between the two sides of equation (3.10).

3.6.1 Imputation and Estimation

Because

Si(1) ∼ Bernoulli(
exp(β0 + β1j + β2x)

1 + exp(β0 + β1j + β2x)
) given {Si(0) = 0, Yi(0) = j, x} (3.13)

we would like to impute Si(1) among placebo non-responders by drawing from (3.13), with

(β0, β1, β2) replaced by the estimated model coefficients (β̂0, β̂1, β̂2) . Denote the imputed

value S̃i(1). After each imputation, we can identify which of these patients fall in the third

subgroup of the E+1 principal stratum: {i : Zi = 0, Si(0) = 0, S̃i(1) = 1}. Those control

individuals with Si(0) = 1 are by definition a treatment-responder under the monotonicity
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assumption. Therefore, these individuals do not require any imputation for our analysis.

After the stochastic imputation, E[Yi(0)|Si(1) = 1] is estimated by:

p̂0 =

∑
i I(Zi = 0, S̃i(1) = 1, Yi(0) = 1)∑

i I(Zi = 0, S̃i(1) = 1)

.

To create confidence intervals with size α around the estimate we use bootstrap with 200

replicates. The lower bound is the 200·α/2 quantile and the upper bound is the 200·(1−α)/2

quantile. We use bootstrap instead of multiple imputation for the following reason. Multiple

imputation is a way to account for the variability of the imputed values. Here, we have a

second source of variability: the parameters estimators for the imputation model, β̂. When

using bootstrap, we estimate β for each bootstrap sample and then impute based on those

values. Therefore, bootstrap accounts for the variability associated with both the model

parameters and the imputed values.

3.6.2 Consistency of β̂

In this section, we provide conditions for our estimator β̂ to be consistent for β. We first

show that β̂ can be considered as an extremum estimator as defined by Hayashi [23]. Then we

prove that the conditions set forth by Hayashi for consistency are satisfied by our estimator.

Definition of an Extremum Estimator: An estimator θ̂ is an extremum estimator

if there a function Qn(θ) such that:

θ̂ = arg max
θ

Qn(θ); θ ∈ Θ [23].

One example of an extremum estimator is the maximum likelihood estimator where:

Qn(θ) =
n∏
i=1

f(xi|θ).

In our method we minimize the objective function,

Qn(β) =
l∑

x=0

Q(x)
n (β)

=
l∑

x=0

[
ĜL(x)−

1∑
j=0

GM(x, j;β) · ĜR(x, j)
]2
.
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which is equivalent to maximizing −Qn(β). Therefore β̂ is an extremum estimator as defined

above.

Next, define:

Q0(β) =
l∑

x=0

Q
(x)
0 (β);x ∈ Γ = {0, 1, .., l},

where Q
(x)
0 (β) =

[
GL(x) −

∑1
j=0GM(x, j;β) · GR(x, j)

]2
. We present sufficient conditions

for the existence of a unique local minimizer of Q0(β).

Lemma: There exists a unique local minimizer β0 for Q0(β) if:

(1) Q
(x)
0 (β0) = 0, for all x.

(2)

rank

∣∣∣∣∂Q∗(β)

∂β

∣∣∣∣ ≥ dim(β),

where Q∗(β) = (Q
(0)
0 (β), Q

(1)
0 (β), .., Q

(l)
0 (β))T

Proof: From (1) we have that β0 minimizes Q0(β) since Q0(β) ≥ 0 for all β and

Q0(β0) = 0.

Then from condition (2) and the Implicit Function Theorem there exists a unique function

g(GL, GR) such that:

g(GL, GR) = β0, in the neighborhood of (GL, GR),

where (GL, GR) = {GL(x), GR(x, j);x ∈ {0, 1, ..., l}, j = 0, 1}.

Therefore, β0 is a locally unique minimizer of Q0(β).

We now show the conditions for consistency.

Theorem: If: (1) β = β0 is a solution to Q0(β) = 0 and

(2)

rank

∣∣∣∣∂Q∗(β)

∂β

∣∣∣∣ ≥ dim(β),

Then β̂ is a consistent estimator for β.

Proof: From Proposition 7.1 in Hayashi [23]: θ̂ converges in probability to θ if there is

a function Q0(θ) satisfying the following two conditions:

I.(identification) Q0(θ) is uniquely maximized on Θ at θ0 ∈ Θ.

II.(uniform convergence) Qn(·) converges uniformly in probability to Q0(·).
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From (1) and (2) we can apply the above Lemma to satisfy condition I. To show that

condition II is satisfied here, let:

Qn(β) =
l∑

x=0

W (x)
n (β)2

=
l∑

X=0

[
ĜL(x)−

1∑
j=0

GM(x, j;β) · ĜR(x, j)
]2

Q0(β) =
l∑

x=0

W
(x)
0 (β)2

=
l∑

X=0

[
GL(x)−

1∑
j=0

GM(x, j;β) ·GR(x, j)
]2

Then we have:

|Q(x)
n (β)−Q(x)

0 (β)| ≤
l∑

x=0

|W (x)
n (β)2 −W (x)

0 (β)2|

=
l∑

x=0

|W (x)
n (β)−W (x)

0 (β)| · |W (x)
n (β) +W

(x)
0 (β)|

≤
l∑

x=0

2

{
|W (x)

n (β)−W (x)
0 (β)|

}
since 0 ≤ |W (x)

n | ≤ 1, 0 ≤ |W (x)
0 | ≤ 1 since each is a difference of two probability estimates.

≤
l∑

x=0

2

{
|ĜL(x)−GL(x)|+

1∑
j=0

GM(x, j;β) · |ĜR(x, j)−GR(x, j)|
}

≤
l∑

x=0

2

{
|ĜL(x)−GL(x)|+

1∑
j=0

|ĜR(x, j)−GR(x, j)|
}

(3.14)

since GM(x, j;β) is bounded by 1 because it is a probability.

Therefore, because

ĜL(x)
p→ GL(x), as n→∞

ĜR(x, j)
p→ GR(x, j), as n→∞

we have as a result:

Q(x)
n (β) =⇒ Q

(x)
0 , as n→∞,
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where =⇒ denotes uniform convergence in probability. Uniform convergence is implied since

β is not involved in the last inequality (3.14). This proves condition II and completes the

proof. Therefore β̂ is a consistent estimator of β.

3.6.3 A Summary of the Proposed Method

Here we provide a streamlined summary of our proposed method to estimate:

E[Yi(1)− Yi(0)|Si(1) = k], k = 0, 1 (3.15)

the causal effect of treatment among patients stratified by their potential response had they

been given treatment.

Step 1: Given a dataset D of a randomized trial with treatment assignment Zi, baseline

covariate Xi, intermediate endpoint Si, and endpoint of interest Yi for subjects i=1,2,...,n,

set Si(1) = 1 for those with Si = 1 because of the monotonicity assumption.

Step 2: For b = 1, . . . , B:

(a) Draw with replacement observations of the original dataset to create a bootstrap

sample D(b).

(b) Estimate the parameters β = (β0, β1, β2) of the logistic regression model (3.11) based

on the bootstrap sample D(b):

β̂(b) = arg min
β

∑
X

[
ĜL(X)(b) −

1∑
j=0

GM(x, j;β) · ĜR(x, j)(b)
]2

(3.16)

Step 3: Among subjects with Si(0) = 0, impute Si(1) according to

Bernoulli

(
exp(β0 + β1 · Yi(0) + β2 ·Xi)

1 + exp(β0 + β1 · Yi(0) + β2 ·Xi)

)

with β = β̂
(b)

from Step 2. Denote the imputed data as {S̃i(1)(b)}.
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Step 4: Estimate E[Yi(1)− Yi(0)|Si(1) = k] by θ̂(b) = p̂1 − p̂0 where:

p̂1 =

∑
i I(Zi = 1, Si(1) = k, Yi(1) = 1)∑

i I(Zi = 1, Si(1) = k)

p̂0 =

∑
i I(Zi = 0, S̃i(1)(b) = k, Yi(0) = 1)∑

i I(Zi = 0, S̃i(1)(b) = k)

are the estimated proportion of (endpoint) responders under treatment or control for those

who would achieve response if given treatment.

Step 5: Compute the empirical bootstrap confidence interval as Iemp(θ) = (θ̂(b,l), θ̂(b,u))

where θ̂(b,l) and θ̂(b,l) are the empirical (α/2) and (1 − α/2) quantiles from the B bootstrap

estimates.

3.7 A SIMULATION STUDY

To evaluate the statistical properties of our proposed estimate we conducted a simulation

study. Our setup was chosen to resemble a large phase III neoadjuvant study with data for

each patient on baseline tumor category, binary pCR response status, and binary survival

status. We simulated 2000 subjects with six variables each,

Di = {Xi, Si(0), Si(1), Yi(0), Yi(1), Zi},

where:

1. Xi denotes baseline categorical tumor size; Xi ∈ 0, 1, 2, 3.

2. Si(0) denotes pCR response indicator under control assignment. 1 indicates a pCR re-

sponse and 0 no pCR response.

3. Si(1) denotes pCR response indicator under treatment assignment. 1 indicates a pCR

response and 0 no pCR response.

4. Yi(0) denotes survival indicator under control assignment. 1 indicates survival and 0 no

survival.
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5. Yi(1) denotes survival indicator under treatment assignment. 1 indicates survival and 0

no survival.

6. Zi denotes treatment assignment. 0=control, 1=treatment.

Of the six variable, two will be counterfactual, For a control subject, Si(1), Yi(1) are coun-

terfactual. For a treatment subject Si(0), Yi(0) are counterfactual.

We simulate each of the 2000 subjects data as follows. First simulate categorical baseline

tumor category from a multinomial distribution with probabilities (.25,.25,.25,.25) for the val-

ues (0,1,2,3). Next simulate Si(0) given the tumor size category from a Bernoulli distribution

with Pr(Si(0) = 1|Xi = j) = p(j) with p(0, 1, 2, 3) = (.45, .40, .40, .35). We then simulate

the survival status under control Yi(0) with a Bernoulli draw with Pr(Yi(0)|Si(0) = 0) = .60

and Pr(Yi(0)|Si(0) = 1) = .80 to reflect a 20 percent increased survival probability for pCR

control responders over pCR control non-responders. We then simulate Si(1) given baseline

tumor category (Xi), pCR response under placebo (Si(0)) and survival status under placebo

(Yi(0)) as follows. For subjects with Si(0) = 1 we set Si(1) to be 1. This enforces the

monotonicity assumption Si(0) ≤ Si(1). For subjects with Si(0) = 0 we generate Si(1) from

a Bernoulli draw with:

Pr(Si(1)|Si(0) = 0, Xi, Yi(0)) =
exp(β0 + β1Yi(0) + β2Xi)

1 + exp(β0 + β1Yi(0) + β2Xi)
,

with (β0, β1, β2) = (−1, 1,−.2). We then simulate Yi(1) given pCR counterfactual infor-

mation (Si(0), Si(1)) and counterfactual survival status under control (Yi(0)) as a Bernoulli

random variable with the following probabilities of Yi(1) = 1:

Pr(Yi(1) = 1|Si(0) = 0, Si(1) = 0, Yi(0) = 0) = 0.5

Pr(Yi(1) = 1|Si(0) = 0, Si(1) = 0, Yi(0) = 1) = 0.6

Pr(Yi(1) = 1|Si(0) = 0, Si(1) = 1, Yi(0) = 0) = 0.85

Pr(Yi(1) = 1|Si(0) = 0, Si(1) = 1, Yi(0) = 1) = 0.9

Pr(Yi(1) = 1|Si(0) = 1, Si(1) = 1, Yi(0) = 0) = 0.85

Pr(Yi(1) = 1|Si(0) = 1, Si(1) = 1, Yi(0) = 1) = 0.9
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These probabilities were chosen to make the survival probability under treatment greater

for those who would obtain pCR under treatment but not under placebo and also greater

for those patients who would survive under control than those who would not survive un-

der control. We set these probabilities to be independent of baseline tumor status given a

patient’s counterfactual pCR information and counterfactual survival status under control.

Lastly, we simulate a patient’s treatment assignment with equal probability for each arm

as a Bernoulli draw with Pr(Zi = 0) = Pr(Zi = 1) = 0.5. In this way we ensure that

each subject’s counterfactual information is independent of treatment assignment. For the

simulated data the true average causal effect for principal stratum Si(1) = k is:
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E[Yi(1)− Yi(0)|Si(1) = k] = E[Yi(1)|Si(1) = k]− E[Yi(0)|Si(1) = k]

=
Pr[Yi(1) = 1, Si(1) = k]− Pr[Yi(0) = 1, Si(1) = k]

Pr[Si(1) = k]

where : Pr[Si(1) = k] =
∑
X

∑
Yi(0)

{
Pr[X = x] · Pr[Si(0) = 1|X = x]

+ Pr[X = x] · Pr[Si(0) = 0|X = x]

· Pr[Yi(0)|Si(0) = 0, X = x]

· Pr[Si(1) = k|Si(0) = 0, Yi(0), X = x]

}

Pr[Yi(0) = 1, Si(1) = k] =
∑
X

{
Pr[X = x] · Pr[S(0) = 1|X = x]

· Pr[Yi(0) = 1|Si(0) = 1, X = x]

+ Pr[X = x] · Pr[Si(0) = 0|X = x]

· Pr[Yi(0) = 1|Si(0) = 0, X = x]

· Pr[Si(1) = k|Si(0) = 0, Yi(0) = 1, X = x]

}

Pr[Yi(1) = 1, Si(1) = k] =
∑
X

∑
Yi(0)

{
Pr[X = x] ∗ Pr[Si(0) = 1|X = x]

· Pr[Yi(0)|Si(0) = 1, X = x]

· Pr[Yi(1) = 1|Yi(0), Si(0) = 1, X = x]

+ Pr[X = x] · Pr[Si(0) = 0|X = x]

· Pr[Yi(0)|Si(0) = 0, X = x]

· Pr[Si(1) = k|Si(0) = 0, Yi(0), X = x]

· Pr[Yi(1) = 1|Si(0) = 0, Si(1) = k, Yi(0), X = x]

}

Under the above simulation parameter settings the true average causal effect for those who

would achieve pCR under treatment is .107. This means that if the treatment was admin-

istered to all subjects who would achieve pCR under treatment there would be a 10.7%
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increasement in survival, within the time frame under consideration, than had all of them

taken the control instead.

For the above scenario we conducted 500 replications. For each replicate we followed the

method described in Section 3.6.3. We used B=200 bootstrap samples to obtain estimates for

each replicate. The R package optim() with the Nelder-Mead method was used to estimate

β. Initial parameter values were chosen to match the true values of β. In our simulations

many of the bootstrap samples did not converge when estimating β, the parameters used to

model the probability of pCR response for a control pCR non-responder. Additionally, the

r package optim() reported convergence for extreme values of β when in fact the objective

function would obtain the same value under more extreme values of β as well. We think

that this problem of convergence is due to the small sample size of our simulation study and

the relatively flat surface of our objective function. We therefore imposed the following two

additional restrictions to aid the identification the model parameters. First we rejected any

bootstrap sample that did not converge or reported convergence to any parameter βk; k =

0, 1, 2 where the value of βk > 3. Second, we imposed the restriction β1 > 0 by rejecting any

bootstrap sample which converged to β1 ≤ 0. This restricts the probability of pCR under

treatment for a control pCR non-responder who survived under control to be greater than

the probability for a similar subject who did not survive under control for the same baseline

tumor category.

For the purpose of comparison, we compare the performance of our method with two

other methods. In the first we impute the missing data {Si(1)} for the control non-responders

using the true model parameters from the data generating process. This allows us to evaluate

the peformance in a scenario where one could know the true model for the missing data Si(1).

Second, we carry out a sensitivity analysis using similar methods to Gilbert et. al. [21] and

Shepard et. al. [35]. Recall that for each X = x ∈ Γ = {0, 1, 2, 3}, we have an equations of

the form:

ĜL(x) =
∑
j

[GM(x, j;β) · ĜR(x, j)], x ∈ Γ = {0, 1, 2, 3} (3.17)

where GM(x, j;β) = exp(β0+β1j+β2x)
1+exp(β0+β1j+β2x)

. For the sensitivity analysis we set the value of β1.

Then for each category of x we define βx = β0 + β2x. With this reparameterization we have
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for each equation only one unknown, βx. We solve for βx for each equation independently.

We then follow the rest of our method by imputing the missing value Si(1) for the placebo

non-responders, {i : Si(0) = 0} with a Bernoulli draw:

Si(1) ∼ Bernoulli

(
exp(βx + β1j)

1 + exp(βx + β1j)

)
given Si(0) = 0, Yi(0) = j,Xi = x (3.18)

. Bootstrap estimates are obtained along with the 100(1− α)% confidence interval.

Table 9 shows the results of the simulation for the study size of 2000 subjects over

500 replicated datasets using the true model for imputation, our method, and a sensitivity

analysis setting β1 to 0,1,or 2. We report the average over all 500 datasets the estimated

average casual effect of treatment among those who would respond to treatment (θ̂), the

empirical bias of θ̂, the mean squared error, or MSE of θ̂, the 90% confidence interval length,

and the 90% confidence interval coverage probability. To account for the uncertainty of the

imputation model parameters and the variability of the missing data, we use 200 bootstrap

samples to conduct inference. Let θ̂br; b = 1, .., 200; r = 1, .., 500 be the estimate of the bth

bootstrap sample from the rth replicate. Then we have:

θ̂ = 1
500

∑500
r=1

1
200

∑200
b=1 θ̂

(br)

MSE(θ̂) = 1
500

∑500
r=1

{
[ 1
200

∑200
b=1 θ̂

(br) − θ0]2 + 1
199

∑200
b=1(θ̂

(br) − θ̂(r))2
}

Average length of 90% Confidence Intervals = 1
500

∑500
r=1{θ̂(r,.95) − θ̂(r,.05)}

Coverage probability of 90% Confidence Intervals = 1
500

∑500
r=1

{
I{θ0 ∈ (θ̂(r,.05), θ̂(r,.95))}

}
where θ̂(r,.05) and θ̂(r,.95) are the .05 and .95 quantiles of the bootstrap distribution of θ̂ from

the rth replicated dataset and θ̂(r) is the average of the 200 bootstrap estimates,θ̂(br), from

replicate r.

In Table 7 we see that using the true model parameters to impute the missing data

produces an unbiased estimate with coverage close to the target. The average confidence

interval length for this scenario is .069. For the sensitivity analysis, when β1 is correctly

assumed to be 1, the estimate was unbiased with 90% coverage probability of .884. However,

when β1 is incorrectly specified, estimates where severely biased, depending on the direction

of the misspecification error. Additionally, in these scenarios, severe undercoverage resulted.

In all sensitivity scenarios confidence interval length was similar to the confidence interval

length assuming the true model.
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Table 7: Simulation Results of our Method Compared to Assuming True Model and a

Sensitivity Approach

θ̂ empirical MSE Average length coverage probability

bias of 90% CIs of 90% CIs

Imputation under

β = (−1, 1,−.2) .108 .001 6.43e-04 .069 .916

Sensitivity Analysis

β1 = 0 .157 .050 3.29e-03 .072 .300

β1 = 1 .108 .001 7.43e-04 .069 .884

β1 = 2 .070 -.036 1.92e-03 .066 .434

Our Method .099 -.008 1.76e-03 .123 .996

Our method produced an estimate with small bias of −.008. The MSE of our method

was larger than the MSE when imputation was carried out under the true model parameters

or with the sensitivity analysis when β1 was correctly specified. The MSE was superior to

the sensitivity analysis when β1 was misspecified as above. The average confidence interval

length under our methos was .123, which is much wider than the other methods. Addition-

ally, our method resulted in overcoverage, while the sensitivity analysis resulted in severe

undercoverage when β1 was misspecified (β1 = 0, 2). Li et. al. [26] similarly report over-

coverage using their Bayesian technique and attribute it to the lack of full identifiability of

their models.

3.8 DATA EXAMPLE: NSABP B-40 NOADJUVANT CLINICAL TRIAL

In this section we apply our method to the National Surgical Adjuvant Breast and Bowel

Project (NSABP) B-40 study. In this study, 1206 women with HER2-negative breast can-

cer were randomized to one of three docetaxel-based neoadjuvant regimens and whether to
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receive bevacizumab or not. The purpose of this analysis is to compare the survival prob-

ability at a specific time point between the arm with bevacizumab added to the treatment

regimen and the arm without bevacizumab among those patient who would obtain a pCR

had bevacizumab been added to their treatment regimen.

To apply our method we use baseline tumor size as the additional categorical covariate.

We categorize tumor size in 4 categories: less than 3cm, more than 3cm and less than 4cm,

more than 4cm and less than 5cm, and more than 5cm. We collapse survival data into

a binary endpoint, those who survived past 3 years and those who did not. Using this

cutoff 1156 (96%) and 1118 (93%) subjects had complete data for 3-year overall survival

and disease-free survival, respectively. Subjects whose observations were censored prior to

3-years of follow up were excluded for the analysis.

We run our method, as well as a sensitivity analysis with β1 assumed to be 0,1, and 2.

We generate 90% confidence intervals using bootstrap resampling with 200 replicates. We

use the estimation procedure for our method and sensitivity analysis discussed in 3.6.3.

Table 8: Application in the NSABP B-40 study: treatment effect in 3 year overall survival

probability among those who would obtain pCR under treatment

ˆE(Y (1)|S(1) = 1) ˆE(Y (0)|S(1) = 1) θ̂ 90% CI

Our Method .974 .941 .032 (-.007, .071)

Sensitivity

analysis:

β1 = 0 .974 .931 .042 (.006, .079)

β1 = 1 .975 .948 .027 (-.005, .058)

β1 = 2 .973 .950 .023 (-.004, .050)

Table 8 shows the results for 3 year OS. Using our method the estimated 3-year OS

probability for treatment responders is 0.974 for the bevacizumab group and 0.941 for the

non-bevacizumab group, a difference of .032 (90% CI= (-.007, .071)). Because 0 is within

the 90% CI, we cannot conclude that adding bevacizumab is beneficial for this subgroup.

The sensitivity analysis yielded treatment deferences of .042, .027, and .032 when β1 was
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assumed to be 0, 1, and 2, respectively. For the sensitivity analysis, the 90% CI for both

β1 of 1 and 2 contained 0. For β1 = 0 the the 90% CI did not contain 0. Therefore, if

an investigator believed that β1 = 0, a conclusion of significance at 90% confidence level is

reached. β1 = 0 signifies no greater chance of pCR under bevacizumab for a subject who did

not obtain a pCR without bevacizumab and survived 3 years compared to a similar subject

who did not survive 3 years.

Table 9: Application in the NSABP B-40 study: treatment effect in 3 year disease-free

survival probability among those who would obtain pCR under treatment

ˆE(Y (1)|S(1) = 1) ˆE(Y (0)|S(1) = 1) θ̂ 90% CI

Our Method .920 .859 .061 (-.009, .129)

Sensitivity

analysis:

β1 = 0 .920 .846 .073 (.024,.133)

β1 = 1 .920 .870 .050 (.001, .106)

β1 = 2 .920 .881 .039 (-.018, .088)

Table 9 shows the results for DFS. Using our method the estimated 3-year DFS prob-

ability for treatment responders is 0.92 for the bevacizumab group and 0.859 for the non-

bevacizumab group, a difference of .061 (90% CI= (-.009, .129)). Because 0 is within the

90% CI, we cannot conclude that adding bevacizumab is beneficial for this subgroup. How-

ever, as our method has shown to result in overcoverage, it is very likely that bevacizumab

is beneficial, but our method failed to detect this benefit.

The sensitivity analysis yielded treatment deferences of .073, .050, and .039 when β1 was

assumed to be 0, 1, and 2, respectively. Interestingly, the 90% CI under β1 = 0 and 1 did

not contain 0. If an investigator believed that β1 was 1 or less, a conclusion of significance

at 90% confidence level is reached. The β1 parameter is the log odds ratio of obtaining a

pCR if given bevacizumab for a non-bevacizumab subject who survived past 3 years and

did not obtain a pCR compared to one who did not survive past 3-years, within a specific

baseline tumor size category. β1 ≤ 1 indicated the odds of pCR is 2.7 times or less for a
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3-year survivor compared to one who did not survive 3 years, given the same baseline tumor

size for a subject in the non-bevacizumab group who did not obtain a pCR.

3.9 DISCUSSION AND FUTURE WORKS

In this chapter we presented a method under the principal stratification framework to esti-

mate the causal effect of treatment on a binary endpoint, conditioning on a post-treatment

binary response marker in randomized controlled clinical trials. Identification of the causal

effect is achieved through two assumptions. First, a subject who responds under control

would respond if given treatment. Second, we assume a parametric model for the probabil-

ity of response for a control non-responder if given treatment. Baseline clinical markers and

the binary outcome are predictors in the same model. After estimating the model parameters

we impute the missing counterfactual data and use bootstrap samples to conduct statistical

inference.

Our method was shown in simulations to have negligible bias, in contrast to a sensitivity

analysis-based approach where the sensitivity parameter is misspecified. Our method, how-

ever, produced wider confidence intervals than the sensitivity analysis-based approach, or

when the true value of the model parameters for the assumed model is known. This can lead

to Type II errors where an investigator may wrongly conclude a drug ineffective when in fact

there is a treatment effect. However, under our method, if a significant result is achieved,

one can conclude the treatment effective, as opposed to a sensitivity approach where one

must be wary of a Type I error resulting from misspecifying the sensitivity parameter.

In addition to analyzing breast cancer clinical trial data, our method can be applied to

clinical trials testing HIV vaccines. In this context, the causal effect of the vaccine on viral

load among those who would be infected under treatment (and under control if monotonicity

is assumed) is of interest. To use our method, an investigator would need to categorize viral

load into a binary variable with some threshold.

The main weakness of our method comes from the problem of identification of the model

parameters used to impute the missing counterfactual information. We believe this to be
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primarily due to the flat surface of our objective function. Possible improvements to our

method may be obtained by refining the objective function.
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APPENDIX

ACCOUNTING FOR CONTINUOUS ACCRUAL

AND FOLLOW-UP

A.1 SURVIVAL AND HAZARD FUNCTIONS WITH AN ACCRUAL

PERIOD

To model the survival distributions of each treatment group we assume an accrual period of

length Ta and a follow-up period after last patient accrual of length Tf . The total time of

the study, T is Ta+Tf . In practice, most patients survive until time of surgery. We therefore

assume that each patients will survive at least 0.5 years after enrollment. This assumption

simplifies our calculations as it allows us to assume that all patients have observed pCR

status.

Denote the pCR proportion among patients randomized to the control arm as δ. Let ∆

be the increase in pCR proportion due to the intervention. Let Ta and Tf be the total accrual

time and follow up time after accrual, respectively. We assume the entry time of each patient

follows a uniform distribution over (0, Ta). A patient’s survival probability is assumed to be

1 for the first .5 years after entry and subsequently follow an exponential distribution with

hazard rate λ0 and λ1 for pCR non-responders and responders, respectively. The following

is the survival function S0(t) for the control group:
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1. For t ∈ (.5, Ta) :

S0(t) =
1

2t
+ (1− 1

2t
) · 1

t− 1/2

∫ t−1/2

0

δe−λ1(t−1/2−s) + (1− δ)e−λ0(t−1/2−s)ds

=
1

2t
+

1

t

∫ t−1/2

0

δe−λ1s + (1− δ)e−λ0sds

=
1

2t
+

1

t

[
δ

1

λ1
(1− e−λ1(t−1/2)) + (1− δ) 1

λ0
(1− e−λ0(t−1/2))

]

2. For t ∈ (Ta, Ta + 1
2
) :

S0(t) =
Ta − (t− 1/2)

Ta
+ (

t− 1/2

Ta
) · 1

t− 1/2

∫ t−1/2

0

δe−λ1(t−1/2−s) + (1− δ)e−λ0(t−1/2−s)ds

=
Ta − (t− 1/2)

Ta
+

1

Ta

[
δ

1

λ1
(1− e−λ1(t−1/2)) + (1− δ) 1

λ0
(1− e−λ0(t−1/2))

]

3. For t > Ta + 1
2
:

S0(t) =
1

Ta

∫ Ta

0

δe−λ1(t−1/2−s) + (1− δ)e−λ0(t−1/2−s)ds

=
1

Ta

[
δ

1

λ1
(e−λ1(t−Ta−.5) − e−λ1(t−1/2)) + (1− δ) 1

λ0
(e−λ0(t−Ta−.5) − e−λ0(t−1/2))

]

The survival function for the treatment group S1(t) is obtained by replacing δ with

δ+∆, assuming pCR responders and non-responders in the treatment group have equivalent

hazards to those responders and non-responders in the control group. If the treatment

group is assumed to have a lower hazard than the control group within each pCR stratum,

as in Model 2 of Section 4, λ0 and λ1 are replaced by λ0β2 and λ1β2 for the treatment

group’s survival. β2 represents the hazard ratio between treatment and control within each

pCR stratum. The hazard function hi(t) is derived from the survival function through the

relation:

hi(t) = −S
′
i(t)

Si(t)

For the control group S ′0(t) is as follows:
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1. For t ∈ (.5, Ta) :

S ′0(t) = − 1

2t2
+

1

t
(δe−λ1(t−1/2) + (1− δ)e−λ0(t−1/2))− 1

t2
[
δ

1

λ1
(1− e−λ1(t−1/2))

+ (1− δ) 1

λ0
(1− e−λ0(t−1/2))

]

2. For t ∈ (Ta, Ta + 1
2
) :

S ′0(t) = − 1

Ta
+

1

Ta
(δe−λ1(t−1/2) + (1− δ)e−λ0(t−1/2))

3. For t > Ta + 1
2
:

S ′0(t) =
1

Ta

[
δ(e−λ1(t−1/2) − e−λ1(t−2.5)) + (1− δ)(e−λ0(t−1/2) − e−λ0(t−2.5))

]

S ′1(t) for the treatment group is obtained by replacing δ with δ + ∆. The hazard ratio

between the treatment and control group is the ratio of the treatments’ hazard functions.

Because of the complex nature of the hazard ratios we conduct simulations to determine the

power of the trial.
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A.2 SIMULATION

A.2.1 Setup

We conducted simulations to assess the empirical power for detecting a treatment difference

in patient survival for a randomized neoadjuvant trial with a total of N patients allocated

equally to two groups. In each run, we first simulated the patient’s pCR status by Bernoulli

distributions with success probabilities δ and δ + ∆ for the control and treatment group,

respectively. We simulated the entry time,Tentry of each patient from a uniform distribution

over (0, Ta). We simulated the event time of each patient from an exponential distribution

with hazard rates of λ0, λ1 for the control group and λ0β2, λ1β2 for the treatment group for

pCR non-responders and responders respectively, with Model 1 simulations corresponding

to β2 = 1. We added .5 to each event time to account for our assumption that each patient

lived until pCR assessment at .5 years. Administrative censoring was considered to reflect

the closure of long-term outcome data in multi-center clinical trials. Therefore, an event

time beyond an individual’s followup time, Tfollow = Tend − Tentry), was considered censored

for purposes of analysis. We compared the survival of the two treatment groups with a 2-

sided logrank test with α = 0.05 chosen for significance. We repeated each simulation 10,000

times. The proportion of logrank tests that achieved significance will be the empirical power

of the randomized trial. All simulation were performed in R Version 3.1.2 [32].

We chose parameter values for our simulation to be similar to the parameter setting

of section 3.1; the time of study end of 6.5 was chosen to be 5 years following the mean

time of pCR assessment (.5 years after the 1 year mean accrual time). The simulation was

carried out for Taccrual = 2, Tend = 6.5, δ = .3 along with every combination of the following

parameters for Model 1: N = 1000, 2000; λ0 =, 0.08, 0.12; ∆ = 0.1, 0.2, 0.3; β1 = 0.2, 0.3, 0.4,

where β1 = λ1/λ0. For Model 2 we ran a simulation with ∆ = 0.2 and β2 = 1, 0.95, 0.9

assuming N = 1000, λ0 = .08,∆ = 0.2, and β1 = 0.3 to evaluate the sensitivity of the model

with respect to β2, the treatment effect within each pCR strata.
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A.2.2 Assessment of Sample Size Justification

Similar to section 2.5, we numerically approximate the average hazard ratio. Because we

assume each patient lives at least .5 years we approximate the hazard ratio over the interval

(.5, Tend) by averaging the hazard ratio at 1000 time points over (.5, Tend). We then calculated

required sample sizes to achieve 80 and 90 percent power using Schoenfeld’s equation (2.1),

replacing λ with the calculated average hazard ratio and calculating ρ based on the modeled

survival function. We calculated the required sample sizes for a total of 288 combinations

of parameter values (δ ∈ {0.1, 0.3, 0.5},∆ ∈ {0.1, 0.2, 0.3, 0.4}, λ0 ∈ {0.08, 0.12, 0.16}, β1 ∈

{0.2, 0.3, 0.4, 0.5}, β2 ∈ {1, 0.9} for Taccrual = 2 and Tend = 6.5). Using these sample sizes we

calculated the empirical power (with 1,000 runs) under our model assumptions along with

its 95% confidence interval using a normal approximation for proportions.

A.2.3 Results

Results of our simulation studies on the empirical power under Model 1 and Model 2 incor-

porating a continuous accrual process are presented in Table A1 and Table A2.

Compared to the values obtained in Section 4 where a single accrual time was assumed,

average hazard ratios and empirical power are nearly identical to those values from Section 4

with the same parameter values. Applying the average hazard ratio to Schoenfeld’s equation

(2.1) to determine sample size yielded consistent results compared to the empirical power.

Overall, empirical power achieved its target, with the average empirical power of 80.5% and

90.2% for 80% and 90% power targets respectively over the 288 scenarios tested. Among the

288 scenarios 93.4 and 91.7 percent of the 95% confidence intervals contained their targets

of 80 and 90 percent power, respectively.
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Table A1: Average HR and empirical Power with 2 years Accrual and 6.5 years Endtime

using Model 1

λ0 = .08 λ0 = .12

Power Power

β1 ∆ Average HR N=1000 N=2000 Average HR N=1000 N=2000

0.4 0.1 0.924 0.097 0.151 0.922 0.125 0.200

0.4 0.2 0.849 0.260 0.457 0.847 0.350 0.602

0.4 0.3 0.776 0.516 0.807 0.774 0.668 0.925

0.3 0.1 0.907 0.122 0.202 0.904 0.158 0.271

0.3 0.2 0.816 0.359 0.615 0.812 0.484 0.778

0.3 0.3 0.727 0.679 0.934 0.724 0.829 0.985

0.2 0.1 0.888 0.153 0.263 0.884 0.207 0.359

0.2 0.2 0.778 0.478 0.765 0.773 0.631 0.906

0.2 0.3 0.672 0.829 0.987 0.667 0.935 0.999

Table A2: Average HR and power with an additional treatment effect within each pCR

group with 2 years Accrual and 6.5 years Endtime using Model 2

∆ β2 Average HR Power

0.2 1 0.816 0.359

0.2 0.95 0.776 0.499

0.2 0.9 0.737 0.641

0.3 1 0.727 0.679

0.3 0.95 0.692 0.789

0.3 0.9 0.657 0.876

parameters: N = 1000, δ=0.3, λ0=0.08, Tend=5
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